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ABSTRACT OF THE DISSERTATION

Electric Vehicle - Smart Grid Integration: Load Modeling, Scheduling, and Cyber Security

by

Yu-Wei Chung

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2020

Professor Rajit Gadh, Chair

The modern world has witnessed the surge of electric vehicles (EVs) driven by government

policy worldwide to reduce transportation’s dependence on fossil fuels. According to [SL19],

the global EV market has grown sharply with the annual light-duty EV sales surpassing 2

million in 2018, which is about a 70% increase from 2017. The increase in EV population

implies the rise in energy demand, and that introduces new challenges to the electricity sec-

tor. EV charging load demand in high penetration scenarios, which is foreseen, may lead to

stability and quality issues in power grids. Generation capacity and the electricity infras-

tructure upgrade may be required to address those issues; however, it increases generation

costs significantly. The most common EV chargers installed today deliver around 7 kW of

power, which is over four times that of an averaged household power consumption in the

US. EV charging load often shows two peaks in a day, one in the morning when people plug

in the EV at the workplace and the other in the evening when people get home from work.

Without proper energy management for EV charging, the vast power demand due to a large

number of plugged-in EVs can stress the electric grid, degrade the electric power quality, and

impact the wholesale electricity market. Although an EV battery may store energy up to 80

kWh, which requires more than 10 hours to charge at 7kW from empty, we found that most

EVs need only 12 kWh per charge or 1.7 hours at 7 kW to meet daily commute requirement

while they stay in the parking garage for a more extended period. This implies that EVs

can have considerable time-flexibility for charging, and it is not necessary to start charging

right after plugging in, which is likely to result in the charging power add-up. A proper EV

ii



charging schedule can well allocate the charging load to prevent power peaks. Therefore, EV

charging scheduling can play a significant role in mitigating the adverse effects of vast EV

charging demand without upgrading the power grid capacity.

To optimize the EV charging schedule while satisfies EVs’ charging demand, each EV’s

stay duration and energy need are essential parameters for the optimization. Those parame-

ters are based on predictions to minimize human intervention. Nonetheless, the uncertainty

of EV user behavior poses a challenge to the prediction accuracy. Therefore, this disserta-

tion demonstrates an ensemble machine learning-based method to model and predict the EV

loads accurately, thereby improving the performance of EV charging scheduling.

On the other hand, this smart EV-grid integration, which requires massive communica-

tion, including collecting, transmitting, and distributing real-time data within the network,

makes it more susceptible to cyber-physical threats. Potential breaches could not only affect

grid operation but also reduce consumers’ willingness to adopting EVs over conventional

fuel-powered vehicles. This dissertation also presents the vulnerability analysis and risk

assessment for a smart EV charging system to develop the countermeasures to secure the

network. Also, while it is inevitable that the security has flaws, this dissertation provides a

novel anomaly detection approach based on the invariant correlations of different measure-

ments within the EV charging network.
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CHAPTER 1

Introduction

1.1 Background

The current electricity grid was designed to operate in a top-down structure. The single-

direction power flow starts from power plants and is then followed by a transmission system

and distribution system, and finally ends at the customers. However, increasing penetration

of Renewable Energy Resources (RERs), particularly photovoltaic (PV), in the distribution

grid has resulted in significant challenges for system operators who manage the grid. Fig. 1.1

shows the percentage of total capacity additions in the US over the past decade, and it also

shows the rapid growth of solar’s share of new capacity. 40% of the new capacity added to

the grid came from solar in the year of 2019 [Sol20].

Year Solar Natural Gas Coal Wind Other
2010 4 35 33 24 4
2011 8 51 10 29 2
2012 9 31 16 41 3
2013 28 46 10 7 9
2014 27 43 1 25 4
2015 30 29 0 39 2
2016 40 27 0 26 7
2017 31 42 0 24 3
2018 25 57 0 17 1
2019 40 32 0 27 1
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Figure 1.1: U.S. Annual Additions of New Electric Generating Capacity [Sol20]
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California has a significant renewable energy adoption rate among the United States, as

shown in Fig. 1.2 [Cal19, US19]. California has the largest solar market in the United States,

and 19% of its electricity today comes from solar [Sol19]. However, high solar penetration

also results in a new demand/supply challenge, known as the solar duck curve problem

[Cal16] shown in Fig. 1.3. There is an over-generation risk during the midday when the sun

is shining, and a steep ramp in the evening when the sun goes down along with increasing

electricity demand. The valley goes deeper when PV penetration becomes higher, and this

makes the problem more challenging. Flexible and controllable resources such as battery

energy storage systems (BESS) are needed to ensure supply and demand matching all the

time [NCP17].

Region Coal Natural Gas Nuclear Petroleum Biomass Geothermal
CA 0.3 46.54 9.38 0.3 3.03 5.92
USA 13 31 8 36 4.95 0.3
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Figure 1.2: Comparison of energy generation sectors between California and the US as the

year of 2018
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The !rst ramp of 8,000 MW in the upward direction (duck’s tail) occurs in the morning starting around 
4:00 a.m. as people get up and go about their daily routine. The second, in the downward direction, 
occurs after the sun comes up around 7:00 a.m. when on-line conventional generation is replaced by 
supply from solar generation resources (producing the belly of the duck). As the sun sets starting around 
4:00 p.m., and solar generation ends, the ISO must dispatch resources that can meet the third and most 
signi!cant daily ramp (the arch of the duck’s neck). Immediately following this steep 11,000 MW ramp 
up, as demand on the system deceases into the evening hours, the ISO must reduce or shut down that 
generation to meet the !nal downward ramp.

Flexible resources needed
To ensure reliability under changing grid conditions, the ISO needs resources with ramping "exibility  
and the ability to start and stop multiple times per day. To ensure supply and demand match at all times, 
controllable resources will need the "exibility to change output levels and start and stop as dictated by 
real-time grid conditions. Grid ramping conditions will vary through the year. The net load curve or duck 
chart in Figure 2 illustrates the steepening ramps expected during the spring. The duck chart shows the 
system requirement to supply an additional 13,000 MW, all within approximately three hours, to replace 
the electricity lost by solar power as the sun sets.

Oversupply mitigation
Oversupply is when all anticipated  
generation, including renewables,  
exceeds the real-time demand.  
The potential for this increases  
as more renewable energy is  
added to the grid but demand  
for electricity does not increase.  
This is a concern because if the  
market cannot automatically  
manage oversupply it can lead  
to overgeneration, which requires  
manual intervention of the market  
to maintain reliability. During  
oversupply times, wholesale prices  
can be very low and even go  
negative in which generators have 
to pay utilities to take the energy. But  
the market often remedies the oversupply situation and automatically works to restore the balance  
between supply and demand. In almost all cases, oversupply is a manageable condition but it is not  
a sustainable condition over time — and this drives the need for proactive policies and actions to  
avoid the situation. The duck curve in Figure 2 shows that oversupply is expected to occur during  
the middle of the day as well.

Because the ISO must continuously balance supply and demand, steps must be taken to mitigate  

Figure 2: The duck curve shows steep ramping needs and overgeneration risk

www.caiso.com   |   250 Outcropping Way, Folsom, CA 95630   |   916.351.4400 CommPR/2016
© 2016 California ISO

California Independent System Operator     3

Figure 1.3: The duck curve shows steep ramping needs and over-generation risk [Cal16]

Distributed RERs have changed the electrical grid substantially. As Fig. 1.4 shown, with

more RERs distributed across the power system, there is a transition from a centralized to

decentralized topology. Because the RERs locally generate energy, single-direction power

flow in the distribution system becomes bidirectional. The drastic changes in the power

system stimulate the rapid development of smart grid technology, which becomes a game-

changer for both markets and end-user players. Smart grid technology incorporated with the

Internet of Things (IoT), such as smart meters, smart controllers, demand response (DR),

results in the rapid digitalization of the power system. Therefore, there is a need for advanced

communication and control schemes to enhance system reliability and resiliency[SXC14,

SLC15]. Furthermore, the addition of communication, IoT, and Information Technology

(IT) has resulted in a significant increase in potential vulnerabilities to cyber-attacks on the

power sector, which is yet another challenge to the grid of the future.
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Figure 1.4: Characteristics of traditional grid versus smart grid [Sto18]

1.1.1 Smart Grid and EV Integration

The emergence of Electric vehicles (EV) comes with the evolution of smart grids, with the

same goal to help the grid become greener. EV has great potential to significantly reduce

the usage of petroleum since the transportation sector is the biggest portion of total energy
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use [LL19]. There is a considerable expansion on the EV market in recent years, with annual

light-duty EV sales surpassing two million in 2018 worldwide, a 70% increase from 2017

[SL19, Lov19]. The cumulative sales of EVs globally are presented in Fig. 1.5. EV sales

by country vary worldwide. Widespread adoption of EVs is affected by consumer demand,

government policy, and market prices. The United States is the third-largest EV market,

and various government policies across the states have been made to support EV adoption.

For example, California has adopted the Zero Emission Vehicle regulation, which requires

increasing shares of electric vehicles through 2025. California continues to implement a wide

array of policies and is home to most electric vehicle sales. These policy actions include

consumer incentives, infrastructure deployment, information campaigns, and various local

measures. All of this is to overcome EV adoption barriers related to higher upfront costs,

functional electric range, range anxiety, and lack of awareness of the benefits [SL19]. The

United States EV new sales market share and forecast are shown in Table1.1. The table

shows the increasing trend of EV sales and the percentage of EVs in the US automotive.

The table also shows that California shares a significant portion of the EV market in the

US.

Top-selling light-duty plug-in EV global markets

China 2243.8

Europe 1346.0

United States 1126.0

California 523.0

Norway 296.2

Japan 257.4

United Kingdom 212.0

France 204.6

Germany 196.8

The Netherlands 145.9
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Thousands
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145.9
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1,126

1,346
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1

Figure 1.5: Top-selling light-duty plug-in EV global markets (cumulative sales through De-

cember 2018 by country/region)[Ort18]
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Table 1.1: US and California EV Sales & Market Share Projections [EVA18b]
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

US EV Sales 158,000 199,826 325,000 450,000 600,000 875,000 1,250,000 1,800,000 2,500,000 3,500,000

Total US Auto Sales 17,550,000 17,208,748 16,800,000 16,500,000 16,000,000 16,000,000 16,000,000 16,000,000 16,000,000 16,000,000

US EV % of Sales 0.90 % 1.16 % 1.93 % 2.73 % 3.75 % 5.47 % 7.81 % 11.25 % 15.63 % 21.88 %

CA EV Sales 75,165 110,000 200,000 275,000 350,000 450,000 600,000 800,000 1,050,000 1,350,000

Total CA Auto Sales 2,086,966 2070,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

CA EV % of Sales 3.60 % 5.31 % 10.00 % 13.75 % 17.50 % 22.50 % 30.00 % 40.00 % 52.50 % 67.50 %

CA % of US EV Sales 47.57 % 55.05 % 61.54 % 61.11 % 58.33 % 51.43 % 48.00 % 44.44 % 42.00 % 38.57 %

CA EV % of US Autos 0.43 % 0.64 % 1.19 % 1.67 % 2.19 % 2.81 % 3.75 % 5.00 % 6.56 % 8.44 %

There is a concern with the sharply increasing number of plug-in EVs (PEVs) in the

distribution grid. The power supply may be insufficient to meet the additional EV charging

demand. According to [SBC04], the additional EV charging demand in the US will increase

the existing load by 18% by 2040. This increased load will eventually cause the degrade

of power quality, requiring a distribution infrastructure upgrades for mitigation. Fig. 1.6

illustrates the typical EV loads for three scenarios [fle19]. The study was based on the real-

world charging data from 650 battery electric vehicles over four weeks, representing 13,000

charging events. These account for 120 MWh to illustrate the wide variability of EV charging

behavior among the example service territories. For scenario (a) with no time-of-use (TOU)

rate structure, regular morning and evening peaks recur with commuting cycles to and from

work. Also, there is a consistent midday charging. This unregulated EV charging leaves peak

load to chance. For scenario (b) with static TOU rate, the variability of EV load is reduced

but produces an unintentional peak at the same time. The unintentional peak of EV charging

at 7 pm coincides with a shifted residential load such as cooking, cleaning, or HVAC. For

Scenario (C) with an EV charging control program, the EV load can be evenly distributed

along the day and aggregated within the period of a residential load valley between 12 - 3

am.

Therefore, there is a need for EV charging management. Also, the TOU rate alone is not

enough as it may result in coincident loads with the other shifted load like cooking, cleaning,

and laundry, which defeats the purpose of shifting this load in the first place.
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4

PROFILE EV CHARGING  
IN SERVICE TERRITORIES &  

LOCAL NETWORKS

EV charging behavior within a service territory is as unique as your own 

ĆQJHUSULQW��6ROXWLRQV�XVHG�WR�PDQDJH�RWKHU�UHVLGHQWLDO�ORDGV�DUH�OHVV�

effective when applied to EV charging. This is due to the large number of 

IDFWRUV�ZKLFK�LQćXHQFH�(9�FKDUJLQJ��,W�LV�DOVR�EHFDXVH�(9�FKDUJLQJ�URDPV�

between the home, workplace, and public charging stations. Factors 

affecting EV charging include:

• home and workplace charging incentives, 

• pricing signals and rate structure, 

• climate/ weather, 

• FRPPXWLQJ�SDWWHUQV��WUDIĆF��FLW\�YV�KLJKZD\�GULYLQJ��

• total EV market share, EV model market share, 

• EV charge clustering, 

• public/ workplace/ condo charging infrastructure, 

• EV and EV charging rebates, and

• territory size and topography.

This chart illustrates the variability of EV charging behavior across three service territories. This example 

consists of charging patterns in service territories with a) no time-of-use rate structure, b) a static residential 

time-of-use rate structure, and c) a behavioral EV load control program.
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c) behavioral EV load control program

Figure 1.6: Three typical EV loads within a day [fle19]

EV charging scheduling methods have been studied through shifting EV load to off-peak

and aligning with renewables and over-generation by solar. The results have shown the

great potential to accommodate a large number of EVs and defer upgrading the electrical

grid [XWC18, WWN17, KCC18, KCG19]. Also, from the perspective of an electrical grid,

EVs offer an opportunity to provide ancillary services, such as DR, renewable generation

integration, or providing emergency backup power. These benefits can be achieved by proper

EV-grid integration. Therefore, EV has great potential to make an electrical grid more

reliable. Fig. 1.7 shows the schematic of EV-grid integration.
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ISO

Power Flow Wireless Communication

Figure 1.7: Schematic of EV-grid integration

Advanced communication scheme and vehicle-to-grid (V2G) are the key technologies to

enable the EV-grid integration presented in Fig. 1.7. V2G technology enables bidirectional

power flow between EV and electrical grid for EVs to support grid services. Monetary

incentives may be applied to motivate EVs’ participation so that utilities can achieve a

certain level of grid management. Given that V2G with rapid charging/discharging may

result in batter degradation, a study by NREL has shown that there is little to no impact

on the battery life if operating with a proper V2G control [KMM16]. [UJW17] suggests that

the optimal V2G control is able to reduce the EVs’ battery pack capacity fade by up to

9.1% and power fade by up to 12.1%, namely the battery life can be extended with this V2G

control compared to the scenario without V2G.

The dynamic electricity price is posted by an independent system operator (ISO) based on

the system-wide energy consumption so that the end-users can adjust their load accordingly.

Vehicle-to-Home (V2H) and vehicle-to-building (V2B) are also presented in Fig. 1.7. They
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can be achieved by applying smart charging control. It manages the charging/discharging

schedule to shave the load during peak hours, charge the EVs at low electricity price, or

serve as a backup power source during outages. Distributed EV charging stations have

great potential to facilitate renewable generation integration and enhance the smart grid’s

reliability. While RERs are largely deployed across the distribution grid, EVs can be utilized

as a distributed energy storage system to support voltage and frequency regulation and even

power compensation. These grid services provide benefits to the grid operator and the EV

owner and charging network operators through lower or more predictable charging costs.

1.1.2 Smart EV Charging Framework

This section takes a close look at the smart EV charging system. Smart charging allows EV to

be externally controlled for integration into the whole power system. Fig. 1.8 shows a smart

charging framework with potential communication protocols to be used. A charging point

operator(CPO) manages the EV charging points within the charging station(s) instructed

by a smart charging service. A smart charging service has a close relationship with the dis-

tribution system operator (DSO) and coordinates other CPOs, smart buildings, and energy

suppliers in the network. Smart charging service can be seen as an EV charging alliance

that brings together the CPOs in the network to achieve the grid management objectives

by optimizing the EV charging schedule. The more the CPOs participate in the alliance,

the more significant result can be made. In this scenario, a scalable charging scheduling ap-

proach is needed to manage a large scale of EVs, such as a hierarchical distributed framework

proposed by [KCG19].

The description of potential protocols presented in Fig. 1.8 is as follows. Open Charging

Point Protocol (OCPP) is an open protocol provided by Open Charge Alliance. It is

designed to standardize the communications between EV charging points and the control

center. Open Automated Demand Response Standard (OpenADR) is an open

protocol provided by OpanADR Alliance aiming at automating DR communication and

support a system or device to the change power consumption. Open Smart Charging
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Protocol (OSCP) is a protocol provided by Charge Alliance. The protocol communicates

the forecast of the available capacity from the DSO to other systems. It is based on a

budget system where CPOs can claim their energy consumption budget. Then the smart

charging service will accommodate the energy demand within the boundaries of the available

capacity. Open Charge Point Interface (OCPI) is an open and independent roaming

protocol for EV that makes it easy to exchange data provided by NKL Nederland. IEC

61850 is not a protocol but a document that defines communication protocols for intelligent

devices and electrical substations. ISO 15118 is an international standard between the

communication between EV and the charging infrastructure. It supports V2G and allows

the EV and charging station to dynamically exchange information based on which a proper

charging schedule can be (re-)negotiated.

Common standards for EV charging management and the integration of charging stations

and distribution networks is desirable due to the rise of EV penetration. Several norms

were published at the global level by the International Electrotechnical Commission (IEC),

International Organization for Standardization (ISO), and Society of Automotive Engineers

(SAE). Main international norms related to EV in the aspects of connector, communication,

safety, and charging topology are summarized in Fig. 1.9.

10



Smart Building

Charging 
Point Operator

Charging Point

Distribution 
System Operator

Energy Supplier

Smart Charging 
Service

V2B V2G

DR event
communication Data exchange

- DR command
- Optimized charging 

scheduling

- DR command
- Reduce energy cost
- Optimize grid & 

building integration

- Energy generation
- Energy prediction

OCPI

OCPP

Open ADR
OSCP

IEC 61850
IEC 61850

IEC 61850

ISO 15118

Communication Protocol

Figure 1.8: Smart EV charging system communication network
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Figure 1.9: Overview of main international norms related to electric mobility [IRE19]

The expanded communication between EV and the charging network in the grid will

improve the control of EVs and the integration of smart grids; however, at the expense of

creating a larger attack surface. Smart charging development must take cybersecurity into

consideration to provide a secure and reliable service.

1.2 Challenges and Contributions

It is shown that the electrical grid is undergoing tremendous change and in the transition to

a smart grid. The changes from a centralized system to a decentralized and unidirectional

power flow to bidirectional has made the power system more dynamic. As a result, advanced

communication and control schemes should be further developed to manage the system and

enhance its reliability. This dissertation focuses on the integration of EV into a smart grid,

in response to the rapid growth of the EV population. The first challenge for EV-smart grid
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integration is to accommodate the massive EV charging demand. To prevent the add up of

EV charging power from forming a huge peak, charging scheduling is necessary to relocate

the charging time according to each EV’s availability and energy demand. However, EV’s

availability and energy demand are unknown and may be acquired by prediction, yet the user

behavior uncertainty makes it challenging to be accurate. Therefore, the second challenge

is to handle the EV user behavior uncertainty. There is no doubt that a reliable EV-smart

grid integration requires smart charging. The advanced control and communication scheme

for smart charging has turned the EV charging system into an information network. The

enhanced control and monitoring of EV charging are at the cost of being more vulnerable

to cyber-attack. Consequently, secure the EV charging system from potential cyber-attack

becomes the third challenge.

The contributions of this dissertation are as follows.

1. A scalable smart charging algorithm is devised to manage EV charging with the ob-

jectives of reducing net load variance within a grid and lower the charging cost.

2. An ensemble machine learning approach is developed to address EV user behavior

uncertainty and provide accurate predictions to leverage the smart charging’s perfor-

mance.

3. A codified methodology and taxonomy for assessing vulnerability and risk of cyber-

physical attack on an EV charging network are carried out to create generalized and

comprehensive solutions.

4. A novel anomaly detection approach that makes use of the property of invariant cor-

relation under a controlled system is presented to protect an EV charging network.

1.3 Organization

The rest of the dissertation is organized as follows:
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Chapter 2- In this chapter, real EV charging data is studied, and the different charging

patterns are classified. Also, kernel density estimation, along with many commonly

used machine learning prediction approaches, are discussed, aiming at developing a

strategy to select the best prediction methods for different classes of charging patterns.

An ensemble machine learning algorithm is proposed to leverage the performance of

EV charging scheduling.

Chapter 3- In this chapter, a scalable and straightforward EV charging scheduling algorithm

is presented, taking into consideration of dynamic electricity price, solar generation,

and building load. The approach incorporates the prediction method introduced in

Chapter 2 and minimizes the net load variance and charging cost for an EV charging

network.

Chapter 4- In this chapter, comprehensive vulnerability analysis and risk assessment for

the WinSmartEVTM charging system on the UCLA campus is demonstrated. Several

potential failure scenarios for the charging system were defined, and the impacts of

potential cyber-physical attacks have been studied. Moreover, a codified methodology

and taxonomy are provided for creating a generalizable and comprehensive solution.

Chapter 5- In this chapter, the concept of invariant correlation network is introduced, and

the Greedy Gaussian Segmentation (GGS) method is applied to capture the system-

wise correlations for the EV charging system. The anomaly detection method is then

developed to detect the correlation changes that infer potential cyber-attack or mali-

cious data injection.

Chapter 6- This chapter concludes the dissertation and discusses the future direction of

method improvements.
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CHAPTER 2

EV Load Modeling and Prediction

2.1 Overview

Electric vehicles (EVs) have received more and more attention since they became an essential

part of a smart grid. This is not only because they are environmentally friendly but also

because they provide an economical option to people, considering the high price of dwindling

fossil fuels. According to InsideEVs ’ statistical report for 2018, around 361 thousand EVs

sold in the US while 2 million in total worldwide, and the numbers almost doubled in

comparison to that in 2016 [Lov19]. Currently, there are over 614 thousand EVs on the

road in California[Vel19], spurred by the government’s zero-emission vehicle mandate to

achieve the goal of accommodating 1.5 million EVs by 2025 (California Executive Order B-16-

2012). Therefore, a sharply increasing number of EVs on the road is foreseen. However, the

increasing number of EVs also means that the rise of energy demand and is now becoming a

challenge to the electrical grid. Based on the EV charging data collected on the University of

California, Los Angeles (UCLA) campus, the average energy consumption is about 8 kWh per

charge, which is similar to a daily household energy demand. EV charging load often shows

two peaks in a day, one in the morning when people plug in the EV at the workplace and the

other in the evening when people get home from work. Without proper energy management

for EV charging, the huge power demand due to a large number of plugged-in EVs can stress

the distribution grid, degrade the power quality [MWJ14, SIF15], and impact the wholesale

electricity market [FTC13]. The AAA Foundation report reveals that US drivers spend only

0.8 hours in average behind the wheel everyday [Joh18] and mostly leave vehicles parked.

This implies that EVs can have a great flexibility for charging and is it not necessary to
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start charging right after plugged-in. Thus EV charging scheduling plays an important role

in distributing and allocating the charging time according to the EVs’ availability for overall

load management. A proper EV load management not only mitigates the adverse effects of

EV charging but also brings benefits to the grid such as load valley filling and peak shaving

[GTL13]. Also EV as a mobile battery has a potential to participate in electricity market

[KCM11]. Yet the stochasticity of EV user charging behaviors, including start time, stay

duration, and energy demand, poses a significant challenge for the management of charging

scheduling. Therefore, this chapter discusses and compares several commonly used prediction

methods, aiming at developing an accurate predicting model for EV user behavior in order to

improve energy management performance. In addition, since the predicting methods, such

as regression or kernel density estimator (KDE) are based on the historical data and the

historical charging patterns may be very different from each other, there is no one-size-fits-

all predicting method for all different EV users. Thus, this chapter analyzes and classifies

the different charging patterns, and uses different predicting algorithms accordingly.

2.2 Literature Review

Forecasting EV load and it’s impact to a distribution grid has recently been brought to light

by the development of smart grids and the growing number of EVs. However, due to limited

access to real EV charging data, synthetic data from travel surveys are used for the majority

of these studies. Gennaro et al. [GPS14] utilized the data collected from conventional fuel

vehicles. Harris et al. [HW14] synthesized EV charging profile by using vehicle trip data

from the National Household Travel Survey (NHTS). Wang et al.[WZO15] simulated EV

energy consumption using car travel survey. In spite of the early stage of EV adoption, some

utilities and aggregators have been collecting data from charging stations to gain insight

into EV user behavior [Sma, XWC18]. EA Technology[Eat16] have conducted a three year

project to collect data and investigate the impact of clusters of EVs on the electrical grid in

the UK. There are two types of data can be used for the forecasting, which are station record

and charging record. Station record comes directly from the measurement at the charging
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outlets while charging record comes from the measurement of each user’s charging session. In

other words, station record is the aggregated load data over time and charging record is the

data for a specific user during a charging session. In [MQC15], multiple methods including a

k-nearest neighbor (KNN), a lazy-learning algorithm and a pattern sequence algorithm have

been evaluated for aggregated EV load estimation. In [AKK16, WHQ15], an autoregressive

integrated moving average (ARIMA) method has been proposed for aggregated EV load

forecasting. In [XMC16], a data mining model was developed to predict EV charging demand

for a geographical area. In [MQC14], modified pattern-based sequence forecasting (MPSF)

was in comparison with KNN, support vector regression (SVR) and random forest (RF)

algorithms and showed more accurate performance. Also, the aggregated data of EV loads

may be used for coordinating the EV charging operation as in [XHS14]. However, to schedule

the charging when EVs are plugged in, the charging parameters in each session are preferred

instead of the aggregated load information. Furthermore, the prediction by aggregated load

requires a large amount of EV charging data and currently the availability of the data is

limited. The author in [MQC16] discussed EV charging load forecasting by using station

records and charging records, and the results showed that charging record based prediction

is faster and more accurate. The method such as Gaussian-based kernel density estimator

(GKDE) has been applied to handle the uncertainties of user behaviors for each charging

session in [WWN17, WSW17, WRW16]. But the use of optimal bandwidth selection for

GKDE, a.k.a the normal reference rule [Sil86], usually leads to an over-smoothed probability

and results in less accurate prediction. To overcome the deficiency of the normal reference

rule, kernal density estimation via diffusion (DKDE) [BGK10], which provides a better

bandwidth selection approach, has been used to improve the prediction accuracy of EV

charging behavior[KCC18, CKC18]. By examining the performance of the algorithms applied

to EV user behavior prediction, it is noted that the variances of the errors are usually large.

This is because the EV charging patterns vary significantly and there is no unique algorithm

that works for all. [CKC18] compares and discusses DKDE and GKDE, and the the result

shows that DKDE has a higher accuracy for the users who charge their EVs regularly while

GKDE works better for the irregulars. However, the overall performance for the prediction
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still has room for improvement. To the best of the author’s knowledge, there is no effective

feature that can categorize different EV charging patterns associated with the most accurate

predicting algorithms. Therefore, this chapter aims at classifying different charging patterns

and uses the best approach to predict the charging behavior in each classification.

2.3 User Behavior Prediction Model

This section describes the method for EV user behavior prediction. The objective is to

predict each specific EV user’s stay duration and energy demand based on their historical

charging data when they plug in their EVs. For each charging session, a 5-tuple of parameters

is used to describe a charging behavior:

s , (uid, ts, td, dw, e), (2.1)

where uid is the unique identifier (user ID) for each user in our system; ts and td denote

start time and stay duration, respectively; dw denotes day of week ; and e denotes energy con-

sumption. Those charging parameters are of vital of importance for EV charging scheduling

algorithms to determine an optimal solution. To be specific, once a user initiates a charg-

ing session, the predictions of stay duration and energy consumption are required for the

scheduling services to determine energy allocation schedule. It is noted that stay duration is

related to start time and day of week since users in our model may have their fixed weekly

working schedules. Therefore, the prediction of stay duration(t̂d) can be expressed as follows:

t̂d = fd(ts, dw). (2.2)

Also, energy consumption is related to start time, day of week, and stay duration, such that:

ê = fe(ts, dw, t̂d). (2.3)

As shown in (2.3), when predicting energy consumption, the stay duration is unknown and

thus rely on its predicted value, t̂d. The predicting procedure is illustrated in Fig. 2.1.
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Figure 2.1: User behavior prediction

To evaluate the performances of different prediction algorithms, symmetric mean absolute

percentage error (SMAPE) is chosen here based on the following reasons:

1. SMAPE is a unit free percentage error and it is easier to present the prediction accuracy

with different data sets, which are stay duration and energy consumption in this paper.

2. Percentage error such as mean absolute percentage error (MAPE, defined as MAPE =

mean (|y − ŷ|/y)) has a problem when y value becomes very small. This small value

will result in a huge error that bias the overall accuracy. Therefore, SMAPE would be

more accurate since it considers both y and ŷ in the denominator, given that the data

is strictly positive.

3. SMAPE is widely used in evaluating EV charging prediction accuracy, it would be

easier for comparison.

For charging session i, the SMAPE is defined as:

SMAPE =
1

N

N∑
i=1

|P̂ (i)− T (i)|
P̂ (i) + T (i)

, (2.4)

where N is the number of charging sessions, P̂ is the prediction, and T is the corresponding

true value.
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2.4 Hybrid Kernel Density Estimator (HDKE)

This section presents a hybrid kernel density estimator (HKDE) that uses both Gaussian-

and Diffusion-based KDE (GKDE and DKDE) to predict the stay duration and charging

demand of electric vehicles (EVs), which are essential parameters for optimizing EV charging

schedule. While DKDE has higher accuracy in general, GKDE tends to result in better

estimation for users who charge the EV irregularly. Therefore, the HKDE evaluates and

categorizes the charging pattern regularity of a user, and determines which KDE to use by

a novelty detection method based on the users historical data. The estimations are then

applied to an optimal EV charging algorithm to minimize load variance in an EV charging

infrastructure and reduce EV charging cost.

2.4.1 Gaussian Kernel Density Estimator (GKDE)

KDE is widely used as a nonparametric distribution estimation method. Given an ob-

served dataset X = [X1, X2, ..., XN ], a probability density function can be estimated as

follows[Cri16]:

P̂KDE (x) =
1

Nh

N∑
i=1

K(
x−Xi

h
) (2.5)

where N is the size of X, h is the bandwidth of the Gaussian kernel K(·), and K(·) is defined

as:

K (u) =
1√
2π
e(− 1

2
u2) (2.6)

Bandwidth h defines the shape of the kernel function and thus is a deterministic factor to

the performance of the estimator. A large h oversmoothes the density function that masks

the structure of data while a small h generates a spiky one that makes the interpretation

difficult. It is desired to find a value of h that minimizes the error between the estimated

density and the true density. However, there is a bias-variance trade-off for the bandwidth

selection, which means a large bandwidth reduces the variance of P̂KDE(x) but increases the

bias with respect to the true density. On the other hand, a small bandwidth decreases the

bias of P̂KDE(x) at the expense of larger variance. Silverman’s rule of thumb [Sil86], also
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known as the normal reference rule, provides a simple solution for the optimal bandwidth,

with the assumption that the true density has Gaussian normal distribution. The optimal

bandwidth determined by the normal reference rule is as follows:

h∗ ∼= 1.06σN−
1
5 , (2.7)

where σ is the sample standard deviation of N training examples.

However, this method usually leads to an over-smoothed result in multimodal models

such as EV user charging behaviors.

2.4.2 Kernel Density Estimator via Diffusion (DKDE)

Different from the normal reference rule, the optimal bandwidth can be derived from the

observed dataset X using an improved plug-in method introduced in[BGK10].

The kernel density (2.5) can be expressed in an alternative form:

f̂X (x; y) =
1

N

N∑
i=1

φ (x,Xi; y), (2.8)

where

φ (x,Xi; y) =
1√
2πy

exp(−(x−Xi)
2

2y
), (2.9)

in which
√
y = h is defined as in (2.5).

The main observation is that GKDE (2.8) is the unique solution to the Fourier heat

equation as follows [BGK10]:

∂

∂y
f̂ (x; y) =

1

2

∂2

∂x2
f̂ (x; y) , x ∈X , y > 0, (2.10)

with initial condition:

f̂ (x; 0) =
1

N

N∑
i=1

δ (x−Xi), (2.11)

where f̂ (x; 0) represents the empirical density of X, and δ(x−Xi) is the Dirac measure at

Xi. The Neumann boundary condition to solve the diffusion equation (2.10) is as follows:

∂

∂y
f̂ (x; y)

∣∣∣
x=1

=
∂

∂y
f̂ (x; y)

∣∣∣
x=0

= 0. (2.12)
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Exploiting the link between GKDE and Fourier heat equation, finding the optimal bandwidth

of (2.8) is equivalent to finding the optimal mixing time y∗ of the diffusion process governed

by (2.10). Considering those conditions and the finite domain [0, 1], the analytical solution

of (2.10) is obtained by:

f̂diff (x; y∗) =
1

N

N∑
i=1

κ (x,Xi; y
∗) , x ∈ [0, 1], (2.13)

in which the kernel function is given by:

κ (x,Xi; y
∗) =

∞∑
k=−∞

φ (x, 2k +Xi; y
∗) + φ (x, 2k −Xi; y

∗), x ∈ [0, 1], (2.14)

and it is equivalent to:

κ (x,Xi; y) =
∞∑

k=−∞

e−k
2π2y/2cos(πx)cos(πXi). (2.15)

Although both estimators (2.8) and (2.13) behave similarly in the interior of the domain

[0,1] for a small bandwidth, (2.13) performs better near the boundaries where x = 0, 1. The

reason is that DKDE is consistent with the true density while GKDE is inconsistent at the

boundaries.

The optimal bandwidth can be expressed as follows:

y∗ =

(
6
√

2− 3

7

)2/5

γ[l](y), (2.16)

in which

γ[l](y) = γ1(γ2(· · · γl(y) · · · )), l ≤ 1, (2.17)

and

γl(y) =

((
1 + (1/2)(l+1/2)

)
(1× 3× · · · (2l − 1))

3N
√
π/2 ‖ f̂ (2)

diff ‖2

)2/(3+2l)

, (2.18)

where l = 5 in this paper as recommended by [BGK10].

2.4.3 Implementation of HKDE

Here the one-class SVM for novelty detection according to Schölkopf[SWS00] is deployed

to examine how different a test data is from the corresponding training data. Considering
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Figure 2.2: One-class SVM

a dataset x = {x1, x2, ..., xn}, the kernel function maps all the data points into a feature

space, and the one-class SVM generates a hyperplane, which serves as a decision boundary,

to separate them from the origin while maximizing the distance from this hyperplane to the

origin. This leads to a binary function f which returns +1 in a small region capturing most

of the training data points, and −1 elsewhere. The schematic figure of one-class SVM is

illustrated below in Fig. 2.2.

The following quadratic programming minimization function is used to separate the data

set from the origin:

min
w,ξi,ρ

‖w‖2

2
+

1

νn

n∑
i=1

ξi − ρ (2.19a)

s.t. (w · φ (xi)) ≥ ρ− ξi & ξi ≥ 0, i = 1, ..., n (2.19b)

where w is the normal vector to the hyperplane, φ (xi) is the transformation function of xi,

ρ ∈ R is a bias, ξi is the slack variable. ν ∈ [0, 1] characterizes the fractions of support vectors

(SVs) and outliers. More specifically, ν sets an upper bound on the fraction of outliers and

lower bounds on the number of training data points used as SV.

The minimization problem can be solved by Lagrange multipliers and the decision rule

shown below:

f (x) = sgn ((w · φ (xi))− ρ) = sgn

(
n∑
i=1

αiK (x, xi)− ρ

)
(2.20)

where αi is the Lagrange multiplier, and K (x, xi) = φ (x)T φ (xi) is the kernel function, and

23



in this paper, Gaussian radial basis function (RBF) is used:

K (x, xi) = e−
‖x−xi‖

2

2σ2 (2.21)

where σ ∈ R is the kernel parameter.

To have high accuracy predictions, determining the parameter ν in (2.19) and the thresh-

old for the HKDE is paramount. ν in the range [0.1, 0.7] is examined to find the optimal

one which minimizes prediction error. To determine the threshold, 20-month EV charging

data collected from 55 users on UCLA campus as well as 52 users’ charging data from EA

Technology [Eat16] is analyzed, of which 60% is for training set, 20% for the validation set

and 20% for the test set. For each user’s data, both GKDE and DKDE are applied, and

the errors are calculated using the validation set. Novelty detection using the Scikit-learn

framework[PVG11] is utilized to find the out-of-class rate (OCR) for the training set and

validation set, called TOCR and VOCR, respectively. OCR is defined as the number of data

points that is out of the classification over the total number, according to the decision rule

shown in (2.20). The difference between TOCR and VOCR, called DOCR, is defined in

(2.22), which its optimal value is the threshold minimizing the HKDE error.

DOCR =
V OCR− TOCR

TOCR
(2.22)

Once the optimal values of ν (ν∗) and threshold (DOCR∗) are determined by the pro-

cedure shown in Algorithm 1, the proposed HKDE is able to select an appropriate KDE for
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each EV user in the system.

Algorithm 1: Calculation of DOCR∗ and ν∗

1 Initialization:

• Retrieve historical charging data

• Separate the data into training and validation set

2 for ν ∈ [0.1, 0.2, ..., 0.7] do

3 STEP.1: Record the errors of GKDE and DKDE, and calculate DOCR

4 for UserID = 1 : N do

5 Calculate the errors of GKDE, DKDE

6 Apply one-class SVM and calculate DOCR (2.22)

7 end

8 STEP.2: HKDE Test

9 for r ∈ [DOCRmin, ..., DOCRmax] do

10 for UserID = 1 : N do

11 if user’s DOCR ≤ r then

12 DKDE

13 else

14 GKDE

15 end

16 end

17 Calculate HKDE error

18 end

19 Threshold = DOCR∗

20 Evaluate the errors of GKDE, DKDE and HKDE

21 end

22 Determine ν∗
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Figure 2.3: Schematic overview of the proposed HKDE.

As Fig. 2.3 shows, when a vehicle plugs in, the EV charging system recognizes the vehicle,

and the proposed HKDE predicts its stay duration and energy consumption.

2.4.4 Results and Discussion

Regular and irregular charging patterns are identified by the novelty detection as shown in

Fig. 2.4. Learned frontier is the boundary of the classification, which is the hyperplane in

the feature space, and the color bar shows the mapping distance in the feature space to this

hyperplane. The regular user starts charging the EV around 10 am to 12 pm or earlier at

7am regularly, and the stay duration is around 4 hours. In contrast, for the irregular users,

the start time and stay duration vary along the axes, and most of the validation data points

are located outside of the frontier.

The value of ν∗ for equation (2.19) is determined by Algorithm 1, and the result shows

that ν∗ = 0.4 as demonstrated in Fig. 2.5. Some charging events with small value of

duration or energy consumption can produce very large errors and skew the overall error

rate. Therefore, symmetric mean absolute percentage error (SMAPE) is used to mitigate

the influence of those small values and evaluate the prediction errors. Since the number of

charging sessions varies in each test day, SAMPE is modified to fit the use case as shown in

the following:

SMAPE =
1

Nd

Nd∑
i=1

1

Ei

Ei∑
j=1

|T ij − P̂ i
j |

T ij + P̂ i
j

× 100% (2.23)
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Figure 2.4: EV user behaviors under novelty detection analysis. Left: regular user; :Right:

irregular user.
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Figure 2.5: SMAPE of stay duration with different values of ν.

WhereNd is the total number of days that is evaluated, Ei is total number of charging sessions

in the i-th day, P̂ i
j is the j-th prediction value of i-th day, and T ij is the corresponding actual

value, i.e. the true value of stay duration or energy consumption.

The proposed HKDE predicts the charging parameters when an EV plugs in. Fig. 2.6 and

Fig. 2.7 show the prediction errors of stay duration and energy consumption, respectively,

using the test dataset for each user. The proposed HKDE selects the KDE with smaller

error for predicting charging behavior in the most cases.
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Figure 2.6: SMAPE of stay duration.
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Figure 2.7: SMAPE of energy consumption.

Mean estimation deviation (MED) in (2.24) is also defined to assess the overall accuracy

for the predictions.

MED =
1

Nuser

Nuser∑
i=1

√√√√ 1

Ni

Ni∑
j=1

(P̂ (j)− T (j))2

 , (2.24)

where Nuser is the number of users, Ni is the number of charging sessions for the i-th user,

P̂ is the prediction, and T is the corresponding true value. For HKDE, the prediction MED

for stay duration is 1.42 hour, and for energy consumption is 3.38 kWh. Table 2.1 shows the

comparison of MED among GKDE, DKDE and HKDE.
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Table 2.1: Comparison of prediction MED.

Stay Duration (hr) Energy Consumption (kWh)

GKDE 1.93 4.96

DKDE 1.44 3.84

HKDE 1.42 3.38

2.5 Ensemble Machine Learning Method

This section investigates electric vehicle (EV) charging behavior and aims to find the best

method for its prediction in order to optimize the EV charging schedule. Here we discusses

several commonly used machine learning algorithms to predict charging behavior, including

stay duration and energy consumption based on historical charging records. It is noted

that prediction error increases along with the rise of data entropy or the decrease of data

sparsity. Thus, this paper accounts for both indicators by defining the entropy/sparsity ratio

(R). When R is low, support vector regression (SVR) and random forest (RF) regression

show better accuracy for stay duration and energy consumption predictions, respectively.

While R is high, a diffusion-based kernel density estimator (DKDE) performs better for

both predictions. The three methods are assembled as the proposed Ensemble Predicting

Algorithm (EPA) to improve predicting performance by decreasing 11% of the duration and

22% of the energy consumption prediction errors.

2.5.1 Machine Learning Algorithms

Since the charging pattern varies from each other, there is no one-size-fits-all predictor for

all EV users. Therefore, EV users charging patterns were classified, and eight different pre-

diction algorithms were applied to those different classes for comparison to find the optimal

solution. Eight prediction algorithms are reviewed here in the following sub-sections. By

examining the EV charging data, the data can be roughly classified into four categories:

linear, non-linear, clustered, and scattered patterns. Multiple linear regression is suitable
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for a linear pattern. SVR can predict both linear and non-linear patterns and is not biased

by outliers. Decision tree (DT), random forest (RF) regression are appropriate for clustered

patterns. RF can be more accurate than DT since DT may easily lead to over-fitting. How-

ever, it is required to determine the proper number of trees for RF. KNN regression can

also be applied for a clustered pattern. Scattered pattern is challenging for prediction. In

this case, GKDE and DKDE are used to find the probability density function and make a

prediction by calculating the expected value. A statistical method is applied here for com-

parison. These algorithms are compared, and their effectivenesses are evaluated for different

EV charging patterns.

2.5.1.1 Statistical Method

Statistical method such as historical average are referred to as a naive approach, and it is a

simple algorithms that used only for comparison with the other forecasting techniques. For

the historical average algorithm, the prediction is the average of the past data.

2.5.1.2 Multiple Linear Regression(MLR)

MLR is used to describe the mathematical relationship between several explanatory variables

and a response variable, and the goal is to make predictions about the response variable

based on the known explanatory variables according to this relationship. For example, to

predict a stay duration based on the start time and day of week. The model of MLR with k

explanatory variables and n observations is as follows:

yi = b0 + b1xi1 + b2xi2...+ bkxik + ei for i = 1, 2, ...n, (2.25)

where yi is the response variable, b0 is the y-intercept term, [b1, b2, ..., bk] are the regression

coefficients, [xi1, xi2, ..., xik] are explanatory variables and ei is the error term, which is also

known as residual that is used to account for the difference between the actual outcome and

the prediction. In this paper, for stay duration prediction, xi1 is start time and xi2 is day of

week (k = 2). For energy consumption, xi1 is start time, xi2 is day of week, and xi3 is stay du-
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ration(k = 3). Here we use the Python package (sklearn.linear model.LinearRegression)

[BLB13] for the MLR model.

2.5.1.3 Support Vector Regression (SVR)

SVR is a type of support vector machine that supports linear and non-linear regression.

Unlike general linear regression methods, which try to minimize the error between the pre-

diction and data, SVR makes sure the errors do not exceed the threshold. Specifically, in

ε-SVR[Vap95], the goal is to find a function ŷ(x) that has at most ε deviation from the

obtained targets yi for the training data, ignoring the outliers that locate outside of the

ε-tolerence band. Consider a training dataset {(x1, y1), ..(xn, yn)} ⊂ X, where X denotes the

space of the input data, SVR can be expressed as follows:

ŷ(x) = 〈ω, x〉+ b with ω ⊂ X, b ⊂ R, (2.26)

where ω an b are the solutions of the following optimization problem:

min
w,b,ξ

1

2
‖ω‖2 + C

n∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈ω, xi〉 − b ≤ ε+ ξi

〈ω, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0.

(2.27)

In equation(2.27), slack variables ξi, ξ
∗
i are introduced to handle the problem of infeasible

ε-precision constraints. The constant C > 0 controls the trade-off between the flateness of

ŷ(x) (which is ‖ω‖2) and the number of training data points that deviate larger than ε is

tolerated. This optimization problem can be solved by Lagrange multipliers method and the

solution is given by

ω =
n∑
i=1

(αi − α∗i )Φ(xi) and f(x) =
n∑
i=1

(αi − α∗i )k(xi, x) + b, (2.28)

where αi, α
∗
i are Lagrange multipliers in which αi, α

∗
i ∈ [0, C], Φ (xi) is a transformation

function, and k (xi, x) , 〈Φ (xi) ,Φ (x)〉 is a kernel function. The kernel function transforms
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the data into a higher dimensional feature space to make it possible to perform the linear

regression. The Gaussion radial basis function (RBF ) is used here as a kernel function:

k (x, xi) = e−
‖x−xi‖

2

2σ2 , (2.29)

where σ ∈ R is the kernel parameter. The detail of the SVR formulation can be found in

[SS03]. Here we use the Python package (sklearn.svm.svr) [BLB13] for the SVR model.

2.5.1.4 Decision Tree (DT) Regression

Decision tree (DT ) regression is a regression model in the form of a tree structure that breaks

down a dataset into smaller classified subsets using each of the independent variables’ split

points. The average of the classified subset is the prediction value for the target with respect

to its corresponding independent variable values. The classified subsets are called leaf nodes

whereas the split points are decision nodes. For each decision node, mean square error

(MSE) are compared across the independent variables and the variable/point rendering the

lowest MSE is chosen as the root node/decision node. The process is recursively continued

until the optimal split of the data is achieved, which is defined in terms of tree size constraints

within the Python package (sklearn.tree.DecisionTreeRegressor)[BLB13] used here.

2.5.1.5 Random Forest (RF) Regression

Random forest (RF) regression is an ensemble learning method that combines and averages

decisions from a sequence of DT models. Formally, RF regression can be expressed as follows:

g(x) =
1

Ntree

Ntree∑
i=1

fi(x), (2.30)

where g (x) is the RF model, fi (x) is the ith DT model, and Ntree is the number of decision

trees. Each fi (x) is built from a sample drawn with replacement from the training dataset.

By using the average of the multiple DT models on the corresponding sub-samples of the

dataset, the predictive accuracy can be improved.

Here we use the Python package (sklearn.ensemble.RandomForestRegressor) [BLB13] for the
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RF model.

2.5.1.6 K-Nearest Neighbor (KNN) Regression

K-Nearest Neighbor (KNN) is a non-parametric method used for classification and regression

[Alt92]. The regression model is used since the data labels are continuous instead of discrete

variables. The model implements learning based on the k-nearest neighbors of each query

point, where k = 4 is specified in this paper. The prediction of a query point is the average

of its nearest neighbors, and it is assumed that each neighbor contributes uniformly to the

classification of the query point.

Here we use the Python package (sklearn.neighbors.KNeighborsRegressor) [BLB13] for the

KNN model.

Kernel density estimators including GKDE and DKDE are reviewed in Section

2.4.1 and 2.4.2, respectively.

2.5.2 Data Preparation

Two sources of EV charging data were applied to this research, including SMERC charging

stations on the UCLA campus[Sma] as working space and real residential EV users’ data

in the UK that is available from the EA technology website[Eat16]. The data used from

the UCLA charging stations was recorded from October 1, 2015 to December 31, 2017

and the data from the EV technology between February 16, 2014 and November 29, 2015.

However, not every user in those datasets has a charging history that is long enough for data

analysis and prediction. Therefore, we selected 50 users’ data from UCLA and 202 form EV

technology, which have at least 100 charging records, with 39,458 records in total. The data

was split into 70% for the training set, 20% for the validation set, and 10% for the test set.

The statistics for charging start time, stay duration, and energy consumption are shown

in the figures below. Fig. 2.8 shows two peaks for EV charging start time: one at 7:30 in the

morning and the other at 17:30 in the evening. The average stay duration is 3 hours, and the

average energy consumption is 10.63 kWh, as shown in Fig. 2.9 and Fig. 2.10, respectively.
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Figure 2.8: Statistics of EV charging start time

Figure 2.9: Statistics of EV stay duration
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Figure 2.10: Statistics of EV energy consumption per charge

2.5.2.1 Data Preprocessing

The charging start time and stay duration were converted to hour. For instance, 13:15 will be

noted as 13.25 hour. If a stay duration was smaller than 0.5 hour or an energy consumption

was smaller than 1 kWh, the entire 5-tuple parameter for that charging session was removed

from the dataset. Also, if an energy consumption was mistakenly recorded as more than the

physical maximum of the charging device, the record value was replaced by the maximum

value of its historical energy consumption.

2.5.2.2 Data Entropy

Joint entropy is used here to characterize the uncertainty of a set of variables. Two kinds

of datasets were analyzed, which are start time vs. duration data and duration vs. energy

consumption data. For calculation, start time and duration are rounded to the closest

half hour, and the energy consumption is rounded to the closest integer. The values of

start time and duration are then mapped into a set of integers ∈ [0, 47], which represents
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[0 : 00, 23 : 30].The formulation of a joint entropy is as follows:

E(X, Y ) = −
∑
x∈X

∑
y∈Y

P (x, y)log2[P (x, y)], (2.31)

where x and y are the two variables in dataset X and Y , respectively; P (x, y) is the joint

probability of the two variables.

2.5.2.3 Data Sparsity

Sparsity is defined as the number of zero entries devided by the total number of entries.

Intuitively, if a sparsity is high the data is less variant because most entries are repeated.

On the other hand, for low sparsity, the data is more scattered. As was the data entropy

discussed in the previous section, start time vs. duration data and duration vs. energy

consumptuon data are analyzed. The values of start time, duration, and energy consumption

are rounded. Following are the examples of sparsity calculation:

Figure 2.11: Sparsity of EV charging patterns. Left: start time vs. duration, Right:

duration vs. energy consumptuon

In Fig. 2.11, the numbers in the cells are the number counts for the data points. For start

time vs. duration, the start time ranges from 0 to 23 while the duration from 0 to 9. The

number of non-zero entries is 31 and the total entries is 240, thus the sparsity is (240-31)/240

= 0.87. In the same manner, the sparsity for duration vs. energy consumptuon is 0.89.
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2.5.3 Preliminary Result and Proposed Algorithm

2.5.3.1 Preliminary Results

Fig. 2.12 and Fig. 2.13 show the comparisons of eight algorithms’ prediction errors with re-

gard to data entropy, data sparsity and the ratio of entropy/sparsity (R). Generally, SMAPE

positively correlates to data entropy and negatively correlates to data sparsity. Therefore,

this paper takes into account both of the effects of entropy and sparsity by defining the ratio:

R = entropy/sparsity. SD and DE represent the datasets of Start time vs. Duration and

Duration vs. Energy Consumption, respectively. Dataset SD is used to predict stay duration

while DE is utilized to predict energy consumption. Ratios of R SD and R DE are calcu-

lated using the training datasets’ data entropy and sparsity. ρ is the correlation coefficient

of SMAPE and R. P-value indicates the statistical significance of the trend (significant if

P-value < 0.05).

SM
A

PE
(%

)

Entropy_SD Sparsity_SD R_SD

ρ = 0.42
P-value <0.0001 

ρ = 0.54
P-value <0.0001 

ρ = 0.55
P-value <0.0001 

ρ = 0.50
P-value <0.0001 

ρ = 0.11
P-value = 0.13 

ρ = 0.22
P-value = 0.02 

ρ = 0.49
P-value <0.0001 

ρ = 0.41
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Figure 2.12: Comparisons of SMAPE(%) versus entropy, sparsity and R SD (en-

tropy/sparsity)
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The SMAPEs of MLR, SVR, DT, RF, and KNN are compared with DKDE as shown in

Fig. 2.14 and Fig. 2.15. Fig. 2.14 compares the SMAPEs of duration, and it shows that when

R SD is larger than 5.5, DKDE performs better. Likewise, Fig. 2.15 compares the SMAPEs

of energy consumption predictions, and it shows that DKDE performs better when R DE is

larger than 4.
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Figure 2.13: Comparisons of SMAPE(%) versus entropy, sparsity and R DE (en-

tropy/sparsity)

Table 2.2 shows the duration prediction results of the different algorithms. It indicates

that SVR is most accurate overall, especially when R SD ≤ 5.5. DKDE is the best when

R SD > 5.5 and the SMAPE does not change significantly in different R SD categories.
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Figure 2.14: Comparisons of different algorithms with DKDE for duration prediction
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Figure 2.15: Comparisons of different algorithms with DKDE for energy consumption pre-

diction

39



Table 2.2: Average and Standard deviation (in parentheses) for the SMAPE(%) of duration

prediction
Ratio(R SD) SVR MLR DT RF DKDE GKDE KNN AVE

R SD≤ 5.5

(n=187)
9.54 (4.66) 10.19 (5.91) 11.84 (5.62) 10.21 (5.32) 10.96 (6.37) 17.39 (14.32) 12.65 (6.26) 18.43 (7.78)

R SD>5.5

(n=65)
13.40 (4.40) 13.51 (4.20) 16.66 (4.78) 14.15 (4.33) 11.81 (4.15) 14.90 (5.84) 16.82(4.95) 23.47 (7.61)

Overall

(n=252)
10.54 (4.89) 11.05 (5.69) 13.09 (5.80) 11.23 (5.36) 11.18 (5.88) 16.75 (12.72) 13.73(6.21) 19.73 (8.03)

Table 2.3: Average and Standard deviation (in parentheses) for the SMAPE(%) of energy

consumption prediction
Ratio (R DE) SVR MLR DT RF DKDE GKDE KNN AVE

R DE ≤ 4

(n=204)
9.06 (4.25) 8.71 (4.14) 9.16 (4.55) 7.96 (3.68) 8.31 (4.20) 10.33 (4.23) 11.80 (5.38) 16.10 (4.64)

R DE >4

(n=48)
12.91(4.11) 12.69 (4.32) 13.68 (5.52) 11.59 (4.04) 10.54 (3.76) 12.68 (4.80) 15.70 (5.54) 17.86 (3.21)

Overall

(n=252)
9.79 (4.48) 9.46 (4.45) 10.01 (5.05) 8.65 (4.00) 8.73 (4.21) 10.78 (4.43) 12.54 (5.61) 16.43 (4.45)

Table 2.3 shows the energy consumption prediction results of the different algorithms.

RF is shown to be the most accurate overall, especially when R DE ≤ 4. Similarly, DKDE

performs the best when R DE > 4.

2.5.3.2 Proposed Algorithm

Based on the preliminary results, the combination of SVR, RF, and DKDE is proposed to

form an ensemble algorithm, namely the EPA. The algorithm is depicted in Fig. 2.16 below.
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Figure 2.16: Flowchart of the ensemble predicting algorithm

Data entropy and sparsity are analyzed for all registered EV users in the system in order

to calculate the R value. When an EV is plugged in, the user’s R SD is retrieved to determine

either SVR or DKDE to be used for predicting stay duration. The predicted stay duration

is then sent to the next step for energy consumption prediction. Similarly, RF or DKDE is

applied depending on the value of R DE. The threshold of R to switch the algorithms may

need to update quarterly since user behaviors may change over time. The EPA is evaluated

using a 10% test dataset. The prediction results along with the EV scheduling results are

presented in the next section.

2.5.4 Results and Discussion

Fig. 2.17 and Fig. 2.18 show the SMAPE with regard to R for duration and energy con-

sumption predictions, respectively. Fig. 2.17 illustrates the comparison between SVR and

DKDE. As shown in the figure, the SMAPE of SVR is smaller when R SD is smaller than 5.5,

whereas the SMAPE of DKDE is smaller when R SD is larger than 5.5. Fig. 2.18 demon-

strates the comparison between RF and DKDE. As expected, RF is more accurate when
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R DE is smaller than 4, while DKDE performs better when R DE is larger than 4.
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Figure 2.17: Average SMAPE vs. R SD for SVR and DKDE
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Figure 2.18: Average SMAPE vs. R DE for RF and DKDE

Table 2.4 shows the average and standard deviation for the SMAPE of duration and

energy consumption predictions. A pairwise T-test with the null hypothesis that the EPA

has the same performance as the other algorithms is rejected by the small P-values (p <
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0.05). The results show that EPA has decreased the errors significantly for duration and

energy consumption predictions by around 11% and 22%, respectively.

Table 2.4: SMAPE(%), standard deviation (in parentheses), and the pairwise T-test result

Duration Prediction Energy Consumption Prediction

Algorithm SVR DKDE EPA RF DKDE EPA

SMAPE (%) 11.53 (5.18) 11.67 (6.36) 10.40 (5.80) 9.69 (4.60) 9.56 (4.26) 7.54 (4.24)

P-value 0.00964409 0.00833339 - 0.00182736 2.00649× 10−05 -

Root mean squared error (RMSE) is also evaluated to show the effectiveness of EPA.

Since each user has different number of charging records, here we calculate the mean of

RMSE of all users, called mean estimation deviation (MED) as defined in Equation 2.24.

Table 2.5 shows the comparison of MED among SVR, DKDE, RF, and EPA. For EPA, the

prediction MED for stay duration is 1.16 hour and for energy consumption is 2.52 kWh.

Table 2.5: MED (Duration: hour; Energy: kWh), standard deviation (in parentheses), and

the pairwise T-test result

Duration Prediction Energy Consumption Prediction

Algorithm SVR DKDE EPA RF DKDE EPA

MED 1.36 (0.69) 1.38 (0.47) 1.16 (0.54) 2.94 (1.35) 2.65 (0.87) 2.52 (0.97)

P-value 0.00449328 1.3247× 10−07 - 1.49621× 10−6 0.0017243 -

2.6 Conclusion

Section 2.4 shows the comparison of GKDE and DKDE. While GKDE and DKDE have

their strengths in predicting irregular and regular charging patterns, respectively, the nov-

elty detection method exploits the synergy between them. Specifically, the novelty detection

is utilized to determine charging pattern regularities, so that GKDE can be applied for

irregular-pattern EV users while DKDE for regular patterns. Thus the proposed HKDE

leads to more accurate predictions in comparison to using only either GKDE or DKDE.

However, HKDE results in slightly higher prediction accuracy than DKDE. Therefore, Sec-
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tion 2.5 examines more machine learning prediction approaches and investigates EV charging

behaviors aiming to find the best method for its prediction. It is found that, in general, pre-

dicting SMAPEs positively correlate to data sparsity/entropy ratio (R) but this relationship

for GKDE and DKDE is relatively weak. Therefore, the KDE method can be utilized to

handle the high R data with lower prediction error. Based on this property and the analysis

result, SVR, RF, and DKDE are selected to compose the EPA. The synergy of the three

algorithms enhances the prediction performance where SVR is good at predicting EV stay

duration, RF performs better on energy consumption estimation, and DKDE takes care of

the prediction with the high R data. The estimations by HKDE and EPA are applied to the

optimal EV charging scheduling algorithm for load variation and charging cost minimization

in the next chapter.
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CHAPTER 3

EV Charging Scheduling Model

3.1 Overview

The surge of EV has been observed in the past few years, and the global EV market continues

to grow[MH14, SL19] because of the dwindling of the fossil fuel and the dedication to reducing

carbon footprint emission worldwide. As in California, it is expected to have 1.5 million

zero-emission EVs on the road by 2025 from the initiative from the government[Off12], and

consequently, the increasing demand of the Electrical Vehicle Supply Equipment (EVSE)

is foreseen. While the number of EV is increasing, without proper charging management,

the uncoordinated power consumption on a local scale can stress the electrical grid and

lead to grid problems that degrading power quality and reliability[CHD09, MWJ14, SIF15].

Therefore, more and more studies are focusing on EV charging coordination in order to

accommodate the increasing number of EVs.

It is still a challenging task to manage a massive number of EV charging. First of

all, there are several uncertainties on the demand side, such as start charging time, stay

duration, and energy demand, as discussed in Section 2. Secondly, an uncoordinated EV

charging may degrade the grid power quality or even damage the grid because it can produce

a huge power demand that exceeds the grid capacity [LSA10]. Thirdly, the integration of

renewable energy resources such as photovoltaic (PV) panel, requires proper control method

for optimal energy utilization and PV intermittency alleviation [Cal16]. Lastly, the dynamic

electricity price may significantly affect the EV charging cost. All of the above should be

taken into consideration for an effective, real-time EV charging scheduling system.
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3.2 Literature Review

A considerable number of studies have been made on EV charging management not only in

the aspect of an economical implementation of EVSE but also in the reliability of a distri-

bution grid, which is to alleviate the deteriorating impact of uncoordinated EV charging.

[DTB12] and [LWL12] discuss the optimal sizing and location of EVSE while [LGZ18] further

demonstrates the need of multi-types of charging facilities for optimal EVSE deployment.

[TMN17] presents a charging scheduling algorithm to accommodate a high penetration of

EVs and DERs. Also, [HC16] discusses EV charging scheduling with the consideration of

vehicle-to-grid (V2G) capability. Studies of EV load scheduling fall into two approaches:

centralized and distributed methods. Centralized means a central entity (CE) directly con-

trols the EV; namely, a CE solves the optimization problem and broadcasts the results to the

EVs [CHD09, BNE16]. The objectives of the optimization includes minimizing power loss

[CHD09, SHM10], regulating load factor [SHM10] or maximizing supportable EV penetra-

tion [LSA10]. The centralized infrastructure requires to collect the information form all EVs

and centrally optimize their charging schedules. Therefore, EV owners’ privacy becomes an

issue. Also, when EV penetration increases, the data is more difficult to manage, and the

curse of dimensionality becomes a problem. On the other hand, a distributed approach is

more suitable for managing a large scale of EV charging. In this method, CE coordinates

the EV load demand through communication with the EV chargers [LBM16]. That is, in-

stead of solving the scheduling problem, including many variables centrally, it is solved in a

distributed and iterative manner between CE and EV charging agents. Over the past few

years, a large number of articles have been devoted to the study of distributed EV charg-

ing scheduling approach. What seems to be lacking, however, is to consider user behavior

stochasticity. Load flattening is achieved in [CF10], but the EV stay duration, energy de-

mand are assumed to be known. [GTL13, MCH11] have optimally scheduled EV charging

to achieve load valley filling, but user behavior uncertainties are not considered. [MCH11]

assumed every EV has the same charging window and the same charging demand, which is

not realistic.

46



In the following section, an EV charging scheduling algorithm incorporated with the EV

user behavior prediction method introduced in chapter2 is presented, with the objectives of

minimizing load variance and reducing charging cost.

3.3 Model Description

We consider an EVCI that is controlled and managed by a control entity (CE). The purpose

of CE is twofold: minimizing the peak load, which is equivalent to load variance minimization

[SHM10], as well as reducing total charging cost. We assume that EVCI (Fig. 3.1) has a 45

kWh BES and 35 kW PV panels, and it is supplied by an electrical feeder shared with an

office building which its average net load demand is 250 kW.

Distribution Grid

Building

PV Panels BES

EVCs

Figure 3.1: EVCI configuration.

The total number of EVs and EV chargers (EVCs) are denoted byN andM, respectively,

where N ,M∈ N. In this configuration, each EVC has four charging outlets and can charge

four EVs at the same time, so we use Nl to show the set of EVs supplied by EV Cl. The
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model of EVCI and the building can be written as:

zj(t+ 1) = zj(t) + Thuj(t), j = 1, ...,N , BES (3.1a)

eCIB(t) = dB(t)− pPV (t) +

N ,BES∑
j=1

uj(t) (3.1b)

where zj(t) ∈ Xj ∈ R, uj(t), eCIB(t), dB(t), pPV (t) ∈ R and t ∈ N. zj(t) in [kWh] is the

energy stored in EVj or BES, eCIB(t) in [kW] is the total net load demand of the EVCI

and the building, and pPV (t) in [kW] is the power generated by PV. It is assumed that

EVs and EVCs have Vehicle-to-Grid (V2G) capability, so they can supply power to the

grid. dB(t) in [kW] is the load demand of the building. In (3.1a), Th (in hours [h]) is the

discretization in time, e.g. Th = 0.5 corresponds to 30 min. uj(t), which is the EV/BES

charging (discharging) power, is introduced as the optimization variable. uj(t) is positive in

the charging mode, and it is negative in discharging mode.

The constraints on the energy capacity of EVs and BES are:

Cj(t) 6 zj(t) 6 Cj(t), j = 1, ...,N , BES (3.2)

where Cj(t) and Cj(t) are the bounds on the energy stored in EVs and BES. The constraints

on charging/discharging power of EVs and their corresponding EVCs as well as BES are:

uj 6 uj(t) 6 uj, j = 1, ...,N , BES (3.3a)

g
l
(t) 6

Nl∑
i=1

uli(t) 6 gl(t), l = 1, ...,M (3.3b)

where uj and uj are the minimum and maximum power ratings of the EV and BES chargers,

and g
l

and gl are the minimum and maximum power ratings of the EVCs.

The bounds in (3.2) for EVs are time-varying and defined as follows; if EVj, j = 1, ...,N

is:

• not plugged in EVC, Cj(t) = Cj(t) = 0

• plugged in EVC, but it is in idle mode, Cj(t) = 0 & Cj(t) = Cj

• plugged in EVC, and it is needed by time t, Cj(t) = Cj(t) = Cj

where Cj is the maximum capacity of EVj’s battery.
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3.4 Problem Formulation

For the given time index t and prediction horizon N ∈ N, let’s denote the vector notation

uj =
(
uj(t), uj(t + 1), . . . , uj(t + N − 1)

)T
,uj(t) ∈ RN , which is used for all other variables

as well. To formulate the objective function, we define total net load demand at time t by

(3.4):

Ω := dB − pPV (3.4)

Also, the average net load demand at time t over time horizon N ∈ N is:

Ω :=
1

N

k+N−1∑
t=k

Ω (3.5)

Accordingly, the twofold objective function of EV charging coordination (CC) is written

as:

V := min
u
{
N ,BES∑
j=1

α
(
ΠTuj

)
+

k+N−1∑
t=k

(
Ω− (Ω +

N ,BES∑
j=1

uj)
)2

}

s.t. (3.1)− (3.3)

(3.6)

where α is a weighting factor, and Π ∈ RN is time of use (TOU) price vector [Cal]. The first

part in (3.6) reduces charging cost, while the second part minimizes the total load variance.

3.5 EV Scheduling Results and Discussion

3.5.1 EV Scheduling using HKDE prediction

Using HKDE prediction results, we run CC for the EVCI including 107 EVs and 27 EVCs.

Dynamic electricity price used in our numerical simulation is shown in Fig. 3.2. Total

charging profiles of the EVCI for uncoordinated CC (uCC) and CC using real and HKDE

data are shown in Fig. 3.3. As it is clear, CC flattens the total load profile which results in

peak load shaving and valley filling. Also, the difference between load profile using HKDE

and real data is negligible during most of the time intervals. Comparing BES profile (Fig. 3.4)
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and aggregated EV load profile (Fig. 3.5) with dynamic price (Fig. 3.2), when energy price

is high (7:00 and 20:00), BES is discharged in order to supply EV load, and it is charged

while the energy price is low.
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Figure 3.2: Dynamic price for the EV charging scheduling simulation [Cal].

00:00 04:00 08:00 12:00 16:00 20:00 24:00
Time

150

200

250

300

350

400

Po
w

er
 (k

W
)

Peak Shaving

Valley Filling

Avg Net Load
Net Load

uCC
CC-REAL

CC-GKDE
CC-DKDE

CC-HKDE

Figure 3.3: Load profile using uCC and CC based on real data and GKDE, DKDE and

HKDE estimations.
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Figure 3.4: BES power and energy. Positive power: BES charging; Negative power: BES

discharging.
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Figure 3.5: The comparison of aggregated EV load using real data and GKDE, DKDE and

HKDE estimations.

Table 3.1: Comparison of RMS errors of aggregated EV loads.

RMS Error (%)

GKDE 20.24

DKDE 20.15

HKDE 17.72

The comparison of RMS errors among the aggregated loads of GKDE, DKDE and HKDE
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is shown in Table 3.1. Together with the aggregated EV load profiles illustrated in Fig. 3.5,

HKDE demonstrates a better prediction accuracy over GKDE and DKDE.

Depending on the α values in (3.6), total charging cost, peak-to-peak (PTP) and root-

mean-square (RMS) of the total load profile vary. By increasing α, PTP and RMS increase

and total charging cost decrease and vice versa. For comparison, numerical simulation results

for different α values are shown in Table 3.2. As it is seen, by increasing α from 10 to 100

using real data (CC-Real), the total charging cost decreases from $111.70 to $107.68 at the

expense of PTP and RMS degradation. As it is shown in the table, the PTP with α = 100 is

even worse than that with uCC. Therefore it is important to consider PTP and RMS while

minimizing the charging cost.

Table 3.2: Comparison between uCC with CC using real data and HKDE

Charging Type α Value PTP (kW) RMS (kW) $Charging Cost

uCC – 212.11 91.07 120.66

CC-Real

10 140.26 76.74 111.70

50 166.44 80.61 109.73

100 255.46 89.68 107.68

CC-HKDE

10 138.08 77.36 111.93

50 156.16 80.49 110.32

100 251.54 89.13 108.43

3.5.2 EV scheduling using EPA

Using EPA prediction results, we run CC for the EVCI including 252 EVs and 63 EVCs.

Dynamic electricity price used in our numerical simulation is shown in Fig. 3.6. Total

charging profiles of the EVCI for uncoordinated charging (uCC) and CC using real and

prediction data are shown in Fig. 3.7. As it is clear, CC flattens the total load profile which

results in peak load shaving when dynamic price is high and valley filling when the price is

low. Also, the difference between load profile using EPA and real data is negligible during

most of the time intervals. However, there appears a valley during 23:00 and 4:00 in Fig. 3.7
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and is not filled. This is because of less availability of EVs according to our dataset, in

which the ”end time” refers to the ”end charging time” instead of ”un-plugging time,” and

therefore further restrains the EVs’ time flexibility for charging.
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Figure 3.6: Dynamic price for the EV charging scheduling simulation [Cal]
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Figure 3.7: Load profile using uCC and CC algorithms based on real data

The coordinated and uncoordinated EV charging scheduling results with respect to peak-

to-peak (PTP) and root-mean-square (RMS) of the load profile, and charging cost are shown

in Table 3.3. The result of CC EPA aligns well with CC Real, and reduces 27% peak load,

10% load variation, and 4% charging cost from that of uCC’s.
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Table 3.3: Comparison between uCC with CC using real data and EPA

Algorithm PTP (kW) RMS (kW) Total Cost ($)

CC Real 307.13 139.59 219.94

CC EPA 300.50 139.24 219.25

uCC 411.83 156.44 229.13

Although the result shows only $10 can be saved per day by scheduling 252 EVs’ charging

comparing to uncoordinated charging, with a large number of EVs, the saving can be signif-

icant. Furthermore, according to [Key16], the energy unit cost (EUC) negatively related to

a load factor (LF) along with a hyperbolic function (EUC ∝ 1/LF ), where LF is defined

as follows:

LF =
AveragePower

PeakPower
∗ 100%. (3.7)

The price will approach the minimum when LF close to 1. As shown in Fig. 2.8, people tend

to plug in EVs in the morning when they arrive at work, and in the evening when they get

home. If the energy peak produced by EV charging that drastically lower the LF, the energy

price will increase sharply. Therefore, EV charging control is necessary to accommodate

such larger amount of EVs within the electrical grid.

The results show that the EPA model fits the true densities, including start time, stay

duration, and energy consumption, better than the other algorithms. Therefore, the control

entity (CE) can schedule EV charging optimally in terms of minimizing peak loads and

reducing charging cost. For scale-up, a considerable amount of EVs can be utilized to

mitigate the renewable energy intermittency issue such as solar duck-curve problem. Since

the EPA algorithm can predict the EVs’ availability very well, in combination with vehicle-

to-grid (V2G) technology, the charging CE can manage to charge EVs during the midday

when solar power is ample and discharge during the evening to reduce the peak load.

54



3.6 Conclusion

As can be seen in the prediction result in Section 2.4.4, there is a slight improvement of HKDE

over DKDE. This is because of DKDE’s over-fitting issue for the irregular charging patterns,

instead of an accurate prediction generated by GKDE. In other words, the prediction error

for GKDE is still significant, but it is even larger for DKDE in the case of over-fitting. This

can be due to a short charging history of a user or the user’s irregular charging behavior

in nature. However, this case is rare for most EV users. DKDE can provide more accurate

predictions in general, thanks to its capability to model the charging record distribution

accurately. The comparison between GKDE and DKDE is made in Fig. 3.8, and it shows

that DKDE aligns with the empirical data better than GKDE. Therefore, DKDE is used in

the EPA.
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Figure 3.8: The comparison of modeling EV users’ charging behavior between GKDE and

DKDE. (textbfTop: stay duration; textbfBottom: energy consumption)

It is founded that, in general, predicting SMAPEs positively correlate to data spar-

sity/entropy ratio (R), but this relationship for GKDE and DKDE is relatively weak. There-
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fore, the KDE method can be utilized to handle the high R data with lower prediction error.

Based on this property and the analysis result, SVR, RF, and DKDE are selected to compose

the EPA. The synergy of the three algorithms enhances the prediction performance where

SVR is good at predicting EV stay duration, RF performs better on energy consumption

estimation, and DKDE takes care of the prediction with the high R data. The estimations

by EPA are then applied to the optimal EV charging scheduling algorithm for load variation

and charging cost minimization. Owing to the increased accuracy of the prediction, the

scheduling algorithm can provide better EV charging load management in terms of reduc-

ing load variation and charging cost. Real data is employed for a numerical simulation to

demonstrate the improved prediction accuracy of EPA and validate the effectiveness of the

EV charging scheduling algorithm.

The proposed EPA algorithm can be applied to any scale of charging station, with an

assumption that EVs’ charging records are known. However, to reach optimal scheduling

within a distribution grid, the connection between each charging station is required.
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CHAPTER 4

Vulnerability and Risk for EV Charging System

4.1 Overview

The electricity distribution system has become more complex and dynamic because of the

increasing deployment of renewable energy resources such as wind and solar energy, and

the surge of EVs within electrical grids. These changes have brought about significant

challenges for the distribution system operator (DSO) who manages the grid. Therefore,

new technologies such as smart controllers, smart meters, or demand response incorporating

the Internet of Things (IoT) technology have been developed to cope with the challenges of

managing this complex grid, rendering the digitalization of the power grid, namely, the smart

grid. Improved sensing, communication, and control capability enhance the performance of

smart grid operation, but at the expense of increased vulnerabilities to deliberate attacks

and accidental failures, threatening the grids functionality and reliability.

Although an increasing number of studies have been made on cybersecurity for the power

system, there is a lack of a consistent cyberattack assessment in EV networks. Each of the

new layers of data integration and control that are added to electric distribution systems can

create new attack surfaces and potential privacy breaches. The rapid pace of electrification

in the transportation sector, realized through plug-in EV (PEV) integration, necessitates

the smart charging infrastructures. These systems built on real-time data collection and

decision making coordinate the charging demand to facilitate high penetration of PEVs in

the power grids. Accordingly, the inherent cyber-physical characteristic of smart charging

networks makes them susceptible to cyber-physical threats.

This chapter presents the vulnerability analysis and risk assessment for the smart charging
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infrastructures. To this end, several potential failure scenarios for the WinSmartEVTM

charging system on the UCLA campus were defined, and the impacts of potential cyber-

physical attacks have been studied. Moreover, a codified methodology and taxonomy were

provided for assessing vulnerability and risk of cyber-physical attacks on the EV charging

networks in order to create a generalizable and comprehensive solution. The outcome is a

framework to prioritize the degree of the vulnerabilities and risks in the EV networks and

to develop effective countermeasures.

4.2 Literature Review

Automotive manufacturers are expanding their electric vehicle (EV) offerings, and the charg-

ing infrastructure is rapidly following. As of November of 2017, there were about fifty thou-

sand level 2 and DC fast-charging stations throughout the United states[WRM17], and as

of May 2019, the number rose to more than sixty-eight thousand [Gre19]. As EV charging

becomes a significant power consumer within a distribution grid, smart charging control

is essential for charging regulation. However, while charging stations become smart, they

become more susceptible to cyber-physical attacks. Nonetheless, there is a lack of studies

in potential cybersecurity problems for EV charging systems. Only a few attempts have

so far been made at different aspects of cybersecurity issues for EV.[CB12] discussed the

potential security vulnerability for EV infrastructure and the security issue for the com-

munication between EV and EVSE. [AAJ15] examined the cybersecurity issues for EV and

smart grid integration, and reviewed the state-of-the-art methods for cyber-attack detection.

[FAT18] justified the research need for Internet of EV (IoEV) security as it is a complex sys-

tem that involves vehicles, humans, sensors, road infrastructure and charging stations that

are vulnerable to cyber-physical security threats. What seems to be lacking, however, is a

comprehensive vulnerability analysis and risk assessment for an EV charging network.

Currently, a method for assessing the risk and impact of successful attacks against plug-

in EV (PEV) charging networks does not exist. As a result, this chapter aims to present

a method by working through several case studies regarding potential mock cyber-physical
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attacks against the UCLA WinSmartEVTM charging platform. A survey has been conducted

to understand the attack feasibility and investigate the potential impact and risk of an

individual carrying out such an attack. Also, it helps to create the method outline for

assessing the risk and impact. In the next sections, we outline the UCLA charging network

structure, conduct vulnerability analysis of current systems, and provide a series of case

study topics of cyber-physical attacks and the several corresponding electric transportation

(ET) impact failure scenarios.

4.3 Vulnerability Analysis and Risk Assessment

4.3.1 EV Charging Network

There are two types of charging networks with varying levels of complexity: conventional

and smart grid. Conventional charging networks are connected to the primary power grid

infrastructure. However, the existing power grid suffers from a tight coupling that exposes it

to single points of failure for power distribution. Smart grids, localized power grids consisting

of smart devices that can connect to a larger power grid or generate, store, and distribute

electricity from within, alleviate some of the single points of failures in the network as shown

in Fig.4.1, UCLA WinSmartEVTM.

The UCLA WinSmartEVTM Network is a smart grid EV charging network. It generates

power from rooftop photovoltaic solar panels, stores the energy locally, and can send energy

to EV charging terminals for users to charge their EVs. The smart charging network monitors

the charging, schedules optimized aggregated charging sequences, and executes the schedule

via the control network. Critical data, including energy consumption and various power-

quality related variables, are recorded and uploaded to a centralized database managed by the

control center. The EV users can access the charging status via the UCLA WinSmartEVTM

mobile application.
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UCLA Microgrid – Increase in DERs: solar, EV, BESS 

Energy Storage Roof Top Solar PV Cogeneration

Buildings Residential 
Halls

UCLA Campus

Control Center

Figure 4.1: UCLA EV WinSmartTM

4.3.2 Potential Attacks and System Vulnerability
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Attack Surface of UCLA WINSmartEVTM Network 

9. Servers

1.Mobile Devices

2.Desktop systems

3.WiFi Network 5. ZigBee Network

6. 3G/4G Network
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routers

7. Charging Infrastructure
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Attack vector

Attack surface

WINSmartEVTM  NetworkWinSmartEVTM Network

Figure 4.2: Attack vectors and the attack surface of UCLA EV WinSmartEVTM network
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We define vulnerability as a weakness in an information system, system security procedures,

internal controls, or implementation that could be exploited or triggered by a threat source

[Nat10]. Since 2013, an estimated 14 billion data record records have been lost or stolen

[Bre]. In the PEV network, cyber and physical vulnerabilities lie in the components shown in

Fig.4.2. Hackers have the advantage of choosing the time of the attack and the vulnerability

to exploit. In terms of cyber-physical compromise, both attacks and the impacts can be

cyber or physical domain. Table 4.1 shows the causality of some common cyber-physical

attacks [MKB12].

Table 4.1: The impact of cyber-physical device compromise[MKB12]

Attack \Impact Cyber Physical

Cyber
OpenSSL heartbleed bug

- Eavesdropping of private information

Stuxnet,

WannaCry virus

Physical Meter bypassing
Instability due to

physical destruction

As shown in the Table.4.1, the impacts of the cyber-physical attacks can be categorized

into four classes: Cyber-attack-Cyber-impact (CC); Cyber-attack-Physical-impact (CP);

Physical-attack-Cyber-impact (PC); and Physical-attack-Physical-impact (PP). Understand

the nature of the attacks would be helpful to come up with the solution for remedy and the

corresponding protecting action.

This section will explore several typical attack vectors on the UCLA WinSmartEVTM

network components. It should be noted that while we cover five typical types of attacks,

we considered a multitude of others, and not all will be listed, nor could all be sufficiently

covered.

Following are the potential attacks:
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4.3.2.1 Man-in-the-Middle Attack

The major risk of an attack comes from the router. The man-in-the-middle (MITM) attack

refers to the attacker secretly replaying and possibly altering the communication between two

parties by placing himself in the middle of communication [Rah17, CCO18]. As in Fig.4.3,

an attacker can intercept communication between the EV charging control center and drop,

modify, or add data transmissions. This can lead to simultaneous fast charges that can cause

a transformer overload.

� 9

Potential Cyber-Attack Capabilities - Man in the Middle Attack
¤ A man-in-the-middle (MITM) attack is an attack where the attacker secretly 

replays and possibly alters the communication between two parties[8][9].   

EV Charging 
Control Center EV Charging 

Station

Router

Drop, modify, or add 
data transmissions

¤ Scenarios:
n ET2 - Simultaneous Fast Charges cause Transformer Overload
n ET5 - Compromised Protocol Translation Module Enables Control of EVs
n ET6 - EVSE Connects Wirelessly to Wrong Meter and Compromises Billing  
n ET15 - Malware Causes Discharge of EV to the Grid
n ET16 - An EV is Exploited to Threaten Transformer or Substation
n DR3 - Messages are Modified or Spoofed on DRAS Communications Channel 

Reference: 
8. Rahim, R. (2017). Man-in-the-middle-attack prevention using interlock protocol method. ARPN J. Eng. Appl. Sci, 12(22), 6483-6487.
9. Carter, C., Cordeiro, P. G., Onunkwo, I., & Johnson, J. T. (2018). Cyber Assessment of Distributed Energy Resources(No. SAND2018-0281C). Sandia National Lab.(SNL-

NM), Albuquerque, NM (United States).

Attack Vectors:
3,4,5,6

¤ Scenarios:
n ET2 - Simultaneous Fast Charges cause Transformer Overload
n ET5 - Compromised Protocol Translation Module Enables Control of EVs
n ET6 - EVSE Connects Wirelessly to Wrong Meter and Compromises Billing  
n ET15 - Malware Causes Discharge of EV to the Grid
n ET16 - An EV is Exploited to Threaten Transformer or Substation
n DR3 - Messages are Modified or Spoofed on DRAS Communications Channel 

Figure 4.3: Man-in-the-Middle Attack

4.3.2.2 Denial-of-Service Attack

A denial-of-service (DoS) attack occurs when an attacker takes action intending to overload

and flood the network, so that a network service is unavailable to its intended users [CCO18,

QLS18]. In this scenario, the hacker can attack via the server and block an EV user from the

charging station, as shown in Fig.4.4. For example, unavailable communication blocks the

customer’s use of EV preferential rates. This can lead to a delay for high priority vehicles

such as ambulance and firetruck. There is an advanced DoS called distributed DOS(DDoS),

which can lead to a more severe outcome. While The DoS attack typically uses one computer

and one Internet connection to flood a targeted system or resource. The DDoS attack uses

multiple computers and Internet connections to flood the targeted resource. DDoS attacks

are often global attacks, distributed via botnets.
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Potential Cyber-Attack Capabilities - Denial of Service Attack

¤ A denial of service (DoS) attack occurs when an attacker takes action 
intending to overload and flood the network, so that a network service is 
unavailable to its intended users[9][10]. There is an advanced DoS which 
called distributed DoS (DDoS).*

¤ Scenarios:
n ET12 - Unavailable Communication Blocks Customer Use of EV Preferential Rate
n ET14 - EV Charging Process Slowed by Validation Delay of EV Registration ID
n DR1 - Blocked DR Messages Result in Increased Prices or Outages 

Reference: 
9. Carter, C., Cordeiro, P. G., Onunkwo, I., & Johnson, J. T. (2018). Cyber Assessment of Distributed Energy Resources(No. SAND2018-0281C). Sandia National Lab.(SNL-

NM), Albuquerque, NM (United States).
10. Qin, J., Li, M., Shi, L., & Yu, X. (2017). Optimal Denial-of-Service Attack Scheduling with Energy Constraint Over Packet-dropping Networks. IEEE Transactions on Automatic 

Control.

EV user

Attacker

Malicious request

Server
Attack Vectors: 7,8,9

* While The DoS attack typically uses 
one computer and one Internet 
connection to flood a targeted system 
or resource. The DDoS attack uses 
multiple computers and Internet 
connections to flood the targeted 
resource. DDoS attacks are often 
global attacks, distributed via botnets.

Figure 4.4: Denial-of-Service Attack

4.3.2.3 Packet Replay Attack and Eavesdropping

As illustrated in Fig. 4.5, packet replay attack or eavesdropping occurs when an attacker

intercepts a request from an EV user. The action captures and repeats or delays valid data

transmissions, resulting in modified messages or spoofed on demand response automation

system(DARS) communication channels, or collect private EV user information [CCO18,

CMA17, BGS17]. This can lead to EV registration ID theft to falsifying credentials to

access the preferential rate of high priority EV users.
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¤ A packet replay attack occurs when an attacker maliciously captures and 
repeats, or delays, valid data transmissions[5][9].

Potential Cyber-Attack Capabilities - Packet Replay Attack

¤ Scenarios:
n ET14 - EV Charging Process Slowed by Validation Delay of EV Registration ID 
n DR3 - Messages are Modified or Spoofed on DRAS Communications Channel 

EV user

Attacker

Valid request

Sniffing /
Intercepting  
request

Replay request

Server

Reference:
5. Cintuglu, M. H., Mohammed, O. A., Akkaya, K., & Uluagac, A. S. (2017). A Survey on Smart Grid Cyber-Physical System Testbeds. IEEE Communications Surveys 

and Tutorials, 19(1), 446-464.
9. Carter, C., Cordeiro, P. G., Onunkwo, I., & Johnson, J. T. (2018). Cyber Assessment of Distributed Energy Resources(No. SAND2018-0281C). Sandia National 

Lab.(SNL-NM), Albuquerque, NM (United States). 

Attack Vectors:
1,3,4,5,6

Figure 4.5: Packet Replay Attack and Eavesdropping
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4.3.2.4 Address Resolution Protocol Spoofing

Address Resolution Protocol (ARP) spoofing attack occurs when an attacker sends a falsified

ARP message over a local area network, resulting in the linking of an attackers MAC address

with the IP address of a legitimate computer or server on the network. Therefore, the

attacker will be able to receive any data that is intended for that IP address[BGS17]. The

ARP spoofing is illustrated in Fig.4.6.
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¤ Address Resolution Protocol (ARP) spoofing attack occurs when an 
attacker sends falsified ARP message over a local area network, resulting 
in the linking of an attacker’s MAC address with the IP address of a  
legitimate computer or server on the network. Therefore, the attacker will 
be able to receive any data that is intended for that IP address[10].

Potential Cyber-Attack Capabilities – ARP Spoofing

EV user

Attacker

Network 
Switch Server

¤ Scenarios:
n ET4 - EV Charging Locations Disclosed via Utility Database  
n ET7 - Private Information Disclosed in Transit between EV and EVSE
n ET9 - EV Registration ID Stolen to Obtain Preferential Rate
n ET10 - High Priority EV Registration Identity Misused to Obtain Faster Charging 
n ET13 - Invalidated EV Registration ID Blocks Customer use of Preferential Rate
n DR4 - Improper DRAS Configuration Causes Inappropriate DR Messages 

Reference: [10] Bijral, R., Gupta, A., & Sharma, L. S. (2017). Study of Vulnerabilities of ARP Spoofing and its detection using SNORT. International Journal of Advanced 
Research in Computer Science, 8(5).

Attack Vectors:
1,2,3,4,5,6

Figure 4.6: ARP Spoofing

4.3.2.5 Insider Attack

While an attacker tries to break into a network, an insider is much dangerous and unpre-

ventable. Even the most secure firewall does not stop an insider, as shown in Fig.4.7. An

insider can be employees, contractors, or an insider from outside [CMA17].
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¤ While an attacker tries to break into a network, an insider is just in as much 
danger on the inside of the firewall as from the outside. An insider can be 
employees, contractors or an insider from outside[5].

Potential Cyber-Attack Capabilities – Insider Attack

¤ Scenarios:
n ET1 - Custom Malware causes EV Overcharge and Explosion
n ET2 - Simultaneous Fast Charges cause Transformer Overload
n ET3 - Virus Propagated between EVs and EV Service Equipment (EVSE)
n ET6 - EVSE Connects Wirelessly to Wrong Meter and Compromises Billing
n ET15 - Malware Causes Discharge of EV to the Grid
n ET16 - An EV is Exploited to Threaten Transformer or Substation
n DR5 - Non-specific Malware Compromises DRAS or Customer DR System
n DR6 - Custom Malware Compromises DRAS 
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00111000011010010001  01110101

Server
Insider

Attacker

Reference:
5. Cintuglu, M. H., Mohammed, O. A., Akkaya, K., & Uluagac, A. S. (2017). A Survey on Smart Grid Cyber-Physical System Testbeds. IEEE Communications Surveys 

and Tutorials, 19(1), 446-464.

Attack Vectors:
2,4,7,8,9

Figure 4.7: Insider Attack

64



Table 4.2: Electric Transportation (ET) Failure Scenarios (I: Impact C: Cost R: Ratio)

Scenarios Description I C R Ranking Class

ET1 Custom Malware causes EV Overcharge and Explosion 3 3 1 Low CP

ET2 Simultaneous Fast Charges cause Transformer Overload 9 9 1 Low CP

ET3 Virus Propagated between EVs and EV Service Equipment (EVSE) 9 3 3 Medium CP

ET4 EV Charging Locations Disclosed via Utility Database 1 1 1 Low CC

ET5 Compromised Protocol Translation Module Enables Control of EVs 3 3 1 Low CP

ET6 EVSE Connects Wirelessly to Wrong Meter and Compromises Billing 3 3 1 Low CC

ET7 Private Information Disclosed in Transit between EV and EVSE 3 3 1 Low CC

ET8 Customer Misuses their EV Registration ID to Obtain Preferential Rate 0 0.1 0 Negligible CC

ET9 EV Registration ID Stolen to Obtain Preferential Rate 0 0.1 0 Negligible CC

ET10 High Priority EV Registration Identity Misused to Obtain Faster Charging 0 1 0 Negligible CC

ET11 All EV Registration IDs Stolen from Utility 3 1 3 Medium CC

ET12 Unavailable Communication Blocks Customer Use of EV Preferential Rate 1 3 0.33 Low CC

ET13 Invalidated EV Registration ID Blocks Customer use of Preferential Rate 1 3 0.33 Low CC

ET14 EV Charging Process Slowed by Validation Delay of EV Registration ID 1 3 0.33 Low CC

ET15 Malware Causes Discharge of EV to the Grid 3 0.1 30 High CP

ET16 An EV is Exploited to Threaten Transformer or Substation 9 9 1 Low CP

ET17 EVSE Meter Bypassing Result in Wrong Billing 3 1 3 Medium PC

ET18 EVSE Destruction Result in Unavailability of Charging Service 1 1 1 Low PP

4.3.3 Risk Assessment

When investigating the cyber-physical attacks on EV networks, we found that there exist

two broad categories: (1) impact (2) cost. The impact is the impact and effects on the

likelihood and opportunity of a successful attack. The cost refers to the cost or resources

necessary for the attacker to be successful [Lee14]. To capture the relationship of impact

and cost, we defined the risk as the ratio of impact to cost.

Risk =
Impact

Cost
. (4.1)

The impact can be quantified as a 0, 1, 3, or 9 that represents the severity of a specific

failure scenario, in which 0 is least significant and 9 most significant. Similarly, the cost can

take on the values 0.1, 1, 3, or 9. Higher values of risk indicate risker systems. The potential

parameters for each variable were chosen to make calculating risk easier and understandable.
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The distance between the values also makes it easier for users to understand the different

levels of risk, impact, and cost. These values are obtained by surveying individuals knowl-

edgeable on cyber-physical system attacks. This formula highlights the areas of highest risk

and provides a ranking system that prioritizes remediation effort.

A NESCOR member company has successfully used this approach in the past [Lee14].

Using NESCOR as a reference, we quantified the impact of a failure scenario as an impact

score, which can take on the value 0, 1, 3, or 9. The values represent increasing severity of

impact. For example, impact scores could be:

• 0: one customer out of power for 15 minutes, petty cash expenses,

• 1: small generation plant offline,

• 3: 20% of customers experience defect from smart meter deployment,

• 9: large transformer destroyed and major city out of power for a week.

Additionally, we created a cost score that represents the cost and difficulty to the threat

agent to carry out the failure scenario, which can take on values 0.1, 1, 3, or 9. For example,

cost scores could be:

• 0.1: It is easy to trigger the failure scenario, almost no cost,

• 1: a bit of expertise and planning needed, such as capture keys off unencrypted smart

meter bus

• 3: serious expertise and planning needed to carry out scenario,

• 9: probably needs nation-state resources to carry out scenario (e.g., Stuxnet).

These scores are collected via a survey given to researchers familiar with the resources

required to carry out such cyber-physical attacks. In both cases, the scores increase in

severity as the number assigned increases. In cases, where scores are not the same values,

we proposed using equation(4.1) to calculate risk, since the likelihood of the impact of a
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cyber-physical attack and the means of carrying one our are directly proportional. In other

words, as the potential impact of a cyber-physical attack increases, the amount of resources

necessary to carry one out also increases. Thus, a higher ratio means a higher level of

urgency. The risk assessment for 18 scenarios for the EV charging system is summarized

in Table 4.2. The following subsections present three case studies for low- medium-, and

high-risk scenarios.

4.3.3.1 Case Study I: Low Risk

A possible vulnerability could exist in a protocol translation module where unauthorized

changes can be made. A successful attempt to exploit this may enable unauthorized control

of EVs such as ET 5 shown in Table 4.2. The resources to accomplish this would require

expertise and planning so that the cost score would be a three. The impact scenario could

be altering charging levels for a large number of vehicles within a short period, which can

have varied impacts ranging from inconveniencing customers. The impact value is also

three because it primarily targets inconvenience to consumers, but it can have an impact on

multiple consumers at the same time. Since the impact and cost are both three, the risk

ration is one that is not high, but it is essential to know to figure out if an attacker would

target this vulnerability.

4.3.3.2 Case Study II: Medium Risk

A possible vulnerability is the installation of malware in an EV. An attacker can propagate

a virus between EVs and EV Service Equipment (EVSE) such as ET 3 shown in Table 4.2.

Malware could affect driving mechanisms that could result in severe injury or loss of life.

The impact would be severe as it affects multiple EV drivers, so the impact score is 9. The

resources and cost to the attacker would require installing a virus, so the cost score is 3. This

scenario has a risk ratio of three and can be used to prioritize this issue above the previous.
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4.3.3.3 Case Study III: High Risk

A possible scenario is a malware causing the discharge of the electric vehicle to the microgrid,

such as ET 15 shown in Table 4.2. Relevant vulnerabilities in the system will be changes to

code in the charging station management system and protocol translation module or design,

implementation, or maintenance permits system to enter a hazardous state by overloading of

the distribution transformer if many EVs are discharged. The impact of such an attack could

be Critical damage to electric vehicles and associated costs, violation of customer contracts

and loss of customer confidence, or even sudden discharges that damage a transformer. In

this scenario, the impact could be assigned a 3, and the cost could be considered a 0.1, which

results in a risk score of 30.

4.3.4 Cybersecurity Survey of EV Users

A cybersecurity risk assessment is conducted via a survey on EV users’ concerns on the EV

charging system security. The purpose of this survey is to observe how consumers rank the

importance of the effects of cyber-physical attacks on EV charging networks. The consumer is

defined as any stakeholder whose product uses or is concerned with EV charging networks,

such as EV car manufacturers or electric utility providers, and any individual who is an

electric vehicle operator and who uses commercial PEV charging networks.

56 EV users have participated in the survey, and 50 of them had driven EV for at least

six months (Fig. 4.8). 52 users have the experience of using commercial plug-in charging

stations, which is defined as any charging station that does not use a charger plugging into a

wall outlet. The frequency of using commercial plug-in charging stations is shown in Fig. 4.9.
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Table 1
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Figure 4.9: The frequency of using commercial plug in charging stations

There are two parts of the survey, the perception of inconvenience scenarios that EV

users may experience when using commercial charging station and the concerning level for

the private information compromise, respectively. Table 4.3 shows the rank of the concerning

level of inconvenience.
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Table 4.3: Rank of the concerning level of inconvenience

Scenarios Rank

Charging station failure to charge electric vehicle 1

Car charges at slower than normal rate 2

Price fluctuation during car charging 3

Small inaccuracies in billing ranging $1-2 4

Table 4.4 shows the rank of the concerning level of private information compromise.

Table 4.4: Rank of the concerning level of private information compromise

Private information being compromised Rank

Credit or Debit card information 1

Account login information 2

Home address 3

Phone number 4

Transaction history at charging station 5

Popular routes,taken by your car 6

Frequently visited destinations 7

Name 8

4.4 Discussion

Table 4.2 shows the impact scenarios that can occur as a result of different attack types on

EV networks. Table 4.5 maps each scenario to the potential attacks.

The goal of the scoring mechanism is to rank risk in order to highlight areas of highest

risk and prioritize remediation effort. The mapping attacks is to identify the nature of the

attacks, thereby helps to find the corresponding solution. It is noted that a high ranking

does not necessarily have the highest impact. For ET15, malware may be injected by an

angry worker form EV maintenance service or anyone who has access to the EV. An EV
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Table 4.5: Mapping of potential ET impact scenarios of listed attack types.

Attack Type ET Failure Scenarios

Man in the Middle ET2, ET5, ET6, ET15, ET16

Denial of Service ET12, ET14

Packet Replay ET14

Eavesdropping ET4, ET7, ET9, ET10

ARP Spoofing ET4, ET7, ET9, ET10, ET13

Insider ET1, ET2, ET3, ET6, ET15, ET16

without malware detection can affect the EVSE when plugging in. On the other hand,

low ranking can also result in high impacts as ET2, ET3, and ET16. For those cases, the

attackers require a higher level of computer skill to compromise the system and thus increase

the cost of the attacks. The nature of the attack-impact causality is marked in the ”Class”

column. Generally, preventing cyber attacks relies on a stronger authentication process,

and avoiding cascading of physical impacts requires physical protection mechanisms such

as circuit breakers. Fault detection is essential for both cyber and physical consequences.

Physical attack, which is relatively rare, can be avoided by physically secure the access to

the infrastructures. The strategy of mitigation for each scenario is summarized in Table 4.6.

Table 4.6: Mitigation action for each ET scenario

Scenarios Mitigation Act

ET1

Overcharge-prevention hardware for EV battery[LSK15];

A stronger authentication mechanism for modifying EV

firmware [ZL12].

Continued on next page
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Table 4.6 – Continued from previous page

Scenarios Mitigation Act

ET2

A stronger authentication mechanism for configuring fast

charging management system[ZL12];

Fault-detection scheme for an unusual fast charging load[HST18];

Set an upper limit of EVs that can charge simultaneously;

Deploy a circuit breaker to protect distribution transformer.

ET3

Anti-virus program in charging system to detect

unauthorized software;

Fault-detection scheme to detect abnormal events or

functionality[HST18].

ET4

Enforcement of user password rule;

Improve data encryption method[ALF14];

A stronger authentication process to access the database[ZL12].

ET5 Strengthen the integrity protections for translation modules;

ET6

A stronger authentication check between EVSE and the

smart meter[MXD13];

A stronger authentication process to pair smart meter and

EVSE configuration[MXD13].

ET7
Improve data communication encryption method between

EV and EVSE [YYL11].

ET8

Deploy a power usage monitoring program to recognize

EV charging pattern and identify abnormal usage pattern[HST18];

A stronger authentication process to verify the

EV identity[MXD13].

ET9 Use multisignature method to authorize EV charging;[Bol03].

ET10 Use multisignature method to authorize EV charging;[Bol03].

Continued on next page
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Table 4.6 – Continued from previous page

Scenarios Mitigation Act

ET11

A stronger authentication process to access the database[ZL12];

Improve data encryption method[ALF14];

Use multisignature method to authorize EV charging;[Bol03];

Enable user to dispute the abnormal charging event and

re-issue an EV ID.

ET12
Design resilient communication paths for EV identity

verification.

ET13

Design resilient communication paths for EV identity

verification;

Use an alternative authentication method to verify EV

identity.

ET14

Design resilient communication paths for EV identity

verification;

Use an alternative authentication method to verify EV

identity.

ET15

A stronger authentication mechanism for configuring

charging management system [LNZ14];

Require EV users’ authorization for discharging;

Deploy a circuit breaker to avoid over reverse power

flow to the grid.

ET16

A stronger authentication mechanism for configuring

charging management system[LNZ14];

Fault-detection scheme for an unusual charging load[HST18];

Set an upper limit of EV charging load;

Deploy a circuit breaker to protect distribution transformer.

ET17 Secure the access to the EVSE.

ET18 Secure the access to the EVSE.
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4.5 Conclusion

This chapter presents a comprehensive cyber-physical system vulnerabilities analysis for the

EV charging domain. We analyze the UCLA WinSmartEVTM charging network and identify

the potential attack vectors and its attack surface. Since the cyber-security issue is an unfair

advantage for hackers as they can choose the time and place of battle and attack only a single

weak point of the system, understand the weakness and strengthen the protection scheme is

vital of importance to secure the network. Therefore, we review the potential attack types to

the system weakness and discuss their impacts. Eighteen ET failure scenarios are presented

and categorized based on the attack-impact causality. We also conduct a risk assessment for

each scenario and rank them in order to prioritize the remediation effort and allocate security

resources accordingly. The major challenge of the security and privacy of an EV charging

network would be EV authentication, user authorization, and communication encryption.

The best strategy to secure the system is to increase the attacking cost until it outweighs

the value of the attack. However, the potential attacks are included but not limited to

the above mentioned eighteen scenarios. While we try to shorten the attack surface, the

attackers may still strike the system via the weakness. In addition to improving system

security, resiliency is critical when the system is compromised. Therefore, more research is

needed for cyber-physical attack detection.
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CHAPTER 5

Anomaly Detection for EV Charging Network

5.1 Overview

With the rapid growth in computer networks and the IoT technology deployment, the in-

formation network and its services are becoming much more complex and vulnerable to

cyber-attacks. Even if a system has been hardened concerning all potential attack vectors, it

is still inevitable that security has flaws. Motivated and well-resourced attackers will always

breach it at some points. Moreover, attackers have the advantages of choosing the time and

the vulnerability to exploit. System intrusion, data breaches, and privacy compromise have

become the major concerns of such attacks. Cybersecurity and anomaly detection have been

widely studied for computer networks but not as much as that for power systems. Studies

have shown that the current US power system is at risk of a major cyberattack that could

possibly result in devastating outcome[NE12, HHT14, Kop15]. EV charging infrastructures

have been widely deployed in the power system to meet the enormously increasing energy

demand [EVA18a]. To properly manage the power consumption, smart charging technol-

ogy is currently under research and development and turns the charging network into an

information-interconnected network. Therefore, the ability to identify potential attacks is

imperative.

Anomaly detection is the process of identifying suspicious events or observations that

do not conform to the typical behavior in the majority of the data. Anomalous data infers

some problems or rare events such as structural defects, equipment malfunctions, or system

intrusions. The connection between anomaly and the causal factors is valuable as it can

diagnose a system condition and identify system faults followed by remedial responses. A
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simple and common way to identify anomalies is to introduce a range of values for a normal

condition. If an observation falls outside this range, it is considered as an anomaly. However,

this hardcoded range values may result in a large number of false alarms or missing alarms,

without considering other system parameters. For example, a false alarm may arise because

of an abnormal high EV charging load, without knowing that the electricity price at that

moment is extremely low. On the other hand, a typical EV charging load does not necessarily

mean that there is no problem in the system, such as a spoofed electricity price suggesting

there is no need to reduce the load.

EV charging management system controls and schedules EV load according to the mea-

surements of local building load, solar generation, and dynamic electricity price. Within

this information network, any replaced and modified data by an attacker will disrupt the

EV charging schedule or even cause damage to the electrical grid. Those measurements

are correlated under genuine circumstances, while compromised measurement disturbs the

correlations. This chapter discusses the correlation of pair-wise measures within the EV

charging network and analyzes the differences in normal and abnormal circumstances.

5.2 Literature Review

Anomaly detection has been widely studied in statistics and machine learning due to an

increasing concern on information network security. Anomaly detection techniques can be

classified into four categories, which are classification, clustering, statistical, and information

theory [AMH16]. The application fields range from intrusion detection, fault detection, fraud

detection, system condition monitoring, and event detection in sensor networks. Each class

of the approaches has the strength based on the need of the application.

Surprisingly few studies have so far been made at anomaly detection for smart EV charg-

ing network. To ensure a smart EV charging system’s reliability and guarantee the quality

of the service output, a monitoring system that can detect anomalies and diagnose system

faults is desirable. [Ger17] proposed a method to monitor the system status and a thresh-

olding scheme to detect anomalies. [HLV03] introduced a Robost SVM (RSVM) method to
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improve the detection accuracy by filtering the false-positive incidents. [KTK02] presented

a statistical-based approach to detect anomalous network traffic. The above methods re-

quire to learn a universal and reliable threshold to raise alarms for anomalies, which may

be difficult for a complex information network. Information theory provides an approach to

evaluate and characterize the property of a system data, such as information gain [LLL19]

and correlation analysis [CZC16, IML16]. A system profile is then built based on those

properties, and anomalies can be identified by analyzing the pattern changes of the profile.

For example, [CZC16, IML16] discovered the stable and significant correlations within a

system under genuine circumstances so that the compromised measurements, which disrupt

the correlations, can be captured. To efficiently analyze multiple pair-wise correlations at

the same time, partitioning the time-series measurement data into segments can be helpful

[RR06]. Based on the time-series partitioning approach, [HNB19] has developed a power-

ful and efficient way to analyze system-wise correlations, which is called Greedy Gaussian

Segmentation (GGS) algorithm. The algorithm is formulated as a covariance-regularized

maximum likelihood problem, dividing the multivariate time-series over which the data is

well explained as independent samples. It is assumed that in each segment, the mean and

covariance are constant and unrelated to information from other segments. Therefore, the

anomalous data, in which the mean and covariance are peculiar, can be identified and marked

out as a segment.

The smart charging here has taken the dynamic electricity price, building load, and solar

generation into consideration to minimize the EV charging cost and net load variation. In

this chapter, an information theory-based anomaly detection method is proposed here, and

the GGS algorithm is applied to analyze the pair-wise correlations among EV charging load,

building load, dynamic electricity price, and solar generation.
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5.3 EV Charging Invariant Network and Anomaly Detection

5.3.1 System Overview

As shown in Fig. 5.1, the EV control center schedules the charging according to the meter

data from the building and the solar power system as well as the dynamic electricity price

from a utility. The optimization function of the scheduling is formatted as a quadratic

program, and the objectives are to reduce charging costs and total load variance, as described

in Chapter 3. To recap, there is a weighting factor α in (3.6) that controls the trade-off

between mitigating net load variance and charging cost reduction. Table 5.1 demonstrate

the impact of α to the charging scheduling algorithm.

Table 5.1: The impact of α to the EV charging scheduling algorithm

α Value % Peak Reduction % Cost Reduction

5 20.4 3.7

10 20.5 1.1

20 21.62 3.05

50 17.64 0

100 18.17 2.4

500 19.55 7.80

1000 19.30 10.60

5000 12.37 13.91

10000 4.53 18.12

For the value smaller than 50, α does not have a significant impact to the algorithm.

For α > 50 while increasing the values, the percentage of the charging cost reduces at the

expense of increasing the net load variation. Here α = 1000 is selected for the EV charging

system.

Under this framework, there exists a set of pair-wise correlations among the components

which is shown by the yellow dotted lines. The goal is to characterize the EV charging
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correlation network under regular operation so that one can identify the abnormal state

which disturbs these correlations.

$

$

Communication
Correlation

Figure 5.1: EV Charging Network

Real EV charging data with 7,994 records collected from UCLA campus was used here.

The EV charging station is consisted with 7 level-2 EVCIs with a maximum charging rate

7 kW for each. We also implemented the real data of building load and solar generation

from Cornell University [EM19], and the dynamic electricity price from ISO New England

[Eng19]. To fit the charging station model, the building load and solar power were scaled to

25 kW in average and 10 kW, respectively. Unfortunately, smart building load in response to

dynamic electricity prices was not available. To obtain this data we simulated an intelligent

building load based on the data retrieved from Cornell University, with an assumption that

20% of the load are controllable and can be reallocated to a different point in time according

to the dynamic pricing signal. The formulation of GGS algorithm is described in the next

section.
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5.3.2 Greedy Gaussian Segmentation (GGS) Algorithm

This section provides a brief review of the GGS algorithm. The details can be find in the

reference [HNB19]. As illustrated in Fig. 5.2, considering a given time series x1, ..., xT ∈ Rn,

the goal is find K break points (b1, ..., bK) to divide the time series into K + 1 segments,

with the means and covariances

µ(1),..., µ(K+1), Σ(1),..., Σ(K+1)

in each segment between the breakpoints. It is assumed that the mean and covariance in

each segment are constant and unrelated to that in all other segments. In other words, the

x′ts are independent samples with xt ∼ N (µ(t),Σ(t)), where the mean µ(t) and covariance Σ(t)

only change at the break points.

The breakpoints must satisfy

1 = b0 < b1 < · · · < bK < bK+1 = T + 1,

and the means and covariances are given by

(µt,Σt) = (µ(i),Σ(i)), bi−1 ≤ bi, i = 1, ..., K

where t and i denote time t and segment i, respectively.

Dimension 1

Dimension n

Dimension 2

b0 b1 b2 b3 bk-1 bk+1bk

t = 1, . . . ,T

𝜇(")

Σ(")
𝜇($)

Σ($)
𝜇(%)

Σ(%)
𝜇(&)

Σ(&)
𝜇(&'")

Σ(&'")

Figure 5.2: Segmented Gaussian model
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The log-likelihood of the data x1, ..., xT under the segmented Gaussian model (SGM) is

formulated as

`(b, µ,Σ) =
K+1∑
i=1

`(i)
(
bi−1, bi, µ

(i),Σ(i)
)
, (5.1)

where b = (b1, ..., bk), µ = (µ(1), ...µ(K+1)), Σ = (Σ(1), ...,Σ(K+1)), and

`(i)
(
bi−1, bi, µ

(i),Σ(i)
)

= −1

2

bi−1∑
t=bi−1

(xt − µ(i))T (Σ(i))−1(xt − µ(i))

− bi − bi−1

2

(
log(det Σ(i)) + n log(2π))

)
.

Note that bi − bi−1 is the length of the ith segment.

To avoid the errors due to more dimension than samples in a segment, a covariance-

regularized log-likelihood is formulated as

φ(b, µ,Σ) = `(b, µ,Σ)− λ
K+1∑
i=1

Tr(Σ(i))−1

=
K+1∑
i=1

(
`(i)
(
bi−1, bi, µ

(i),Σ(i)
)
− λ

K+1∑
i=1

Tr(Σ(i))−1

)
, (5.2)

where λ ≤ 0 is a regularization parameter and K is fixed. The analytical solutions for µ and

Σ are

µ(i) =
1

bi − bi−1

bi−1∑
t=bi−1

xt (5.3)

Σ(i) = S(i) +
λ

bi − bi−1

I, (5.4)

where

S(i) =
1

bi − bi−1

bi−1∑
t=bi−1

(xt − µ(i))(xt − µ(i))T .

Therefore, the maximum covariance-regularized log-likelihood of (5.2) can be expressed

as

maximize − 1

2

K+1∑
i=1

ψ(bi−1, bi), (5.5)
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where

ψ(bi−1, bi) =

(
(bi − bi−1)log

(
det

(
S(i) − λ

bi − bi−1

I

))
− λTr

(
S(i) − λ

bi − bi−1

I

)−1
)
,

and the variable set of b = (b1, ..., bk) is to be chosen to maximize the objective function

(5.5).

To find the optimal break points (bi), GGS algorithm along with a split subroutine

Split(bi−1, bi) are implemented. Split(bi−1, bi) screens the values between the segment bi−1

and bi, and determines the optimal t that optimize ψ(bi−1, t) + ψ(t, bi). The GGS algorithm

is illustrated in Fig. 5.3. The alogrithm loops over from i = 1 to i = K + 1 and adds the

optimal break point in each loop. Adding the point is followed by relabeling the point and

points adjustment until all K break points are acquired.

b0 = 0 b1 = T+1
Split(b0,b1)

b0 = 0 b2 = T+1b1
Split(b0,b1) Split(b0,b1)

b0 = 0 b3 = T+1b2

Split(b2,b3)

b1

Split(b1,b2)Split(b0,b1)

b0 = 0 bK+1 = T+1b2b1 b3

(1)

(2), (3)

(4), (5)

Add a break point between b0 and b1 by the 
split subroutine.

Relabel the breakpoints.

Split bi-1 and bi , only add the break point that 
increase 𝜓 the most.

Relabel the breakpoints.

Adjust the break points: 
*add a point ti by Split(bi-1,bi+1),  if bi ≠ ti , set 
bi = ti.

(1)

(2)

(3)

(4)

(5)

Repeat the process (3)-(5) until K break 
points are added.

Figure 5.3: GGS algorithm

5.3.3 Validation and Parameters Selection

The λ and K in (5.5) is determined by running a 10-fold cross-validation. For each fold, 10%

of the samples are selected randomly as the test set, and the remaining 90% are the training

set. The averaged log-likelihood results versus different K values by the GGS algorithm for
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test and training sets were compared. The comparisons with different λ values are presented

in Fig. 5.4. When λ = 10−3 and λ = 10−2, the log-likelihood values drop significantly after

K = 2 and K = 1, respectively. The divergence of the log-likelihood values indicates a

overfitting of model. For λ = 1, the curve stops at K = 5 because there is no breakpoint can

be found to increase the log-likelihood. For λ = 10−1, the log-likelihood remains the same

after K = 5. For GGS to model time-series data, small K and large λ are preferable because

they make the model simpler and less sensitive to noise. Therefore, K = 5, and λ = 10−1

would be reasonable choices for the purpose.
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Figure 5.4: 10-fold cross validation with different K and λ
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5.4 Result and Discussion

Smart EV charging control enhances the correlation among the EV charging load, building

load, solar generation, and dynamic electricity price. The following figures present the

comparison between coordinated and uncoordinated EV charging control, in terms of system-

wise correlation.
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Figure 5.5: Time series for uncorrdinated EV charging
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Figure 5.6: Mean, standard deviation(Std), and correlation for uncorrdinated EV charging
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Figure 5.7: Time series for corrdinated EV charging
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Figure 5.8: Mean, standard deviation(Std), and correlation for corrdinated EV charging

The correlations shown in Fig. 5.6 and Fig. 5.8, following changes are noticed:

• EV-Building becomes negative correlated (0.15 to -0.4).

• EV-Solar becomes slightly positive correlated (0.05 to 0.2).

• EV-Price correlation has little to no different change (0.1 to 0.2).

• Building-Solar becomes slightly negative to no correlated (0.5 to -0.1).
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• Building-Price becomes negative correlated 0.2 to -0.4.

• Solar-Price remains unchanged around 0.1.

The correlation of EV-Building changes more than EV-Price because the charging schedul-

ing algorithm weighs more on reducing load variance than the price effect. Building-Solar

becomes uncorrelated because building control only considers the price. The positive cor-

relation found for the uncoordinated load may be because people tend to use more air-

conditioners when it is hot during the summer.

To simulate anomalous data, the data of dynamic pricing, building load, EV load, and

solar generation are falsified, with some fake data points inserted randomly. The following

subsections present the result of anomaly detection by running the GGS algorithm.

5.4.1 Detecting False Pricing Data

Since the EV charging scheduling and building control consider dynamic electricity price,

false pricing data injection may affect the EV charging schedule as well as building load.

As Fig. 5.9 and Fig. 5.10shown, two fake pricing data inserted were identified (Anomaly

1 and anomaly 3). However, there is a false alarm (Anomaly 2) being raised due to a

normal drop in the price. The correlation changes comparison among the three anomalies is

shown in Fig. 5.11. As expected, Building-Price correlation changes because the building is

controlled according to untampered price. For EV-Building, the correlations change because

EV charging is encouraged due to the fake low price for Anomaly 1 and Anomaly 3. Anomaly

2 is identified because there is no EV charging at that period, and it happens to have a price

drop. With a normal decrease in price, EV and building load would both increase and thus

weaken the negative correlation. But a false decrease price further strengthens the negative

correlation because building load does not respond to the false price. The increase in EV

load due to the false price makes a negative EV-Solar correlation, while the normal price

drop does not affect this correlation. EV-Price correlation should be no change since EV

is controlled based on the false price in the same way as the untampered price. However,

over-induced EV charging can make a significant effect, as shown in EV-Price correlation
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change for Anomaly 1. Building-Solar correlation is irrelevant to this scenario.
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Figure 5.9: Time series with some false pricing data inserted

0

10

20

30

M
ea

n(
kW

) EV (kW)
Building (kW)
Solar (kW)
Price (cents)

0

2

4

6

8

St
d

EV (kW)
Building (kW)
Solar (kW)
Price (cents)

Day1 Day5 Day10 Day15 Day20 Day25 Day30
1.0

0.5

0.0

0.5

C
or

re
la

tio
n

EV-Building
EV-Solar
EV-Price
Building-Solar
Building-Price
Solar-Price

Anomaly 1 Anomaly 2 Anomaly 3

Figure 5.10: Detecting correlation changes due to false price
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Figure 5.11: Correlation values change from the previous segment for the three identified

anomalies

5.4.2 Detecting False Building Load Data

Falsified building load will affect the EV charging schedule heavily and result in the unex-

pected peak of EV load. Therefore it is important to identify any tampered building load

data.Fig. 5.12 and Fig. 5.13 shows the detection of two anomalies. Anomaly 1 is a natural

system anomaly, while Anomaly 2 is due to a tampered building load. The comparison of

the correlation changes for the two anomalies is illustrated in Fig. 5.14. As shown in the

figure, the changes of the two anomalies behaved differently. While the natural anomaly

strengthens its original correlations, the tampered data induced anomalies change the direc-

tion of the correlations for most of the pair-wise relationships. For example, the EV-Building

relationship for Anomaly 2 changes from a steady negative correlation to a weak positive

correlation. Also, the fake building load makes it more correlated to solar generation, which

does not make sense since the building control does not consider solar power.

88



Day1 Day5 Day10 Day15 Day20 Day25 Day30
0

10

20

30

40
Po

w
er

 (k
W

) EV (kW)
Building (kW)
Solar (kW)

-2.50

0.00

2.50

5.00

7.50

10.00

M
ea

n 
(c

en
t/k

W
h)

Price ($)

Anomaly 1 Anomaly 2

Figure 5.12: Time series with some false building load data inserted
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Figure 5.13: Detecting correlation changes due to false building load data
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Figure 5.14: Correlation values change from the previous segment for the two identified

anomalies

5.4.3 Detecting False EV Charging Load

While an EV charging schedule can be misled by false electricity price and false building

load, EV charging load could even be altered by hacking into the system. Since under

such attack, the EV load is unlikely to correlate to the other time-series data, the proposed

detection method using the concept of the invariant network has the potential to identify this

system intrusion. The correlations that are related to EV should be a focus. Fig. 5.15 and

Fig. 5.16 show three identified anomalies. In fact, Anomaly 1 and Anomaly 3 were because

of the tempered EV charging loads, and Anomaly 2 was a natural anomaly, which was the

result of a drop in electricity price, and no EV charging happened at the same time. The

analysis of the correlations change for the three anomalies are shown in Fig. 5.17. For EV-

Building, both Anomaly 1 and Anomaly 3 change from strong negative correlations to strong

positive correlations. This is because the tempered EV loads increase while the building load

is increasing. For EV-Solar, Anomaly 1 drops to zero because the false EV charging occurs
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at the time without solar generation; Anomaly 3 increases to positive correlation because

the false EV charging increases while solar generation is increasing. For EV-Price, Anomaly

1 remains at the same level of the correlation, while Anomaly 3 drops to a strong negative

correlation because of the same trend of the pricing and EV load in that period. The

three correlations discussed above for Anomaly 2 all changes to zero because there is no EV

charging at the time of a significant drop in price. The rest correlations are less relevant to

false EV loads detection.

Day1 Day5 Day10 Day15 Day20 Day25 Day30
0

10

20

30

40

Po
w

er
 (k

W
) EV (kW)

Building (kW)
Solar (kW)

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

M
ea

n 
(c

en
t/k

W
h)

Price ($)

Anomaly 1 Anomaly 2 Anomaly 3

Figure 5.15: Time series with EV charging load being altered
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Figure 5.16: Detecting correlation changes due to anomalous EV charging events
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Figure 5.17: Correlation values change from the previous segment for the three identified

anomalies

The results have demonstrated the capability to identify false pricing and building load

data injection, and EV load manipulation, based on the steady correlations among the time

series. 123 compromised events were issued and 112 were identified. Precision/Recall metric

is used to evaluate this model, as shown in Fig. 5.18 below.
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Figure 5.18: Precision/Recall Metric
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Precision refers to the percentage of the predicted positives that are true positives, and

recall refers to the percentage of real positives being identified correctly. The definitions

precision, recall, and accuracy are defined as follows:

Precision =
TruePositives

Total# of predicted positives
=

TruePositives

TruePositives+ False Positives
,

Recall =
TruePositives

Total# of actual positives
=

TruePositives

TruePositives+ FalseNegatives
,

Accuracy =
TruePositives+ TrueNegatives

Total Population
.

The precision, recall, and accuracy for the detection model are 84%, 91.1%, and 94.3%,

respectively.

However, because solar-related correlations are relatively weak in this experiment setup,

the detection of false solar generation data is not significant. This is due to a data limitation.

First off, solar and electricity price is not correlated in the region of New England, where the

solar penetration is not yet to impact the electricity price. Solar-electricity price correlation

is more significant in California. According to CAISO, the higher penetration of solar results

in a stronger correlation between solar generation and electricity price (∼ -0.5). Secondly,

Smart building load is controlled according to electricity price only and thus is not correlated

to solar generation. More solar-related correlations can be found in a more extensive and

more complex EV charging network, and they can be utilized to detect the anomalies due

to tampered solar data.

5.4.4 Identifying the Sources of Anomalies

As seen in the previous subsections for the detection, natural changes in correlation are

sometimes identified as anomalies because they rarely happen. There is a need for a su-

pervised machine learning approach to distinguish natural and malicious cases by using the

correlation set as features, where the correlation set C , [EV-Building, EV-Solar, EV-Price,
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Building-Solar, Building-Price, Solar-Price]T . In addition, based on the observation, the

correlation changes of the anomalies due to tampered measurement are much larger than

that for natural anomalies as shown in the Fig. 5.11, Fig. 5.14, and Fig. 5.17. Therefore, a

Euclidean distance (D) between a correlation set (C) to the averaged correlation set under

normal operation (Cmean) is taken as an extra feature, where D is defined as:

D , ‖C − Cmean‖ =
√
‖C‖2 + ‖Cmean‖2 − 2C · Cmean.

Each segment by the GGS model can be described as an 8-tuple: (C,D, class), where C

has six elements, D has one element, and class is the label of the source of the attack (class ∈

[Normal, tampered price, tampered building load, tampered EV load]). 570 segments were

labeled, including 470 normal segments, 37 segments due to tampered price, 34 segments due

to tampered building load, and 41 segments due to tampered EV load. Because of the limited

labeled dataset, a cross-validation testing method is conducted. For each cross-validation

trial, 10% of the labeled data was selected randomly as a test set, and the remaining 90%

as a training set.

A weighted k-nearest neighbor (kNN) classifier (weight = 1
distance

) is introduced to classify

the sources of attacks. For a new sample, the kNN classifier finds its closest k labeled

samples and classifies the sample by the majority vote of these k nearest neighbors. The

closer neighbor has a higher weight on its vote. Fig. 5.19 shows the intuition for kNN

classification. k = 2 is chosen because it has the best classification accuracy in comparison

to the other numbers of k under 30-trials of cross-validation testing, as shown in Fig. 5.20.

The curves of k = 1 and k = 2 overlap because they are equivalent.
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Figure 5.19: Intuition for kNN classification with k=2
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Fig. 5.21 shows the result of kNN classification for one of the eighty trials. The numbers on

the diagonal are the number of correctly labeled incidents. There are still a few misclassified

cases. For example, the figure shows one attack due to a fake EV load was labeled as a

fake price. The misclassification rate for the detected anomalies is 0.17 on average for the

eighty-trials testing. The result for the cross-validation testing is shown in Fig. 5.22. The

averaged Precision, Recall, and Accuracy are 96.8%, 77.2%, and 94.4%, respectively.
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Figure 5.21: Confusion matrix for the kNN classification
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testing

5.5 Conclusion

This section presents a novel strategy to detect system anomalies. Usually, the conventional

detection methods characterize the measurements according to their typical behavior and

identify the one that behaves anomalously. This kind of approach defines a hard-coded

range based on the empirical rule and considers the data points lying outside of this range

as anomalies. However, very often, the data points located within the normal range can be

anomalous, and the points locate outside can be healthy. Therefore, using the conventional

approach can result in many false-negative and false-positive cases.

The GGS algorithm examines all system measurements concurrently, take them as a

whole entity by formulating it as a multivariate maximum log-likelihood problem. The

method divides the time-series data into several segments, intending to isolate anomalous

data. Under typical operation, each measurement has steady correlations with the other

measurements. Any unusual event that disturbs the correlations will be detected as an

anomaly. This can be more accurate because anomalies are identified by the result of many
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correlation changes instead of a single determinant. In addition, a kNN classifier is applied

to find the source of an anomaly upon detection. While different tampered data results in

different correlation changes, the value of correlations can provide insight for tracing the

source of the intrusion.

In this information interconnected era, any cyber-attack can result in adverse conse-

quences, such as system malfunction, property damage, privacy compromise, or even threat-

ening lives. Cybersecurity becomes paramount that should be taken seriously. Although an

enlarger information network makes it more vulnerable to cyber threats, while the intercon-

nected information working collaboratively, making use of their correlation can be a great

idea to defense the cyber threats.
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CHAPTER 6

Conclusion & Future Work

The current electrical grid is undergoing a revolutionary transition toward an environmental-

friendly, energy-efficient, and information interconnected smart network. In response to the

critical energy and environmental challenges, humongous advanced technologies have been

developed to support this transition. Utilities, government, and regulators are working col-

laboratively to achieve the maximum benefits. The behavior of the new energy users is the

most critical factor, with the vision that customers will be able to manage the energy usage

accordingly. Therefore, customers can save energy costs, the government can reach energy

reduction, and all of us can benefit from lower carbon emissions and a cleaner environment.

The surge of EV to the world and the integration to the distribution grid is an excellent

example of smart energy utilization since EVs have a great potential to provide grid services

and stabilize the electrical grid. Yet, many technical challenges need to be resolved for EV-

grid integration. As EVs are powered by electricity, a massive charging demand may add

up the power consumption an result in many grid problems. Accordingly, smart charging

scheduling strategies are developed, intending to reallocate energy consumption. However,

the biggest challenge to reach the optimal charging schedule is the stochasticity of the charg-

ing behavior, including the time to charge and the energy demand. Therefore, Chapter 2

provides an improved prediction method, namely the ensemble predicting algorithm (EPA),

to tackle the uncertainty of EV users’ behavior and leverage the performance of EV charging

scheduling. In this chapter, data sparsity/entropy (R) as an information property taken as is

defined to classify different charging patterns. The EPA can thus select the proper methods

according to R and make a more accurate prediction. Nonetheless, with the capability of EV

scheduling, charging stations that are working independently may not achieve the maximum
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benefit of what EVs can provide. Therefore, Chapter 3 presents a scalable and straightfor-

ward EV charging scheduling algorithm that can be easily adapted to a distributed control

scheme. In this manner, more EVs within the distribution grid can work together to make

a significant impact. For future work, a smart charging strategy for a distributed control

scheme will be studied to manage the collaboration of different charging stations. Also, the

extra EV charging load will broadly impact the original dynamic electricity pricing mecha-

nism, which is taken as the input of the charging algorithm in this dissertation. This should

be further studied for better EV-grid integration.

The smart charging control allows EV to be externally controlled for integration into

the whole power system and provide grid services. However, the expanded communication

network of EV charging systems become more vulnerable to potential cyber threats. Chapter

4 discusses the possible cyberattacks against an EV charging system and presents the result

of the vulnerability analysis and risk assessment, intending to create a generalizable and

comprehensive solution. Inevitably, there always exists a system weakness that can be

exploited for a cyberattack. Thus, anomaly detection is critical to protect the system by

handling the attacks quickly. For this reason, Chapter 5 demonstrates a novel approach

to detect the EV charging system anomalies. The proposed method analyzes the system-

wise correlations, characterizes the invariant-correlation network, and discovers the unusual

correlation changes. The method can provide more accurate detection because anomalies are

identified by the result of many correlation changes instead of a single determinant factor.

Furthermore, a weighted kNN classifier is applied to distinguish natural and malicious

cases, making use of the correlation values as critical features. The results also show the

potential to classify and identify the source of the attack by the kNN classifier. However, due

to the data limitation, such as a relatively small scale of the labeled dataset and weak solar-

related correlation, the current experimental setup does not detect tampered solar attacks

well. For future work, an expanded EV charging network that involves more components, as

well as more solar-related correlations, will be examined to verify the detection functionality

and accuracy. Also, with a larger labeled dataset, neural network can be trained to improve

anomaly classification performance.
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In summary, this dissertation presents the strategy for EV-smart grid integration, in the

aspects of EV load modeling and prediction, charging management and scheduling, and the

cybersecurity discussion and anomaly detection. As we have witnessed the evolution of the

electrical grid, the rapidly growing number of EVs, and the related-technology advancement,

this work contributes to addressing the current technical issues and paving the essential step

into the future.
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