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This study examined the extent to which initial performance, and growth on an 

experimental CBM word problem solving fluency measure (WPSF) were predictive of 

student performance on criterion measures of math problem solving. In addition, the extent 

to which WPSF could correctly classify students as a function of risk status was evaluated. 

Alternate forms of the WPSF measure were administered to 142 third grade students, along 

with multiple criterion measures of math problem solving. Results indicate that WPSF 

demonstrated moderate criterion validity, and was able to discriminate between students 

that were at-risk and not at-risk for problem solving difficulties. Implications for 

assessment practices in mathematics are discussed. 
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Identifying Students for Intervention in Math Problem Solving: 

 An Evaluation of Fluency-Based Word Problem Solving Measures  

The math achievement of America’s youth has received an increased amount of 

attention in recent years. This is due, in large part, to the highly publicized and 

unfavorable comparisons between American students and their international counterparts 

in mathematics. Moreover, the struggle to bring students to a level of proficiency in 

mathematics in their primary years of schooling, and prepare them for advanced 

coursework at the secondary level has been well-documented. The National Assessment 

of Educational Progress (NAEP; National Center for Education Statistics, 2011) revealed 

that only 40% of fourth grade students reached a level of proficiency in mathematics. 

Older students did not fare any better on the National Assessment of Educational 

Progress, as only 35% of eighth grade students reached a level of proficiency. 

Furthermore, survey data reflect that most secondary-level math teachers feel that their 

students’ are unprepared for algebra coursework (National Mathematics Advisory Panel, 

2008). These findings have troubling implications since algebra is seen by many as the 

“gate-keeper” to higher-level math courses, and groups such as the National Mathematics 

Advisory Panel (NMAP) have set the goal for all students to progress through a sequence 

of coursework that includes Algebra I, Geometry, and Algebra II (NMAP, 2008).  

 Ensuring that all students possess the skills necessary to progress through Algebra 

II courses at the secondary level satisfies the basal level of preparation imparted by the 

NMAP. However, education initiatives put forth by President Obama, such as “Educate 

to Innovate” (Whitehouse.gov, 2009), call for an even greater level of preparation in 
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mathematics for American students. Advancement in mathematics education is a core 

component of the President’s plan to bring more Americans into science, technology, 

engineering, and mathematics (STEM) fields. This is because a lack of preparation in 

mathematics can serve as a barrier for entry into STEM fields. Students that lack the 

requisite skills to take on advanced coursework (i.e., trigonometry, calculus) in high 

school are less likely to go on to four year universities, and thus, unlikely to receive the 

training necessary to enter STEM fields (DeJarnette, 2012). Moreover, the sequence of 

math coursework in secondary education (algebra I, followed by geometry, algebra II, 

trigonometry, and then calculus) does not allow students to take on advanced courses if 

they have not mastered algebra by the time they enter high school. Thus, students who do 

not pass an Algebra I course by the eighth grade are unlikely to have the opportunity to 

undergo coursework that would prepare them for entry to STEM fields. Unfortunately, it 

seems as though many more students will soon face this reality since only 34% of eighth 

grade students were enrolled in Algebra I courses in 2011 (NCES, 2011). 

 The need to bring students to a level of proficiency in mathematics at a young age 

is clear. Beyond preparing students for college, or entry to STEM fields, bringing 

students to a level of proficiency in mathematics has implications for many basic life 

skills. For example, most students will face the need to purchase goods or services, 

perform household budgeting, or even complete technical tasks in the workplace that 

require basic math skills (Lembke, Hampton, & Beyers, 2012). Thus, echoing the 

sentiments of the NMAP, systemic changes are necessary to provide children with 

additional support in mathematics during their primary years of education. 
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 One major point of emphasis in the final report of the NMAP (2008) was the need 

to utilize formative assessment practices in schools to improve math education. 

Formative assessment can be defined as the ongoing monitoring of student learning to 

inform instruction (NMAP, 2008). It has been shown to be effective in improving student 

outcomes in mathematics in multiple reviews of the literature (Gersten, Chard, Jayanthi, 

Baker, Morphy, & Flojo, 2009; NMAP, 2008). However, there has been disagreement 

among educators with regard to what the formative assessment process actually entails 

(Bennett, 2011). While some have utilized informal assessment methods that rely on 

observations, interviews, rubrics, etc. (e.g., Watson, 2006), others have used more 

systematic approaches that incorporate data from standardized performance tasks (Fuchs, 

Fuchs, Karns, et al., 1999). Put simply, all formative assessment approaches are not 

equally effective. The largest effects that have been reported for formative assessment 

practices have occurred when teachers used performance assessments to evaluate specific 

academic skills, and subsequently used the results from those assessments to make 

instructional changes (Gersten, Chard, et al., 2009). These effects were strengthened 

further when guidance was given to teachers on using the assessment data to make 

instructional changes. Given the importance of formative assessment to student learning, 

and the strong recommendations from the NMAP to include these processes in schools, it 

is important to present schools with an organized framework for integrating formative 

assessment practices and provide educators with instruments that can monitor student 

learning. 
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Response to Intervention Models for Mathematics 

Response to intervention (RTI) models present an established framework for 

implementing formative assessment practices. They are described as early detection, 

prevention, and support systems that identify struggling students and provide them with 

assistance before they fall behind (Gersten, Beckmann, et al., 2009). As discussed in 

Riccomini and Witzel (2010), two types of formative assessment are utilized in RTI 

models: universal screening and progress monitoring. Lembke, Hampton, and Beyers 

(2012) described RTI programs as follows: First, students are given “generally effective” 

instruction by their classroom teacher (tier 1). As this occurs, students undergo a 

universal screening process where their skills are evaluated at three time points during the 

school year. Next, students that score below a pre-specified benchmark on the screening 

measure are placed in academic interventions that will provide supplemental support in 

the area of concern (tier 2). While receiving this supplemental instruction, students’ 

progress is monitored. Additional levels of support are provided for students that 

continue to demonstrate a need while receiving the supplemental instruction (tier 3). This 

additional layer of support is generally a more intensive, and individualized form of 

intervention. Again, student progress is monitored closely to evaluate the effectiveness of 

the given intervention.  

In the context of mathematics instruction: (1) All students would receive 

evidence-based instruction which targets conceptual understanding, computational 

fluency, and problem-solving skills; (2) All students undergo a universal screening 

process, where their skills are evaluated in these critical areas; (3) Students that do not 
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meet benchmark goals receive explicit supplemental instruction in the area of concern, 

and have their progress monitored continuously. This RTI framework has garnered 

empirical support (e.g., Denton, Fletcher, Anthony, & Francis, 2006; Speece, Case, & 

Molloy, 2003) with respect to reading applications, however, very little research has been 

conducted to examine its’ efficacy in improving math outcomes. While RTI models in 

mathematics have been under-researched, some (e.g., Gersten, Beckmann, et al., 2009; 

Lembke, Hampton, & Beyers, 2012; Riccomini and Witzel 2010) have suggested that 

critical elements of RTI reading models could be applied to mathematics.  

Fuchs, Compton, Fuchs, Paulsen, Bryant, and Hamlett (2005) reported a 

significant increase in the rates of improvement (ROI) of at-risk students that received 

supplemental math supports in comparison to at-risk students that were not administered 

the supports (ES = .40-.67). In addition to out-performing at-risk controls, the students 

that received the supplemental instruction demonstrated ROIs that were similar to, or 

better than not-at-risk peers on measures of calculation and applications (ES = .11-.45). 

Also, in a randomized control trial, Fuchs, Fuchs, Craddock, Hollenbeck, Hamlett, and 

Schatsneider (2008) demonstrated that the combination of evidence-based classroom 

instruction and supplemental intervention was more effective than typical classroom 

instruction (i.e., non-evidence-based curriculum) and small group intervention (ES = 

1.34).  

There is also an extensive body of literature on the effectiveness of math 

interventions that have been implemented outside of the RTI framework (see Gersten, 

Chard, et al., 2009 for review). Altogether, these findings suggest that students with math 
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difficulties benefit from the types of procedures that are evoked in RTI models. The 

formative assessment practices that are incorporated in RTI models, such as universal 

screening and progress monitoring, are critical components of this process since they help 

inform both general classroom instruction and supplemental instruction.  

Using RTI Models to Target Critical Foundations of Algebra 

 K-8 math education should provide the basic foundation for algebra. The NMAP 

(2008) identified three clusters of concepts and skills that they referred to as the Critical 

Foundations of Algebra. These three broad clusters were: fluency with whole numbers, 

fluency with fractions, and particular aspects of geometry and measurement. Of these 

three critical foundations, fluency with whole numbers is the most pertinent to early 

elementary mathematics since students are expected to have mastered these skills by the 

end of grades 5 or 6 (NMAP, 2008). The NMAP (2008) gave a detailed description of 

what this critical foundation entails:  

It must clearly include a grasp of the meaning of the basic operations of addition, 

subtraction, multiplication, and division. It must also include use of the 

commutative, associative, and distributive properties; computational facility; and 

the knowledge of how to apply the operations to problem solving. (NMAP, 2008, 

pp.17) 

Despite this exhaustive definition of fluency with whole numbers that includes aspects of 

applications and problem solving, American math education has often been criticized as 

disproportionately focusing on number facts and computation skills (e.g., Fletcher, Lyon, 

Fuchs, & Barnes, 2007). Application-based aspects of whole number fluency, such as 
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word problems have generally been ignored. When they have been studied, they have 

been limited to simple, one-step, arithmetic story problems with contrived narratives 

(Fuchs, Fuchs, & Prentice, 2004).  Fuchs, Fuchs, Karns, Hamlett, and Katzaroff (1999) 

commented that “mathematics education is typified by shallow coverage of a large 

number of topics” (p. 610). Organizations such as the National Council of Teachers of 

Mathematics (NCTM) have taken similar positions, calling for an increased emphasis on 

the development of conceptual understanding and problem solving skills in elementary 

math education (NCTM, 2000). In a general sense, perspectives on math pedagogy have 

shifted from a vertical transfer perspective, where mastery of many simple skills 

facilitates acquisition of more complex skills, to a lateral transfer perspective, where 

children recognize patterns across numerous experiences in order to abstract generalized 

problem-solving principles or schemata (Fuchs et al., 1999).  

The Importance of Word Problems. This paradigm shift in the approach to 

math education was likely due to the fact that students often have difficulty applying the 

isolated math skills they acquire. Such is the case with word problems. For example, only 

31% of fourth grade students could correctly answer the following problem from the 

National Assessment of Educational Progress (NAEP):  

The early show and the late show for a movie last the same amount of time. The 

early show begins at 3:15 PM and ends at 4:27 PM. The late show begins at 7:30 

PM. At what time does the late show end? Show your work. (NCES, 2011, pp. 

32) 
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These types of word problem difficulties must be taken seriously since word problem 

skills have been shown to be predictive of pre-algebraic knowledge (Fuchs, Compton, et 

al., 2012).  

Fuchs, Compton, and colleagues (2012) discussed the importance of word 

problems, arguing that they can be particularly useful for measuring pre-algebraic 

knowledge because said problems force students to transform the written narratives into 

algebraic equations (Fuchs, Compton, et al., 2012). Verschaffel and De Corte (1997) 

proposed that word problems serve as a vehicle for developing conceptual understanding 

and problem solving skills in mathematics. The reasoning behind their supposition lies 

within the construction of word problems. Instead of presenting students with number 

sentences or algorithms, as in computation tasks, word problems force students to use the 

text to identify missing information, construct the number sentence, and derive the 

appropriate calculation (Fuchs, Fuchs, Stuebing, et. al, 2008). Furthermore, word 

problem skills incorporate computation abilities, while also reflecting an understanding 

of relationships between known and unknown quantities (Fuchs, Compton, et al., 2012; 

Fuchs, Fuchs, Compton, et al., 2006). Fuchs et al. (1999) also found that teachers’ use of 

word problem measures as performance assessments was beneficial to instructional 

planning. This is because the samples of work generated from the word problem tasks 

gave them more insight into how strong students’ problem solving skills were, and the 

extent to which they were improving as a result of the instruction.  

The importance of word problems in learning mathematics was also reflected in 

the recommendations made by Gersten, Beckmann, et al. (2009) in their RTI practice 
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guide for elementary and middle school mathematics. One of their recommendations, 

based on the best evidence of effective practices in mathematics, was to have math 

interventions that included instruction on solving word problems that is based on 

common underlying structures. Such interventions have acquired strong empirical 

support in the math literature through a series of well-designed studies (e.g., Fuchs, 

Fuchs, Prentice, et al., 2003; Fuchs, Fuchs, Prentice, Hamlett, Finelli, & Courey, 2004; 

Jitendra, Griffin, McGoey, Gardill, Bhat, & Riley, 1998; Xin, Jitendra, & Deatline-

Buchman, 2005). These problem-solving interventions teach students about the semantic 

structure of various types of word problems, how to categorize these problems based on 

their structure, and how to determine the appropriate solutions for each problem type.  

The semantic properties of word problems have been a topic of interest for many 

years in the math literature. This was the result of research findings reflecting that 

children’s solution strategies were tied specifically to specific semantic structures within 

word problems (e.g., Carpenter & Moser, 1984; Riley & Greeno, 1988). That is, children 

developed specific strategies to address certain types of problems. As reported in Riley 

and Greeno (1988), word problems can generally be placed in one of three categories 

with respect to their semantic structure: combine, change, or compare.  

Combine problems involve two quantities, along with their combination (i.e., 

sum). Borrowing an example from Carpenter and Moser (1984), “Sara has 4 sugar 

donuts. She also has 9 plain donuts. How many donuts does Sara have altogether?” (p. 

180). Subtraction problems can also fall within this combine category. Using the previous 

example, if the total number of doughnuts (i.e., sum) was initially given along with one 
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of the doughnut subtypes (i.e., addend), this would still represent a combine problem. In 

change problems, there is an initial quantity, a change in quantity, and a resulting 

quantity. For example, “Tim had 11 candies. He gave 7 candies to Martha. How many 

candies did Tim have left?” (Carpenter & Moser, 1984, p. 180). As with compare 

problems, change problems can take the form of addition or subtraction problems. The 

previous example would change to an addition problem if the resulting quantity was 

given along with the change in quantity. Finally, compare problems involve two 

quantities and their difference. To borrow an example from Jitendra, Sczesniak, and 

Deatline-Buchman (2005), “Joe has 24 CDs. He has 4 less CDs than Tom. How many 

CDs does Tom have?” (p. 371). When the difference is given, as in the example, these are 

addition problems. However, when the difference is unknown, these become subtraction 

problems. 

The goal of word problem instruction is to get students to understand that they can 

apply the same strategies to problems with structural similarities, even when elements of 

the story within the problem change (Gersten, Beckmann, et al., 2009). In order to reach 

this level of generalization, students need multiple exposures to word problems with 

varied superficial features and cover stories (Gersten, Beckmann, et al., 2009). Further, as 

teachers make the proposed instructional adaptations which call for the inclusion of word 

problems in the math curriculum, they will also need to adopt assessment practices that 

help them gauge the extent to which students are developing their word problem 

competencies. Most modern-day math curricula include word problem exercises. 

However, for the most part, teachers have been left without assessment tools that can give 
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them low-inference data on children’s problem solving abilities. Without measures that 

directly assess problem solving performance, teachers must make inferences on problem 

solving ability based on observation, rubrics, or other methods that may not be reliable 

(Kelley, Hosp, & Howell, 2008). Under these circumstances, it is possible that students 

with specific difficulties in math problem solving could go unnoticed.  

As previously discussed, RTI models incorporate two types of formative 

assessment: universal screening and progress monitoring. To recap, universal screening 

process is carried out in two steps. First, students are administered brief assessments at 

the beginning, middle, and end of the school year (i.e., fall, winter, and spring). Second, 

students that fall below a pre-determined benchmark are provided with evidence-based 

supplemental instruction, and have their progress monitored. The main purpose of 

progress monitoring is to evaluate program effectiveness as measured by student growth 

(Riccomini & Witzel, 2010). Instructional decisions can be made by examining student 

growth. For example, flat or decreasing trajectories are indicative of ineffective 

programming, and thus, a need for instructional changes. When assessment tools used 

during the screening and progress monitoring processes are tied to specific academic 

skills, they are able to identify academic deficits in targeted areas. Thus, assessment tools 

that are capable of providing valid information with respect to achievement levels in 

academic areas of concern, and growth in those respective areas are extremely valuable. 

Curriculum-based measures (CBMs; Deno, 1985) have often been used to fill this role 

because of their utility as screeners, progress monitoring tools, and potential to highlight 

specific areas of weakness in a given domain (e.g., Fuchs, Fuchs, & Courey, 2005).  
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Curriculum-Based Measurement  

Curriculum-based measurement refers to an assessment methodology that serves 

the purpose of indexing academic competence and measuring student growth. CBMs 

were the result of the efforts of Stanley Deno and his collegues at the University of 

Minnesota’s Institute for Research on Learning Disabilities (IRLD); in their attempt to 

develop a simple and efficient, yet technically sound measurement system for assisting 

special education teachers (Stecker, Fuchs, & Fuchs, 2005). CBMs are standardized 

measures that invoke items that students are likely to see through their general 

coursework. Beyond their sound technical properties, CBMs possess the quality of 

providing low-inference information, and can be used in a repeated fashion (Kelley, 

Hosp, & Howell, 2008). The fact that they provide permanent products of student 

behavior eliminates the need for educators to draw inferences on students’ skills in areas 

of interest.  

While CBMs of mathematics were not originally examined at the IRLD, this line 

of research was eventually carried out by a couple of Stanley Deno’s graduate students, 

Lynn Fuchs and Mark Shinn. Since the late 1980’s, math CBMs targeting computation 

(e.g., Fuchs, Fuchs, Hamlett, & Stecker, 1990), concepts and applications (Fuchs, Fuchs, 

Hamlett, et al., 1994), and problem solving (e.g., Fuchs, Fuchs, Karns, et al., 1999) have 

emerged. As discussed in Kelley, Hosp, and Howell (2008), three types of CBMs are 

referenced in the literature: general outcome measures (GOMs), skills-based measures 

(SBMs), and mastery measures (MMs). GOMs are considered capstone tasks, and 

generally assess a variety of subskills in a broad area of achievement. SBMs tend to 
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incorporate an array of skills that are specific to one particular domain (i.e., computation 

or problem solving). Finally, MMs are direct measures of specific skills (i.e., two-digit 

subtraction); these measures tend to be particularly sensitive to change.  

Most of the commercially-available math CBMs are either SBMs or MMs. Due to 

the multi-topic nature of mathematics (i.e., computation, problem solving), and lack of a 

true capstone task that exudes math proficiency, the development of a GOM for 

mathematics has been difficult (Kelley, Hosp, & Howell, 2008). Therefore, in 

mathematics we are left with SBMs that generally measure performance in the domains 

of computation and problem solving or applications. Research on word problem CBMs 

has been relatively limited, especially with regard to evaluating their technical properties 

(Foegen, Jiban, & Deno, 2007). Most researchers have utilized or evaluated experimental 

word problem measures; most of which had unique administration and scoring 

procedures. Given the degree of diversity, a thorough review is in order.  

Word Problem Tasks. The most widely-used word problem measure within the 

math literature to date has been Story Problems (i.e., Jordan & Hanich, 2000), which was 

adapted from the earlier work of Carpenter and Moser (1984); Riley and Greeno (1988). 

The story problems measure includes a set of arithmetic word problems that require basic 

number combinations, with sums and minuends less than 9, and can be solved in one 

step. These word problems reflect the semantic structure (i.e., change, combine, compare) 

that was theorized by Carpenter and Moser (1984) and discussed previously herein. The 

dependent measure for story problems is the number of correct answers.  
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In Jordan and Hanich (2000), the investigators presented the word problems orally 

while also providing students with a written version to avoid the confounding of reading 

difficulties. Students were not timed on the task; so problems were only presented once 

the student completed the previous problem. Investigators allowed students to use 

physical referents such as coins to solve the problems. With a sample of (N = 49) second 

grade students, Jordan and Hanich demonstrated that student performance on the story 

problems task varied as a function of ability status, with average-achieving (AA) students 

outperforming reading-disabled (RD) students, RD students outperforming math-disabled 

(MD) students, and MD students outperforming students with combined math and 

reading disabilities (RD-MD; i.e., AA > RD > MD > RD-MD). This effect of 

achievement group status (between the four achievement groups) on the story problems 

measure was quite robust, as Jordan and Hanich reported an η2 of .56  Internal 

consistency data were also provided for the story problems measure in this study; 

Cronbach’s α = .84.  

In the most recent peer-reviewed evaluation of the story problems measure, 

Fuchs, Compton, et al. (2012) administered the word-problem task to a sample of (N = 

279) second grade students. The administration procedures were relatively consistent 

with those used in Jordan and Hanich (2000); the only differences were the absence of 

physical referents (i.e., manipulatives), and giving students 30 seconds to respond to each 

question. Second grade performance on the story problems measure was predictive of 

third grade performance on a measure of pre-algebraic knowledge, and the word problem 
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subtest from the Iowa Test of Basic Skills (r ‘s= .56 and .62, respectively). Internal 

consistency reported in this study was similar to that of Jordan and Hanich, α = .83.  

Word Problem CBMs. To date, very few peer-reviewed investigations have 

examined the utility of word problem CBMs as predictors of math achievement; that is, 

measures that included grade-appropriate problems that were sampled from local math 

curricula. Fuchs, Fuchs, Karns, Hamlett, and Katzaroff (1999) investigated the use of 

story problem scenarios as performance assessments with a measure they would later call 

Real-Life Math CBM (CBM-RLM; Fuchs, Fuchs, & Courey, 2005). In this task, students 

were presented with multi-paragraph narratives that described a problem situation. 

Teachers read the narratives aloud to students while they followed along, and the 

assessments were not timed. Each problem was designed to: (1) force students to apply a 

core set of skills consistent with their grade level; (2) discriminate between relevant and 

irrelevant information; (3) generate information not present in the narrative; (4) explain 

their procedural math work; and (5) generate written communication related to the 

mathematics. Students were evaluated in each of these areas with a 6-point performance 

rubric. 

In Fuchs, Fuchs, Karns, Hamlett, and Katzaroff (1999), the CBM-RLM 

performance assessment showed moderate criterion validity with the Comprehensive Test 

of Basic Skills (CTBS) operations and applications subtests (r’s = .62 and .67, 

respectively). Moreover, discriminant validity evidence was provided for the CBM-RLM 

slopes, as there were ordered significant differences between high- (.54), average- (.28), 
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and low-achieving students (.11). Fuchs, Fuchs, and Courey (2005) reported low 

alternate-form test-retest reliability coefficients (r’s = .66-.76) for the CBM-RLM.  

Jitendra, Scezniak, and Deatline-Buchman (2005) evaluated a curriculum-based 

word problem-solving task that they called Word Problem-Solving CBM. Word problem-

solving CBM included word problems that were sampled from third grade math 

textbooks. Word problems included 6 one-step, and 2 two-step addition and subtraction 

problems that varied in terms of semantic structure. The measures were group 

administered, and students were given ten minutes to complete eight word problems. In 

terms of scoring, students were assigned one point for a correct solution, and one point 

for a correct number model.  The CBMs demonstrated moderate to strong correlations 

with the procedures and problem-solving subtests (r’s = .64 and .71, respectively) from 

the Stanford Achievement Test-Ninth Edition (SAT-9).  The CBMs also accounted for 

substantive variance (R2 = .46) in the TerraNova standardized achievement test's concepts 

and applications subtest, while a computation-fluency measure explained no additional 

significant variance.   

Leh, Jitendra, Caskie, and Griffin (2007) expanded on this earlier work by 

investigating the utility of the word problem-solving CBMs in providing evidence of 

student growth in problem solving accuracy over time.  Of particular interest, was 

whether such measures were sensitive to growth, and how these growth rates compared to 

computation fluency measures.  Eight alternate forms of the measure were examined, and 

growth rates of low-achieving students were compared to those of average students.  

Their mixed effects growth model revealed significant growth rates (gains of .24 points 
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per week), but these growth rates were less than those demonstrated by the computation 

fluency (average gains of .36 points per week), and concepts and applications measures 

found in previous studies (.37 points per week reported in Shapiro, Edwards, & Zigmond, 

2005).  Further, the differences between low and average students in terms of growth 

rates were not significant.  

Fuchs, Compton, Fuchs, et al., (2011) examined a word problem measure that 

they called Algorithmic Word Problems with a sample of (N = 122) third grade students. 

The measure included 10 word problems that required 1-4 steps. The algorithmic word 

problems measure was group administered, and problems were read aloud to students as 

they followed along on their own copies. Test administrators moved on to the next 

problem when it appeared that all but a few students were finished. The algorithmic word 

problem measure had a small correlation (r = .43) with the Iowa Test of Basic Skills 

(ITBS) problem solving subtest, and demonstrated good internal consistency (Cronbach’s 

α = .85). Fuchs, Compton, Fuchs, et al. made an additional contribution to the word-

problem literature base by examining the diagnostic efficiency (i.e., seeing how well it 

identified children that were at-risk for math difficulties) of algorithmic word problems, 

in addition to examining its’ criterion validity. Using the 25th percentile on the ITBS as a 

cutoff for risk status, Fuchs and colleagues conducted a logistic regression analysis. 

While obtaining an area under the curve (AUC) of .83, the algorithmic word problems 

measure yielded poor specificity (.48) when using a cut score that maximized sensitivity 

(.88). Thus, when using a cut score that limited the number of false negatives (students 

that were identified as not at-risk but later scored below the 25th percentile), the number 
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of false positives increased (students that were identified as at-risk but later scored above 

the 25th percentile). This means that in order to identify the majority of students that need 

intervention, a large number of students would also be incorrectly identified as being in 

need of intervention.  

Evaluating CBMs 

L.S. Fuchs (2004) described a three-step program of research for establishing the 

tenability of CBMs. First, research is conducted to investigate the technical properties of 

the static score (i.e., student performance at one point in time). Next, the technical 

properties of the slope are evaluated in order to ensure that student growth is in fact 

associated with actual competence in the domain of interest. Finally, in the third step, 

research is conducted to evaluate the instructional utility of the measure. That is, the 

measure is able to provide information to practitioners that will assist them in making 

instructional decisions. The recommendations from L.S. Fuchs in establishing the 

tenability of CBMs address important issues relating to foundational validity evidence. 

However, like any other measures, CBMs must also be evaluated in terms of their 

reliability.  

Reliability. Reliability refers to the consistency of measurements (Christ, Scullin, 

Tolbize, & Jiban, 2008). Within the classical test theory framework (CTT), reliability 

evidence can be provided through: internal consistency, test-retest, alternate-form, and 

inter-rater reliability (Christ et al., 2008). Internal consistency, often represented by 

Cronbach’s α, is a measure of the degree to which a set of components (i.e., test items) 

are interrelated (Raykov & Marcoulides, 2011). On timed tests, where examinees are not 
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likely to respond to all of the items, internal consistency estimates lose their 

interpretability. Thus, they are often not appropriate for estimating reliability for CBMs 

(Christ et al., 2008). Test-retest methods assess the consistency of test scores across two 

test administrations. The correlation between the initial test score and the retest test score 

yields a reliability estimate, called a coefficient of stability (Raykov & Marcoulides, 

2011). Since the intended purpose of CBMs is to measure student progress in specific 

academic domains, test-retest reliability estimates are not common in the literature. 

Alternate form or alternate form test-retest methods are when the alternate forms of a test 

are correlated to generate a coefficient of equivalence. These methods are better suited 

for CBM evaluation since they can be administered to students repeatedly without 

incurring the same level of practice effects inherent in basic test-retest methods. 

Coefficients of equivalence greater than .80 are generally desired, however, coefficients > 

.70 have been deemed acceptable by some (e.g., Salvia, Ysseldyke, & Bolt, 2006) for 

low-stakes situations such as progress monitoring (Raykov & Marcoulides, 2011). Inter-

rater reliability is calculated when two separate raters score the same test; then divide the 

sum of agreements and disagreements by the number of agreements.  

Limitations of Word Problem CBM Research   

While previous studies have provided insight to the tenability of word problem 

solving measures as formative assessment tools in mathematics, research in this domain 

is still in its infancy. As a result, there are a number of limitations that have not been 

addressed in the word problem literature. First, most investigations of word problems 

have been limited to one-step arithmetic word problems with variations in semantic 
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structure (i.e., change, compare, combine). However, these types of problems are not 

reflective of those included in math curricula beyond children’s first years in school 

(Fuchs, Fuchs, & Prentice, 2004). Furthermore, math reform efforts have called for the 

inclusion of more complex problem-solving tasks. That is, problems that include multiple 

steps and irrelevant information (Gersten, Beckmann, et al., 2009). Therefore, as 

instructional practices change to meet these demands, so must assessment practices.  

Second, the word problem measures that appear in the literature have some 

limitations with regard to their technical properties. For example, the only reliability data 

that have been provided for fluency-based word problem measures has been evidence of 

internal consistency.  While most of the internal consistency estimates have been 

adequate for low-stakes relative-type decisions (i.e., α > .80), such as deciding which 

students are in need of intervention or which students are ready to be exited from 

interventions, internal consistency estimates are not appropriate for timed tests (Christ, 

Scullin, Tolbize, & Jiban, 2008). Only one study has provided test-retest reliability 

evidence (e.g., Fuchs, Fuchs, Karns, et al., 1999); in this instance, the reliability 

coefficients (.66-.76) did not reflect adequate stability. Therefore, there is not sufficient 

evidence at this point to suggest that word-problem measures could be used for universal 

screening or progress monitoring purposes.  

While preliminary validity evidence has been presented in the form of concurrent 

or predictive correlations with various criterion measures, the usefulness of word-

problem measures in identifying students that are at-risk in the area of math problem 

solving has only been examined in one previous investigation (e.g., Fuchs, Compton, 
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Fuchs, et al., 2011). In this investigation, the experimental word-problem screener had a 

significant but moderate correlation (r = .43) with the criterion measure. Therefore, there 

is reason to suspect that screeners that have stronger predictive relationships with 

criterion variables will demonstrate better classification accuracy. Several studies have 

shown that reading CBMs can be used to identify the students that are most at-risk for 

failing high stake assessments in reading (e.g., Compton, Fuchs, Fuchs, & Bryant, 2006; 

Deno et al., 2009), however, very little is known in regards to how well CBMs can fill 

this role in mathematics.   

A third limitation of the word problem literature relates to administration 

procedures. Many of the studies have attempted to limit the contribution of reading skills 

by reading the problems to the students out loud, and giving students ample time to 

respond to the problems. However, these administration procedures are not in stride with 

procedures that are utilized in high-stakes testing situations. For example, students are 

expected to read and comprehend the math problems presented to them on state tests. 

Therefore, the inconsistency between these two administration formats provides serious 

limitations to the generalizability of results. Also in regard to administration practices, a 

true fluency-based word problem measure has yet to be evaluated. Although Jitendra and 

colleagues (2005) referred to their assessment as fluency-based, students were given ten 

minutes to complete eight problems. Whether or not such a long duration is really 

necessary to adequately predict later performance on criterion measures is unknown at 

this point.  
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A fourth limitation in the word problem literature is that there is a lack of 

information on the extent to which word problem measures can explain additional 

variance in math achievement beyond alternative measures that have been linked to math 

achievement in previous literature. For example, both computation and reading skills 

have both been linked to problem solving performance in previous literature (e.g., Fuchs, 

Fuchs, Compton, et al., 2006; Grimm, 2008). Despite the obvious relationships between 

these skills, however, most studies have not accounted for these variables as covariates in 

statistical analyses. I briefly review the literature on each of these covariates.      

Computation. Algorithmic computation, which refers to adding, subtracting, 

multiplying, and dividing whole numbers, decimals, or fractions using algorithms or 

simple arithmetic, has been hypothesized as a facilitator of word problem skills (Fuchs, 

Fuchs, Compton, et al., 2006). Given the procedural nature of word problem tasks, it 

should be expected that students that struggle with procedural computation also struggle 

with word problems. Fuchs, Fuchs, Compton, et al. (2006) proposed a bottleneck 

hypothesis, which suggested that students that failed to master basic arithmetic or 

algorithms might not have the cognitive resources available to attend to procedural work.  

Correlational studies (e.g., Thurber, Shinn, & Smolkowski, 2002) have also 

shown that computation and problem solving skills are highly related, even though they 

represent different constructs of mathematics. Moreover, the NMAP (2008) reported that 

conceptual understanding, computational fluency, and problem-solving skills were all 

mutually supportive; each supporting learning in the others. For these reasons, analyses 

of word problem skills should include computation skills.  
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Reading Comprehension. In addition to computation, reading skills play a 

crucial role in problem solving accuracy. Reading comprehension skills have been 

implicated in a number of studies as critical indicators of word problem solving skills. 

Jordan, Hanich, and Kaplan (2003) followed a cohort of students from 2nd grade through 

3rd grade. In following these students through four waves of data collection, Jordan and 

colleagues found that students with deficits that were specific to mathematics 

outperformed students with combined deficits in reading and mathematics on word 

problem tasks. They also noted that this profile of combined difficulties remained 

constant across all of the time points.  

In a longitudinal investigation that examined the role of reading comprehension 

on math skills, Grimm (2008) followed a cohort of students from 3rd grade through 

middle school. Grimm reported that students with higher reading comprehension scores 

in the 3rd grade showed more rapid growth in math problem solving and data 

interpretation skills across the study. Another notable finding was that reading 

comprehension made more of a contribution to student growth in math problem solving 

than any student demographic characteristics (i.e., SES, ethnicity), or prior math 

achievement.  

Fuchs, Fuchs, Stuebing, Fletcher, Hamlett, and Lambert (2008) reported that word 

identification and language skills were critical variables in distinguishing between 

students that had combined deficits in reading and math, and students that had deficits 

that were specific to math. This finding has serious implications for the role of reading 

comprehension in word problem solving because the language composite used in the 
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study was formed through the combination of listening comprehension, expressive 

vocabulary, and grammatical closure tasks; all of which are highly related to reading 

comprehension.  

Research Objectives 

 The main purpose of this study is to examine the utility of a fluency-based word 

problem measure in predicting math outcomes for third grade students. Of particular 

interest was the extent to which performance on the word problem solving measure was 

predictive of achievement outcomes on norm- and criterion-referenced measures of math 

problem solving ability. The performance of third grade students on these measures are of 

interest for three reasons. First, by third grade word problems have become a regular part 

of the math curriculum, and students have some familiarity with them. Second, by third 

grade, students generally possess the reading skills necessary to comprehend word 

problems. Finally, by third grade students are expected to be proficient with multi-digit, 

multi-step, addition and subtraction problems.  

The proposed study will make a number of contributions to the math assessment 

literature. First, this investigation marks the beginning of a program of research that 

aspires to provide evidence on the technical features of a fluency-based measure of word 

problem solving. This study looks to address the first two steps of CBM evaluation 

research outlined in Fuchs (2004); examining the properties of the static score of a 

measure, and examining the properties of the slope. Second, the proposed study looks to 

provide consequential validity evidence for word problem measures, by examining their 

utility as screening measures. Third, this study will examine the role of covariates (i.e., 
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computation, reading comprehension) in predicting math problem solving outcomes. 

Fourth, the suitability of two-minute samples of word problem solving performance will 

be evaluated. Finally, this study looks to examine the overall viability of a fluency-based 

word problem measure in a formative assessment process.  

This study is guided by four research questions: (1) To what extent are scores 

from alternate forms of word problem CBM reliable and valid predictors of high stakes 

tests? (2) To what extent do word problem CBMs contribute significant variance to high 

stake test performance beyond the contribution of reading comprehension and 

calculation? (3) To what extent are word problem CBMs sensitive to differences in rate 

of improvement (ROI) between students at different levels of risk?  (4) To what extent 

does word problem solving fluency performance and rate of improvement (ROI) 

discriminate between students at different levels of risk in math problem solving? Do 

measures of computation and reading comprehension improve discrimination? 

Methods 

Participants 

 The sample consisted of (N = 142) third grade students (72 males, 70 females) 

from southern California. Students were nested within 11 classrooms in two schools.  The 

ethnic breakdown of the sample was: 61.97% White (n = 88), 11.97% Hispanic (n = 17), 

8.45% African American (n = 12), 4.23% Asian (n = 6), and 13.38% that reported mixed 

ethnicity (n = 19). Of the 142 students, 6 (4.23%) were receiving special education 

services. The median percentage of students in classrooms that received free or reduced-

price lunch (FRPL) in the study was 26%, indicating relatively low levels of poverty in 
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the student population. In the classification scheme used by Aud and colleagues (2010), 

schools with less than 25% of their student body receiving FRPL were classified as low-

poverty schools. On the converse, schools with 75% or more children receiving FRPL 

were considered to be high-poverty (Aud et al., 2010). Participants were selected from a 

larger three-year longitudinal project that investigated the impact of cognitive strategy 

interventions on children with math difficulties. This study was funded by the U.S. 

Department of Education, Cognition and Student Learning in Special Education (USDE 

R324A090002), Institute of Education Sciences.  

Selection for the larger study was based on returned informed parental consent, 

and fluid intelligence scores.  Students were included in the current study if they had data 

recorded for the criterion measures and word problem solving fluency measures. A total 

of 251 third grade students were originally recruited for the purposes of this study. 

However, a total of 109 students were excluded from the study for the following reasons: 

15 students were denied parental consent, 17 had fluid intelligence scores below the 16th 

percentile, and 77 had missing data.  

Students with scores below the 16th percentile on the Raven Coloured Progressive 

Matrices test (Raven, 1976) were excluded from the study to prevent the confounding of 

specific math difficulties and more generalized intellectual deficits. Strong criterion 

validity between the Raven and WISC-R Full Scale score and California Achievement 

Test (r’s = .61 and .76, respectively) is documented in the technical manual.  Also, 

Cotton, Kiely, Crewther, Thomson, Laycock, & Crewther (2005) reported internal 

consistency estimates ranging from .76-.88, and split-half reliability estimates ranging 
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from .81-.90, for children ages 6-11. Such levels of reliability have been reported to be 

sufficient for research purposes (Kamphaus, 2005).  

An a priori power analysis determined that a sample of N = 147 would be 

necessary in order to uncover a medium effect (i.e., R2 = .10) in a hierarchical regression 

model with four predictors at the recommended power level of .80. Furthermore, large 

effect sizes between word-problem measures and criterion measures of mathematics have 

been reported in past literature (e.g., R2 = .34 in Jitendra, Scezniak, & Deatline-Buchman, 

2005). Therefore, the current sample of N = 142 students was deemed sufficient to yield 

adequate power (.80) to detect the level of effect reported in the literature.  

Procedures 

 As part of the larger investigation, students were administered a battery of 

assessments in the fall (pretest) and spring (posttest) of third grade in both group and 

individual formats by graduate student researchers. All pretest/posttests were 

counterbalanced for presentation order with alternate (form A or form B) versions 

randomly assigned. Within each classroom setting, students received twenty sessions of 

scripted intervention in small groups (i.e., 5 students or less); also from graduate student 

researchers or research assistants.  During the intervention phase, the CBM measures 

were administered by classroom teachers every 6th school day. 

 Core classroom instruction.  All of the study’s participants interacted with their 

peers in their classrooms on tasks and activities related to the district-wide math 

curriculum.  The core math instruction across conditions was the enVisionMATH 

Learning Curriculum (Pearson Publishers, 2009).  The curriculum included visual 
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representations to show how quantities of a word problem were related, and general 

problem solving steps.  The general problem solving steps in the teacher manual were to 

have children: (a) understand, (b) plan, (c) solve, and (d) look back.  An independent 

evaluation (Resendez & Azin, 2009) following guidelines outlined in the What Works 

Clearing House Standards (U.S. Dept. of Education, 2008), indicated in random trials 

(teachers assigned randomly to treatment or control condition), that gains emerged in 

grades 2-4; effect sizes relative to control groups fell in the 0.20 range.  A number of the 

curriculum’s elements were also utilized in the study’s treatments (e.g., find the key 

word).  However, in contrast to the school district’s required instruction, treatment 

conditions within the larger study directly focused on specific components of problem 

solving over consecutive sessions presented in a predetermined order.  In addition, the 

lesson plans for the experimental condition focused directly on the propositional structure 

of word problems. 

Predictor Variables 

Word Problem Solving Fluency (WPSF).  The word problem solving fluency 

(WPSF) CBMs were administered to groups of students by classroom teachers.  Six 

alternate forms of the CBM were randomly assigned to student classrooms, and 

administered across six different time points (i.e., day 6, day 12, day 18, etc.). Students 

had two minutes to work on the CBM probes.  Each of the measures had 12 word 

problems which included relevant and irrelevant propositions matched by complexity.   

Similar to Jitendra, Scezniak, and Deatline-Buchman (2005), addition and 

subtraction word problems were sampled from commonly used third grade math 
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textbooks. Specifically, multi-step problems that had irrelevant information were 

included (see sample probes in Appendix A). This problem sampling approach was taken 

in order to obtain a collection of word problems that were more varied and complex than 

the arithmetic word problems that are frequently used in the literature. The word 

problems met the semantic criteria for change, compare, and combine problem types 

discussed in Carpenter & Moser (1984). The sentence structure, problem complexity, and 

format were the same across the six alternate forms, except for the substitution of names 

and numbers.  To assist in controlling for possible order effects and unequal scaling (see 

Montague, Penfield, Ender, & Huang, 2010, for discussion of scale equivalence on these 

measures), one of three presentation orders was randomly assigned to each of the 

classrooms. 

Based on the work of Leh and colleagues (2007), the six alternate forms were 

aggregated into three CBM measures to maximize reliability.  Forms were combined in 

the following fashion: 1 with 2, 3 with 4, and 5 with 6.  Combining the alternate forms 

this way ensured that the combined form would be representative of two consecutive 

WPSF forms, regardless of presentation order. Thus, a student’s WPSF score will equal 

the sum of the number of problems correct from two consecutive WPSF alternate forms. 

Inter-scorer agreement was calculated for the WPSF measure by having two separate 

raters that received training in scoring the WPSF measure rate a sample of 20 randomly 

selected probes. These independent raters generated 100% agreement on raw scores.  

As indicated previously, fluency-based measures are in line with high-stake 

testing situations where time impacts student performance. Thus, I will directly test 
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whether two-minute samples of word problem solving are adequate for the purposes of 

discriminating between students that are capable problem solvers, and those that are still 

building procedural fluency. As discussed in Christ, Johnson-Gros, and Hintze (2005), 

students with more developed skills are likely to complete more problems per unit of 

time, and thus earn higher scores. In the case of word-problem solving, students that must 

work out the entire algorithm for all problems will ultimately generate fewer correct 

solutions. Furthermore, 1-4 minute samples of math performance have been found to be 

sufficient for the purposes of guiding classroom instruction (Christ, Johnson-Gros, & 

Hintze, 2005).  

Computation. The numerical operations subtest from the Wechsler Individual 

Achievement Test (WIAT; Psychological Corporation, 1992) was individually 

administered in the fall (pretest) and the spring (posttest) to assess computation.  Two 

forms of the test were counterbalanced across participants at pretest and posttest.  The 

subtest requires the solving of paper-and-pencil computation problems that increase in 

difficulty. The subtest yields raw scores that range from 0-40, and standard scores that 

have a mean of 100, and standard deviation of 15. The technical manual for the WIAT 

reported an average split-half reliability coefficient of .85 for the numerical operations 

subtest. Test-retest reliability coefficients for the numerical operations subtest were, on 

average .86, across grade levels. Evidence of criterion validity was also provided for the 

numerical operations subtest in the WIAT technical manual. The numerical operations 

subtest had correlations of .68 and .77, with the calculations subtest from the Woodcock-
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Johnson-Revised, and the arithmetic subtest from the Wide Range Achievement Test-

Revised.  

Reading Comprehension. The text comprehension subtest from the Test of 

Reading Comprehension-Fourth Edition (TORC; Brown, Hammill, & Weiderholt, 2009) 

was used to assess reading comprehension. In this task, students are asked to silently read 

a short passage, and subsequently answer five multiple choice questions related to the 

passage. The raw score is the total number of correctly answered questions for the 

subtest. The test also yields scale scores that have a mean of 10, and a standard deviation 

of 3. The technical manual reported criterion validity evidence for the text 

comprehension subtest, with correlations of .55 and .61 with the broad reading cluster of 

the Woodcock Johnson Tests of Achievement-Third Edition and the verbal 

comprehension subtest from the Wechsler Intelligence Scale for Children-Fourth Edition, 

respectively. In terms of reliability, the average coefficient alpha for the text 

comprehension subtest was .95, and the test-retest coefficient was .83 for the entire 

sample.  

Criterion Measures 

Comprehensive Math Abilities Test (CMAT; Hresko, Schlieve, Herron, 

Swain, & Sherbenou, 2003). The problem solving subtest measures students’ abilities to 

translate problems stated in the text to math problems in order to obtain the ultimate 

solution. Items require the manipulation operations, combinations of operations, use of 

formulas, etc. The test yields raw scores and scaled scores with a mean of 10 and 

standard deviation of 3. The dependent variable will be the total number of correctly 
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answered questions. Reliability estimates reported in the technical manual were as 

follows: internal consistency = .90, test-retest = .92. Evidence of criterion validity was 

provided in the technical manual through correlations between the CMAT problem 

solving subtest and the problem solving subtest of the Stanford Achievement Test-Ninth 

Edition (r = .41), and the applications subtest of the Woodcock Johnson-Revised (r = 

.39).  

KeyMath-Revised (KeyMath-R; Connolly, 1988). The problem solving subtest 

from the KeyMath exposes students to routine and non-routine math problems in multiple 

domains. Students are asked to answer: (1) routine ‘textbook-like’ word problems that 

involve all four mathematical operations; (2) non-routine problems where the solutions 

are not immediately apparent, and the student must describe a strategy for arriving at the 

solution; (3) non-routine problems that ask students to answer questions using any 

strategy they have. The test yields raw scores, and scale scores that have a mean of 10 

and a standard deviation of 3. The dependent variable is the total number of questions 

answered correctly. The technical manual reports criterion validity coefficients between 

the problem solving subtest and the Comprehensive Test of Basic Skills (CTBS) 

mathematics concepts and total mathematics subtests (r’s = .60 and .60, respectively). 

Split-half reliability coefficients for the problem solving subtest were .88 across grades, 

on average.  

Test of Mathematical Abilities-2nd Edition (TOMA-2; Brown, Cronin, & 

McEntire, 1994). The story problems subtest consists of 25 math problems presented in 

story format. Students are asked to read the story and solve the problems. Problems are 
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arranged in order of difficulty (from easiest to most difficult). The dependent variable is 

the number of correctly answered questions (0-25). The test yields scale scores (mean = 

10, standard deviation = 3) in addition to raw scores. The average internal consistency 

estimate for the story problems subtest reported in the technical manual was .89. Test-

retest reliability coefficients were .85, on average, across age groups. The correlation 

between the story problems subtest and the KeyMath scores were .51.  

Problem solving-experimental (STAR) measure.  An experimental problem 

solving measure was developed drawing upon sample questions from the California 

STAR (California’s Standardized Testing and Reporting measure) test for Grade 3. The 

STAR test is typically administered at the end of the year to evaluate student and school 

progress.  For this experimental measure, items were provided on the California 

Department of Education website (2009).  In contrast to the standardized target measures 

(CMAT and KeyMath), this task required the children to read the story problem and 

select the best answer.  Sixteen story problems from the sample items on the California 

Department of Education website (2009) for Grade 3 were administered for both pretest 

and post-test and involved the child silently reading the question and then circling the 

correct answer from four possible choices.  Two forms of the measure were created that 

varied only in names and numbers, and were counterbalanced across presentation order 

during pretest and post-test.  Pretest and post-tests were scored with 1 point for each 

correct answer, with a total 16 points possible. Previous investigations (e.g., Sisco-

Taylor, Fung, & Swanson, submitted) have reported adequate reliability (α = .83), and 
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moderate predictive validity (r = .46-.49) coefficients with the problem solving subtests 

from the KeyMath and CMAT.   

Risk Status. Students were grouped in terms of risk status in order to address two 

of the research questions. There were two levels of risk: at-risk, and not-at-risk. Students 

were considered at-risk if they scored below the 25th percentile on the KeyMath or 

CMAT problem solving subtests. While this is an arbitrary definition for risk, the 25th 

percentile cut-off score on standardized achievement measures has been commonly used 

to identify children at-risk (e.g., Clarke, Nese, et al., 2011; Fuchs, Compton, Fuchs, et al., 

2011). Since both of the criterion measures of problem solving yield scale scores, a scale 

score of 8 (consistent with the 25th percentile) was used as the cutoff. Therefore, students 

with scale scores less than 8 were considered at-risk, and students with scales scores 

greater than or equal to 8 were considered not-at-risk.    

Results   

1. To what extent are scores from alternate forms of WPSF reliable and valid 

predictors of high stakes tests?  

To provide reliability evidence for the WPSF measure, an alternate form test-

retest method was utilized. Since the forms were counterbalanced across participants to 

control for the effect of presentation order, reliability estimates were generated from a 

subset (n = 65) of the total sample. This way, reliability estimates were produced from 

students that had the same presentation order, and were not impacted by prior exposure to 

the WPSF probes. The formula below was used to estimate the alternate form test-retest 

reliability of the WPSF probes.  
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                ρx, traf = Corr(XtA, XrB)                                                      (1) 

Where:  

ρx, traf = Reliability coefficient for test-retest alternate form  

Corr = correlation 

XtA = Score on Form A 

XrB = Score on Form B 

Alternate form test-retest reliability estimates for the aggregated forms and single forms 

are displayed in Table 1. While reliability estimates for the single forms ranged from r = 

.50-.72, estimates for the aggregated forms ranged from r = .72-.74.   

Pearson correlations between WPSF and the criterion measures are displayed in 

Table 2. Based on Cohen’s (1988) conventions, the predictive correlations (from winter 

to spring) obtained between WPSF and the various criterion measures ranged medium to 

large in terms of magnitude (r’s = .46-.60). The smallest correlation was observed 

between WPSF and the STAR experimental measure (r = .46), while the strongest 

correlations were observed between WPSF and the CMAT problem solving and TOMA 

story problems subtests (r’s = .60). The correlation between WPSF and the KeyMath 

problem solving subtest (r = .54) was large in magnitude, similar to those generated from 

the TOMA and CMAT. Intercorrelations between the criterion variables also ranged from 

small to large in terms of strength (r’s = .29-.69).  
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2. To what extent does WPSF contribute to high stake test performance beyond the 

contribution of reading comprehension and calculation?  

This research question was addressed by evaluating the WPSF measure as both an 

indicator of performance level, and measure of growth in math problem solving.  A 

forced entry hierarchical regression method was utilized, where computation and reading 

comprehension scores were entered into the model first; followed by students’ initial 

WPSF scores; followed by the WPSF ROI across the three time points (aggregated CBM 

forms A, B, and C).  The individual slope estimates were generated by using the 

individual regression slope extraction method discussed in Pfister, Schwarz, Carson, and 

Jancyzk (2013), where regression coefficients are calculated for each student and 

subsequently extracted from Excel 2010. The Excel software calculates an ordinary least 

squares regression coefficient utilizing the following formula:  

                𝛽 =  
∑ 𝑥𝑖𝑦𝑖− Σ𝑥𝑖 ∑ 𝑦𝑖𝑛

1

∑ 𝑥𝑖
2− 

1

𝑛
(Σ𝑥𝑖)2

                                                (2) 

Parameter estimates for the hierarchical regression models are presented in Table 3. Four 

separate hierarchical regression models were utilized in addressing this research question 

(i.e., one for each criterion measure). The calculation and reading comprehension scores 

were entered into the regression model first in order to gauge the extent to which these 

measures are predictive of math problem solving outcomes. The WPSF scores were 

introduced in the second step in order to demonstrate the extent to which these measures 

accounted for unique variance in word problem solving, above and beyond calculation 

and reading comprehension skills. Lastly, the WPSF ROIs were entered in the third step 

in order to see if improvement in word problem solving, as measured by WPSF, added 
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unique variance in predicting problem solving outcomes above and beyond calculation, 

reading comprehension, and initial performance on WPSF. In addition to the previously 

described models, alternate models were run where the WPSF scores were entered in the 

model first in order to provide a direct comparison between the WPSF measure, and the 

combination of the calculation and reading comprehension measures in predicting math 

problem solving outcomes. Results will be reported below for each of the respective 

criterion measures.  

CMAT Problem Solving Subtest. As shown in Table 3, the initial model, 

containing measures of calculation and reading comprehension, accounted for 

approximately 30% of the variance in the CMAT (Adjusted R2 = .29), F(2, 139) = 29.74, p 

< .001. The second model, which included students’ initial WPSF scores, produced an R2 

change of approximately 10% (ΔR2 = .10); a statistically significant contribution, F(1, 

138) = 23.52, p < .001. The WPSF ROI also made a unique contribution (ΔR2 = .05, F(1, 

137) = 13.60, p < .001) to the model, when all other variables were parceled in the 

analysis.  However, once the WPSF ROI was introduced in step 3, calculation (β = .14, p 

= .08) and reading comprehension (β = .09, p = .25) were no longer significant predictors 

within the model. The final model, consisting of calculation, reading comprehension, 

WPSF initial score, and the WPSF ROI, accounted for 45% of the variance in the CMAT 

problem solving subtest (adjusted R2 = .44), F(4, 137) = 28.67, p < .001. The alternative 

model, where the initial WPSF scores were entered into the model first, accounted for 

approximately 35% of the variance in the CMAT (Adjusted R2 = .35), F(1, 140) = 76.99, 
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p < .001, in the first step. This shows that the WPSF score accounted for more variance in 

the CMAT than the combination of calculation and reading comprehension scores.  

TOMA Story Problems Subtest. As shown in Table 3, the initial model of 

calculation and reading comprehension accounted for approximately 25% of the variance 

in the TOMA story problems raw score (Adjusted R2 = .24), F(2, 139) = 22.88, p < .001. 

The WPSF scores explained additional significant variance beyond the original model, 

ΔR2 = .14, F(1, 138) = 32.42, p < .001. However, once the WPSF scores were introduced 

in step 2, calculation (β = -.01, p = .95) was no longer a significant predictor. The WPSF 

ROI did not make a unique contribution (ΔR2 = .00, F(1, 137) = .71, p = .40) to the 

model, after accounting for all other variables.  The final model, consisting of calculation, 

reading comprehension, WPSF initial score, and the WPSF ROI, accounted for 39% of 

the variance in the TOMA story problems subtest (adjusted R2 = .38), F(4, 137) = 22.26, 

p < .001. The alternative model, where the initial WPSF scores were entered into the 

model first, accounted for approximately 36% of the variance in the TOMA (Adjusted R2 

= .36), F(1, 140) = 78.71, p < .001, in the first step. This shows that the WPSF score 

accounted for more variance in the TOMA than the combination of calculation and 

reading comprehension scores, which accounted for approximately 25% of the variance. 

KeyMath Problem Solving Subtest. The initial model accounted for 

approximately 34% of the variance in the KeyMath problem solving raw score (Adjusted 

R2 = .33), F(2, 139) = 35.10, p < .001. The WPSF scores explained additional significant 

variance beyond the original model, ΔR2 = .05, F(1, 138) = 11.16, p = .001. Moreover, 

The WPSF ROI made a unique contribution (ΔR2 = .12, F(1, 137) = 33.51, p < .001) to 



39 

 

the model, after accounting for all other variables.  However, once the WPSF ROI was 

introduced in the third step of the model, reading comprehension (β = .04, p = .63) was 

no longer significant as a predictor. The final model, consisting of calculation, reading 

comprehension, WPSF initial score, and the WPSF ROI, accounted for 51% of the 

variance in the KeyMath problem solving subtest (adjusted R2 = .49), F(4, 137) = 35.09, p 

< .001. The alternative model, where the initial WPSF scores were entered into the model 

first, accounted for approximately 29% of the variance in the KeyMath (Adjusted R2 = 

.29), F(1, 140) = 57.46, p < .001, in the first step. This shows that the WPSF score 

accounted for slightly less variance in the KeyMath than the combination of calculation 

and reading comprehension scores, which accounted for approximately 34% of the 

variance in the original model. 

STAR Experimental Problem Solving Measure. The initial model accounted 

for approximately 14% of the variance in the STAR measure (Adjusted R2 = .13), F(2, 

139) = 11.14, p < .001. Reading comprehension (β = .14, p = .10) did not emerge as a 

significant predictor in the original model, however. When added to the model, the WPSF 

initial score contributed additional unique variance in predicting the STAR raw score, 

ΔR2 = .09, F(1, 138) = 15.30, p < .001.  However, the calculation (β = .14, p = .14) 

measure was no longer a significant predictor of the STAR problem solving test once the 

WPSF initial score was introduced to the model.  The WPSF ROI made a unique 

contribution (ΔR2 = .03, F(1, 137) = 5.60, p < .05) to the model, when all other variables 

were parceled in the analysis.  The final model, consisting of calculation, reading 

comprehension, WPSF initial score, and the WPSF ROI, accounted for 26% of the 
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variance in the STAR math measure (adjusted R2 = .23), F(4, 137) = 11.70, p < .001. The 

alternative model, where the initial WPSF scores were entered into the model first, 

accounted for approximately 21% of the variance in the STAR (Adjusted R2 = .21), F(1, 

140) = 37.43, p < .001, in the first step. This shows that the WPSF score accounted for 

more variance in the STAR than the combination of calculation and reading 

comprehension scores, which accounted for approximately 14% of the variance in the 

original model. 

3. To what extent is WPSF sensitive to growth? Are there differences in rate of 

improvement (ROI) between students at different levels of risk?  

The mean slope for the total sample (N = 142) of students across the three time 

points was M = .91 (SD = 1.22). Since the three time points covered a span of 12 weeks, 

with approximately four weeks between each time point, the weekly ROI was calculated 

by dividing the mean slope estimates by four. The weekly ROI for the total sample was 

M = .23; at-risk students had a weekly ROI of M = .17, while not at-risk students had a 

weekly ROI of M = .25.  

In order to address this research question further, a mixed 2 (risk group) x 3 (time) 

ANOVA model with repeated measures on the last factor was utilized. Included within 

the model was the within-subjects factor time, which had three levels (times 1, 2, and 3); 

and the between-subjects factor risk status, which had two levels (at-risk, and not at-risk). 

Means and SD’s for each of the respective risk groups are presented in Table 4.  

Significant main effects were observed for risk group (F(1, 140) = 340.22, p < 

.001), and time (Wilks’ Λ = .70, F(2, 139) = 29.96, p < .001). Effect size estimates for the 
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between-subjects factor risk group (partial η2 = .31), and the within-subjects factor time 

(partial η2 = .30) were both large in magnitude according to Cohen’s (1988) conventions. 

As anticipated, a significant group effect emerged in favor of the not at-risk group (F(1, 

140) = 340.22, p < .001). The mean initial WPSF score for the not at-risk group was M = 

5.56, while the mean score for the at-risk group was M = 1.74. This pattern remained 

consistent across the three time points as there were also significant differences in WPSF 

levels at times 2 & 3.  

The pooled mean raw scores grew across the three time points, increasing from M 

= 4.56 at time 1, to M = 6.30 at time 2, and M = 6.38 at time 3. A post-hoc Tukey test 

revealed that there were significant differences in the raw scores between times 1 & 2 (p 

< .001), and times 1 & 3 (p < .001); mean score differences between times 2 & 3 (p = 

.95) were not significant. Moreover, in addition to the observed linear change (F(1, 140) 

= 50.71, p < .001, partial η2 = .27) across the three time points, evidence of a quadratic 

growth pattern (F(1, 140) = 18.89, p < .001, partial η2 = .12) also emerged in the data. As 

shown in Figure 1, WPSF scores increased by an average of 1.67 points between times 1 

& 2, and then leveled off between times 2 & 3, where they grew by an average of 0.12 

points.  

The time-by-group interaction tested within the model was not significant (Wilks’ 

Λ = .99, F(2, 139) = 1.02, p = .36), indicating that students in the respective risk groups 

did not grow at significantly different rates in word problem solving during the study. 

Therefore, while significant growth on the WPSF measure was observed across the 12 

weeks, these data do not suggest that the growth rates of at-risk students (M = .67, SD = 
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1.39) were significantly different from those of students that were not at-risk (M = .99, 

SD = 1.15).  

4. Does word problem solving fluency performance and rate of improvement (ROI) 

discriminate between students at different levels of risk in math problem 

solving? Do measures of computation and reading comprehension improve 

discrimination? 

 This question was addressed through logistic regression, and receiver operating 

curve (ROC) analyses. In addition to addressing the research question, obtaining 

estimates of diagnostic efficiency for WPSF was also of interest. Therefore, in addition to 

calculating odds ratios for group membership through the logistic regression analysis, the 

following diagnostic efficiency statistics were considered: area under the curve (AUC), 

sensitivity, specificity, and classification accuracy.  

The AUC serves as a simple summary of overall accuracy (Hanley & McNeil, 

1982). It refers to the proportion of randomly chosen pairs of students for which the 

screening assessment (WPSF) accurately classifies as at/below, or above the 25th 

percentile cutoff for risk (Clarke, Nese, et al., 2011). While there are no standard 

conventions for interpreting the magnitude of AUC values, some guidelines or rules of 

thumb have been presented in past literature. For example, Dolan and Doyle (2000) 

reported that an AUC value greater than 0.75 was similar to a Cohen’s d effect size 

greater than 0.5 (moderate effect). More recently, Fuchs, Fuchs, Compton, Bryant, 

Hamlett, and Seethaler (2007) presented the following categorical descriptors for 

interpreting AUC values in the math screening literature: AUC values less than .70 
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indicate a poor predictive model; .70-.79 indicate fair prediction; .80-.89 indicate good 

prediction; and values equal to or greater than .90 indicate excellent prediction. 

Sensitivity is the proportion of students that were correctly identified by WPSF as being 

at-risk. Specificity is the proportion of students accurately predicted by WPSF to be not 

at-risk. Classification accuracy is the number of accurate predictions (the sum of true 

positives and true negatives), over the total number of predictions (the sum of true 

positives, false positives, true negatives, and false negatives). In addition to the 

aforementioned diagnostic efficiency statistics, cut-points were generated from the ROC 

analysis that optimized levels of sensitivity and specificity.  Results for the logistic 

regression, and ROC analyses will be reported separately below.  

Logistic Regression. The dependent variable in the logistic regression analysis 

was risk status (at-risk, not at-risk). Recall that students were considered to be at-risk if 

they had a scale score of less than eight on either the CMAT or KeyMath problem 

solving subtests. Thus, students that were considered at-risk were coded “0”, while 

students that were not at-risk were coded “1”. The independent variables (WPSF initial 

score, WPSF ROI, WIAT, and TORC) were entered into the regression model in three 

blocks: First, a model was tested with no predictors to estimate the base rate for 

classification accuracy (the classification accuracy generated by assuming all students 

were not at-risk for math problem solving difficulties); next, the WPSF raw score and 

WPSF ROI were entered in the model; and finally, the raw scores from the WIAT 

numerical operations and TORC text comprehension subtests were entered in model.  
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The rationale behind entering the independent variables in the specified order was 

to gauge the extent to which WPSF data predicted risk status in math problem solving, 

independent of any other information (i.e., calculation skills, reading comprehension 

skills). The reading comprehension and calculation scores were entered into the model 

last in order to gauge the extent to which they contribute additional information to 

predicting risk status, beyond the WPSF data. This way, there will be a clear illustration 

of how much each additional source of information improves screening accuracy. Output 

from the logistic regression model are presented in Table 5.  

Given no predictors, the logistic regression model was able to correctly classify 

approximately 74% of students (all students were classified as not at-risk). Once the 

WPSF raw scores and ROIs were entered in the model in the second step, classification 

accuracy increased to approximately 82% overall; 60% of the at-risk students were 

correctly classified (22 true positives, 15 false negatives), and 90% of not at-risk students 

were correctly classified (94 true negatives, 11 false positives). Furthermore, both the 

WPSF score (β = .74, p < .001) and WPSF ROI (β = .66, p < .01) were significant 

predictors in the model. The odds ratios for the WPSF score and ROI were 2.10 and 1.94, 

respectively. In order to provide a clear interpretation of the magnitude of the observed 

effect, the odds ratios were converted into effect sizes using the formula presented in 

Hasselblad and Hedges (1995, p. 170):  

             𝑑𝐻𝐻 =  𝐿𝑂𝑅  
√3

𝜋
                                                  (3) 
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Where LOR is the natural logarithm of the odds ratio (OR), and π = 3.142. Using formula 

3, the odds ratios for the WPSF score and ROI translated into significant small effect 

effects (d’s = .41, and .36, respectively), following Cohen’s (1988) conventions.  

The addition of calculation and reading comprehension scores in the third block 

did not improve the classification accuracy of the model. Moreover, neither the WIAT (β 

= .02, p > .05) nor the TORC (β = .02, p > .05) emerged as significant predictors in the 

model.  

ROC Analysis. As illustrated in Figure 2, the WPSF raw scores generated an area 

under the curve (AUC) of .83. This means that when students were identified as members 

of the not at-risk group as a function of their initial WPSF level, they yielded scores that 

were greater than students that were identified as at-risk 83% of the time. Based on the 

conventions that have been outlined previously in the literature (e.g., Dolan & Doyle, 

2000; Fuchs et al., 2007), an AUC value of this magnitude is consistent with a moderate 

effect (i.e., d > .50), and reflects a “good-predicting” model. In order to identify cut 

scores that optimized sensitivity and specificity, cut score decision rules outlined in 

Silberglitt and Hintze (2005) were utilized:   

(1) Determine the cut score(s) that yield at least 0.7 for sensitivity and specificity; (2) 

if possible, increase sensitivity from this point, continuing upward while still 

maintaining a specificity of 0.7, stopping if sensitivity exceeds 0.8; (3) if 

sensitivity exceeds 0.8 and specificity can still be increased, continue to maximize 

specificity (while maintaining sensitivity of 0.8); and (4) if both sensitivity and 

specificity exceed 0.8, repeat steps 2 and 3, using 0.9 as the next cutoff. (p. 316) 
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Cut scores and corresponding rates of sensitivity and specificity are presented in Table 6. 

As shown in Table 6, only one cut score (a raw score of 3.5) met the criteria. This score 

was consistent with a sensitivity rate of .81, and a specificity rate of .73. The next best cut 

score was 2.5, which increased sensitivity (.88) but sacrificed specificity (.54).   

Discussion 

 This study endeavored to provide empirical support for the use of fluency-based 

word problem solving measures as formative assessment tools in early elementary 

education. In doing so, this investigation provided evidence on the technical features of a 

curriculum-based word problem solving fluency measure. Following the 

recommendations for evaluating CBM tools outlined in Fuchs (2004), this study looked 

to: (1) examine the technical properties of the WPSF static score; and (2) examine the 

technical properties of the slope. In addition to providing evidence on the technical 

properties of the WPSF measure, this study also attempted to provide consequential 

validity evidence on the WPSF measure by evaluating its’ diagnostic efficiency as an 

academic screener. One final goal of this study was to examine the role of covariates 

commonly associated with math problem solving (i.e., calculation, and reading 

comprehension) in predicting student outcomes. The findings from this investigation will 

be discussed below as they relate to each of the respective research questions.  

1. To what extent are scores from alternate forms of WPSF reliable and valid 

predictors of high stakes tests? 

The majority of the reliability evidence reported for word problem measures has 

been on their internal consistency. These estimates have been reported from the .70-.80 
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range (e.g., Jitendra, Sczesniak, & Deatline-Buchman, 2005). However, the time-based 

nature of CBM tasks in general, and in this case WPSF, make estimates of internal 

consistency inadequate for establishing reliability evidence (Raykov & Marcoulides, 

2011; Christ, Johnson-Gros, & Hintze, 2005). Instead, alternate form test-retest reliability 

estimates were generated in this study. As anticipated, the coefficients of equivalence for 

the single forms of WPSF were rather low, and inconsistent (r’s = .50-.72). This was 

consistent with the findings from Leh et al. (2007), where they opted to aggregate their 

CBM forms to enhance reliability estimates.  

Similar to Leh and colleagues (2007), the aggregated forms in this study produced 

far more reliable estimates of word problem solving (r’s = .72-74). While these estimates 

from the aggregated forms were not above the recommended reliability threshold of r = 

.80 discussed by Gersten, Beckmann, and colleagues (2009), they did surpass the basal 

level of reliability evidence (r ≥ .70) recommended for low-stakes, relative decision-

making contexts (Christ, Johnson-Gros, & Hintze, 2005). Furthermore, these reliability 

estimates for WPSF are comparable, and in some instances superior, to contemporary 

CBM measures discussed in the literature, yet have the distinction of being obtained in a 

far more time-efficient manner. For example, Fuchs, Fuchs, and Courey (2005) reported 

alternate form test-retest reliability coefficients of r = .66-.76, and Jitendra and colleagues 

(2005) reported internal consistency estimates of r = .76-.83. While administration time 

was not reported for Real-Life Math CBM, Jitendra et al. (2005) allowed for 10 minutes 

of administration time.  
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The results from this investigation suggest that 10 minutes may not be necessary 

to garner a reliable estimate of word problem solving ability. While the two minute work 

sample of word problem solving ability obtained in this study did not produce reliability 

estimates that were consistent with the r = .80 reliability threshold, it is certainly possible 

that a reliable estimate could be attained in five minutes. This is a question that could be 

addressed in future research in this area.  

The predictive correlations (winter to spring) between WPSF and the criterion 

measures ranged from r = .46-.60, small to moderate in terms of strength. These 

correlations are comparable to those reported in the literature for contemporary CBM 

measures. For example, Jitendra and colleagues (2005) reported concurrent validity 

coefficients ranging from .64-.71. They are also comparable to the correlation 

coefficients generated between the respective criterion measures used in this study (r’s = 

.29-.69), which were produced in a concurrent fashion. These differences in correlation 

between the criterion measures were likely a product of differences in the administration 

and response formats for the respective tests. For example, while problems were read 

aloud to students for the CMAT and KeyMath subtests, students had to read the problems 

from the TOMA and STAR subtests on their own. Also, while the CMAT, KeyMath, and 

TOMA all had an open response format (i.e., students had to generate their own answers), 

the STAR test was in a multiple choice format, where the student had to select the best 

answer from a field of four possible answers. The criterion-referenced tests (i.e., CMAT, 

KeyMath, and TOMA) that required students to generate responses are likely more 

accurate representations of students’ math abilities in the area of problem solving since 
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the likelihood of a student guessing the correct answer is greatly diminished in this 

format.  

The correlation coefficients between WPSF and the TOMA story problems 

subtest, and the CMAT problem solving subtest were the highest (both r’s = .60). These 

criterion measures were also the most similar to the WPSF measure in response and 

administration format.  

While the relationships between the CBM measures and the criterion measures are not as 

strong as those often observed in the CBM reading literature, they did meet the level of 

predictive validity evidence (r = .60 in a given school year) recommended by Gersten, 

Beckmann, et al. (2009) for math screeners. This finding has strong implications for 

practice, since it shows that the strength of association between word problem tasks and 

problem solving outcome measures was not compromised by the shorter administration 

time used in this study.  Recall that students had eight minutes to work on the word 

problem CBM used in Jitendra et al. (2005), and students in this study had only two 

minutes to work on the measure.  

2. To what extent does WPSF contribute to high stake test performance beyond the 

contribution of reading comprehension and calculation?  

The hierarchical regression models revealed that the full battery of assessments, 

which included measures of calculation, reading comprehension, and word problem 

solving (level and slope), accounted for between 26-51% of the variance in criterion 

measures of problem solving at the end of the school year. The battery accounted for over 

one quarter of the variance in the STAR measure, and over one half of the variance in the 
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KeyMath problem solving subtest, all strong effects by Cohen’s (1988) standards. In 

addition, the initial score, and rate of improvement (ROI) on the WPSF measures added 

unique variance in the prediction of math achievement at the end of the school year for all 

of the outcome measures, with the exception of the TOMA. Thus, even after accounting 

for students’ calculation, and reading comprehension skills at the beginning of the school 

year, students’ initial performances on WPSF, and their rates of improvement on the task 

provided useful information in predicting end of year outcomes in math problem solving.   

One particularly interesting finding was the difference in the importance of 

calculation and reading comprehension in predicting the outcomes for the respective 

criterion measures. While calculation was an important predictor for the KeyMath (β = 

.26, p < .001), it was not a significant predictor for any of the other criterion variables 

when accounting for WPSF performance. Similarly, reading comprehension was an 

important predictor for the TOMA (β = .19, p < .05), but was not a significant predictor 

for any of the other criterion variables after accounting for WPSF performance. This is an 

important finding, as it suggests that WPSF is accounting for variance in problem solving 

ability that cannot be explained by reading comprehension, and/or calculation skills.  

It also lends further support to recommendations from Gersten and colleagues 

(2009), which called for the implementation of universal screening, and other forms of 

formative assessment to identify students with problem solving difficulties. If students 

that have exclusive problem solving difficulties can be identified early on in the school 

year, they can then be placed in interventions that are specifically tailored to remediate 

those deficits. Interventions that have focused on teaching the underlying structures of 
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word problems have been shown to be particularly effective in improving problem 

solving competencies (e.g., Fuchs, Fuchs, Prentice, et al., 2003; Fuchs, Fuchs, Prentice, 

Hamlett, Finelli, & Courey, 2004; Jitendra, Griffin, McGoey, Gardill, Bhat, & Riley, 

1998; Xin, Jitendra, & Deatline-Buchman, 2005).  

3. To what extent is WPSF sensitive to growth? Are there differences in rate of 

improvement (ROI) between students at different levels of risk?  

The repeated-measures mixed ANOVA model produced a significant, large effect 

(partial η2 = .30) for time across the three time points in the study, indicating that the 

WPSF measure is indeed capable of providing evidence of growth. The weekly growth 

rate for the total sample was .23; .17 and .25 for students that were at-risk and not at-risk, 

respectfully. While lower than ROIs that are typically reported in the reading literature, 

this weekly ROI was comparable to contemporary CBMs of problem solving, and other 

math measures alike. For instance, Leh and colleagues (2007) reported a weekly growth 

rate of .24 for their total sample, and Fuchs, Fuchs, and Courey (2005) reported ROIs of 

.11, .28, and .54 for low-, average-, and high-achieving students in their sample.  

 While the WPSF rate of improvement across the three time points emerged as a 

significant predictor of performance on both criterion measures, and contributed unique 

variance in predicting future math scores on those respective measures, there were no 

statistically significant differences between the slopes of at-risk students and students that 

were not at-risk in this study. Attempts to establish discriminant validity for problem 

solving CBM slopes have had mixed results in the literature. For example, Leh and 

colleagues (2007) did not find significant differences in weekly ROIs between low- and 
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average-achieving students. However, Fuchs, Fuchs, and Courey (2005) were able to 

show evidence of discriminant validity in CBM slopes between high-, average-, and low-

achieving students.  

One explanation for not finding significant differences in slope between the two 

risk groups is that there was a lack of precision in the slope estimates. The standard 

deviations for the slope estimates of the respective groups were rather large in 

comparison to the means (SDs = 0.29-0.35), indicating substantial variance associated 

with these slope estimates. This outcome is likely because only three data points were 

used to estimate slope in this study. Christ (2006) demonstrated that the standard error of 

the estimates (SEEs) decreased continuously when more data points were considered in 

calculating rates of improvement.   

Another factor that may have impacted the WPSF measure’s ability to measure 

growth in problem solving was the methodology used for scoring it. The total number of 

correct responses was used as the outcome variable for WPSF in this study.  However, 

others (e.g., Foegen, Olson, & Impecoven-Lind, 2008) have used alternative scoring 

methodologies that reward students for accurately completing parts of the problem 

solving process (i.e., identifying correct numbers, choosing the correct algorithmic, etc.). 

Rewarding students for properly executing parts of the problem solving process would 

likely increase the range of possible scores, and be more sensitive to growth. Future 

research in this area should examine this possibility further.  

Despite these issues with measurement error, however, the WPSF slope did 

emerge as a significant predictor in the various regression analyses conducted in this 
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study.  This is an important finding for two reasons. First, it demonstrates that growth in 

problem solving skills can in fact be measured in an efficient manner. Second, growth 

rates can yield valuable information as it pertains to end of year success in math.  Thus, 

as teachers make the shift to incorporating more activities related to math problem 

solving in their lesson plans, WPSF and measures alike hold promise for providing a 

means to evaluate the effectiveness of the instruction.  

4. Does WPSF performance and rate of improvement (ROI) discriminate between 

students at different levels of risk in math problem solving? Do measures of 

computation and reading comprehension improve discrimination? 

The WPSF measure demonstrated the ability to distinguish between students at 

different levels of risk, producing an AUC of .83. To provide a source of comparison, an 

AUC of .83 is consistent with a moderate effect size (i.e., d > .50). Moreover, when 

assigning students to risk groups based on WPSF scores, the classification accuracy was 

as high as .82, which is far greater than chance, and greater than the rate produced by the 

baseline model which assigned all students to the not at-risk group given the low 

frequency was at-risk students in the student population. The diagnostic efficiency 

statistics that were obtained by using optimal cut scores generated in the ROC analysis 

were also very promising. When selecting a cut score that holds the level of sensitivity at 

.81 (limiting the number of students that are misidentified as not at-risk), a respectable 

level of specificity was still attainable. This means that WPSF holds the capacity to 

correctly identify at-risk students without greatly over-identifying students as at-risk. The 

AUC, and other markers of diagnostic efficiency were also comparable to those 
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generated by other math CBMs in past research. For example, Clarke, Nese, et al. (2011) 

reported an AUC of .83, and corresponding levels of sensitivity and specificity of .70 and 

.83, respectively, for their easyCBM number sense measure. No other studies that 

evaluated the screening properties of word problem solving CBMs were identified in the 

literature review, so these findings are believed to be the first source of empirical data on 

the technical adequacy of word problem CBMs as screening tools for students in early 

elementary school. 

One surprising finding that emerged in this study was that the calculation, and 

reading comprehension measures did not enhance the screening accuracy beyond WPSF 

performance and ROI. This speaks to the potency of WPSF as a screener, and highlights 

the implications that the measure could have for informing math instruction.  If a measure 

can correctly distinguish between students who will meet an end of year criterion, and 

those that will not, it has the capacity to serve as an agent for selecting students for 

intervention. The diagnostic efficiency statistics that were generated in this study were 

actually comparable to those reported in the reading CBM literature (e.g., Compton, 

Fuchs, Fuchs, & Bryant, 2006; Deno et al., 2009), and these measures are already used on 

a fairly consistent basis throughout the country to inform reading instruction. Findings 

from this investigation provide preliminary evidence that math CBMs, and in particular, 

WPSF, have the potential to be used in a similar fashion as reading CBMs; they can be 

used for the purposes of identifying the students that present the greatest need for math 

intervention.   
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In this study, the 25th percentile was used as a cutoff for risk to identify students 

scoring in the lowest quartile on the criterion measures. This is an arbitrary cutoff, and 

the precision of the CBM measures can be evaluated using a number of different cutoffs. 

For example, Clarke, Nese, and colleagues (2011) experimented with cut points at the 

10th, 25th, and 40th percentile. From a practical aspect, the selection of students for math 

intervention in a given school will depend largely on the resources available at that 

school.  For example, it may be of benefit to identify students scoring below the 15th 

percentile since the resources available may only allow one to serve a very small number 

of students.     

Limitations 

 This study has two main limitations.  First, only word problem solving accuracy 

was assessed by the CBM measure.  The addition of other problems such as calculation 

(e.g., addition, subtraction) may be more representative of what is taught in schools and 

on high-stakes tests.  However, because of the limited research on word problem solving 

CBM measures, one of the purposes of this study was to try to determine whether word 

problem solving CBM predicted word problem solving performance and the California 

STAR high-stakes test beyond that of calculation skills.   

 A second limitation is the 2-minute time limit that students had to complete the 

CBM measure.  This may have assessed other areas that are related to word problem 

solving, including reading fluency, processing speed, and working memory (e.g., 

Andersson, 2007; Swanson & Beebe-Frankenberger, 2004; Vilenius-Tuohimaa, Aunola, 

& Nurmi, 2008) rather than word problem solving ability.  That is, students who have 
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better reading comprehension, faster phonological processing speed, and/or more 

working memory capacity may be able to answer the questions at a quicker pace, and 

thus answer more questions.  However, one advantage of the time limit is that it can be 

easily implemented by teachers because it takes very little time to administer.     

Conclusions and Implications 

 Large-scale reviews of the math literature (e.g., Gersten, Chard, et al., 2009; 

NMAP, 2008) have highlighted the need to utilize formative assessment practices in 

schools to improve math education.  Formative assessment practices have been most 

effective when teachers use performance assessments to evaluate specific academic 

skills, and subsequently use those data to make instructional changes; effects are 

strengthened further when guidance is given to teachers on using assessment data to 

make instructional changes (Gersten, Chard, et al., 2009).  Problem solving CBMs hold 

the promise of assisting in this process because they can provide low-inference 

information to teachers on students’ problem solving skills, and be used in a repeated 

fashion.  

This study examined the extent to which problem solving CBMs predict math 

achievement, specifically criterion-referenced measures of problem solving, and the 

California STAR standardized test, beyond that of traditional measures such as 

calculation, and reading comprehension.  This investigation uncovered that WPSF 

accounted for approximately one-quarter of the variance in the STAR test, and up to one-

half of the variance in the problem solving criterion measures.  Predictive correlations 

with the STAR math test, and problem solving composite ranged from .46-.60 (similar to 
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correlations reported in other studies investigating word problem tasks (e.g., Fuchs, 

Compton, et al. 2012; Fuchs, Compton, Fuchs, et al., 2011; Jitendra, Scezniak, & 

Deatline-Buchman, 2005), providing early evidence of predictive validity for problem 

solving CBM.  It must be noted that this is an initial step in the validation process, and 

that further research will be necessary to provide more empirical support for the 

psychometric properties of WPSF, and other word problem solving CBMs.  

Findings from this study also show that problem solving CBMs hold the potential 

to be used as screeners for math difficulties.  Results from the logistic regression and 

ROC analyses have strong implications for educational decision-making with regard to 

math instruction.  The overall AUC of .83, and levels of sensitivity and specificity that 

were generated when using optimal cut-points, suggest that WPSF can aid educators in 

determining which students are in need of intervention. Since Gersten, Beckmann, et al. 

(2009), and others have made the recommendation of providing interventions targeting 

word problem solving during the early elementary years, it would benefit teachers to 

know which students need those interventions most.  

Despite the limitations of the 2-minute administration time limit addressed in the 

previous section, findings from the current study suggest that 8-10 minute samples of 

word problem solving may not be necessary for the purposes of screening.  The problem 

solving CBM was able to distinguish between students that were at-risk for problem 

solving difficulties, and students that were at relatively low-risk of having problem 

solving difficulties; all within a two-minute timeframe.  Future research in this area might 

examine how much time is necessary to obtain an adequate sample of word problem 
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solving skills for the purposes screening, and progress monitoring.  Measures that require 

less administration time also take less instructional time away from teachers; they are 

therefore more likely to be accepted by teachers.  This aspect of social validity should 

also be considered when designing formative assessment tools.   

While the WPSF ROI was a useful indicator in the regression models predicting 

scores on the problem solving outcome measures, the weekly ROIs were very small, and 

thus not very sensitive to change. This lack of sensitivity to change does not lend itself 

well to weekly or bi-weekly progress monitoring. Further, the absence of significant 

differences in ROI between the respective risk groups did not lend itself to establishing 

construct validity for the WPSF ROI.  Future research should be directed toward 

evaluating the technical properties of the slope for WPSF while using different scoring 

methodologies. In the current study, the number of correct solutions was used as the 

outcome variable for WPSF. However, others (e.g., Foegan, Olson, & Impecoven-Lind, 

2010) have used alternative scoring methodologies that reward students for correctly 

executing various steps within the problem solving process.  Using this type of approach 

would likely increase the range of possible scores, and thus make WPSF more sensitive 

to changes in students’ problem solving abilities.  

Finally, the findings suggest that problem solving CBMs have additional 

predictive power, beyond that of traditional and often-used measures of math 

achievement.  As discussed earlier, MMs target only isolated math skills, and thus do not 

provide an accurate assessment of students’ overall progress in mathematics.  As SBMs, 

problem solving CBMs tap into a broader range of math skills, and thus provide a better 
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indication of student progress. Unfortunately, a true general outcome measure (GOM) of 

math achievement, such as those boasted in the reading CBM literature, has yet to emerge 

in the math CBM literature. Therefore, at this juncture, the the use of multiple skill-based 

measures is recommended when assessing student progress in mathematics.  This could 

be done by using WPSF or another type of word problem CBM, along with a 

computation, and/or concept and application measure.  
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Table 1 

Alternate Form Test-Retest Reliability Coefficients for Aggregated and Non-Aggregated 

Forms 

Form A B C    

A 1.00 . . . . . 

B .72 1.00 . . . . 

C .74 .74 1.00 . . . 

M 6.45 5.58 5.91    

SD 3.68 3.26 3.62    

Form 1 2 3 4 5 6 

1 1.00 . . . . . 

2 .65 1.00 . . . . 

3 .72 .51 1.00 . . . 

4 .55 .57 .60 1.00 . . 

5 .50 .62 .56 .67 1.00 . 

6 .69 .60 .52 .62 .59 1.00 

M 3.25 3.20 2.68 2.88 2.62 3.29 

SD 2.04 2.01 1.91 1.72 1.98 2.07 

Note. Intercorrelations for students (n = 65) that were assigned to the first presentation 

order (received form 1 first). Form A = Form 1 + Form 2; Form B = Form 3 + Form 4; 

Form C = Form 5 + Form 6. All correlations were significant at a level of p < .001. 
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Table 2 

Pearson Correlations Among Variables of Interest 

Measure 1 2 3 4 5 6 7 

1. WPSF 1.00 . . . . . . 

2. STAR .46 1.00 . . . . . 

3. CMAT .60 .44 1.00 . . . . 

4. KeyMath .54 .46 .69 1.00 . . . 

5. TOMA .60 .29 .50 .47 1.00 . . 

6. WIAT .55 .35 .46 .53 .35 1.00 . 

7. TORC .53 .27 .46 .44 .47 .42 1.00 

M 4.56 3.81 8.92 6.48 4.51 16.39 15.61 

SD 3.30 2.13 2.88 2.58 2.15 3.17 5.33 

Note. Intercorrelations from the total sample (n = 142). All correlations were 

significant at p < .001; WPSF = Word Problem Solving Fluency CBM; STAR = 

experimental word problem solving outcome measure; CMAT = Problem Solving 

subtest from the CMAT; KeyMath = Problem Solving subtest from the KeyMath; 

TOMA = Story Problems subtest from the TOMA-2; WIAT = Arithmetic subtest from 

the WIAT; TORC = Passage Comprehension subtest from the TORC-4.  
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Figure 1 

Growth on WPSF for At-Risk and Not At-Risk Students Across 12 Weeks 
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Figure 2 

Prediction of Spring Risk Status Using Winter WPSF Scores  
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Table 6 

Diagnostic Efficiency of WPSF Predicting Problem Solving Risk Status 

 

Cut Scores Sensitivity Specificity AUC Classification 

Accuracy 

TP FP TN FN 

--a .00 .74 -- .74 0 0 105 37 

--b .59 .90 -- .82 22 15 94 11 

3.5 .81 .73 .83 .75 30 7 77 28 

2.5 .89 .54 -- .63 33 4 57 48 

Note.  TP = true positives; FP = false positives; TN = true negatives; FN = false 

negatives. aDiagnostic efficiency statistics generated from baseline logistic regression 

model with no predictors. bDiagnostic efficiency statistics generated from logistic 

regression model with WPSF initial raw scores, and ROIs.  
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Appendix A 

Probe 1 

1. Brandon has 4 red marbles and 5 green marbles.  Brandon’s brother Mike has 15 

marbles.  How many marbles does Brandon have in all? 

 

2. Andy had some stamps.  Then his dad bought him 5 more stamps.  Now Andy has 

35 stamps.  How many stamps did he have to start with? 

 

3. Steve scored 2 goals less than Greg in the soccer game.  Greg scored 7 goals.  

How many goals did Steve score? 

 

4. Anna found 27 seashells on the beach.  Tanya found 16 seashells.  How many 

fewer seashells did Tanya find? 

 

5. Mia planted 10 daisies and 8 lilies in her garden.  However, 3 of the flowers died.  

How many flowers are left? 

 

6. Mom baked chocolate chip and sugar cookies.  She baked 15 chocolate chip 

cookies.  She baked 5 less sugar cookies than chocolate chip cookies.  How many 

cookies did mom bake in all? 

 

7. Ken, Rob, and Dylan were picking apples in the orchard.  Ken picked 20 apples.  

Rob picked 25 apples.  How many apples did Dylan pick if, altogether, the boys 

picked 75 apples? 

 

8. Erin sees 4 beetles.  Sam sees 6 beetles.  Mary sees 5 beetles.  They all see 3 

butterflies, too.  How many beetles do Erin, Sam, and Mary see altogether? 

 

9. Sofie ate 6 strawberries.  That is 4 less strawberries than what Emma ate.  How 

many strawberries did Emma eat? 

 

10. Caleb picked 5 ears of corn.  Gabe picked 3 more ears of corn than Caleb.  Jack 

picked 2 more ears of corn than Gabe.  How many ears of corn did they pick in 

all? 

 

11. Julie digs up 4 onions. Ben digs up 6 more onions than Julie. How many onions 

do they both pick together? 

 

12. Mrs. Robinson has 19 students in her class.  There are 9 boys in her class.  Mr. 

Ross has 20 students in his class, and 12 of them are boys.  How many more girls 

are in Mrs. Robinson’s class than in Mr. Ross’s class? 
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Probe 2 

 

1. Ethan has 9 small trucks and 4 big trucks.  Ethan’s brother Josh has 11 trucks.  

How many trucks does Ethan have in all? 

 

2. James had some baseball cards.  Then his uncle gave him 7 more baseball cards.  

Now James has 27 cards.  How many baseball cards did he have to start with? 

 

3. Ryan scored 20 points less in the new video game than Zach.  Zach scored 60 

points.  How many points did Ryan score? 

 

4. Sofia picked 19 flowers in the park.  Mia picked 15 flowers.  How many fewer 

flowers did Mia pick? 

 

5. Zoe had 6 ladybugs with five dots and 10 ladybugs with six dots.  However, 5 of 

the ladybugs flew away.  How many ladybugs are left? 

 

6. Daniel and Jack scored many goals at their last soccer game.  Daniel scored 9 

goals.  Jack scored 3 less goals than Daniel.  How many goals did they both score 

in all? 

 

7. Luke, Rob, and Noah collect coins from different countries.  Luke has 11 coins.  

Rob has 16 coins.  How many coins does Noah have, if altogether the boys have 

39 coins? 

 

8. Bill saw 7 hermit crabs.  Peter saw 6 hermit crabs.  Leo saw 4 hermit crabs.  He 

also saw 5 starfish.  How many hermit crabs did the three boys see in all? 

 

9. There are 9 frogs on a log.  That is 4 less frogs than the number of frogs in the 

pond.  How many frogs are there in the pond? 

 

10. Tom picked 5 berries.  Rick picked 3 more berries than Tom.  Freddy picked 4 

more berries than Rick.  How many berries did they pick in all? 

 

11. Paul counted 20 striped fish.  He also counted 8 more clownfish than striped fish.  

How many fish did Paul count in all? 

 

12. A pet shop sold 12 hamsters and 8 kittens on Saturday.  They sold another 22 pets 

on Sunday.  10 of those pets were hamsters and the rest were kittens.  How many 

kittens did the pet store sell in all? 
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Probe 3 

1. Alexis has 4 baby dolls and 7 Barbie dolls.  Alexis’s cousin Lily has 6 Barbie 

dolls.  How many dolls does Alexis have in all? 

 

2. Dylan read several pages of the book in the morning.  In the afternoon, he read 10 

more pages.  So far, Dylan has read 24 pages in all.  How many pages did Dylan 

read in the morning? 

 

3. Michael spent $3 less on lunch than Connor.  Connor spent $8 to buy his lunch.  

How much money did Michael spend on his lunch? 

 

4. Lauren already colored 17 pages in her coloring book.  Sarah colored 14 pages in 

her coloring book.  How many fewer pages did Sarah color than Lauren? 

 

5. Mom bought 8 yellow apples and 9 green apples.  Her daughter, Mary ate 4 of the 

apples. How many apples are left? 

 

6. A pet store had puppies and kittens for sale.  They sold 9 kittens today.  They sold 

3 less puppies than kittens.  How many pets did the store sell in all? 

 

7. Christian, Dan, and Ted were selling boxes of popcorn to raise money for their 

school.  Christian sold 6 boxes.  Dan sold 8 boxes.  How many boxes of popcorn 

did Ted sell, if altogether the boys sold 24 boxes? 

 

8. There are 12 motorboats in the harbor.  There are also 4 ferryboats and 10 fishing 

boats in the harbor.  4 fishermen are looking at the boats.  How many boats are 

there in the harbor in all? 

 

9. Zoe has 14 colored pencils, that is 5 less than what Kelly has.  How many colored 

pencils does Kelly have? 

 

10. Kit saw 7 squirrels in a tree.  Abby saw 2 less squirrels than Kit.  Brianna saw 3 

more than Abby.  How many squirrels do they see in all? 

 

11. Zack and Mike like to go to the pool.  Zack jumped in the pool 7 times.  Mike 

jumped in 4 more times than Zack.  How many times did they both jump in the 

pool altogether? 

 

12. Amy picked 8 small flowers and 12 big flowers.  Dana picked 24 flowers in all.  

14 of them were small.  How many more big flowers did Amy pick than Dana? 
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Probe 4 

1. Isabella had 12 addition problems and 11 subtraction problems to solve.  

Isabella’s brother Owen had 25 problems to do.  How many problems did Isabella 

need to solve in all? 

 

2. Carter had saved some money.  His dad gave him $6 more dollars.   Carter now 

has $26 in all.  How much money did Carter have at the beginning? 

 

3. Mom baked 8 less sugar cookies than chocolate chip cookies.  She baked 19 

chocolate chip cookies.  How many sugar cookies did mom bake? 

 

4. Alyssa practiced playing piano for 25 minutes today.  Her sister Riley practiced 

for 15 minutes.  How many fewer minutes did Riley practice playing piano than 

Alyssa? 

 

5. Maya had 20 blue beads and 25 red beads in her bag.  She used 15 beads to make 

a necklace for her sister.  How many beads does Maya have left? 

 

6. Mr. McDonald had a little farm.  He had 25 goats on his farm.  He had 15 less 

cows than goats on the farm.  How many animals did Mr. McDonald have on his 

farm in all? 

 

7. Mrs. Leopold has stickers that she likes to give to her students.  Last week, she 

gave out 24 stickers.  This week, she gave out 33 stickers.  How many stickers are 

left, if at the beginning, Mrs. Leopold had 80 stickers in all? 

 

8. There are 5 white roses blooming in grandma’s garden.  There are 4 yellow roses 

and 8 red roses.  There are still 6 tulips blooming, too.  How many roses are 

blooming in all? 

 

9. There are 7 birds sitting on the first tree.  That is 5 less than the birds sitting on 

the second tree.  How many birds are sitting on the second tree? 

 

10. Bob found 15 acorns in the park. His friend, Rick found 4 less.  Maya found 2 

more acorns than Rick.  How many acorns did the three of them find in all? 

 

11. Anna used 10 shells to make a bracelet.  Her sister Jenna used 3 mores shells for 

her bracelet.  How many shells did they both use in all? 
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12. Adam gives food to the otters.  Yesterday, he gave them 13 mussels and 10 crabs.  

Today he gave the otters 26 food items.  12 of them were crabs, and the rest were 

mussels.  How many mussels did Adam give to the otters altogether for both 

days? 
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Probe 5 

1. Gabriel bought new things from a toy store.  Gabriel bought a kite for $6 and a 

soccer ball for $12.  His brother, Christian got a robotic dog for $22.  How much 

money did Gabriel spend on his toys in all? 

 

2. Sammy sold some Girl Scout cookies in the morning.  Later in the afternoon, she 

sold 25 more boxes.  If Sammy sold 55 boxes in all, how many boxes of cookies 

did she sell in the morning? 

 

3. Jacob spent 20 minutes less doing his homework today than practicing soccer.  He 

had soccer practice for 45 minutes.  How many minutes did Jacob spend on his 

homework today? 

 

4. Sydney is 44 inches tall.  Her sister, Kylee is 57 inches tall.  How many inches 

shorter is Sydney than her sister? 

 

5. Debby baked 10 banana nut muffins and 8 lemon muffins.  Alyssa ate 4 of the 

muffins.  How many muffins were left? 

 

6. William and Matt were fishing last Sunday.  William caught 15 little fish.  Matt 

caught 5 less fish than William.  How many fish did they both catch in all? 

 

7. There were 26 cloudy days in June, July, and August.  There were 14 cloudy days 

in June.  There were 7 cloudy days in July.  How many cloudy days were there in 

August? 

 

8. Eva picked 8 carrots.  Sammy picked 6 carrots.  Lola picked 4 carrots and 2 

tomatoes.  How many carrots did they pick in all? 

 

9. There are 6 big fish in a tank.  That is 4 less than the number of little fish in the 

tank.  How many little fish are there in the tank? 

 

10. Gina saw 7 leafy sea dragons.  She saw 2 more weedy sea dragons than leafy sea 

dragons.  She also saw 5 less zebra sea dragons than weedy sea dragons.  How 

many sea dragons did Gina see in all? 

 

11. Jose picked 5 green peppers.  He picked 2 more red than green peppers.  How 

many peppers did Jose pick in all? 

 

12. There are 8 boys and 12 girls in Mr. Jackson’s class.  4 boys have blue eyes, and 

the rest have brown.  7 girls have brown eyes, and the rest have blue.  How many 

students in Mr. Jackson’s class have blue eyes? 
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Probe 6 

1. Olivia planted 7 red tulips and 5 yellow tulips.  Her sister, Ella planted 8 tulips.  

How many tulips did Olivia plant in all? 

 

2. Caleb likes to eat junk food.   This month, he gained 4 pounds.  Now Caleb 

weighs 68 pounds.  How many pounds did Caleb weigh before he gained 4 

pounds? 

 

3. Hannah lost 5 teeth less than her older sister Taylor.  Taylor lost 12 teeth.  How 

many teeth did Hannah lose? 

 

4. Andrew did 49 push-ups.  Lucas did 37 push-ups.  How many fewer push-ups did 

Lucas do compared to Andrew? 

 

5. A high school administration hired 10 male teachers and 8 female teachers for this 

year.  However, 3 of the teachers left.  How many new teachers stayed? 

 

6. There are a different number of boys and girls in Mrs. Carter’s class.  There are 9 

girls in the class.  There are 3 less girls than boys in the class.  How many 

students are there in Mrs. Carter’s class in all? 

 

7. Alex wants to buy a bike that costs $65.  Alex had already saved $40.  His father 

gave him $10 more for washing cars.  How much more money does Alex need to 

save to get the bike? 

 

8. John cut 2 onions to make salsa.  He cut 8 tomatoes and 4 peppers.  It took him 2 

hours to make salsa.  How many vegetables did John use in all? 

 

9. Rosa drew 8 flowers.  She drew 3 less butterflies than flowers.  How many 

butterflies did Rosa draw? 

 

10. Tina read 5 books in June.  She read 2 more books in July than in June.  She read 

3 more books in August than in July.  How many books did Tina read in all? 

 

11. Paul has 20 whale stickers.  He has 7 more shark stickers than whale stickers.  

How many stickers does Paul have in all? 

 

12. Jerry made 26 flags.  He made 14 red flags.  The rest of the flags were blue.  Bob 

made 31 flags. 11 of them were red and the rest were blue.  How many more 

blue flags did Bob make than Jerry? 
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