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Abstract

Steenrod operations on algebraic De Rham cohomology, Hodge cohomology, and

spectral sequences
by

Ryan Drury

Let X be a topological space and k a field of characteristic p. Let A" be a bounded below
complex of sheaves of differential graded commutative F,-algebras. We show that there ex-
ist Steenrod operations canonically defined on the sheaf hypercohomology groups, H' (X,A").
These Steenrod operations satisfy most of their usual properties, including the Cartan formula
and the Adem relations. Suppose further that A" is equipped with a filtration F~, which is finite
in each degree, and compatible with the product on A'. The filtration on F"A" induces a spectral
sequence that converges to H (X,A"), and we prove that the constructed Steenrod operations
also have a compatible action on the E; and E.. pages of this spectral sequence. When X is
a smooth projective variety over k, we obtain Steenrod operations on the algebraic De Rham
cohomology groups, Hyy (X /k), as well as the Hodge cohomology groups. The Steenrod op-
erations on Hp,p (X /k) have a compatible action on the first and infinite pages of the Hodge to
De Rham spectral sequence, as well as the spectral sequence from Katz and Oda related to the

Gauss-Manin connection.
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Chapter 1

Introduction

Let X be a topological space and p a fixed prime. One has Steenrod operations defined
on the singular cohomology groups of X with coefficients in F, = Z/pZ, as described in Section

4.L, page 487, of [3]]. For p > 2, one has the Steenrod powers and Bockstein homomorphism:

P H"(X;Fp) = HH0-D (X Fy), B:H"(X:F,) — H"™ (X:F)).

When p = 2, there is instead a single collection of maps, called the Steenrod squares:

Sq': H'(X;Fp) — H (X Fa).

In this case, we in fact have B = Sq!, and one may define P/ = Sq*. One then has
BP' = Sq**! (shown on page 496 of [3]]). These operations satisfy a nice list of axioms.

For a complex of sheaves of abelian groups A on X, one defines the hypercohomology
groups of X with coefficients in A™ as the hyper right derived functors of the global section

functor:

H(X,A)=RT(A)=H(T(I'))

In the above, A" < I is an injective resolution in the category of sheaves of abelian
groups, Sh(X), and T : Sh(X) — Ab represents the global section functor. Now suppose X is a

smooth projective variety over a field k of characteristic p. Then one has the De Rham complex



Qy Ik and under these conditions we may define the algebraic De Rham cohomology groups of

X over k as the hypercohomology of X with coefficients in Q I

Hpg(X/k) =H (Xagk/k)

To define Steenrod operations on the algebraic De Rham cohomology groups, it suf-
fices under these conditions to construct them for sheaf hypercohomology.

We make use of two papers that define Steenrod operations in a more general con-
text. In [2f], Epstein constructs Steenrod operations in a categorical setting. For an object A
in an abelian category with tensor product and a left exact functor 7 satisfying certain prop-
erties, Steenrod operations are constructed on the right derived functors, R'T(A). In [5]], May
constructs Steenrod operations on the (co)homology groups of a complex K. with additional
structure that satisfies certain axioms. In [2], the Steenrod operations constructed actually in-
clude the case of sheaf cohomology, and the construction is general enough to include étale
cohomology, which is used for example on page 559 of [7]. However, in order to include co-
homology with coefficients in a sheaf of complexes, we would need to generalize Epstein’s
construction to define Steenrod operations on the hyper right derived functors, R'T(A"), of a
complex A'. This is more or less what we do, but we limit ourselves to our category of interest.

Our approach was to use Epstein’s techniques but fit into May’s framework. Many
of Epstein’s lemmas are included in Chapter 3| but generalized when needed to the case of
complexes. For a bounded below complex of sheaves of graded commutative F,-algebras on
X, we choose an injective resolution A" < I" in Shg,(X), the category of sheaves of F, vector
spaces on X, and define K" = T'(I'). We then show in Chapter [3|that the complex T'(I'), equipped
with structure induced by A’, satisfies the axioms required by May’s machinery in [5]], and we
obtain Steenrod operations on the cohomology groups, H (7(I')) = H'(X,A"). The Steenrod
operations are canonically determined by A" and its graded product structure. This establishes
Steenrod operations on Hpyg (X /k).

Now that we have Steenrod operations on sheaf hypercohomology, one can consider
various spectral sequences associated with hypercohomology, and ask if it is possible to define
Steenrod operations on the pages of these spectral sequences in a compatible way. The tools
required for this are developed in Chapter [6] and are then applied in Chapter[7] If one assumes

in addition that A" has a filtration that is finite in each degree and whose filtrations is compatible



with the product on A’, then it is shown in Chapter [/| that the Steenrod operations defined
in Chapter [5] have a canonical and compatible action on the E; and E., pages of the spectral
sequence converging to H (X,A"), induced by the filtration on F"A". As a special case, we have
that the Steenrod operations on Hp, (X /k) have a compatible action on the Hodge to De Rham
spectral sequence, where Ei”b = H"(X, 04 /k). Any filtration will work, as long as it is finite in
each degree and compatible with the product, so similar results for other spectral sequences are
certainly possible. It should be noted that the canonical filtration of the De Rham complex is
not compatible with the wedge product, and thus, it appears we cannot apply these methods to

this filtration and its associated spectral sequence.



Chapter 2

Steenrod Operations of May

In this chapter I will state the definitions and theorems used by May. The below is a

simplified version of Definition 2.1 of [5], on page 160.

Definition 2.0.1. Let p be a prime. Let A be a commutative ring, which we will later take to
be F,, the finite field of order p. Let ¥, denote the symmetric group on p elements. Let T be a
subgroup of ¥, which we will later take to be the cyclic subgroup of order p generated by the
p-cycle, .= (12 ... p). Let W. be a -free resolution of A. Let V. be a ¥ ,-free resolution of A.

Let j. : W. — V. be a morphism of AT complexes making the diagram below commute.

W - > V.
|
A—— A

Note j. is a quasi-isomorphism. As specified in Definition 1.2, page 157 of [J|], the
resolution W. can be constructed explicitly so that W; is a free AT module of rank 1 for each

i > 0, with generator e;, and has the following differentials for all i > 0:

dy, 1 (e2is1) = (00— 1)ey;

dylo(esita) = (14 o+ +a’ ey



Define C(m,A) to be the category whose objects are pairs (K.,0.), where K. is a A
chain complex with a graded product making it a homotopy associative differential A-algebra

and

0.:W. o5 (K)P - K

is a AT chain map. In May’s paper there is also an n, but for our purposes we just
take n = oo, (K.)[p] represents the complex K. tensored with itself p times over A. Unlabeled
tensor products should be assumed to be over A. The group actions of ¥, and T on K. are
trivial, while ¥, and T act on (K.)[l’] by permuting tensors with the appropriate sign, taking
into account the grading on K.. We then let T act diagonally on W. @, (K.)[p]. We additionally

require ©. to satisfy the following axioms:

1. The restriction of 0. to eq @ (K.)P is A homotopic to the iterated product, (K.)!"! — K. in

some fixed order.

2. There is a AX,, chain map §. such that 0. is AT-homotopic to the following composition:

W.oa (K 225 vien (k)P 2 K

A morphism f.: (K.,0.) — (K',0') in this category is a A chain map f. : K. — K’

making the diagram below commute up to Am-homotopy:

w.e K)o K

W.® (K] L K’

Let C(p) be an abbreviation for C(n,F,). Anobject (K.,0.) € C(xn,F)) is said to be
reduced mod p if it comes from the reduction mod p of an object (K.,8.) € C(r,Z), and K. is a
flat Z-module. Given two objects (K.,0), (L.,0') in C(®,A), one can define the tensor product,
(K. ®L.,8.), where K. @ L. is the usual tensor product of chain complexes and 8. is given by

the following composition:



We KoL) Y2 wew ek el

ll@U@l
00’

wekyewerl) 2% koL

In the above . : W. — W.@x W. is a ATt chain map making the diagram below com-

mute:

Y waaw,

:

>«— =

N SN

The chain map S. : (K. ®L.)[1’] Ny ®L.[p Vis the shuffling isomorphism, where for
ki € Kaeg(k;) and l; € Laeg(y), i = 1,..., p, one has:

S((kl®ll)®"'®(kp®lp)) = (—l)s(kl®"'®kp)®(ll®"'®lp)

where (—1)* is the sign that is incurred from transposing the k; terms and the I; terms.

We have:

s= Y deg(l;)-deg(ky)

1<i<i'<p
In the diagram, U : W. ®K.[p} Ny Q@W. is given by U(x®y) = (—1)deerdeeyy gy,
Note that I'm using different names for these maps than those used by May because I will later
use T to denote a functor. Given an object (K.,0) € C(m,A), the graded product on K. gives rise
to a chain map, m. : K. ® K. — K. and (K., 0) is called a Cartan objectif m. : (K. ®K.,8.) — (K., 8)

is a morphism in C(m,A). That is, if the diagram below commutes up to AT homotopy:

Wo((KoK)P O kek

ll ®m,[p] Jm

weok” % g



Given an object (K.,0.) € C(x,F), one can define Steenrod operations on the homol-

ogy groups H.(K.). The following is Definition 2.2 from [5]], on page 161:

Definition 2.0.2. Ler (K.,0.) be an object in C(n,F,). Let [x] € Hy(K.), and i > 0. Then [e; ®
7] is a well defined element of Hpyi((W. @ K.[p]). Define Di(x) = 0.([e; @xP)]) € Hpyi(K.).
For p =2 define the Steenrod squares on H.(K.) as follows:

Ps(x)zo ifs<gq; PS()C):DS,(](X) ifs>q

For p > 2, define the two operations Py : Hy(K.) = Hy2s(p—1)(K.) and PP : Hy(K.) —
Hy o(p—1)-1(K.), as follows:

0 if2s <gq
Py(x) =
71)SV(Q)D(2sfq)(pfl)(x) if2s > q
BRX‘(X) _ 0 if2s<gq

Where v(2j+€) = (—1)/(m!)¢ fore = 0,1 j € Z, and m = (p — 1) /2. Note that BP;

is a single symbol that is not a priori related to the Bockstein operator.

The following is part of Proposition 2.3 from page 162 of [5]], and will be needed later

to show that the constructed Steenrod operations are natural.

Lemma 2.0.3. Let (K.,0.) be an object in C(p) and consider D; : Hy(K.) — Hpq1i(K.). For
every morphism, f.: (K.,0.) — (K!,0) in C(p), and i > 0, one has:

fioDi=Djo fi : Hy(K.) = Hpg+i(K)

Proof. This proven by May, but because it is important I give a quick explicit proof. Let [x] €
H,(K.).

£(Di([a])) = [£(8(e: @xx”))] = [8' (e @ £ (x)7)] = Di( fu([x]))



O]

Corollary 2.7 on page 165 of [5] asserts that if (K.,0.) is a Cartan object, then the

Steenrod operations for H.(K.) will satisfy the Cartan formula.

Corollary 2.0.4. Let (K.,0.) and (L.,0') be objects in C(p). Let x € Hy(K.), and y € H,(L.).
Then

P(x®y)= Y Pix
i+j=s

and if p > 2,

BPi1(x®@y) = Y BPir1(x) @ P;(y) + (—1)?Pi(x) @ BPjs1(y)
i+j=s

The above is called the external Cartan formula. If (K.,0.) is a Cartan object, then
we have the internal Cartan formula below for P, and if p > 2, BP;, on H.(K.).

= Z P;(x)P;(y)

i+j=s

BPy1(xy Z BPii1(x +(= 1)degxPi(X)BPj+l(y)

i+j=s
For the Adem relations to hold, an additional axiom must be satisfied by (K.,6.). The

following definition is paraphrased from the beginning of section 4 of [5]], on page 172.

Definition 2.0.5. Let X > act as permutations on the set {(i,j) | 1 <i< p, 1 < j < p}. Embed
T = () as a subgroup of ¥ ,> by letting ai,j) = (i+ 1, ). Define o; € > with ay(i, ) =
(i,j+1) and a;(k, j) = (k, j) for k #i. Set = o --- o, so that B(i, j) = (i, j+ 1). Then:

oo = Ol 10 0,;0Lj = Ol of = Pa

Let a; generate T; and B generate v, so that T; and v are cyclic of order p. Set 6 = v
and let T be generated by the o; and o. Then G C T and T is a Sylow-p subgroup of X, and t
is a split extension of Ty -, by T. Let Wy =W and W, = W be Tt-free and V-free resolutions
of F), respectively. Let v operate trivially on W) and T operate trivially on W,. Let G operate

diagonally on Wy ®F, W Then W, ®F, W2 isa G-free resolution of F,.



If M is a v-module, let T operate on M I by letting oL operate by cyclic permutations
of the tensors and by letting o; act on the ith factor of M), as does B. Let a; operate trivially
on Wi. Then T operates on Wy and we let T operate diagonally on Wy @ MP). In particular,

Wi ® Wz[p Vis then a T-free resolution of F,.

Let K be any F,-complex. We let ¥,,> act by permutations on the tensors of K [”2], with
the (i, j)th factor of K\P’| being the jth factor of K in the ith factor of KP) in KIP*] = (KlPhp],
Let v operate on W @ K ] with B acting by cyclic permutations of the tensors of K P, Then t
has an action on Wi @ (Wo @ K1P1)1P],

Let Y be a X »-free resolution of Fp, and let w: Wi & Wz[p] — Y be a F,T chain map

over F:

which exists because W ® Wz[p Vis a free T resolution of F,, and Y is acyclic.

With all of the above established, we say an object (K,0) € C(p) is an Adem object if
there exists a X ,>-morphism £:Y®K Pl s K such that the following diagram is commutative

up to T-homotopy:

W oW e kPl 221, y @ k1]

X
1S K

b
160!

Wi @ (W, @K[p])[ﬂ] =5 Wy @KP

The map S : Wz[p] Y = (W, ®K[P])[p] shuffles tensors with sign, which is a -

morphism. In the above, ¥,,> acts trivially on K and o; acts trivially on Wy ® K [p],



It is then proven in Theorem 4.7, on page 178 of [3], that if (K., 6.) is an Adem object,
then the Adem relations hold for the operations on H.(K.).

Theorem 2.0.6. The following relations among P; and BP; are valid on all homology classes of
all Adem objects in C(p).

1. If p=2anda > 2b:

1

2i—a
PP, = Piip_iP;
al’b Z(a—b—i—l) a+b
2. If p>2anda> pb:

PP, =Y (—1)%+ pi—a P,y iP
al’b Z( ) (a—(p—l)b—i—l a+b—ili

1

BPan = Z(—l)aH (a _ (]9 iil_);l_ i 1> BPaerfiPi

1

3. If p>2anda> pb:

PBP, = Z(—l)““( piea )BPaeriPi

- a—(p—1)b—i
ati pi—a—1
—Zi:(—l) * (a_(p_l)b_i)Pa+b—iBPi

BPIIBPIJ = - Z(—l)a+i <a _p(ip_al)bl_ l> BPa+b*iBPi

In Section 5 of [5]], page 182, May restated his results with indices for cohomology

instead of homology, using the convention K_, = K9.

10



Definition 2.0.7. Let (K',0') € C(p), and consider W' as before but now graded with non-
positive superscripts. Let x € H1(K"). Then we have D;(x) = 0 (e~ @ xlP)) € HP1I(K"), for
i >0, and D; = 0 for i < 0. We may define P*(x) = P_y(x), and if p > 2, BP*(x) = BP_s(x).

We have the formulas in the following corollary:

Corollary 2.0.8. The definitions and properties of the Steenrod operations with cohomological

indices become the following. Let (K',0") € C(w,F,), and x € H1(K").

1. Forp=2:

P(x) =D,_s(x) € HI™*(K")

2. Forp>2:

PS(X) _ (_I)SV(_Q)D(qus)(pfl)(x) c Hq+2s(p71)(K-)
BP(x) = (= 1)V(=q)D(g-29p-1)-1(x) € HTZPVTH(K)

where in the above, D; = 0 for i <0 and v(—q) = (—1)/(m!)?, withqg=2j—¢€, € =0
orl,andm=(p—1)/2.

In the case p =2, May notes it would be standard to use Sq° instead of P, but he uses
P* so that the Cartan and Adem relations are still the same in both cases. We have the following

properties:
1. For p=2, P*(x) =0 when s > q and P9(x) = x*.
2. For p>2, P°(x) =0 when 2s > q, BP°(x) = 0 when 2s > g, and P*(x) = x” when 2s = q.

The formulas P*(x) = 0 when s < 0 and P° = 1 are not true in general. If (K.,8.) is

reduced mod p, then:

11



1. BP~! =P if p =2, and BP® is the composition of P* with the Bockstein B if p > 2.

The external Cartan formula is now:

PP(x®y) = Z P’ ®PJ
i+j=s

Pl (x2y) = Y BP0 @PI() + (- P () BRI y)  forp>2
i+j=s

So if (K',0°) € C(p) is a Cartan object, then we will have:

= Y P)P(y)

i+j=s

BP (y) = Y BPTI ()P () + (= D)FEP (0B (y) for p>2.
i+j=s

The Adem relations with cohomological indices are stated in Corollary 5.1, page 183

of [5]], included below:

Corollary 2.0.9. The following relations among the P* and BP* are valid on all cohomology
classes of all Adem objects in C(p).

1. Ifp>2a<pbande=0o0rlifp>2e=0if p=2, then:

SPan — 71 a-+i a_pl SPa+h—iPi
P ;( ) ((P—l)b—a+i—1l3

2. If p>2,a< pb,ande=0or 1, then

BEPBP” = (1 —8);(—1)a+i <(p B 1)L119_—Zi+i— 1) ppeth-ipi

a+t a_pi £ a+b iR pi
— P
Z < —1)b— a—l—z)B b

12



Now that these results from [5]] have been summarized here, I will construct Steenrod
operations in a few contexts by constructing explicit objects (K',0), proving that they belong

to the category C(p), and that the objects are both Cartan and Adem.

13



Chapter 3

Conventions and Tools

In this chapter I will establish some conventions, list some results of Epstein, and

work out a few useful tools.

3.1 Group Actions and Adjoint Isomorphisms

Definition 3.1.1. Ler G be a group, A a commutative ring, and let A,B,C be AG modules. We
let G act diagonally on the tensor product A @a B. That is, fora@b € AR B and g € G:

g (a®b)=ga®gh

We also let G act diagonally on Homa(A,B). So for a € A, f € Homp(A,B), and
g€G:

(- f)(a) =g(f(g 'a))

In the case that G acts trivially on B, we have the identity:

(8- f)(a)=f(g"'a)

Lemma 3.1.2. Let A,B,C be AG modules. Let G act diagonally on Homa(B,C) and A @ B.

Then there is an isomorphism of abelian groups:

® : Hompg(A,Homa(B,C)) — Hompg(A @4 B,C)

14



where for f € Homag(A,Homa(B,C)) and a®b € A® B, one sets:

(f)(a®b) = f(a)(b)

Proof. Since A is a commutative ring, we have the following isomorphism, by the more classi-

cal version of this lemma:

@ : Homy (A,Homy (B,C)) — Homa (A ®4 B,C)

where ®(f)(a®b) = f(a)(b), and @~ '(h)(a)(b) = h(a®b), for f € Homy(A,Homy(B,C))
and 7 € Homp (A ®4 B,C). Now all we have to prove is that when f is a AG morphism,
®(f) is a AG morphism, and when /4 is a AG morphism, ®~!(h) is a AG morphism. Sup-
pose f € Hompg(A,Homy (B,C)) and g € G:

D(f)(g-(a®b)) = D(f)(ga@gb)

= (f)(ga)(gb)

= [g-(f(a))l(gD) f is a AG morphism.
=glf(a)(g™"-gb)] Diagonal action on f(a) € Homy (B,C)
= g[f(a)(b)]

=g[®(f)(a®D)]

So we see ®(f) € Hompag(A @4 B,C) when f € Hompag(A,Homy (B,C)). Suppose
h € Hompg(A ®4 B,C). Then:

@' (h)(ga)(b) = h(ga @ D)
=h(g-(a®g 'b))
= glh(a® g 'b)] h is a AG morphism.
— gl (1) (@)(3~B)]
=[g-(® '(h)(a))](b)  Diagonal action on @' (h)(a) € Homy(B,C).

15



This shows @~ ! (h)(ga) = g- @' (h)(a), so @' (h) € Hompg(A,Homu(B,C)) when

h € Hompg (A ®4 B,C). Now we can conclude that @ restricts to give us a natural isomorphism:

Homug(A,Homy (B,C)) — Hompg(A ®4 B,C)
O

Lemma 3.1.3. Suppose A,B,C are as in Lemma Suppose futhermore that the action of G

on C is trivial. Then the following abelian groups are equal:

Homag(A®a B,C) = Hompg(A®ac B,C)

Proof. The canonical surjection T : A ®p B — A @¢ B induces the following inclusion by pre-

composition:

T HomAG(A ®AgB,C) — HomAg(A ®AB,C)

Now suppose that f € Hompg(A ®a B,C) and the action of G on C is trivial. Then
I claim that f is well defined in Hompg(A @G A,C). Let a € A, b € B, and g € G. Note
in A ®aG B, one has (ga) @acb = (ag™!) @acb = a®@xc (g7'b). 1 must show f(ga@ab) =
fla@ag™'h).

f(ga®ab) = f(g-(a®rg™'b))
=g fla®prg™'b) f is a G morphism.

= fla®pg™'b) g acts trivially on C.

Thus f is well defined, and this shows Homag(A @4 B,C) = Hompag(A ®a B,C).
O

Definition 3.1.4. Let A" and B* be complexes in an abelian category with tensor product, count-
able direct sums, and countable direct products. Then we define the total complex of the tensor

product (A" ®@B’)', also denoted Tot (A" ®B').
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A®B)'= P AB
i+j=n

dlyopy = D (dho1h+ ()1 ed))
i+j=n

Similarly, we define the total Hom complex Hom (A", B’) as follows:

Hom"(A',B) = HHom(Ai,BiJr")
i€Z

dﬁlom‘(A‘,B-)(f') = H (d?”of"-i- (_1)n+1fi+1 odj‘)
ieZ

The choice of sign in d;; (A B) is determined by the choice of sign in d( , if one

m A ®B)
wants the map ® in Lemma[3.1.5|to induce a chain map without requiring an additional sign.

Lemma 3.1.5. Let A", B, and C be complexes of AG modules. Let G act diagonally on

Hom),(B',C") and (A" ®@ B')". Then there is an isomorphism of complexes of abelian groups:

@' : Hom);(A',Hom) (B',C")) — Hom);((A ®AB)",C")
induced by the map ® from Lemma[3.1.2]

Proof. For now we define @ : Hom), (A",Hom} (B",C")) — Hom), ((A"®a B')",C"), and like in
Lemma [3.1.2] we will show that &' restricts to an isomorphism Hom);(A",Hom;, (B',C")) —
Hom);((A"®xB’)",C"). To ease notation, let D = Homp(A",Hom) (B',C")) and E = Homp (A" ®x
B),C),forR=Aand R=AG. Letn,k,l € Z, and f € D}. Leta € A¥ and b € B'. We have
f¥(a) € Hom's™ (B',C"). So f¥(a)!(b) € C"***!. Define @"(f") € E} by:

(I)n(f)k-i-l(a TN b) — fk(a)l(b) c Cn+k+l

Denote the inverse map, B : E, — D), where forh € E},a € A%, b € B!, we define:

Bn(h)k(a)l(b) _ hk+l(a®b) e Cn+k+l

So we have B"(h')¥(a) € Hom’s ™*(B',C"), and that B"(k") € E}. We have shown that

@ and B’ are degree 0 maps between chain complexes, and it is clear that & and " are inverse
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maps in each degree. Now I show that & commutes with the differential. Let f € D, a € A*,
and b € B!,

" (dh (F))H (@@ b)
= [(dp, (f N (@) (b)
= [dik 5oy (F@)+ (=1 N dha)) (b)
=di ko (F(@) (B) + (— )" < (dha) (b)
= dg (4 (@) (b)) + (= 1) (@) (db) + (1) A (dha) (b)
— dg+k+l(<l>" (f')k—H(a ® b))
+ (1)@ (F Y (a@ dyh)) + (— 1) (@ () (dha @ b))
= dg (@ () @@ b)) + (— 1)@ () (dha@b+ (—1) a@dyb)
_ dg+k+l(<pn(f»)k+l(a ®b)) + (_1)n+1¢n(f-)k+z+1(dfx_gg (a®b))
= (dg, (@" () (a®D)

Thus we have @ ! (dp, (f)) =dg, (®"(f)), showing @ is a chain map. This implies

the inverse map 3 is also a chain map, so &’ is an isomorphism of chain complexes.

Finally, the arguments in Lemma carry through to this case as well, and &

restricts to the desired isomorphism D), — E}, ;.

O]

Lemma 3.1.6. Let A",B",C" be complexes of AG-modules. Suppose f ,g are two homotopic
AG chain maps:

f,¢ A= Hom,(B,C)

with homotopy h' : A" — Hom,(B',C')|—1]. Because f" and g are chain maps, we

may regard them as cycles in the complex of abelian groups:
f,& € Z°(Homyg(A,Hom\ (B ,C')))
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We also have b’ € Hom (A", Hom (B,C")), with dI;;mAG(A‘, Hon, (B.C)) (h)=f—g.

Recall the isomorphism from Lemma|3.1.5
@ : Hom);(A',Hom) (B ,C")) — Hom);((A ®B’),C")
Then ®°(f) and ®°(g') are AG chain maps, and are homotopic by homotopy ®~' (I’).

Proof. Because @' is an isomorphism of chain complexes, all the relations satisfied by [, g,

and /' will be satisfied by ®°(f), ®°(g') and @' (I') respectively. Thus, we have:

(), @(g) € Z°(Homg((A'®B),C'))

which implies ®°( ') and ®°(g’) are chainmaps, and we also have:

) = (&) = digomy (-0 ) (P (1))

which implies ®°( ') and ®°(g’) are homotopic by homotopy &~ (1).
O

Lemma 3.1.7. Let A be a commutative ring, ™ a group, and let A", B ,C", D" be complexes of ATt

modules, with AT morphisms:

f A — Hom)\(B',C'), g:C =D

Note ®°(f") : Tot (A" @A B’) — C. We have the AT morphism, (g'). : Homp(B',C") —

Homp (B',D’) induced by post-composition with g'. We have the composition:

(g)wof A — Homi:p(B',D')

And the adjoint map:

((g)sof):Tor (A ®B) — D

Then we have the identity, ®°((g') o f) = g o®°(f"). That is, if we have the dia-

gram:
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a L Home, (B.C') ~425 Home (B, D),

then applying ®° yields the diagram below:

0 . .
Tor(A oB) 2 ¢ £, p

Proof. Leta € A and b € B/. We have:

’((g):0f ) (a®b) = g.(f(a))’ (b)
=g (f'(a)’ (b))
=g (@(f) " (ab))
= (g0 (®°(f))"(a®b)

Thus, we have the equality ®°((g'). o f) = g o ®°(f").
O

Lemma 3.1.8. Let A be a commutative ring, ® a group, and A',B,C ;D" complexes of Ant
modules. Let f and g be AT morphisms:
f A" — Hom)(B,C), g:D—=FB
There is a AT morphism (g')* : Homg (B,C') — Homg (D,C") induced by precom-
position with g'. We have the composite AT morphism:
(&) of :A— Hom',:p(D',C')

Note ®°((g)* o f) : Tot (A @pD’) — C'. We claim we have the identity, ®°((g')* o
f)=®%f)o(1,®g). That is, if we have the diagram below:
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AL Hom (B.C) *55 Homp (D,C)
Then applying ®° vyields the diagram:
1 . 0/
Tor (A oaD) 275 Tor (A @aB) 24 ©

Proof. Letx € A" and y € D/. We have:

D((g) o f ) (x@y) = (&) (f (%) ()
=)&)
= () (x28/(y))
= (@(f)o(1y®e) ™ (x®y)

This shows ®°((g)* o f) =®(f)o (1, ®g).
]

Lemma 3.1.9. Let A be a commutative ring, ® a group, and A',B,C",D" complexes of An
modules. Suppose there are AT morphisms f,g :
f A" — Hom)(B,C") g:D—A
We have the composite AT morphism:
fog :D — Hom\(B,C)

and ®°(f og) : Tot (D' ®xB) — C. We claim we have the identity ®°(f og’) =

®O(f)o (g ®13). That is, if we have the diagram below:
D 4~ A —L Hom\ (B,C)
Then applying ®° gives the diagram below:
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‘o1 PO(F
Tor (D' ©oaB) 525 Tor (A @aB) 24 ¢

Proof. Letx€ D andy € B/.

DU(fog) i (x@y) = f(g'(x)(v)
= (/) (g'(x) @y)
= (@°(f)o(g ®1p) ™ (x®y)

This shows ®°(f og’) = ®(f)o (g @ 13).
O

Lemma 3.1.10. Let A be a commutative ring, ® a group, and B, C', E°, and F" be complexes

of At modules. There is a natural AT chain map:

p : Totf (Homy (B ,C') @x Homy(E',F")) — Hom(Tot (B QA E"),Tot (C @4 F"))

where for hy € Homj'\(B‘,C‘), h, € Homf\(E',F‘), b € B and e € EX, we define:

P (hy @) (b@e) = (—1)" () (b) @ M5 (e))

Proof. First I show that p is a ® morphism. Degrees are omitted in the below. Let g € m:

p(g- (M ®m))(bwe)=p(g-h1®g h)(bRe)
(=D)"((g-m)(b) @ (g-ha)(e))
= (—1)"(ghi(¢7'b) @ gha(g "))
=g (=) ((g D)@ ha(g"e))
=g-p(®h)(g 'bag 'e)
=g-p(i®h)(g”"(bxe))
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=(g-p(h®h))(be)

Thus p(g- (h1 ®hy)) = g-p(h1 @ ha), so we have that p is a © morphism. Now I will

show that it is a chain map. This is where the choice of sign is important.

p(d(h @hp))(bxe)
=p((dh1 @ hp) + (= 1)\ (h @ dhy))(b®e)
= (=1)"((dh1)(b) ® ha(e)) + (= 1)UV (i (b) @ (dh2) (e))
= (=1 ((d( (b)) + (= 1) hi (db)) @ ha(e))
+(= 1)U (R (b) @ (d(ha(e)) + (= 1) ha(de)))
= (=1)"(d(h (b)) @ ha(e)) + (= 1) (hy (db) ® o e))
+ (=1 (hy (b) @d(ha(e))) + (1) () (b) @ ha(de))

(dp(h @) (b@e)
=d(p(h @) (b®e))+ (1) p(h ©hy)(d(b@e))
= d((=D)"(hi(b) @ ha(e))) + (= 1) p(h @ ) ((db @ e) + (—1) (b @ de))
= (=1)"d(h1 (b)) @ ha(e) + (=1)THhy (b) @ d (o e))
(=)D by (db) @ by (€) + (— 1) iR (b) @ hy (de)

Matching up the terms in the above, we just need to check that the signs are the same.

The sign on the d(h1(b)) @ ha(e) is (—1)¥ in both equations. On the hy(db) @ hy(e) term, we

have: (—1)+1+4 = (—1)+/+1+/0+1) gince the j’s cancel. On the /iy (b) ® d(hy(e)) term, we

have: (—1)"U+D) = (—1)U++1 On the h;(b) ® ha(de) term we have: (—1)FUHD++1 =
(—1)*/+1++1j Thus the expressions are equal, and we have shown pod = dp.

0

Corollary 3.1.11. Let A be a commutative ring, T a group, and B', C', be complexes of ATt

modules. Let r > 1. There is a natural AT chain map:
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p; : Tot (Hom)\(B',C'))!") = Hom (Tor ((B')!), Tor ((C)1))
defined by the r-fold iteration of p’ from Lemma

Proof. The statement that p,, is a A7 chain map follows from the fact that p" is a AT chain map,
from Lemma O

Lemma 3.1.12. Let A be a commutative ring, T a group, and A', B, C, D', E', and F" complexes

of At modules. Suppose we have AT chain maps:

f A — Hom,(B,C") g :D — Hom)(E ,F")
Consider the composition:

Tot (A oA D") L% Tor (Hom,(B',C') @ Hom, (E',F"))

lp,

Hom), (Tot (B QA E"),Tot (CQpF"))

where p is the map from Lemmal|3.1.10, We have:

P(po(f®g)): Tot (Tot (A @AD ) @ Tot (B QAE")) — Tot (C @7 F)

®O(f): Tor (A @AB) = C () : Tor (D' QAE) — F

We claim ®°(p o (f ®g")) is equal to the following composition:

1, U ®1,
Tot (Tot (A" @A D) @5 Tor (B OAE')) 3 Tor (Tor (A' 9 B') @p Tot (C' @A E))
|o0)eee)
Tot (C' QA F")

where U : Tot (D" @ B") — Tot (B ®a D) swaps tensors with sign.
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Proof. Leta € Al,beB/,d e Df, and e € E'. We have:

P(po(f@g)) T (awb) @ (dwe))
=(po(feg)ab)(de)

P (f (@)@ ¢/ (b)) (dwe)

(=DM (fl(@)"(d) 2 g’ (b)' (e))

(=M@ (f)H(awd)) @ (@°(g)H (bwe))]

(—DY(@(f) 02%(g))((a0d) @ (bwe))

= (@' (g))(aaU (bod)e)

= (@) @@ (g)(HeU e l1p) " (avb)® (de)

q)()

Thus, we have shown:

Ppo(feg)) =@ (f)0d(g)) (13U ®1g)
]

Lemma 3.1.13. Ler A be a commutative ring, T a group, A', B', and C* be complexes of A1t
modules, and let r > 1. Let " : A — Hom) (B',C") be a Ant chain map. We have the composi-

tion:

()

Tor (A1) ~L25 (Hom (B-,C ) —2s Hom, (Tor (B')"), Tor ((C')I"))

where P, is the natural AT chain map from Corollary|3.1.11] Let S : Tot'((A')m ®
(B = Tor (A" @ B))) be the shuffling isomorphism. Then we have the identity ®°(p; o
()P =@\ oS That is, applying ®° to the diagram above yields the diagram below:

Tot (A @5 (B —— Tor (A @xB)M) KERLN Tor ((C)I)
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Proof. Let a; € AJi and b; € BY for i = 1,...,r. Define s = Y, ji -ki, n1 = ¥, ji n2 = ¥ikis
and n = n; +ny. We have, §"(a®b) = (—1)*c.

(o (f )N (1@ ®a,) @ (b1 ®---@b,))
= (p,o (AN (@@ ®a,) (b1 ®-- @ b,)
=P (@) @@ f(a,))2 (b1 @ @ b,)
(7 (@) (1) @@ £ (a,)" (b))
£y (a @b @ @@ (F) (a, @ b,))
Y (@ @b) @@ (a,@by))

(
S(CI)O(
)" (8" (1@ ®a) @ (b1 @ ®@by)))

@0(f )l

This shows the relation ®°(p: o (f)l") = ®O(f )Mo s
O

Lemma 3.1.14. Let A be a commutative ring, T a group, and A’, B', C', D', complexes of ATt

modules. Let @), @), and @3 denote the AT chain map isomorphisms from Lemma 3.1.5}

@, : Hom (B ,Hom\(C',D")) — Hom\(B @, C,D’)

D, : Homy(A",Hom (B ,Homx(C',D"))) — Homy (A" @4 B',Hom(C',D"))
@3 : Homy (A" @x B ,Hom,(C',D")) — Homy (A" @A B ®,C,D’)

@, : Homy(A",Homy(B @A C",D")) — Homp (A" @A B ®,C",D’)

and suppose [ is a AT chain map in the composition below:

. . P @) < -
A" —— Hom, (B ,Hom,(C',D')) —— Hom) (B ®C",D’)
We have, ®)(f°) : Tot (A" @4 B') — Hom, (C",D"). I claim we have the identity:

DY@} 0 f) = BY(DI(f))
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Proof. Letac A, bc B/, and ¢ € C*. We have:

DY (@0 f ) (awbc) =D (f(a))F(b®c)
f(@) (b)(e)
= 0Y(f ) (a®b) (c)
= PY(PY(f)) T (awbac)

Thus we have the strange looking identity, ®3(®; o f) = DI (PI(f)). O

Lemma 3.1.15. Let A be an abelian category, let A', B, and C" be complexes in 4, let g,,g5 :
A" — B’ be chain maps that are homotopic by homotopy h" : A" — B[—1]". Let f : B — C be a
chain map. Then [ g\, and f g, are homotopic by homotopy fh'.

Proof. Letn € Z. We have:

g1 — "¢ =r"(g1—82)
:fn(dgflhn_i_thrldz)
:dg_l(fn_lhn)+(fnhn+l)dz

O]

Lemma 3.1.16. Let A be an abelian category, let A', B', and C" be complexes in A, let g,,g, :
A" — B’ be chain maps homotopic by homotopy h" : A° — B[—1]". Let " : C" — A" be a chain
map. Then g, f and g, f" are homotopic by homotopy h’ f".

Proof. Letn € Z. We have:

gif" =& f" = (g1 —&)f"
— (dg—lhn _I_hn-l-ldg)fn
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— dg_l(hnfn) + (l’l”+1fn+l)dg~

3.2 Sheaves with Group Action and Resolutions

Definition 3.2.1. Let A be a commutative ring, G be a finite group. and F be a sheaf of A
modules on a topological space X. Let M be a AG module. Define PrHomy (M, F) to be the
following presheaf of AG-modules on X. For an open set U C X, define:

PrHoma (M, F)(U) = Homa (M, F(U))

and let Homy (M, F) be the sheafification. The action of G is diagonal on Hom, and
trivial on F. That is, if f € PrHomp (M, F)(U), m € M, g € G, then:

(8- f)(m)=f(g"'m)

Note that in [2], M in the above was required to be finitely generated. We can get
away without this restriction in our context, but in this paper’s applications M will always be

finitely generated.

Lemma 3.2.2. Let A, G, X, F, and M be given as in Definition but assume in addition
that M is a free A module. Then the presheaf PrHoma (M, F) is actually a sheaf.

Proof. Let {x;}ic; be a A basis of M. For N a A module, we have the natural isomorphism:

Homy(M,N) =N
i€l

where a f € Homp (M, N) is sent to the element (f(x;))ics € [1ic;N. Thus, for every

open set U C X, we have the natural identification:

PrHomy (M, F)(U) = Homp (M, F (U)) = [[F(U)
i€l
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And since PrHomy (M, F) is naturally isomorphic to the product of sheaves, [];c; F,
we have PrHomy (M, F) is a sheaf.
O

The next three lemmas are motivated by the proof of Theorem 2.2.1 from [2]], on page
157.

Lemma 3.2.3. Let A, G, X, and F be as in Definition The contravariant functor Homp (—, F) :

acMod — Shg is left exact.

Proof. Let

NoLn 5N =0

be exact in ocMod. We have the induced sequence:

0— HomA(Nz,F) g) HomA(Nl,F) L*) HomA(NO,F)

with §* and f* being induced by precomposition with g and f respectively. For every

x € X, the sequence on the stalks becomes:

0 — Homa (N>, F) &5 Homa (N1, F.) 2 Homa (No, F)

Now the maps g* and f* really are precomposition with g and f, so the sequence is
left exact by the left exactness of Homp (—, Fy) : ao¢Mod — pgMod. Since this sequence is left

exact for all x € X, the sequence of sheaves is left exact. O

Lemma 3.2.4. Let A, G, X, F, and M be as in Definition and suppose M be a free AG

module. Then for every sheaf A in Sha(X), we have the natural isomorphism of abelian groups:
Homag(M,Homp (A, F)) = Homag(A,Homp (M, F))

Proof. Because M is a free AG module, M is also a free A module, so by Lemma@]we have
the equality Homa (M, F)(U) = Homa (M, F(U)) for all open U C X. I first claim we have the

natural isomorphism:
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p : Homp (M,Homy (A, F)) — Homa (A, Homu (M, F))

where p is defined as follows, for all f € Homa (M,Homx(A,F)),meM,U C X, and
acAU):

We may similarly define:

B : Homp (A,Homy (M, F)) — Homy (M,Homyu (A, F))

where for 4 € Homp (A,Homy (M,F)),me M,U C X,anda € A(U):

B(h)(m)u(a) = hy(a)(m)

We have p and P are inverse to one another. Let f € Homa (M,Homy (A, F)), m € M,
UCX,andaeA(U).

So pof = 1. Thus p is an isomorphism. It is clear that p is natural in A. Finally, I
must show that p is a G morphism. Let g € G, f € Homp (M,Homy (A, F)),me M, U C X, and
a € A(U). We have:

(g-p(f)u(a)(m) = (g-p(flu(a))(m)
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Thus p is a G morphism. Therefore p induces an isomorphism of the G equivariant

part of its domain and range, which are precisely the AG morphisms:

PG HOHIAG(M,HOHIA(A,F)) — HOIIIAG(A,HOIIIA(M,F))
O

Lemma 3.2.5. For A, G, X, F, and M given in Definition the object Homp (M, F) is
an object representing the contravariant functor Hompag(M,Homp(—,F)) : Shag(X) — Ab.
That is, we have the natural isomorphism of abelian groups for all sheaves A in the category

Shag(X):

HomAg(M,HomA(A,F)) = HomAG(A, HomA(M,F))

Proof. In 2], Theorem 2.2.1, on page 157, it is proven that the functor Hompg(M,Homp (—, F))
is representable, with the additional condition that M is finitely generated. Here I will prove that

the sheaf defined in Definition|3.2.1|is an object representing this functor.

We may choose a partial free resolution of M:

N —>Ny—M—0

where N; is a free AG module and the sequence is exact at Ny and M. We then have

the diagram below:
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Hompg(M,Homy (A, F)) ----- » Hompg(A,Homp (M, F))

Homag(No, Homa(A, F)) —— Homag(A, Homa (Ny, F))

Homg(Ni,Homy (A, F)) —— Homag(A, Homy (Ny, F))

where the right column is due to Lemma and the bottom two isomorphisms are

from Lemma [3.2.4] This diagram allows us to induce the isomorphism:

Hompg(M,Homy (A, F)) = Hompg (A, Homy (M, F))

And this induced isomorphism is natural because the isomorphisms along the two
bottom rows are.

O

Lemma 3.2.6. Suppose W is a projective AG module and I is an injective object in the category
of sheaves of A modules on a topological space X. Then Homy(W,I) is an injective object in

the category of sheaves of AG modules on X.

Proof. This is proved in [2], Corollary 2.3.3, on page 158 in an abstract setting. I include a

direct proof below.

It suffices to prove that the functor Hompg(—,Homp (W,1)) : Shyg(X) — Ab is right
exact. Let 0 - A — B — C — 0 be an exact sequence in Shag(X). Because [ is injective in

Sha(X), and 0 — A — B — C — 0 is exact in Shy (X ), we have:

0 — Homy (C,I) — Homy (B,I) — Homa (A,1) — 0

is exact in ocMod, where G acts diagonally on Hom and trivially on /. Then because

W is a projective object in ocMod, we have the exact sequence of abelian groups:
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0 — Hompg(W,Homu (C,1)) — Hompag(W,Homy (B,1)) — Homag(W,Homyu (A,1)) — 0

Now by Lemma [3.2.5] the exact sequence above is naturally isomorphic to the fol-

lowing:

0— HomAG(C,HomA(W, 1)) — HOIIlAG(B, HOIIIA(W, I)) — HOIllAG(A, HOIIIA(W, I)) —0

This shows the functor Homp g (—, Homy (W, 1)) is right exact, and thus, Homa (W, 1)
is an injective object in the category Shpg(X).
O

Definition 3.2.7. Given a complex of AG modules M. and a complex of sheaves of A modules

F, we can define the total complex Hom), (M., F"), in a similar way to the total Hom complex

of Definition

Lemma 3.2.8. Let W. be a projective resolution of A in the cateogry of AG modules, and let I
be an injective resolution of A in the category of sheaves of A modules on a topological space
X. Then Homy (W.,I') is an injective resolution of A in the category of sheaves of AG modules
onX.

Proof. This is a special case of Theorem 2.4.6 of [2], on page 161. O

Lemma 3.2.9. Let X be a topological space, k a field, G a finite group, and M a kG module.
Then the functor Homy (M, —) : Shi(X) — Shig(X) is exact.

Proof. Let0— A I, B% € — 0 be an exact sequence in Shg(X). I claim 0 — Homy (M, A) Lt
Homy (M, B) L Homy (M,C) — 0 is exact. Let x € X. Since 0 — Ay — B, — C, — 0 is exact

in Vect(k) and Homy (M, —) : Vect(k) — r¢Mod is exact, we have exactness of:

0 — Homy (M, A,) "4 Homy (M, B,) 4" Hom(M, C,) =5 0

And the above sequence is the following:

0 — Homy(M,A); "4 Homy (M, B), 4 Homy (M, C), — 0
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This shows the sequence 0 — Homy(M,A) — Homy(M,B) — Homy(M,C) — 0 is
exact on all stalks, and hence is exact.

O]

Lemma 3.2.10. For k any field, in the category of sheaves of k vector spaces on X, the tensor

product is an exact bifunctor.

Proof. We have that tensor product is an exact bifunctor in the category of k vector spaces. Let
0 —+A — B — C — 0 be an exact sequence in Sh(X), and D an object in Sh(X). The sequence
0—+D®A— D®rB— D®;C — 0is exact if and only if it is exact at all stalks of X. Taking

the stalk at a point x € X gives the sequence:

0—D,®:Ay > D, ®; B, — D, ®;C, — 0

which is exact because 0 — A, — B, — C, — 0 is exact in Vect(k) and D, ®; — is
exact in Vect(k). This shows D ®; — : Shi(X) — Shi(X) is an exact functor. The argument for

— @ D is symmetric. Thus tensor product is an exact bifunctor.

O]

Lemma 3.2.11. Let X be a topological space and k a field. Suppose A and B are sheaves of
k vector spaces on X, and J and K are resolutions of A and B respectively in the category
Shi(X), with embeddings € : A — J° and y: B — K°. Then Tot (J' @ K') is a resolution of
A ®y B, with embedding € Qy Y.

Proof. Special case of Lemma[3.2.16]in which A" and B are concentrated in degree 0.
O

Corollary 3.2.12. Let A, J', and X be as in Lemma/|3.2.11} and let r > 0. Then Tot (J)!") is a

resolution of Al'l.
Proof. Inductive application of Lemma|3.2.11on r. 0

The next two lemmas are from [6]]. Their numbers are subject to change but their tags

are permanent.
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Lemma 3.2.13. The Stacks Project: Tag 01 SPEI (Lemma 13.18.6)

Let A be an abelian category. Consider a solid diagram:

K. o L
v B
I

where I is bounded below and consists of injective objects, and O is a quasi-isomorphism.

1. There exists a map of complexes 3" making the diagram commute up to homotopy.

2. If o is injective in every degree then we can find a B which makes the diagram commute.

Lemma 3.2.14. The Stacks Project: Tag 013S E] (Lemma 13.18.7)

Let A4 be an abelian category. Consider a solid diagram

K %
[~
v B

1

where I is bounded below and consists of injective objects, and QU is a quasi-isomorphism.

Any two morphisms By, B, making the diagram commute up to homotopy are homotopic.

Definition 3.2.15. In an abelian category, a chain map € : A" — B will be called a resolution
if € is injective in each degree and a quasi-isomorphism. If B is bounded from below and

injective in each degree, then € is called an injective resolution.

The following generalizes Lemma[3.2.1]to the case where A and B are complexes.

Lemma 3.2.16. Let X be a topological space and k a field. Suppose A', B', J', K" are complexes
in Comp(Shi(X)), with chain maps € :A"—J andy : B — K.

1. If € andy are injective in each degree, then € QY is injective in each degree.

! https://stacks.math.columbia.edu/tag/013P
Zhttps://stacks.math.columbia.edu/tag/013S
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2. If € and Y are both quasi-isomorphisms then € QY is a quasi-isomorphism.

Proof. Suppose € and Yy are injective in each degree. Let x € X. Then €, and 7, are injective
maps of vector spaces in each degree. Hence, we have e @, y'* : Ak @ B" % — Jk @ K" * is

injective for all n and k. Then we have:

(&x @i Yx)" : Tot" (A" @x B') — Tot"(J @ K')

is a direct sum of injective maps, and hence, is injective. Finally, the injectivity of
(e @ Y)! = (e, @ Y,)" for every x € X implies (¢ ®;7Y )" is an injective map of sheaves. Thus

(¢ ®x7y) is injective in every degree when € and Y are.
Now suppose € and Yy are quasi-isomorphisms. Let x € X. We have €, and v, are

quasi-isomorphisms. Using page 113 of [1]], we have the exact sequences of F,, vector spaces:

0—H(A,)®H (B,) »H(A,®B,) — Tor;(H (A,),H (B,))[1] = 0

0—-H (K,)®H (J,) = H(K,®J,) — Tor|(H(K,),H(J,))[1] = 0

The sequences exists because we are in the category of F, vector spaces, so all the

following Tor groups are zero, since all objects are flat:

Tor (B (A), B (B,)) = 0 = Tor\ (H'(A,), B'(B,))
Tor, (B'(A,),Z (B,)) = 0 ="Tor(H'(A,),Z (B,))

Tor (B'(K,), B (Jy)) = 0 = Tor (H'(K,), B'(J;))
Tor| (B'(K;),Z (J;)) = 0 =Tor (H'(K}), Z'(J;))

Furthermore, the Tor groups at the end of the sequence are zero, so the Kiinneth map

gives isomorphisms:
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H'(A}) @ H'(B,) — H (A, ®B,)
H'(K) @ H (J,) = H (K, ©J,)

where the Kiinneth map is given by [a] ® [b] — [a ® b]. We now have the commutative

diagram:

H(A,)®H (B,) —— H (A, ®By)

X

l@@i lﬁ'x =

H(K,)®H (J,) —— H(K,®J,)

X

where the horizontal maps are the Kiinneth maps. Because the diagram commutes

and every other map is an isomorphism, we have €, ®, is an isomorphism. Hence, €, ®x Y, is
a quasi-isomorphism, and since € ®y Y is a quasi-isomorphism on all stalks, we have € ®; Y is
a quasi-isomorphism.

O

Corollary 3.2.17. Let X be a topological space, k a field, A" a complex in Shi(X), and € : A" —
J a resolution of A', and r > 1. Then the following is a resolution.

(g)[’] . (A')M N (J~)[r]
Proof. Use induction on r and apply Lemma[3.2.16] O

Lemma 3.2.18. Let A be an abelian category and suppose A" and B are complexes in A with
A’ bounded above and B' bounded below. Then Hom (A", B’) is bounded below. Furthermore,

for each n € Z only finitely many terms in the product below are non-zero:

Hom"(A",B’) = HHom(Ai,BH")
ieZ

Proof. Let k,l € Z such that A" = 0 for all n > k and B" = 0 for all n < [. I claim Hom (A", B")
is bounded below by / — k and for all n € Z, there are only finitely many i € Z such that
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Hom(A!, B™*") = 0. Suppose A’ # 0 and B*" # 0. Then we must have i < k and i +n > [.
Thus, for every fixed n, we have i contained within the finite range of integers, [ —n <i < k.
Thus, for every n, there are only finitely many i such that Hom(A?, B'™") # 0. In particular, when
[ —n > k, there are no values for i in which Hom(A’, B'*") # 0. This implies Hom" (A", B’) = 0
for all n <[ — k. Thus the complex Hom (A", B') is bounded below at [ — k.

O

Corollary 3.2.19. Let A4 be an abelian category and suppose A. and B* are complexes in 4 with
B’ bounded below and A. (lowered index) bounded below. Then Hom'(A.,B) is bounded below,

and for every n € Z only finitely many terms in the product are non-zero:

Hom"(A.,B') = [ [Hom(A;,B"™")
ieZ

Proof. When one raises the index on A. using the convention A, = A", we have A" is bounded

above and the result follows from Lemma[3.2.13] ]

Corollary 3.2.20. Let X be a topological space, A a commutative ring, G a finite group, M. a
(lowered index) bounded below complex of finitely generated AG modules, and A" a bounded
below complex in Sha(X). Then Hom) (M.,A") is a bounded below complex in Shag(X), and

for every n € Z, only finitely many terms in the product below are non-zero:

Hom/} (M.,A") = HHomA(M,-,A”ﬂ')
i€eZ

Proof. Use Homy in place of Hom of Lemma [3.2.18] and follow with Corollary [3.2.19] O
Lemma 3.2.21. Let X be a topological space, k a field, G a finite group, A" a complex of sheaves
of k vector spaces, and € : A" — I an injective resolution of A in the category Shi(X). That is,
I is injective in each degree, bounded from below, and € is an injective quasi-isomorphism. Let

V. be a G projective resolution of k, finitely generated in each degree, with augmentation map

. : V. = k[0].. Then the following is an injective resolution of A" in the category Shyc(X):

v :A =Hom(k,A") — Homy(V.,I)
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where V' is induced by pre-composition by . and post-composition by € .

Proof. This is more or less a generalization of Theorem 2.4.6 of [2]], on page 161, in which A’

is concentrated in degree 0, although we only work in the context of sheaves of vector spaces.

Since V. and I' are bounded below, Hom, (V.,I') is bounded from below by Corollary
[3.2.20] For a fixed degree n we have:

Hom}(V.,I') = H Homy (V;,1"/)
jez

By Lemma [3.2.6| each Hom{(V;,I"~/) is an injective object in Shy(X). Then be-
cause products of injective objects are injective, we have Homj (V.,I') is an injective object in
Shig(X). Thus Hom, (V.,I') is a bounded below complex of injective objects in Shyg (X ). Now

I must show V' is injective in each degree, and a quasi-isomorphism.

To show that v’ is injective in each degree, observe that v’ is induced by post-composition
with the monomorphism € : A° — I', and pre-composition by the epimorphism, & : Vy — k, both

of which are injective operations on Hom sets.

To show that v’ is a quasi-isomorphism, it suffices to check on the stalks. Let x € X.
I claim v} is a quasi-isomorphism. After taking the stalk, we are in the category of k vector

spaces, and we have the second Kiinneth exact sequences from [1]], page 114:

0 — Ext! (H.(k[0].),H (A}))[1] —H (Homy (k[0].,A)) — Homj (k[0].,A,) — 0
0 — Ext' (H.(V.),H (I,))[1] —H (Hom(V.,I,)) — Homy(V.,I,) =0

X

We have these sequences because we are in the category of k vector spaces, so all

objects are projective and injective, so the following Ext' groups are zero:

Ext! (B.(k[0].),B (A})) = 0 = Ext'(B.(k[0].),H (A}))
Ext!(Z.(k[0].),B (A})) = 0 = Ext!(Z.(k[0].),H (A}))
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Ext'(B.(V.),B(I,)) = 0 = Ext'(B.(V.),H (I,))
Ext!(Z.(V.),B(I,)) =0=Ext"(Z.(V.),H (L))

We also have Ext! (H.(k[0].),H (A;))[1] = Ext!(H.(V.),H (I,))[1] = 0, so the Kiinneth

maps are isomorphisms:

H'(Homy (k[0].,A})) —Homy (H.(k[0].), H (A}))
H (Homy(V.,I,)) -Hom (H.(V.),H (1))

X

Because of how the Kiinneth maps are defined, we have the following commutative

square:

v)) — Hom (H.(k[0].), H'(A}))

I [

H (Homy(V.,I,)) ——— Hom(H.(V.),H (I}))

H (Hom, (k[0].,A;

The horizontal maps are the Kiinneth isomorphisms, and 3 is precomposition by .
and postcomposition by €. Since both 7. and €, are isomorphisms, [ is an isomorphism. Then
since every other edge in the square is an isomorphism and the square commutes, V; is an
isomorphism. So we have shown V; is a quasi-isomorphism for all x € X, and this implies v’ is

a quasi-isomorphism. Now all the desired properties have been shown.
O
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Chapter 4

Steenrod Operations on Sheaf

Cohomology

In this chapter we give a construction of Steenrod operations on sheaf cohomology
using May’s framework. These operations are known to exist and were constructed by Epstein in
[2]. Here I will just express Epstein’s construction in terms of May’s, citing many of his results
along the way. The next section generalizes this section to the case of sheaf hypercohomology,
making the results of this section a special case. Because of this, I will actually omit all proofs

in this chapter, and just state which results are special cases of those in the next chapter.

Let X be a topological space. Let A be a sheaf of commutative F,-algebras on X.
Choose an injective resolution 1 : A < I' in the category of sheaves of F, vector spaces. Let T
denote the global section functor, I'(X, —). Define K" = T(I'). Then the cohomology groups of

K compute the sheaf cohomology groups of X with coefficients in A:

H"(K') = H"(X,A)

We will construct a homotopy associative product on K°, which defines an associative
cup product on H'(X,A). We will then define a map 8 : W. ® (K')/Pl — K", which satisfies the
axioms needed for (K", 6) to be an object in category C(p) defined by May. We will then show
(K',0) is a Cartan and Adem object, which will show the Steenrod operations on H (X,A)

satisfy the Cartan formula and Adem relations.
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4.1 The Product on K

In this section we will construct the product that makes K™ into a homotopy associative

graded F, algebra. Let m : A®A — A denote the multiplication map on A.

Definition 4.1.1. Consider the diagram below:

Tor (I @T') --"-» T

a4

ARA —"— A

By Lemma Tot (I ®1I') is a resolution of A® A. Because of this and the fact
that I' is an injective resolution of A, there exists a chain map m’ unique up to homotopy making
the diagram commute. We then apply the global section functor T and precompose by the
natural map 7y to obtain the product M : Tof (K  K') = K :

M Tor (T(D O T(I)) —— T(Tor (I o1)) ~7% (1)

Note this definition only defines M" uniquely up to homotopy.

Lemma 4.1.2. The product map M" makes K' a homotopy associative F,, algebra. The cup

product induced on the cohomology groups H (K') is associative.
Proof. Special case of Lemmal5.1.3] where here A" = A[0]" is concentrated in degree 0. O

Definition 4.1.3. In a similar fashion, we may define a p iterated product, using the diagram

below:

where m,, denotes the p-fold product on A. By Corollary |3.2.12 Tor (I is a

resolution of A'. Because I is an injective resolution of A, there is a chain map m,, unique up to
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homotopy making the diagram commute. We can then define a p-fold product, M), : (K ‘)[1’} — K

by applying the global section functor T and precomposing with the natural map ,,:

M, T 2 7y 2

Lemma 4.1.4. The p-fold product of M' is F), homotopic to M, as chain maps, Tor (K ')[P]) —
K.

Proof. Special case of Lemma[5.1.5|where A" is concentrated in degree 0. O

4.2 Construction of 0

In this section we construct the map 0 associated to the homotopy associative F,-
DGA, K = T(I'). Recall the standard free resolution W. of F, in the category of F,m mod-
ules. Because /' is an injective resolution of A in the category Shg,(X), by Lemma ,
Hom'Fp(W,I') is an injective resolution of A in the category Shr z(X). By Corollary [3.2.12]
Tot' ((I')1"!) is a resolution of AP in the category Shg,(X). We now let T act on APl and
Tot' ((I')1”!) by cyclic permutations of the tensors, with sign change determined by the grad-
ing on I'. Because multiplication in A is commutative, m,, : APl 5 A is a © morphism. Hence,

we have the solid diagram below in which all solid arrows are F,7 morphisms:

Tot ((I')IP!) --*-- » Homg (W.,I')

l[m] VI

By Corollary [3.2.12} Tot ((I')P!) is a resolution of Al”). Because all morphisms are
F,m morphisms and because Hom'Fp(W.,I ) is an injective resolution of A in Shg z(X), there
exists a F,, chain map B° unique up to homotopy making the diagram commute. We then define

the map 6" : Tot' ((K')[")) — Hom'Fp(W.,K ") by the following composition:
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6 : Tot (7(1')l) — T(Tot (1)) =24 T(Homg (W.,I')) = Homg (W.,T(I'))

We have v, is a F,m morphism, as well as 7'(f8"), so 6 is aF,m morphism. By applying
the adjoint isomorphism @' from Lemma [3.1.5] we obtain:
@08 : Tot (K)P @p, W) — K
We then define 8" by precomposing with the swapping isomorphism U : Tot (W. ®F,
(K)Pl) = Tot ((K")'" @, W.):

0 =d°(6)oU

4.3 Verification of Axioms

In order to show the object (7 (I'),0") constructed in this section belongs to May’s

category C(p), the two following lemmas must be proven:

Lemma 4.3.1. Let K' =T (I') and ' be as in the previous sections. Then the restriction of 0" to
eo® (K)PL is F,, homotopic to the iterated product M, : Tot (K')P)) — K.

Proof. Special case of Lemma|5.3.1] where A" = A[0]' is concentrated in degree 0. O

Lemma4.3.2. Let K' =T (I') and © be as in the previous sections. Then there exists a ¥, chain

map ¢ : Tot (V.® (K')IP1) — K such that &' is F,&n homotopic to the composition:

Tot'(W@(K')[p]) & TOt'(V@(K')[p]) L K

Proof. Special case of Lemma[5.3.2] in which we have A" is concentrated in degree 0. O
Corollary 4.3.3. The object (K ,0') belongs to the category C(p).

Proof. The required properties are shown in Lemma4.3.Tand Lemma[.3.2] O
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Lemma 4.3.4. The object (K',0) is a Cartan object. That is, given 0 as defined in the second
half of Definition the following diagram commutes up to F,T homotopy:

Tor (W (K @ K)P) —2 Tor (K 0K

ll@M[P] lM

Tor (W.@ (K)lP) —& 5 K

Proof. Special case of Lemma[5.3.3] where here A" is concentrated in degree 0. O

Lemma 4.3.5. The object (K',0°) is an Adem object. That is, there is a ¥, chain map &' :

Y. ®, (K Pl — K such that the following diagram commutes up to T-homotopy.

W oW @ kPl 221, y @ k1]

~

1®S K
%

W @ (W, @ K1P)[P) eelrl W, @ KP)
Recall the definitions of Wi,W,,Y and the group actions involved from Definition
2.03

Proof. Special case of Lemma [5.3.4|where here we have A" is concentrated in degree 0. O
At this point we may construct Steenrod operations on H'(K') using the 6" map of

this section by applying Corollaries[2.0.8]and [2.0.9]

4.4 Further Properties

The following is shown by Epstein in [2]], in part 6 of section 10, page 204.

Lemma 4.4.1. For the Steenrod operations constructed on sheaf cohomology, we have P' = 0
and BP' = 0 for all i < 0.

The following is shown by Epstein in [2]], in part 7 of section 11.1, on page 205.
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Lemma 4.4.2. For the Steenrod operations constructed on sheaf cohomology, we have P° :
H"(K') — H"(K") is induced by the Frobenius map, fr: A — A, on the sheaf of commutative
F,-algebras, A.

The following shows that the Steenrod operations are natural.

Lemma 4.4.3. Let X be a topological space. Let A and B be two sheaves of commutative
F, algebras on X, with f : A — B a morphism of sheaves of F|, algebras. There are induced

morphisms for eachn € Z:

H"(X,f):H"(X,A) — H"(X,B)

We have H (X, ) commutes with D;. As a result, H (X, f) commutes with the Steen-
rod operations constructed on H (X,A) and H (X, B).

Proof. Special case of Lemma [5.4.1]in which A" and B' are both concentrated in degree zero.

O
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Chapter 5

Steenrod Operations on Sheaf

Hypercohomology

In this chapter I will show the Steenrod operations described in Corollary [2.0.8|can be
constructed on the algebraic De Rham cohomology groups and the Hodge cohomology groups
of a smooth projective variety X over a field k of characteristic p. I will establish both the Cartan
formula and the Adem relations. Steenrod operations on algebraic De Rham cohomology can be
obtained by constructing Steenrod operations on crystalline cohomology using the framework
of Epstein, and then reducing mod p. However, Steenrod operations on Hodge cohomology
does not appear to have a prior construction. The approach of this section is to generalize
Epstein’s machinery to complexes and then apply May’s framework. In this chapter, unlabeled

tensor products are to be over F,.

Definition 5.0.1. Ler X be a smooth projective scheme over a field k of characteristic p. Let
Qy Ik denote the De Rham complex of X. Then the algebraic De Rham cohomology groups of
X may be computed as the hypercohomology of X with coefficients in Q} Ik That is, given an
injective resolution V' : Qy , — I' in Sh, (X), and global section functor T(—) =T'(X,—), one

has:

Hpp(X/k) =H (X,Qy ) = H(T(I'))

For the rest of this section I will let X denote an arbitrary topological space and A" a

bounded below complex of sheaves of differential graded commutative F, algebras on X. I will
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construct Steenrod operations on the hypercohomology groups H' (X,A"). Choose an injective
resolution 1" : A" — I" in the category of sheaves of F,, vector spaces on X. Such a resolution can
be obtained by taking /" to be the total complex of a Cartan Eilenberg resolution of A". Define
K =T(I'). The product on A" induces a product on K, unique up to homotopy, making K
into a homotopy associative differential graded F, algebra. I will construct a F,m chain map
0 : Tot (W.® (K')/Pl) — K" and show that (K", ") belongs to May’s category C(p). I will also
show (K",0) is both a Cartan and Adem object.

5.1 The Product on K

In this section we construct the homotopy associative graded product on K.

Definition 5.1.1. Let m : Tot (A" ® A") — A’ denote the graded commutative product on A'.

Consider the solid diagram below in the category Shg, (X):

Tor (I g, I') " I

o

Tof (A ®F,A) —"— A

By Lemma V@V :Tot (A ®A) = Tot (I ®I') is a resolution. Because U :
A" — I' is an injective resolution, by Lemma |3.2.13} there exists a chain map m’ making the
diagram commute. By Lemma|3.2.14) m" is unique up to homotopy. We then obtain the product

M :Tot (K ® K') — K by the following composition:

Y ()

M Tor (T(I') @, T(I') —— T(Tor (I' 0, ') — T(I")

where Y is the natural map. Note this definition only defines M uniquely up to homo-

topy.

Definition 5.1.2. For all n,m € Z, define the cup product:

U H"(K)®@H™(K') — H"™(K)
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by the composition:

n+m .
U B K) 0 H(K) <Y HY " (Tor (K @ K)) ) gtm

[a

where ¥ is an injection induced by the Kiinneth isomorphism H (K') @ H (K")

H' (K ® K"), which we have because we are in the category Vect(F,). That is, \f is the map:

X @[] = [x®@y]

forx € Z"(K') and y € Z"(K'). The uniqueness of H (M') implies U~ is uniquely
defined.

Lemma 5.1.3. The product M : Tot (K @ K') — K makes K a homotopy associative differen-
tial graded F, algebra. The induced cup product U~ on H' (K") is associative.

Proof. We have the diagram below:

. 1@ ) e
Tot(I' @I @I') —= Tot (I ') ——
me

i !
mmI (1‘)[2]]\ 1‘]
1

1em .
Tot (A ®A ®A) — Tot (A ®A’) —"—
m®l

Because A’ is an associative differential graded F, algebra, the two composites along
the bottom row are equal: m o (1®m') =m o(m ®1). Define f; =m o (1®m’) and f; =
m o (m ® 1), the two composite maps along the top row of the diagram. By Corollary
(1)B: Tot ((A)B)) — Tot ((I')P)) is a resolution, and we still have 1 : A" — I' is an injective
resolution in Shg,(X). Because fi, f; : Tot ((/ YBl) — I' are two morphisms over the triple
iterated product, Tot ((A'))) — A, we can invoke Lemma to obtain a F, homotopy A’
between f; and f;. We have h" : Tot ((I')®)) — I'[—1], and & satisfies the relation for all n € Z,

f=f=d ol +1" o dq“ot(([-)[z])
Because T is an additive functor, we have T'(f;) and T'(f;) are homotopic by homo-

topy T (k). That is:
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T() ~T(f) =i o T + T o2 1o

Let v, : Tot (T(I')P) — T(Tot ((I')P)) be the natural map. By precomposing the

above with y; we obtain:

T ot = T(f3) 0 = dy o (T(H') o) + (T (W) ™) 0l o

Thus T'(f;) o¥; and T'(f,) o'y, are homotopic by homotopy T (i) oy;. But T(f;)ovy; =
Mo(1®M)and T(f;)oY; =M o(M ®1), and the fact that these two maps are homotopic
shows the product M" on K* = T(I') is homotopy associative. This then implies the induced
product on the cohomology groups H'(K") is associative.

O]

Definition 5.1.4. We can define a p iterated product, M, : Tot ((K WPy = K, as follows. Con-

sider the solid diagram below:

By Corollary WP Tor (A)P)y — Tor (I'P)) is a resolution. Because v :
A" — I' is an injective resolution, by Lemma @ there exists a chain map m,, making the
diagram commute. By Lemma i, is unique up to homotopy. We can then define a p
iterated product, M,, : Tot (K Pl — K by the following composition:
T ()

M, Tor (T(1)P) — 7 (Tor (1) 7)) T(I)

It should be noted that M), is only a F), chain map, not a Fpm chain map. Although

each solid arrow is a F,T chain map, the objects of I' will almost always fail to be injective in

the category Sh .z (X).

Lemma 5.1.5. The chain map M, is F), homotopic to a p-fold product of M', in some order.
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Proof. Define f = o(1®m)o---o (1P~ U@m) : Tot (I'NWP!) = I'. f is a p-fold product of
. We have m,, =m' o (1@m’)o---0 (1P~ @ m’) because the product m’ on A" is associative.
Thus, f* and 1, are two F,, chain maps over m;,,, where (W)L Tot (AP — Tot (1)) is
a resolution by Corollary [3.2.17] and v : A" — I is an injective resolution. By Lemma |3.2.14]
there is a F,, homotopy & between sit, and f°. That s, 4" : Tot ((I')P)) — I[—1]', and &’ satisfies
foralln € Z:
" _fn _dn—l o +hn+1 od"
p - Tot((I')P])

By applying the additive global section functor 7', we obtain a homotopy 7 (h') be-

tween M, = T (7i,,) and T (f").
T (i) =T (f") = dy o T(W") + T (") oy

By precomposing the above with Y,,, we obtain:

(Tot((1)17)

T(m;) OYZ —T(f") OY!'7 = d;&i o(T(h") OY‘p) + (T(h"“) OYI’)H) Od¥ot(T(I')[P])

So T (') oY, is a homotopy between M,, = T (7,,) o, and T (f") oY,. But we have
T(f)oY,=Mo(l®@M)o---0 (1P~ @ M), so the result is shown.
O

5.2 Construction of 6

Now that the homotopy associative differential graded product on K™ has been defined,

I will construct the map 6" : Tot' (W. @, (K NPy — K. Consider the solid diagram below:

Tot (1)) P Homy (W, 1)
(l‘)[l?]]\ VI
Tot ()W) — " A

By Corollary [3.2.17, ()P : Tot ((A")Pl) — Tot ((I')/") is a resolution. We let X,
act on Tot ((A")P)) and Tot (1)) by permutation of tensors with sign change based upon the
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grading, and trivially on A". We see that (l')[P] is a F,X, morphism, as well as a F,7® morphism.

P
3.2.21L vi: A" — Homg (W.I') is an injective resolution of A" in the category Shr, z(X). Now

we may invoke Lemma [3.2.13] with the abelian category 4 = Shg (X ) to obtain a F,7 chain
map 3’ making the diagram commute. By Lemma [3.2.14} ' is unique up to homotopy. We can

Because the product on A" is graded commutative, m), is a F,X, and F, T morphism. By Lemma

now define 6" : Tot ((K")/P)) — Homg (W.,K") by the following composition:

6 < Tot (T(1)7) — T(Tor (1)) % T(Homy. (W.,I')) = Homp (W.,T(I"))

Because the above maps are in Comp(F,zMod), 6 is a F,m morphism. By applying

the adjoint isomorphism @ from Lemma 3.1.5 we obtain the F,T morphism:

(&) : Tot (K')P @, W) — K

We now define 6" : Tot (W. ®F, (K HlPhy = K with the composition:

0 =d"6)oU
where U™ : Tot (W. ®F, (K NP1y — Tot (k)P ®r, W.) swaps tensors with sign change
based upon the grading.

5.3 Verification of Axioms

Now that (K",8') has been defined, I will show that (K",0") belongs to May’s category
C(p), and that (K",0") is both Cartan and Adem.

Lemma 5.3.1. The restriction of 0 to ey @ (K ')[1’] is F, homotopic to a p-fold product on K.

Proof. We have the solid diagram below:
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Because W. is a resolution of F, in Vect(F,), and F,[0]. is a projective resolution of
F, in Vect(F,), there is a F, chain map /. making the square commute, and /. is unique up to

homotopy. In fact we can define /. explicitly with Io(1) = ey € Wy. Now we have the diagram

below:

Tot'(A)Fl) — 2 A

Note that 7, is only a F, morphism, while " is a F,m morphism, and (/)" is a
F, morphism. We have that 71, and (/.)* 03" are both F,, chain maps extending the iterated

multiplication map m), in A". By Lemma|3.2.14} there is a F;, homotopy 4 from 7iz,, to (1.)* o f3".
We then apply the global section functor to obtain a homotopy 7 (/') from (1.)*o T (B) to T (7iz,,),

so the square in the diagram below commutes up to homotopy.

Tot (T(1)#) — 7(Tot (1)) —2L— T (Homy. (W.,I")) = Homg (W, T(I'))

T(m;,)l l(z.)*

. A . . . .

T(I') —*— T(Homy (F,[0]..I')) = Homp (F,[0].,7(I'))

A is the natural isomorphism. Recall M, = T (i,) oY, and 6 =7(p) oY, By
precomposing with y),, we get that the maps:

hoM,, (1)*o® : Tot (T((I')"))) — Homg (F,[0].,T(I))

are homotopic by homotopy 7 (") oy,. By Lemma[3.1.6] the chain maps:

@O (hoM,),@°((L)* 08) : Tot (T(I)P @ F,[0].) — T(I')
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are homotopic by homotopy ®~!(T (1) oY,). Leta e Tot"(T(I')[P!) and x € F,[0].

Then we have:

QDO(XOM’;)(Oc@x) = MM (o)) (x)
=x-Mj(o)

=My (x-o)

Which is the p iterated product on 7'(I') with a scalar multiplication. By Lemma
3.1.8 we have ®°((1)* ®6') = ®°(8) o (1®1.). We now have the homotopy commutativity of

the right square below:

o

/—\@o(«)

Tot (W0 T(1)?)) — Y Tor (T(1)Wew) — 20

(1
ra1] to | Al

Tot (F,[0]. @ T (I')P)y —Y— Tot (T(I')P) @ F,[0].) —— Tot (T(I')P))

)

Since U’ just swaps tensors with sign, the left square commutes. Since the bottom
row consists of isomorphisms, we can walk from Tot (7'(I')!"!) to T(I') in two paths, one of
which is directly with M, which is the p iterated product on T'(/°), and the other is to walk
around the perimeter, which is the restriction of 6" to Io(1) @ T'(I')[7), and since Iy(1) = eg € W,
the fact that these two maps are homotopic proves the result.

O

Lemma 5.3.2. There exists a ¥, chain map ¢ : Tot (V. ®F, (KDY — K such that & is Fpn

homotopic to the composition:

Tor (W. @k, (K)P)) 225 Tor (v .2k, (K)IF)) —— K
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Proof. Recall j. is a F,7 morphism making the diagram below commute.

In the above W. is a free F,7 resolution of F, and V. is a free F,X, resolution of
F,. Because W. is a projective F,T resolution of F, and V. is a resolution of F,, such a F,n

morphism j. exists, and is unique up to homotopy. Consider the diagram below:

Because V. is a projective resolution of F), in g,»,Mod, and /" is an injective resolution
of A" in Shg,(X), by Lemma Homg (V.,I') is an injective resolution of A in the cate-
gory Shg s (X). By Corollary Tot ((I')7)) is a resolution of Tot ((A")[?)). Because the
product on A’ is graded commutative, the iterated product m,, is a F,X;, morphism. The vertical
arrows are F,X, morphisms as well. Now by Lemma [3.2.13] there exists a F,X,, chain map o
making the diagram commute, and by Lemma o/ is unique up to homotopy. Define $
by the composition, ¢ = T'(or) Yy

T(a)

o : Tot (T/(I')P)) /AN T(Tot ((I')171)) T(Homg (V.,I')) = Homg (V.,T(I'))

With & the adjoint map from Lemma [3.1.5, we have ®°(¢) : Tot (T (I @ V) —
T(I'). We now define ¢' = ®°(¢')oU", where U™ : Tot (V. @ T (I')[P!) — Tot (T (I')P! @ V.) swaps

tensors with sign. Consider the diagram below:
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B

T

Tot ((I)PJ) —% s Homg (V..I') ~225 Homp (W.I)

ool

Tot ((A)7) — " Tot(A) — 4 Tot (A')

We have (j.)* makes the square on the right commute and o' makes the square on the
left commute, so (j.)* oo makes the rectangle commute. We also have ° makes the perime-
ter commute by its construction. Because Homi:p (W.,I') is an injective resolution of A" in
She, 7 (X), Tot ((I')”1) is a resolution of Tot ((4')P!), and both (j.)* oo and B’ are F,m mor-
phisms making the rectangle commute, by Lemma 3.2.14] there is a F,m homotopy /" from B
to (j.)*oa. Because T is an additive functor, T7(f ') and T ((j.)* o) = (j.)* o T (ar') are homo-
topic by homotopy 7'(4'). Then precomposing by Y, shows that o= T(o) oY, is homotopic to
(j) ob =(j) oT(B) o7, by homotopy 7' (/') o,. These two maps are F,,7 chain maps:

¢, () o, : Tot (T(I)") — Homg (W, T(I'))

Using the adjoint isomorphism from Lemma 3.1.5| we obtain F,7 chain maps:

D0(§), @°((j.) 08): Tot (TP V) - T(I)
and by Lemma these are homotopic by homotopy &~ (T (k') o Y,)- By Lemma
3.1.8] we have ®°((j.)*06) = ®°(6") o (1 ® j.). We have the diagram below:

Tot (V.@ T(I)P) —Y— Tot (T(I)P @ V) 2% T(I')

j’®q ]®JT 0(6)

Tot (W.@ T(I'WP)) —L— Tot (T(I')P @W.)

We have shown that the triangle in the above diagram commutes up to F,7 homotopy,

and we have that the square on the left commutes. This implies the two compositions,
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0o(jol)=@@)oUo(j®1), O6=d@)oU:  Tot(W.TI)P)—T(I)

are F,m homotopic, which was the result to be shown.

O]

Lemma 5.3.3. The object (K',0') is a Cartan object. That is, given 0" as defined in Definition
[2.0.1] the following diagram commutes up to F, homotopy:

Tor (W. @k, (K @F, K)WP) —— Tor (K @, K')

b@(M-)[p] lMA

Tor (W.®F, (K)P) —— 2 K

Proof. Given [’ as constructed previously in this section, define the F, T morphism 6 :Tot (I'®

vy Homg (W.,Tot (I'®1)) by the following composition:

B Tor (e n)) 3 Tot (1) & (1))

Tot (Homy (W.,I') © Homg (W.,I')) P, Homg (Tot.(W.@W.), Tot (I'®1'))

Jowr

Homg (W.I'®1I')

In the above, ¥, acts on Tot' ((I' ® I')/Pl) by permuting two-tensors, and X, has di-
agonal action on Tot ((I')!") @ (I')[P]). On each open set, the natural map S sends (a; ® b;) ®
- ®(ap,®@bp) to (a1 ®@---Qap) @ (b ®---®@b,), with sign change based upon degree. Recall
y. : Tot.(W. @ W.) — W. is a F,n morphism over F,, and ® acts diagonally on Tot.(W. @ W.).
Recall the product, 7 : Tot (I' @ I') — I'. We have two compositions, Bo (')}, and (i), o B

)Pl
Tot (I @ 1Py — ™"y To (1))

! !

Homp (W.,Tot (I'©1')) ~s Homp (W.I')
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I claim the square above commutes up to F,m homotopy. We have the diagram below:

Tot (I' @ ') 7]y LN ey —P Homg (W, I')

(1'®1')[”]T ] VT
(m)P! '

[I’
Tot (A" @A)y —— Tot (A)P)) —— A

with all squares commutative. Thus 3" o (;h')[P] is a chain map over m,,, = m;, o (m')[l’],
the 2 p-iterated product on A". T will show (m’), o is also a chain map over m,,. Lete. :W. —
F},[0]. denote the m projective resolution of F, and recall v- = (€.)* o (V') from Lemma3.2.21

We have the diagram:

‘@u )P
Tot (A" @ A)P]) < (e Tot (I 1))
N N
VPl (1)P!
Tot'((A')[P]®(A~)[p]) c )P e)” Tot'((]')[P]@)(I‘)[P])
m,Qm, Bep B
Tot (A @ A7) XN Tor (Homy. (W.,1') @ Homp: (W.,I'))
1 p
Tot (A @A) — U Homy. (Tot(W. & W), Tot (I' ©1'))
! (v
Tot (A ®A") ) owE: Homp. (W.,Tot (I'®1'))
m ()«
' o, Hom. (W.I
Ome(W7 )

Along the right column, the composition of the top 4 morphisms forms S The com-
position along the left column is the 2p-iterated product on A", m;,. Note that because A" is
graded commutative, the shuffling isomorphism S does not affect the result. I claim that each
square in the diagram above commutes. The top square commutes by the naturality of S°. The
second square commutes by the construction of 3°. The third square commutes by the naturality

of p". The fourth square commutes by the construction of y.. And finally the bottom square
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commutes by the construction of /7'. Thus, we have shown (77'), o B is also a F,m morphism
over my,,. Since Homg (W.,I') is an injective resolution of A" in Shr,z(X) by Lemma
and Tot' ((I' ® I') ") is a resolution of Tot' ((A° ® A*)!"!) by Corollary we can invoke
Lemmato obtain a F,m homotopy /" from B o (i')P) to (177'). o p'. Since T is an addi-
tive functor, we have T'(h') is a homotopy from T (B o (i )[?)) to T ((1#'), o B'). This shows the

bottom square in the diagram below commutes up to F,T homotopy.

Tot' (T(I') @ T(I'))lP)) ——"— Tot (T(I')/"))

r{zp lYp
T(Tot (I @ I')[Pl) _T@ T(Tot ((I')P))) 5.1)
|r#) T(p)

Homp (W.,T(Tot (I'®1'))) —% Homg (W, T(I'))

Since the top square commutes, the perimeter commutes up to F, T homotopy. Going
around the top is the composition 7'(3") oy, o (M Pl =& o (M)P), while the bottom route is

T (' )oT(B)oY,,. Iclaim the bottom composition, 7'(71') o T (B') 0¥, is equal to & oM, for

a map:

Dv

1 Tot (T(I) @ T(I'))P)) — Home, (W, Tot (T(I') @ T(I)))

where 8 is related to & by 6 = CIDO(é') Uy . Here Iuse

(T(r)&T (1))l

Upop :Tot (A ®B) — Tot (B ®A’)

to denote the isomorphism that swaps tensors with sign based on degree. Since 8" is
given and ®° and U are isomorphisms, we can define & = (°)~1(§ o (U:

~1
W.®(T(I‘)®T(I‘))[P]) )
Recall 0" is defined by the following composition from Deﬁnitionm
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§ : Tot (W (T(I) @ T(I)P) Y255 Tot (Tot.(W. @ W) @ Tot (T(I) P & T(1')71))

ll ®UW.@T(1~)[p] ®1
Tot (W T(I'NP' oW o T(I')P))

l9'®9'

Tot (T(I') ®T(I'))
I claim that & is given by the following composition:

0 :Tot (T(I@T(I)P) ——S s Tor (T ()P T (I')P)

b

Tot' (Homg (W.,T(I')) ® Homg (W.,T(I')))
"

~

Homg (Tot.(W.@W.),Tot (T(I')®T(I')))

y(w)*
Homp (W, Tot (T(I') ®T(I')))

We can derive this algebraically using the rules of Lemmas [3.1.7, [3.1.8] [3.1.9] and

((y.) op o (B ®8)os) Uy aru)era)
0/ - A-
=@ W.(T ()T (I))P)

p
pod®8))o(S®l)o(lay.)ol,
(@°(0) @ @%(8)) 0 (1@ Uppypiam, © 1) 0 (S @) 0 Uy oy
= (@°(8)@®°(6) o (1OU; 1 ymew @ 1) o Ul omyora e © (W-©5)
(
(

= (@°(6)20°(6))o (U,

weorr)n ©Uparm) © 1@ Urpgy @1) 0 (W.©5)

P
= ((@°(6)o UW®T(1-)[p]) ®(P°(6)0 UW®T(1-)[1)])) o(l® Uf(]-)[p]®w @1)o(y.®S)
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=(0®6)o(1 ®U7."(1-)[p]®w_ ®1)o(y.®S)
=0

And the above equation implies:

6 =(y.) opo@ab)os

Now I claim the following rectangle commutes, where the composition along the left

column is é', and the upper path is from the lower path of the square in diagram

Tot (T (I') @ T (I'))P)) Br T(Tot (I' 1))
S T(S)

Tot (T(I')P @ T (1) [Pl r T (Tot ((I'WP) & (1) [Pl
b b T ep)

Tot' (Homg (W.,T(I')) ® Homg (W.,T(I'))) RN T (Tot (Homg (W.,I') @ Homg (W..I')))

P T(p)
Homg. (Tot.(W.@W.), Tot (T(I') @ T(I))) _w. Homg. (Tot (W. @ W.), T(Tot (I' ®1')))
(v.)" (v.)"
).

Homg (W.,Tot (T(I')®T(I')))

Homg (W,T(Tot (I ®1I")))
(i),

Hom'Fp(W, T(I))

Recall & =T (B)o Y, and M" =T (/') oy These two facts and the naturality of the
Y maps imply each of the faces in the above diagram commute. Since the composition along
the lower path is (M), o é', and the composition along the upper path is T (i) o T(S) 0 Y it
has been shown these two maps are equal. And since the later map has been shown to be F,n

homotopic to 6 o (M ')[p], we now have the square below commutes up to F, T homotopy:
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Tot (T(1) @ TN — ", Tor (7(1)#)

! !

Homp. (W.,Tot (T(I') ® T(I'))) - Homp (W.,T(I"))

By Lemma|[3.1.6] this implies the following chain maps are F,7 homotopic:

DB o (M)P)), @O((M),08): Tot (T(I)RTI NP W) — T(I)

By Lemma 3.1.9} we have ®°(60 (M")") = @°(6) o (M)[Pl @ 1). By Lemma 3.1.7}
we have ®°((M'), 06) = M 0 ®(8). We have now shown the right square in the diagram

below commutes up to F,7 homotopy:

Tot (W.@ (T(I)@TI))P) —L— Tot (T(I) QT I))P oW m Tot (T(I'NQT(I)))

ll@(M')U’] l(M-)[p]@Ql A JM,

Tot (W.@ T(IWP) ——Y— Tot (T(INP @ W)

while the square on the left commutes by the naturality of U'. This shows the rect-
angle commutes up to F,T homotopy. The composition along the upper path is M" o 0" and the
composition along the lower path is 8" o (1 ® (M")[P}). The fact that these two compositions are

F,m homotopic was the result to be shown.

O]

Lemma 5.3.4. The object (K',0°) is an Adem object. That is, there is a ¥, chain map &' :
Y ®F, (K ')[”2] — K such that the following diagram commutes up to t-homotopy (dropping the

Tot and dots notation below, and tensors are over F ).
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(Wi @ WZ[P]) @KWl 2L,y o k]

~

1®S K

e
120lP!

W) @ (W, ®K[p})[p] = Wy KP

Recall the definitions of Wi,W»,Y and the group actions involved from Definition
In the above I use S instead of U’ for the graded tensor shuffling isomorphism, S :
Tot'(Wz[f] @ (K)PHIPYY — Tor (Ws. @ KPHPY) because I'm already using U to denote the
graded tensor product swapping isomorphism Tot (A" ® B') — Tot (B ® A’) for various A, B'.

Proof. The map m', is the p*-iterated product in A", which is a X, morphism because the
)2 P

product is graded commutative. We have the F,7 projective resolution €; . : Wi . — F,, the F,v

projective resolution &, . : W . — F, and the F,X » projective resolution k. : Y. — F,. We still

have the injective resolution in Shg, (X), 1 : A" < I'. By Lemma(3.2.21} we have the injective

resolution in Shrx , (X):

K ot :A"=Homg (Fp,A") = Homg (Y.I')

By Corollary|3.2.17} the following is a resolution:

W) Tot ((A)P1) = Tot (1))

We have the solid diagram below:

(L)[pz]]\ N K_*ol'*]\ (5.2)
2

Note all the solid arrows in the diagram are F,X > morphisms. By Lemma 3.2.13}
there is a F,X » morphism {" making the diagram commute, and by Lemma|3.2.14} T is unique
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up to homotopy. Recall the F,t chain map w. from Definition is defined to make the

following diagram commute:

Tot. (Wi, @ (Wa)) —"— ¥,

lsl ®s[”] ll(,

1
F, — F,
We have the following diagram with commutative squares:

Tot' (1)) —— Hom (¥.,1') ~“L Homy (Tot.(Wi.  (Wa. ), 1)

2
()l q K.*ot;]\ (81‘.®£[2[_)_])*ol;6]

Tot ((A")P") r A ! A

Because Tot. (W . ® (W»..)[]) is a free resolution of F, in F,xMod, by Lemma|3.2.21]
Homg (Tot.(W).® (W,,)P1), I') is an injective resolution of A" in She,(X). By Lemma|3.2.14}
any other such F,t chain map over m , will be F,T homotopic to (w.)* o {'. Define B; =" to
be the F,m chain map constructed in Section which made the following diagram of F,nt

chain maps commute:

Tot’ ((1)[1’]) % Homg (Wy.,I')

il °‘T (5.3)
A

Tot (AP — 7

Define {3, uniquely up to F,v homotopy by the diagram below:

Tot (I')[P)) -2~ > Homg (W, I')
(14)[17] si_ol;T (5 4)
Tot (A)P) — 7 &'
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Set 8, =0, 6; = 6, and define 6, = T(B;) oY, and 8, = @°(8;) 0 Uy,, where Uy, :
W. ®T(I')[”] — T(I‘)[”] ® W;.. is the swapping isomorphism for i = 1,2. Let Uy : W . ®W2[e] —
Wz[p ] ® Wi ... We have the diagram below:

Tot ((I)P*])

()17 (B
Tot'(Homg (W, ,I'))!")

1 [
€y o(()P)).
Tot'((A')?) —————— Homg (Tot.((Wy,)"!), Tot (1))

m, (B))-
(&) o(ef o1,)-

A < Homi:p(Tot.((Wz,.)U’]),Hom‘Fp(Wlf,I'))
1 .
(EM ®e).) oL,
A Hom. (Tot (W2.)Pl @ W), 1)
1 )
(817.®8[2p‘,])*01;‘
A < Homi:p(Tot‘(WL‘®(W27,)[P],I')

In the above, p), is the natural F,T chain map from Corollary and @’ is the
natural F,T isomorphism of complexes from Lemma @ The top square commutes because
diagram commutes. The second square commutes by the naturality of p;,. The third square
commutes because diagram[5.3|commutes. The fourth square commutes by the naturality of &'
And the fifth square commutes by the naturality of U;. The composition along the left column is
M. By Lemma we get that (w.)* oL and the composition along the right column of the

above diagram are F,T homotopic. That is, the diagram below commutes up to F,T homotopy.
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()7 (w.)*
Tot ((Hom'Fp(Wg_y.,I'))[l’]) Homg (Tot.(W.® (Wo, )P, 1)
Pp
Hom (Tot.(W5,)/"), Tot (")) iy
(B1)-

Homg. (Tot.((W2,)),Homg (Wi ..I)) -2, Homg (Tot. (W2, )P W, ),I)

After applying the additive global section functor 7', we get the following commutes

up to F,T homotopy.

T (Tot (1)) me) Homp. (Y. T(I'))
T((By)") (w.)*
T(Tot ((Homg (Wa,..1'))I"))) Homg (Tot.(Wy,. @ (W2,)IP)),T(I'))
T(p,)
Homg (Tot.((Wa,.)7), 7 (Tot (1)) Wy
T(B)«

Hom: (Tot.((Ws,)!?)), Homg (Wi, T(I'))) LN Homg (Tot.(W2,)l @ Wy ), T(I'))

(5.5)

Lety,, : Tot (T(1 Pl — T (Tot ((I)[7))) be the natural map. Define the F,Z,» mor-

phism & : Tot (T(I')? }) — Homg (Y T(I')) by the composition & = T({') oY, Set £ =
(&) oUy, where Uy : Y.Q T (I ) T(I)P | @ Y.. The following diagram has commuting

squares:
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Tot (T (1)) ’ T(Tot ((I')7")))
(8,)7! T((By)")
Tot' ((Homg (Wa,,, T(I')))P)) % T (Tot (Homg (Wa,..I'))I")))
Py T(p,)
(Y-

Hom'Fp(Tot'((Wz,.)[p])7Tot'(T(1~)[p})) e Hom'Fp(Tot.((Wz,)[P]),T(Tot' (()"))

(6)- T(By)-

Homg: (Tot.((W,,)[?)), Hom (Wi, T(I'))) —— Homg (Tot.((Wa,)!")),Homg (W1 .,T(I)))

(5.6)
By precomposing the left column of diagram[5.5| with diagram[5.6] we get the follow-

ing commutes up to F,T homotopy:

Tot (T (I')[°)) J Homp. (Y., T(I'))
CAL (o)
Tot'((Homg (Wa,,, T()))!")) Homg (Tot.(Wy. @ (W2, )IP)),T(I'))
Py
Homg (Tot.((Wa,.)IP!), Tot (T (1)) ;)"
(67)-

Homg: (Tot.((Ws,)?)),Homg (Wi, T(I'))) —*— Homg (Tot.((W,)lP @W;.),T(I))

By Lemma [3.1.6, we get that the diagram we obtain after applying ®° commutes up
to F,T homotopy. By using the rules of Lemmas[3.1.7,[3.1.8] and[3.1.9] we get for the top path:

((w.) 0§) =2°(§) o (10w.)

Along the bottom path, applying ®° gives:
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DO((U;)* o ® 0 (8;). 0p), 0 (6))

= @%(d o (). 0p,0(8y)P)o (10U By Lemma[3.1.§|
= 0%(@%((6))0p;0 (83) ")) o (10 U)) By Lemma[3.1.14
= 0%(8;0@%(p, 0 (8,)")) o (10 U;) By Lemma[3.1.7]
= 3%(8;) 0 (@°(p, 0 (6;)") @ 1) 0 (10U)) By Lemma[3.1.9
= @26, o (®°(8,)P oS)Y21) o (10U;) By Lemma[3.1.13]
= 3°(6;)0 (@B @ 1)o@ 1)o(10U))

where §: (T(I)P @ Wz[,[-)]) — (T(I'!P @ W,.)[] is the shuffling isomorphism.

The last line in the computation above is the composition below:

T e W e W) —5 T(r)Fle Wl aw)

Since the composition above is F,T homotopic to CIDO(@) o (1l ®w.), we can can pre-

compose both by the following tensor swapping isomorphism,

U;: (W, ®W2[f]) ® T(I')[pz] — T(]')[PZ} @ (W ®W2[f])

and by Lemma([3.1.16] the results will be F,T homotopic. For the top path we have:

(&) o(1@w)o(U;) =2§)olyo(w.@l)=§o(w.al)
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Denote:

Uy W ew) o T(1)P - 11" o (W ow,.)

Up: Wi @ (Wa. @ T(DPHIP 5 (wy @ T(1)P) P o w, .
For the lower path, we have:

@%(8;) 0 (@(B)" @ 1) o (S @1)o(1@U})ol;
= @%(8)) 0 ("B @ 1)o(S @ 1)oUs0 (U ®1)
= 0%(8) 0 (°(8)P @ 1) o Uj0 (10 (U)o (10 5)
= @°(8;) o Uy, o (100°(8)M) o (1 (U)o (1®S)
=0,0(12(8)P)o(125)

Thus we have shown the diagram below commutes up to F,T homotopy:

o W 6 7)) L T (70

T

1R85 K

y’
12(6;) )

Tot (W) ® (W, @ T(I')PHIPl) —25 Tot (W @ T (I')[P))

And this was the result to be shown.
O

Theorem 5.3.5. Given a topological space X, and a bounded below complex A" of sheaves

of differential graded commutative F, algebras on X, there exist canonically defined Steenrod
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operations on the sheaf hypercohomology groups H (X,A"). These Steenrod operations satisfy
the formulas in Corollaries and Cartan formula and Adem relations included.

Proof. We have (K',0') € C, due to the existence of the homotopy associative product estab-
lished in Lemma and the axioms required of 6 are proven in Lemmas and
This allows us to define Steenrod operations on H (K') = H' (X,A’). Because of Lemmas
and [5.3.4] the Cartan formula and Adem relations are valid.

O

5.4 Naturality

In this section I will show that the Steenrod operations constructed on sheaf hyperco-

homology are natural.

Lemma 5.4.1. Let X be a topological space and suppose A" and B are two bounded below
complexes of differential graded commutative F, algebras on X. Suppose f : A" — B is a

differential graded F |, algebra homomorphism. Then there are induced maps for alln € Z:

H'(X,f):H'(X,A) - H'(X,B)

We have that H (X, f*) commutes with D; for all i > 0. As a consequence, H (X, f*)

commutes with the Steenrod operations constructed on H (X,A") and H (X, B’) respectively.

Proof. We first define the morphisms, H*(X, f"). Let1 : A" — I' and X : B — J° be injective

resolutions in Shg, (X). We have the diagram below:

ot
1 K']\
. f )
A —— B

Because J' is injective in each degree and bounded below, and because U is an injec-
tive quasi-isomorphism, we have by Lemma |3.2.13| that there is a F, chain map £ that makes
the diagram commute. By Lemma(3.2.14] 7 is unique up to homotopy. Because T is an additive

functor, we have T (f*) is unique up to homotopy. Thus, we get well defined morphisms:
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H'(T(f)) - H'(T(I')) = H"(T(J"))

and the above is precisely H*(X, f). To show that H (X, f') commutes with D;,
it suffices by Lemma to show that T(f) is a morphism in the category C(p). Let the

following denote the 8 maps for A and B" respectively.

0, :W.oTI)P - 1)
0, : WTU)P = 1)

We must show that 7'( ) is a morphism between the objects (T'(I'),0;,) and (T (J'),05).

That is, I must show the following diagram commutes up to F,7T homotopy:

W.oTI)r 2, T(I
ll@T(f)[”] T(f
WeoTu)r % 1)

Let B, and By denote the Shg,z(X ) chain maps making the diagrams below commute,

each unique up to homotopy:

Tot (I')!7) LN Homg (W.,I) Tot' (J7)!7) LN Homg (W.,J)
(l,)[ﬂ]]\ S_*ol’*]\ (K')[I’]]\ g_*oK‘*]\
Tot (AP — ™7 A Tot (B)W — ™7

In the above m, , and mj , denote the p iterated products on A" and B’ respectively.

Because f* is a differential graded F,, algebra homomorphism, we have the commutative square:

71



This shows that the top rows in the two diagrams below are both chain maps in

She,(X) over f omy , =my o0 ()Pl

Tot ((I) ) LN Homp (W..I') SN Homg (W..J')

.o -
€ ol*]\ g OK*]\

B

Mpp

Tot ((A)P)

7yl '
AN Tot ((J) ) LN Homg (W.,J')

(1.)[11]}\ (K.)[pq\ e OK»*]

] ()l ([P Mg p .
Tot ((A)P)) —— Tot ((B)»)) —————— B

Note that every square in the above commutes by construction. We have the bottom
rows are equal and all maps are F,m chain maps. We also have Homi:p(W,J ') is bounded
below and is Shg (X )-injective in each degree. And finally, because ()Pl is an injective
quasi-isomorphism, we can invoke Lemma to obtain that the two top rows, f; o, and

Bzo(f )[1’ are F,7 homotopic. That is, the diagram below commutes up to F,7 homotopy:

Because T is an additive functor, we have the square on the right in the diagram below

commutes up to F,7 homotopy:
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L 7 (Hom (W, 1)) = Homp. (W, T(I))

T(B3)

(7P T((F)P) JT(f')*
Tot (7)) —2s 7(Tot (7)) —25 7 (Homp. (W.,J')) = Homp (W.,T(J"))

while the square on the left commutes by the naturality of . Thus the perimeter
commutes up to F,m homotopy. We have 8, = T'(B;,) oYy, and 6, =T(By)o Y,. By composing
the horizontal arrows along the top and bottom rows, we get the diagram below commutes up

to F,m homotopy:

Thatis, T(f*).08, and 850 T (f)I?! are F,m homotopic. By Lemma(3.1.6, ®°(T(f"). 0
6,) and ®°(8, o T(F)P!) are F,m homotopic, where @' is the adjoint isomorphism of Lemma

By Lemma/[3.1.7, we have:

DT (f).00,) =T(f)oD°(6))
By Lemma [3.1.9] we have:

(B 0T (F)") = @(Bp) o (T(F)" 1)
Thus, we have shown the square on the right in the diagram below commutes up to

F,m homotopy:

W.oTI)r Y 11 )[P]®W (1)
ll@T(f")[”] l T(f
w.oT)r YL () ]®W T(J)
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while the square on the left commutes by the naturality of U'. Thus the perimeter
commutes up to F,m homotopy. Because 8, = ®°(8,) o U" and 8 = ®°(83) o U", we have

shown the diagram below commutes up to F, homotopy:

WoTI)r 2, T(I
ll@T(f)[”] T(f
WeoT)r 2 1)

This shows T(f) : (T(I'),0,) — (T(J),05) is a morphism in May’s category C(p).

Now by Lemma [2.0.3| we have that H (7)) commutes with D;, and as a consequence, with

the Steenrod operations on H' (T (I')) and H (T (J")). So by their respective definitions, we have
H (X, ') commutes with the Steenrod operations on H (X,A") and H' (X, B").

0

We now develop some lemmas that will allow us to apply Lemma [5.4.1]to algebraic

De Rham cohomology and Hodge cohomology later.

Lemma 5.4.2. Let X and Y will denote smooth projective varieties over a field of characteristic
p, and f : X — Y will be a morphism of schemes over k. Let A be a sheaf of Ox modules on X
and B a sheaf of Oy modules on'Y.

5.5 Further Questions

In the case that A" is concentrated in degree O, there are Lemmas [4.4.1] and [4.4.2]
which are proven by Epstein in [2]]. It is natural to ask if these lemmas also hold when A" is not

concentrated in degree 0.

Question 5.5.1. For the Steenrod operations P and BP" constructed in this section, do we have

=0and BP' =0 forall i < 0?

Question 5.5.2. When A’ is concentrated in degree zero, we have for the Steenrod operations
P, BP constructed in this section, that P* : H"(K") — H"(K") is induced by the Frobenius map,
friA— A, on the sheaf of F,-algebras, A, by Lemma Is there a similar result that holds

when A’ is not concentrated in degree 0, and instead just bounded below?
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5.6 Applications

In this section I will apply Theorem[5.3.3]to a few different sheaves of bounded below

complexes of differential graded commutative F, algebras, A"

5.6.1 Algebraic De Rham Cohomology

Let X be a smooth projective variety over a field k of characteristic p. Let A" = Q} Ik
be the De Rham complex of X over k. We have Q Jk is concentrated in non-negative degree,
and the wedge product on € Ik makes it a sheaf of differential graded commutative F, algebras.
The sheaf hypercohomology of X with coefficients in Q} Jx computes the algebraic De Rham
cohomology groups of X:

Hpg (X /k) = H"(X, Qx 1)

Thus under these conditions, the Steenrod operations from Theorem [5.3.5]are defined
on Hyg (X /k).

5.6.2 Hodge Cohomology

Let X, k be as in the previous section. Let the Hodge complex Q;, ,, be the De Rham

X /k
complex Qj Ik but with zero differential. Like before, we still have Q‘X Jk /equipped with the
wedge product is a bounded below complex of sheaves of differential graded commutative F,
algebras on X. Under these conditions one may compute the Hodge cohomology of X over k
as the hypercohomology groups, H" (X ,Qk /k). Thus we can apply Theorem to obtain

Steenrod operations on the Hodge cohomology groups of X as well.
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Chapter 6

Filtrations

In this chapter I will develop some lemmas for filtered complexes. I expect most
results to hold in a general abelian category, but I only prove them in the category of sheaves of
abelian groups for simplicity. Other results are specific to the category of sheaves of k vector
spaces, where k is any field. Sections [6.2] and [6.3] do not contain new results, and may be
skipped. They are only included to make the arguments used in sections and [6.5] easier to

follow.

6.1 Definitions

Definition 6.1.1. Ler A be an abelian category. A filtered object F"A of A is an object A of A
and a collection of subobjects F"A of A for every m € Z, such that F"™*'A is a subobject of F"'A
forallme Z. If F'A and F’B are filtered objects of A, a filtered morphism F' f : FFA — F'Bisa
morphism f: A — B in A such that f restricts to a morphism F"f : F""A — F"B forallm € Z.
Let Fil(A) denote the category of filtered objects of A with filtered morphisms. Let Fil/ (4)
denote the full subcategory of Fil(A) whose objects are finitely filtered, as in Definition
(3). Define gr"A = F"A/F" A, For a filtered morphism F'f : F'A — F'B, one has the well
defined morphisms gr"' f : gr'"A — gr'"B in 4.

Definition 6.1.2. Let A be an abelian category and let F"A be a filtered object of A.

1. The filtration on F"A is said to terminate if there is a m € Z such that F""A = 0.
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2. The filtration on F"A is said to begin if there is a m € Z such that F™A = A.

3. The filtration is finite if it begins and terminates, ie, there is a my € Z and a my € Z such

that F™A = A and F™A = 0.
4. The filtration is called exhaustive if A = U czF™A.
5. The filtration is called separated if Ny,czF™A = 0.

6. We say F'A is inductively filtered if the filtration terminates and is exhaustive.

Definition 6.1.3. Let A be an abelian category. A filtered complex F'A" in 4 is an object
of Fil(Comp(A)). That is, A" is a complex in A and each F™A' is a subcomplex of A, with
F™ A" being a subcomplex of F"A’ for all m € Z. A filtered chain map F' f : FFA" — F'B’
is a morphism in Fil(Comp(A4)). Thatis, f : A" — B is a chain map and f restricts to a
chain map F"f : F"A" — F"B for all m € Z. For m € Z, one defines the chain complex
gr"A = F"A [F" A" in 4. One has the well defined chain map gr'f" : gr"A” — gr'"B.

Definition 6.1.4. Let 4 be an abelian category and suppose F" A is a filtered complex in A.

1. We say the filtration on F'A" terminates in each degree if for all n € Z, the filtration on
F A" terminates. That is, for all n € Z, there is a m,, € Z such that F"A" = 0.

2. The filtration on F’A" is said to begin in each degree if the filtration on F'A" begins for
alln € Z. That is, for all n € Z, there is a m,, € Z such that F"™ A" = A".

3. The filtration on F A’ is called finite in each degree if F'A" is finitely filtered for each
n € Z. That is, for every n € Z, there is a m, € Z and m), € Z such that F"A" = A" and
F™A" = ).

4. We say the filtration on F'A’ is exhaustive if the notion of exhaustive in Definition
(4) applies to F'A" where one regards A" as a filtered object in the category Comp(A4).
This means for alln € Z, A" = Uz F™A™.

5. The filtration on F'A’ is separated if the notion of separated from Definition [6.1.2] (5)
applies to A’ as a filtered object in the category Comp(A). That is, for all n € Z, one has
NmezF™A™ = 0.
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6. The filtration on F'A’ is called inductive in each degree if it terminates in each degree

and the filtration is exhaustive.

7. The filtration on F'A’ is said to terminate uniformly if the filtration on F'A" terminates
when one regards A" as a filtered object of Comp(A). That is, there is a m € Z such that
F"A =0.

8. The filtration on F’A’ is said to begin uniformly if the filtration on F" A" begins where one
sees A" as an object of Comp(A4). That is, there is am € Z, such that F"A" =A'.

9. The filtration on F" A’ is said to be uniformly finite if it both begins uniformly and termi-
nates uniformly. That is, there isam € Z and m' € Z such that F"A" = A and F A=

Lemma 6.1.5. Let A4 be an abelian category and suppose F' [ : F'A — F'B is a filtered mor-
phism of filtered objects in A. If F"f is injective (respectively surjective) for all m € Z, then

gr'"' f is injective (respectively surjective) for all m € Z.

Proof. Let m € Z. We have the diagram:

0 —— F"lA F™A gr"A —— 0
J/FUH»lf Jme lgfmf
0 —— F"IB - F"B gr"B —— 0

If we assume F"*! f and F™ f are injective, it follows from the Five Lemma that gr” f
is injective. Similarly, if F"*!f and F™ f are surjective, it also follows from the Five Lemma
that gr'” f is surjective.

O

Corollary 6.1.6. Let A be an abelian category, suppose F'f : A" — F'B’ is a filtered chain
map. Suppose for all m € Z F™ f° is injective (respectively surjective) in each degree. Then

gr'" " is injective (respectively surjective) in each degree.

Proof. Letn € Z. We have F™ f" is injective (respectively surjective) for all m € Z. By Lemma
[6.1.5] g’ f" is injective (respectively surjective) for all m € Z. O
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Definition 6.1.7. Let A be an abelian category, and let F'A and F'B’ be filtered complexes
in 4. A filtered chain map F' f : FFA" — F'B’ is called a filtered quasi-isomorphism if for all
meZ, gr'f :gr"A — gr'"B is a quasi-isomorphism.

Definition 6.1.8. Ler 4 be an abelian category, and let F'A" and F" B be filtered complexes in
A. A filtered chain map F' . F'A" — F'B’ is called a strong filtered quasi-isomorphism if for
allme Z, F"f : F"A" — F™B is a quasi-isomorphism.

Lemma 6.1.9. Let A4 be an abelian category, let F'A" and F' B’ be filtered complexes in A, and
suppose F' " : F'A" — F'B’ is a strong filtered quasi-isomorphism. Then F~ f is also a filtered
quasi-isomorphism in the sense of Definition[6.1.7]

Proof. Let m € Z. We have the diagram of complexes in A4 with exact rows below:

0 —— F™IA « S F"A — 5 g"A —— 0

JFWH»lf“ \Lme lgrmf

0 —— F™B « s F"B — % g""B —— 0

Since F™*!f and F™f are quasi-isomorphisms, it follows that gr” f is a quasi-
isomorphism, as one can take the long exact sequence of cohomology groups and apply the
Five Lemma. Since gr” f* is a quasi-isomorphism for all m € Z, we have F'f" is a filtered

quasi-isomorphism in the sense of Definition O

Lemma 6.1.10. Let A be an abelian category and suppose F" A" and F'B’ are filtered complexes
in A4 whose filtrations begin in each degree, as in Definition (2). Let F'e :FFA"— F'B be

a strong quasi-isomorphism. Then € : A" — B’ is a quasi-isomorphism.

Proof. Let n € Z. Because the filtrations of F"A" and F'B’ both begin in each degree, we can
find am, € Z such that F™A" = A", F™ A"~ ! = A"~ F™B" = B", and F™B"' = B"~!. Since
F'g is a strong quasi-isomorphism, F"¢" is a quasi-isomorphism, and we have H"(F™¢’) is
an isomorphism. But we have H"(F™¢') = H"(¢') because H"(A’) = ker(d})/im(d} ') =
ker(F™d%) /im(F™d}~ ") = H"(F™A’), and similarly H"(B') = H"(F™B’). Since H"(¢) is
an isomorphism for all n € Z, € is a quasi-isomorphism.

O
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Lemma 6.1.11. Let A be an abelian category and suppose F'A" and F'B are two filtered
complexes in A, with F'¢ : F'A" — F'B’ a filtered quasi-isomorphism. Then for every m € Z

and i € N, we have F'€ induces a quasi-isomorphism:

(Fm/Fm-i-i)s- FmA/Fm+lA N F’nB/Fm+lB

Proof. Proceed by induction on i. In the case i = 1, we have forallm € Z, (F™ /F"!)e = gr'"¢’,
which is a quasi-isomorphism because F ¢ is a filtered quasi-isomorphism. Now suppose there
is an i € N such that, for all m € Z, the map (F"/F™/)e : F"A"/F""/A" — F™B /JF"™ "B is a
quasi-isomorphism, for all 1 < j < i. Let m € Z. I must show (F™/F™")g : F"A'JF™ A" —

F™B /F™YB is a quasi-isomorphism. We have the diagram below:

0 —— F"™A JF™HA —— F"A' [F"™A —— gi"A —— 0
l(Ferl/Fmﬂ')g l(Fm/Feri)gv lgrmg-

0 —— F"'p JF"tip —— F"B JF™HB —— o"B —— 0

We have gr’¢ is a quasi-isomorphism by hypothesis and (F"*!/F"+)¢ is a quasi-
isomorphism by induction. Hence by the Five Lemma we get that (F™/F™*)¢ is a quasi-
isomorphism as well.

O]

Lemma 6.1.12. Let A4 be an abelian category and suppose F'A" and F'B are two filtered
complexes in A whose filtrations terminate in each degree. Let F'€ : F'A" — F'B’ be a filtered

quasi-isomorphism. Then F'€ is a strong filtered quasi-isomorphism.

Proof. Let m,n € Z. I must show H"(F™¢') : H"(F™A") — H"(F"B’) is an isomorphism. Be-
cause F"A" and F' B have filtrations that terminate in each degree, we can find a m, € Z such

that:

FmAl — Fm,,An—l — Bt — Fm,,Bn—] =0

If m > m,, then of course we are done. Otherwise we can set i = m, —m € N and we

have by Lemma|[6.1.T1|that:
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(F™/F"™¢g):F"A JF™A — F"B |F™B
is a quasi-isomorphism. In degrees n and n — 1 we have F"A"/F"™A" = F™A",
FmAr=1 [FmAn—1 = FmAn=1 and similarly for F'B". This implies that the isomorphism:
H"((F™/F™)¢e):H"(F"A /JF"™A") — H"(F"B /F"™B’)

is equal to the map:

H"(F™¢):H"(F"A') — H"(F"B')

Thus, H"(F™¢’) is an isomorphism. Since m,n € Z were arbitrary, we have F'€ is a

strong filtered quasi-isomorphism.
O

Corollary 6.1.13. Let A be an abelian category and let F'A” and F' B’ be filtered complexes in A
that are finitely filtered in each degree. Let F'€ : F'A" — F B’ be a filtered quasi-isomorphism.

Then F ¢ is a strong quasi-isomorphism and € : A" — B’ is a quasi-isomorphism.

Proof. By Lemma[6.1.12] F'¢' is a strong quasi-isomorphism. Then by Lemma [6.1.10] € is a

quasi-isomorphism. 0

Definition 6.1.14. Let A be an abelian category and let F"A™ be a filtered complex in A. Then
F" A is called filtered acyclic if g A’ is an acyclic complex for all m € Z.

Definition 6.1.15. Let A be an abelian category and let F"A™ be a filtered complex in 4. Then
F" A is called strong filtered acyclic if F A" is acyclic for allm € Z.

Lemma 6.1.16. Let A be an abelian category and suppose F'A’ is a strong filtered acyclic

complex. Then F" A’ is filtered acyclic.

Proof. Let m € Z and consider the exact sequence of complexes in A:

0— F"™ 1A S F"A = oA — 0

81



Because F'A’ is strong filtered acyclic, we have H"(F™A") = 0 for all n,m € Z. Thus,
in the long exact sequence of cohomology groups, H"(gr”A") is surrounded by terms that are
zero. This forces H"(gr'A") = 0, and we have F"A" is filtered acyclic.

O

Definition 6.1.17. Let A be an abelian category and let F'I be a filtered object in A. Then F'I
is called filtered injective if gr'"'1 is an injective object of A for allm € Z.

Definition 6.1.18. Ler A be an abelian category and let F'I be a filtered object in A. Then F'I

is called strong filtered injective if F™I is an injective object in 4 for all m € Z.

Note the definitions below may conflict with [[6], where there they would insist that

F'g is strict. Because strictness is not used in sections [6.4]and [6.3] I don’t require it here.

Definition 6.1.19. Let A be an abelian category and let F'¢ : F'A" — F B’ be a filtered chain
map of filtered complexes in A. Then F'¢ is called a filtered resolution if for all m € Z, gr'e :
gr'"A” — gr'B’ is a resolution in the sense of Definition [3.2.15] That is, a filtered resolution
is an injective filtered quasi-isomorphism. If F'B is filtered injective in each degree, has a
terminating filtration in each degree, and B' is bounded from below, then F'¢' is called a filtered

injective resolution.

Definition 6.1.20. Let 4 be an abelian category and let F'€ : F'A" — F'B’ be a filtered chain
map of filtered complexes in A. Then F"¢ is called a strong filtered resolution if for all m € Z,
F"e : F™A" — F™B' is a resolution in the sense of Definition[3.2.15| That is, F '€ is an injective
strong quasi-isomorphism. If F'B’ is strong filtered injective in each degree, has a terminating
filtration in each degree, and B’ is bounded from below, then F'€ is called a strong filtered

injective resolution.

Definition 6.1.21. Let A be an abelian category and suppose F'A" and F' B’ are filtered chain
complexes in A. Let F'g\,F'gy: FFA" — F'B be two filtered chain maps in 4. A filtered
homotopy between F'g| and F'g, is a family of filtered morphisms, F'h" : F'A" — F ‘B! for
eachn € Z, such that F' g} — F g5 = F‘d}’_f;1 oF W'+ F W oFd}. If sucha F 'l exists, F'g,
and F'g, are called filtered homotopic.
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Lemma 6.1.22. Let A4 be an abelian category, and suppose F'A’, F'B’, and F'C" are filtered
complexesin A. Let F' g, ,F g, : F'A" — F'B’ be two filtered chain maps that are filtered homo-
topic by a filtered homotopy F'h' : FFA"— F'B[—1]|. Let F' f : F'B"— F'C be a filtered chain
map. Then F' [ oF g, and F" " o F'g, are filtered homotopic by filtered homotopy F'f o F'h'.

Proof. By Lemma|3.1.15| f"og) and f" og, are homotopic by homotopy f“oh’. All that remains
is to show that F'f”_1 o F'h" is a filtered morphism for all n € Z, and this is true, since it is a

composition of filtered morphisms. O

Lemma 6.1.23. Let A be an abelian category, and suppose F'A’, F'B’, and F'C" are filtered
complexes in A. Let F'g|,F'g, : FFA" — F'B be two filtered chain maps that are filtered ho-
motopic by a filtered homotopy F'h' : F'A" — F'B[—1]". Let F' f : C' — F'A’ be a filtered chain
map. Then F' g, oF " and F'g, o F" f* are filtered homotopic by filtered homotopy F'h' oF" f".

Proof. By Lemma|3.1.16| g; o f" and g, o f* are homotopic by homotopy 4 o f*. All that remains
is to show that F"h" o F" f" is a filtered morphism for all n € Z, and this is true, since it is a

composition of filtered morphisms. O

Definition 6.1.24. Let A,B be abelian categories and let T : A — B be a covariant left exact
functor. Let F°A be a filtered object of A. Then we can induce a filtration on T (A), where we
define forallm € Z:

F"T(A) =T(F"A)

Note we need T to be left exact in order to maintain the inclusions:

T(F™A) < T(A)
T(F™A) — T(F™A)

Definition 6.1.25. Let A4,B be abelian categories and let T : A — ‘B be a left exact functor.
Let F'A’ be a filtered complex in 4. Then we may induce a filtration on T (A’) as in Definition
6.1.24|where we view F'A’ as a filtered object of the category Comp(A) and T as the induced
Sfunctor Comp(A) — Comp(‘B). With this we have:
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F"T(A") =T(F™"A")
forallm,n € Z
Lemma 6.1.26. Let A,B be abelian categories and let T : A — B be an additive left exact
functor. Let F'A" and F' B’ be complexes in A and suppose F'g,,F g, : F'A" — F'B’ are filtered

chain maps that are filtered homotopic by filtered homotopy F'h' : F'A" — F'B[—1]. Then
F'T(g,) and F'T(g,) are filtered homotopic by filtered homotopy F'T (h').

Proof. Because T is additive, T preserves homotopies. And because F"A" is a filtered morphism
for all n € Z, so is F'T(h"). Thus F'T(g;) and F'T(g,) are filtered homotopic by filtered
homotopy F'T (). O

The definition below is adapted from [6], near the beginning of Section 12.21

Definition 6.1.27. Let A be an abelian category with sums. Let F'K' be a filtered complex in
A. The objects associated with the spectral sequence for F' K" are defined as follows. Let r > 0,
a,be”Z:

FaKa+b N dEI (Fa+rKa+b+l) + Fa+1Ka+b

ab __
Z Fatlgathb
b FaKa+b de(FafH»lK(H»bfl) +Fa+1Ka+b
B = Fat+1ga+b
b b b
£f =70 B
df"h . E;l,b N E;H—r,b—r—&-l Z+Fa+1Ka+b — dK(Z) +Fa+r+1Ka+b+1

The make things easier to work with, I define:

Z;l,b — FaKa-i-b N dEl (Fa+rKa+b+1) + Fa+1Ka+b

Thttps://stacks.math.columbia.edu/tag/012K
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B‘a,b — FaKa-‘rb de(Fa—r-&-lKa-‘rb—]) +Fa+1Ka+b

We have Ef’b o Zf’b/Ef’b. Define:

g j— 7b
700 =, Z°

B%" =U,BY”

When Z&? and B%? exist, we have:

N, Z%°
U, B+

Ea,b —

When there is more than one filtered complex present, I will use the notation, Zf’b (F'K),

B’f’b(F‘K'), Ef’b(F'K'), Zf’b(F'K'), and E?’b(F'K'), to refer to the objects defined above.
The below is from Lemma 12.21.4 of 6]

Lemma 6.1.28. Let A4 be an abelian category with sums, and let F' " : F'K' — F'L’ be a filtered
chain map of filtered chain complexes in A. Then F' f" induces a family of morphisms between

the spectral sequences of F' K and F'L’, where for r > 1, a,b € Z, one denotes:

EC/(F f): EX(FK) 5 B (F L)

Proof. Letr>1anda,b € Z. It must be shown that f(Z**(F'K')) C Z*?(F'L') and f (B (F K')) C
B (F'L). Both of these statements follow from the fact that F~ f* is a filtered chain map.
O

I expect the result below to hold in a general abelian category, but for the sake of
simplicity I restrict to the category of sheaves of abelian groups. This way intersection and

containment have a more obvious meaning.

Zhttps://stacks.math.columbia.edu/tag/0120
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Lemma 6.1.29. Ler A be the category of sheaves of abelian groups on a topological space X.
Let F'K and F'L’ be filtered complexes in A, and let F'g,,F'g, : 'K — F'L’ be two filtered
chain maps in 4 that are filtered homotopic by filtered homotopy F'h' : F'K° — F'L|—1]. Then
forallr > 1, a,b € Z, we have EX? (Fg))= Ef’b(F'g'z). That is, F' g, and F" g, induce the same
morphism, E*”(F K') — EXP(F'L).

Proof. Define F'g =F'g,—F'g,,andletr > 1, a,b € Z. It suffices to show Ef’b(F'g') is the

zero map. That is, I must show:

Fg(Z(FK)) C B (FL)
We have the relation F'g' = F'd; oF'h’' + F'h’ o F'd. For the right summand above,

we can show:

ha+b+l (dla(—kb (dEI (Fa+rKa+b+1))) C ha+b+1 (Fa+rKa+b+l) C Fa+rLa+b C Fa+1La+b

with the last inequality holding as long as r > 1. We also have:

dtLlerfl (ha+b (FaKaHJ)) C d[cJHbfl (FaLa+b71) C FaLaHJ N dL(Fa7r+1La+b71>

with the last containment holding for » > 1. Now we can combine this all together. In

the below I drop the degree superscript notation on the morphisms.

g(Zf’b(F‘K‘)) — g(FaKa+b ﬂdlzl(Fa+rKa+b+1) JrFa—l—lKa—i-h)

(FaKa+b ﬁdlzl(Fa+rKa+b+l)) +g(Fa+1Ka+b)

N

8
g(FaKa+b N dlzl (Fa+rKa+b+1)) + Fa+1La+b
d

N

L(l’l(FaKLH_b))+h(dK(dI;1(Fa+rKa+b+l)))—|—Fa+1La+b
dr
d

N

(FaLa+b—l ) +h(Fa+rKa+b+l ) +F“+1La+b

N

L(FaLa—',-b—l) + Fa+rLa+h 4+ Fa+1La+b
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C FaLa+b mdL(Fa—r-‘rlLa-‘rb—l) +Fa+1La+b Since r > 1.

=B (FL)

Since E4? = Zf’b/gf’b, this shows Ef’b(F‘g‘) is the zero map. Hence, Ef7b(F'g'1) =
Ef(Fgy).
O]

6.2 The Cone

Definition 6.2.1. Let A be an abelian category with direct sums. Let A" and B" be complexes in

A. Suppose [ : A" — B be a chain map. The cone of " is defined to be the following complex:

Cone(f )" =A"" @ B"

with differential:

_dg—f‘l 0
fn+1 dg

n —

dCone(f') -

Lemma 6.2.2. Let A be an abelian category with direct sums, A" and B° complexes in 4, and

let f: A" — B be a chain map. Then Cone(f")" is a complex.

Proof. Letn € Z. We have:

+2 +1
I e A A
Cone(f") Cone(f") i fn+2 ngrl fn+1 dg
i dz+2 dz+1 0

_fn+2dz+l + ngrlfn—‘rl ngrldg
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Lemma 6.2.3. Let A be an abelian category with direct sums, and suppose f A" — B is a
chain map of complexes in 4. Then the inclusion \y : B — Cone(f")" into the second compo-

nent. Then 3 is a chain map.

0
Proof. Letn € Z. We can represent 13 in matrix notation as . We have:
1
I A I
dCone(f')OlB = il "
T dg | | 1]
0
dy
0
=, 3
=1l ody

O

Lemma 6.2.4. Let A be an abelian category with direct sums, and suppose f A" — B is a

chain map of complexes in 4. Then the projection T, : Cone(f") — A[l]" is a chain map.

Proof. Letn € Z. We can represent T; using the matrix [ 10 } . We have:

TCZHOdgone(f‘): [ 1 0} fcﬁtl ;n
= [t o]
et 1]
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Corollary 6.2.5. Let 4 be an abelian category with direct sums. Let f : A" — B be a chain

map of complexes in 4. There is an exact sequence of complexes:

0— B 3 Cone(f) B A[l] —0
Proof. The exactness of the sequence in the middle is clear from the definition of 1z and 7. [

The below can be proven more elegantly, but I only need to use it in the category of

abelian groups.

Lemma 6.2.6. Let A be the category of abelian groups. Suppose f : A" — B is a quasi-

isomorphism of complexes in 4. Then Cone(f") is acyclic.

Proof. Let (a""!,b") € ker(déone(f.)) with @"*! € A" and b" € B". 1 will show (a"!,b") €

im(d"~! ). The condition (a"*!,b") € ker(d".

Cone(f") Cone(. fA)) gives the equations:

*dZ—H(Cl’H—l) -0

fn+l(an+l) +dg(bn) =0

Since a"*! € ker(d}t!), [@"*!] is a class in H"*!(A"). We have:

[ (@] = [~dp(b")] =0 € H"T'(B)

Since f is a quasi-isomorphism, f” induces an injective map on H"*!, so the above
implies [@"t!] = 0 in H"t1(A"). That is, there is a @ € A" such that d"(@") = a"*'. 1 claim
p A

(@) + by, € ker(dj}). We have:

dy(f"(@") +by) = " (d4 (@) +d ()
_ fn+1(an+1) —i—dg(bn) =0
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Thus [f"(a@") + by| is a class in H"(B"). Because f" is a quasi-isomorphism, there is a
[a"] € H"(A") such that f"([@"]) = [f"(@") +bn). Thatis, " € ker(d%), and thereisab" ! € B"~!
such that

Fr@) = @) b —dy o)

We now define a" = d" — @". We have:

—(d)(@") = ~dj(@) +dj(@) = 0+a" ="
@)y B = @) - @)y ()
= (@) +b" —dy (") = £ (@) + i (")
=p"

These equations imply d(":;nle( ) (a",b" 1) = (a"*!,b"). So we have shown Cone(f")’
is acyclic.

O]

Corollary 6.2.7. Let A be the category of sheaves of abelian groups on a topological space X.

Let ' : A" — B’ be a quasi-isomorphism of complexes in 4. Then Cone(f") is acyclic.

Proof. Let x € X. We have f, : A, — B, is a quasi-isomorphism in the category of abelian
groups, so by Lemma|6.2.6, Cone(f;) is acyclic. Then since Cone(f;)" = Cone(f");, we have
that Cone(f")" is acyclic at all of its stalks. Hence, Cone(f")" is acyclic. O

6.3 Inducing Maps

Lemma 6.3.1. Let A be the category of abelian groups, and suppose f : A" — B’ is an in-
jective quasi-isomorphism. Suppose there is an a" € A" and b"~' € B""! satisfying f"(a") =
dr= 1 (B"). It follows that there is an a"~' € A"~ and b"~* € B"~? such that:

dzfl(anfl) —a"
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fn—] (an—l) — bn—l —|—dg_2(bn_2)

Proof. We have that a" € ker(d}):

fdR (@) = di(f"(a")
=dy(dy ' (")) =0

Since f"*! is an injective morphism, this implies d}(a") = 0. At this point we have
(a",—b"1) € ker(dg;}e( f.)). Since Cone(f")" is acyclic by Lemma , we can choose a pair
(@"=1,b"=%) € Cone(f")"~2 such that dgrfe(f_)(a"”,bnfz) = (a",—b""!). That is, we have the

equations:

_dz—l(dn—l) a"

fn—l(dn—l) +dg_2(i9n_2) — _bn—l

Set "' = —¢" ! and b"2 = H" 2. We have:

@y = —dn (@)
=a"

@y = — @
= b a2 (0)

_ bnfl _i_dng(ban)

Now the lemma is complete.
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The lemma below is somewhat weaker than Lemma|3.2.13| It’s proved in detail here
because the method will be used again in proving Lemma[6.5.2]

Lemma 6.3.2. Let 4 be an abelian category and suppose we have the solid diagram below:

where we assume I is bounded below and injective in each degree, [ is any chain
map, and € is an injective quasi-isomorphism. Then there exists a chain map g making the

diagram commute.

Proof. We construct g by increasing induction on the degree. Because I is bounded below,
there is a m € Z such that /" = 0 for all » < m. Thus, we may define g" = 0 for n < m. Now

suppose there is a n € Z such that for all k < n, g is defined and the following relations hold:

Fh— ghogk

d;c—l ng—l :gkodljc—l

n+1

I must construct g"" such that the following relations hold:

fn+1 — gn+1 OenJrl

djog"=g"" od]

That is, g""! must be chosen so that both faces in the following diagram simultane-

ously commute:
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gl 8 y bl
\ — /
8n+1,dn Lelalnn ,,,I,A, ,G}E},, Lelalnn fn+l ar
J ker(e"F1—d}) ker(F"1—dJ)
/ n+1 n \
An+1 @ Jn Iy~ &g An+1 DI

I will first show that the quotient map W is well defined by showing (lj’;rl @
g")(ker(e"t! —d?)) C ker(f"™! —dJ'). Because we are in the category of sheaves of abelian
groups on a topological space, it suffices to verify the containment (14! @ g")(ker(e"™! —
d})) C ker(f""! —d}') on all the stalks. Let x € X. Suppose (a"*', ;") € ker(e}™! —d} ) C
A1 @ g, That is, we have the relation:

e (@) =dj (j")

We must show (lﬁjl @ gr)(a™t!, j") € ker(f*! —d}'). That is, I must prove the

relation:

@) =di (s3(")

Because €, is an injective quasi-isomorphism, we may invoke Lemma to find a

a" € A" and j"~! € J~1 such that:
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Now we have:

LN @) = 17 (dR (a")

=d} (fi(d"))

=dj (gx(e(a"))) By induction
=di (& +d; (")

= di (& (") +di (g d; ' ("7h))

= df (&) +di (d (& ()

=d; (gx(J"))

So the required relation is shown. This shows the containment (11*' @ g7) (ker(e! ! —

d})) C ker(f*! —d}}). Since this containment holds for all x € X, we have shown (1o
¢") (ker(e"! —d%)) C ker(f"*! —dy'). So the quotient map 137! @ g” in the diagram is well
defined and makes the lower trapezoid commute. Now we define g"*! to be a morphism in
the diagram making the upper trapezoid commute, which exists because the morphism (A" ! @
J")/ker(e"! —d%) < J*! is injective, and I"*! is an injective object. Because every face
in the diagram commutes, the perimeter commutes, and the commutativity of the perimeter

implies both the relations:

fn+l gn+1 ogn—H

ditlog' =g"odj
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We may now continue the induction to define g" for all n € Z so that g" is a chain map
and f" =g o€
O

The lemmas below address the uniqueness of such a g’ in the lemma above. I will
now work towards a proof of a weaker version of Lemma|[3.2.14] since similar methods will be
used in Section

Lemma 6.3.3. Let A be an abelian category. Let K be an acyclic complex in A, let I' be a
bounded below complex in A, injective in each degree, and let g : K’ — I be any chain map.

Then g is homotopic to zero.

Proof. We will inductively define a family of morphisms 4" : K" — I"~! for n € Z, such that

the following relation holds for all n:

gn — d;lfl ol +hn+1 OdIn(

Since I' is bounded below, there is a m € Z such that I” = 0 for all n < m. Our only
choice is to define 2" = 0 for n < m+ 1, and the required relation holds. Now suppose there is
a n such that for all k < n, h* is defined and the relation g~! = d¥~21*~1 4- h¥d"" holds for all
k < n. We must define #"! such that g" = d/~'h" + h"*'d}. Define ¢" : K" — I" with:

q)n _ gn _d;t—lhn

Consider the solid diagram below:

Kn+1
\
\
\
I
dg K" \\\ prtl
ker(dg) N\
~ \
NURN
N \
/ [N
K" n I"

I first must show that the quotient map ¢ is well defined. That is, I must show
d(ker(d})) = 0. Since K is acyclic, it is sufficient to show the composition ¢ o d ! is zero. We

have:
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Ol = gt g !
= g"d,"{1 - d?fl (g ' — d;“zh”*l) By induction
— g g g g
= ghd g

=0

This shows ¢"(im(dx ') = 0, so we have ¢"(ker(d})) = 0. The quotient map ¢ is
then well defined and makes the lower triangle in the diagram commute. We then define /"*!
to be a morphism that makes the top right triangle commute, which exists because the arrow
K"/ker(d}) — K""! is injective and I" is an injective object. Since all faces in the diagram

commute, the perimeter commutes, which gives the relation:

thrlOdIn(:(I)n :gn_d;zflohn

This completes the inductive construction, and 4" may be defined in this way for all
n € Z, and by construction, 4 is a homotopy of g to zero.
O

Lemma 6.3.4. Let A be the category of sheaves of abelian groups on a topological space X, let
A, J, and I be chain complexes in A, where I' is bounded below and injective in each degree,

and suppose we have the diagram below:

1,82

S

Iz

&

— S

-

where € is a quasi-isomorphism, [ is a chain map, and g,,g, are two chain maps

making the diagram commute. Then g, and g, are homotopic.
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Proof. For each n € Z, define Y" : Cone(g')" — J" to be the projection onto the second compo-
nent, where Cone(e')" = A"*! @ J". Note, Y is not necessarily a chain map. We can represent

Y' with the matrix:

r=lo]

For n € Z, define ¢" : Cone(g')" — I" by the composition:

0" = (g1 —8&2) oY

I claim ¢ is a chain map. Letn € Z:

¢n+l Od(réone(s') = (grlerl - gg+l) O’Yn+l Od?}one(s)
_dn-i-l 0
(M N A
= (g1 —g2)° [0 1}0 e g
= (g1 —g2)o [ el dj }
— [ (git1emt! — gitlentl) (g1 — gt )ay) ]
= [ gy |
=djo [0 (81 —85) }
=djo(gi-gho |0 1]

=dj 0"

So ¢ : Cone(€')" — I' is a chain map. Because € is a quasi-isomorphism, Cone(€’)’
is acyclic by Lemma[6.2.6] By invoking Lemma [6.3.3] ¢" is homotopic to zero by a homotopy

h :Cone(g) — I[—1]. By Lemmal6.2.3| 1, : J' < Cone(€)" is a chain map. By Lemma|3.1.16]
¢ o1, :J — I is homotopic to zero by homotopy i o1, : J° — I[—1] . But for all n € Z we have:

0" o1 = (g1 —g2) oY oy}
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Since the above is homotopic to zero, we have shown g; and g, are homotopic.

6.4 The Filtered Cone

Definition 6.4.1. Let A be an abelian category with direct sums, and let F'A" and F'B" be
filtered complexes in 4. Let F'f : F'A" — F'B’ be a filtered chain map. Then Cone(f") has an

induced filtration, where for all m,n € Z:
F™Cone(F f)" = F"A""' @ F"B"
and differential given by:

—Fmdt 0

Fmdg'one(F'f') -

Since all the maps involved preserve filtration degree, this makes sense. We in fact
have the following identification for all m € Z:
F"Cone(F ) = Cone(F"f")

Lemma 6.4.2. Let A be an abelian category with direct sums, and suppose F' f : FFA" — F'B
is a filtered chain map of filtered complexes. Then the chain map 1 : B — Cone(f") is a filtered

chain map.

Proof. For m,n € Z we have:

F™". 5 : F"B" — F™Cone(F )" = F"A" ' 9 F"B"

It is clear that 15 preserves filtration degree. O
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Lemma 6.4.3. Let A be an abelian category with direct sums and suppose F' f : FFA"— F'B

is a filtered chain map of filtered chain complexes in A. Then the projection chain map T :

Cone(f") — A[l] defined in Lemma is a filtered chain map.

Proof. For m,n € Z we have:

F™u : F"Cone(F f)" = F"A"" ! @ F"B" — F"mA"T!
It is clear that that "1, preserves filtration degree. O

Lemma 6.4.4. Let A be an abelian category with direct sums, let F'A" and F'B be filtered

complexes in A, and suppose F'¢ : FFA" — F'B’ is a strong filtered quasi-isomorphism as in

Definition Then F Cone(F'€) is strong filtered acyclic as in Definition

Proof. Let m € Z. Because F'¢ is a strong filtered quasi-isomorphism, F™"¢e : F"A" — F"B
is a quasi-isomorphism. By Lemma [6.2.6, Cone(F™¢’)" is acyclic. This is identified with
F™Cone(F'e)", so we have shown F"Cone(F'e’)" is acyclic. Since this holds for all m € Z,

F'Cone(F ¢’) is strong filtered acyclic. O

6.5 Inducing Filtered Maps

In this section I will proves lemmas corresponding to those of Section [6.3] but done

with filtered complexes.

Lemma 6.5.1. Let A be the category of abelian groups. Let F'A" and F' B’ be filtered complexes
in 4, and let F'e : FFA" — F'B" be an injective filtered quasi-isomorphism. Let n,m € Z and

suppose there are a" € F™A", bt e F"B™ 1 and b" € F"T1B", such that:

Fmgn(an) — Fmdg_l(bn_l) +bn

[ claim there exista"~' € F"A" 1 p"=2 c FmBn=2 " ¢ F"H1A" and b= € prtign—1

such that:

an :Fmdz—l(an—1)+dn
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Fmen—l (an—l) — bn—l +Fmdg—2(bn—2) +l')n—l
Fm+1£n(dn) +Fm+1dg—l(bn—1) —p"

Proof. Because F ¢ is a filtered quasi-isomorphism, gr'”*e : gr'A" — gr” B’ is a quasi-isomorphism.
Because F €' is injective, so is gr'”e’ by Lemma[6.1.5] On the mth graded part, we have the re-

lation:

gr"e" (@) = gr"d ! (b 1)

Since gr'e’ is an injective quasi-isomorphism, we can invoke Lemma|[6.3.1]to find a

a1 € gr'A"! and b"~2 € gr'B"~? such that:

gl”‘dz_1 (a1 =a"
gr’"e”_1 (F) =pr1 4 grmdg_z(m)

That is, "' € F"A" 1, p"~2 ¢ F"B"2 and there are d" € F"11A" and ! €
FmHlgn=1 guch that:

at = Fmdzfl(arhl) +dn

Fmgn—] (an—l) — bn—l _|_Fmdg—2(bn—2) +bn—]

From this we have:

Fmgn(an) — Fmdgfl(bnfl) +bn
FmS"(Fde_l(an_l)+dn) _ Fmdg—l (Fmg”_l(an_l) _Fmdg—Z(bn—Z) _bn—l) "
Fmsn(Fmdx—l(an—l)) _|_Fm+1£n(dn) — Fmdg—l(Fmen—l(an—l))

_Fmdgfl(Fmd11}72(bn72)) _Ferldgfl(bnfl) A
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FmEn(Fmdﬁ_l(an_l)) +Fm+18n(dn) — Fmen(Fde—l(an—l)) _Fm-i-ldg—l(bn—l) +p"
Fm+1£rl(dn) — _Fm—i—ldlr;—l(bn—l) +p"

Thus, we also have the third relation:

Ferlen(dn) +Fm+ldgfl<bn71) — pt

The Lemma below is related to Lemma 13.26.11 E] of [6]].

Lemma 6.5.2. Let A be the category of sheaves of abelian groups on a topological space X. Let
F A, FJ,and F'I be filtered complexes in A. Assume F'I" is strong filtered injective, bounded
below, and has a terminating filtration in each degree, as in Definition (1). Assume F'J
and F" A’ are exhaustively filtered, as in Definition[6.1.4|(4). Suppose we have the solid diagram
below:
e opr
>

FJ
F'e‘jJ\ /
FA

where F'€ is an injective filtered quasi-isomorphism, and F' f is a filtered chain map.

Then there exists a filtered chain map F’g making the diagram commute.

Proof. The proof is an inductive construction of F™g" for all m,n € Z. Because I' is bounded
below, there is a Ny € Z such that /" = 0 for all n < Ny. Define g" = 0 for n < Ny, and of course
we have F™g" =0 for all m € Z, n < Ny. Because F'I' has a filtration that terminates in each
degree, we have for all n € Z, there is a m, € Z, such that F"I" = 0 for all m > m,,. Define
F"g" =0 for all n € Z, m > m,. These definitions establish the basecase for what follows.
Now suppose there is an € Z and m € Z such that F"g"~1, Fg"=2 F"+1g" and F"t1g"—1 are

defined, satisfying the following relations:

3https://stacks.math.columbia.edu/tag/O5TY
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menfl — Fmgnfl OFmi_:nfl
Fmgnfl OFmd;l_2 — Fmd;z—Z oFmgth
Fm+lfn — Fm+1gn OFm+18n

Fm—l—lgn OFm—i—ld;t—l _ Fm+ld;1—l oFm—l—lgn—l

— Fm+1gn7 1

Fmgnil ’Fm+ljn—l
I must then choose F'g" such that the following relations are satisfied:
men — Fmgn OFmsn

FrngnoFmd;hl _ Fmd;zfl oFmgnfl

(F"g") iy = Frlgr

That is, Fg" must be chosen so that the following three diagrams simultaneously

commute:
mn "g" myn Fmn "g" Fmn Fmyn g Fmn
FJt —--=- » Fmre - rtJt e s FUJY - >
Frmgh o F’”d’}*q F”’d,"’lT incq inc;’]\
- Fm n—1 Fm+1 n
FmAn Fmyn—1 8 Fmpn—1 Frmtlgn g Frmtlm

We accomplish this via the diagram below:

g e . pmpn

S
T
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where in the above we define:

C — FmAn @Frnjn—l @Fm-FlJn
D = FaA" @lenfl EBFm+lIn
q) — lez @Fmgnfl @Ferlgn
Y= F"¢" — F"d} ' —inc}

vy =F"f"— F"d}~! —inc}

In order to show the quotient map ¢ is well defined, I must show ¢ (ker(y)) C ker(y).
It suffices to check this containment on the stalks. Let x € X. Suppose (a”, j"~!, j") € ker(ys).
That is, a" € F"A", j*~! € F"J'~! and j* € F™"'J", and we have the relation:

Fel(a") = F"d} ' (") + )"

I must show ¢,(a”, /"1, j*) € ker(y,). That is, I must show the relation:

FUfi(a") = Frdy = (F"gy ™ (") + F"gh(j")
Because of our given relation and the fact that F'e, : F"A, — F'J_ is an injective

filtered quasi-isomorphism in the category of abelian groups, we can apply Lemma[6.5.1]to find
aa" ' e FmA 2 c Pyl gt € FHIAM and 1 € FHLJ7 1 such that the following

relations hold:

a" :Fmdz;l(a”*1)+d”
FmS;_l(an_l) — jn—l _i_Fde‘—Z(jn—Z) +jn—1

Fm+18;l(dn) +Fm+ldyx—l (jn—l) ]n

‘We now have:

PP i) = P @) )
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= Fray (T )+ F )

— F"d)” L(Emgn =1 (Fmen=1(gn=1))) 4 Fmtlgn(pmtlgn(gn))

= PR Fg (T F ) 4 )+ e a))

= PP (P () P (P (PR ()
—l—Ferldn__l(Fm+1gZ 1(] ))_i_Ferlg;l(Ferlgn(dn))

= Fr (F () (P (F ()
TG () 4 g e (a)

:FdefI(Fmgnfl(jnf )+ Fmtlg Fm+1dn L(jP1)) 4 Pl gn(pmtlen ()

x(
= F"dy = (Fgy (") + F gl (")

The required relation has been shown, so we have the containment, ¢,(ker(yy)) C
ker(y,). Since this holds for all x € X, we have shown ¢(ker(y)) C ker(y). So the quotient
map 0 is well defined and makes the lower trapezoid commute. Since the arrow C/ker(y) <
F™J" is injective and F"'I" is an injective object, we can find a morphism F”'g" making the
upper trapezoid commute. Since all faces in the diagram commute, the perimeter commutes,
which implies the three required relations. We may now continue the induction and define
Fmgh: F"J" — F™[" for all m,n € Z. Since the filtration on F'J" is exhaustive, this defines
g +J —I'. Since the filtration on F"A’ is also exhaustive, the relation F"" f* = F™g o F™¢ for
all m € Z implies f* = g o€’. We have now shown there is a filtered chain map F"g" such that
Ff=FgoF¥¢.

O

The Lemma below is related to Lemma 13.26.10 E] of [6].

Lemma 6.5.3. Let A be the category of sheaves of abelian groups on a topological space
X. Let F'K be a filtered complex in A that is strong filtered acyclic as in Definition
and exhaustively filtered as in Definition (4). Let F'I' be a filtered complex in A that
is bounded below, strong filtered injective in each degree as in Definition [6.1.18| and whose
filtration terminates in each degree as in Definition (1). Let F'g : FFK° — F'I' be any

filtered chain map in A. Then F" g is filtered homotopic to zero.

“https://stacks.math.columbia.edu/tag/05TX
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Proof. We will define a family of filtered morphisms F'h" : F'K" — F'I"~! such that the fol-

lowing relation is satisfied for all m,n € Z:

Fmgn _ Fmd?fl o F™Mun +thn+l OFden(

Since I' is bounded below, there is a Ny € Z such that /" = 0 for all n < Ny. Define
F"h" =0foralln < Ng+1,m € Z. Because F'I" has a terminating filtration in each degree, for
every n € Z, there is a m,, € Z, such that F"[" = 0. Define F""h* =0foralln € Z, m > my_.
This establishes the basecase for the inductive construction. Now suppose there are m,n € Z,

such that F"h", F" 1" and F"+1 "+ are defined, and satisfy the following relations:
Fmgnfl — Fmd;l72 Othnfl +thn OFderéfl

Fm+1gn _ Fm+1d;171 OFm+lhn +Fm+1hn+1 OFerldIn(

thn|Fm+1Kn == Fm+1hn

I must construct Fh"*! so that the following relations are satisfied:

Fmgn _ Fmdyfl o F™i +thn+l oFden{

F’nhn+1‘Fm+1Kn+l — Fm+1hn+1

That is, F "' must make the two following diagrams simultaneously commute:

1
Frmgnt] prgn+l _FUHT pmn
FderéT \\\‘\\\\F\m\hiﬁrl incnk+1]\ ]\inc;‘
FMKE" 2 Fmn Fm+1Kn+l Fm+lln
FmgniFmd;’l*lothn Fm+lh)l+l

We can accomplish this via the diagram below:
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where in the above we define:

C=F"K" @Fm+1Kn+1
y=F"dg — inc"KJrl

(I) — (Fmgn _Fmd;zfl Othn) _Fm+lhn+1

In order to show the quotient map ¢ is well defined, I must show o(ker(y)) = 0. It
suffices to check this condition on the stalks. Let x € X, and suppose (k",k""!) € ker(y,). That

is, K € F™K", k"1 € F"T1 K1 and we have the relation:

Fmd[ré (kn) _ kn+l
I must show ¢, (k",k"+1) = 0, which is the relation:
Fmgﬁ(kn) — Fmd;j:l (h;l(kn)) + Ferlh;lJrl (kn+l)
Let k" denote the class of k" in gr'K". We have:

gr’dg (k") = k"1 =0

Because F'K; is strong filtered acyclic and Lemma|6.1.16] F'K, is filtered acyclic, so
gr'K;, is an acyclic complex. So we can find a k"1 € grK"~! such that gr"dy ' (k") = k"
That is, there is a ¥*~! € F"K"~! and a k" € F"™"'K" such that:

K= Fmd]ré;l(knfl) +kn
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Note we also have the relation:

F" g (k%) = Frdy (F™di ' (K1) + k) = F"dg (k") = k'

Now we have:

FUgi(K") = F"gy(F"di ' (K"~1) + k")
=F"dy = (F"gy ™ (kK"71)) + F" gl (k")
= Frdyt [Frdp 2 (F T () + Fr (P ()]
+ [Fm+]d" I(Fm-l-lhn(kn)) Fm+]h;+1 (Fm—Hd;z()c (kn))]
=F"d; " [F R (P (K1)
+ [Ferldn 1(Fm+lhn(kn)) +Fm+lhn+l(kn+l)]
= F"d} (F Ry (Fdi (K1) 4+ k7)) + F e (ke
= F"d; ' (F R (k")) + F™ e ()

The required relation has been shown, so we have ¢, (ker(y,)) = 0. Since this holds
for all x € X, we have ¢(ker(y)) = 0. Thus, the quotient map ¢ is well defined and makes
the lower triangle commute. We can then define F”"h"*! to be a morphism making the upper
right triangle commute, which exists because the arrow C/ker(y) < F™K"! is injective and
F™I" is an injective object. Since all faces in the diagram commute, the perimeter commutes,
which implies the required relations. We may now continue the induction to define F"™A" for all

m,n € Z, such that we have the following for all m, n:

Fmgn _ Fmd?fl o F™Mun +thn+l OFden(

thn’Fm‘*'lK'l — Fm+1hn

Because F K" is exhaustively filtered, this defines all of &' : K* — I', and we have the
relation g"* = d}l_l oh"+hto dg for all n € Z. We have now shown F g’ is filtered homotopic

to zero by filtered homotopy F /.
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The below is related to Lemma 13.26.11 E]of [6].

Lemma 6.5.4. Let A be the category of sheaves of abelian groups on a topological space X.
Let F A, F'J, and F'I' be filtered complexes in 4. We assume F'I' is bounded below, strong
filtered injective as in Definition[6.1.18} and has a filtration that terminates in each degree as in
Definition (1). Assume the filtrations on F'A" and F'J are both exhaustive. Suppose we

have the solid diagram below:

Fgi.F g

FJ ———— FT
F‘S'I /
Fr
FA

where F f is a filtered chain map, F'€ is a strong filtered quasi-isomorphism, and
F'g, and F' g, are two filtered chain maps that make the diagram commute. Then F'g| and F" g,

are filtered homotopic.

Proof. We can take the filtered cone, F"Cone(F€)". As was done in the proof of Lemma/|6.3.4]
we define the projection map, Yy : Cone(e') — J' to be the projection onto the second factor,
which is not a chain map in general. In this case we have y" is a filtered morphism for all n € Z,

where we have:

F™y": F"Cone(F )" = F"A"™ ' @ F"J" — F™J"

Define F'¢ : F'Cone(F'€) — F'J by the composition:

Fo =(Fg—Fg)oFy
It was shown in the proof of Lemma|[6.3.4]that ¢" is a chain map, and here it is clear
that F'¢ is a filtered chain map because it is a composition of filtered morphisms. Because

F'g is a strong filtered quasi-isomorphism, F'Cone(F€) is strong filtered acyclic by Lemma

Because F'A" and F'J' are both exhaustively filtered, so is F'Cone(F'e’). We can now

Shttps://stacks.math.columbia.edu/tag/05TY
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invoke Lemma [6.5.3]to obtain that F"¢" is filtered homotopic to zero by filtered homotopy F A’ :
F'Cone(F'e) — F'I[—1]. By Lemma we have the injective filtered chain map, F'1; :
F'J < F'Cone(F'e) from Lemmal[6.4.2] By Lemma|6.1.23] F'¢ o F'1; is filtered homotopic
to zero. But as was the case in Lemma we have F'¢ oF1;, =Fg —Fg,.

O

6.6 Bifiltrations

In this section I will define a bifiltered object and work out a few lemmas. Bifiltered

objects arise when one takes the tensor product of two filtered objects over a field.

Definition 6.6.1. Let A4 be an abelian category. A bifiltered object of 4 is an object A of
A and a collection of subjects FP9A of A, such that for all p,q,p’,q € Z, FP91AN FPaA =
Fmax(pp'):max(a.4) A \phere the intersection is taken inside of A. A morphism of bifiltered objects
F>f:F"A— FBisamorphism f :A — B in A4 such that f restricts to a morphism FP1f :
FP9A — FPAB forall p,q € Z. The category of bifiltered objects of A with bifiltered morphisms
is denoted BiFil(4).

Definition 6.6.2. Let A4 be an abelian category. A bifiltered complex of 4 is a bifiltered object
in the category Comp(A). That is, A" is a complex in 4 and for every p,q € Z, FPHA" is
a subcomplex of A'. For all p,q,p',q € Z, one has FPAA NFP4 A = Fmax(p.p)max(a.q) 4
where the intersection is taken inside of A'. A bifiltered chain map F>'f : F"A"— F"B" isa
morphism in the category BiFil(Comp(A)). That is, F~ [ is a chain map f : A" — B such that
[ restricts to a chain map FP4f : FP9A° — FPAB forall p,q € Z.

Definition 6.6.3. Let A4 be an abelian category with sums and let FA be a bifiltered object of
A. Then one can define the total filtration of A as follows:

F"A= Y FPiA
pt+gq=m

forall m € Z, where the sum is taken inside of the object A. In this way, any object of
BiFil(A) can be seen as an object of Fil(A), as well as any morphism in BiFil(A4). The terms
defined in Definition will apply to F> A if they apply to the total filtration of A, F'A.
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Definition 6.6.4. Let A be an abelian category and let F~A be a bifiltered object of 4. In
addition to the total filtration, we define the following two filtrations of A. The vertical filtration
of A is defined as follows, where for m € Z:

F'A= | Fr"A
peZ
The horizontal filtration of A is defined by:

FrA= | F™A
qeZ

Definition 6.6.5. Let A4 be an abelian category with sums and let F'A be a bifiltered object of
A. Then one can define the total filtration of A" as done in Definition where one sees A” as

an object in Comp(A4). In each degree n € Z, and for all m € Z, we have:

F"A"= ) FPaA"
p+q=m

Lemma 6.6.6. Let A be the category of abelian groups, and suppose FA is a filtered object of
A. Suppose there are elements x; € F™A fori=1,... k, with Zﬁ-‘zl x;i =0in A. Then for each i,
x; € FMiA, where M; = min({m; | j # i}).

Proof. Choose ani € {1,...,k}. We have:

=Yy e L Fma= A=t
J#o J#i

O]

Lemma 6.6.7. Let A be the category of abelian groups and suppose F > A is a bifiltered object

of A. Then for all m € Z, there is an exact sequence:

0—— P FMA—— P FrA —" F"A 0
p+q=m+1 ptg=m
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where T is the summation map, ®pig=mF"1A — Y, . FP1A, and Vis the sum of

the maps:

W4 FPA — FPMAQFPIIA xes (x,—)

That is, for (W) p1g=m+1 € B prg=m+1FP1A, we have:

(w)Pd = wPtha _ \,pq+l
forall p+q=m.

Proof. Abbreviate S =@, y—mi1 FPA and T =D, ,—,, F"7A. We have that 7 is surjective
by definition. It is also straightforward to show that im(1) C ker(w). Let (W), 4—m+1 € S.
Then:

n(t(w)) = Z yw)Pe = Z (WP — Pty =

ptq=m ptq=m

To show right exactness, it remains to show ker(w) C im(1). Let (W), 4—p €
ker(m) C T. There are only finitely many p, g such that w”? = 0, since w is an element of a direct
sum. So we may assume that (WP4), ;. = (WKTEm=k=1),_ . for some k € Z and n > 0. If
all w are zero we are done. Otherwise, because the sum is zero, there must be at least two non-
zero w values, hence n > 1. Suppose first that n = 1 and (WP9) 4 gy = (WEM K whTlm=k=1)

We have wkm—k 4 yktlm=k=1 _ o gq

Wk,m—k — _Wk+1,r11—k—l c Fk’m_kA ﬁFk-‘er—k—lA — Fk-‘rl,m—kA

By setting Vi 1m—k = ykm=k ¢ pktlm=kA in the (k+ 1,m — k) component of S, we

get:
LRy = (hmk ey = (whmmk bty = ()
So (w) €im(1) in the case n = 1. Now suppose (W), g—m = (W) i for
an> 1. Iwill reduce to the case (WP9) g = (WTm=K70),; . Consider whm—* € FEm=kA,
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I claim we have whm =% € FAF1m=k Tn the horizontal filtration, we have wkim k=i ¢ Fhk+i(A),
fori=0,...,n. Because Y7 ((wk™"=%=1) = 0 in A, we may invoke Lemma to get that
wkm=k ¢ FXH1A since min{k+i|i# 0} = k+ 1. Thus we have:

Wk,mfk c F}ichlA ka,mfk (A)

— ( U Fk+1,qA) ka,mfk(A)
qeZ

— U (Fk+17qA ka,mfk(A))
qgeZ

_ U Fk+17max(q7m—k)A
qel

— Fk+] 7l’l’l—qu

Set yktlm—k — \ km—k We have

1(Vk+1,m7k) — (Wk,m7k7 _Wk,mfk) e Fk,mka @Fk+1,m7k71A

Let () = (w>) —1(v**1/=%) "and note that W% = 0. Therefore:

(k+1)+i,m7(k+l)7i)

(Wp’q)p-i-q:m = (W i=0,....,n—1

Thus, by using (w"") in place of (w""), we reduce to the case where (w"') has at most
n— 1 non-zero components. With this reduction we are done, and we have shown ker(w) C

im(1).

At this point we have shown that the sequence is right exact. To show left exactness
we show 1 is injective. Suppose (W) 4 g—m+1 € ker(1). I must show w’? = 0 € FPA for all

p+q=m+1. For p,q € Zwith p+ g = m, we have:

1(W)p7q = wPtla _\,patl — g c FPag

since 1(w) = 0, so we have the relation wP*14 = wP4*! for all p +¢ = m. Thus by

transitivity, (w”?) , 1 g—m+1 has the same entry for each component. But since only finitely many
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terms are nonzero, this forces w”? = 0 for all p+q = m+ 1. Thus, (W), s—m+1 =0, and

we have shown 1 is injective. Now left exactness is shown as well, so the sequence is exact.

O]

Corollary 6.6.8. Let A be the category of sheaves of abelian groups on a topological space X,

and let F'~ A be a bifiltered object of X. Let m € Z. Then there is an exact sequence:

0—— & FrA—— P FrA —"» F"A

ptg=m+1 ptg=m

where 1 and T are as defined in Lemma

Proof. Let x € X. We have the following sequence of abelian groups:

0— P FPA, —— P FPIA, —— F"A,
pHg=m+1 p+q=m

By Lemma [6.6.7] this sequence is exact. Since the sequence

0— & FMA—— P FP9A —"— F"A
ptHq=m+1 ptg=m

18 exact on all stalks, it is exact.

O]

Corollary 6.6.9. Let A be the category of sheaves of abelian groups on topological space X.

Let F'"A" be a bifiltered complex in 4. Then for all m € Z we have the exact sequence of

complexes in A4:

0— P FrAa —— P Fria " Fra
pHq=m+1 p+q=m

113



Proof. For each n € Z we have the following exact sequence from Corollary

0—— @ Fraa" o P Fria" T Frar 0
prg=m+1 p+g=m

Because m and 1 are both naturally chain maps, the result is shown.

O]

Definition 6.6.10. Let A4 be an abelian category and let F'" A" and F' B’ be bifiltered complexes
of 4. A strong bifiltered quasi-isomorphism from F"A" to F'" B’ is a bifiltered chain map F ¢ :
FA — F7' B such that FP9¢ : FP9A — FP9B is a quasi-isomorphism for all p,q € Z.

Lemma 6.6.11. Let A be the category of sheaves of abelian groups on a topological space
X, let F"A" and F' B’ be bifiltered complexes in 4, and let F"€ : F"A" — F'B be a strong
bifiltered quasi-isomorphism. Then F'€ : F'A" — F'B’ is a strong filtered quasi-isomorphism,

where F~ denotes the total filtration.

Proof. Letm € Z. By Corollary [6.6.8] the rows in the diagram below are exact:

b @ et @ T
p+gq=m+1 p+g=m
leaqu:mﬂ Frie l@ﬂ‘*’q:m Fprdg Fe
00— @ Frag ‘B @ prag " pmp 0
P+q:m+1 prq=m

and the squares are commutative. Since direct sums of quasi-isomorphisms are quasi-
isomorphisms, the left and middle downward arrows are quasi-isomorphisms. Hence, so is
the third. Since F™e is a quasi-isomorphism for all m € Z, we have F'¢ is a strong filtered

quasi-isomorphism.
O
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6.7 Tensor Products

For the entirety of this chapter I will assume the tensor product preserves subobject

relations. That is, if A — C and B — D are injections, then I assume we have the injection:

ARB—C®D

In other words I make the assumption that & is exact. This will be true when we are

working in the category of sheaves of k vector spaces on a topological space X, for k a field.

Definition 6.7.1. Let A be an abelian category with exact tensor product and sums. Let F"A

and F’B be two filtered objects of A. Then one induces a filtration on A ® B as follows:

F"(A®B)= ) FPAQF‘B
ptrq=m

The sum above takes place inside of A® B. Note because we have assumed  is exact,

we have FPA ® F4B is a subobject of AQ B for all p,q € Z.

Definition 6.7.2. Let A be an abelian category with exact tensor product and sums. Let F'A°
and F'B" be two filtered complexes in A. Then one induces a filtration on the total complex

Tot (A" ®B') as follows:

F'"Tot (FA®FB)= Y, Tof (FPA ®FIB)
ptrgq=m

In each degree, one has:

F'"Tot"(FA ®QF B) = @ ( ) FPAP’®Fqu’>

p+q'=n \Ptq=m
Lemma 6.7.3. Let A be an abelian category with exact tensor product and sums, and suppose
F A and F'B are filtered objects of A with terminating filtrations. Then the induced filtration
on F'(F'A® F’B) terminates.

Proof. There is a m; € Z such that F""A = 0 for all m > m,, and there is a m; € Z such that
F™B =0 for all m > my. I claim the filtration on F"(F'A ® F'B) terminates at m; + mp. We

have:
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F"t™(FAQFB)= Y  FPAQFIB

pt+q=mi+my
— Z Fm1+iA ®Fm27iB
i€eZ

=Y (F"HAQF™ 'B)+ Y (F""A®F™'B)

i>0 i<0
=Y (0®F™B)+ Y (F"YA®0)=0
i>0 i<0

O]

Lemma 6.7.4. Let A4 be an abelian category with exact tensor products and sums, and sup-
pose F'A" and F B’ are filtered complexes whose filtrations terminate in each degree, and A’
and B’ are either both bounded below or both bounded above. Then the induced filtration on

F (Tot (FA"® F'B’)) terminates in each degree.

Proof. Letn € Z. Since we have assumed that A" and B are either both bounded below or both
bounded above, there are only finitely many p,q € Z with p + g = n that satisty A” # 0 and
B? # 0. Because F'A" and F'B have terminating filtrations in each degree, for each of these
finite values for p and ¢, there are m, € Z and m’q € Z such that F"?AP = 0 and F"4B4 = 0.
Because there are only finitely many m,, and mj,, we may set M = max ({m,,my|p+q=n, AP #
0, BY # 0}). That is, we choose M large enough so that F¥A? = 0 and FMB7 = 0 for all
p+q = n with A? =£ 0, B¢ # (0. We then have:

FMTot"(FA @F B) = Y  FAPgF/B
i+j=2M, p+q=n
= )Y F"ArgFMiBl
i€Z, p+q=n
— Z (FM+iAp®FM_qu)+ Z (FM+iAp®FM—qu)
i>0, p+g=n i<0, p+g=n

= Y (OeF" B+ )Y (FMAP®0)=0
i>0, p+g=n i<0, p+g=n
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So the filtration on F'Tot (F'A’ ® F'B’) terminates in each degree. O

Lemma 6.7.5. Let A be an abelian category with exact tensor product and sums, and suppose
F'A and F'B are filtered objects of A whose filtrations begin. Then F'(A ® B) has a filtration
that begins.

Proof. There are m;,m, € Z such that F™A = A and F"2B = B. Thus:

ARQB=F"AQF™BC Y  FPAQFIB=F"""(A®B)
prg=mi+nm;

Thus F™*"™(A® B) = A® B, so the filtration on F" (A ® B) begins. O

Lemma 6.7.6. Let A be an abelian category with exact tensor product and sums, and let F°A’
and F'B’ be filtered complexes in A whose filtrations begin in each degree and are either both
bounded above or both bounded below. Then the filtration on F Tot (A° ® B') begins in each

degree.

Proof. Let n € Z. Because A" and B’ are either both bounded above or both bounded below,

there are only finitely many non-zero terms in the direct sum below:

Tot"(A ®B)= P AP @B
p+q=n

For all p € Z there is an i, € Z such that F AP = AP, and for all g € Z there is a
Jq € Z such that FJaB? = B4, Set:

M = min{ip, j, | A” # 0 and BY # 0}

We then have:

Tot"(A ®B) = @ A’ @B?
p+q=n
= P F*A’®@F/B1
p+q=n
C p FMa?eF"B1
p+q=n
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C FMTot"(A' @ B)

So the filtration on F " Tot (A° ® B’) begins in each degree. O

Corollary 6.7.7. Let A be an abelian category with exact tensor product and sums. Let F'A
and F'B be two finitely filtered objects of 4. Then F' (A ® B) is finitely filtered.

Proof. Follows from Lemmas and O

Corollary 6.7.8. Let A4 be an abelian category with exact tensor product and sums. Let F"A" be
a finitely filtered complex in A. Then for all k > 1, F Tor (F A )¥) is finitely filtered.

Proof. Inductive application of Corollary O

Corollary 6.7.9. Let A be an abelian category with exact tensor product and sums. Let F'A’
and F'B’ be two filtered complexes in A that are finitely filtered in each degree, and either both
bounded above or both bounded below. Then F' (A" ® B') is finitely filtered in each degree.

Proof. Follows from Lemmas and O

Lemma 6.7.10. For simplicity, let A be the category of sheaves of k vector spaces on a topo-
logical space X. Let F'A and F'B be two filtered objects of A with exhaustive filtrations. Then
the induced filtration on F'(F'A ® F’B) is exhaustive.

Proof. 1 must show A® B C U,,czF™(F'A® F'B). This containment may be checked on the
stalks. Let x € X. I claim Ay ® By C UyczF™(F' Ay @ F'B,). Let z € A, ® B,. We can write
z= ):le a; ® b;, for a; € A, and b; € B,. Since the filtrations on F"A, and F' B, are exhaustive,
there are m; € Z and m} € Z such that a; € F™ A, and b; € F mng. Since there are only finitely
many m;,m,, we may set M = mini-;l(m,') and M' = mini-‘:l(m;). Since each a; € F¥A and
b; € FM B, we have z € FMA, @ FM'B,. Thus, z € F¥™M (F'A,® F'By). Since z was an arbitrary
element of A, ® By, we have shown Ay ® By C U,,czF"(F Ay ® F'By). Since this containment
holds for all x € X, we have shown A® B C UpezF"(FFA®Q F'B). Thus F (FFA® F'B) is

exhaustively filtered.
O
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Lemma 6.7.11. For simplicity, let A be the category of sheaves of k vector spaces on a topo-
logical space X. Let F'A" and F' B be filtered complexes in A that are exhaustively filtered as
in Definition (4). Then F'Tot (F'A" ® F'B’) is exhaustively filtered.

Proof. Let n € Z. 1 must show Tot"(A" ® B') C UezF™Tot"(F'A'® F'B’). For each p,q €
Z with p+q = n, we have F'A” and F'B? are exhaustively filtered. By Lemma we
have A? @ B! C Uz F™(F'A? @ F'BY) C UpezF"Tot"(F'A"®@ F'B’). Since Tot"(A"®B') =
®ptq=nAP @ B4, this shows Tot"(A" @ B') C UpezF"Tot"(F'A'® F'B’). Thus F'Tot (FA" ®
F'B’) is exhaustively filtered in each degree. ]

Corollary 6.7.12. Let A be the category of sheaves of k vector spaces on a topological space
X, and suppose F'A and F'B are two inductively filtered objects of A as in Definition (6).
Then F'(F'A® F'B) is inductively filtered.

Proof. By Lemma [6.7.3] F'(F'A® F’'B) has a terminating filtration, and by Lemma [6.7.10}
F'(F"A® F'B) has an exhaustive filtration. Thus, F'(F'A ® F’B) is inductively filtered. O

Corollary 6.7.13. Let A be the category of sheaves of k vector spaces on a topological space
X, and suppose F'A" and F'B’ are inductively filtered in each degree, with A" and B’ either both
bounded below or both bounded above. Then F Tot (F'A" ® F'B’) is inductively filtered.

Proof. Because F"A" and F' B both have filtrations that terminate in each degree, and A" and B’
are either both bounded below or both bounded above, we may apply Lemma to obtain
that the filtration on F Tot (F"A" ® F'B’) terminates in each degree. Since the filtrations on F"A’
and F'B’ are both exhaustive, the filtration on F'(F'A’ ® F'B’) is exhaustive by Lemma
Thus, the filtration on F ' Tot (F'A" ® F'B’) is inductive in each degree. O

The two Lemmas below are elementary.

Lemma 6.7.14. Let k be a field and V a k vector space. Suppose {v;}icy is a linearly indepen-
dent subset of V. Let J,K C I. Then we have equality of subspaces of V :

Span(v;)icy N Span(vi)ick = Span(vi)icjnk
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Proof. The containment Span(v;);cjnx C Span(v;);es N Span(v;);ex is clear. Suppose:

w € Span(v;)ies N Span(v;)ick

Then there are ¢; € k and d; € k such that:

w= Zcivi = Z div;

ieJ icK

Thus we have:

0=Y cvi+ Y (ci—divi+ Y, —dwi

ic]\K i€JNK ic]\K
Since {v;}ie is a linearly independent subset of V, this implies ¢; = 0 for i € J\K,
ci=d;fori e JNK, and d; = 0 for i € J\K. Thus w = Y;c;nk civi € Span(v;)iejnkx and this
completes the proof.

O]

Lemma 6.7.15. Let k be a field, V,W k vector spaces, and let A,C CV and B,D C W be
subspaces. Then we have the equality of subspaces of V QW :

(A®rB)N(C®¢ D) = (ANC)® (BND)

Proof. Let {v;}icr, be abasis for ANC. Let {v; }ic;, be a basis for a complement to ANC inside
of A. Let {v;}ick, be a basis for a complement to AN C inside of C. Then {v;}icz,uy, is a basis
for A and {v;}icr,uk, is a basis for C. Similarly let {w; };cz, be a basis for BND. Let {w;}icj,
be a basis for a complement to BN D inside of B. Let {w;}ick, be a basis to a complement to
BN D inside of D. Then {w; }icr,us, is a basis for B, and {w; }icr,uk, is a basis for D. We have

the basis for (ANC) ® (BN D):

Bancysnp) = {vi®w; i€ Li,j € Ly}

The following is a basis for A ® B:

Paws ={viow; i€ LiUJ,j€L,Ul}
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And the following is a basis for C ® D:

Beop = {view; |i€ LiUK;,j € LUKy}

By Lemma|6.7.14] we can compute a basis for (A® B) N (C® D) as:

Bsr)ncep) = Bazs NPcsep

:{V[®Wj|l'€L1,j€L2}

= Banc)s(Bnp)

Since this set is a basis for both (ANC) ® (BN D) and (A® B) N (C ® D), it follows
(ANC)® (BND) = (A®B)N(C®D).
O

Corollary 6.7.16. Let k be a field, X a topological space, and suppose F,G are sheaves of k
vector spaces on X, with A,C C F and B,D C G subsheaves. Then we have the equality of
subsheaves of F Q G:

(A B)N(C® D)= (ANC)®¢ (BND)
Proof. Let x € X. Then A,,Cy C F, and By, D, C G, are subvector spaces. By Lemma [6.7.15]

we have:

(Ax @1 By) N (Cy ®x Dy) = (AxyNCy) @k (ByNDy)

Since this holds for all x € X, we have the required equality of sheaves. O

Lemma 6.7.17. Let k be a field, and let A = Shy(X), the category of sheaves of k vector spaces
on a topological space X. Let F'A and F' B’ be filtered objects of A. Let C = ARy B. Then F"C

is a bifiltered object, where one defines:

FPAC = FPA®; FIB
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Proof. 1t is clear that FPA ®; FYB is a subobject of A ®; B for all p,q € Z. Let p,q,p’,.q' € Z.

It must be shown that:

(FPA@ FIB) N (FP A @y F1 B) = F™(PP) A @, Fmax(a:4) B

By Corollary we have:

(FPA® FIB)N (FP A@y F9B) = (FPANF? A) @ (FIBNFYB)
— Fmax(pr) g @, Fmax(a.4) g

Thus, FC is a bifiltered object.
O

Lemma 6.7.18. Let k be a field, X a topological space, and let A = Shy(X). Let F'A', F'B,
F'J, and F K be filtered complexes in 4, with F'e¢ : FA"— FJ and F'y : FFB — F' K two

strong filtered quasi-isomorphisms. Then:

F*(FeyFY):F'Tot(FA Qi FB)—F Tot (FJ QFK)
is a strong bifiltered quasi-isomorphism as in Definition[6.6.10}
Proof. Let p,q € Z. Since F'¢ and F'y are both strong quasi-isomorphisms, FPe : FPA" —
FPJ and Fiy : F1B° — F1K' are both quasi-isomorphisms. By Lemma|3.2.16, we have:
Tot (FPe @i Fly) : Tot (FPA" @y FIB") — Tot (FPJ ®; F1K")

is a quasi-isomorphism. Since the above chain map is precisely F”4(F'e ®; F'y) and
p,q € Z were arbitrary, this shows that F"(F'€ @ FY) is a strong bifiltered quasi-isomorphism.
O

Corollary 6.7.19. Let k be a field, X a topological space, and let A = Shy(X). Let F'e : F'A" —
FJ and F'y : FFB — F K be strong filtered quasi-isomorphisms of filtered complexes in 4.
Then
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F(Fe @ Fy):FTot (FA®QyFB)— FTot(FJ QFK)
is a strong filtered quasi-isomorphism.

Proof. We have F'(F'& ®; F'Y) is precisely the total filtration of the bifiltered chain map,
F>(F€ ® Fy), which was shown to be a strong bifiltered quasi-isomorphism in Lemma
Since F"(F'e ®; F'y) is a strong bifiltered quasi-isomorphism, we have F'(F'€ ®x
F'y) is a strong filtered quasi-isomorphism by Lemma and this is what we wanted to
show. O

Corollary 6.7.20. Let k be a field, X a topological space, and let A = Shy(X). Let F'e : F'A" —
F'J and Fy : F'B — F K’ be strong filtered resolutions in the sense of Definition|6.1.20} Then.:
F(Fe@Fy): FTot (FA®FB)— FTot (FJ @& FK)

is a strong filtered resolution.

Proof. Because F'e and F'y are both strong filtered quasi-isomorphisms, F'(F'& @i F'y) is
a strong filtered quasi-isomorphism by Corollary And since € and 'y are both injective
in each degree, € @,y : Tot (A" ®x B') — Tot (J' ® K') is injective in each degree by Lemma
(1). Thus, F'(F'€ @ F'Y) is a strong filtered resolution. O

Corollary 6.7.21. Let k be a field, X a topological space, and let A = Shy(X). Let F'e : F'A" —
F'J be a strong filtered resolution and let k > 1. Then:

FTor (Fe)¥): For (FA)N) = FTor (FJ)K)
is a strong filtered resolution.

Proof. Inductive application of Corollary O

6.8 Filtered Injective Resolutions

This section will be concerned with the existence of filtered injective resolutions in

abelian categories that have enough injectives. Because the lemmas of Section [6.5]are able to
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make claims with filtrations that aren’t necessarily finite in each degree, it may be useful to
develop this section with the same generality if possible. For now I just cite lemmas from [6]],

which stay within the context of complexes that are finitely filtered in each degree.

The below is from Definition 12.16.3 El of [6].

Definition 6.8.1. Let A4 be an abelian category. A morphism f : A — B of filtered objects in A
is said to be strict if f(F'A) = f(A)NF'Bforalli€ Z.

The following is Lemma 13.26.2fr0m [6]. Recall Fil/ (A) is the category of finitely
filtered objects of 4.

Lemma 6.8.2. Let 4 be an abelian category. An object I of Fil’ (A) is filtered injective (as in
Definition if and only if there exist a < b, injective objects I,, a < n < b of A and an

isomorphism I = @< <ply, such that FPI = @©,> 1.
We have the following corollary.

Corollary 6.8.3. Let A be an abelian category and let F'I be a finitely filtered object of A that

is filtered injective. Then F'l is strong filtered injective, and I is injective.

Proof. Let a,b and I, be as in Lemma|[6.8.2] and let p € Z. We have FPI = @ >, is a finite
direct sum of injective objects, and hence, is injective. In the case p = a we have I = F?I is an

injective object. O

Corollary 6.8.4. Let A be an abelian category, let F'A" and F'I' be filtered complexes in A that
are finitely filtered in each degree and suppose F'€ : F'A" — F'I is a filtered injective resolution

as in Definition Then F'€ is a strong filtered resolution as in Definition[6.1.20)and € is
an injective resolution as in Definition|3.2.15

Proof. Because F'¢ is a filtered quasi-isomorphism of complexes that are finitely filtered in
each degree, we have by Corollary [6.1.13] that F¢ is a strong filtered quasi-isomorphism and
€ is a quasi-isomorphism. Because F'I" is filtered injective in each degree and finitely filtered

in each degree, we can apply Corollary in each degree to get that F'I' is strong filtered

Ohttps://stacks.math.columbia.edu/tag/0123
7https://stacks.math.columbia.edu/tag/05TP
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injective in each degree and I' is injective in each degree. We have by hypothesis that I is
bounded below, and that € is injective in each degree. At this point we can conclude by the

definition that F"¢ is a strong filtered injective resolution and € is an injective resolution. [
The below is Lemma 13.26.5 [ﬂfrom [6].

Lemma 6.8.5. Let 4 be an abelian category with enough injectives. For any object A of Fil! (ﬂ)

there exists a strict monomorphism A — I where I is a filtered injective object.
The below is Lemma 13.26.6ﬂfr0m [6l.

Lemma 6.8.6. Let 4 be an abelian category with enough injectives. For any object A of Fil! (1)
there exists a filtered quasi-isomorphism A[0] — I' where I' is a complex of filtered injective

objects with I'" =0 for n < 0.
The below is Lemma 13.26.9from [6].

Lemma 6.8.7. Let 4 be an abelian category with enough injectives. For every K' € K+ (Fil/ (4))
there exists a filtered quasi-isomorphism K~ — I with I' bounded below, each I"* a filtered in-

Jjective object, and each K" — I'* a strict monomorphism.

It should be noted that in [[6], being finitely filtered in each degree is part of the
definition of being filtered injective, and so in the above F'I" is finitely filtered in each degree

as well.

6.9 Hom and Resolutions

Definition 6.9.1. Let A be an abelian category, and let F'A and F'B be filtered objects of A.

We can induce a filtration on Hom(A, B) as follows, where for all m € Z, we define:

F™Hom(F A,F B) = {f € Hom(A,B) | f(F'A) CF"""B, Vic Z}

That is, for each i € Z, f restricts to a morphism F'f : F'A — F'"™B. Note that a
filtered morphism F' f : F'A — F'B is an element of F’Hom(F"A,F'B).

8https://stacks.math.columbia.edu/tag/05TS
9https://stacks.math.columbia.edu/tag/O5TT
10 ttps://stacks.math.columbia.edu/tag/O5TW
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Lemma 6.9.2. In the case that A is not a filtered object of A we can give A the trivial filtration
of F* = A and F'A = 0. In this case we have:

F"Hom(A,F B) = Hom(A,F"B)

Proof. Let f € F™Hom(A,F'B). Then we have f(F°A) € f(F™B), and since F°A = A, this
shows f € Hom(A,F"B). Now suppose f € Hom(A,F"B). Leti € Z. For i > 0, we have
F'A =0, and we trivially have f(F'A) C F™*(B). For i < 0 we have:

f(F'A) = f(A) CF"BC F™"B

So we have f € Hom™(A,F B). At this point we have shown the equality of sets,
F"™Hom(A, F'B) = Hom(A,F"B).
O

Definition 6.9.3. Let 4 be an abelian category, and let F'A" and F'B’ be filtered complexes in

A. Then one may induce a filtration on Hom (A", B’) as follows, where for m,n € Z:

F"Hom"(F'A",F'B') = [ [ F"Hom(F A',F B*")
ieZ

where F"Hom(A', B™™) is defined in Definition Thatis, if f € F"Hom" (A", B),

we have f': A" — B"" forall i € Z, and for all j € Z:
fi(Fin) - Fj+mBi+n
Corollary 6.9.4. Let A be an abelian category, let A° be a complex in 4, and let F'B" be a
filtered complex in A. Give A’ the trivial filtration with F°A" = A" and F'A" = 0. Then for all
m € Z we have:
F"Hom (A',F'B') = Hom (A',F"B")
Proof. For all m,n € Z we have:
F"Hom"(A',F'B') = [ [ F"Hom(A",F B™*")
icZ
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= HHom(Ai,FmBi+") By Lemma[6.9.2]
icZ

=Hom"(A',F"B’)

O]

Lemma 6.9.5. Let G be a finite group, A a commutative ring, and let A, B, and C be AG
modules. Let G act diagonally on Homa(B,C) and A @a B. Then the adjoint isomorphism ®
from Lemma is a filtered isomorphism. That is, F"® and F"® are filtered morphisms.

Proof. Letm € Z and f € F"Hompg(F (A® B),F'C). I must show:

®(f) € F"Hompg(A,Homu (B,C))

Leta € FiA and b € F/B. Note a® b € F'"/(A® B). We have:

P(f)(a)(b) = fla®b) € FT"C

Since ®(f)(a) € Homa(B,C) and b € F/B was arbitrary, this shows

®(f)(a) € F™""Homu (B, C)

Since a € F'A was arbitrary, we have shown:

®(f)(F'A) C F™ "Homu(B,C)

Thus, ®(f) € Hom™(A,Homx (B,C)). Since m € Z was arbitrary, this shows F'® is

a filtered morphism.

The argument for showing ®~! is a filtered morphism is similar. Let

g € F"Homg(A,Homx(B,C)), a€F'A, beF'B

Then we have: @ !(g)(a®b) = g(a)(b). We have g(a) € F"Homy(B,C), so
g(a)(b) € F"HHIC. This shows ®~!(g)(F*/(A®B)) C F"H*IC. Thus,
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& !(g) € F"Hompg(A®B,C)
and this shows ®~! is a filtered morphism as well. O

Corollary 6.9.6. Let G be a finite group and A a commutative ring. Let A, B, and C" be
complexes of AG modules. Then the adjoint isomorphism ® from Lemma [3.1.5]if a filtered

isomorphism of filtered complexes.
Proof. Follows from Lemma[6.9.5] O
Corollary 6.9.7. Let G be a finite group, and A a commutative ring. Let F'A', F'B', and F C
be filtered complexes of AG modules. Suppose we have the following filtered chain maps in
rcMod:

Ff,Fg:FA — FHom,(FB,FC)

that are filtered homotopic by filtered homotopy:
F'h:FA — FHompy(FB,FC)[—1]

By Corollary[6.9.6) we have the filtered chain maps in acMod:
Fo '(f),F® Y (g): FToft(FA®FB)—=FC
1 claim these filtered chain maps are filtered homotopic by the filtered homotopy:
FO ' (Fh):FTot(FA®FB)— FC[-1]

Proof. We already have that f* and g are homotopic by homotopy ®~! (/') by Lemma
So it suffices to show that ®~!(/) is a filtered morphism. Since /" is a filtered morphism, we

have:

F'i' € F'Hom, . (F'A",F Hom(F B ,F C'))

Since F'®- is a filtered chain map, we have:
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F & '(h) € F'Hom,,(F Tot (FA @\ F B),FC)
Thus &~ (/') is a filtered morphism, and we have shown F'®~!(f") and F'®~!(g")

are filtered homotopic.

O]

For the remainder of this section the filtration on the left argument of Hom is assumed

to be trivial.

Lemma 6.9.8. Let 4 be an abelian category, let A be an object of A, and let F'B be a fil-
tered object of A with a terminating filtration. Then the induced filtration on F'Hom(A,F’B)

terminates.

Proof. Let k € Z such that F"B = 0 for all m > k. Then for all m > k:

F"™Hom(A,F'B) = Hom(A, F"B) = Hom(A,0) =0
O

Lemma 6.9.9. Let A be an abelian category and let A" be a bounded above complex in 4, and
let F' B be a filtered complex in A whose filtration terminates in each degree, and B' is bounded

below. Then F"Hom (A',F'B’) has a filtration that terminates in each degree.

Proof. Letn € Z. By Lemma[3.2.18§] there are only finitely non-zero terms in the product below:

Hom"(A",B') = [ [Hom(A',B"")
i€eZ
So for each n, there is a k,, and /,, such that:

Hom”(A',B') _ H Hom(Ak”+i,Bk"+i+")
i=0,...,In

Because F'B’ has a filtration that terminates in each degree, for each i there is a

My, +in € Z such that F/BA+47 = 0 for all j > my, ;1. Set:

M, = cmax. mp, iin

1=0,..50n
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This ensures F/B**#" =0 forall j > M, andi=0,...,I,. For all j > M,, we have:

F/Hom" (A ,F' B) = H Hom(Akn-‘ri’FjBkn-i-i-i-n)
i=0,.

Thus, the filtration of F"Hom" (A", F'B’) terminates at M,,. Since n € Z was arbitrary,

we have shown the filtration of F"Hom (A", F'B’) terminates in each degree.

O

Lemma 6.9.10. Let A be an abelian category, V a projective object of 4, and F'B a filtered

object of A. For all m € Z, we have a natural isomorphism:

gr'"Hom(V,F'B) = Hom(V, gr'" B)
Proof. We have the exact sequence:

0— F"™1B% F"B 5 orB — 0

Because V is projective, we obtain the exact sequence:

0 — Hom(V, F™*'B) =5 Hom(V, F"B) =5 Hom(V, gr"B) — 0

Hence:

Hom(V, gr’"B) = Hom(V, F"B) /Hom(V, F" "' B) = e’"Hom(V, F'B)
O

Lemma 6.9.11. Ler 4 be an abelian category with products, let A" be a complex in A, and let
F'B be a filtered complex in 4. Then for allm € Z,n € Z we have the identity:
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gr"Hom" (A", F'B') = [ | ¢7""Hom(A',F B""")
ieZ

Proof. We have:

gr"Hom"(A',F'B') = g’ [ [Hom(A', F"B"*")

ieZ
icZ ieZ
— H (H0m<Ai7FmBn+i)/Hom(Ai7Fm+an+i))
ieZ
- ng’"Hom(Ai, F'B™™)
icZ

O]

Lemma 6.9.12. Let A be an abelian category, let V. be a complex in in A that is projective in

each degree, and let F' B’ be a filtered complex in 4. Then for all m € Z we have:

g""Hom (V.,F'B") = Hom'(V.,gr"B’)

Proof. Letn € Z. Starting with Lemma |[6.9.11] we have:

gr'"Hom"(V.,F'B’) = ng’”Hom(Vi, F'B"™)

i€eZ
= [ [Hom(V;, gr’"B" ) By Lemma
ieZ

= Hom"(V.,gr"B")

O]

Definition 6.9.13. Let X be a topological space, A be a commutative ring, and G a finite group.
Suppose FA is a filtered object in Sha(X), and let M be a finitely generated AG module. Recall
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the object Homp (M,A) in Shag(X) from Definition Then we may induce a filtration on

this object as follows, where form € Z:

F"Homy (M,F'A) = Homy (M,F"A)
One could also give a definition for when M is a filtered object as in Definition
Definition 6.9.14. Let X be a topological space, A a commutative ring, and G a finite group.
Let M. be a complex of AG modules and F°A’ a filtered complex in Sha (X ). We have the complex

Hom), (M.,A") in Shag(X) from Definition[3.2.7) We may induce a filtration on this complex as
follows, where form € Z:

F"Homy (M.,F'A") = Hom), (M.,F"A’)
One could also give a definition for when M. is a filtered complex, as was done in

Definition[6.9.3]

Lemma 6.9.15. Let X, A, and G be as in Definition let M be a finitely generated pro-
Jective AG module, and let F'A be a filtered object in Sh(X) whose filtration terminates. Then

F'Homy (M, FA) has a terminating filtration.
Proof. Proof is the same as that of Lemma[6.9.8] O

Lemma 6.9.16. Let X, A, and G be as in Definition let M. be a (lowered index) bounded
below complex of finitely generated AG modules. Let F'A" be a filtered complex in Sha(X) that
has a terminating filtration in each degree and A" is bounded below. Then F Hom) (M.,F'A")

has a terminating filtration.

Proof. Proof is the same as Lemma [6.9.9] but cite Corollary [3.2.20|instead of Lemma[3.2.18|to

get that there are only finitely many non zero terms in the product below for each n € Z:

Hom} (M.,A") = HHomA(Mi,A”’i)
ieZ
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Lemma 6.9.17. Let X, A, and G be as in Definition Let V be a finitely generated
projective AG module, and let F'A be a filtered object of Sha(X). Then for all m € Z, we have

a natural isomorphism:

gr'"Homy (V,F'A) = Homy (V,gr"A)

Proof. The steps are identical to the proof of Lemma [6.9.10] but with Hom, used in place of
Hom. [

Lemma 6.9.18. Let X, A, and G be as in Definition Let M. be a complex of finitely AG
modules, and let F" A" be a filtered complex in Sha(X). Then for all m,n € Z we have:

gr"Hom}y (M., F'A") = [ ] g Hom/) (M;, F A" ")
ieZ

Proof. Steps are the same as the ones used in the proof of Lemma[6.9.11] O

Lemma 6.9.19. Let X, A, and G be as in Definition Let V. be a complex of finitely
generated projective AG modules, and let F'A" be a filtered complex in Sha(X). Then for all

m € Z, we have the natural isomorphism of complexes in Shag(X):

gr"Hom) (V.,FFA") = Hom, (V.,gr"A’)
Proof. The same steps used in the proof of Lemma[6.9.12] work here as well. O

Lemma 6.9.20. Let X be a topological space, k a field, and G a finite group. Let F'€¢ : F'A" —
F'I' be a strong filtered injective resolution in Shy(X), as in Definition That is, FFA’
and F'I' are filtered complexes in Shy(X), F'I' is bounded below, has a terminating filtration
in each degree, is strong filtered injective in each degree, and F'€ is an injective strong fil-
tered quasi-isomorphism. Let V. be a projective resolution of k in ycMod, finitely generated in
each degree, with surjective quasi-isomorphism w. : V. — k[0].. We have the filtered complex

F'Hom, (V.,F'I'). Define the filtered chain map:

Fv:FA = FHom(k[0],FA) — FHom,(V,FT)
to be the map induced by precomposition with . and postcomposition with F"€'. Then

F'v is a strong filtered injective resolution.
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Proof. Let m € Z. We have that F"'¢ : FA" — F™I is an injective resolution in Shi(X). So by
Lemma[3.2.21] F™v : F"A" = Homy (k[0].,F""A") — Hom,(V.,F"I') is an injective resolution
in Shyg(X). This implies F™¢ is a quasi-isomorphism for all m € Z, so F'€" is a strong fil-
tered quasi-isomorphism. We have v is injective because it is induced by precomposition with
a surjection and postcomposition with an injection, so we now have F'¢ is a strong filtered

resolution.

Let m € Z again. Because F™¢ : F""A — F"Hom,(V.,FI') is an injective resolu-
tion, we have F”"Hom, (V., F'I') is injective in each degree. Hence, F"'Hom, (V.,F'I') is strong
filtered injective in each degree. Because V. is (lowered index) bounded below, I" is bounded
below, and F'I" has a filtration that terminates in each degree, we have by Lemma that
F'Hom,(V.,I') has a filtration that terminates in each degree. We also have by Lemma
that Hom, (V.,I") is bounded below. At this point we have shown all the conditions required for
Fv :FA — Homy(V,FT) tobe a strong filtered injective resolution in the category Shy(X).

O]

Lemma 6.9.21. Let X be a topological space, k a field, and G a finite group. Let F'e : F'A" —
F'I be a filtered injective resolution in Shy(X), as in Definition That is, FFA and F'T
are filtered complexes in Shy(X), I' is bounded below, F'I  is filtered injective in each degree,
and F'I' has a filtration that terminates in each degree. We also have F'€ is an injective filtered
quasi-isomorphism. Let V. be a G projective resolution of k in ygMod, with V. finitely generated
in each degree, and augmentation T. : V. — k[0].. We have the kG chain map F'V' induced by

precomposition with TT. and postcomposition with F'€ .

Fv :FA=FHom,(k[0].,FA)— FHom, (V. FT)
Then F'Vv' is a filtered injective resolution in the category Shig(X).

Proof. Let m € Z. By invoking the identification of Lemma[6.9.19] we have:

g’V : gr A" = Hom, (k[0].,gr"A") — Homy, (V. gr"'I")

is induced by precomposition with 7. and postcomposition with gr'”’e’. Since gr'”’e :

gr'"A” — gr''I" is an injective quasi-isomorphism, and gr”'I" is a bounded below complex that is
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injective in each degree, we have by Lemma [3.2.21] that gr”v" is an injective resolution in the
category Shyg(X). Thus, gr”v' is a quasi-isomorphism for all m € Z. Because v’ is induced by
precomposition with a surjection and postcomposition with an injection, v’ is injective. Thus

Fv' is a filtered resolution.

Let m € Z be arbitrary again. Because gr'v' : gr'”A" — gr”Hom, (V.,I') is an injective
resolution, we have gr”Hom, (V.,I') is injective in each degree. Because V. is (lowered index)
bounded below and I" is bounded below, Hom, (V.,I') is bounded below by Corollary
Because V. is (lowered index) bounded below and F'I" is bounded below and has a filtration
that terminates in each degree, we have by Lemma that the filtration on F " Hom, (V.,I')
terminates in each degree. We have now shown enough to conclude that F'v' is a filtered
injective resolution in the category Shyg(X).

O
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Chapter 7

Steenrod Operations on Spectral

Sequences

In this chapter I will show that the Steenrod operations constructed on the algebraic
De Rham cohomology groups from Chapter [5|can be constructed in a way so that they also act
on the first and infinite pages of the Hodge to De Rham spectral sequence. The construction is

general, and can apply to other spectral sequences as well.

For the remainder of the chapter, we will fix the following. Let X be a topological
space. Let F'A" be a filtered complex of graded commutative F, algebras on X that is bounded

below and finitely filtered in each degree. Here we insist that the product map:

F'm :FTot(FA®g,FA)—FA

is a filtered chain map of complexes in Shg,(X). By Lemmam there is a strict in-
jective filtered quasi-isomorphism F't : F'A" — F'I" where F'I is a filtered complex in Shg, (X ),
with F'I" bounded below, finitely filtered in each degree, and filtered injective in each degree.
By applying Corollary [6.8.4] we get that F'1" is a strong filtered injective resolution and U is
an injective resolution. Let 7" denote the global section functor, Shg,(X) — Vect(F,). Because
T is left exact, we have the filtered chain complex in Vect(F,), F'K' = F'T(I') as in Defi-
nition [6.1.25] The cohomology groups of K* compute the sheaf hypercohomology of X with

coefficients in A,
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H(K)=H(X,A)
as was the case in Chapter [} But now we also have the filtration on F'K" which
induces a spectral sequence E.”(F'K") that converges to H (K'). In this chapter we will go
through the same construction in Chapter [5|but in a way that is compatible with the filtrations
involved, and we will end up with operations that act on E; (F'K') and E;;(F'K"), in a way that

must be compatible with the operations constructed on H'(K") from Chapter

7.1 Spectral Sequence Classes

For this section let /'K denote any filtered chain complex of F,, vector spaces. In [3],
May defines a collection of maps, D; : H4(K") — HP4~'(K") for each g € Z, where a cohomology
class [x] € H9(K") is mapped to 0" ([e; @7 x[P)]), where ¢; is the generator of the free rank one
F,m module W;. For this definition to make sense we must have that [e; @y x[f’]] is a well defined
cohomology class in Tot'(W. @5 (K')I!), which is something May verifies. In order to define
the Steenrod operations on the spectral sequence for F"K, it would be convenient if we had the

following analogous result:
Question 7.1.1. Let i,a,b >0, r > 0, and suppose [x] € EF*(F'K'). Is [e; @z xP)] is a well
defined element ofEfp’bpfi(F'Tot' (W. @z (K)P))) 2

If the above was true, then I could define a map like D; on each page of the spectral

sequence by the following composition, where the first map takes [x] to [e; @x x[p]], and FO is

a filtered chain map to be defined in the next section.

EfP(FK) —— EP 7/ (F Tot (W.@ (K)7))
lEf‘””’”"(F'e‘)
B K

Then since the Steenrod operations are defined in terms of the D; maps with a rein-
dexing and sign, this would define Steenrod operations on all pages of the spectral sequence.
However it appears that the above question is not true in general. We do at least have the

following two lemmas, whose proofs are a bit detailed and will be included later in this section.
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Lemma 7.1.2. Leti,a,b >0, r > 0, and suppose x € Zf’b (F'K'). Then e; @ xP! is an element of
ZEPPPHF Tor (W, @5 (K7)P)Y).

Although we have the above, it appears that [e; ®x[1’}] is not always a well defined
element of E7"P~(F Tot (W. ®x (K')1P1)). Instead, we have the following:

Lemma 7.1.3. Let i,a,b >0, r > 0, and suppose [x] = [y] in E*”(F'K). Then ;@ (xP) — ylp))

is an element ofoi’gp__lg(p_]) (F Tor (W. @5 (K)IP1)).

To ease notation, let L' = Tot' (W. @y (K ‘)[P]).

Corollary 7.14. If [x] € E*, then [w; @ xP)] is a well defined element onfp’bpfi(F'L')/B‘:i’(br‘:’;(pil) (F'L).

If we hqve BT F L) = Bfﬁ:’gp__lg(p_l)(F'L'), then [w; @ x'P)] is a well defined element of
EPPPTUEL).

Proof. Follows from Lemma|/.1.3 O

Corollary 7.1.5. Let a,b,i > 0 and let [x] € Ef’b (F'K'). Then [e; @xP)] is a well defined element
of ESPPPTHFL).

Proof. This is Corollary when r = 1, where we have r+ (r—1)(p—1) = 1. O

Corollary 7.1.6. Leta,b,i >0, and let [x] € EZP(F'K'). Then [e;®xP] is a well defined element
of EXPbP=i(F'L).

Proof. Recall from Definition

nZ&"
U,BY?

Since x € ﬂer’b (F'K'), we can apply Lemma for each r > 0 to obtain ¢; @ x7) €
N Z&PP~H(F L), Now suppose there are x,y € N,Z*"(F'K') with x —y € U, B¢ (F'K'). I must
show ¢; © (x| — ylPly € U, B¢ (F'L'). There is a ¥’ > 0 such that x —y € B%"(F'K"). Since
X,y € Zf,"b(F'K') as well, we have by Lemma(7.1.3|that ¢; @ (x[?! —y[P]) € Bf,‘féf/:il)(pil) (FL)C
U,BPP~I(F'L'). With this, we are done.

Ea,b —

O]
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I will now move towards proving Lemma [7.1.2] and Lemma In what follows,
let I' be a complex of F,, vector spaces in which 1 is free of rank two generated by eq and ey,
and 1! is free of rank one generated by e. We define d(e) = e; —eo. In a sense, I represents
a line segment e connecting the two vertices ey and e;. Unfortunately e; is also used to denote
the generators of the F, 7 complex W.. For the remainder of this section I will use w; to denote

the generators of W.. The following is Lemma 1.1 from [5]], on page 156.

Lemma 7.1.7. Let A denotes a commutative ring which we take to be F,,. Let V. be a positive

ATt-free complex.

1. There exists a An-morphism h: I QA V — V @p 1P such that hie;®@v)=v® el[p] for
i=0,1forallveV;and j>O0.

2. If f,g: K — L are A-homotopic morphisms of A-complexes, then 1 ®f[1’], 1 ®g[”] 1V @a

KWV — v @ L are AT-homotopic morphisms of AT complexes.

3. If A is a field and K is a A-complex, then K is A-homotopy equivalent to H(K) and
V @ K is Am-homotopy equivalent to V @ H(K)!P!,

4. Let v eV satisfy d(v@y 1) =0 in Vg A; let K be a A-complex and let x,y € K9 be
homologous cycles. Then v@x'P) and v®@yP! are homologous cycles of Tot (V. @5 (K')[P)).

I will need to generalize statement 4 in the above lemma. May proves (4) by using
(1), where he defines a morphism of A-complexes f : I' — K|g|', where f(e;) = x, f(eg) =
y, and f(e) = (—1)%z where z € K9~ satisfies d(z) = x —y. Then one has that the element
= (1® fPh(h(e®v)) satisfies d({) = (v @7 xlP) — v @, yP) (omitting the sign here), which
shows v @y, xP! and v @, yP! are cohomologous. I will now repeat this argument in the context

of the spectral sequence of a filtered complex. Recall from Definition

Zf,b — FaKa+b m d—l (Fa—i-rKa-i-b-‘rl) +Fll+1KLl+b
B(rl’b — FaKa+b ﬂd(Fa_r+1Ka+b_l) _|_Fa+1Ka+b

a,b ~ Fa,b | pa,b
Er —Zr /Br
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Lemma 7.1.8. Suppose F'X' and F'Y' are filtered complexes and denote T = Tot (X ®Y").
Letx€ 7P (FX ) andy € ZoU(FY'). Thenx®y € ZST" (F 1),

Proof. We have x = x1 + x, and y = y| + ya, where x| € FéX“Pnd= 1 (Fetrxethtl) x, €
Fotlxatb ¢ Feyetd ng=1(Fetryetd+) ‘and y, € FEH (Y<+4). We can show x| ® y2, X2 ®

a

V1, X2 @ yo are in Zy +C’}’“i(F "T") simply because of their filtration degrees. We have:

X ®y2 c FaXa+b ®FC+1YC+d C F(a+C)+1T(a+C)+(b+d) C ~a+€,b+d(F-T-)
= =%

X®y € Fa+1Xa+b ®FcYc+d C F(a+c)+lT(a+c)+(b+d) C Za+c,b+d(F.T.)
= =%r

Now I show x; ®y; € Fa+cT(a+c)+(b+d) Nd-! (F(a+c)+rT(a+c)+(b+d)+l). We have:

d(x1) Ry € Fa+rXa+b+1 ®FcYc+d C F(a+c)+r(T(a+c)+(b+d)+1)

x| ®d(y1) € FaXa+b®Fc+ch+d+l C F(a+c)+r<T(a+c)+(b+d)+l)

Since d(x; ®y1) =d(x1) ®@y1 + (—1)“"Px; @ d(y1), this shows

x| @y € d (Flatartrplatatbrd)Tly

Thus:

X1 ®y; € Fa+cT(a+c)+(b+d) mdfl(F(a+c)+rT(a+c)+(b+d)+1) C Zf+c,b+d

Hence, x®y € Z&T0™,

O

Lemma 7.1.9. Suppose F'X and F'Y  are filtered complexes with x € E?’b(F 'X') and y €
ZoUFY). Then x®y € BET " (F Tor (X @Y")).
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Proof. We have x = x; +x, and y = y; +y, where x; € FX¢0nd(Fertixatb=1 x, €

Fotlxatb v ¢ Feyerdng=1(Fetryetd+l) and y, € Fetly<+d, Like before, we have x; ®ys,

X2 ®y1, and x, @y, are in E?“’b“l(F "T") because of their filtration degrees:

X ®y; € Faxath ®Fc+1Yc+d C F(a+c)+1T(u+c)+(b+d) C Etrz+c,b+d(F-T~)

X ®ys € Fatlyath ®Fc+ch+d - F(a+c)+2T(a+c)+(b+d) - Bﬁzerrc,ber (F'T')

Now I will show x; @ y; € Z&T“P™(F'T"). There is an x’ € F4~"+1X4+>~1 quch that

d(x") = x;. Consider the element:

x’®y1 c fa—rtlyatb—1 ®FcYc+d C F(a+c)7r+1T(a+c)+(b+d)fl

Thus, d(xX' @ y;) € d(Flete)-r+iplata+b+d) =1y We also have:

x’®d(y1) c Fa7r+1Xa+b71 ®Fc+r(Yc+d+l) C F(a+c)+1T(a+c)+(b+d) C Bzrz+c,b+d(F-T-)

Since d(x¥' ®y;) = x1 @y1 + (= 1)**~1¥ @ d(y,), this implies

d(x’®y1) c Fa+cT(a+c)+(b+d) md(F(aJrc)frJrlT(a+c)+(b+d)) C E?+C’b+d

Thus:

@y =dX) @y =dx @y1)— (-1 X @d(y) € BIFHUFT)

It now follows x®y € B " (FT).
O

Lemma 7.1.10. Suppose F'X and F'Y' are filtered complexes with x € Zf’b(F'X') and y €
B (FY). Thenx®y € BE™ " (F Tor (X @Y")).
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Proof. Symmetric to Lemma([7.1.9] O

Corollary 7.1.11. Suppose [x1] = [x2] in EX(F X ") and y € ZE(F'Y"). Then [x; ®y] = [x, ®)]
in ESTP (FTor (X @Y)).

Proof. We have x,x; € Zf’b(F'X') and y € Zf’d(F'Y'). By Lemma(7.1.8 x; ®y and x, ® y are
in Z&TPH(F T, To show [x; @ y] = o ®y] in ESTPT(F T7), note x; — x» € B&?(F'X"). By
Lemmal7.1.9|we have (x; —x2) @y € BST"Y (FT"). Thus [x; ®y] = [xa ®y] in ETPT(FT).

O

Corollary 7.1.12. Suppose [y1] = [y2] in ES(F'Y") and x € Z*2(F'X"). Then [x®y1] = [x@y,]
in ESTPT N (F Tor (X @Y)).

Proof. Symmetric to Corollary [7.T.TT] O

Corollary 7.1.13. Suppose [x1] = [xa] in EXP(FX') and [y] = [y2] € ES(F'Y"). Then [x, ®
] =@y =[x @y = noy]in B E Tor (X ©Y)),

Proof. By Corollary[7.1.11] [x; ® y1] = [x2 ®y1] and [x] ® y2] = [x2 ® y2]. By Corollary|7.1.12}
[x1 ®y1] = [x1 ®y2] and [x ® y;] = [x2 ® y2]. Thus, they are all equal. O

Corollary 7.1.14. Suppose [x] = [x2] in EFP(FX'), and m > 1. Then [x[lm]] = [x[zm]] in
EXP™(F Tor (X)),

Proof. Apply Corollary [7.1.13|m times. O

I will now prove Lemmas and
Proof of Lemmal7.1.2)

Proof. Let a,b,i >0, r >0, and let x € Zf’b(F'K'). I must show w; @5 xP! € pr’hp_i(F'L'),
where L' = Tot (W. ® (K')!?!). We have x = x| +x where x| € FAK*T?Nd~ ! (Ft"Keth+1) and
xp € FOTIKath Define g = xI7’ —x[lp] so that x[P) = x[lp] +¢&. I will show w; ®x[lp] € Ferpaptbr—in
d-V(Feptrpaptor=it1y and w; @ € € FAPH1 LT~ We have that € consists of sums of tensors
where at least one term is x, and the remaining terms are x;. Thus, the filtration degree of € is

atleast (a+1)-1+a-(p—1) =ap+ 1. Thus € € F»+ Tt 2P ((K*)[Pl), and we have:
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W; @€ € Wi @y (Fap+1T0tap+bp((K-)[p])) C FaerlLaerbpfi C ng,bpfi(F-LA)

Now I will show w; ®z x[lp] € Fwpartbr=ipg=1(Faptrpapthr=i+1) Note that:

Wi O x[lp} EW; ®q (FaKu+b)[p] C W ®q Fap(TOtap+bp((K~)[p])) C FapLap+bp—i

Because x[lp lis a homogeneous tensor product, it is ® invariant. Let ¢ denote the

generator (123 --- p) of m. The differential on W. is defined by: d(w2;+1) = (6 — 1)wy; and
d(wy) = (1+6+---+6”")wy_1. In both cases we have d(w;) ®nx[lp] = 0 because x[lp] is fixed
by 6. Note, the fact that ¢ has even sign for p > 2 is important, due to the signs incurred when
o transposes the x; terms. In the case p = 2, we are working in F, vector spaces and signs don’t

matter. Thus:

d(wi @) = d(w;) @ xl + (—1)'w; @nd(x")
= (= 1)'wi D d(x")

Note the above only holds when the tensor product is over &. We have d (x[lp ]) is a
sum of tensors that consist of 1 d(x;) term and p — 1 x; terms. Hence, it has filtration degree

1-(a+r)+(p—1)-a=ap+r. Thus, d(pr]) € Far+r(ToteP+br+1((K)[P)). Therefore:

w; ®nd(x[1p]) e W, ®p (Fap+r(TOtap+bp+1((K-)[p]))) C Fap+rLap+bpfi+1

This shows w; @y x[lp] € d~1 (Far+rLap+br=i+1) Now we have:

Wi @n xgp] c FapLap+bp—i N d—l (Fap+rLap+hp—i+1) C ”fp,bp—i(F~L-)

So we have shown:
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w; @ xl?l = w; ®nx[1p] +w; @ne € ZPPPTI(F L)

Proof of Lemma

Proof. Let a,b,i >0, r >0, and let x,y € Zf’b(F'K') with x —y € Ef’b(F'K'). I must show
w;i @ (xlP — ylPl) € Ef_’;’(rp__l")(p_l)(F'L'). We have x = x1 + x> and y = y; + y» where x1,y; €
FaKe g~ (FetrKetb+1) and x,,y, € F*T'K9™. Let z = x —y. Because z € B**(F K),
we have z = 71 + 2> where z; € FOKP Nd(F—" 1 K40=1) and z, € FAT1 K9P, We have the
relation z; = (x; +€&) — y;, where we set € = xy — y» — 7 € FOH K9P, Let yc Fo—r+igath—1

such that d(y) = z;. First note that:

wi® (7 —317) = wy & (7 =3P 4w @ (01 +22) P =) = (1 +32) P =511

We have (x; +x2)[P — x[lp ! consists of sums of tensors in which at least one term is X2
and the remaining terms are x;. Hence this element has filtration degree at least 1-(a+ 1) +
(p—1)-a=ap+1. Hence, (x| +x;)P —x[lp} € Fertl(Tot+bp ((K")Pl)), and similarly for
(y1 4+ y2)P! —y[lp]. This shows:

wi (1) =) = (o +92) =3 ) € Wo Fr* 1 (Totr 0 (k) 7))

C Fap+1Lap+bp—i

pap,bp—i .y
B -y (F L)

So we are now reduced to showing w; ® (x[lp] — y[lp]) € Efﬁ’(br - _1’) (p_1)- Recall d(y) =

71 = (x1 +€) —y;. We have W. is a positive (lowered index) complex of free F,m modules.
Invoking part 1 of Lemma/7.1.7 there is a chain map /1 : I' ® W. — W.® (I")/”! such that h(e; ®
wi) = wi®eBP] for j =0,1 and i > 0. Recall eg,e; € I and e € I~! satisfies d(e) = e; — eg.

Because 4 is a chain map, the element v = h(e ® w;) satisfies:
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d(e)@w;) G acts trivially on e.

Define the map, f: I' — K|a+b] via f(e1) =x1+¢, f(eo) = y1, and f(e) = (—1)4+y.

We have dq4p] (f(€)) = dijars) (=1)"7y) = dx(v) = 21 = (x1 +8) — (1) = f(e1) — fleo) =
f(d(e)). So f is a chain map. We have the chain map:

1@ 1P Tot (W. @ (I') P}y — Tot (W. @ (K[a+ b])P)) = Tot(W. @ (K')P))[p(a+ b)]

Define the element:

L= (=) (10 f)(v)

We have:

oy (€)= (17 Dy g (17 (10 (V) )
= (1@ 17 (dy -y (V)
= (107w o (e o))
=w; ® (f(en)l" = fleo) )
= wi® (1 +9)7 =5

I now calculate the filtration degree and complex degree of {. We have e @ w; €

Tot™"'(I' ®W.). Thus v = h(e @w;) € Tot "~/ (W. ® (I')[P]). Then we have (1 ®f[p]) is a
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degree p(a-+b) chain map. So { = (—1)P@)(1® flPh)(v) € Tot®?+or==1(W. & (K*)IP!). For

calculating the filtration degree, we have:

P
V= (Wit1 ®zlo) + (Wi @z t1) + -+ (Wiipr1 ®ntp) = Y wi_js1 Rnt;
j=0

where ¢; € Tot /(I') consists of sums of tensors with exactly j e terms and the rest e
or ¢q. Thus:
P
=Y wij1®s;
j=0

where s is a sum of tensors with exactly j (—1)%*y terms and the remaining p — j
terms are (x; +€) or y;. Thus, s; has filtration degree (a —r+1)-j+a-(p—j)=ap+j(1—7),
and complex degree (a+b—1)-j+(a+b)-(p—j) =ap+bp— j. Thus:

Wi ji1 Qs e Wi ® (Fapﬂ'(l*r) (Totaerbpfj((K-)[p}))) - pap+i(l=r)yap+bp—i-1

Since the filtration on L is decreasing, and 1 —r < 0, we have each w;_j | ®s; €

Fap+p(=r)pap+bp=i=1 for ; —(0,... p. So we have:

C e Fap+p(l—r)Lap+bp—i—l

We can rewrite the filtration degree above as ap — (r+(p—1)(r—1))+ 1, so we now

have:
d(C) —w® ((xl —l—S) [p] _y[lp}) c d(Fap—(r+(p—1)(r—1))+1Lap+bp—1)
We also have:

Wi Qg ((Xl +8)[p} —y[lp]) eW, Q@ (F“K“er)[l’] C Fapaptbp—i

Thus:

W; @ ((xl +E)M 7y[lp]) e FapLap—l—hp—i md(Fap—(r—l—(r—l)(p—l))+1Lap+bp—i—1)
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pap,bp—i o7
C B -y L)

We can now finish the proof by observing:
wi @ (" =31") = wi @x (01 + ) =3 —wi @ (1 +)7 =)

We have (x; +¢)!”! —x[lp | consists of sums of tensors in which at least one term is & and
the remaining terms are x;. So this element has filtration degree atleast 1- (a+1)+(p—1)-a=

ap + 1, and hence:

w;i @ ((x1 +€)P! —x[f]) € W; @g FPT1 (TotP P ((K)IP1))

C Fap+1Lap+bp7i

ap,bp—i Ly
B rnp-nFL)
This shows w; ®@g (x[lp I y[lp he Efﬁ’(l’r » 71")(177 ))(F'L’), and by the reduction at the be-

ginning, we now have w; @ (xI?) —ylPl) ¢ Efi(hr[:g(p—l)'

O]

Now that these lemmas have been proven, the corollaries at the beginning of this

section are established.

7.2 The Product on F' K

In this section I will show that the product defined in Section[5.1|can be constructed in
a way so that there is an induced cup product on each page of the spectral sequence E.” (F'K").

The construction in this section is actually a special case of the construction from Section

Definition 7.2.1. We will define a filtered product on F'K'. Let F'm’ : F Tot (F'A'®@F A’) denote
the filtered graded product on F'A". We have the solid diagram below of filtered complexes in

She, (X):
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FTor(FI @FT) - Fr

F Tor (1'®1‘)]\ F'l}\

FTor(FAQFA) 2" FA

We have by construction that F'I' is bounded below, has a terminating filtration in
each degree, and is strong filtered injective in each degree. Because F'A" and F'I' are finitely
filtered in each degree and both bounded below, we have by Corollarythat F'Tor (A ®A")
and F Tot (I @ I') are both finitely filtered in each degree. Because F'\U is a strong filtered
resolution, we have by Corollary that F'Tot (\' @) is a strong filtered resolution. In
particular, this implies F'Tot (U @) is an injective filtered quasi-morphism. We can now apply
Lemma to obtain a filtered chain map F'inv making the diagram commute. By Lemma
F'iv is unique up to filtered homotopy. By applying the global section functor T, we

obtain the filtered chain map in Vect(Fp):

FT(i): FT(Tot (FT ®FT))— FT(I')

We have the natural filtered chain map in Vect(F):

FY:FTof(FT(IN®FT(I'))— FT(Tot (FT ®FT))
induced by the map, T(C) @ T (D) — T(C ® D), when C and D are sheaves. We now
define "M’ by the composition:

FM :FTor (FT(I®FTI)) -5 FT(Tor(FToFT)) ™ Fr(r)

By Lemmal6.1.26] the uniqueness of F'ii' up to filtered homotopy implies the unique-
ness of F'T (i) up to filtered homotopy. Then because F'Y is a filtered chain map, we have
by Lemma that FM = F'T (i) o F'Y is unique up to filtered homotopy. This implies
the product on cohomology and on the pages of the spectral sequence are unique. That is, this

construction gives well defined maps for alln € Z:
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H' (M) : H"(Tot (K" ®K')) — H"(K)

And by Lemmas [6.1.28| and |6.1.29, we have well defined morphisms for all a,b € Z
andr > 1:

EY(FM):EX(FTot (FK @FK')) — E**(FK)
Because the construction of F"M" is a special case of the construction of M" from
Section[5.1] we have the cup product from Definition [5.1.2}
uem . Hn(K) ®Hm(K') N Hn+mK~
We also have a cup product defined on each page of the spectral sequence:

Definition 7.2.2. For a,b,c,d € Z and r > 1 we have the spectral sequence cup product:

Uf’b’c"d ;E;‘vh(F'K') ®Erc*d(F'K') — Ei‘+c’b+d(F'K')

defined by the composition:

U;l,b,(,)d . E’(;l,b(FK) ®E’(:‘d(FK) v Eg+c,b+d(F.T0t. (FK ®FK))
\LE;H—CJH—d (FM)

E’?+C,b+d (FK)

where ' is the map [x] @ [y] — [x®y), for x € Z*P(F'K') and y € ZZ*(F'K'). The
map ' was shown to be well defined in Corollary|7.1.13

Lemma 7.2.3. The cup product U from Definition and the cup product U”""" of Definition
agree. That is, for all a,b,c,d € Z and r > 1, when x € Z°"P(K' YN Z¢P(F'K') and y €
ZH(KYNZEYF K, we have USP ([x] @ [y)) and U0+ ([x] @ [y]) are cosets that are both

represented by the common element, M*T0++d (x @ y) € za+brerd(K),
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Proof. Let [x] and [y] denote the cosets of x, and y in H*"?(K") and H*(K") respectively,
and let [x ®y] denote the coset in H*t*+<+4(Tot (K° ® K*)). Then for the cup product from
Definition[5.1.2] we have:

Ua+b7c+d ( [X] ® [y]) — Ha+b+c+d (M ) ( [x ®y]) — [Ma+b+c+d (x ® y)] c Ha+b+c+d (K)

Now denote [x] € EX*(F'K') and [y] € EC(F'K'). Let [x®y] denote the coset in
EST (FTot (F'K* ® F'K')). Then the cup product from Definition evaluates as:

e (1) y]) = EEOUF M) (x0)]) = M e ) € B R )

Thus, both cosets are represented by Me+o+<+d (x @ y).
O

Lemma 7.2.4. The filtered product F-M on F'K makes F'K' a filtered homotopy associative
differential graded F, algebra. The induced cup product U;""" on E;” (F K') is associative.

Proof. Like in the proof of Lemma[5.1.3] we consider the diagram below of filtered complexes
in Shg, (X). Recall I denotes the I-fold tensor product over F.
F (1) Fn
FTot (FT)B)y —= FTot (FI)?) -2 Fr
F (i ®1)
F‘(l')mI F~(1»)[2]]\ F'r]
F(1om) Fom
F'Tot (FA)B) —= FTot (FA)¥) 2 FaA
F (m®1)

Because the product on F’A" is associative, the two compositions along the bottom
row, m o (1 ®m’) and m o (m ® 1), are equal. Thus, the two compositions along the top row,
mo(l®m)and m o (m ® 1) are two filtered chain maps making the perimeter of the diagram
commute. We have by Corollary [6.7.21|that F*(1')1%] is a strong filtered resolution. We have by
Corollary that F"Tot ((F'A")B)) and F Tot ((F'I')P) are both finitely filtered in each de-
gree. Thus, F'(1')P is a filtered quasi-isomorphism, and F Tot ((F'A")) and F Tot ((F'I')P)
are both exhaustively filtered. FI" is still strong injective in each degree and has a filtration that

terminates in each degree. Now we invoke Lemma [6.5.4]to obtain a filtered homotopy:
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F'Il': F'Tot (FT)P) = FI[-1]

between F 7t o F (i ® 1) and F'i o F'(1®@#'). Then by Lemma [6.1.26] we have
F'T(h') is a filtered homotopy between the filtered chain maps:

FT(@)oF T 1), CFT(Tot (FT)P) = FT(I)
FT(w)oF T(1®i)

Let F'v; be the natural filtered chain map:

Fy: FTot (T(I'NBY = FT(Tot (1)

By Lemma [6.1.23) F'T(h') o F'y is a filtered homotopy between the filtered chain

maps:

FT@)oFT( @) ol FTot (FT(I®) = FT(I)
FT()oFT(1®@m) oF'v;
And these filtered homotopic chain maps are equal to FM o F' (M ® 1) and F-M o
F'(1® M) respectively. We have now shown the filtered product on F'K" is filtered homotopy
associative. By Lemma[6.1.29] the following induced morphisms are equal for all a,b € Z and

r>1:

EMY(FM oF (M ®1)),
b( kM) L ESY(FTot (K)B)) — ESP(FK')
E(FMoF (1@M))

This implies the following are equal, for all a,b,c,d,e, f € Z:

— U;z,b,c+e,d+f o) (1

U?+C,b+d,€,f o (U?vbvcvd ® 1E)€~f ® Ui?dve:f)

(FK)) E;lh(FK)

E’(FK)QES(FK)QES (FK) — ESTerertdtl (pg)

That is, the cup product on E; (F'K") is associative for all r > 1.
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7.3 Construction of F'0

In this section we will construct the filtered chain map F'0 : F " Tot (W.® (F K')[")) —
F K. Consider the solid diagram below:

FTot (F1)P) 25 FHomg (W,FT)

F'(l-)[ﬁq F.V]

F'Tot ((F'A)P) " kA

Where in the above F'm;, is the p-iterated product on F"A’, which is a filtered chain
map. In the above we let &, the cyclic group of order p, act on tensors by permuting with
graded signs, and the action on F"A’ is trivial. The action on Hom'Fp (W, FI') is induced by
the action on W.. We have that both F*(1')/”! and F'v' are filtered chain maps in She, 7 (X).
Because F'U is a strong injective resolution in Shg,(X), we have by Lemma the strong
filtered injective resolution F'v" in Shr,(X). Note that F'Homg (W.,FI') is strong filtered
injective in each degree in Shg, (X ), is bounded below, and has a terminating filtration in each
degree. By Corollary F'Tot ((F'A")IP!) and F'Tot ((F'I')P!) are both finitely filtered in
each degree. Hence their filtrations are exhaustive. By Corollary |6.7.21} F '(l')[p] is a strong
filtered resolution, and hence, F (1‘)[”] is an injective filtered quasi-isomorphism. We now have
the conditions to invoke Lemmato find a filtered chain map F' in Shg,z(X) that makes
the square commute. By Lemma FB is unique up to filtered homotopy. Because the
global section functor T is left exact, by Definition we have the filtered chain map in
FpnMod:

FT(B): FT(Tot (FT)P)) — FT(Homg (W,FT))=FHomg (W,FT(I))

By Lemma [6.1.26) F'T(f') is unique up to filtered homotopy. There is a natural

filtered chain map:

FY,: F'Tot (T(I')"!) — F'T(Tot ((I')'"1))

Define F'0 by the composition:
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F & :FTot (T(FTI)P SN FT(Tot ((I')1P1)) Frey FHomg (W.,FT(I'))

By Lemma [6.1.23] the filtered homotopy uniqueness of F'T (") implies the filtered
homotopy uniqueness of F'6". We have the adjoint isomorphism of Lemma [3.1.5, which was
shown to be a filtered isomorphism in Corollary

F'® : F'Homg (Tot (T(I')”)), Homg (W.,T(I'))) = F Homg +((Tot T(I')1")) @, W, T(I'))

We have:

F & € FOZ°(Homp (Tot (T(I') ")), Homg (W, T(I'))))

In the above F'©' has filtration degree zero because it is a filtered morphism, as men-
tioned in Definition[6.9.1] and F'8 is in Z° because it is a chain map. Thus:

FOQ(F§) € FOZ° (Homg (Tot (T (1)) @ W, T(I')))

because F'®- is a filtered chain map. Thus, ®°(F'9) is a filtered chain map. By
Corollary , the filtered homotopy uniqueness of F ) implies F 'CIDO(é') is unique up to
filtered homotopy. We have the filtered isomorphism that swaps tensors with sign based upon

grading:

F'U : Tot (W.®g, T(I')IP)) — Tot (T(I') ") @, W.)

And now we define F"0" by the composition:

R . 20/h
Fo : Tot (W2, T(I)P) L2 Tor (1(1)P ep, w) 2% 7(1)

By Lemma |6.1.23] the filtered homotopy uniqueness of F Gl implies F'0" is unique

up to filtered homotopy. The F"0" constructed here is actually a special case of the construction
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of 6" from Section[5.2] but now we have that it preserves the filtration. Because 0’ is a filtered

chain map, there are induced morphisms for all a,b € Z, r > 1:

ESY(FO) : EXP(FTot (W.@ (FK)P)) — ES*(FK)

Because F'0' is unique up to filtered homotopy, these morphisms are uniquely defined

by Lemma|6.1.29

7.4 Construction of Operations

It should be noted that we defined F"0" to be a filtered F,7 chain map:

F'o :Tot (W@, T(I'WP) — FT(I)
but since the action of w on F"T(I') is trivial, we have by Lemma that F'0" also

specifies a canonical morphism:

FO :Tot (W, T(I'NPY = FT(I)

Definition 7.4.1. We can now define the maps D; on the first and infinite pages of the spectral
sequence for F'K'. Let r =1 or e and let a,b € Z. Let [x] € E*”(F'K"). Then by Lemmam
le; @ xP] is a well defined element of E""P~ (F Tot (W. @5 (K)P))), and we can apply the

morphism F" 0" induces on the spectral sequence:

Di([) = EfPP~(F Tor (6))([e; @ x1]) € EfPPP7(F K)

Now using the definition of P and BP" from Corollary[2.0.8| we have induced Steenrod
operations on the spectral sequence E” (F'K'). Leta,b € Z andr=1ores. Let [x] € EF*(F K").
For p =2 we have:

2a,2b—(a+b—s)

P (1)) = Dusps(¥]) € EZ (FK) = B2V (FK)

For p > 2 we have:

P([x]) = (=1)V(=(a+))D((atb)-29)(p-1) ([x])
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c Efp7bp7(a+b72s)(p71) (FK)

— E"’lp>b+(25*a)(p*1) (FK)

BP*([x]) = (=1)'V(=(a+b))D((a+b)-25)(p-1)-1([x])
c Egp7bp—[(a+b—28)(p—l)—1} (FK)

_ E;lp,b-‘r(Zs—a)(p—l)-&-l (FK)

where v(—q) = (—1)/(m!)¢, withq=2j—¢, ande =0 or 1.

Lemma 7.4.2. For all r in which the Steenrod operations are defined on E;" (F K'), the opera-

tions agree with those previously defined on H (K').

Proof. The proof of this lemma is analogous to the proof of Lemma Let a,b € Z and
suppose r > 1. Suppose x € Z4 (K'Y N Z&?(FK"). Then when one regards [x] € H*"?(K"), we
have the D; map from Definition [2.0.7]

Dy((x]) = (67 e @) € HOPH(K)

And when one regards [x] € E/ 7b(F ‘K') and uses the D; map from Definition

we have:

D;([x]) = [F*r6r+tr~i(e; @ xlP)) € EPPPH(FK")

Since both cosets are represented by the same element, the forms of D; agree for all
i. Since the Steenrod operations P* and BP* are defined in the same way in terms of D;, this

implies the operations also agree in this sense. O

Theorem 7.4.3. Let X be a topological space and k a field of characteristic p. Suppose F'A’ is
a bounded below filtered complex of sheaves of graded commutative F), algebras on X, where
A" is finitely filtered in each degree and the product on A" preserves the filtration. That is,
F™MA -F™A C F™t™A for all my,m, € Z. Then the canonically defined Steenrod operations
on the hypercohomology groups, H"(X,A"), from Theorem also act in a canonical and

compatible way on the E| and E. pages of the spectral sequence:
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E“Y(FK) = H"™’(K') =H""™"(X,A")

where F'A" — F'I is a filtered injective resolution in She,(X), F'K" = F'T(I'), and

EfP(FK') is as defined in Definition

Proof. The construction of F0 in this chapter is actually a more specific construction of the 6’
from Chapter[5] So the Steenrod operations from Theorem 5.3.5|can actually be induced by this
F'0, which in turn induces canonical operations on E; (F'K') and E;; (F'K") as in Definition
By Lemma the operations on E;"(F'K') and E}; (F'K') are compatible with the
operations F'0" induces on H'(K') =H' (X,A"). O

7.5 Applications

In this section I will apply Theorem to a few different bounded below com-
plexes of sheaves of differential graded commutative F, algebras that are finitely filtered in

each degree.

7.5.1 The Stupid Filtration

Let X be a topological space and let A" be complex of sheaves of differential graded
commutative F, algebras on X, with A" concentrated in non-negative degree. We may give A’

the stupid filtration, defined as follows, for all n,m € Z:

Fign A" whenn>i
0  otherwise

We have that the filtered complex F"A’ is finitely filtered in each degree. Because A" is
concentrated in non-negative degree and the product is graded, we have that the multiplication

map

m :Tot (A ®A) - A
is filtered, since m'*/ (A ® A7) C A" for all i, j > 0. Since F"A’ is finitely filtered in

each degree and F'm’ is a filtered chain map, we can apply Theorem to obtain Steenrod
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operations on H'(X,A") and E; (F'K'), E«(F' K'), where F'A" — F'I" is a filtered injective
resolution in Shg (X), and F K" = F'T(I').

As a side note, in choosing a filtered injective resolution F'v : FFA" — F'I', we can
in fact choose a Cartan Eilenberg resolution, A" < J**', with embedding € : A" — J 0 and then
define I' = Tot'(J"). Let 1 : A" < I' be induced by €. We give I the first filtration, where one
has for all i,n € Z:

Filn — @ Ja.,b

a+b=n,a>i
With F'I filtered as such and F"A" given the stupid filtration, the chain map U is a
filtered morphism. In fact, F'U is an injective filtered quasi-isomorphism by the construction of
the Cartan Eilenberg resolution. Because both F'A" and F'I' are finitely filtered, F'1" is a strong

filtered injective resolution, and an injective resolution in the non-filtered sense.

Setting K* = T'(I') with T the global section functor, we have H (K') computes the
hypercohomology groups of X with coefficients in A':
H"(K')=H"(X,A")
And the filtration on K" induces a spectral sequence that converges to these hyperco-
homology groups:
E“Y(FK) = H"""(X,A)

In fact, with the stupid filtration on A", we have:

EP(FK) =H'(X,A%)

The above is evident when one chooses F'I' = F'Tot (J*") to be the total complex of

a Cartan Eilenberg resolution of A", given the first filtration.
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7.5.2 The Hodge to De Rham Spectral Sequence

This is a special case of Section Let X be a smooth projective variety over a
field k of characteristic p. We let A" = Q, Jio be the De Rham complex of X, where Q; Ik is
concentrated in non-negative degree and the wedge product makes Q k@ sheaf of differential
graded commutative F, algebras on X. We may follow through the steps of Section to
obtain a filtered injective resolution F'1' : F'/A" — F'I'. Setting F'K' = F'T(I'), we have that
H (K') computes the algebraic De Rham cohomology of X over .

H'(K') = H'(X,Qy ;) = Hise (X /K)

Meanwhile, the spectral sequence:

ESP(FK) = HE (X /K)

is in fact the Hodge to De Rham spectral sequence, where we have:

b
E = H"(X, Q% ;)

Theorem gives Steenrod operations that act in a compatible way on Hpjg (X /k),
E;,and E;.

7.5.3 A Spectral Sequence of Katz and Oda

Let k be a field of characteristic p and let w: X — S be a smooth k morphism of smooth

varieties over k, with § affine. We may filter the De Rham complex /

Oda in [4], page 202:

, as done by Katz and

FIQf ), = im(Qy ; ©o, T (Qg) — )
where the map in the above image calculation is the wedge product on €2y Ik Katz
and Oda verify that this filtration is finite in each degree and compatible with the wedge product
on page 202 of [4]]. Thus, we can apply Theorem to obtain Steenrod operations acting
on Hp (X /k) and in a compatible way on E;"(F'K") and E.; (F'K'), where FQy, —FIis
a filtered injective resolution in Shg,(X) and F'K" = F'T(I'). On page 210, Katz and Oda

compute the E;| page of this spectral sequence:
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Ef* = T5(Q4 ), @0, Hi(X/S))

Thus the Steenrod operations on Hjyg (X /k) also induce operations as described in

Definition|/.4.1|on these objects as well.
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