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Abstract

We propose simple parameter-free models that predict how
people learn environmental cue contingencies, use this infor-
mation to measure the usefulness of cues, and in turn, use these
measures to construct search orders. To develop the models,
we consider a total of 8 previously proposed cue measures,
based on cue validity and discriminability, and develop simple
Bayesian and biased-Bayesian learning mechanisms for infer-
ring these measures from experience. We evaluate the model
predictions against people’s search behavior in an experiment
in which people could freely search cues for information to
decide between two stimuli. Our results show that people’s
behavior is best predicted by models relying on cue measures
maximizing short-term accuracy, rather than long-term explo-
ration, and using the biased learning mechanism that increases
the certainty of inferences about cue properties, but does not
necessarily learn true environmental contingencies.

Keywords: learning; search order; predictive models; cue
contingencies

Introduction

Making a decision requires people to search for information,
decide when to terminate that search, and then make a de-
cision based on the available information (Gigerenzer, Todd,
& the ABC Group, 1999). Deciding which of two cities is
larger might start with finding out whether each city is a state
or national capital, whether it has an airport, and so on. At
some point, the information gathering must stop, and a deci-
sion made on the basis of what is known about the available
cues and their relationship to the decision criterion of popula-
tion size. If people receive some sort of feedback—whether
implicit or explicit, or immediate or delayed—about the accu-
racy of their decisions, then it also becomes possible to learn
the usefulness of different cues. The field of decision making
is full of models for learning how cues relate to criteria, based
on principles like conditioning, reinforcement, and error cor-
rection. There are some models of how people learn when to
terminate search, usually in the form of adaptive sequential
sampling models, and based on principles like maximizing
reward rates, controlling conflict, or maintaining confidence
(Lee, Newell, & Vandekerckhove, 2014).

There are fewer models of how people learn the order in
which to search. Many measures have been proposed as the
basis for ordering search, including those that focus on im-
mediate benefits like the current validity or success rate of
a cue (Gigerenzer & Goldstein, 1999; Newell, Rakow, We-
ston, & Shanks, 2004), and those that take a longer view by
focusing on information gain (Nelson, 2005). Central to cal-
culating all of these measures are the discriminability and va-
lidity properties of a cue. Discriminability is the probability
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that a cue takes different values for two stimuli being com-
pared. Validity is the probability that it identifies the correct
stimulus, given that it discriminates. Despite their central-
ity, there are few models of how validity and discriminability
are learned, and it is often simply assumed they are veridi-
cally available to people. This means, in turn, that there are
few models of how people learn to order search. Exceptions
are Todd and Dieckmann (2004) and Martignon and Hoffrage
(2002). These, however, focus on simulation studies and lex-
icographic rules with one-reason decision making, which are
not easily extended to cases where people search beyond one
discriminating cue.

A process account of how people learn these cue contin-
gencies and decide on search orders is relevant to any model
of choice that employs sequential sampling and evidence ac-
cumulation, as well as heuristics that select cues based on
learned contingencies. In this paper, we develop a model-
ing framework that allows for different assumptions about
what cue measures are important for guiding search, and can
use one of two simple learning mechanisms for ordering cue
search. We evaluate the resultant 16 different models against
previous experimental data measuring how people search.

Experimental Data

Our data come from experiments reported by van Raven-
zwaaij, Newell, Moore, and Lee (2014) in which, on each
trial, participants had to select which of two cities had a larger
population. The names of the cities were not provided, but
various cues—such as whether the city had an airport, a uni-
versity, a sports team, and so on—were available for both
cities. Participants had the option to select and view as many
cues as they liked, in an order of their choosing. The cues
were visually presented in a circular layout, with a random
ordering for each participant, to control for presentation ef-
fects on the order of search. There were two experimental
conditions: in the known condition, cue validities and dis-
criminabilities were provided, while in the unknown condi-
tion, this information was not provided. In both conditions,
participants received corrective feedback after every trial.
We focus on the unknown condition, within which n = 24
participants completed two environments: 100 trials each for
Italian (9 binary cues) and USA (8 binary cues) cities. On av-
erage, about four cues are used on every trial, although there
is large variability between trials and participants. Interest-
ingly, the use of individual cues is very similar between the
known and unknown conditions, with a correlation of 0.94.



Modeling Assumptions

All of the models we consider come from combining a mea-
sure of cue usefulness with a method for learning that mea-
sure, based on feedback over a sequence of trials. Search
orders are determined by sampling from the learned distribu-
tions of the measure for each cue.

Measures of cue usefulness

The first four measures focus on immediate reward, and are
simple to define. The remaining measures involve more de-
tailed calculations, and we provide only the intuition behind
these measures (see Nelson, 2005, for details).

Validity The probability v a cue identifies the correct
choice, given that it discriminates between the two stimuli. It
is the basis for search in the prominent fast and frugal heuris-
tic known as take-the-best (Gigerenzer & Goldstein, 1996).

Discriminability The probability d that a cue takes differ-
ent values for the two stimuli. Searching by discriminability
is an extreme case of the linear family of measures consid-
ered by Lee and Newell (2011), Lee and Zhang (2012), and
Ravenzwaaij, Moore, Lee, and Newell (2014).

Additive An average of cue validity and discriminability,
%(v—&-d). Searching using this average is a special case of
the linear family of measures considered by Lee and Newell
(2011) and Lee and Zhang (2012).

Success rate (SR) This is defined as dv+ 1 (1—d) by
Newell et al. (2004). It measures the probability of mak-
ing the correct choice by combining the probability of the
cue discriminating and leading to a correct decision, with the
probability of guessing correctly if it does not discriminate.

Information gain A measure of the expected reduction in
uncertainty— the change in entropy of the choice options—
from observing the value of the cue for the two stimuli.

Probability gain A measure of increase in the expected
probability of making a correct guess.

Impact A measure of the average absolute change in the
probabilities of each choice being correct, as a result of ob-
serving the value of a cue for the two stimuli, weighted by the
probability of the cue providing this information.

Bayesian diagnosticity A measure of the expected weight
of evidence of the cue measured in terms of likelihood ratios.

Learning mechanisms

We propose that people implicitly keep track of which cues
are searched, and the success of each in discriminating, and
indicating the correct choice (Lagnado, Newell, Kahan, &
Shanks, 2006). Formally, after ¢ trials, we assume people
know they have searched a cue on ; trials, that it has discrim-
inated o times, and indicated the correct choice [3; times.

Standard Bayesian Learning Given this information, a
straightforward way to learn cue v and d is through Bayesian
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belief updating. We make the simplifying assumption that
people have no strong prior beliefs (an assumption we re-
visit in the discussion), so that initially vy ~ beta(1,1) and
dy ~ beta(l7 1). After ¢ trials, this means that;

Voo~ beta(l+ﬁ;,l+dz—[3t)
d ~ beta(1+0ct,1+Yz*(Xz)~

Biased Bayesian learning An alternative to standard
Bayesian learning is motivated by the idea of confirmation
bias, or positive test strategy, whereby people are prejudiced
towards aspects that have previously produced positive re-
sults (Klayman & Ha, 1987), and the idea of selective at-
tention, whereby people tend to focus on a limited set of at-
tributes (Wilson & Niv, 2011). Le Pelley, Beesley, and Grif-
fiths (2011) reported results that cues with a high level of pre-
dictive power resulted in a higher attentional bias. Beesley,
Nguyen, Pearson, and Le Pelley (2015) suggested that atten-
tion bias towards the exploitation of predictive cues was more
robust than an attention bias towards exploratory behavior
arising from increasing uncertainty about cues. To account
for these sorts of biases, we consider a second learning mech-
anism in which the cues that are not searched on a trial are
assumed to have failed. This is contrary to standard Bayesian
belief updating, which only considers information about va-
lidity and discriminability from cues actually searched. For-
mally, this means;

V; ~ beta(l +Bt5 1 +I_B[)
di ~ beta(l+oy,1+1—0y).

Intuitively, biased Bayesian learning increases the tendency
to persist with cues that have been successfully tested in pre-
vious trials, creating an attentional or confirmational bias for
exploitation over exploration.

Determining search orders

Given a cue measure and learning mechanism, we propose
that people determine a search on each trial by sampling from
the learned distribution of the measure for each cue. The rank
order of these samples determines the search order for that
trial. Since all the cue measures we consider are determin-
istic functions of v; and d;, the learning results for these two
measures presented above allow any measure to be sampled.

Model Demonstration

We illustrate our modeling framework with a simple example
involving three cues. Table 1 shows the counts after r = 30
trials, and the corresponding validity v and discriminability d
for each cue. On each trial, the order of search is determined
by drawing a mental sample from the inferred distribution of
the cue measure, which incorporates uncertainty. These il-
lustrative distributions are shown in Figure 1, with the two
left-most panels considering the validity measure, and the two
right-most panels considering the success rate measure. For
the standard learning model, uncertainty is reduced as the cue
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Figure 1: Demonstrations of determining search orders from learned inferences about cue measures. The two left panels relate
to the validity measure, and the two right panels relate to the success rate measure. In each panel, the inferred distribution for
three cues is shown, and the vertical lines indicate a sampled value that determines search order for a trial. For both the validity
and success rate panel pairs, the left-most panel relates to standard learning, and the right-most panel relates to biased learning.

is sampled more often, leading to search orders more deter-
ministically following the empirical estimates. Beliefs about
v are updated only if the cue discriminates, which means the
standard learning model will always result in lower certainty
for v, compared to d, unless the cue always discriminates. In
the biased learning model, uncertainty is reduced for both v
and d on every trial, regardless of whether the cue is searched.

For this example, if search order deterministically followed
the empirical rates, the validity measure would predict the
cue order [1,3,2], the discriminability measure would predict
[2,1,3], and the success rate measure would predict the order
[1,2,3]. The other measures of usefulness might predict still
different orders. The uncertainty associated with mental sam-
pling means, however, that a distribution of search orders is
predicted by each measure. Figure 1 illustrates the predicted
search orders using samples from the distributions, shown by
vertical lines. For the particular set of samples shown in Fig-
ure 1, the predicted search order is [1,2, 3] for standard learn-
ing using validity, [2, 1,3] for biased learning using validity,
[1,3,2] for standard learning using success rate, and [2,3, 1]
for biased learning using success rate.

Table 1: Example situation after 30 trials, giving Y30 (num-
ber of times cue is searched), a3y (number of times cue is
searched and discriminates), and 3o (number of times cue is
searched, discriminates and is valid) counts for three cues.

Cue vy30 O30 P30 dso=030/Y30 v30=P30/%0

1 16 10 8 0.63 0.80
2 26 25 16 0.96 0.64
3 15 4 3 0.27 0.75

Model evaluation
Generating model predictions

Because the model predictions depend on the mental samples
drawn on each trial, they are inherently probabilistic. Accord-
ingly, we generate 100 samples for each trial for each partic-
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ipant and measure. The predictions about cue order on each
individual trial are made without the model making contact
with behavioral data. The models are genuinely parameter-
free, so there is no model fitting or parameter estimation in-
volved, and thus no need to adjust for model complexity.

Evaluating model performance

A search order that involves different subsets of 8 or 9 differ-
ent cues has many possible combinations (over 100,000 with
8 cues and over 900,000 with 9 cues). The actual set of unique
search combinations used is fewer than 1% of these. We use
a partial tau T as a metric for the difference between observed
and predicted search orders. This is a generalized version of
Kendall’s tau metric, and is a standard metric in statistics for
the difference between two partially-ordered lists (Fagin, Ku-
mar, Mahdian, Sivakumar, & Vee, 2006). Intuitively, T is the
number of pairwise swaps required to transform one search
order into another, allowing for ties. Thus T = 0 when the
observed order exactly matches the predicted order, but in-
creases as the observed order becomes more different. The
generalization of 7T to the partial version we use allows rank-
ings to have ties. This is important, because whenever a
participant terminates search before examining all cues, they
produce a partial order in which all of the non-searched cues
can be considered as being ranked equal last.

Group-level results

We identified the cue measures, for each learning mechanism
separately, that provided the best prediction (i.e. lowest T) for
each individual participant and on each trial. We then calcu-
lated At, the increase in T of each model over this minimum
T value. The distribution of At is shown in Figure 2. Blue
(darker) lines and markers show the standard learning mod-
els, and the red (lighter) markers and lines the biased learning
models. Since higher mass of the At distribution closer to
zero indicates better model performance, it is clear that valid-
ity, discriminability, additive, and success rate models, when
combined with biased learning, are far better in predicting cue
search orders. A series of paired sample Bayesian t-tests with
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Figure 2: Distribution of At across all trials and participants. Standard (blue) and biased (red) learning shown for each measure

default priors (Love et al., 2015) were carried out to test the
one-sided alternative hypothesis that the population mean of
partial taus generated by the biased-additive model is lower
than for each of the remaining models. The log Bayes factors
generated ranged from 6 to 28 for all pairwise comparisons
for both USA and Italy datasets, except for the comparison
with the biased-validity model, for which the Bayes factors
were inconclusive. This provides evidence that the biased-
additive and biased-validity models are significantly better
than the others models with respect to the partial tau mea-
sures. Figure 3 shows T across trials for the top four measures
in the USA condition. The blue (darker) and red (lighter) cir-
cles show mean 7T for standard and biased learning models,
respectively. The error bars show the 95% credible interval
across all participants and samples. The black line shows the
mean for random sequences. In general, T reduces across tri-
als, suggesting behavior gradually becomes consistent with
systematically predicted cue orders, either because the model
becomes more accurate, people become more consistent, or
both.

Individual-level results

The error bars in Figure 3 are large because of individual dif-
ference between participants. At the individual level, more
confident evaluation is possible. Figure 4 demonstrates this,
by showing the same analysis for an individual participant.
This participant’s search orders are best predicted by biased
learning, and by the validity, discriminability, or additive
combination of these two measures. It is not possible to dis-
play the same analysis for all conditions and participants, but
the one in Figure 4 was chosen as prototypical. Results for
all conditions (including Italian cities) and participants, are
available as supplementary material at www.osf.io/ugf5p.

Effectiveness of cue learning

The prediction of cue search orders and evaluation of mea-
sures of usefulness depends on the learned v and d. Our mod-
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els predict these for each individual cue at each trial. Figure 5
shows the predicted learning for 3 of the 8 different cues in
the USA condition for a single participant. Cue 2 is whether
the city has a sports team, cue 3 is whether the city has an
airport, and cue 7 is whether the city is a national capital. The
large circles show the mean learned values, that is, calcula-
tions based on counts of successes and failures, without tak-
ing into account uncertainty. The gray dots represent the set
of 100 mental samples drawn from learned distribution, and
make clear the associated uncertainty, which reduces across
trials. For standard learning, the uncertainty reduces earlier
for d than v, as expected. This results in greater difficulty
in learning v for cues with empirically lower d (e.g., cue 7).
The crosses at the top of each plot show the trials on which
the cue was searched. As expected, cues accessed frequently
show a greater reduction in uncertainty as well as higher ac-
curacy (e.g. compare cue 3 to cue 7). Contingencies for cue
3 are learned accurately, as the cue is repeatedly selected.

A series of paired sample Bayesian t-tests with default pri-
ors to test the one-sided alternative hypothesis that the stan-
dard deviation of generated samples, across all cues, for the
last trial for both the USA and the Italy environments, were
lower for discriminability compared to validity revealed log
Bayes factors in the range of 6 to 34; and lower for the bi-
ased compared to the standard model revealed log Bayes fac-
tors in the range of 15 to 26. This provides evidence that the
uncertainty over discriminability is significantly lower than
that about validity, and the uncertainty for both are signifi-
cantly lower for the biased compared to the standard model.
While the biased model shows lower uncertainty, cues not fre-
quently accessed under this model are not learned accurately.
For example, accuracy of learned v for cue 7 is less than cue 2
which in turn, is less than cue 3. Most cue validities and dis-
criminabilities are learned quite effectively and quickly. For
example, cue 3 is accurately assessed in the biased model by
about the 10th trial.
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Discussion Differences may also arise from memory, discounting phe-
nomena, or sensitivity to cost and effort. All of these can be
incorporated into extended learning mechanisms. For exam-
ple, recency effects can be incorporated by using a decay rate
for the counts, and cost sensitivity by appropriately weighting
the process by which counts are updated. Finally, the biased
learning model suggests under-exploration, but this could be
on account of strong causal priors that people may have re-
garding the various cue attributes. Prior causal beliefs gen-
erated outside experimental settings can be difficult to mea-
sure, although appropriate parameterization of models could
be used to infer such prior beliefs and improve the quality of
predictions.

We have shown that simple parameter-free learning mecha-
nisms make reasonable predictions about people’s cue search
orders. Our two key results are evidence for biased learning,
and the demonstration that simple validity and discriminabil-
ity (or additive combinations of them), make better predictors
of cue search orders than more sophisticated measures of cue
usefulness. We did, however, find that there were individual
differences in use of the various measures. In future work, we
propose examining parameterized models—such as a gener-
alization of the additive model into a linear weighted model
wv + (1 —w)d, with w as a free parameter—to capture some
of these differences.
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