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Abstract

Steenrod operations on algebraic De Rham cohomology, Hodge cohomology, and

spectral sequences

by

Ryan Drury

Let X be a topological space and k a field of characteristic p. Let A· be a bounded below

complex of sheaves of differential graded commutative Fp-algebras. We show that there ex-

ist Steenrod operations canonically defined on the sheaf hypercohomology groups, H·(X ,A·).

These Steenrod operations satisfy most of their usual properties, including the Cartan formula

and the Adem relations. Suppose further that A· is equipped with a filtration F ·, which is finite

in each degree, and compatible with the product on A·. The filtration on F ·A· induces a spectral

sequence that converges to H·(X ,A·), and we prove that the constructed Steenrod operations

also have a compatible action on the E1 and E∞ pages of this spectral sequence. When X is

a smooth projective variety over k, we obtain Steenrod operations on the algebraic De Rham

cohomology groups, H ·DR(X/k), as well as the Hodge cohomology groups. The Steenrod op-

erations on H ·DR(X/k) have a compatible action on the first and infinite pages of the Hodge to

De Rham spectral sequence, as well as the spectral sequence from Katz and Oda related to the

Gauss-Manin connection.
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Chapter 1

Introduction

Let X be a topological space and p a fixed prime. One has Steenrod operations defined

on the singular cohomology groups of X with coefficients in Fp =Z/pZ, as described in Section

4.L, page 487, of [3]. For p > 2, one has the Steenrod powers and Bockstein homomorphism:

Pi : Hn(X ;Fp)→ Hn+2i(p−1)(X ;Fp), β : Hn(X ;Fp)→ Hn+1(X ;Fp).

When p = 2, there is instead a single collection of maps, called the Steenrod squares:

Sqi : H i(X ;F2)→ H i+1(X ;F2).

In this case, we in fact have β = Sq1, and one may define Pi = Sq2i. One then has

βPi = Sq2i+1 (shown on page 496 of [3]). These operations satisfy a nice list of axioms.

For a complex of sheaves of abelian groups A· on X , one defines the hypercohomology

groups of X with coefficients in A· as the hyper right derived functors of the global section

functor:

H·(X ,A·) = R·T (A·) = H ·(T (I·))

In the above, A· ↪→ I· is an injective resolution in the category of sheaves of abelian

groups, Sh(X), and T : Sh(X)→ Ab represents the global section functor. Now suppose X is a

smooth projective variety over a field k of characteristic p. Then one has the De Rham complex

1



Ω·X/k, and under these conditions we may define the algebraic De Rham cohomology groups of

X over k as the hypercohomology of X with coefficients in Ω·X/k:

H ·DR(X/k) = H·(X ,Ω·X/k)

To define Steenrod operations on the algebraic De Rham cohomology groups, it suf-

fices under these conditions to construct them for sheaf hypercohomology.

We make use of two papers that define Steenrod operations in a more general con-

text. In [2], Epstein constructs Steenrod operations in a categorical setting. For an object A

in an abelian category with tensor product and a left exact functor T satisfying certain prop-

erties, Steenrod operations are constructed on the right derived functors, R·T (A). In [5], May

constructs Steenrod operations on the (co)homology groups of a complex K· with additional

structure that satisfies certain axioms. In [2], the Steenrod operations constructed actually in-

clude the case of sheaf cohomology, and the construction is general enough to include étale

cohomology, which is used for example on page 559 of [7]. However, in order to include co-

homology with coefficients in a sheaf of complexes, we would need to generalize Epstein’s

construction to define Steenrod operations on the hyper right derived functors, R·T (A·), of a

complex A·. This is more or less what we do, but we limit ourselves to our category of interest.

Our approach was to use Epstein’s techniques but fit into May’s framework. Many

of Epstein’s lemmas are included in Chapter 3, but generalized when needed to the case of

complexes. For a bounded below complex of sheaves of graded commutative Fp-algebras on

X , we choose an injective resolution A· ↪→ I· in ShFp(X), the category of sheaves of Fp vector

spaces on X , and define K·= T (I·). We then show in Chapter 5 that the complex T (I·), equipped

with structure induced by A·, satisfies the axioms required by May’s machinery in [5], and we

obtain Steenrod operations on the cohomology groups, H ·(T (I·)) = H·(X ,A·). The Steenrod

operations are canonically determined by A· and its graded product structure. This establishes

Steenrod operations on H ·DR(X/k).

Now that we have Steenrod operations on sheaf hypercohomology, one can consider

various spectral sequences associated with hypercohomology, and ask if it is possible to define

Steenrod operations on the pages of these spectral sequences in a compatible way. The tools

required for this are developed in Chapter 6, and are then applied in Chapter 7. If one assumes

in addition that A· has a filtration that is finite in each degree and whose filtrations is compatible
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with the product on A·, then it is shown in Chapter 7 that the Steenrod operations defined

in Chapter 5 have a canonical and compatible action on the E1 and E∞ pages of the spectral

sequence converging to H·(X ,A·), induced by the filtration on F ·A·. As a special case, we have

that the Steenrod operations on H ·DR(X/k) have a compatible action on the Hodge to De Rham

spectral sequence, where Ea,b
1 = Hb(X ,Ωa

X/k). Any filtration will work, as long as it is finite in

each degree and compatible with the product, so similar results for other spectral sequences are

certainly possible. It should be noted that the canonical filtration of the De Rham complex is

not compatible with the wedge product, and thus, it appears we cannot apply these methods to

this filtration and its associated spectral sequence.

3



Chapter 2

Steenrod Operations of May

In this chapter I will state the definitions and theorems used by May. The below is a

simplified version of Definition 2.1 of [5], on page 160.

Definition 2.0.1. Let p be a prime. Let Λ be a commutative ring, which we will later take to

be Fp, the finite field of order p. Let Σp denote the symmetric group on p elements. Let π be a

subgroup of Σp, which we will later take to be the cyclic subgroup of order p generated by the

p-cycle, α = (1 2 . . . p). Let W· be a π-free resolution of Λ. Let V· be a Σp-free resolution of Λ.

Let j· : W·→V· be a morphism of Λπ complexes making the diagram below commute.

W· V·

Λ Λ
1

Note j· is a quasi-isomorphism. As specified in Definition 1.2, page 157 of [5], the

resolution W· can be constructed explicitly so that Wi is a free Λπ module of rank 1 for each

i≥ 0, with generator ei, and has the following differentials for all i≥ 0:

dW
2i+1(e2i+1) = (α−1)e2i

dW
2i+2(e2i+2) = (1+α+ · · ·+α

p−1)e2i+1
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Define C (π,Λ) to be the category whose objects are pairs (K·,θ·), where K· is a Λ

chain complex with a graded product making it a homotopy associative differential Λ-algebra

and

θ· : W·⊗Λ (K·)[p]→ K·

is a Λπ chain map. In May’s paper there is also an n, but for our purposes we just

take n = ∞. (K·)[p] represents the complex K· tensored with itself p times over Λ. Unlabeled

tensor products should be assumed to be over Λ. The group actions of Σp and π on K· are

trivial, while Σp and π act on (K·)[p] by permuting tensors with the appropriate sign, taking

into account the grading on K·. We then let π act diagonally on W·⊗Λ (K·)[p]. We additionally

require θ· to satisfy the following axioms:

1. The restriction of θ· to e0⊗ (K·)[p] is Λ homotopic to the iterated product, (K·)[p]→ K· in

some fixed order.

2. There is a ΛΣp chain map φ· such that θ· is Λπ-homotopic to the following composition:

W·⊗Λ (K·)[p] V·⊗Λ (K·)[p] K·
j⊗1 φ

A morphism f· : (K·,θ·)→ (K′· ,θ
′
·) in this category is a Λ chain map f· : K· → K′·

making the diagram below commute up to Λπ-homotopy:

W·⊗ (K·)[p] K·

W·⊗ (K′· )
[p] K′·

θ·

1⊗ f [p]· f·

θ′·

Let C (p) be an abbreviation for C (π,Fp). An object (K·,θ·)∈ C (π,Fp) is said to be

reduced mod p if it comes from the reduction mod p of an object (K̃·, θ̃·) ∈ C (π,Z), and K̃· is a

flat Z-module. Given two objects (K·,θ), (L·,θ′) in C (π,Λ), one can define the tensor product,

(K·⊗L·, θ̃·), where K·⊗Λ L· is the usual tensor product of chain complexes and θ̃· is given by

the following composition:
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W·⊗ (K·⊗L·)[p] W·⊗W·⊗K[p]
· ⊗L[p]

·

(W·⊗K[p]
· )⊗ (W·⊗L[p]

· ) K·⊗L·

ψ·⊗S·

1⊗U·⊗1

θ⊗θ′

In the above ψ· : W·→W·⊗Λ W· is a Λπ chain map making the diagram below com-

mute:

W· W·⊗Λ W·

Λ Λ

ψ·

1

The chain map S· : (K·⊗L·)[p]→ K[p]
· ⊗L[p]

· is the shuffling isomorphism, where for

ki ∈ Kdeg(ki) and li ∈ Ldeg(li), i = 1, . . . , p, one has:

S((k1⊗ l1)⊗·· ·⊗ (kp⊗ lp)) = (−1)s(k1⊗·· ·⊗ kp)⊗ (l1⊗·· ·⊗ lp)

where (−1)s is the sign that is incurred from transposing the ki terms and the li terms.

We have:

s = ∑
1≤i<i′≤p

deg(li) ·deg(ki′)

In the diagram, U : W·⊗K[p]
· → K[p]

· ⊗W· is given by U(x⊗ y) = (−1)degxdegyy⊗ x.

Note that I’m using different names for these maps than those used by May because I will later

use T to denote a functor. Given an object (K·,θ)∈ C (π,Λ), the graded product on K· gives rise

to a chain map, m· : K·⊗K·→K· and (K·,θ) is called a Cartan object if m· : (K·⊗K·, θ̃·)→ (K·,θ)

is a morphism in C (π,Λ). That is, if the diagram below commutes up to Λπ homotopy:

W·⊗ (K·⊗K·)[p] K·⊗K·

W·⊗K[p]
· K·

θ̃·

1⊗m[p]
· m·

θ·
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Given an object (K·,θ·)∈ C (π,Fp), one can define Steenrod operations on the homol-

ogy groups H·(K·). The following is Definition 2.2 from [5], on page 161:

Definition 2.0.2. Let (K·,θ·) be an object in C (π,Fp). Let [x] ∈ Hq(K·), and i ≥ 0. Then [ei⊗
x[p]] is a well defined element of Hpq+i(W·⊗π K[p]

· ). Define Di(x) = θ·([ei⊗ x[p]]) ∈ Hpq+i(K·).

For p = 2 define the Steenrod squares on H·(K·) as follows:

Ps(x) = 0 if s < q ; Ps(x) = Ds−q(x) if s≥ q

For p> 2, define the two operations Ps : Hq(K·)→Hq+2s(p−1)(K·) and βPs : Hq(K·)→
Hq+2s(p−1)−1(K·), as follows:

Ps(x) =

 0 if 2s < q

(−1)sν(q)D(2s−q)(p−1)(x) if 2s≥ q

βPs(x) =

 0 if 2s≤ q

(−1)sν(q)D(2s−q)(p−1)−1(x) if 2s > q

Where ν(2 j+ ε) = (−1) j(m!)ε for ε = 0,1 j ∈ Z, and m = (p−1)/2. Note that βPs

is a single symbol that is not a priori related to the Bockstein operator.

The following is part of Proposition 2.3 from page 162 of [5], and will be needed later

to show that the constructed Steenrod operations are natural.

Lemma 2.0.3. Let (K·,θ·) be an object in C (p) and consider Di : Hq(K·)→ Hpq+i(K·). For

every morphism, f· : (K·,θ·)→ (K′· ,θ
′
·) in C (p), and i≥ 0, one has:

f∗ ◦Di = Di ◦ f∗ : Hq(K·)→ Hpq+i(K′· )

Proof. This proven by May, but because it is important I give a quick explicit proof. Let [x] ∈
Hq(K·).

f∗(Di([x])) = [ f (θ(ei⊗π x[p]))] = [θ′(ei⊗π f (x)[p])] = Di( f∗([x]))
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Corollary 2.7 on page 165 of [5] asserts that if (K·,θ·) is a Cartan object, then the

Steenrod operations for H·(K·) will satisfy the Cartan formula.

Corollary 2.0.4. Let (K·,θ·) and (L·,θ′·) be objects in C (p). Let x ∈ Hq(K·), and y ∈ Hr(L·).

Then

Ps(x⊗ y) = ∑
i+ j=s

Pi(x)⊗Pj(y)

and if p > 2,

βPs+1(x⊗ y) = ∑
i+ j=s

βPi+1(x)⊗Pj(y)+(−1)qPi(x)⊗βPj+1(y)

The above is called the external Cartan formula. If (K·,θ·) is a Cartan object, then

we have the internal Cartan formula below for Ps, and if p > 2, βPs, on H·(K·).

Ps(xy) = ∑
i+ j=s

Pi(x)Pj(y)

βPs+1(xy) = ∑
i+ j=s

βPi+1(x)Pj(y)+(−1)degxPi(x)βPj+1(y)

For the Adem relations to hold, an additional axiom must be satisfied by (K·,θ·). The

following definition is paraphrased from the beginning of section 4 of [5], on page 172.

Definition 2.0.5. Let Σp2 act as permutations on the set {(i, j) | 1≤ i≤ p, 1≤ j ≤ p}. Embed

π = 〈α〉 as a subgroup of Σp2 by letting α(i, j) = (i+ 1, j). Define αi ∈ Σp2 with αi(i, j) =

(i, j+1) and αi(k, j) = (k, j) for k 6= i. Set β = α1 · · ·αp so that β(i, j) = (i, j+1). Then:

ααi = αi+1α αiα j = α jαi αβ = βα

Let αi generate πi and β generate ν, so that πi and ν are cyclic of order p. Set σ = πν

and let τ be generated by the αi and α. Then σ ⊂ τ and τ is a Sylow-p subgroup of Σp2 , and τ

is a split extension of π1 · · ·πp by π. Let W1 =W and W2 =W be π-free and ν-free resolutions

of Fp respectively. Let ν operate trivially on W1 and π operate trivially on W2. Let σ operate

diagonally on W1⊗Fp W2. Then W1⊗Fp W2 is a σ-free resolution of Fp.
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If M is a ν-module, let τ operate on M[p] by letting α operate by cyclic permutations

of the tensors and by letting αi act on the ith factor of M[p], as does β. Let αi operate trivially

on W1. Then τ operates on W1 and we let τ operate diagonally on W1⊗M[p]. In particular,

W1⊗W [p]
2 is then a τ-free resolution of Fp.

Let K be any Fp-complex. We let Σp2 act by permutations on the tensors of K[p2], with

the (i, j)th factor of K[p2] being the jth factor of K in the ith factor of K[p] in K[p2] = (K[p])[p].

Let ν operate on W2⊗K[p], with β acting by cyclic permutations of the tensors of K[p]. Then τ

has an action on W1⊗ (W2⊗K[p])[p].

Let Y be a Σp2-free resolution of Fp, and let w : W1⊗W [p]
2 → Y be a Fpτ chain map

over Fp:

W1⊗W [p]
2 Y

Fp Fp

w·

1

which exists because W1⊗W [p]
2 is a free τ resolution of Fp and Y is acyclic.

With all of the above established, we say an object (K,θ)∈ C (p) is an Adem object if

there exists a Σp2-morphism ξ : Y ⊗K[p2]→ K such that the following diagram is commutative

up to τ-homotopy:

(W1⊗W [p]
2 )⊗K[p2] Y ⊗K[p2]

K

W1⊗ (W2⊗K[p])[p] W1⊗K[p]

w⊗1

1⊗S

ξ

1⊗θ[p]

θ

The map S : W [p]
2 ⊗K[p2] → (W2⊗K[p])[p] shuffles tensors with sign, which is a τ-

morphism. In the above, Σp2 acts trivially on K and αi acts trivially on W1⊗K[p].
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It is then proven in Theorem 4.7, on page 178 of [5], that if (K·,θ·) is an Adem object,

then the Adem relations hold for the operations on H·(K·).

Theorem 2.0.6. The following relations among Ps and βPs are valid on all homology classes of

all Adem objects in C (p).

1. If p = 2 and a > 2b:

PaPb = ∑
i

(
2i−a

a−b− i−1

)
Pa+b−iPi

2. If p > 2 and a > pb:

PaPb = ∑
i
(−1)a+i

(
pi−a

a− (p−1)b− i−1

)
Pa+b−iPi

βPaPb = ∑
i
(−1)a+i

(
pi−a

a− (p−1)b− i−1

)
βPa+b−iPi

3. If p > 2 and a≥ pb:

PaβPb = ∑
i
(−1)a+i

(
pi−a

a− (p−1)b− i

)
βPa+b−iPi

−∑
i
(−1)a+i

(
pi−a−1

a− (p−1)b− i

)
Pa+b−iβPi

βPaβPb =−∑
i
(−1)a+i

(
pi−a−1

a− (p−1)b− i

)
βPa+b−iβPi

In Section 5 of [5], page 182, May restated his results with indices for cohomology

instead of homology, using the convention K−q = Kq.
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Definition 2.0.7. Let (K·,θ·) ∈ C (p), and consider W · as before but now graded with non-

positive superscripts. Let x ∈ Hq(K·). Then we have Di(x) = θ·(e−i⊗ x[p]) ∈ H pq−i(K·), for

i≥ 0, and Di = 0 for i < 0. We may define Ps(x) = P−s(x), and if p > 2, βPs(x) = βP−s(x).

We have the formulas in the following corollary:

Corollary 2.0.8. The definitions and properties of the Steenrod operations with cohomological

indices become the following. Let (K·,θ·) ∈ C (π,Fp), and x ∈ Hq(K·).

1. For p = 2:

Ps(x) = Dq−s(x) ∈ Hq+s(K·)

2. For p > 2:

Ps(x) = (−1)s
ν(−q)D(q−2s)(p−1)(x) ∈ Hq+2s(p−1)(K·)

βPs(x) = (−1)s
ν(−q)D(q−2s)(p−1)−1(x) ∈ Hq+2s(p−1)+1(K·)

where in the above, Di = 0 for i < 0 and ν(−q) = (−1) j(m!)ε, with q = 2 j−ε, ε = 0

or 1, and m = (p−1)/2.

In the case p = 2, May notes it would be standard to use Sqs instead of Ps, but he uses

Ps so that the Cartan and Adem relations are still the same in both cases. We have the following

properties:

1. For p = 2, Ps(x) = 0 when s > q and Pq(x) = x2.

2. For p > 2, Ps(x) = 0 when 2s > q, βPs(x) = 0 when 2s > q, and Ps(x) = xp when 2s = q.

The formulas Ps(x) = 0 when s < 0 and P0 = 1 are not true in general. If (K·,θ·) is

reduced mod p, then:
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1. βPs−1 = sPs if p = 2, and βPs is the composition of Ps with the Bockstein β if p > 2.

The external Cartan formula is now:

Ps(x⊗ y) = ∑
i+ j=s

Pi(x)⊗P j(y)

βPs+1(x⊗ y) = ∑
i+ j=s

βPi+1(x)⊗P j(y)+(−1)degxPi(x)⊗βP j+1(y) for p > 2.

So if (K·,θ·) ∈ C (p) is a Cartan object, then we will have:

Ps(xy) = ∑
i+ j=s

Pi(x)P j(y)

βPs+1(xy) = ∑
i+ j=s

βPi+1(x)P j(y)+(−1)degxPi(x)βP j+1(y) for p > 2.

The Adem relations with cohomological indices are stated in Corollary 5.1, page 183

of [5], included below:

Corollary 2.0.9. The following relations among the Ps and βPs are valid on all cohomology

classes of all Adem objects in C (p).

1. If p≥ 2, a < pb, and ε = 0 or 1 if p > 2, ε = 0 if p = 2, then:

β
εPaPb = ∑

i
(−1)a+i

(
a− pi

(p−1)b−a+ i−1

)
β

εPa+b−iPi

2. If p > 2, a≤ pb, and ε = 0 or 1, then

β
εPa

βPb = (1− ε)∑
i
(−1)a+i

(
a− pi

(p−1)b−a+ i−1

)
βPa+b−iPi

−∑
i
(−1)a+i

(
a− pi−1

(p−1)b−a+ i

)
β

εPa+b−i
βPi
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Now that these results from [5] have been summarized here, I will construct Steenrod

operations in a few contexts by constructing explicit objects (K·,θ·), proving that they belong

to the category C (p), and that the objects are both Cartan and Adem.
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Chapter 3

Conventions and Tools

In this chapter I will establish some conventions, list some results of Epstein, and

work out a few useful tools.

3.1 Group Actions and Adjoint Isomorphisms

Definition 3.1.1. Let G be a group, Λ a commutative ring, and let A,B,C be ΛG modules. We

let G act diagonally on the tensor product A⊗Λ B. That is, for a⊗b ∈ A⊗B and g ∈ G:

g · (a⊗b) = ga⊗gb

We also let G act diagonally on HomΛ(A,B). So for a ∈ A, f ∈ HomΛ(A,B), and

g ∈ G:

(g · f )(a) = g( f (g−1a))

In the case that G acts trivially on B, we have the identity:

(g · f )(a) = f (g−1a)

Lemma 3.1.2. Let A,B,C be ΛG modules. Let G act diagonally on HomΛ(B,C) and A⊗Λ B.

Then there is an isomorphism of abelian groups:

Φ : HomΛG(A,HomΛ(B,C))→ HomΛG(A⊗Λ B,C)
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where for f ∈ HomΛG(A,HomΛ(B,C)) and a⊗b ∈ A⊗B, one sets:

Φ( f )(a⊗b) = f (a)(b)

Proof. Since Λ is a commutative ring, we have the following isomorphism, by the more classi-

cal version of this lemma:

Φ : HomΛ(A,HomΛ(B,C))→ HomΛ(A⊗Λ B,C)

where Φ( f )(a⊗b)= f (a)(b), and Φ−1(h)(a)(b)= h(a⊗b), for f ∈HomΛ(A,HomΛ(B,C))

and h ∈ HomΛ(A⊗Λ B,C). Now all we have to prove is that when f is a ΛG morphism,

Φ( f ) is a ΛG morphism, and when h is a ΛG morphism, Φ−1(h) is a ΛG morphism. Sup-

pose f ∈ HomΛG(A,HomΛ(B,C)) and g ∈ G:

Φ( f )(g · (a⊗b)) = Φ( f )(ga⊗gb)

= ( f )(ga)(gb)

= [g · ( f (a))](gb) f is a ΛG morphism.

= g[ f (a)(g−1 ·gb)] Diagonal action on f (a) ∈ HomΛ(B,C)

= g[ f (a)(b)]

= g[Φ( f )(a⊗b)]

So we see Φ( f ) ∈ HomΛG(A⊗Λ B,C) when f ∈ HomΛG(A,HomΛ(B,C)). Suppose

h ∈ HomΛG(A⊗Λ B,C). Then:

Φ
−1(h)(ga)(b) = h(ga⊗b)

= h(g · (a⊗g−1b))

= g[h(a⊗g−1b)] h is a ΛG morphism.

= g[Φ−1(h)(a)(g−1b)]

= [g · (Φ−1(h)(a))](b) Diagonal action on Φ
−1(h)(a) ∈ HomΛ(B,C).
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This shows Φ−1(h)(ga) = g ·Φ−1(h)(a), so Φ−1(h) ∈HomΛG(A,HomΛ(B,C)) when

h∈HomΛG(A⊗Λ B,C). Now we can conclude that Φ restricts to give us a natural isomorphism:

HomΛG(A,HomΛ(B,C))→ HomΛG(A⊗Λ B,C)

Lemma 3.1.3. Suppose A,B,C are as in Lemma 3.1.2. Suppose futhermore that the action of G

on C is trivial. Then the following abelian groups are equal:

HomΛG(A⊗Λ B,C) = HomΛG(A⊗ΛG B,C)

Proof. The canonical surjection π : A⊗Λ B→ A⊗ΛG B induces the following inclusion by pre-

composition:

π
∗ : HomΛG(A⊗ΛG B,C) ↪→ HomΛG(A⊗Λ B,C)

Now suppose that f ∈ HomΛG(A⊗Λ B,C) and the action of G on C is trivial. Then

I claim that f is well defined in HomΛG(A⊗ΛG A,C). Let a ∈ A, b ∈ B, and g ∈ G. Note

in A⊗ΛG B, one has (ga)⊗ΛG b = (ag−1)⊗ΛG b = a⊗ΛG (g−1b). I must show f (ga⊗Λ b) =

f (a⊗Λ g−1b).

f (ga⊗Λ b) = f (g · (a⊗Λ g−1b))

= g · f (a⊗Λ g−1b) f is a G morphism.

= f (a⊗Λ g−1b) g acts trivially on C.

Thus f is well defined, and this shows HomΛG(A⊗Λ B,C) = HomΛG(A⊗ΛG B,C).

Definition 3.1.4. Let A· and B· be complexes in an abelian category with tensor product, count-

able direct sums, and countable direct products. Then we define the total complex of the tensor

product (A·⊗B·)·, also denoted Tot·(A·⊗B·).

16



(A·⊗B·)n =
⊕

i+ j=n

Ai⊗B j

dn
(A·⊗B·)· =

⊕
i+ j=n

(
di

A⊗1 j
B +(−1)i(1i

A⊗d j
B)
)

Similarly, we define the total Hom complex Hom·(A·,B·) as follows:

Homn(A·,B·) = ∏
i∈Z

Hom(Ai,Bi+n)

dn
Hom·(A·,B·)( f ·) = ∏

i∈Z

(
di+n

B ◦ f i +(−1)n+1 f i+1 ◦di
A
)

The choice of sign in d·Hom·(A·,B·) is determined by the choice of sign in d·(A·⊗B·)· , if one

wants the map Φ· in Lemma 3.1.5 to induce a chain map without requiring an additional sign.

Lemma 3.1.5. Let A·, B·, and C· be complexes of ΛG modules. Let G act diagonally on

Hom·
Λ
(B·,C·) and (A·⊗B·)·. Then there is an isomorphism of complexes of abelian groups:

Φ
· : Hom·ΛG(A

·,Hom·Λ(B
·,C·))→ Hom·ΛG((A

·⊗Λ B·)·,C·)

induced by the map Φ from Lemma 3.1.2.

Proof. For now we define Φ· : Hom·
Λ
(A·,Hom·

Λ
(B·,C·))→ Hom·

Λ
((A·⊗Λ B·)·,C·), and like in

Lemma 3.1.2, we will show that Φ· restricts to an isomorphism Hom·
ΛG(A

·,Hom·
Λ
(B·,C·))→

Hom·
ΛG((A

·⊗Λ B·)·,C·). To ease notation, let D·R =Hom·R(A
·,Hom·

Λ
(B·,C·)) and E ·R =Hom·R((A

·⊗Λ

B·)·,C·), for R = Λ and R = ΛG. Let n,k, l ∈ Z, and f · ∈ Dn
Λ

. Let a ∈ Ak and b ∈ Bl . We have

f k(a) ∈ Homn+k
Λ

(B·,C·). So f k(a)l(b) ∈Cn+k+l . Define Φn( f ·) ∈ En
Λ

by:

Φ
n( f ·)k+l(a⊗Λ b) = f k(a)l(b) ∈Cn+k+l

Denote the inverse map, β· : E ·
Λ
→ D·

Λ
, where for h ∈ En

Λ
, a ∈ Ak, b ∈ Bl , we define:

β
n(h·)k(a)l(b) = hk+l(a⊗b) ∈Cn+k+l

So we have βn(h·)k(a) ∈ Homn+k
Λ

(B·,C·), and that βn(h·) ∈ En
Λ

. We have shown that

Φ· and β· are degree 0 maps between chain complexes, and it is clear that Φ· and β· are inverse
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maps in each degree. Now I show that Φ· commutes with the differential. Let f ∈ Dn
Λ

, a ∈ Ak,

and b ∈ Bl .

Φ
n+1(dn

DΛ
( f ·))k+l(a⊗b)

= [(dn
DΛ
( f ·))k(a)]l(b)

= [dn+k
HomΛ(B·,C·)

( f k(a))+(−1)n+1 f k+1(dk
Aa)]l(b)

= dn+k
HomΛ(B·,C·)

( f k(a))l(b)+(−1)n+1 f k+1(dk
Aa)l(b)

= dn+k+l
C ( f k(a)l(b))+(−1)n+k+1 f k(a)l+1(dl

Bb)+(−1)n+1 f k+1(dk
Aa)l(b)

= dn+k+l
C (Φn( f ·)k+l(a⊗b))

+(−1)n+k+1(Φn( f ·)k+l+1(a⊗dl
Bb))+(−1)n+1(Φn( f ·)k+l+1(dk

Aa⊗b))

= dn+k+l
C (Φn( f ·)k+l(a⊗b))+(−1)n+1

Φ
n( f ·)k+l+1(dk

Aa⊗b+(−1)ka⊗dl
Bb)

= dn+k+l
C (Φn( f ·)k+l(a⊗b))+(−1)n+1

Φ
n( f ·)k+l+1(dk+l

A·⊗B·(a⊗b))

= (dn
EΛ
(Φn( f ·)))k+l(a⊗b)

Thus we have Φn+1(dn
DΛ
( f ·))= dn

EΛ
(Φn( f ·)), showing Φ· is a chain map. This implies

the inverse map β· is also a chain map, so Φ· is an isomorphism of chain complexes.

Finally, the arguments in Lemma 3.1.2 carry through to this case as well, and Φ·

restricts to the desired isomorphism D·
ΛG→ E ·

ΛG.

Lemma 3.1.6. Let A·,B·,C· be complexes of ΛG-modules. Suppose f ·,g· are two homotopic

ΛG chain maps:

f ·,g· : A·→ Hom·Λ(B
·,C·)

with homotopy h· : A· → Hom·
Λ
(B·,C·)[−1]. Because f · and g· are chain maps, we

may regard them as cycles in the complex of abelian groups:

f ·,g· ∈ Z0(Hom·ΛG(A
·,Hom·Λ(B

·,C·)))
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We also have h· ∈Hom−1
ΛG(A

·,Hom·
Λ
(B·,C·)), with d−1

HomΛG(A·, Hom·
Λ
(B·,C·))(h

·) = f ·−g·.

Recall the isomorphism from Lemma 3.1.5:

Φ
· : Hom·ΛG(A

·,Hom·Λ(B
·,C·))→ Hom·ΛG((A

·⊗B·)·,C·)

Then Φ0( f ·) and Φ0(g·) are ΛG chain maps, and are homotopic by homotopy Φ−1(h·).

Proof. Because Φ· is an isomorphism of chain complexes, all the relations satisfied by f ·, g·,

and h· will be satisfied by Φ0( f ·), Φ0(g·) and Φ−1(h·) respectively. Thus, we have:

Φ
0( f ·),Φ0(g·) ∈ Z0(Hom·ΛG((A

·⊗B·)·,C·))

which implies Φ0( f ·) and Φ0(g·) are chainmaps, and we also have:

Φ
0( f ·)−Φ

0(g·) = d−1
HomΛG((A·⊗B·)·,C·)(Φ

−1(h·))

which implies Φ0( f ·) and Φ0(g·) are homotopic by homotopy Φ−1(h·).

Lemma 3.1.7. Let Λ be a commutative ring, π a group, and let A·,B·,C·,D· be complexes of Λπ

modules, with Λπ morphisms:

f · : A·→ Hom·Λ(B
·,C·), g· : C·→ D·

Note Φ0( f ·) : Tot·(A·⊗Λ B·)→C·. We have the Λπ morphism, (g·)∗ : HomΛ(B·,C·)→
HomΛ(B·,D·) induced by post-composition with g·. We have the composition:

(g·)∗ ◦ f · : A·→ Hom·Fp
(B·,D·)

And the adjoint map:

Φ
0((g·)∗ ◦ f ·) : Tot·(A·⊗B·)→ D·

Then we have the identity, Φ0((g·)∗ ◦ f ·) = g· ◦Φ0( f ·). That is, if we have the dia-

gram:
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A· HomFp(B
·,C·) HomFp(B

·,D·),
f · (g·)∗

then applying Φ0 yields the diagram below:

Tot·(A·⊗B·) C· D·
Φ0( f ·) g·

Proof. Let a ∈ Ai and b ∈ B j. We have:

Φ
0((g·)∗ ◦ f ·)i+ j(a⊗b) = g·∗( f i(a)) j(b)

= gi+ j( f i(a) j(b))

= gi+ j(Φ0( f ·)i+ j(a⊗b))

= (g· ◦ (Φ0( f ·)))i+ j(a⊗b)

Thus, we have the equality Φ0((g·)∗ ◦ f ·) = g· ◦Φ0( f ·).

Lemma 3.1.8. Let Λ be a commutative ring, π a group, and A·,B·,C·,D· complexes of Λπ

modules. Let f · and g· be Λπ morphisms:

f · : A·→ Hom·Λ(B
·,C·), g· : D·→ B·

There is a Λπ morphism (g·)∗ : Hom·Fp
(B·,C·)→ Hom·Fp

(D·,C·) induced by precom-

position with g·. We have the composite Λπ morphism:

(g·)∗ ◦ f · : A·→ Hom·Fp
(D·,C·)

Note Φ0((g·)∗ ◦ f ·) : Tot·(A·⊗Λ D·)→C·. We claim we have the identity, Φ0((g·)∗ ◦
f ·) = Φ0( f ·)◦ (1·A⊗g·). That is, if we have the diagram below:

20



A· Hom·Fp
(B·,C·) Hom·Fp

(D·,C·)
f · (g·)∗

Then applying Φ0 yields the diagram:

Tot·(A·⊗Λ D·) Tot·(A·⊗Λ B·) C·
1·A⊗g· Φ0( f ·)

Proof. Let x ∈ Ai and y ∈ D j. We have:

Φ
0((g·)∗ ◦ f ·)i+ j(x⊗ y) = (g·)∗( f i(x)) j(y)

= f i(x) j(g j(y))

= Φ
0( f ·)i+ j(x⊗g j(y))

= (Φ0( f ·)◦ (1·A⊗g·))i+ j(x⊗ y)

This shows Φ0((g·)∗ ◦ f ·) = Φ0( f ·)◦ (1·A⊗g·).

Lemma 3.1.9. Let Λ be a commutative ring, π a group, and A·,B·,C·,D· complexes of Λπ

modules. Suppose there are Λπ morphisms f ·,g·:

f · : A·→ Hom·Λ(B
·,C·) g· : D·→ A·

We have the composite Λπ morphism:

f · ◦g· : D·→ Hom·Λ(B
·,C·)

and Φ0( f · ◦ g·) : Tot·(D·⊗Λ B·)→ C·. We claim we have the identity Φ0( f · ◦ g·) =

Φ0( f ·)◦ (g·⊗1·B). That is, if we have the diagram below:

D· A· Hom·
Λ
(B·,C·)

g· f ·

Then applying Φ0 gives the diagram below:
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Tot·(D·⊗Λ B·) Tot·(A·⊗Λ B·) C·
g·⊗1·B Φ0( f ·)

Proof. Let x ∈ Di and y ∈ B j.

Φ
0( f · ◦g·)i+ j(x⊗ y) = f i(gi(x)) j(y)

= Φ
0( f ·)i+ j(gi(x)⊗ y)

= (Φ0( f ·)◦ (g·⊗1·B))
i+ j(x⊗ y)

This shows Φ0( f · ◦g·) = Φ0( f ·)◦ (g·⊗1·B).

Lemma 3.1.10. Let Λ be a commutative ring, π a group, and B·, C·, E ·, and F · be complexes

of Λπ modules. There is a natural Λπ chain map:

ρ
· : Tot·(Hom·Λ(B

·,C·)⊗Λ Hom·Λ(E
·,F ·))→ Hom·Λ(Tot·(B·⊗Λ E ·),Tot·(C·⊗Λ F ·))

where for h·1 ∈ Homi
Λ
(B·,C·), h·2 ∈ Hom j

Λ
(E ·,F ·), b ∈ Bl and e ∈ Ek, we define:

ρ
i+ j(h·1⊗h·2)

l+k(b⊗ e) = (−1)l j(hl
1(b)⊗hk

2(e))

Proof. First I show that ρ is a π morphism. Degrees are omitted in the below. Let g ∈ π:

ρ(g · (h1⊗h2))(b⊗ e) = ρ(g ·h1⊗g ·h2)(b⊗ e)

= (−1)l j((g ·h1)(b)⊗ (g ·h2)(e))

= (−1)l j(gh1(g−1b)⊗gh2(g−1e))

= g · (−1)l j(h1(g−1b)⊗h2(g−1e))

= g ·ρ(h1⊗h2)(g−1b⊗g−1e)

= g ·ρ(h1⊗h2)(g−1 · (b⊗ e))
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= (g ·ρ(h1⊗h2))(b⊗ e)

Thus ρ(g · (h1⊗h2)) = g ·ρ(h1⊗h2), so we have that ρ is a π morphism. Now I will

show that it is a chain map. This is where the choice of sign is important.

ρ(d(h1⊗h2))(b⊗ e)

= ρ((dh1⊗h2)+(−1)i(h1⊗dh2))(b⊗ e)

= (−1)l j((dh1)(b)⊗h2(e))+(−1)i+l( j+1)(h1(b)⊗ (dh2)(e))

= (−1)l j ((d(h1(b))+(−1)i+1h1(db))⊗h2(e)
)

+(−1)i+l( j+1) (h1(b)⊗ (d(h2(e))+(−1) j+1h2(de))
)

= (−1)l j(d(h1(b))⊗h2(e))+(−1)i+1+l j(h1(db)⊗h2(e))

+(−1)i+l( j+1)(h1(b)⊗d(h2(e)))+(−1)i+l( j+1)+ j+1(h1(b)⊗h2(de))

(dρ(h1⊗h2))(b⊗ e)

= d(ρ(h1⊗h2)(b⊗ e))+(−1)i+ j+1
ρ(h1⊗h2)(d(b⊗ e))

= d((−1)l j(h1(b)⊗h2(e)))+(−1)i+ j+1
ρ(h1⊗h2)((db⊗ e)+(−1)l(b⊗de))

= (−1)l jd(h1(b))⊗h2(e)+(−1)l j+l+ih1(b)⊗d(h2(e))

(−1)i+ j+1+ j(l+1)h1(db)⊗h2(e)+(−1)i+ j+1+l+l jh1(b)⊗h2(de)

Matching up the terms in the above, we just need to check that the signs are the same.

The sign on the d(h1(b))⊗ h2(e) is (−1)l j in both equations. On the h1(db)⊗ h2(e) term, we

have: (−1)i+1+l j = (−1)i+ j+1+ j(l+1), since the j’s cancel. On the h1(b)⊗ d(h2(e)) term, we

have: (−1)i+l( j+1) = (−1)l j+l+1. On the h1(b)⊗ h2(de) term we have: (−1)i+l( j+1)+ j+1 =

(−1)i+ j+1+l+l j. Thus the expressions are equal, and we have shown ρ◦d = dρ.

Corollary 3.1.11. Let Λ be a commutative ring, π a group, and B·, C·, be complexes of Λπ

modules. Let r ≥ 1. There is a natural Λπ chain map:
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ρ
·
r : Tot·((Hom·Λ(B

·,C·))[r])→ Hom·Λ(Tot·((B·)[r]),Tot·((C·)[r]))

defined by the r-fold iteration of ρ· from Lemma 3.1.10.

Proof. The statement that ρ·p is a Λπ chain map follows from the fact that ρ· is a Λπ chain map,

from Lemma 3.1.10.

Lemma 3.1.12. Let Λ be a commutative ring, π a group, and A·, B·, C·, D·, E ·, and F · complexes

of Λπ modules. Suppose we have Λπ chain maps:

f · : A·→ Hom·Λ(B
·,C·) g· : D·→ Hom·Λ(E

·,F ·)

Consider the composition:

Tot·(A·⊗Λ D·) Tot·(Hom·
Λ
(B·,C·)⊗Λ Hom·

Λ
(E ·,F ·))

Hom·
Λ
(Tot·(B·⊗Λ E ·),Tot·(C·⊗Λ F ·))

f ·⊗g·

ρ·

where ρ· is the map from Lemma 3.1.10. We have:

Φ
0(ρ· ◦ ( f ·⊗g·)) : Tot·(Tot·(A·⊗Λ D·)⊗Λ Tot·(B·⊗Λ E ·))→ Tot·(C·⊗Λ F ·)

Φ
0( f ·) : Tot·(A·⊗Λ B·)→C· Φ

0(g·) : Tot·(D·⊗Λ E ·)→ F ·

We claim Φ0(ρ· ◦ ( f ·⊗g·)) is equal to the following composition:

Tot·(Tot·(A·⊗Λ D·)⊗Λ Tot·(B·⊗Λ E ·)) Tot·(Tot·(A·⊗Λ B·)⊗Λ Tot·(C·⊗Λ E ·))

Tot·(C·⊗Λ F ·)

1·A⊗U ·⊗1·E

Φ0( f ·)⊗Φ0(g·)

where U · : Tot·(D·⊗Λ B·)→ Tot·(B·⊗Λ D·) swaps tensors with sign.
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Proof. Let a ∈ Ai, b ∈ B j, d ∈ Dk, and e ∈ E l . We have:

Φ
0(ρ· ◦ ( f ·⊗g·))i+ j+k+l((a⊗b)⊗ (d⊗ e))

= (ρ· ◦ ( f ·⊗g·))i+ j(a⊗b)k+l(d⊗ e)

= ρ
i+ j( f i(a)⊗g j(b))k+l(d⊗ e)

= (−1)k j( f i(a)k(d)⊗g j(b)l(e))

= (−1)k j[(Φ0( f ·)i+k(a⊗d))⊗ (Φ0(g·) j+l(b⊗ e))]

= (−1)k j(Φ0( f ·)⊗Φ
0(g·))((a⊗d)⊗ (b⊗ e))

= (Φ0( f ·)⊗Φ
0(g·))(a⊗Uk+ j(b⊗d)⊗ e)

= (Φ0( f ·)⊗Φ
0(g·))(1·A⊗U ·⊗1·E)

i+ j+k+l((a⊗b)⊗ (d⊗ e))

Thus, we have shown:

Φ
0(ρ· ◦ ( f ·⊗g·)) = (Φ0( f ·)⊗Φ

0(g·))◦ (1·A⊗U ·⊗1·E)

Lemma 3.1.13. Let Λ be a commutative ring, π a group, A·, B·, and C· be complexes of Λπ

modules, and let r ≥ 1. Let f · : A·→Hom·
Λ
(B·,C·) be a Λπ chain map. We have the composi-

tion:

Tot·((A·)[r]) (Hom·
Λ
(B·,C·))[r] Hom·

Λ
(Tot·((B·)[r]),Tot·((C·)[r]))

( f ·)[r] ρ·r

where ρ·r is the natural Λπ chain map from Corollary 3.1.11. Let S· : Tot·((A·)[r]⊗
(B·)[r])→ Tot·((A·⊗B·)[r]) be the shuffling isomorphism. Then we have the identity Φ0(ρ·r ◦
( f ·)[p]) = Φ0( f ·)[r] ◦S·. That is, applying Φ0 to the diagram above yields the diagram below:

Tot·((A·)[r]⊗Λ (B·)[r]) Tot·((A·⊗Λ B·)[r]) Tot·((C·)[r])S· ( f ·)[r]
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Proof. Let ai ∈ A ji and bi ∈ Bki for i = 1, . . . ,r. Define s = ∑i>i′ ji · ki′ , n1 = ∑i ji, n2 = ∑i ki,

and n = n1 +n2. We have, Sn(a⊗b) = (−1)sc.

Φ
0(ρ·r ◦ ( f ·)[r])n((a1⊗·· ·⊗ar)⊗ (b1⊗·· ·⊗br))

= (ρ·r ◦ ( f ·)[r])n1(a1⊗·· ·⊗ar)
n2(b1⊗·· ·⊗br)

= ρ
n1
r ( f j1(a1)⊗·· ·⊗ f jr(ar))

n2(b1⊗·· ·⊗br)

= (−1)s( f j1(a1)
k1(b1)⊗·· ·⊗ f jr(ar)

kr(br))

= (−1)s(Φ0( f ·) j1+k1(a1⊗b1)⊗·· ·⊗Φ
0( f ·) jr+kr(ar⊗br))

= (−1)s(Φ0( f ·)[r])n((a1⊗b1)⊗·· ·⊗ (ar⊗br))

= (Φ0( f ·)[r])n(Sn((a1⊗·· ·⊗ar)⊗ (b1⊗·· ·⊗br)))

This shows the relation Φ0(ρ·r ◦ ( f ·)[r]) = Φ0( f ·)[r] ◦S·.

Lemma 3.1.14. Let Λ be a commutative ring, π a group, and A·, B·, C·, D·, complexes of Λπ

modules. Let Φ·1, Φ·2, and Φ·3 denote the Λπ chain map isomorphisms from Lemma 3.1.5:

Φ
·
1 : Hom·Λ(B

·,Hom·Λ(C
·,D·))→ Hom·Λ(B

·⊗Λ C·,D·)

Φ
·
2 : Hom·Λπ(A

·,Hom·Λ(B
·,HomΛ(C·,D·)))→ Hom·Λπ(A

·⊗Λ B·,Hom·Λ(C
·,D·))

Φ
·
3 : Hom·Λπ(A

·⊗Λ B·,Hom·Λ(C
·,D·))→ Hom·Λπ(A

·⊗Λ B·⊗Λ C·,D·)

Φ
·
4 : Hom·Λπ(A

·,Hom·Λ(B
·⊗Λ C·,D·))→ Hom·Λπ(A

·⊗Λ B·⊗Λ C·,D·)

and suppose f · is a Λπ chain map in the composition below:

A· Hom·
Λ
(B·,Hom·

Λ
(C·,D·)) Hom·

Λ
(B·⊗C·,D·)

f · Φ·1

We have, Φ0
2( f ·) : Tot·(A·⊗Λ B·)→ Hom·

Λ
(C·,D·). I claim we have the identity:

Φ
0
4(Φ

·
1 ◦ f ·) = Φ

0
3(Φ

0
2( f ·))
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Proof. Let a ∈ Ai, b ∈ B j, and c ∈Ck. We have:

Φ
0
4(Φ

·
1 ◦ f ·)i+ j+k(a⊗b⊗ c) = Φ

i
1( f i(a)) j+k(b⊗ c)

= f i(a) j(b)k(c)

= Φ
0
2( f ·)i+ j(a⊗b)k(c)

= Φ
0
3(Φ

0
2( f ·))i+ j+k(a⊗b⊗ c)

Thus we have the strange looking identity, Φ0
4(Φ

·
1 ◦ f ·) = Φ0

3(Φ
0
2( f ·)).

Lemma 3.1.15. Let A be an abelian category, let A·, B·, and C· be complexes in A , let g·1,g
·
2 :

A·→ B· be chain maps that are homotopic by homotopy h· : A·→ B[−1]·. Let f · : B·→C· be a

chain map. Then f ·g·1 and f ·g·2 are homotopic by homotopy f ·h·.

Proof. Let n ∈ Z. We have:

f ngn
1− f ngn

2 = f n(gn
1−gn

2)

= f n(dn−1
B hn +hn+1dn

A)

= dn−1
C ( f n−1hn)+( f nhn+1)dn

A

Lemma 3.1.16. Let A be an abelian category, let A·, B·, and C· be complexes in A, let g·1,g
·
2 :

A·→ B· be chain maps homotopic by homotopy h· : A·→ B[−1]·. Let f · : C·→ A· be a chain

map. Then g·1 f · and g·2 f · are homotopic by homotopy h· f ·.

Proof. Let n ∈ Z. We have:

gn
1 f n−gn

2 f n = (gn
1−gn

2) f n

= (dn−1
B hn +hn+1dn

A) f n
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= dn−1
B (hn f n)+(hn+1 f n+1)dn

C

3.2 Sheaves with Group Action and Resolutions

Definition 3.2.1. Let Λ be a commutative ring, G be a finite group. and F be a sheaf of Λ

modules on a topological space X. Let M be a ΛG module. Define PrHomΛ(M,F) to be the

following presheaf of ΛG-modules on X. For an open set U ⊂ X, define:

PrHomΛ(M,F)(U) = HomΛ(M,F(U))

and let HomΛ(M,F) be the sheafification. The action of G is diagonal on Hom, and

trivial on F. That is, if f ∈ PrHomΛ(M,F)(U), m ∈M, g ∈ G, then:

(g · f )(m) = f (g−1m)

Note that in [2], M in the above was required to be finitely generated. We can get

away without this restriction in our context, but in this paper’s applications M will always be

finitely generated.

Lemma 3.2.2. Let Λ, G, X, F, and M be given as in Definition 3.2.1, but assume in addition

that M is a free Λ module. Then the presheaf PrHomΛ(M,F) is actually a sheaf.

Proof. Let {xi}i∈I be a Λ basis of M. For N a Λ module, we have the natural isomorphism:

HomΛ(M,N)∼= ∏
i∈I

N

where a f ∈ HomΛ(M,N) is sent to the element ( f (xi))i∈I ∈∏i∈I N. Thus, for every

open set U ⊆ X , we have the natural identification:

PrHomΛ(M,F)(U) = HomΛ(M,F(U))∼= ∏
i∈I

F(U)
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And since PrHomΛ(M,F) is naturally isomorphic to the product of sheaves, ∏i∈I F ,

we have PrHomΛ(M,F) is a sheaf.

The next three lemmas are motivated by the proof of Theorem 2.2.1 from [2], on page

157.

Lemma 3.2.3. Let Λ, G, X, and F be as in Definition 3.2.1. The contravariant functor HomΛ(−,F) :

ΛGMod→ ShΛG is left exact.

Proof. Let

N0
f→ N1

g→ N2→ 0

be exact in ΛGMod. We have the induced sequence:

0→HomΛ(N2,F)
g̃∗→HomΛ(N1,F)

f̃ ∗→HomΛ(N0,F)

with g̃∗ and f̃ ∗ being induced by precomposition with g and f respectively. For every

x ∈ X , the sequence on the stalks becomes:

0→ HomΛ(N2,Fx)
g∗→ HomΛ(N1,Fx)

f ∗→ HomΛ(N0,Fx)

Now the maps g∗ and f ∗ really are precomposition with g and f , so the sequence is

left exact by the left exactness of HomΛ(−,Fx) : ΛGMod→ ΛGMod. Since this sequence is left

exact for all x ∈ X , the sequence of sheaves is left exact.

Lemma 3.2.4. Let Λ, G, X, F, and M be as in Definition 3.2.1, and suppose M be a free ΛG

module. Then for every sheaf A in ShΛ(X), we have the natural isomorphism of abelian groups:

HomΛG(M,HomΛ(A,F))∼= HomΛG(A,HomΛ(M,F))

Proof. Because M is a free ΛG module, M is also a free Λ module, so by Lemma 3.2.2 we have

the equality HomΛ(M,F)(U) = HomΛ(M,F(U)) for all open U ⊆ X . I first claim we have the

natural isomorphism:
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ρ : HomΛ(M,HomΛ(A,F))→ HomΛ(A,HomΛ(M,F))

where ρ is defined as follows, for all f ∈HomΛ(M,HomΛ(A,F)), m∈M, U ⊆ X , and

a ∈ A(U):

ρ( f )U(a)(m) = f (m)U(a)

We may similarly define:

β : HomΛ(A,HomΛ(M,F))→ HomΛ(M,HomΛ(A,F))

where for h ∈ HomΛ(A,HomΛ(M,F)), m ∈M, U ⊆ X , and a ∈ A(U):

β(h)(m)U(a) = hU(a)(m)

We have ρ and β are inverse to one another. Let f ∈HomΛ(M,HomΛ(A,F)), m ∈M,

U ⊆ X , and a ∈ A(U).

β(ρ( f ))(m)U(a) = ρ( f )U(a)(m) = f (m)U(a)

So β◦ρ = 1. Now let h ∈ HomΛ(A,HomΛ(M,F)).

ρ(β(h))U(a)(m) = β(h)(m)U(a)

= hU(a)(m)

So ρ ◦β = 1. Thus ρ is an isomorphism. It is clear that ρ is natural in A. Finally, I

must show that ρ is a G morphism. Let g ∈G, f ∈HomΛ(M,HomΛ(A,F)), m ∈M, U ⊆ X , and

a ∈ A(U). We have:

(g ·ρ( f ))U(a)(m) = (g ·ρ( f )U(a))(m)
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= ρ( f )U(a)(g−1 ·m)

= f (g−1 ·m)U(a)

= (g · f )(m)U(a)

= ρ(g · f )U(a)(m)

Thus ρ is a G morphism. Therefore ρ induces an isomorphism of the G equivariant

part of its domain and range, which are precisely the ΛG morphisms:

ρG : HomΛG(M,HomΛ(A,F))→ HomΛG(A,HomΛ(M,F))

Lemma 3.2.5. For Λ, G, X, F, and M given in Definition 3.2.1, the object HomΛ(M,F) is

an object representing the contravariant functor HomΛG(M,HomΛ(−,F)) : ShΛG(X)→ Ab.

That is, we have the natural isomorphism of abelian groups for all sheaves A in the category

ShΛG(X):

HomΛG(M,HomΛ(A,F))∼= HomΛG(A,HomΛ(M,F))

Proof. In [2], Theorem 2.2.1, on page 157, it is proven that the functor HomΛG(M,HomΛ(−,F))

is representable, with the additional condition that M is finitely generated. Here I will prove that

the sheaf defined in Definition 3.2.1 is an object representing this functor.

We may choose a partial free resolution of M:

N1→ N0→M→ 0

where N j is a free ΛG module and the sequence is exact at N0 and M. We then have

the diagram below:
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0 0

HomΛG(M,HomΛ(A,F)) HomΛG(A,HomΛ(M,F))

HomΛG(N0,HomΛ(A,F)) HomΛG(A,HomΛ(N0,F))

HomΛG(N1,HomΛ(A,F)) HomΛG(A,HomΛ(N1,F))

∼=

∼=

where the right column is due to Lemma 3.2.3 and the bottom two isomorphisms are

from Lemma 3.2.4. This diagram allows us to induce the isomorphism:

HomΛG(M,HomΛ(A,F))∼= HomΛG(A,HomΛ(M,F))

And this induced isomorphism is natural because the isomorphisms along the two

bottom rows are.

Lemma 3.2.6. Suppose W is a projective ΛG module and I is an injective object in the category

of sheaves of Λ modules on a topological space X. Then HomΛ(W, I) is an injective object in

the category of sheaves of ΛG modules on X.

Proof. This is proved in [2], Corollary 2.3.3, on page 158 in an abstract setting. I include a

direct proof below.

It suffices to prove that the functor HomΛG(−,HomΛ(W, I)) : ShΛG(X)→Ab is right

exact. Let 0→ A→ B→ C→ 0 be an exact sequence in ShΛG(X). Because I is injective in

ShΛ(X), and 0→ A→ B→C→ 0 is exact in ShΛ(X), we have:

0→ HomΛ(C, I)→ HomΛ(B, I)→ HomΛ(A, I)→ 0

is exact in ΛGMod, where G acts diagonally on Hom and trivially on I. Then because

W is a projective object in ΛGMod, we have the exact sequence of abelian groups:

32



0→ HomΛG(W,HomΛ(C, I))→ HomΛG(W,HomΛ(B, I))→ HomΛG(W,HomΛ(A, I))→ 0

Now by Lemma 3.2.5, the exact sequence above is naturally isomorphic to the fol-

lowing:

0→ HomΛG(C,HomΛ(W, I))→ HomΛG(B,HomΛ(W, I))→ HomΛG(A,HomΛ(W, I))→ 0

This shows the functor HomΛG(−,HomΛ(W, I)) is right exact, and thus, HomΛ(W, I)

is an injective object in the category ShΛG(X).

Definition 3.2.7. Given a complex of ΛG modules M· and a complex of sheaves of Λ modules

F ·, we can define the total complex Hom·
Λ
(M·,F ·), in a similar way to the total Hom complex

of Definition 3.1.4.

Lemma 3.2.8. Let W· be a projective resolution of Λ in the cateogry of ΛG modules, and let I·

be an injective resolution of A in the category of sheaves of Λ modules on a topological space

X. Then Hom·
Λ
(W·, I·) is an injective resolution of A in the category of sheaves of ΛG modules

on X.

Proof. This is a special case of Theorem 2.4.6 of [2], on page 161.

Lemma 3.2.9. Let X be a topological space, k a field, G a finite group, and M a kG module.

Then the functor Homk(M,−) : Shk(X)→ ShkG(X) is exact.

Proof. Let 0→ A
f→ B

g→C→ 0 be an exact sequence in Shk(X). I claim 0→Homk(M,A)
f∗→

Homk(M,B)
g∗→ Homk(M,C)→ 0 is exact. Let x ∈ X . Since 0→ Ax→ Bx→Cx→ 0 is exact

in Vect(k) and Homk(M,−) : Vect(k)→ kGMod is exact, we have exactness of:

0→ Homk(M,Ax)
( fx)∗→ Homk(M,Bx)

(gx)∗→ Homk(M,Cx)→ 0

And the above sequence is the following:

0→Homk(M,A)x
( f∗)x→ Homk(M,B)x

(g∗)x→ Homk(M,C)x→ 0
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This shows the sequence 0→ Homk(M,A)→ Homk(M,B)→ Homk(M,C)→ 0 is

exact on all stalks, and hence is exact.

Lemma 3.2.10. For k any field, in the category of sheaves of k vector spaces on X, the tensor

product is an exact bifunctor.

Proof. We have that tensor product is an exact bifunctor in the category of k vector spaces. Let

0→ A→ B→C→ 0 be an exact sequence in Shk(X), and D an object in Shk(X). The sequence

0→ D⊗k A→ D⊗k B→ D⊗k C→ 0 is exact if and only if it is exact at all stalks of X . Taking

the stalk at a point x ∈ X gives the sequence:

0→ Dx⊗k Ax→ Dx⊗k Bx→ Dx⊗k Cx→ 0

which is exact because 0→ Ax → Bx → Cx → 0 is exact in Vect(k) and Dx⊗k− is

exact in Vect(k). This shows D⊗k− : Shk(X)→ Shk(X) is an exact functor. The argument for

−⊗k D is symmetric. Thus tensor product is an exact bifunctor.

Lemma 3.2.11. Let X be a topological space and k a field. Suppose A and B are sheaves of

k vector spaces on X, and J· and K· are resolutions of A and B respectively in the category

Shk(X), with embeddings ε : A→ J0 and γ : B→ K0. Then Tot·(J·⊗k K·) is a resolution of

A⊗k B, with embedding ε⊗k γ.

Proof. Special case of Lemma 3.2.16 in which A· and B· are concentrated in degree 0.

Corollary 3.2.12. Let A, J·, and X be as in Lemma 3.2.11, and let r > 0. Then Tot·((J·)[r]) is a

resolution of A[r].

Proof. Inductive application of Lemma 3.2.11 on r.

The next two lemmas are from [6]. Their numbers are subject to change but their tags

are permanent.
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Lemma 3.2.13. The Stacks Project: Tag 013P 1 (Lemma 13.18.6)

Let A be an abelian category. Consider a solid diagram:

K· L·

I·

α·

γ·

β·

where I· is bounded below and consists of injective objects, and α· is a quasi-isomorphism.

1. There exists a map of complexes β· making the diagram commute up to homotopy.

2. If α· is injective in every degree then we can find a β· which makes the diagram commute.

Lemma 3.2.14. The Stacks Project: Tag 013S 2 (Lemma 13.18.7)

Let A be an abelian category. Consider a solid diagram

K· L·

I·

α·

γ·

β·i

where I· is bounded below and consists of injective objects, and α· is a quasi-isomorphism.

Any two morphisms β·1, β·2 making the diagram commute up to homotopy are homotopic.

Definition 3.2.15. In an abelian category, a chain map ε· : A·→ B· will be called a resolution

if ε· is injective in each degree and a quasi-isomorphism. If B· is bounded from below and

injective in each degree, then ε· is called an injective resolution.

The following generalizes Lemma 3.2.11 to the case where A and B are complexes.

Lemma 3.2.16. Let X be a topological space and k a field. Suppose A·, B·, J·, K· are complexes

in Comp(Shk(X)), with chain maps ε· : A·→ J· and γ· : B·→ K·.

1. If ε· and γ· are injective in each degree, then ε·⊗ γ· is injective in each degree.

1 https://stacks.math.columbia.edu/tag/013P
2https://stacks.math.columbia.edu/tag/013S
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2. If ε· and γ· are both quasi-isomorphisms then ε·⊗ γ· is a quasi-isomorphism.

Proof. Suppose ε· and γ· are injective in each degree. Let x ∈ X . Then ε·x and γ·x are injective

maps of vector spaces in each degree. Hence, we have εk
x⊗k γn−k

x : Ak⊗Bn−k → Jk⊗Kn−k is

injective for all n and k. Then we have:

(εx⊗k γx)
n : Totn(A·⊗k B·)→ Totn(J·⊗k K·)

is a direct sum of injective maps, and hence, is injective. Finally, the injectivity of

(ε·⊗k γ·)n
x = (ε·x⊗k γ·x)

n for every x ∈ X implies (ε·⊗k γ·)n is an injective map of sheaves. Thus

(ε·⊗k γ·)· is injective in every degree when ε· and γ· are.

Now suppose ε· and γ· are quasi-isomorphisms. Let x ∈ X . We have ε·x and γ·x are

quasi-isomorphisms. Using page 113 of [1], we have the exact sequences of Fp vector spaces:

0→ H ·(A·x)⊗H ·(B·x)→ H ·(A·x⊗B·x)→ Tor1(H ·(A·x),H
·(B·x))[1]→ 0

0→ H ·(K·x)⊗H ·(J·x)→ H ·(K·x⊗ J·x)→ Tor1(H(K·x),H(J·x))[1]→ 0

The sequences exists because we are in the category of Fp vector spaces, so all the

following Tor groups are zero, since all objects are flat:

Tor1(B·(A·x),B
·(B·x)) = 0 = Tor1(H ·(A·x),B

·(B·x))

Tor1(B·(A·x),Z
·(B·x)) = 0 = Tor1(H ·(A·x),Z

·(B·x))

Tor1(B·(K·x),B
·(J·x)) = 0 = Tor1(H ·(K·x),B

·(J·x))

Tor1(B·(K·x),Z
·(J·x)) = 0 = Tor1(H ·(K·x),Z

·(J·x))

Furthermore, the Tor groups at the end of the sequence are zero, so the Künneth map

gives isomorphisms:
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H ·(A·x)⊗k H ·(B·x)→ H ·(A·x⊗B·x)

H ·(K·x)⊗k H ·(J·x)→ H ·(K·x⊗ J·x)

where the Künneth map is given by [a]⊗ [b] 7→ [a⊗b]. We now have the commutative

diagram:

H ·(A·x)⊗H ·(B·x) H ·(A·x⊗B·x)

H ·(K·x)⊗H ·(J·x) H ·(K·x⊗ J·x)

ε·x⊗γ·x ε·x⊗γ·x

where the horizontal maps are the Künneth maps. Because the diagram commutes

and every other map is an isomorphism, we have ε·x⊗ γ·x is an isomorphism. Hence, ε·x⊗k γ·x is

a quasi-isomorphism, and since ε·⊗k γ· is a quasi-isomorphism on all stalks, we have ε·⊗k γ· is

a quasi-isomorphism.

Corollary 3.2.17. Let X be a topological space, k a field, A· a complex in Shk(X), and ε· : A·→
J· a resolution of A·, and r ≥ 1. Then the following is a resolution.

(ε·)[r] : (A·)[r]→ (J·)[r]

Proof. Use induction on r and apply Lemma 3.2.16.

Lemma 3.2.18. Let A be an abelian category and suppose A· and B· are complexes in A with

A· bounded above and B· bounded below. Then Hom·(A·,B·) is bounded below. Furthermore,

for each n ∈ Z only finitely many terms in the product below are non-zero:

Homn(A·,B·) = ∏
i∈Z

Hom(Ai,Bi+n)

Proof. Let k, l ∈ Z such that An = 0 for all n≥ k and Bn = 0 for all n≤ l. I claim Hom·(A·,B·)

is bounded below by l − k and for all n ∈ Z, there are only finitely many i ∈ Z such that
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Hom(Ai,Bi+n) 6= 0. Suppose Ai 6= 0 and Bi+n 6= 0. Then we must have i < k and i+ n > l.

Thus, for every fixed n, we have i contained within the finite range of integers, l− n < i < k.

Thus, for every n, there are only finitely many i such that Hom(Ai,Bi+n) 6= 0. In particular, when

l−n≥ k, there are no values for i in which Hom(Ai,Bi+n) 6= 0. This implies Homn(A·,B·) = 0

for all n≤ l− k. Thus the complex Hom·(A·,B·) is bounded below at l− k.

Corollary 3.2.19. Let A be an abelian category and suppose A· and B· are complexes in A with

B· bounded below and A· (lowered index) bounded below. Then Hom·(A·,B·) is bounded below,

and for every n ∈ Z only finitely many terms in the product are non-zero:

Homn(A·,B·) = ∏
i∈Z

Hom(Ai,Bn−i)

Proof. When one raises the index on A· using the convention An = A−n, we have A· is bounded

above and the result follows from Lemma 3.2.18.

Corollary 3.2.20. Let X be a topological space, Λ a commutative ring, G a finite group, M· a

(lowered index) bounded below complex of finitely generated ΛG modules, and A· a bounded

below complex in ShΛ(X). Then Hom·
Λ
(M·,A·) is a bounded below complex in ShΛG(X), and

for every n ∈ Z, only finitely many terms in the product below are non-zero:

Homn
Λ(M·,A

·) = ∏
i∈Z

HomΛ(Mi,An−i)

Proof. Use HomΛ in place of Hom of Lemma 3.2.18, and follow with Corollary 3.2.19.

Lemma 3.2.21. Let X be a topological space, k a field, G a finite group, A· a complex of sheaves

of k vector spaces, and ε· : A·→ I· an injective resolution of A· in the category Shk(X). That is,

I· is injective in each degree, bounded from below, and ε· is an injective quasi-isomorphism. Let

V· be a G projective resolution of k, finitely generated in each degree, with augmentation map

π· : V·→ k[0]·. Then the following is an injective resolution of A· in the category ShkG(X):

ν
· : A· = Hom·k(k,A

·)→Hom·k(V·, I
·)
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where ν· is induced by pre-composition by π· and post-composition by ε·.

Proof. This is more or less a generalization of Theorem 2.4.6 of [2], on page 161, in which A·

is concentrated in degree 0, although we only work in the context of sheaves of vector spaces.

Since V· and I· are bounded below, Hom·k(V·, I·) is bounded from below by Corollary

3.2.20. For a fixed degree n we have:

Homn
k(V·, I

·) = ∏
j∈Z

Homk(Vj, In− j)

By Lemma 3.2.6, each Homn
k(Vj, In− j) is an injective object in ShkG(X). Then be-

cause products of injective objects are injective, we have Homn
k(V·, I

·) is an injective object in

ShkG(X). Thus Hom·k(V·, I·) is a bounded below complex of injective objects in ShkG(X). Now

I must show ν· is injective in each degree, and a quasi-isomorphism.

To show that ν· is injective in each degree, observe that ν· is induced by post-composition

with the monomorphism ε· : A·→ I·, and pre-composition by the epimorphism, π : V0→ k, both

of which are injective operations on Hom sets.

To show that ν· is a quasi-isomorphism, it suffices to check on the stalks. Let x ∈ X .

I claim ν·x is a quasi-isomorphism. After taking the stalk, we are in the category of k vector

spaces, and we have the second Künneth exact sequences from [1], page 114:

0→ Ext1(H·(k[0]·),H ·(A·x))[1]→H ·(Hom·k(k[0]·,A
·
x))→ Hom·k(k[0]·,A

·
x)→ 0

0→ Ext1(H·(V·),H ·(I·x))[1]→H ·(Hom·k(V·, I
·
x))→ Hom·k(V·, I

·
x)→ 0

We have these sequences because we are in the category of k vector spaces, so all

objects are projective and injective, so the following Ext1 groups are zero:

Ext1(B·(k[0]·),B·(A·x)) = 0 = Ext1(B·(k[0]·),H ·(A·x))

Ext1(Z·(k[0]·),B·(A·x)) = 0 = Ext1(Z·(k[0]·),H ·(A·x))
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Ext1(B·(V·),B·(I·x)) = 0 = Ext1(B·(V·),H ·(I·x))

Ext1(Z·(V·),B·(I·x)) = 0 = Ext1(Z·(V·),H ·(I·x))

We also have Ext1(H·(k[0]·),H ·(A·x))[1] = Ext1(H·(V·),H ·(I·x))[1] = 0, so the Künneth

maps are isomorphisms:

H ·(Hom·k(k[0]·,A
·
x))→Hom·k(H·(k[0]·),H

·(A·x))

H ·(Hom·k(V·, I
·
x))→Hom·k(H·(V·),H

·(I·x))

Because of how the Künneth maps are defined, we have the following commutative

square:

H ·(Hom·k(k[0]·,A
·
x)) Hom·k(H·(k[0]·),H

·(A·x))

H ·(Hom·k(V·, I
·
x)) Hom·k(H·(V·),H

·(I·x))

ν·x β

The horizontal maps are the Künneth isomorphisms, and β is precomposition by π·

and postcomposition by ε·x. Since both π· and ε·x are isomorphisms, β is an isomorphism. Then

since every other edge in the square is an isomorphism and the square commutes, ν·x is an

isomorphism. So we have shown ν·x is a quasi-isomorphism for all x ∈ X , and this implies ν· is

a quasi-isomorphism. Now all the desired properties have been shown.
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Chapter 4

Steenrod Operations on Sheaf

Cohomology

In this chapter we give a construction of Steenrod operations on sheaf cohomology

using May’s framework. These operations are known to exist and were constructed by Epstein in

[2]. Here I will just express Epstein’s construction in terms of May’s, citing many of his results

along the way. The next section generalizes this section to the case of sheaf hypercohomology,

making the results of this section a special case. Because of this, I will actually omit all proofs

in this chapter, and just state which results are special cases of those in the next chapter.

Let X be a topological space. Let A be a sheaf of commutative Fp-algebras on X .

Choose an injective resolution ι : A ↪→ I· in the category of sheaves of Fp vector spaces. Let T

denote the global section functor, Γ(X ,−). Define K· = T (I·). Then the cohomology groups of

K· compute the sheaf cohomology groups of X with coefficients in A:

Hn(K·) = Hn(X ,A)

We will construct a homotopy associative product on K·, which defines an associative

cup product on H ·(X ,A). We will then define a map θ· : W·⊗ (K·)[p]→ K·, which satisfies the

axioms needed for (K·,θ·) to be an object in category C (p) defined by May. We will then show

(K·,θ·) is a Cartan and Adem object, which will show the Steenrod operations on H ·(X ,A)

satisfy the Cartan formula and Adem relations.
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4.1 The Product on K·

In this section we will construct the product that makes K· into a homotopy associative

graded Fp algebra. Let m : A⊗A→ A denote the multiplication map on A.

Definition 4.1.1. Consider the diagram below:

Tot·(I·⊗ I·) I·

A⊗A A

m̃·

m

ι⊗ι ι

By Lemma 3.2.11, Tot·(I·⊗ I·) is a resolution of A⊗A. Because of this and the fact

that I· is an injective resolution of A, there exists a chain map m̃· unique up to homotopy making

the diagram commute. We then apply the global section functor T and precompose by the

natural map γ· to obtain the product M· : Tot·(K·⊗K·)→ K·:

M· : Tot·(T (I·)⊗T (I·)) T (Tot·(I·⊗ I·)) T (I·)
γ· T (m̃·)

Note this definition only defines M· uniquely up to homotopy.

Lemma 4.1.2. The product map M· makes K· a homotopy associative Fp algebra. The cup

product induced on the cohomology groups H ·(K·) is associative.

Proof. Special case of Lemma 5.1.3, where here A· = A[0]· is concentrated in degree 0.

Definition 4.1.3. In a similar fashion, we may define a p iterated product, using the diagram

below:

Tot·((I·)[p]) I·

A[p] A

m̃·p

mp

ι[p] ι

where mp denotes the p-fold product on A. By Corollary 3.2.12, Tot·((I·)[p]) is a

resolution of A·. Because I· is an injective resolution of A, there is a chain map m̃·p unique up to
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homotopy making the diagram commute. We can then define a p-fold product, Mp : (K·)[p]→K·

by applying the global section functor T and precomposing with the natural map γ·p:

M·p : T (I·)[p] T ((I·)[p]) T (I·)
γ·p T (m·p)

Lemma 4.1.4. The p-fold product of M· is Fp homotopic to M·p as chain maps, Tot·((K·)[p])→
K·.

Proof. Special case of Lemma 5.1.5 where A· is concentrated in degree 0.

4.2 Construction of θ·

In this section we construct the map θ· associated to the homotopy associative Fp-

DGA, K· = T (I·). Recall the standard free resolution W· of Fp in the category of Fpπ mod-

ules. Because I· is an injective resolution of A in the category ShFp(X), by Lemma 3.2.8,

Hom·Fp
(W·, I·) is an injective resolution of A in the category ShFpπ(X). By Corollary 3.2.12,

Tot·((I·)[p]) is a resolution of A[p] in the category ShFp(X). We now let π act on A[p] and

Tot·((I·)[p]) by cyclic permutations of the tensors, with sign change determined by the grad-

ing on I·. Because multiplication in A is commutative, mp : A[p]→ A is a π morphism. Hence,

we have the solid diagram below in which all solid arrows are Fpπ morphisms:

Tot·((I·)[p]) Hom·Fp
(W·, I·)

A[p] A

β·

mp

ι[p] ν·

By Corollary 3.2.12, Tot·((I·)[p]) is a resolution of A[p]. Because all morphisms are

Fpπ morphisms and because Hom·Fp
(W·, I·) is an injective resolution of A in ShFpπ(X), there

exists a Fpπ chain map β· unique up to homotopy making the diagram commute. We then define

the map θ̂· : Tot·((K·)[p])→ Hom·Fp
(W·,K·) by the following composition:
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θ̂· : Tot·(T (I·)[p]) T (Tot·((I·)[p])) T (Hom·Fp
(W·, I·)) = Hom·Fp

(W·,T (I·))
γ·p T (β·)

We have γ·p is a Fpπ morphism, as well as T (β·), so θ̂· is a Fpπ morphism. By applying

the adjoint isomorphism Φ· from Lemma 3.1.5, we obtain:

Φ
0(θ̂·) : Tot·((K·)[p]⊗Fp W·)→ K·

We then define θ· by precomposing with the swapping isomorphism U · : Tot·(W·⊗Fp

(K·)[p])→ Tot·((K·)[p]⊗Fp W·):

θ
· = Φ

0(θ̂)◦U ·

4.3 Verification of Axioms

In order to show the object (T (I·),θ·) constructed in this section belongs to May’s

category C (p), the two following lemmas must be proven:

Lemma 4.3.1. Let K· = T (I·) and θ· be as in the previous sections. Then the restriction of θ· to

e0⊗ (K·)[p] is Fp homotopic to the iterated product Mp : Tot·((K·)[p])→ K·.

Proof. Special case of Lemma 5.3.1, where A· = A[0]· is concentrated in degree 0.

Lemma 4.3.2. Let K· = T (I·) and θ· be as in the previous sections. Then there exists a Σp chain

map φ· : Tot·(V·⊗ (K·)[p])→ K· such that θ· is Fpπ homotopic to the composition:

Tot·(W·⊗ (K·)[p]) Tot·(V·⊗ (K·)[p]) K·
j⊗1 φ

Proof. Special case of Lemma 5.3.2, in which we have A· is concentrated in degree 0.

Corollary 4.3.3. The object (K·,θ·) belongs to the category C (p).

Proof. The required properties are shown in Lemma 4.3.1 and Lemma 4.3.2.
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Lemma 4.3.4. The object (K·,θ·) is a Cartan object. That is, given θ̂· as defined in the second

half of Definition 2.0.1, the following diagram commutes up to Fpπ homotopy:

Tot·(W·⊗ (K·⊗K·)[p]) Tot·(K·⊗K·)

Tot·(W·⊗ (K·)[p]) K·

θ̃·

1⊗M[p] M

θ·

Proof. Special case of Lemma 5.3.3, where here A· is concentrated in degree 0.

Lemma 4.3.5. The object (K·,θ·) is an Adem object. That is, there is a Σp2 chain map ξ· :

Y·⊗Fp (K
·)[p]→ K· such that the following diagram commutes up to τ-homotopy.

(W1⊗W [p]
2 )⊗K[p2] Y ⊗K[p2]

K

W1⊗ (W2⊗K[p])[p] W1⊗K[p]

w⊗1

1⊗S

ξ

1⊗θ[p]

θ

Recall the definitions of W1,W2,Y and the group actions involved from Definition

2.0.5.

Proof. Special case of Lemma 5.3.4 where here we have A· is concentrated in degree 0.

At this point we may construct Steenrod operations on H ·(K·) using the θ· map of

this section by applying Corollaries 2.0.8 and 2.0.9.

4.4 Further Properties

The following is shown by Epstein in [2], in part 6 of section 10, page 204.

Lemma 4.4.1. For the Steenrod operations constructed on sheaf cohomology, we have Pi = 0

and βPi = 0 for all i < 0.

The following is shown by Epstein in [2], in part 7 of section 11.1, on page 205.
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Lemma 4.4.2. For the Steenrod operations constructed on sheaf cohomology, we have P0 :

Hn(K·)→ Hn(K·) is induced by the Frobenius map, fr : A→ A, on the sheaf of commutative

Fp-algebras, A.

The following shows that the Steenrod operations are natural.

Lemma 4.4.3. Let X be a topological space. Let A and B be two sheaves of commutative

Fp algebras on X, with f : A→ B a morphism of sheaves of Fp algebras. There are induced

morphisms for each n ∈ Z:

Hn(X , f ) : Hn(X ,A)→ Hn(X ,B)

We have H ·(X , f ) commutes with Di. As a result, H ·(X , f ) commutes with the Steen-

rod operations constructed on H ·(X ,A) and H ·(X ,B).

Proof. Special case of Lemma 5.4.1 in which A· and B· are both concentrated in degree zero.
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Chapter 5

Steenrod Operations on Sheaf

Hypercohomology

In this chapter I will show the Steenrod operations described in Corollary 2.0.8 can be

constructed on the algebraic De Rham cohomology groups and the Hodge cohomology groups

of a smooth projective variety X over a field k of characteristic p. I will establish both the Cartan

formula and the Adem relations. Steenrod operations on algebraic De Rham cohomology can be

obtained by constructing Steenrod operations on crystalline cohomology using the framework

of Epstein, and then reducing mod p. However, Steenrod operations on Hodge cohomology

does not appear to have a prior construction. The approach of this section is to generalize

Epstein’s machinery to complexes and then apply May’s framework. In this chapter, unlabeled

tensor products are to be over Fp.

Definition 5.0.1. Let X be a smooth projective scheme over a field k of characteristic p. Let

Ω·X/k denote the De Rham complex of X. Then the algebraic De Rham cohomology groups of

X may be computed as the hypercohomology of X with coefficients in Ω·X/k. That is, given an

injective resolution ι· : Ω·X/k→ I· in ShFp(X), and global section functor T (−) = Γ(X ,−), one

has:

H ·DR(X/k) = H·(X ,Ω·X/k) = H ·(T (I·))

For the rest of this section I will let X denote an arbitrary topological space and A· a

bounded below complex of sheaves of differential graded commutative Fp algebras on X . I will
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construct Steenrod operations on the hypercohomology groups H·(X ,A·). Choose an injective

resolution ι· : A·→ I· in the category of sheaves of Fp vector spaces on X . Such a resolution can

be obtained by taking I· to be the total complex of a Cartan Eilenberg resolution of A·. Define

K· = T (I·). The product on A· induces a product on K·, unique up to homotopy, making K·

into a homotopy associative differential graded Fp algebra. I will construct a Fpπ chain map

θ· : Tot·(W·⊗ (K·)[p])→ K· and show that (K·,θ·) belongs to May’s category C (p). I will also

show (K·,θ·) is both a Cartan and Adem object.

5.1 The Product on K·

In this section we construct the homotopy associative graded product on K·.

Definition 5.1.1. Let m· : Tot·(A·⊗A·)→ A· denote the graded commutative product on A·.

Consider the solid diagram below in the category ShFp(X):

Tot·(I·⊗Fp I·) I·

Tot·(A·⊗Fp A·) A·

m̃·

m·
ι·⊗ι· ι·

By Lemma 3.2.16, ι·⊗ ι· : Tot·(A·⊗A·)→ Tot·(I·⊗ I·) is a resolution. Because ι· :

A· → I· is an injective resolution, by Lemma 3.2.13, there exists a chain map m̃· making the

diagram commute. By Lemma 3.2.14, m̃· is unique up to homotopy. We then obtain the product

M· : Tot·(K·⊗K·)→ K· by the following composition:

M· : Tot·(T (I·)⊗Fp T (I·)) T (Tot·(I·⊗Fp I·)) T (I·)
γ· T (m̃·)

where γ· is the natural map. Note this definition only defines M· uniquely up to homo-

topy.

Definition 5.1.2. For all n,m ∈ Z, define the cup product:

∪n,m : Hn(K·)⊗Hm(K·)→ Hn+m(K·)
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by the composition:

∪n,m : Hn(K·)⊗Hm(K·) Hn+m(Tot·(K·⊗K·)) Hn+mψ Hn+m(M·)

where ψ is an injection induced by the Künneth isomorphism H ·(K·)⊗H ·(K·) ∼=
H ·(K·⊗K·), which we have because we are in the category Vect(Fp). That is, ψ is the map:

[x]⊗ [y] 7→ [x⊗ y]

for x ∈ Zn(K·) and y ∈ Zm(K·). The uniqueness of H ·(M·) implies ∪·,· is uniquely

defined.

Lemma 5.1.3. The product M· : Tot·(K·⊗K·)→ K· makes K· a homotopy associative differen-

tial graded Fp algebra. The induced cup product ∪·,· on H ·(K·) is associative.

Proof. We have the diagram below:

Tot·(I·⊗ I·⊗ I·) Tot·(I·⊗ I·) I·

Tot·(A·⊗A·⊗A·) Tot·(A·⊗A·) A·

1⊗m̃·

m̃·⊗1

m̃·

(ι·)[3]

1⊗m·

m·⊗1

(ι·)[2]

m·

ι·

Because A· is an associative differential graded Fp algebra, the two composites along

the bottom row are equal: m· ◦ (1⊗m·) = m· ◦ (m·⊗ 1). Define f ·1 = m̃· ◦ (1⊗ m̃·) and f ·2 =

m̃· ◦ (m̃·⊗ 1), the two composite maps along the top row of the diagram. By Corollary 3.2.17,

(ι·)[3] : Tot·((A·)[3])→ Tot·((I·)[3]) is a resolution, and we still have ι· : A· → I· is an injective

resolution in ShFp(X). Because f ·1, f ·2 : Tot·((I·)[3])→ I· are two morphisms over the triple

iterated product, Tot·((A·)[3])→ A·, we can invoke Lemma 3.2.14 to obtain a Fp homotopy h·

between f ·1 and f ·2. We have h· : Tot·((I·)[3])→ I·[−1], and h· satisfies the relation for all n ∈ Z,

f n
1 − f n

2 = dn−1
I ◦hn +hn+1 ◦dn

Tot((I·)[3])

Because T is an additive functor, we have T ( f ·1) and T ( f ·2) are homotopic by homo-

topy T (h·). That is:
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T ( f n
1 )−T ( f n

2 ) = dn−1
T (I) ◦T (hn)+T (hn+1)◦dn

T (Tot((I·)[3]))

Let γ·3 : Tot·(T (I·)[3])→ T (Tot·((I·)[3])) be the natural map. By precomposing the

above with γ·3 we obtain:

T ( f n
1 )◦ γ

n
3−T ( f n

2 )◦ γ
n
3 = dn−1

T (I) ◦ (T (h
n)◦ γ

n
3)+(T (hn+1)◦ γ

n+1
3 )◦dn

Tot(T (I·)[3])

Thus T ( f ·1)◦γ·3 and T ( f ·2)◦γ·3 are homotopic by homotopy T (h·)◦γ·3. But T ( f ·1)◦γ·3 =

M· ◦ (1⊗M·) and T ( f ·2) ◦ γ·3 = M· ◦ (M·⊗ 1), and the fact that these two maps are homotopic

shows the product M· on K· = T (I·) is homotopy associative. This then implies the induced

product on the cohomology groups H ·(K·) is associative.

Definition 5.1.4. We can define a p iterated product, M·p : Tot·((K·)[p])→ K·, as follows. Con-

sider the solid diagram below:

Tot·((I·)[p]) I·

Tot·((A·)[p]) A·

m̃·p

m·p

(ι·)[p] ι·

By Corollary 3.2.17, (ι·)[p] : Tot·((A·)[p])→ Tot·((I·)[p]) is a resolution. Because ι· :

A· → I· is an injective resolution, by Lemma 3.2.13, there exists a chain map m̃·p making the

diagram commute. By Lemma 3.2.14, m̃·p is unique up to homotopy. We can then define a p

iterated product, M·p : Tot·((K·)[p])→ K· by the following composition:

M·p : Tot·(T (I·)[p]) T (Tot·((I·)[p])) T (I·)
γ·p T (m̃·p)

It should be noted that M·p is only a Fp chain map, not a Fpπ chain map. Although

each solid arrow is a Fpπ chain map, the objects of I· will almost always fail to be injective in

the category ShFpπ(X).

Lemma 5.1.5. The chain map M·p is Fp homotopic to a p-fold product of M·, in some order.
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Proof. Define f · = m̃· ◦ (1⊗ m̃·)◦ · · · ◦ (1[p−1]⊗ m̃·) : Tot·((I·)[p])→ I·. f · is a p-fold product of

m̃·. We have m·p = m· ◦ (1⊗m·)◦ · · · ◦ (1[p−1]⊗m·) because the product m· on A· is associative.

Thus, f · and m̃·p are two Fp chain maps over m·p, where (ι·)[p] : Tot·((A·)[p])→ Tot·((I·)[p]) is

a resolution by Corollary 3.2.17, and ι· : A·→ I· is an injective resolution. By Lemma 3.2.14,

there is a Fp homotopy h· between m̃·p and f ·. That is, h· : Tot·((I·)[p])→ I[−1]·, and h· satisfies

for all n ∈ Z:

m̃n
p− f n = dn−1

I ◦hn +hn+1 ◦dn
Tot((I·)[p])

By applying the additive global section functor T , we obtain a homotopy T (h·) be-

tween M·p = T (m̃·p) and T ( f ·).

T (m̃n
p)−T ( f n) = dn−1

T (I) ◦T (hn)+T (hn+1)◦dn
T (Tot((I·)[p]))

By precomposing the above with γ·p, we obtain:

T (m̃n
p)◦ γ

n
p−T ( f n)◦ γ

n
p = dn−1

T (I) ◦ (T (h
n)◦ γ

n
p)+(T (hn+1)◦ γ

n+1
p )◦dn

Tot(T (I·)[p])

So T (h·) ◦ γn
p is a homotopy between M·p = T (m̃·p) ◦ γ·p and T ( f ·) ◦ γ·p. But we have

T ( f ·)◦ γ·p = M· ◦ (1⊗M·)◦ · · · ◦ (1[p−1]⊗M·), so the result is shown.

5.2 Construction of θ·

Now that the homotopy associative differential graded product on K· has been defined,

I will construct the map θ· : Tot·(W·⊗Fp (K
·)[p])→ K·. Consider the solid diagram below:

Tot·((I·)[p]) Hom·Fp
(W·, I·)

Tot·((A·)[p]) A

β·

m·p

(ι·)[p] ν·

By Corollary 3.2.17, (ι·)[p] : Tot·((A·)[p])→ Tot·((I·)[p]) is a resolution. We let Σp

act on Tot·((A·)[p]) and Tot·((I·)[p]) by permutation of tensors with sign change based upon the
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grading, and trivially on A·. We see that (ι·)[p] is a FpΣp morphism, as well as a Fpπ morphism.

Because the product on A· is graded commutative, m·p is a FpΣp and Fpπ morphism. By Lemma

3.2.21, ν· : A·→ Hom·Fp
(W·, I·) is an injective resolution of A· in the category ShFpπ(X). Now

we may invoke Lemma 3.2.13, with the abelian category A = ShFpπ(X) to obtain a Fpπ chain

map β· making the diagram commute. By Lemma 3.2.14, β· is unique up to homotopy. We can

now define θ̂· : Tot·((K·)[p])→ Hom·Fp
(W·,K·) by the following composition:

θ̂· : Tot·(T (I·)[p]) T (Tot·((I·)[p])) T (Hom·Fp
(W·, I·)) = Hom·Fp

(W·,T (I·))
γ·p T (β·)

Because the above maps are in Comp(FpπMod), θ̂· is a Fpπ morphism. By applying

the adjoint isomorphism Φ· from Lemma 3.1.5, we obtain the Fpπ morphism:

Φ
0(θ̂·) : Tot·((K·)[p]⊗Fp W·)→ K·

We now define θ· : Tot·(W·⊗Fp (K
·)[p])→ K· with the composition:

θ
· = Φ

0(θ̂·)◦U ·

where U · : Tot·(W·⊗Fp (K
·)[p])→ Tot·((K·)[p]⊗Fp W·) swaps tensors with sign change

based upon the grading.

5.3 Verification of Axioms

Now that (K·,θ·) has been defined, I will show that (K·,θ·) belongs to May’s category

C (p), and that (K·,θ·) is both Cartan and Adem.

Lemma 5.3.1. The restriction of θ· to e0⊗ (K·)[p] is Fp homotopic to a p-fold product on K·.

Proof. We have the solid diagram below:

Fp[0]· W·

Fp Fp

l·

1
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Because W· is a resolution of Fp in Vect(Fp), and Fp[0]· is a projective resolution of

Fp in Vect(Fp), there is a Fp chain map l· making the square commute, and l· is unique up to

homotopy. In fact we can define l· explicitly with l0(1) = e0 ∈W0. Now we have the diagram

below:

Tot·((I·)[p]) Hom·Fp
(W·, I·) Hom·Fp

(Fp[0]·, I·) = I·

Tot·((A·)[p]) A· A·

β·

m̃·p

(l·)∗

m·p

(ι·)[p]

1·A

ν· ι·

Note that m̃·p is only a Fp morphism, while β· is a Fpπ morphism, and (l·)∗ is a

Fp morphism. We have that m̃·p and (l·)∗ ◦ β· are both Fp chain maps extending the iterated

multiplication map m·p in A·. By Lemma 3.2.14, there is a Fp homotopy h· from m̃·p to (l·)∗ ◦β·.

We then apply the global section functor to obtain a homotopy T (h·) from (l·)∗◦T (β·) to T (m̃·p),

so the square in the diagram below commutes up to homotopy.

Tot·(T (I·)[p]) T (Tot·((I·)[p])) T (Hom·Fp
(W·, I·)) = Hom·Fp

(W·,T (I·))

T (I·) T (Hom·Fp
(Fp[0]·, I·)) = Hom·Fp

(Fp[0]·,T (I·))

γ·p

T (m̃·p)

T (β·)

(l·)∗

λ

λ is the natural isomorphism. Recall M·p = T (m̃·p) ◦ γ·p, and θ̂· = T (β·) ◦ γ·p. By

precomposing with γ·p, we get that the maps:

λ◦M·p, (l·)
∗ ◦ θ̂

· : Tot·(T ((I·)[p]))→ Hom·Fp
(Fp[0]·,T (I·))

are homotopic by homotopy T (h·)◦ γ·p. By Lemma 3.1.6, the chain maps:

Φ
0(λ◦M·p),Φ

0((l·)∗ ◦ θ̂
·) : Tot·(T (I·)[p]⊗Fp[0]·)→ T (I·)
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are homotopic by homotopy Φ−1(T (h·)◦ γ·p). Let α ∈ Totn(T (I·)[p]) and x ∈ Fp[0]0.

Then we have:

Φ
0(λ◦Mn

p)(α⊗ x) = λ(Mn
p(α))(x)

= x ·Mn
p(α)

= Mn
p(x ·α)

Which is the p iterated product on T (I·) with a scalar multiplication. By Lemma

3.1.8, we have Φ0((l·)∗⊗ θ̂·) = Φ0(θ̂·)◦ (1⊗ l·). We now have the homotopy commutativity of

the right square below:

Tot·(W·⊗T (I·)[p]) Tot·(T (I·)[p]⊗W·) T (I·)

Tot·(Fp[0]·⊗T (I·)[p]) Tot·(T (I·)[p]⊗Fp[0]·) Tot·(T (I·)[p])

U ·

θ·

Φ0(θ̂·)

l·⊗1

U ·

1⊗l· M·p

Since U · just swaps tensors with sign, the left square commutes. Since the bottom

row consists of isomorphisms, we can walk from Tot·(T (I·)[p]) to T (I·) in two paths, one of

which is directly with M·p which is the p iterated product on T (I·), and the other is to walk

around the perimeter, which is the restriction of θ· to l0(1)⊗T (I·)[p], and since l0(1) = e0 ∈W0,

the fact that these two maps are homotopic proves the result.

Lemma 5.3.2. There exists a Σp chain map φ· : Tot·(V·⊗Fp (K
·)[p])→ K· such that θ· is Fpπ

homotopic to the composition:

Tot·(W·⊗Fp (K
·)[p]) Tot·(V·⊗Fp (K

·)[p]) K·
j·⊗1 φ·
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Proof. Recall j· is a Fpπ morphism making the diagram below commute.

W· V·

Fp Fp

j·

1

In the above W· is a free Fpπ resolution of Fp and V· is a free FpΣp resolution of

Fp. Because W· is a projective Fpπ resolution of Fp and V· is a resolution of Fp, such a Fpπ

morphism j· exists, and is unique up to homotopy. Consider the diagram below:

Tot·((I·)[p]) Hom·Fp
(V·, I·)

Tot·((A·)[p]) A·

α·

m·p

(ι·)[p] η·

Because V· is a projective resolution of Fp in FpΣpMod, and I· is an injective resolution

of A· in ShFp(X), by Lemma 3.2.21, Hom·Fp
(V·, I·) is an injective resolution of A· in the cate-

gory ShFpΣp(X). By Corollary 3.2.17, Tot·((I·)[p]) is a resolution of Tot·((A·)[p]). Because the

product on A· is graded commutative, the iterated product m·p is a FpΣp morphism. The vertical

arrows are FpΣp morphisms as well. Now by Lemma 3.2.13, there exists a FpΣp chain map α·

making the diagram commute, and by Lemma 3.2.14, α· is unique up to homotopy. Define φ̂·

by the composition, φ̂· = T (α·)◦ γ·p:

φ̂· : Tot·(T (I·)[p]) T (Tot·((I·)[p])) T (Hom·Fp
(V·, I·)) = Hom·Fp

(V·,T (I·))
γ·p T (α·)

With Φ· the adjoint map from Lemma 3.1.5, we have Φ0(φ̂·) : Tot·(T (I·)[p]⊗V·)→
T (I·). We now define φ·=Φ0(φ̂·)◦U ·, where U · : Tot·(V·⊗T (I·)[p])→ Tot·(T (I·)[p]⊗V·) swaps

tensors with sign. Consider the diagram below:
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Tot·((I·)[p]) Hom·Fp
(V·, I·) Hom·Fp

(W·, I·)

Tot·((A·)[p]) Tot·(A·) Tot·(A·)

α·

β·

( j·)∗

m·p

(ι·)[p]

1·A

η· ν·

We have ( j·)∗ makes the square on the right commute and α· makes the square on the

left commute, so ( j·)∗ ◦α· makes the rectangle commute. We also have β· makes the perime-

ter commute by its construction. Because Hom·Fp
(W·, I·) is an injective resolution of A· in

ShFpπ(X), Tot·((I·)[p]) is a resolution of Tot·((A·)[p]), and both ( j·)∗ ◦α· and β· are Fpπ mor-

phisms making the rectangle commute, by Lemma 3.2.14, there is a Fpπ homotopy h· from β·

to ( j·)∗ ◦α·. Because T is an additive functor, T (β·) and T (( j·)∗ ◦α·) = ( j·)∗ ◦T (α·) are homo-

topic by homotopy T (h·). Then precomposing by γ·p shows that φ̂· = T (α·)◦ γ·p is homotopic to

( j·)∗ ◦ θ̂· = ( j·)∗ ◦T (β·)◦ γ·p by homotopy T (h·)◦ γ·p. These two maps are Fpπ chain maps:

φ̂
·, ( j·)∗ ◦ γ

·
p : Tot·(T (I·)[p])→ Hom·Fp

(W·,T (I·))

Using the adjoint isomorphism from Lemma 3.1.5 we obtain Fpπ chain maps:

Φ
0(φ̂·), Φ

0(( j·)∗ ◦ θ̂
·) : Tot·(T (I·)[p]⊗V·)→ T (I·)

and by Lemma 3.1.6 these are homotopic by homotopy Φ−1(T (h·)◦ γ·p). By Lemma

3.1.8, we have Φ0(( j·)∗ ◦ θ̂·) = Φ0(θ̂·)◦ (1⊗ j·). We have the diagram below:

Tot·(V·⊗T (I·)[p]) Tot·(T (I·)[p]⊗V·) T (I·)

Tot·(W·⊗T (I·)[p]) Tot·(T (I·)[p]⊗W·)

U · Φ0(φ̂·)

U ·

j·⊗1
Φ0(θ̂·)

1⊗ j·

We have shown that the triangle in the above diagram commutes up to Fpπ homotopy,

and we have that the square on the left commutes. This implies the two compositions,
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φ
· ◦ ( j·⊗1) = Φ

0(φ̂·)◦U · ◦ ( j·⊗1), θ
· = Φ

0(θ̂·)◦U · : Tot·(W·⊗T (I·)[p])→ T (I·)

are Fpπ homotopic, which was the result to be shown.

Lemma 5.3.3. The object (K·,θ·) is a Cartan object. That is, given θ̃· as defined in Definition

2.0.1, the following diagram commutes up to Fpπ homotopy:

Tot·(W·⊗Fp (K
·⊗Fp K·)[p]) Tot·(K·⊗Fp K·)

Tot·(W·⊗Fp (K
·)[p]) K·

θ̃·

1⊗(M·)[p] M·

θ·

Proof. Given β· as constructed previously in this section, define the Fpπ morphism β̃· : Tot·((I·⊗
I·)[p])→Hom·Fp

(W·,Tot·(I·⊗ I·)) by the following composition:

β̃· : Tot·((I·⊗ I·)[p]) Tot·((I·)[p]⊗ (I·)[p])

Tot·(Hom·Fp
(W·, I·)⊗Hom·Fp

(W·, I·)) Hom·Fp
(Tot·(W·⊗W·),Tot·(I·⊗ I·))

Hom·Fp
(W·, I·⊗ I·)

S·

β·⊗β·

ρ·

(ψ·)
∗

In the above, Σp acts on Tot·((I·⊗ I·)[p]) by permuting two-tensors, and Σp has di-

agonal action on Tot·((I·)[p]⊗ (I·)[p]). On each open set, the natural map S· sends (a1⊗ b1)⊗
·· ·⊗ (ap⊗bp) to (a1⊗·· ·⊗ap)⊗ (b1⊗·· ·⊗bp), with sign change based upon degree. Recall

ψ· : Tot·(W·⊗W·)→W· is a Fpπ morphism over Fp, and π acts diagonally on Tot·(W·⊗W·).

Recall the product, m̃· : Tot·(I·⊗ I·)→ I·. We have two compositions, β◦ (m̃·)[p], and (m̃·)∗ ◦ β̃:

Tot·((I·⊗ I·)[p]) Tot·((I·)[p])

Hom·Fp
(W·,Tot·(I·⊗ I·)) Hom·Fp

(W·, I·)

(m̃·)[p]

β̃· β·

(m̃·)∗
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I claim the square above commutes up to Fpπ homotopy. We have the diagram below:

Tot·((I·⊗ I·)[p]) Tot·((I·)[p]) Hom·Fp
(W·, I·)

Tot·((A·⊗A·)[p]) Tot·((A·)[p]) A·

(m̃·)[p] β·

(m·)[p]

(ι·⊗ι·)[p]

m·p

(ι·)[p] ν·

with all squares commutative. Thus β·◦(m̃·)[p] is a chain map over m·2p =m·p◦(m·)[p],
the 2p-iterated product on A·. I will show (m·)∗ ◦ β̃ is also a chain map over m·2p. Let ε· : W·→
Fp[0]· denote the π projective resolution of Fp, and recall ν· = (ε·)

∗ ◦ (ι·)∗ from Lemma 3.2.21.

We have the diagram:

Tot·((A·⊗A·)[p]) Tot·((I·⊗ I·)[p])

Tot·((A·)[p]⊗ (A·)[p]) Tot·((I·)[p]⊗ (I·)[p])

Tot·(A·⊗A·) Tot·(Hom·Fp
(W·, I·)⊗Hom·Fp

(W·, I·))

Tot·(A·⊗A·) Hom·Fp
(Tot·(W·⊗W·),Tot·(I·⊗ I·))

Tot·(A·⊗A·) Hom·Fp
(W·,Tot·(I·⊗ I·))

A· Hom·Fp
(W·, I·)

(ι·⊗ι·)[p]

S· S·

β̃·

(ι·)[p]⊗(ι·)[p]

m·p⊗m·p β·⊗β·

(ε∗· ◦ι·∗)⊗(ε∗· ◦ι·∗)

1 ρ·

1

(ε·⊗ε·)
∗◦(ι·⊗ι·)∗

(ψ·)
∗

m·

(ε·)
∗◦(ι·⊗ι·)∗

(m̃·)∗
ε∗· ◦ι·∗

Along the right column, the composition of the top 4 morphisms forms β̃·. The com-

position along the left column is the 2p-iterated product on A·, m·2p. Note that because A· is

graded commutative, the shuffling isomorphism S· does not affect the result. I claim that each

square in the diagram above commutes. The top square commutes by the naturality of S·. The

second square commutes by the construction of β·. The third square commutes by the naturality

of ρ·. The fourth square commutes by the construction of ψ·. And finally the bottom square

58



commutes by the construction of m̃·. Thus, we have shown (m̃·)∗ ◦ β̃· is also a Fpπ morphism

over m·2p. Since Hom·Fp
(W·, I·) is an injective resolution of A· in ShFpπ(X) by Lemma 3.2.21,

and Tot·((I·⊗ I·)[p]) is a resolution of Tot·((A·⊗ A·)[p]) by Corollary 3.2.17, we can invoke

Lemma 3.2.14 to obtain a Fpπ homotopy h· from β· ◦ (m̃·)[p] to (m̃·)∗ ◦ β̃·. Since T is an addi-

tive functor, we have T (h·) is a homotopy from T (β· ◦ (m̃·)[p]) to T ((m̃·)∗ ◦ β̃·). This shows the

bottom square in the diagram below commutes up to Fpπ homotopy.

Tot·((T (I·)⊗T (I·))[p]) Tot·(T (I·)[p])

T (Tot·((I·⊗ I·)[p])) T (Tot·((I·)[p]))

Hom·Fp
(W·,T (Tot·(I·⊗ I·))) Hom·Fp

(W·,T (I·))

γ·2p

(M·)[p]

γ·p

T ((m̃·)[p])

T (β̃·) T (β·)

T (m̃·)∗

(5.1)

Since the top square commutes, the perimeter commutes up to Fpπ homotopy. Going

around the top is the composition T (β·) ◦ γ·p ◦ (M·)[p] = θ̂· ◦ (M·)[p], while the bottom route is

T (m̃·)◦T (β·)◦ γ·2p. I claim the bottom composition, T (m̃·)◦T (β·)◦ γ·2p, is equal to ˆ̃
θ· ◦M·, for

a map:

ˆ̃
θ
· : Tot·((T (I·)⊗T (I·))[p])→ HomFp(W·,Tot·(T (I·)⊗T (I·)))

where ˆ̃
θ· is related to θ̃· by θ̃· = Φ0( ˆ̃

θ·)◦U ·W·⊗(T (I·)⊗T (I·))[p] . Here I use

U ·A·⊗B· : Tot·(A·⊗B·)→ Tot·(B·⊗A·)

to denote the isomorphism that swaps tensors with sign based on degree. Since θ̃· is

given and Φ0 and U · are isomorphisms, we can define ˆ̃
θ· = (Φ0)−1(θ̃· ◦ (U ·W·⊗(T (I·)⊗T (I·))[p])

−1).

Recall θ̃· is defined by the following composition from Definition 2.0.1:
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θ̃· : Tot·(W·⊗ (T (I·)⊗T (I·))[p]) Tot·(Tot·(W·⊗W·)⊗Tot·(T (I·)[p]⊗T (I·)[p]))

Tot·(W·⊗T (I·)[p]⊗W·⊗T (I·)[p])

Tot·(T (I·)⊗T (I·))

ψ·⊗S·

1⊗U ·
W·⊗T (I·)[p]

⊗1

θ·⊗θ·

I claim that ˆ̃
θ· is given by the following composition:

ˆ̃
θ· : Tot·((T (I·)⊗T (I·))[p]) Tot·(T (I·)[p]⊗T (I·)[p])

Tot·(Hom·Fp
(W·,T (I·))⊗Hom·Fp

(W·,T (I·)))

Hom·Fp
(Tot·(W·⊗W·),Tot·(T (I·)⊗T (I·)))

Hom·Fp
(W·,Tot·(T (I·)⊗T (I·)))

S·

θ̂·⊗θ̂·

ρ·

(ψ·)
∗

We can derive this algebraically using the rules of Lemmas 3.1.7, 3.1.8, 3.1.9, and

3.1.12.

Φ
0((ψ·)

∗ ◦ρ
· ◦ (θ̂·⊗ θ̂

·)◦S·)◦U ·W·⊗(T (I·)⊗T (I·))[p]

= Φ
0(ρ· ◦ (θ̂·⊗ θ̂

·)◦S·)◦ (1⊗ψ·)◦U ·W·⊗(T (I·)⊗T (I·))[p]

= Φ
0(ρ· ◦ (θ̂·⊗ θ̂

·))◦ (S·⊗1)◦ (1⊗ψ·)◦U ·W·⊗(T (I·)⊗T (I·))[p]

= (Φ0(θ̂·)⊗Φ
0(θ̂·))◦ (1⊗U ·T (I·)[p]⊗W·

⊗1)◦ (S·⊗ψ·)◦U ·W·⊗(T (I·)⊗T (I·))[p]

= (Φ0(θ̂·)⊗Φ
0(θ̂·))◦ (1⊗U ·T (I·)[p]⊗W·

⊗1)◦U ·
(W·⊗W·)⊗(T (I·)[p]⊗T (I·)[p]) ◦ (ψ·⊗S·)

= (Φ0(θ̂·)⊗Φ
0(θ̂·))◦ (U ·W·⊗T (I·)[p]⊗U ·W·⊗T (I·)[p])◦ (1⊗U ·T (I·)[p]⊗W·

⊗1)◦ (ψ·⊗S·)

= ((Φ0(θ̂·)◦U ·W·⊗T (I·)[p])⊗ (Φ0(θ̂·)◦U ·W·⊗T (I·)[p]))◦ (1⊗U ·T (I·)[p]⊗W·
⊗1)◦ (ψ·⊗S·)
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= (θ·⊗θ
·)◦ (1⊗U ·T (I·)[p]⊗W·

⊗1)◦ (ψ·⊗S·)

= θ̃

And the above equation implies:

˜̂
θ
· = (ψ·)

∗ ◦ρ
· ◦ (θ̂·⊗ θ̂

·)◦S·

Now I claim the following rectangle commutes, where the composition along the left

column is ˆ̃
θ·, and the upper path is from the lower path of the square in diagram 5.1.

Tot·((T (I·)⊗T (I·))[p]) T (Tot·((I·⊗ I·))[p])

Tot·(T (I·)[p]⊗T (I·)[p]) T (Tot·((I·)[p]⊗ (I·)[p])

Tot·(Hom·Fp
(W·,T (I·))⊗Hom·Fp

(W·,T (I·))) T (Tot·(Hom·Fp
(W·, I·)⊗Hom·Fp

(W·, I·)))

Hom·Fp
(Tot·(W·⊗W·),Tot·(T (I·)⊗T (I·))) Hom·Fp

(Tot·(W·⊗W·),T (Tot·(I·⊗ I·)))

Hom·Fp
(W·,Tot·(T (I·)⊗T (I·))) Hom·Fp

(W·,T (Tot·(I·⊗ I·)))

Hom·Fp
(W·,T (I·))

S·

γ·2p

T (S·)

θ̂·⊗θ̂·

γ·2p

T (β·⊗β·)

ρ·

γ·

T (ρ·)

(ψ·)
∗

(γ·)∗

(ψ·)
∗

(M·)∗

(γ·)∗

T (m̃·)∗

Recall θ̂· = T (β·)◦ γ·p and M· = T (m̃·)◦ γ·. These two facts and the naturality of the

γ· maps imply each of the faces in the above diagram commute. Since the composition along

the lower path is (M·)∗ ◦ ˆ̃
θ·, and the composition along the upper path is T (m̃·)◦T (β̃·)◦ γ·2p, it

has been shown these two maps are equal. And since the later map has been shown to be Fpπ

homotopic to θ̂· ◦ (M·)[p], we now have the square below commutes up to Fpπ homotopy:
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Tot·((T (I·)⊗T (I·))[p]) Tot·(T (I·)[p])

Hom·Fp
(W·,Tot·(T (I·)⊗T (I·))) Hom·Fp

(W·,T (I·))

(M·)[p]

ˆ̃
θ· θ̂·

(M·)∗

By Lemma 3.1.6, this implies the following chain maps are Fpπ homotopic:

Φ
0(θ̂· ◦ (M·)[p]), Φ

0((M·)∗ ◦ ˆ̃
θ
·) : Tot·((T (I·)⊗T (I·))[p]⊗W·)→ T (I·)

By Lemma 3.1.9, we have Φ0(θ̂◦ (M·)[p]) = Φ0(θ̂)◦ ((M·)[p]⊗1). By Lemma 3.1.7,

we have Φ0((M·)∗ ◦ ˆ̃
θ·) = M· ◦Φ0( ˆ̃

θ·). We have now shown the right square in the diagram

below commutes up to Fpπ homotopy:

Tot·(W·⊗ (T (I·)⊗T (I·))[p]) Tot·((T (I·)⊗T (I·))[p]⊗W·) Tot·(T (I·)⊗T (I·)))

Tot·(W·⊗T (I·)[p]) Tot·(T (I·)[p]⊗W·) T (I·)

U ·

1⊗(M·)[p]

Φ0( ˆ̃
θ·)

(M·)[p]⊗1 M·

U · Φ0(θ̂·)

while the square on the left commutes by the naturality of U ·. This shows the rect-

angle commutes up to Fpπ homotopy. The composition along the upper path is M· ◦ θ̃· and the

composition along the lower path is θ· ◦ (1⊗ (M·)[p]). The fact that these two compositions are

Fpπ homotopic was the result to be shown.

Lemma 5.3.4. The object (K·,θ·) is an Adem object. That is, there is a Σp2 chain map ξ· :

Y·⊗Fp (K
·)[p

2]→ K· such that the following diagram commutes up to τ-homotopy (dropping the

Tot· and dots notation below, and tensors are over Fp).
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(W1⊗W [p]
2 )⊗K[p2] Y ⊗K[p2]

K

W1⊗ (W2⊗K[p])[p] W1⊗K[p]

w⊗1

1⊗S

ξ

1⊗θ[p]

θ

Recall the definitions of W1,W2,Y and the group actions involved from Definition

2.0.5. In the above I use S· instead of U · for the graded tensor shuffling isomorphism, S· :

Tot·(W [p]
2,· ⊗ ((K·)[p])[p]) → Tot·((W2,· ⊗K[p])[p]) because I’m already using U · to denote the

graded tensor product swapping isomorphism Tot·(A·⊗B·)→ Tot·(B·⊗A·) for various A·, B·.

Proof. The map m·p2 is the p2-iterated product in A·, which is a Σp2 morphism because the

product is graded commutative. We have the Fpπ projective resolution ε1,· : W1,·� Fp, the Fpν

projective resolution ε2,· : W2,·� Fp, and the FpΣp2 projective resolution κ· : Y·� Fp. We still

have the injective resolution in ShFp(X), ι· : A· ↪→ I·. By Lemma 3.2.21, we have the injective

resolution in ShFpΣp2 (X):

κ
∗
· ◦ ι

·
∗ : A· = Hom·Fp

(Fp,A·) ↪→Hom·Fp
(Y·, I·)

By Corollary 3.2.17, the following is a resolution:

(ι·)[p
2] : Tot·((A·)[p

2])→ Tot·((I·)[p
2])

We have the solid diagram below:

Tot·((I·)[p
2]) Hom·Fp

(Y·, I·)

Tot·((A·)[p
2]) A·

ζ·

m·
p2

(ι·)[p
2 ]

κ∗· ◦ι·∗ (5.2)

Note all the solid arrows in the diagram are FpΣp2 morphisms. By Lemma 3.2.13,

there is a FpΣp2 morphism ζ· making the diagram commute, and by Lemma 3.2.14, ζ· is unique
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up to homotopy. Recall the Fpτ chain map w· from Definition 2.0.5 is defined to make the

following diagram commute:

Tot·(W1,·⊗ (W [p]
2,· )) Y·

Fp Fp

ε1,·⊗ε
[p]
2,·

w·

κ·

1

We have the following diagram with commutative squares:

Tot·((I·)[p
2]) Hom·Fp

(Y·, I·) Hom·Fp
(Tot·(W1,·⊗ (W2,·)

[p]), I·)

Tot·((A·)[p
2]) A· A·

ζ· (w·)∗

m·
p2

(ι·)[p
2 ]

κ∗· ◦ι·∗

1

(ε1,·⊗ε
[p]
2,· )
∗◦ι·∗

Because Tot·(W1,·⊗ (W2,·)
[p]) is a free resolution of Fp in FpτMod, by Lemma 3.2.21,

Hom·Fp
(Tot·(W1,·⊗ (W2,·)

[p]), I·) is an injective resolution of A· in ShFpτ(X). By Lemma 3.2.14,

any other such Fpτ chain map over m·p2 will be Fpτ homotopic to (w·)∗ ◦ ζ·. Define β·1 = β· to

be the Fpπ chain map constructed in Section 5.2, which made the following diagram of Fpπ

chain maps commute:

Tot·((I·)[p]) Hom·Fp
(W1,·, I·)

Tot·((A·)[p]) A·

β·1

m·p

(ι·)[p] ε∗1,·◦ι·∗ (5.3)

Define β·2 uniquely up to Fpν homotopy by the diagram below:

Tot·((I·)[p]) Hom·Fp
(W2,·, I·)

Tot·((A·)[p]) A·

β·2

m·p

(ι·)[p] ε∗2,·◦ι·∗ (5.4)
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Set θ·1 = θ·, θ̂·1 = θ̂·, and define θ̂·2 = T (β·2) ◦ γ·p and θ·2 = Φ0(θ̂·2) ◦U ·W2
, where U ·Wi

:

Wi,·⊗T (I·)[p]→ T (I·)[p]⊗Wi,· is the swapping isomorphism for i = 1,2. Let U1 : W1,·⊗W [p]
2,· →

W [p]
2,· ⊗W1,·. We have the diagram below:

Tot·((A·)[p
2]) Tot·((I·)[p

2])

Tot·((A·)p) Tot·((Hom·Fp
(W2,·, I·))[p])

Tot·((A·)p) Hom·Fp
(Tot·((W2,·)

[p]),Tot·((I·)[p]))

A· Hom·Fp
(Tot·((W2,·)

[p]),Hom·Fp
(W1,·, I·))

A· Hom·Fp
(Tot·((W2,·)

[p]⊗W1,·), I·)

A· Hom·Fp
(Tot·(W1,·⊗ (W2,·)

[p], I·)

(m·p)
[p]

(ι·)[p
2 ]

(β·2)
[p]

(ε∗2,·◦ι·∗)[p]

1 ρ·p

(ε
[p]
2,· )
∗◦((ι·)[p])∗

m·p (β·1)∗

(ε
[p]
2,· )
∗◦(ε∗1,·◦ι·∗)∗

1 Φ·

(ε
[p]
2,·⊗ε1,·)

∗◦ι·∗

1 (U ·1)
∗

(ε1,·⊗ε
[p]
2,· )
∗◦ι·∗

In the above, ρ·p is the natural Fpτ chain map from Corollary 3.1.11, and Φ· is the

natural Fpτ isomorphism of complexes from Lemma 3.1.5. The top square commutes because

diagram 5.4 commutes. The second square commutes by the naturality of ρ·p. The third square

commutes because diagram 5.3 commutes. The fourth square commutes by the naturality of Φ·.

And the fifth square commutes by the naturality of U ·1. The composition along the left column is

m·p2 . By Lemma 3.2.14, we get that (w·)∗ ◦ζ· and the composition along the right column of the

above diagram are Fpτ homotopic. That is, the diagram below commutes up to Fpτ homotopy.
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Tot·((I·)[p
2]) Hom·Fp

(Y·, I·)

Tot·((Hom·Fp
(W2,·, I·))[p]) Hom·Fp

(Tot·(W1,·⊗ (W2,·)
[p]), I·)

Hom·Fp
(Tot·((W2,·)

[p]),Tot·((I·)[p]))

Hom·Fp
(Tot·((W2,·)

[p]),Hom·Fp
(W1,·, I·)) Hom·Fp

(Tot·((W2,·)
[p]⊗W1,·), I·)

ζ·

(β·2)
[p] (w·)∗

ρ·p

(β·1)∗

Φ·

(U ·1)
∗

After applying the additive global section functor T , we get the following commutes

up to Fpτ homotopy.

T (Tot·((I·)[p
2])) Hom·Fp

(Y·,T (I·))

T (Tot·((Hom·Fp
(W2,·, I·))[p])) Hom·Fp

(Tot·(W1,·⊗ (W2,·)
[p]),T (I·))

Hom·Fp
(Tot·((W2,·)

[p]),T (Tot·((I·)[p])))

Hom·Fp
(Tot·((W2,·)

[p]),Hom·Fp
(W1,·,T (I·))) Hom·Fp

(Tot·((W2,·)
[p]⊗W1,·),T (I·))

T (ζ·)

T ((β·2)
[p]) (w·)∗

T (ρ·p)

T (β·1)∗

Φ·

(U ·1)
∗

(5.5)

Let γ·p2 : Tot·(T (I·)[p])→ T (Tot·((I·)[p])) be the natural map. Define the FpΣp2 mor-

phism ξ̂ : Tot·(T (I·)[p
2]) → Hom·Fp

(Y·,T (I·)) by the composition ξ̂ = T (ζ·) ◦ γ·p2 . Set ξ =

Φ0(ξ̂) ◦U ·Y , where UY : Y·⊗T (I·)[p
2] → T (I·)[p

2]⊗Y·. The following diagram has commuting

squares:
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Tot·(T (I·)[p
2]) T (Tot·((I·)[p

2]))

Tot·((Hom·Fp
(W2,·,T (I·)))[p]) T (Tot·((Hom·Fp

(W2,·, I·))[p]))

Hom·Fp
(Tot·((W2,·)

[p]),Tot·(T (I·)[p])) Hom·Fp
(Tot·((W2,·)

[p]),T (Tot·((I·)[p])))

Hom·Fp
(Tot·((W2,·)

[p]),Hom·Fp
(W1,·,T (I·))) Hom·Fp

(Tot·((W2,·)
[p]),Hom·Fp

(W1,·,T (I·)))

γ·
p2

(θ̂·2)
[p] T ((β·2)

[p])

γ·p

ρ·p T (ρ·p)

(γ·p)∗

(θ̂·1)∗ T (β·1)∗

1

(5.6)

By precomposing the left column of diagram 5.5 with diagram 5.6, we get the follow-

ing commutes up to Fpτ homotopy:

Tot·(T (I·)[p
2]) Hom·Fp

(Y·,T (I·))

Tot·((Hom·Fp
(W2,·,T (I)·))[p]) Hom·Fp

(Tot·(W1,·⊗ (W2,·)
[p]),T (I·))

Hom·Fp
(Tot·((W2,·)

[p]),Tot·(T (I·)[p]))

Hom·Fp
(Tot·((W2,·)

[p]),Hom·Fp
(W1,·,T (I·))) Hom·Fp

(Tot·((W2,·)
[p]⊗W1,·),T (I·))

ξ̂·

(θ̂·2)
[p] (w·)∗

ρ·p

(θ̂·1)∗

Φ·

(U ·1)
∗

By Lemma 3.1.6, we get that the diagram we obtain after applying Φ0 commutes up

to Fpτ homotopy. By using the rules of Lemmas 3.1.7, 3.1.8, and 3.1.9, we get for the top path:

Φ
0((w·)∗ ◦ ξ̂

·) = Φ
0(ξ̂·)◦ (1⊗w·)

Along the bottom path, applying Φ0 gives:
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Φ
0((U ·1)

∗ ◦Φ
· ◦ (θ̂·1)∗ ◦ρ

·
p ◦ (θ̂·2)[p])

= Φ
0(Φ· ◦ (θ̂·1)∗ ◦ρ

·
p ◦ (θ̂·2)[p])◦ (1⊗U ·1) By Lemma 3.1.8

= Φ
0(Φ0((θ̂·1)∗ ◦ρ

·
p ◦ (θ̂·2)[p]))◦ (1⊗U ·1) By Lemma 3.1.14

= Φ
0(θ̂·1 ◦Φ

0(ρ·p ◦ (θ̂·2)[p]))◦ (1⊗U ·1) By Lemma 3.1.7

= Φ
0(θ̂·1)◦ (Φ0(ρ·p ◦ (θ̂·2)[p])⊗1)◦ (1⊗U ·1) By Lemma 3.1.9

= Φ
0(θ̂·1)◦ ((Φ0(θ̂·2)

[p] ◦ S̃·)⊗1)◦ (1⊗U ·1) By Lemma 3.1.13

= Φ
0(θ̂·1)◦ (Φ0(θ̂·2)

[p]⊗1)◦ (S̃·⊗1)◦ (1⊗U ·1)

where S̃· : (T (I·)[p
2]⊗W [p]

2,· )→ (T (I·)[p]⊗W2,·)
[p] is the shuffling isomorphism.

The last line in the computation above is the composition below:

T (I·)[p
2]⊗ (W1,·⊗W [p]

2,· ) T (I·)[p
2]⊗ (W [p]

2,· ⊗W1,·)

(T (I·)[p]⊗W2,·)
[p]⊗W1,·

T (I·)[p]⊗W1,·

T (I·)

1⊗U ·1

S̃·⊗1

Φ0(θ̂·2)
[p]⊗1

Φ0(θ̂·1)

Since the composition above is Fpτ homotopic to Φ0(ζ̂·) ◦ (1⊗w·), we can can pre-

compose both by the following tensor swapping isomorphism,

U ·2 : (W1,·⊗W [p]
2,· )⊗T (I·)[p

2]→ T (I·)[p
2]⊗ (W1,·⊗W [p]

2,· )

and by Lemma 3.1.16, the results will be Fpτ homotopic. For the top path we have:

Φ
0(ξ̂·)◦ (1⊗w·)◦ (U ·2) = Φ

0(ξ̂·)◦U ·Y ◦ (w·⊗1) = ξ
· ◦ (w·⊗1)
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Denote:

U ·3 : (W [p]
2,· ⊗W1,·)⊗T (I·)[p

2]→ T (I·)[p
2]⊗ (W [p]

2,· ⊗W1,·)

U ·4 : W1,·⊗ (W2,·⊗T (I·)[p])[p]→ (W2,·⊗T (I·)[p])[p]⊗W1,·

For the lower path, we have:

Φ
0(θ̂·1)◦ (Φ0(θ̂·2)

[p]⊗1)◦ (S̃·⊗1)◦ (1⊗U ·1)◦U ·2

= Φ
0(θ̂·1)◦ (Φ0(θ̂·2)

[p]⊗1)◦ (S̃·⊗1)◦U ·3 ◦ (U ·1⊗1)

= Φ
0(θ̂·1)◦ (Φ0(θ̂·2)

[p]⊗1)◦U ·4 ◦ (1⊗ (U ·W2
)[p])◦ (1⊗S·)

= Φ
0(θ̂·1)◦U ·W1

◦ (1⊗Φ
0(θ̂·2)

[p])◦ (1⊗ (U ·W2
)[p])◦ (1⊗S·)

= θ
·
1 ◦ (1⊗ (θ·2)

[p])◦ (1⊗S·)

Thus we have shown the diagram below commutes up to Fpτ homotopy:

Tot·(W1,·⊗W [p]
2,· ⊗T (I·)[p

2]) Tot·(Y·⊗T (I·)[p
2])

K

Tot·(W1,·⊗ (W2,·⊗T (I·)[p])[p]) Tot·(W1,·⊗T (I·)[p])

w·⊗1

1⊗S·

ξ·

1⊗(θ·2)[p]

θ·1

And this was the result to be shown.

Theorem 5.3.5. Given a topological space X, and a bounded below complex A· of sheaves

of differential graded commutative Fp algebras on X, there exist canonically defined Steenrod
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operations on the sheaf hypercohomology groups H·(X ,A·). These Steenrod operations satisfy

the formulas in Corollaries 2.0.8 and 2.0.9, Cartan formula and Adem relations included.

Proof. We have (K·,θ·) ∈ C , due to the existence of the homotopy associative product estab-

lished in Lemma 5.1.3, and the axioms required of θ· are proven in Lemmas 5.3.1 and 5.3.2.

This allows us to define Steenrod operations on H ·(K·) = H·(X ,A·). Because of Lemmas 5.3.3

and 5.3.4, the Cartan formula and Adem relations are valid.

5.4 Naturality

In this section I will show that the Steenrod operations constructed on sheaf hyperco-

homology are natural.

Lemma 5.4.1. Let X be a topological space and suppose A· and B· are two bounded below

complexes of differential graded commutative Fp algebras on X. Suppose f · : A· → B· is a

differential graded Fp algebra homomorphism. Then there are induced maps for all n ∈ Z:

Hn(X , f ·) : Hn(X ,A·)→Hn(X ,B·)

We have that H·(X , f ·) commutes with Di for all i ≥ 0. As a consequence, H·(X , f ·)

commutes with the Steenrod operations constructed on H·(X ,A·) and H·(X ,B·) respectively.

Proof. We first define the morphisms, Hn(X , f ·). Let ι· : A·→ I· and κ· : B·→ J· be injective

resolutions in ShFp(X). We have the diagram below:

I· J·

A· B·

f̃ ·

f ·
ι· κ·

Because J· is injective in each degree and bounded below, and because ι· is an injec-

tive quasi-isomorphism, we have by Lemma 3.2.13 that there is a Fp chain map f̃ · that makes

the diagram commute. By Lemma 3.2.14, f̃ · is unique up to homotopy. Because T is an additive

functor, we have T ( f̃ ·) is unique up to homotopy. Thus, we get well defined morphisms:
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Hn(T ( f̃ ·)) : Hn(T (I·))→ Hn(T (J·))

and the above is precisely Hn(X , f ·). To show that H·(X , f ·) commutes with Di,

it suffices by Lemma 2.0.3 to show that T ( f̃ ·) is a morphism in the category C (p). Let the

following denote the θ maps for A· and B· respectively.

θ
·
A : W·⊗T (I·)[p]→ T (I·)

θ
·
B : W·⊗T (J·)[p]→ T (J·)

We must show that T ( f̃ ·) is a morphism between the objects (T (I·),θ·A) and (T (J·),θ·B).

That is, I must show the following diagram commutes up to Fpπ homotopy:

W·⊗T (I·)[p] T (I·)

W·⊗T (J·)[p] T (J·)

θ·A

1⊗T ( f̃ ·)[p] T ( f̃ ·)

θ·B

Let β·A and β·B denote the ShFpπ(X) chain maps making the diagrams below commute,

each unique up to homotopy:

Tot·(I·)[p] Hom·Fp
(W·, I·)

Tot·(A·)[p] A·

β·A

m·A,p

(ι·)[p] ε∗· ◦ι·∗

Tot·(J·)[p] Hom·Fp
(W·,J·)

Tot·(B·)[p] B·

β·B

m·B,p

(κ·)[p] ε∗· ◦κ·∗

In the above m·A,p and m·B,p denote the p iterated products on A· and B· respectively.

Because f · is a differential graded Fp algebra homomorphism, we have the commutative square:
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Tot·((A·)[p]) A·

Tot·((B·)[p]) B·

m·A,p

( f ·)[p] f ·

m·B,p

This shows that the top rows in the two diagrams below are both chain maps in

ShFpπ(X) over f · ◦m·A,p = m·B,p ◦ ( f ·)[p]:

Tot·((I·)[p]) Hom·Fp
(W·, I·) Hom·Fp

(W·,J·)

Tot·((A·)[p]) A· B·

β·A f̃∗

m·A,p

(ι·)[p]

f ·
ε∗· ◦ι·∗ ε∗· ◦κ·∗

Tot·((I·)[p]) Tot·((J·)[p]) Hom·Fp
(W·,J·)

Tot·((A·)[p]) Tot·((B·)[p]) B·

( f̃ ·)[p] β·B

( f ·)[p]

(ι·)[p]

m·B,p

(κ·)[p] ε∗· ◦κ·∗

Note that every square in the above commutes by construction. We have the bottom

rows are equal and all maps are Fpπ chain maps. We also have Hom·Fp
(W·,J·) is bounded

below and is ShFpπ(X)-injective in each degree. And finally, because (ι·)[p] is an injective

quasi-isomorphism, we can invoke Lemma 3.2.14 to obtain that the two top rows, f̃ ·∗ ◦β·A and

β·B ◦ ( f̃ ·)[p], are Fpπ homotopic. That is, the diagram below commutes up to Fpπ homotopy:

Tot·((I·)[p]) Hom·Fp
(W·, I·)

Tot·((J·)[p]) Hom·Fp
(W·,J·)

β·A

( f̃ ·)[p] f̃ ·∗
β·B

Because T is an additive functor, we have the square on the right in the diagram below

commutes up to Fpπ homotopy:
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Tot·(T (I·)[p]) T (Tot·((I·)[p])) T (Hom·Fp
(W·, I·)) = Hom·Fp

(W·,T (I·))

Tot·(T (J·)[p]) T (Tot·((J·)[p])) T (Hom·Fp
(W·,J·)) = Hom·Fp

(W·,T (J·))

γ·p

T ( f̃ ·)[p]

T (β·A)

T (( f̃ ·)[p]) T ( f̃ ·)∗
γ·p T (β·B)

while the square on the left commutes by the naturality of γ·p. Thus the perimeter

commutes up to Fpπ homotopy. We have θ̂·A = T (β·A)◦ γ·p and θ̂·B = T (β·B)◦ γ·p. By composing

the horizontal arrows along the top and bottom rows, we get the diagram below commutes up

to Fpπ homotopy:

Tot·(T (I·)[p]) Hom·Fp
(W·,T (I·))

Tot·(T (J·)[p]) Hom·Fp
(W·,T (J·))

θ̂·A

T ( f̃ ·)[p] T ( f̃ ·)∗
θ̂·B

That is, T ( f̃ ·)∗◦ θ̂·A and θ̂·B◦T ( f̃ ·)[p] are Fpπ homotopic. By Lemma 3.1.6, Φ0(T ( f̃ ·)∗◦
θ̂·A) and Φ0(θ̂·B ◦T ( f̃ ·)[p]) are Fpπ homotopic, where Φ· is the adjoint isomorphism of Lemma

3.1.5. By Lemma 3.1.7, we have:

Φ
0(T ( f̃ ·)∗ ◦ θ̂

·
A) = T ( f̃ ·)◦Φ

0(θ̂·A)

By Lemma 3.1.9, we have:

Φ
0(θ̂·B ◦T ( f̃ ·)[p]) = Φ

0(θ̂·B)◦ (T ( f̃ ·)[p]⊗1)

Thus, we have shown the square on the right in the diagram below commutes up to

Fpπ homotopy:

W·⊗T (I·)[p] T (I·)[p]⊗W· T (I·)

W·⊗T (J·)[p] T (J·)[p]⊗W· T (J·)

1⊗T ( f̃ ·)[p]

U · Φ0(θ̂·A)

T ( f̃ ·)[p]⊗1 T ( f̃ ·)

U · Φ0(θ̂·B)
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while the square on the left commutes by the naturality of U ·. Thus the perimeter

commutes up to Fpπ homotopy. Because θ·A = Φ0(θ̂·A) ◦U · and θ·B = Φ0(θ̂·B) ◦U ·, we have

shown the diagram below commutes up to Fp homotopy:

W·⊗T (I·)[p] T (I·)

W·⊗T (J·)[p] T (J·)

θ·A

1⊗T ( f̃ ·)[p] T ( f̃ ·)

θ·B

This shows T ( f̃ ·) : (T (I·),θ·A)→ (T (J·),θ·B) is a morphism in May’s category C (p).

Now by Lemma 2.0.3, we have that H ·(T ( f̃ ·)) commutes with Di, and as a consequence, with

the Steenrod operations on H ·(T (I·)) and H ·(T (J·)). So by their respective definitions, we have

H·(X , f ·) commutes with the Steenrod operations on H·(X ,A·) and H·(X ,B·).

We now develop some lemmas that will allow us to apply Lemma 5.4.1 to algebraic

De Rham cohomology and Hodge cohomology later.

Lemma 5.4.2. Let X and Y will denote smooth projective varieties over a field of characteristic

p, and f : X → Y will be a morphism of schemes over k. Let A be a sheaf of OX modules on X

and B a sheaf of OY modules on Y .

5.5 Further Questions

In the case that A· is concentrated in degree 0, there are Lemmas 4.4.1 and 4.4.2,

which are proven by Epstein in [2]. It is natural to ask if these lemmas also hold when A· is not

concentrated in degree 0.

Question 5.5.1. For the Steenrod operations P· and βP· constructed in this section, do we have

Pi = 0 and βPi = 0 for all i < 0?

Question 5.5.2. When A· is concentrated in degree zero, we have for the Steenrod operations

P·, βP· constructed in this section, that P0 : Hn(K·)→Hn(K·) is induced by the Frobenius map,

fr : A→ A, on the sheaf of Fp-algebras, A, by Lemma 4.4.2. Is there a similar result that holds

when A· is not concentrated in degree 0, and instead just bounded below?
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5.6 Applications

In this section I will apply Theorem 5.3.5 to a few different sheaves of bounded below

complexes of differential graded commutative Fp algebras, A·.

5.6.1 Algebraic De Rham Cohomology

Let X be a smooth projective variety over a field k of characteristic p. Let A· = Ω·X/k

be the De Rham complex of X over k. We have Ω·X/k is concentrated in non-negative degree,

and the wedge product on Ω·X/k makes it a sheaf of differential graded commutative Fp algebras.

The sheaf hypercohomology of X with coefficients in Ω·X/k computes the algebraic De Rham

cohomology groups of X :

Hn
DR(X/k) = Hn(X ,Ω·X/k)

Thus under these conditions, the Steenrod operations from Theorem 5.3.5 are defined

on H ·DR(X/k).

5.6.2 Hodge Cohomology

Let X , k be as in the previous section. Let the Hodge complex Ω̃·X/k be the De Rham

complex Ω·X/k but with zero differential. Like before, we still have Ω̃·X/k equipped with the

wedge product is a bounded below complex of sheaves of differential graded commutative Fp

algebras on X . Under these conditions one may compute the Hodge cohomology of X over k

as the hypercohomology groups, Hn(X ,Ω̃·X/k). Thus we can apply Theorem 5.3.5 to obtain

Steenrod operations on the Hodge cohomology groups of X as well.
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Chapter 6

Filtrations

In this chapter I will develop some lemmas for filtered complexes. I expect most

results to hold in a general abelian category, but I only prove them in the category of sheaves of

abelian groups for simplicity. Other results are specific to the category of sheaves of k vector

spaces, where k is any field. Sections 6.2 and 6.3 do not contain new results, and may be

skipped. They are only included to make the arguments used in sections 6.4 and 6.5 easier to

follow.

6.1 Definitions

Definition 6.1.1. Let A be an abelian category. A filtered object F ·A of A is an object A of A

and a collection of subobjects FmA of A for every m∈Z, such that Fm+1A is a subobject of FmA

for all m∈Z. If F ·A and F ·B are filtered objects of A , a filtered morphism F · f : F ·A→ F ·B is a

morphism f : A→ B in A such that f restricts to a morphism Fm f : FmA→ FmB for all m ∈ Z.

Let Fil(A) denote the category of filtered objects of A with filtered morphisms. Let Fil f (A)

denote the full subcategory of Fil(A) whose objects are finitely filtered, as in Definition 6.1.2

(3). Define grmA = FmA/Fm+1A. For a filtered morphism F · f : F ·A→ F ·B, one has the well

defined morphisms grm f : grmA→ grmB in A .

Definition 6.1.2. Let A be an abelian category and let F ·A be a filtered object of A .

1. The filtration on F ·A is said to terminate if there is a m ∈ Z such that FmA = 0.
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2. The filtration on F ·A is said to begin if there is a m ∈ Z such that FmA = A.

3. The filtration is finite if it begins and terminates, ie, there is a m1 ∈ Z and a m2 ∈ Z such

that Fm1A = A and Fm2A = 0.

4. The filtration is called exhaustive if A = ∪m∈ZFmA.

5. The filtration is called separated if ∩m∈ZFmA = 0.

6. We say F ·A is inductively filtered if the filtration terminates and is exhaustive.

Definition 6.1.3. Let A be an abelian category. A filtered complex F ·A· in A is an object

of Fil(Comp(A)). That is, A· is a complex in A and each FmA· is a subcomplex of A·, with

Fm+1A· being a subcomplex of FmA· for all m ∈ Z. A filtered chain map F · f · : F ·A· → F ·B·

is a morphism in Fil(Comp(A)). That is, f · : A· → B· is a chain map and f · restricts to a

chain map Fm f · : FmA· → FmB· for all m ∈ Z. For m ∈ Z, one defines the chain complex

grmA· = FmA·/Fm+1A· in A . One has the well defined chain map grm f · : grmA·→ grmB·.

Definition 6.1.4. Let A be an abelian category and suppose F ·A· is a filtered complex in A .

1. We say the filtration on F ·A· terminates in each degree if for all n ∈ Z, the filtration on

F ·An terminates. That is, for all n ∈ Z, there is a mn ∈ Z such that FmnAn = 0.

2. The filtration on F ·A· is said to begin in each degree if the filtration on F ·An begins for

all n ∈ Z. That is, for all n ∈ Z, there is a mn ∈ Z such that FmnAn = An.

3. The filtration on F ·A· is called finite in each degree if F ·An is finitely filtered for each

n ∈ Z. That is, for every n ∈ Z, there is a mn ∈ Z and m′n ∈ Z such that FmnAn = An and

Fm′nAn = 0.

4. We say the filtration on F ·A· is exhaustive if the notion of exhaustive in Definition 6.1.2

(4) applies to F ·A· where one regards A· as a filtered object in the category Comp(A).

This means for all n ∈ Z, An = ∪m∈ZFmAn.

5. The filtration on F ·A· is separated if the notion of separated from Definition 6.1.2 (5)

applies to A· as a filtered object in the category Comp(A). That is, for all n ∈ Z, one has

∩m∈ZFmAn = 0.
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6. The filtration on F ·A· is called inductive in each degree if it terminates in each degree

and the filtration is exhaustive.

7. The filtration on F ·A· is said to terminate uniformly if the filtration on F ·A· terminates

when one regards A· as a filtered object of Comp(A). That is, there is a m ∈ Z such that

FmA· = 0·.

8. The filtration on F ·A· is said to begin uniformly if the filtration on F ·A· begins where one

sees A· as an object of Comp(A). That is, there is a m ∈ Z, such that FmA· = A·.

9. The filtration on F ·A· is said to be uniformly finite if it both begins uniformly and termi-

nates uniformly. That is, there is a m∈Z and m′ ∈Z such that FmA· = A· and Fm′A· = 0·.

Lemma 6.1.5. Let A be an abelian category and suppose F · f : F ·A→ F ·B is a filtered mor-

phism of filtered objects in A . If Fm f is injective (respectively surjective) for all m ∈ Z, then

grm f is injective (respectively surjective) for all m ∈ Z.

Proof. Let m ∈ Z. We have the diagram:

0 Fm+1A FmA grmA 0

0 Fm+1B FmB grmB 0

Fm+1 f Fm f grm f

If we assume Fm+1 f and Fm f are injective, it follows from the Five Lemma that grm f

is injective. Similarly, if Fm+1 f and Fm f are surjective, it also follows from the Five Lemma

that grm f is surjective.

Corollary 6.1.6. Let A be an abelian category, suppose F · f · : F ·A·→ F ·B· is a filtered chain

map. Suppose for all m ∈ Z Fm f · is injective (respectively surjective) in each degree. Then

grm f · is injective (respectively surjective) in each degree.

Proof. Let n ∈ Z. We have Fm f n is injective (respectively surjective) for all m ∈ Z. By Lemma

6.1.5, grm f n is injective (respectively surjective) for all m ∈ Z.
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Definition 6.1.7. Let A be an abelian category, and let F ·A· and F ·B· be filtered complexes

in A . A filtered chain map F · f · : F ·A·→ F ·B· is called a filtered quasi-isomorphism if for all

m ∈ Z, grm f · : grmA·→ grmB· is a quasi-isomorphism.

Definition 6.1.8. Let A be an abelian category, and let F ·A· and F ·B· be filtered complexes in

A . A filtered chain map F · f · : F ·A·→ F ·B· is called a strong filtered quasi-isomorphism if for

all m ∈ Z, Fm f · : FmA·→ FmB· is a quasi-isomorphism.

Lemma 6.1.9. Let A be an abelian category, let F ·A· and F ·B· be filtered complexes in A , and

suppose F · f · : F ·A·→ F ·B· is a strong filtered quasi-isomorphism. Then F · f · is also a filtered

quasi-isomorphism in the sense of Definition 6.1.7.

Proof. Let m ∈ Z. We have the diagram of complexes in A with exact rows below:

0 Fm+1A· FmA· grmA· 0

0 Fm+1B· FmB· grmB· 0

Fm+1 f · Fm f · grm f ·

Since Fm+1 f · and Fm f · are quasi-isomorphisms, it follows that grm f · is a quasi-

isomorphism, as one can take the long exact sequence of cohomology groups and apply the

Five Lemma. Since grm f · is a quasi-isomorphism for all m ∈ Z, we have F · f · is a filtered

quasi-isomorphism in the sense of Definition 6.1.7.

Lemma 6.1.10. Let A be an abelian category and suppose F ·A· and F ·B· are filtered complexes

in A whose filtrations begin in each degree, as in Definition 6.1.4 (2). Let F ·ε· : F ·A·→ F ·B· be

a strong quasi-isomorphism. Then ε· : A·→ B· is a quasi-isomorphism.

Proof. Let n ∈ Z. Because the filtrations of F ·A· and F ·B· both begin in each degree, we can

find a mn ∈Z such that FmnAn = An, FmnAn−1 = An−1, FmnBn = Bn, and FmnBn−1 = Bn−1. Since

F ·ε· is a strong quasi-isomorphism, Fmnε· is a quasi-isomorphism, and we have Hn(Fmnε·) is

an isomorphism. But we have Hn(Fmnε·) = Hn(ε·) because Hn(A·) = ker(dn
A)/im(dn−1

A ) =

ker(Fmndn
A)/im(Fmndn−1

A ) = Hn(FmnA·), and similarly Hn(B·) = Hn(FmnB·). Since Hn(ε·) is

an isomorphism for all n ∈ Z, ε· is a quasi-isomorphism.
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Lemma 6.1.11. Let A be an abelian category and suppose F ·A· and F ·B· are two filtered

complexes in A , with F ·ε· : F ·A· → F ·B· a filtered quasi-isomorphism. Then for every m ∈ Z

and i ∈ N, we have F ·ε· induces a quasi-isomorphism:

(Fm/Fm+i)ε· : FmA·/Fm+iA·→ FmB·/Fm+iB·

Proof. Proceed by induction on i. In the case i= 1, we have for all m∈Z, (Fm/Fm+1)ε·= grmε·,

which is a quasi-isomorphism because F ·ε· is a filtered quasi-isomorphism. Now suppose there

is an i ∈N such that, for all m ∈ Z, the map (Fm/Fm+ j)ε· : FmA·/Fm+ jA·→ FmB·/Fm+ jB· is a

quasi-isomorphism, for all 1 ≤ j < i. Let m ∈ Z. I must show (Fm/Fm+i)ε· : FmA·/Fm+iA·→
FmB·/Fm+iB· is a quasi-isomorphism. We have the diagram below:

0 Fm+1A·/Fm+iA· FmA·/Fm+iA· grmA· 0

0 Fm+1B·/Fm+iB· FmB·/Fm+iB· grmB· 0

(Fm+1/Fm+i)ε· (Fm/Fm+i)ε· grmε·

We have grmε· is a quasi-isomorphism by hypothesis and (Fm+1/Fm+i)ε· is a quasi-

isomorphism by induction. Hence by the Five Lemma we get that (Fm/Fm+i)ε· is a quasi-

isomorphism as well.

Lemma 6.1.12. Let A be an abelian category and suppose F ·A· and F ·B· are two filtered

complexes in A whose filtrations terminate in each degree. Let F ·ε· : F ·A·→ F ·B· be a filtered

quasi-isomorphism. Then F ·ε· is a strong filtered quasi-isomorphism.

Proof. Let m,n ∈ Z. I must show Hn(Fmε·) : Hn(FmA·)→ Hn(FmB·) is an isomorphism. Be-

cause F ·A· and F ·B· have filtrations that terminate in each degree, we can find a mn ∈ Z such

that:

FmnAn = FmnAn−1 = FmnBn = FmnBn−1 = 0

If m≥ mn then of course we are done. Otherwise we can set i = mn−m ∈ N and we

have by Lemma 6.1.11 that:
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(Fm/Fmnε
·) : FmA·/FmnA·→ FmB·/FmnB·

is a quasi-isomorphism. In degrees n and n− 1 we have FmAn/FmnAn = FmAn,

FmAn−1/FmnAn−1 = FmAn−1, and similarly for F ·B·. This implies that the isomorphism:

Hn((Fm/Fmn)ε·) : Hn(FmA·/FmnA·)→ Hn(FmB·/FmnB·)

is equal to the map:

Hn(Fm
ε
·) : Hn(FmA·)→ Hn(FmB·)

Thus, Hn(Fmε·) is an isomorphism. Since m,n ∈ Z were arbitrary, we have F ·ε· is a

strong filtered quasi-isomorphism.

Corollary 6.1.13. Let A be an abelian category and let F ·A· and F ·B· be filtered complexes in A

that are finitely filtered in each degree. Let F ·ε· : F ·A·→ F ·B· be a filtered quasi-isomorphism.

Then F ·ε· is a strong quasi-isomorphism and ε· : A·→ B· is a quasi-isomorphism.

Proof. By Lemma 6.1.12, F ·ε· is a strong quasi-isomorphism. Then by Lemma 6.1.10, ε· is a

quasi-isomorphism.

Definition 6.1.14. Let A be an abelian category and let F ·A· be a filtered complex in A . Then

F ·A· is called filtered acyclic if grmA· is an acyclic complex for all m ∈ Z.

Definition 6.1.15. Let A be an abelian category and let F ·A· be a filtered complex in A . Then

F ·A· is called strong filtered acyclic if FmA· is acyclic for all m ∈ Z.

Lemma 6.1.16. Let A be an abelian category and suppose F ·A· is a strong filtered acyclic

complex. Then F ·A· is filtered acyclic.

Proof. Let m ∈ Z and consider the exact sequence of complexes in A :

0→ Fm+1A·→ FmA·→ grmA·→ 0
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Because F ·A· is strong filtered acyclic, we have Hn(FmA·) = 0 for all n,m ∈ Z. Thus,

in the long exact sequence of cohomology groups, Hn(grmA·) is surrounded by terms that are

zero. This forces Hn(grmA·) = 0, and we have F ·A· is filtered acyclic.

Definition 6.1.17. Let A be an abelian category and let F ·I be a filtered object in A . Then F ·I

is called filtered injective if grmI is an injective object of A for all m ∈ Z.

Definition 6.1.18. Let A be an abelian category and let F ·I be a filtered object in A . Then F ·I

is called strong filtered injective if FmI is an injective object in A for all m ∈ Z.

Note the definitions below may conflict with [6], where there they would insist that

F ·ε· is strict. Because strictness is not used in sections 6.4 and 6.5, I don’t require it here.

Definition 6.1.19. Let A be an abelian category and let F ·ε· : F ·A·→ F ·B· be a filtered chain

map of filtered complexes in A . Then F ·ε· is called a filtered resolution if for all m ∈ Z, grmε· :

grmA· → grmB· is a resolution in the sense of Definition 3.2.15. That is, a filtered resolution

is an injective filtered quasi-isomorphism. If F ·B· is filtered injective in each degree, has a

terminating filtration in each degree, and B· is bounded from below, then F ·ε· is called a filtered

injective resolution.

Definition 6.1.20. Let A be an abelian category and let F ·ε· : F ·A·→ F ·B· be a filtered chain

map of filtered complexes in A . Then F ·ε· is called a strong filtered resolution if for all m ∈ Z,

Fmε· : FmA·→ FmB· is a resolution in the sense of Definition 3.2.15. That is, F ·ε· is an injective

strong quasi-isomorphism. If F ·B· is strong filtered injective in each degree, has a terminating

filtration in each degree, and B· is bounded from below, then F ·ε· is called a strong filtered

injective resolution.

Definition 6.1.21. Let A be an abelian category and suppose F ·A· and F ·B· are filtered chain

complexes in A . Let F ·g1,F ·g2 : F ·A· → F ·B· be two filtered chain maps in A . A filtered

homotopy between F ·g·1 and F ·g·2 is a family of filtered morphisms, F ·hn : F ·An→ F ·Bn−1 for

each n ∈ Z, such that F ·gn
1−F ·gn

2 = F ·dn−1
B ◦F ·hn +F ·hn+1 ◦F ·dn

A. If such a F ·h· exists, F ·g·1
and F ·g·2 are called filtered homotopic.
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Lemma 6.1.22. Let A be an abelian category, and suppose F ·A·, F ·B·, and F ·C· are filtered

complexes in A . Let F ·g·1,F
·g·1 : F ·A·→ F ·B· be two filtered chain maps that are filtered homo-

topic by a filtered homotopy F ·h· : F ·A·→ F ·B[−1]·. Let F · f · : F ·B·→ F ·C· be a filtered chain

map. Then F · f · ◦F ·g·1 and F · f · ◦F ·g·2 are filtered homotopic by filtered homotopy F · f · ◦F ·h·.

Proof. By Lemma 3.1.15, f ·◦g·1 and f ·◦g·2 are homotopic by homotopy f ·◦h·. All that remains

is to show that F · f n−1 ◦F ·hn is a filtered morphism for all n ∈ Z, and this is true, since it is a

composition of filtered morphisms.

Lemma 6.1.23. Let A be an abelian category, and suppose F ·A·, F ·B·, and F ·C· are filtered

complexes in A . Let F ·g·1,F
·g·1 : F ·A· → F ·B· be two filtered chain maps that are filtered ho-

motopic by a filtered homotopy F ·h· : F ·A·→ F ·B[−1]·. Let F · f · : C·→ F ·A· be a filtered chain

map. Then F ·g·1 ◦F · f · and F ·g·2 ◦F · f · are filtered homotopic by filtered homotopy F ·h· ◦F · f ·.

Proof. By Lemma 3.1.16, g·1◦ f · and g·2◦ f · are homotopic by homotopy h·◦ f ·. All that remains

is to show that F ·hn ◦F · f n is a filtered morphism for all n ∈ Z, and this is true, since it is a

composition of filtered morphisms.

Definition 6.1.24. Let A ,B be abelian categories and let T : A → B be a covariant left exact

functor. Let F ·A be a filtered object of A . Then we can induce a filtration on T (A), where we

define for all m ∈ Z:

FmT (A) = T (FmA)

Note we need T to be left exact in order to maintain the inclusions:

T (FmA) ↪→ T (A)

T (Fm+1A) ↪→ T (FmA)

Definition 6.1.25. Let A ,B be abelian categories and let T : A → B be a left exact functor.

Let F ·A· be a filtered complex in A . Then we may induce a filtration on T (A·) as in Definition

6.1.24 where we view F ·A· as a filtered object of the category Comp(A) and T as the induced

functor Comp(A)→ Comp(B). With this we have:
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FmT (An) = T (FmAn)

for all m,n ∈ Z.

Lemma 6.1.26. Let A ,B be abelian categories and let T : A → B be an additive left exact

functor. Let F ·A· and F ·B· be complexes in A and suppose F ·g·1,F
·g·2 : F ·A·→ F ·B· are filtered

chain maps that are filtered homotopic by filtered homotopy F ·h· : F ·A· → F ·B[−1]·. Then

F ·T (g·1) and F ·T (g·2) are filtered homotopic by filtered homotopy F ·T (h·).

Proof. Because T is additive, T preserves homotopies. And because F ·hn is a filtered morphism

for all n ∈ Z, so is F ·T (hn). Thus F ·T (g·1) and F ·T (g·2) are filtered homotopic by filtered

homotopy F ·T (h·).

The definition below is adapted from [6], near the beginning of Section 12.21 1.

Definition 6.1.27. Let A be an abelian category with sums. Let F ·K· be a filtered complex in

A . The objects associated with the spectral sequence for F ·K· are defined as follows. Let r≥ 0,

a,b ∈ Z:

Za,b
r =

FaKa+b∩d−1
K (Fa+rKa+b+1)+Fa+1Ka+b

Fa+1Ka+b

Ba,b
r =

FaKa+b∩dK(Fa−r+1Ka+b−1)+Fa+1Ka+b

Fa+1Ka+b

Ea,b
r = Za,b

r /Ba,b
r

da,b
r : Ea,b

r → Ea+r,b−r+1
r z+Fa+1Ka+b 7→ dK(z)+Fa+r+1Ka+b+1

The make things easier to work with, I define:

Z̃a,b
r = FaKa+b∩d−1

K (Fa+rKa+b+1)+Fa+1Ka+b

1https://stacks.math.columbia.edu/tag/012K
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B̃a,b
r = FaKa+b∩dK(Fa−r+1Ka+b−1)+Fa+1Ka+b

We have Ea,b
r ∼= Z̃a,b

r /B̃a,b
r . Define:

Za,p
∞ = ∩rZa,b

r

Ba,b
∞ = ∪rBa,b

r

When Za,b
∞ and Ba,b

∞ exist, we have:

Ea,b
∞ =

∩rZ̃
a,b
r

∪rB̃
a,b
r

When there is more than one filtered complex present, I will use the notation, Za,b
r (F ·K·),

Ba,b
r (F ·K·), Ea,b

r (F ·K·), Z̃a,b
r (F ·K·), and B̃a,b

r (F ·K·), to refer to the objects defined above.

The below is from Lemma 12.21.4 of [6] 2.

Lemma 6.1.28. Let A be an abelian category with sums, and let F · f · : F ·K·→F ·L· be a filtered

chain map of filtered chain complexes in A . Then F · f · induces a family of morphisms between

the spectral sequences of F ·K· and F ·L·, where for r ≥ 1, a,b ∈ Z, one denotes:

Ea,b
r (F · f ·) : Ea,b

r (F ·K·)→ Ea,b
r (F ·L·)

Proof. Let r≥ 1 and a,b∈Z. It must be shown that f ·(Z̃a,b
r (F ·K·))⊆ Z̃a,b

r (F ·L·) and f ·(B̃a,b
r (F ·K·))⊆

B̃a,b
r (F ·L·). Both of these statements follow from the fact that F · f · is a filtered chain map.

I expect the result below to hold in a general abelian category, but for the sake of

simplicity I restrict to the category of sheaves of abelian groups. This way intersection and

containment have a more obvious meaning.

2https://stacks.math.columbia.edu/tag/012O
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Lemma 6.1.29. Let A be the category of sheaves of abelian groups on a topological space X.

Let F ·K· and F ·L· be filtered complexes in A , and let F ·g·1,F
·g·2 : F ·K·→ F ·L· be two filtered

chain maps in A that are filtered homotopic by filtered homotopy F ·h· : F ·K·→ F ·L[−1]·. Then

for all r≥ 1, a,b∈Z, we have Ea,b
r (F ·g·1) = Ea,b

r (F ·g·2). That is, F ·g·1 and F ·g·2 induce the same

morphism, Ea,b
r (F ·K·)→ Ea,b

r (F ·L·).

Proof. Define F ·g· = F ·g·1−F ·g·2, and let r ≥ 1, a,b ∈ Z. It suffices to show Ea,b
r (F ·g·) is the

zero map. That is, I must show:

F ·g·(Z̃a,b
r (F ·K·))⊆ B̃a,b

r (F ·L·)

We have the relation F ·g· = F ·d·L ◦F ·h·+F ·h· ◦F ·d·K . For the right summand above,

we can show:

ha+b+1(da+b
K (d−1

K (Fa+rKa+b+1)))⊆ ha+b+1(Fa+rKa+b+1)⊆ Fa+rLa+b ⊆ Fa+1La+b

with the last inequality holding as long as r ≥ 1. We also have:

da+b−1
L (ha+b(FaKa+b))⊆ da+b−1

L (FaLa+b−1)⊆ FaLa+b∩dL(Fa−r+1La+b−1)

with the last containment holding for r≥ 1. Now we can combine this all together. In

the below I drop the degree superscript notation on the morphisms.

g(Z̃a,b
r (F ·K·)) = g(FaKa+b∩d−1

K (Fa+rKa+b+1)+Fa+1Ka+b)

= g(FaKa+b∩d−1
K (Fa+rKa+b+1))+g(Fa+1Ka+b)

⊆ g(FaKa+b∩d−1
K (Fa+rKa+b+1))+Fa+1La+b

⊆ dL(h(FaKa+b))+h(dK(d−1
K (Fa+rKa+b+1)))+Fa+1La+b

⊆ dL(FaLa+b−1)+h(Fa+rKa+b+1)+Fa+1La+b

⊆ dL(FaLa+b−1)+Fa+rLa+b +Fa+1La+b
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⊆ FaLa+b∩dL(Fa−r+1La+b−1)+Fa+1La+b Since r ≥ 1.

= B̃a,b
r (F ·L·)

Since Ea,b
r = Z̃a,b

r /B̃a,b
r , this shows Ea,b

r (F ·g·) is the zero map. Hence, Ea,b
r (F ·g·1) =

Ea,b
r (F ·g·2).

6.2 The Cone

Definition 6.2.1. Let A be an abelian category with direct sums. Let A· and B· be complexes in

A . Suppose f · : A·→ B· be a chain map. The cone of f · is defined to be the following complex:

Cone( f ·)n = An+1⊕Bn

with differential:

dn
Cone( f ·) =

 −dn+1
A 0

f n+1 dn
B


Lemma 6.2.2. Let A be an abelian category with direct sums, A· and B· complexes in A , and

let f · : A·→ B· be a chain map. Then Cone( f ·)· is a complex.

Proof. Let n ∈ Z. We have:

dn+1
Cone( f ·) ◦dn

Cone( f ·) =

 −dn+2
A 0

f n+2 dn+1
B

  −dn+1
A 0

f n+1 dn
B


=

 dn+2
A dn+1

A 0

− f n+2dn+1
A +dn+1

B f n+1 dn+1
B dn

B


=

 0 0

0 0


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Lemma 6.2.3. Let A be an abelian category with direct sums, and suppose f · : A· → B· is a

chain map of complexes in A . Then the inclusion ι·B : B· ↪→ Cone( f ·)· into the second compo-

nent. Then ι·B is a chain map.

Proof. Let n ∈ Z. We can represent ιn
B in matrix notation as

 0

1

. We have:

dn
Cone( f ·) ◦ ι

n
B =

 −dn+1
A 0

f n+1 dn
B

  0

1


=

 0

dn
B


=

 0

1

dn
B

= ι
n+1
B ◦dn

B

Lemma 6.2.4. Let A be an abelian category with direct sums, and suppose f · : A· → B· is a

chain map of complexes in A . Then the projection π·A : Cone( f ·)·→ A[1]· is a chain map.

Proof. Let n ∈ Z. We can represent πn
A using the matrix

[
1 0

]
. We have:

π
n+1
A ◦dn

Cone( f ·) =
[

1 0
]  −dn+1

A 0

f n+1 dn
B


=
[
−dn+1

A 0
]

=−dn+1
A

[
1 0

]
= dn

A[1] ◦π
n
A
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Corollary 6.2.5. Let A be an abelian category with direct sums. Let f · : A· → B· be a chain

map of complexes in A . There is an exact sequence of complexes:

0→ B·
ι·B→ Cone( f ·)·

π·A→ A[1]·→ 0

Proof. The exactness of the sequence in the middle is clear from the definition of ι·B and π·A.

The below can be proven more elegantly, but I only need to use it in the category of

abelian groups.

Lemma 6.2.6. Let A be the category of abelian groups. Suppose f · : A· → B· is a quasi-

isomorphism of complexes in A . Then Cone( f ·)· is acyclic.

Proof. Let (an+1,bn) ∈ ker(dn
Cone( f ·)) with an+1 ∈ An+1 and bn ∈ Bn. I will show (an+1,bn) ∈

im(dn−1
Cone( f ·)). The condition (an+1,bn) ∈ ker(dn

Cone( f ·)) gives the equations:

−dn+1
A (an+1) = 0

f n+1(an+1)+dn
B(b

n) = 0

Since an+1 ∈ ker(dn+1
A ), [an+1] is a class in Hn+1(A·). We have:

[ f n+1(an+1)] = [−dn
B(b

n)] = 0 ∈ Hn+1(B·)

Since f · is a quasi-isomorphism, f n induces an injective map on Hn+1, so the above

implies [an+1] = 0 in Hn+1(A·). That is, there is a ãn ∈ An such that dn
A(ã

n) = an+1. I claim

f n(ãn)+bn ∈ ker(dn
B). We have:

dn
B( f n(ãn)+bn) = f n+1(dn

A(ã
n))+dn

B(bn)

= f n+1(an+1)+dn
B(bn) = 0
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Thus [ f n(ãn)+bn] is a class in Hn(B·). Because f · is a quasi-isomorphism, there is a

[ȧn]∈Hn(A·) such that f n([ȧn]) = [ f n(ãn)+bn]. That is, ȧn ∈ ker(dn
A), and there is a bn−1 ∈Bn−1

such that

f n(ȧn) = f n(ãn)+bn−dn−1
B (bn−1)

We now define an = ȧn− ãn. We have:

−(dn
A)(a

n) =−dn
A(ȧ

n)+dn
A(ã

n) = 0+an+1 = an+1

f n(an)+dn−1
B (bn−1) = f n(ȧn)− f n(ãn)+dn−1

B (bn−1)

= ( f n(ãn)+bn−dn−1
B (ḃn−1))− f n(ãn)+dn−1

B (bn−1)

= bn

These equations imply dn−1
Cone( f ·)(a

n,bn−1) = (an+1,bn). So we have shown Cone( f ·)·

is acyclic.

Corollary 6.2.7. Let A be the category of sheaves of abelian groups on a topological space X.

Let f · : A·→ B· be a quasi-isomorphism of complexes in A . Then Cone( f ·)· is acyclic.

Proof. Let x ∈ X . We have f ·x : A·x → B·x is a quasi-isomorphism in the category of abelian

groups, so by Lemma 6.2.6, Cone( f ·x)
· is acyclic. Then since Cone( f ·x)

· = Cone( f ·)·x, we have

that Cone( f ·)· is acyclic at all of its stalks. Hence, Cone( f ·)· is acyclic.

6.3 Inducing Maps

Lemma 6.3.1. Let A be the category of abelian groups, and suppose f · : A· → B· is an in-

jective quasi-isomorphism. Suppose there is an an ∈ An and bn−1 ∈ Bn−1 satisfying f n(an) =

dn−1
B (bn−1). It follows that there is an an−1 ∈ An−1 and bn−2 ∈ Bn−2 such that:

dn−1
A (an−1) = an
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f n−1(an−1) = bn−1 +dn−2
B (bn−2)

Proof. We have that an ∈ ker(dn
A):

f n+1(dn
A(a

n)) = dn
B( f n(an))

= dn
B(d

n−1
B (bn−1)) = 0

Since f n+1 is an injective morphism, this implies dn
A(a

n) = 0. At this point we have

(an,−bn−1) ∈ ker(dn−1
Cone( f ·)). Since Cone( f ·)· is acyclic by Lemma 6.2.6, we can choose a pair

(ȧn−1, ḃn−2) ∈ Cone( f ·)n−2 such that dn−2
Cone( f ·)(ȧ

n−1, ḃn−2) = (an,−bn−1). That is, we have the

equations:

−dn−1
A (ȧn−1) = an

f n−1(ȧn−1)+dn−2
B (ḃn−2) =−bn−1

Set an−1 =−ȧn−1 and bn−2 = ḃn−2. We have:

dn−1
A (an−1) =−dn−1

A (ȧn−1)

= an

f n−1(an−1) =− f n−1(ȧn−1)

= bn−1 +dn−2
B (ḃn−2)

= bn−1 +dn−2
B (bn−2)

Now the lemma is complete.
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The lemma below is somewhat weaker than Lemma 3.2.13. It’s proved in detail here

because the method will be used again in proving Lemma 6.5.2.

Lemma 6.3.2. Let A be an abelian category and suppose we have the solid diagram below:

J· I·

A·

g·

f ·
ε·

where we assume I· is bounded below and injective in each degree, f · is any chain

map, and ε· is an injective quasi-isomorphism. Then there exists a chain map g· making the

diagram commute.

Proof. We construct g· by increasing induction on the degree. Because I· is bounded below,

there is a m ∈ Z such that In = 0 for all n ≤ m. Thus, we may define gn = 0 for n ≤ m. Now

suppose there is a n ∈ Z such that for all k ≤ n, gk is defined and the following relations hold:

f k = gk ◦ ε
k

dk−1
I ◦gk−1 = gk ◦dk−1

J

I must construct gn+1 such that the following relations hold:

f n+1 = gn+1 ◦ ε
n+1

dn
I ◦gn = gn+1 ◦dn

J

That is, gn+1 must be chosen so that both faces in the following diagram simultane-

ously commute:
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Jn In

Jn+1 In+1

An+1

gn

dn
J dn

I

gn+1

εn+1

f n+1

We accomplish this with the following diagram:

Jn+1 In+1

An+1⊕Jn

ker(εn+1−dn
J )

An+1⊕In

ker( f n+1−dn
I )

An+1⊕ Jn An+1⊕ In

gn+1

1n+1
A ⊕gn

εn+1−dn
J

1n+1
A ⊕gn

f n+1−dn
I

I will first show that the quotient map 1n+1
A ⊕gn is well defined by showing (1n+1

A ⊕
gn)(ker(εn+1− dn

J )) ⊆ ker( f n+1− dn
I ). Because we are in the category of sheaves of abelian

groups on a topological space, it suffices to verify the containment (1n+1
A ⊕ gn)(ker(εn+1 −

dn
J )) ⊆ ker( f n+1− dn

I ) on all the stalks. Let x ∈ X . Suppose (an+1, jn) ∈ ker(εn+1
x − dn

Jx
) ⊆

An+1
x ⊕ Jn

x . That is, we have the relation:

ε
n+1
x (an+1) = dn

Jx
( jn)

We must show (1n+1
Ax
⊕ gn

x)(a
n+1, jn) ∈ ker( f n+1

x − dn
Ix
). That is, I must prove the

relation:

f n+1
x (an+1) = dn

Ix
(gn

x( jn))

Because ε·x is an injective quasi-isomorphism, we may invoke Lemma 6.3.1 to find a

an ∈ An
x and jn−1 ∈ Jn−1

x such that:
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dn
Ax
(an) = an+1

ε
n
x(a

n) = jn +dn−1
Jx

( jn−1)

Now we have:

f n+1
x (an+1) = f n+1

x (dn
Ax
(an))

= dn
Ix
( f n

x (a
n))

= dn
Ix
(gn

x(ε
n
x(a

n))) By induction

= dn
Ix
(gn

x( jn +dn−1
Jx

( jn−1)))

= dn
Ix
(gn

x( jn))+dn
Ix
(gn

x(d
n−1
Jx

( jn−1)))

= dn
Ix
(gn

x( jn))+dn
Ix
(dn−1

Ix
(gn−1

x ( jn−1)))

= dn
Ix
(gn

x( jn))

So the required relation is shown. This shows the containment (1n+1
Ax
⊕gn

x)(ker(εn+1
x −

dn
Jx
)) ⊆ ker( f n+1

x − dn
Ix
). Since this containment holds for all x ∈ X , we have shown (1n+1

A ⊕
gn)(ker(εn+1− dn

J )) ⊆ ker( f n+1− dn
I ). So the quotient map 1n+1

A ⊕gn in the diagram is well

defined and makes the lower trapezoid commute. Now we define gn+1 to be a morphism in

the diagram making the upper trapezoid commute, which exists because the morphism (An+1⊕
Jn)/ker(εn+1− dn

J ) ↪→ Jn+1 is injective, and In+1 is an injective object. Because every face

in the diagram commutes, the perimeter commutes, and the commutativity of the perimeter

implies both the relations:

f n+1 = gn+1 ◦ ε
n+1

dn+1
I ◦gn = gn+1 ◦dn

J
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We may now continue the induction to define gn for all n ∈ Z so that g· is a chain map

and f · = g· ◦ ε·.

The lemmas below address the uniqueness of such a g· in the lemma above. I will

now work towards a proof of a weaker version of Lemma 3.2.14, since similar methods will be

used in Section 6.5.

Lemma 6.3.3. Let A be an abelian category. Let K· be an acyclic complex in A , let I· be a

bounded below complex in A , injective in each degree, and let g· : K·→ I· be any chain map.

Then g· is homotopic to zero.

Proof. We will inductively define a family of morphisms hn : Kn → In−1 for n ∈ Z, such that

the following relation holds for all n:

gn = dn−1
I ◦hn +hn+1 ◦dn

K

Since I· is bounded below, there is a m ∈ Z such that In = 0 for all n ≤ m. Our only

choice is to define hn = 0 for n≤ m+1, and the required relation holds. Now suppose there is

a n such that for all k ≤ n, hk is defined and the relation gk−1 = dk−2
I hk−1 +hkdk−1

K holds for all

k ≤ n. We must define hn+1 such that gn = dn−1
I hn +hn+1dn

K . Define φn : Kn→ In with:

φ
n = gn−dn−1

I hn

Consider the solid diagram below:

Kn+1

Kn

ker(dn
K)

Kn In

hn+1

φ

φ

dn
K

I first must show that the quotient map φ is well defined. That is, I must show

φ(ker(dn
K)) = 0. Since K· is acyclic, it is sufficient to show the composition φ◦dn−1

K is zero. We

have:
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φ
ndn−1

K = gndn−1
K −dn−1

I hndn−1
K

= gndn−1
K −dn−1

I (gn−1−dn−2
I hn−1) By induction

= gndn−1
K −dn−1

I gn−1 +dn−1
I dn−2

I hn−1

= gndn−1
K −dn−1

I gn−1

= 0

This shows φn(im(dn−1
K )) = 0, so we have φn(ker(dn

K)) = 0. The quotient map φ is

then well defined and makes the lower triangle in the diagram commute. We then define hn+1

to be a morphism that makes the top right triangle commute, which exists because the arrow

Kn/ker(dn
K) ↪→ Kn+1 is injective and In is an injective object. Since all faces in the diagram

commute, the perimeter commutes, which gives the relation:

hn+1 ◦dn
K = φ

n = gn−dn−1
I ◦hn

This completes the inductive construction, and hn may be defined in this way for all

n ∈ Z, and by construction, h· is a homotopy of g· to zero.

Lemma 6.3.4. Let A be the category of sheaves of abelian groups on a topological space X, let

A·, J·, and I· be chain complexes in A , where I· is bounded below and injective in each degree,

and suppose we have the diagram below:

J· I·

A·

g·1,g
·
2

ε·
f ·

where ε· is a quasi-isomorphism, f · is a chain map, and g·1,g
·
2 are two chain maps

making the diagram commute. Then g·1 and g·2 are homotopic.
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Proof. For each n ∈ Z, define γn : Cone(ε·)n→ Jn to be the projection onto the second compo-

nent, where Cone(ε·)n = An+1⊕ Jn. Note, γ· is not necessarily a chain map. We can represent

γn with the matrix:

γ
n =

[
0 1

]
For n ∈ Z, define φn : Cone(ε·)n→ In by the composition:

φ
n = (gn

1−gn
2)◦ γ

n

I claim φ· is a chain map. Let n ∈ Z:

φ
n+1 ◦dn

Cone(ε·) = (gn+1
1 −gn+1

2 )◦ γ
n+1 ◦dn

Cone(ε·)

= (gn
1−gn

2)◦
[

0 1
]
◦

 −dn+1
A 0

εn+1 dn
J


= (gn

1−gn
2)◦

[
εn+1 dn

J

]
=
[ (

gn+1
1 εn+1−gn+1

2 εn+1
) (

(gn+1
1 −gn+1

2 )dn
J
) ]

=
[

f n+1− f n+1 dn
I (g

n
1−gn

2)
]

= dn
I ◦
[

0 (gn
1−gn

2)
]

= dn
I ◦ (gn

1−gn
2)◦

[
0 1

]
= dn

I ◦φ
n

So φ· : Cone(ε·)·→ I· is a chain map. Because ε· is a quasi-isomorphism, Cone(ε·)·

is acyclic by Lemma 6.2.6. By invoking Lemma 6.3.3, φ· is homotopic to zero by a homotopy

h· : Cone(ε·)·→ I[−1]·. By Lemma 6.2.3, ι·J : J· ↪→ Cone(ε)· is a chain map. By Lemma 3.1.16,

φ· ◦ ι·J : J·→ I· is homotopic to zero by homotopy h· ◦ ι·J : J·→ I[−1]·. But for all n∈Z we have:

φ
n ◦ ι

n
J = (gn

1−gn
2)◦ γ

n ◦ ι
n
J
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= (gn
1−gn

2)◦
[

0 1
]
◦

 0

1


= gn

1−gn
2

Since the above is homotopic to zero, we have shown g·1 and g·2 are homotopic.

6.4 The Filtered Cone

Definition 6.4.1. Let A be an abelian category with direct sums, and let F ·A· and F ·B· be

filtered complexes in A . Let F · f · : F ·A·→ F ·B· be a filtered chain map. Then Cone( f ·) has an

induced filtration, where for all m,n ∈ Z:

FmCone(F · f ·)n = FmAn+1⊕FmBn

and differential given by:

Fmdn
Cone(F · f ·) =

 −Fmdn+1
A 0

Fm f n Fmdn
B


Since all the maps involved preserve filtration degree, this makes sense. We in fact

have the following identification for all m ∈ Z:

FmCone(F · f ·)· = Cone(Fm f ·)·

Lemma 6.4.2. Let A be an abelian category with direct sums, and suppose F · f · : F ·A·→ F ·B·

is a filtered chain map of filtered complexes. Then the chain map ι·B : B· ↪→Cone( f ·)· is a filtered

chain map.

Proof. For m,n ∈ Z we have:

Fm
ι
n
F ·B : FmBn→ FmCone(F · f ·)n = FmAn+1⊕FmBn

It is clear that ι·B preserves filtration degree.
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Lemma 6.4.3. Let A be an abelian category with direct sums and suppose F · f · : F ·A·→ F ·B·

is a filtered chain map of filtered chain complexes in A . Then the projection chain map π·A :

Cone( f ·)·→ A[1]· defined in Lemma 6.2.4 is a filtered chain map.

Proof. For m,n ∈ Z we have:

Fm
π

n
A : FmCone(F · f ·)n = FmAn+1⊕FmBn→ FmAn+1

It is clear that that F ·π·A preserves filtration degree.

Lemma 6.4.4. Let A be an abelian category with direct sums, let F ·A· and F ·B· be filtered

complexes in A , and suppose F ·ε· : F ·A· → F ·B· is a strong filtered quasi-isomorphism as in

Definition 6.1.8. Then F ·Cone(F ·ε·)· is strong filtered acyclic as in Definition 6.1.15.

Proof. Let m ∈ Z. Because F ·ε· is a strong filtered quasi-isomorphism, Fmε· : FmA· → FmB·

is a quasi-isomorphism. By Lemma 6.2.6, Cone(Fmε·)· is acyclic. This is identified with

FmCone(F ·ε·)·, so we have shown FmCone(F ·ε·)· is acyclic. Since this holds for all m ∈ Z,

F ·Cone(F ·ε·)· is strong filtered acyclic.

6.5 Inducing Filtered Maps

In this section I will proves lemmas corresponding to those of Section 6.3, but done

with filtered complexes.

Lemma 6.5.1. Let A be the category of abelian groups. Let F ·A· and F ·B· be filtered complexes

in A , and let F ·ε· : F ·A·→ F ·B· be an injective filtered quasi-isomorphism. Let n,m ∈ Z and

suppose there are an ∈ FmAn, bn−1 ∈ FmBn−1, and bn ∈ Fm+1Bn, such that:

Fm
ε

n(an) = Fmdn−1
B (bn−1)+bn

I claim there exist an−1 ∈FmAn−1, bn−2 ∈FmBn−2, ȧn ∈Fm+1An, and ḃn−1 ∈Fm+1Bn−1,

such that:

an = Fmdn−1
A (an−1)+ ȧn
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Fm
ε

n−1(an−1) = bn−1 +Fmdn−2
B (bn−2)+ ḃn−1

Fm+1
ε

n(ȧn)+Fm+1dn−1
B (ḃn−1) = bn

Proof. Because F ·ε· is a filtered quasi-isomorphism, grmε· : grmA·→ grmB· is a quasi-isomorphism.

Because F ·ε· is injective, so is grmε· by Lemma 6.1.5. On the mth graded part, we have the re-

lation:

grm
ε

n(an) = grmdn−1
B (bn−1)

Since grmε· is an injective quasi-isomorphism, we can invoke Lemma 6.3.1 to find a

an−1 ∈ grmAn−1 and bn−2 ∈ grmBn−2 such that:

grmdn−1
A (an−1) = an

grm
ε

n−1(an−1) = bn−1 +grmdn−2
B (bn−2)

That is, an−1 ∈ FmAn−1, bn−2 ∈ FmBn−2, and there are ȧn ∈ Fm+1An, and ḃn−1 ∈
Fm+1Bn−1, such that:

an = Fmdn−1
A (an−1)+ ȧn

Fm
ε

n−1(an−1) = bn−1 +Fmdn−2
B (bn−2)+ ḃn−1

From this we have:

Fm
ε

n(an) = Fmdn−1
B (bn−1)+bn

Fm
ε

n(Fmdn−1
A (an−1)+ ȧn) = Fmdn−1

B

(
Fm

ε
n−1(an−1)−Fmdn−2

B (bn−2)− ḃn−1)+bn

Fm
ε

n(Fmdn−1
A (an−1))+Fm+1

ε
n(ȧn) = Fmdn−1

B (Fm
ε

n−1(an−1))

−Fmdn−1
B (Fmdn−2

B (bn−2))−Fm+1dn−1
B (ḃn−1)+bn
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Fm
ε

n(Fmdn−1
A (an−1))+Fm+1

ε
n(ȧn) = Fm

ε
n(Fmdn−1

A (an−1))−Fm+1dn−1
B (ḃn−1)+bn

Fm+1
ε

n(ȧn) =−Fm+1dn−1
B (ḃn−1)+bn

Thus, we also have the third relation:

Fm+1
ε

n(ȧn)+Fm+1dn−1
B (ḃn−1) = bn

The Lemma below is related to Lemma 13.26.11 3 of [6].

Lemma 6.5.2. Let A be the category of sheaves of abelian groups on a topological space X. Let

F ·A·, F ·J·, and F ·I· be filtered complexes in A . Assume F ·I· is strong filtered injective, bounded

below, and has a terminating filtration in each degree, as in Definition 6.1.4 (1). Assume F ·J·

and F ·A· are exhaustively filtered, as in Definition 6.1.4 (4). Suppose we have the solid diagram

below:

F ·J· F ·I·

F ·A·

F ·g·

F ·ε·
F · f ·

where F ·ε· is an injective filtered quasi-isomorphism, and F · f · is a filtered chain map.

Then there exists a filtered chain map F ·g· making the diagram commute.

Proof. The proof is an inductive construction of Fmgn for all m,n ∈ Z. Because I· is bounded

below, there is a N0 ∈ Z such that In = 0 for all n≤ N0. Define gn = 0 for n≤ N0, and of course

we have Fmgn = 0 for all m ∈ Z, n ≤ N0. Because F ·I· has a filtration that terminates in each

degree, we have for all n ∈ Z, there is a mn ∈ Z, such that FmIn = 0 for all m ≥ mn. Define

Fmgn = 0 for all n ∈ Z, m ≥ mn. These definitions establish the basecase for what follows.

Now suppose there is a n ∈ Z and m ∈ Z such that Fmgn−1, Fmgn−2, Fm+1gn, and Fm+1gn−1 are

defined, satisfying the following relations:

3https://stacks.math.columbia.edu/tag/05TY
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Fm f n−1 = Fmgn−1 ◦Fm
ε

n−1

Fmgn−1 ◦Fmdn−2
J = Fmdn−2

I ◦Fmgn−2

Fm+1 f n = Fm+1gn ◦Fm+1
ε

n

Fm+1gn ◦Fm+1dn−1
J = Fm+1dn−1

I ◦Fm+1gn−1

Fmgn−1|Fm+1Jn−1 = Fm+1gn−1

I must then choose Fmgn such that the following relations are satisfied:

Fm f n = Fmgn ◦Fm
ε

n

Fmgn ◦Fmdn−1
J = Fmdn−1

I ◦Fmgn−1

(Fmgn)|Fm+1Jn = Fm+1gn

That is, Fmgn must be chosen so that the following three diagrams simultaneously

commute:

FmJn FmIn

FmAn

Fmgn

Fmεn
Fm f n

FmJn FmIn

FmJn−1 FmIn−1

Fmgn

Fmgn−1

Fmdn−1
J Fmdn−1

I

FmJn FmIn

Fm+1Jn Fm+1In

Fmgn

Fm+1gn

incn
J incn

I

We accomplish this via the diagram below:

FmJn FmIn

C/ker(γ) D/ker(ψ)

C D

Fmgn

φ

φ

γ ψ
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where in the above we define:

C = FmAn⊕FmJn−1⊕Fm+1Jn

D = FmAn⊕FmIn−1⊕Fm+1In

φ = Fm1n
A⊕Fmgn−1⊕Fm+1gn

γ = Fm
ε

n−Fmdn−1
J − incn

J

ψ = Fm f n−Fmdn−1
I − incn

I

In order to show the quotient map φ is well defined, I must show φ(ker(γ))⊆ ker(ψ).

It suffices to check this containment on the stalks. Let x ∈ X . Suppose (an, jn−1, jn) ∈ ker(γx).

That is, an ∈ FmAn
x , jn−1 ∈ FmJn−1

x , and jn ∈ Fm+1Jn
x , and we have the relation:

Fm
ε

n
x(a

n) = Fmdn−1
Jx

( jn−1)+ jn

I must show φx(an, jn−1, jn) ∈ ker(ψx). That is, I must show the relation:

Fm f n
x (a

n) = Fmdn−1
Ix

(Fmgn−1
x ( jn−1))+Fm+1gn

x( jn)

Because of our given relation and the fact that F ·ε·x : F ·A·x → F ·J·x is an injective

filtered quasi-isomorphism in the category of abelian groups, we can apply Lemma 6.5.1 to find

a an−1 ∈ FmAn−1, jn−2 ∈ FmJn−2, ȧn ∈ Fm+1An, and j̇n−1 ∈ Fm+1Jn−1, such that the following

relations hold:

an = Fmdn−1
Ax

(an−1)+ ȧn

Fm
ε

n−1
x (an−1) = jn−1 +Fmdn−2

Jx
( jn−2)+ j̇n−1

Fm+1
ε

n
x(ȧ

n)+Fm+1dn−1
Jx

( j̇n−1) = jn

We now have:

Fm f n
x (a

n) = Fm f n
x (F

mdn−1
Ax

(an−1)+ ȧn)
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= Fmdn−1
Ix

(Fm f n−1
x (an−1))+Fm+1 f n

x (ȧ
n)

= Fmdn−1
Ix

(Fmgn−1
x (Fm

ε
n−1
x (an−1)))+Fm+1gn

x(F
m+1

ε
n(ȧn))

= Fmdn−1
Ix

(Fmgn−1
x ( jn−1 +Fmdn−2

Jx
( jn−2)+ j̇n−1))+Fm+1gn

x(F
m+1

ε
n(ȧn))

= Fmdn−1
Ix

(Fmgn−1
x ( jn−1))+Fmdn−1

Ix
(Fmgn−1

x (Fmdn−2
Jx

( jn−2)))

+Fm+1dn−1
Ix

(Fm+1gn−1
x ( j̇n−1))+Fm+1gn

x(F
m+1

ε
n(ȧn))

= Fmdn−1
Ix

(Fmgn−1
x ( jn−1))+Fmdn−1

Ix
(Fmdn−2

Ix
(Fmgn−2

x ( jn−2)))

+Fm+1gn
x(F

m+1dn−1
Jx

( j̇n−1))+Fm+1gn
x(F

m+1
ε

n(ȧn))

= Fmdn−1
Ix

(Fmgn−1
x ( jn−1))+Fm+1gn

x(F
m+1dn−1

Jx
( j̇n−1))+Fm+1gn

x(F
m+1

ε
n(ȧn))

= Fmdn−1
Ix

(Fmgn−1
x ( jn−1))+Fm+1gn

x( jn)

The required relation has been shown, so we have the containment, φx(ker(γx)) ⊆
ker(ψx). Since this holds for all x ∈ X , we have shown φ(ker(γ)) ⊆ ker(ψ). So the quotient

map φ is well defined and makes the lower trapezoid commute. Since the arrow C/ker(γ) ↪→
FmJn is injective and FmIn is an injective object, we can find a morphism Fmgn making the

upper trapezoid commute. Since all faces in the diagram commute, the perimeter commutes,

which implies the three required relations. We may now continue the induction and define

Fmgn : FmJn → FmIn for all m,n ∈ Z. Since the filtration on F ·J· is exhaustive, this defines

g· : J·→ I·. Since the filtration on F ·A· is also exhaustive, the relation Fm f · = Fmg· ◦Fmε· for

all m ∈ Z implies f · = g· ◦ ε·. We have now shown there is a filtered chain map F ·g· such that

F · f · = F ·g· ◦F ·ε·.

The Lemma below is related to Lemma 13.26.10 4 of [6].

Lemma 6.5.3. Let A be the category of sheaves of abelian groups on a topological space

X. Let F ·K· be a filtered complex in A that is strong filtered acyclic as in Definition 6.1.15

and exhaustively filtered as in Definition 6.1.4 (4). Let F ·I· be a filtered complex in A that

is bounded below, strong filtered injective in each degree as in Definition 6.1.18, and whose

filtration terminates in each degree as in Definition 6.1.4 (1). Let F ·g· : F ·K· → F ·I· be any

filtered chain map in A . Then F ·g· is filtered homotopic to zero.
4https://stacks.math.columbia.edu/tag/05TX
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Proof. We will define a family of filtered morphisms F ·hn : F ·Kn → F ·In−1 such that the fol-

lowing relation is satisfied for all m,n ∈ Z:

Fmgn = Fmdn−1
I ◦Fmhn +Fmhn+1 ◦Fmdn

K

Since I· is bounded below, there is a N0 ∈ Z such that In = 0 for all n ≤ N0. Define

Fmhn = 0 for all n≤ N0+1, m ∈ Z. Because F ·I· has a terminating filtration in each degree, for

every n ∈ Z, there is a mn ∈ Z, such that FmnIn = 0. Define Fmhn = 0 for all n ∈ Z, m≥ mn−1.

This establishes the basecase for the inductive construction. Now suppose there are m,n ∈ Z,

such that Fmhn, Fm+1hn, and Fm+1hn+1 are defined, and satisfy the following relations:

Fmgn−1 = Fmdn−2
I ◦Fmhn−1 +Fmhn ◦Fmdn−1

K

Fm+1gn = Fm+1dn−1
I ◦Fm+1hn +Fm+1hn+1 ◦Fm+1dn

K

Fmhn|Fm+1Kn = Fm+1hn

I must construct Fmhn+1 so that the following relations are satisfied:

Fmgn = Fmdn−1
I ◦Fmhn +Fmhn+1 ◦Fmdn

K

Fmhn+1|Fm+1Kn+1 = Fm+1hn+1

That is, Fmhn+1 must make the two following diagrams simultaneously commute:

FmKn+1

FmKn FmIn

Fmhn+1
Fmdn

K

Fmgn−Fmdn−1
I ◦Fmhn

FmKn+1 FmIn

Fm+1Kn+1 Fm+1In

Fmhn+1

Fm+1hn+1

incn+1
K incn

I

We can accomplish this via the diagram below:
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FmKn+1

C/ker(γ)

C FmIn

Fmhn+1

φ

γ

φ

where in the above we define:

C = FmKn⊕Fm+1Kn+1

γ = Fmdn
K− incn+1

K

φ = (Fmgn−Fmdn−1
I ◦Fmhn)−Fm+1hn+1

In order to show the quotient map φ is well defined, I must show φ(ker(γ)) = 0. It

suffices to check this condition on the stalks. Let x ∈ X , and suppose (kn,kn+1) ∈ ker(γx). That

is, kn ∈ FmKn
x , kn+1 ∈ Fm+1Kn+1

x , and we have the relation:

Fmdn
Kx
(kn) = kn+1

I must show φx(kn,kn+1) = 0, which is the relation:

Fmgn
x(k

n) = Fmdn−1
Ix

(hn
x(k

n))+Fm+1hn+1
x (kn+1)

Let kn denote the class of kn in grmKn. We have:

grmdn
Kx
(kn) = kn+1 = 0

Because F ·K·x is strong filtered acyclic and Lemma 6.1.16, F ·K·x is filtered acyclic, so

grmK·x is an acyclic complex. So we can find a kn−1 ∈ grmKn−1
x such that grmdn−1

Kx
(kn−1) = kn.

That is, there is a kn−1 ∈ FmKn−1
x and a k̇n ∈ Fm+1Kn

x such that:

kn = Fmdn−1
Kx

(kn−1)+ k̇n
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Note we also have the relation:

Fm+1dn
Kx
(k̇n) = Fmdn

Kx
(Fmdn−1

Kx
(kn−1)+ k̇n) = Fmdn

Kx
(kn) = kn+1

Now we have:

Fmgn
x(k

n) = Fmgn
x(F

mdn−1
Kx

(kn−1)+ k̇n)

= Fmdn−1
Ix

(Fmgn−1
x (kn−1))+Fm+1gn

x(k̇
n)

= Fmdn−1
Ix

[
Fmdn−2

Ix
(Fmhn−1

x (kn−1))+Fmhn
x(F

mdn−1
Kx

(kn−1))
]

+
[
Fm+1dn−1

Ix
(Fm+1hn

x(k̇
n))+Fm+1hn+1

x (Fm+1dn
Kx
(k̇n))

]
= Fmdn−1

Ix

[
Fmhn

x(F
mdn−1

Kx
(kn−1))

]
+
[
Fm+1dn−1

Ix
(Fm+1hn

x(k̇
n))+Fm+1hn+1

x (kn+1)
]

= Fmdn−1
Ix

(Fmhn
x(F

mdn−1
Kx

(kn−1)+ k̇n))+Fm+1hn+1
x (kn+1)

= Fmdn−1
Ix

(Fmhn
x(k

n))+Fm+1hn+1
x (kn+1)

The required relation has been shown, so we have φx(ker(γx)) = 0. Since this holds

for all x ∈ X , we have φ(ker(γ)) = 0. Thus, the quotient map φ is well defined and makes

the lower triangle commute. We can then define Fmhn+1 to be a morphism making the upper

right triangle commute, which exists because the arrow C/ker(γ) ↪→ FmKn+1 is injective and

FmIn is an injective object. Since all faces in the diagram commute, the perimeter commutes,

which implies the required relations. We may now continue the induction to define Fmhn for all

m,n ∈ Z, such that we have the following for all m,n:

Fmgn = Fmdn−1
I ◦Fmhn +Fmhn+1 ◦Fmdn

K

Fmhn|Fm+1Kn = Fm+1hn

Because F ·K· is exhaustively filtered, this defines all of h· : K·→ I·, and we have the

relation gn = dn−1
I ◦hn +hn+1 ◦dn

K for all n ∈ Z. We have now shown F ·g· is filtered homotopic

to zero by filtered homotopy F ·h·.

107



The below is related to Lemma 13.26.11 5 of [6].

Lemma 6.5.4. Let A be the category of sheaves of abelian groups on a topological space X.

Let F ·A·, F ·J·, and F ·I· be filtered complexes in A . We assume F ·I· is bounded below, strong

filtered injective as in Definition 6.1.18, and has a filtration that terminates in each degree as in

Definition 6.1.4 (1). Assume the filtrations on F ·A· and F ·J· are both exhaustive. Suppose we

have the solid diagram below:

F ·J· F ·I·

F ·A·

F ·g·1, F ·g·2

F ·ε·
F · f ·

where F · f · is a filtered chain map, F ·ε· is a strong filtered quasi-isomorphism, and

F ·g·1 and F ·g·2 are two filtered chain maps that make the diagram commute. Then F ·g·1 and F ·g·2
are filtered homotopic.

Proof. We can take the filtered cone, F ·Cone(F ·ε·)·. As was done in the proof of Lemma 6.3.4,

we define the projection map, γ· : Cone(ε·)→ J· to be the projection onto the second factor,

which is not a chain map in general. In this case we have γn is a filtered morphism for all n ∈ Z,

where we have:

Fm
γ

n : FmCone(F ·ε)n = FmAn+1⊕FmJn→ FmJn

Define F ·φ· : F ·Cone(F ·ε·)·→ F ·J· by the composition:

F ·φ· = (F ·g·1−F ·g·2)◦F ·γ·

It was shown in the proof of Lemma 6.3.4 that φ· is a chain map, and here it is clear

that F ·φ· is a filtered chain map because it is a composition of filtered morphisms. Because

F ·ε· is a strong filtered quasi-isomorphism, F ·Cone(F ·ε·)· is strong filtered acyclic by Lemma

6.4.4. Because F ·A· and F ·J· are both exhaustively filtered, so is F ·Cone(F ·ε·)·. We can now

5https://stacks.math.columbia.edu/tag/05TY
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invoke Lemma 6.5.3 to obtain that F ·φ· is filtered homotopic to zero by filtered homotopy F ·h· :

F ·Cone(F ·ε·)· → F ·I[−1]·. By Lemma 6.4.2, we have the injective filtered chain map, F ·ι·J :

F ·J· ↪→ F ·Cone(F ·ε)· from Lemma 6.4.2. By Lemma 6.1.23, F ·φ· ◦F ·ι·J is filtered homotopic

to zero. But as was the case in Lemma 6.3.4, we have F ·φ· ◦F ·ι·J = F ·g·1−F ·g·2.

6.6 Bifiltrations

In this section I will define a bifiltered object and work out a few lemmas. Bifiltered

objects arise when one takes the tensor product of two filtered objects over a field.

Definition 6.6.1. Let A be an abelian category. A bifiltered object of A is an object A of

A and a collection of subjects F p,qA of A, such that for all p,q, p′,q′ ∈ Z, F p,qA∩F p′,q′A =

Fmax(p,p′),max(q,q′)A, where the intersection is taken inside of A. A morphism of bifiltered objects

F ·,· f : F ·,·A→ F ·,·B is a morphism f : A→ B in A such that f restricts to a morphism F p,q f :

F p,qA→ F p,qB for all p,q∈Z. The category of bifiltered objects of A with bifiltered morphisms

is denoted BiFil(A).

Definition 6.6.2. Let A be an abelian category. A bifiltered complex of A is a bifiltered object

in the category Comp(A). That is, A· is a complex in A and for every p,q ∈ Z, F p,qA· is

a subcomplex of A·. For all p,q, p′,q′ ∈ Z, one has F p,qA· ∩F p′,q′A· = Fmax(p,p′),max(q,q′)A·,

where the intersection is taken inside of A·. A bifiltered chain map F ·,· f · : F ·,·A·→ F ·,·B·,· is a

morphism in the category BiFil(Comp(A)). That is, F ·,· f · is a chain map f · : A·→ B· such that

f · restricts to a chain map F p,q f · : F p,qA·→ F p,qB· for all p,q ∈ Z.

Definition 6.6.3. Let A be an abelian category with sums and let F ·,·A be a bifiltered object of

A . Then one can define the total filtration of A as follows:

FmA = ∑
p+q=m

F p,qA

for all m ∈ Z, where the sum is taken inside of the object A. In this way, any object of

BiFil(A) can be seen as an object of Fil(A), as well as any morphism in BiFil(A). The terms

defined in Definition 6.1.2 will apply to F ·,·A if they apply to the total filtration of A, F ·A.
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Definition 6.6.4. Let A be an abelian category and let F ·,·A be a bifiltered object of A . In

addition to the total filtration, we define the following two filtrations of A. The vertical filtration

of A is defined as follows, where for m ∈ Z:

Fm
v A =

⋃
p∈Z

F p,mA

The horizontal filtration of A is defined by:

Fm
h A =

⋃
q∈Z

Fm,qA

Definition 6.6.5. Let A be an abelian category with sums and let F ·,·A be a bifiltered object of

A . Then one can define the total filtration of A· as done in Definition 6.6.3 where one sees A· as

an object in Comp(A). In each degree n ∈ Z, and for all m ∈ Z, we have:

FmAn = ∑
p+q=m

F p,qAn

Lemma 6.6.6. Let A be the category of abelian groups, and suppose F ·A is a filtered object of

A . Suppose there are elements xi ∈ FmiA for i = 1, . . . ,k, with ∑
k
i=1 xi = 0 in A. Then for each i,

xi ∈ FMiA, where Mi = min({m j | j 6= i}).

Proof. Choose an i ∈ {1, . . . ,k}. We have:

xi =−∑
j 6=i

x j ∈∑
j 6=i

Fm j A =
⋃
j 6=i

Fm j A = FMiA

Lemma 6.6.7. Let A be the category of abelian groups and suppose F ·,·A is a bifiltered object

of A . Then for all m ∈ Z, there is an exact sequence:

0
⊕

p+q=m+1

F p,qA
⊕

p+q=m
F p,qA FmA 0ι π
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where π is the summation map, ⊕p+q=mF p,qA→ ∑p+q=m F p,qA, and ι is the sum of

the maps:

ι
p,q : F p,qA→ F p−1,qA⊕F p,q−1A x 7→ (x,−x)

That is, for (wp,q)p+q=m+1 ∈ ⊕p+q=m+1F p,qA, we have:

ι(w)p,q = wp+1,q−wp,q+1

for all p+q = m.

Proof. Abbreviate S =
⊕

p+q=m+1 F p,qA and T =
⊕

p+q=m F p,qA. We have that π is surjective

by definition. It is also straightforward to show that im(ι) ⊆ ker(π). Let (wp,q)p+q=m+1 ∈ S.

Then:

π(ι(w)) = ∑
p+q=m

ι(w)p,q = ∑
p+q=m

(wp+1,q−wp,q+1) = 0

To show right exactness, it remains to show ker(π) ⊆ im(ι). Let (wp,q)p+q=m ∈
ker(π)⊆ T . There are only finitely many p,q such that wp,q 6= 0, since w is an element of a direct

sum. So we may assume that (wp,q)p+q=m = (wk+i,m−k−i)i=0,...,n, for some k ∈ Z and n ≥ 0. If

all w·,· are zero we are done. Otherwise, because the sum is zero, there must be at least two non-

zero w values, hence n ≥ 1. Suppose first that n = 1 and (wp,q)p+q=m = (wk,m−k,wk+1,m−k−1).

We have wk,m−k +wk+1,m−k−1 = 0, So

wk,m−k =−wk+1,m−k−1 ∈ Fk,m−kA∩Fk+1,m−k−1A = Fk+1,m−kA

By setting vk+1,m−k = wk,m−k ∈ Fk+1,m−kA in the (k+ 1,m− k) component of S, we

get:

ι(vk+1,m−k) = (wk,m−k,−wk,m−k) = (wk,m−k,wk+1,m−k−1) = (wp,q)p+q=m

So (w)∈ im(ι) in the case n = 1. Now suppose (wp,q)p+q=m = (wk+i,m−k−i)i=0,...,n for

a n> 1. I will reduce to the case (wp,q)p+q=m =(wk+i,m−k−i)i=1,...,n. Consider wk,m−k ∈Fk,m−kA.
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I claim we have wk,m−k ∈ Fk+1,m−k. In the horizontal filtration, we have wk+i,m−k−i ∈ Fk+i
h (A),

for i = 0, . . . ,n. Because ∑
n
i=0(w

k+i,m−k−i) = 0 in A, we may invoke Lemma 6.6.6 to get that

wk,m−k ∈ Fk+1
h A, since min{k+ i | i 6= 0}= k+1. Thus we have:

wk,m−k ∈ Fk+1
h A∩Fk,m−k(A)

= (
⋃
q∈Z

Fk+1,qA)∩Fk,m−k(A)

=
⋃
q∈Z

(Fk+1,qA∩Fk,m−k(A))

=
⋃
q∈Z

Fk+1,max(q,m−k)A

= Fk+1,m−kA

Set vk+1,m−k = wk,m−k. We have

ι(vk+1,m−k) = (wk,m−k,−wk,m−k) ∈ Fk,m−kA⊕Fk+1,m−k−1A

Let (w̃·,·) = (w·,·)− ι(vk+1,m−k), and note that w̃k,m−k = 0. Therefore:

(w̃p,q)p+q=m = (w̃(k+1)+i,m−(k+1)−i)i=0,...,n−1

Thus, by using (w̃·,·) in place of (w·,·), we reduce to the case where (w·,·) has at most

n− 1 non-zero components. With this reduction we are done, and we have shown ker(π) ⊆
im(ι).

At this point we have shown that the sequence is right exact. To show left exactness

we show ι is injective. Suppose (wp,q)p+q=m+1 ∈ ker(ι). I must show wp,q = 0 ∈ F p,qA for all

p+q = m+1. For p,q ∈ Z with p+q = m, we have:

ι(w)p,q = wp+1,q−wp,q+1 = 0 ∈ F p,qA

since ι(w) = 0, so we have the relation wp+1,q = wp,q+1 for all p+ q = m. Thus by

transitivity, (wp,q)p+q=m+1 has the same entry for each component. But since only finitely many
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terms are nonzero, this forces wp,q = 0 for all p+ q = m+ 1. Thus, (wp+q)p+q=m+1 = 0, and

we have shown ι is injective. Now left exactness is shown as well, so the sequence is exact.

Corollary 6.6.8. Let A be the category of sheaves of abelian groups on a topological space X,

and let F ·,·A be a bifiltered object of X. Let m ∈ Z. Then there is an exact sequence:

0
⊕

p+q=m+1

F p,qA
⊕

p+q=m
F p,qA FmA 0ι π

where ι and π are as defined in Lemma 6.6.7.

Proof. Let x ∈ X . We have the following sequence of abelian groups:

0
⊕

p+q=m+1

F p,qAx
⊕

p+q=m
F p,qAx FmAx 0ι π

By Lemma 6.6.7, this sequence is exact. Since the sequence

0
⊕

p+q=m+1

F p,qA
⊕

p+q=m
F p,qA FmA 0ι π

is exact on all stalks, it is exact.

Corollary 6.6.9. Let A be the category of sheaves of abelian groups on topological space X.

Let F ·,·A· be a bifiltered complex in A . Then for all m ∈ Z we have the exact sequence of

complexes in A:

0
⊕

p+q=m+1

F p,qA·
⊕

p+q=m
F p,qA· FmA· 0ι· π·
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Proof. For each n ∈ Z we have the following exact sequence from Corollary 6.6.8:

0
⊕

p+q=m+1

F p,qAn
⊕

p+q=m
F p,qAn FmAn 0ιn πn

Because π· and ι· are both naturally chain maps, the result is shown.

Definition 6.6.10. Let A be an abelian category and let F ·,·A· and F ·,·B· be bifiltered complexes

of A . A strong bifiltered quasi-isomorphism from F ·,·A· to F ·,·B· is a bifiltered chain map F ·,·ε· :

F ·,·A·→ F ·,·B· such that F p,qε· : F p,qA·→ F p,qB· is a quasi-isomorphism for all p,q ∈ Z.

Lemma 6.6.11. Let A be the category of sheaves of abelian groups on a topological space

X, let F ·,·A· and F ·,·B· be bifiltered complexes in A , and let F ·,·ε· : F ·,·A·→ F ·,·B· be a strong

bifiltered quasi-isomorphism. Then F ·ε· : F ·A·→ F ·B· is a strong filtered quasi-isomorphism,

where F · denotes the total filtration.

Proof. Let m ∈ Z. By Corollary 6.6.8, the rows in the diagram below are exact:

0
⊕

p+q=m+1

F p,qA·
⊕

p+q=m
F p,qA· FmA· 0

0
⊕

p+q=m+1

F p,qB·
⊕

p+q=m
F p,qB· FmB· 0

ι·A

⊕
p+q=m+1 F p,qε·

π·A

⊕
p+q=m F p,qε·

Fmε·

ι·B π·B

and the squares are commutative. Since direct sums of quasi-isomorphisms are quasi-

isomorphisms, the left and middle downward arrows are quasi-isomorphisms. Hence, so is

the third. Since Fmε· is a quasi-isomorphism for all m ∈ Z, we have F ·ε· is a strong filtered

quasi-isomorphism.
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6.7 Tensor Products

For the entirety of this chapter I will assume the tensor product preserves subobject

relations. That is, if A ↪→C and B ↪→ D are injections, then I assume we have the injection:

A⊗B ↪→C⊗D

In other words I make the assumption that ⊗ is exact. This will be true when we are

working in the category of sheaves of k vector spaces on a topological space X , for k a field.

Definition 6.7.1. Let A be an abelian category with exact tensor product and sums. Let F ·A

and F ·B be two filtered objects of A . Then one induces a filtration on A⊗B as follows:

Fm(A⊗B) = ∑
p+q=m

F pA⊗FqB

The sum above takes place inside of A⊗B. Note because we have assumed⊗ is exact,

we have F pA⊗FqB is a subobject of A⊗B for all p,q ∈ Z.

Definition 6.7.2. Let A be an abelian category with exact tensor product and sums. Let F ·A·

and F ·B· be two filtered complexes in A . Then one induces a filtration on the total complex

Tot·(A·⊗B·) as follows:

FmTot·(F ·A·⊗F ·B·) = ∑
p+q=m

Tot·(F pA·⊗FqB·)

In each degree, one has:

FmTotn(F ·A·⊗F ·B·) =
⊕

p′+q′=n

(
∑

p+q=m
F pAp′⊗FqBq′

)

Lemma 6.7.3. Let A be an abelian category with exact tensor product and sums, and suppose

F ·A and F ·B are filtered objects of A with terminating filtrations. Then the induced filtration

on F ·(F ·A⊗F ·B) terminates.

Proof. There is a m1 ∈ Z such that FmA = 0 for all m ≥ m1, and there is a m2 ∈ Z such that

FmB = 0 for all m ≥ m2. I claim the filtration on F ·(F ·A⊗F ·B) terminates at m1 +m2. We

have:
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Fm1+m2(F ·A⊗F ·B) = ∑
p+q=m1+m2

F pA⊗FqB

= ∑
i∈Z

Fm1+iA⊗Fm2−iB

= ∑
i≥0

(Fm1+iA⊗Fm2−iB)+∑
i<0

(Fm1+iA⊗Fm2−iB)

= ∑
i≥0

(0⊗Fm2−iB)+∑
i<0

(Fm1+iA⊗0) = 0

Lemma 6.7.4. Let A be an abelian category with exact tensor products and sums, and sup-

pose F ·A· and F ·B· are filtered complexes whose filtrations terminate in each degree, and A·

and B· are either both bounded below or both bounded above. Then the induced filtration on

F ·(Tot·(F ·A·⊗F ·B·)) terminates in each degree.

Proof. Let n ∈ Z. Since we have assumed that A· and B· are either both bounded below or both

bounded above, there are only finitely many p,q ∈ Z with p+ q = n that satisfy Ap 6= 0 and

Bq 6= 0. Because F ·A· and F ·B· have terminating filtrations in each degree, for each of these

finite values for p and q, there are mp ∈ Z and m′q ∈ Z such that FmpAp = 0 and Fm′qBq = 0.

Because there are only finitely many mp and m′q, we may set M = max({mp,m′q|p+q = n, Ap 6=
0, Bq 6= 0}). That is, we choose M large enough so that FMAp = 0 and FMBq = 0 for all

p+q = n with Ap 6= 0, Bq 6= 0. We then have:

F2MTotn(F ·A·⊗F ·B·) = ∑
i+ j=2M, p+q=n

F iAp⊗F jBq

= ∑
i∈Z, p+q=n

FM+iAp⊗FM−iBq

= ∑
i≥0, p+q=n

(FM+iAp⊗FM−iBq)+ ∑
i<0, p+q=n

(FM+iAp⊗FM−iBq)

= ∑
i≥0, p+q=n

(0⊗FM−iBq)+ ∑
i<0, p+q=n

(FM+iAp⊗0) = 0
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So the filtration on F ·Tot·(F ·A·⊗F ·B·) terminates in each degree.

Lemma 6.7.5. Let A be an abelian category with exact tensor product and sums, and suppose

F ·A and F ·B are filtered objects of A whose filtrations begin. Then F ·(A⊗B) has a filtration

that begins.

Proof. There are m1,m2 ∈ Z such that Fm1A = A and Fm2B = B. Thus:

A⊗B = Fm1A⊗Fm2B⊆ ∑
p+q=m1+m2

F pA⊗FqB = Fm1+m2(A⊗B)

Thus Fm1+m2(A⊗B) = A⊗B, so the filtration on F ·(A⊗B) begins.

Lemma 6.7.6. Let A be an abelian category with exact tensor product and sums, and let F ·A·

and F ·B· be filtered complexes in A whose filtrations begin in each degree and are either both

bounded above or both bounded below. Then the filtration on F ·Tot·(A·⊗B·) begins in each

degree.

Proof. Let n ∈ Z. Because A· and B· are either both bounded above or both bounded below,

there are only finitely many non-zero terms in the direct sum below:

Totn(A·⊗B·) =
⊕

p+q=n
Ap⊗Bq

For all p ∈ Z there is an ip ∈ Z such that F ipAp = Ap, and for all q ∈ Z there is a

jq ∈ Z such that F jqBq = Bq. Set:

M = min{ip, jq | Ap 6= 0 and Bq 6= 0}

We then have:

Totn(A·⊗B·) =
⊕

p+q=n
Ap⊗Bq

=
⊕

p+q=n
F ipAp⊗F jqBq

⊆
⊕

p+q=n
FMAp⊗FMBq
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⊆ F2MTotn(A·⊗B·)

So the filtration on F ·Tot·(A·⊗B·) begins in each degree.

Corollary 6.7.7. Let A be an abelian category with exact tensor product and sums. Let F ·A

and F ·B be two finitely filtered objects of A . Then F ·(A⊗B) is finitely filtered.

Proof. Follows from Lemmas 6.7.3 and 6.7.5.

Corollary 6.7.8. Let A be an abelian category with exact tensor product and sums. Let F ·A· be

a finitely filtered complex in A . Then for all k ≥ 1, F ·Tot·((F ·A·)[k]) is finitely filtered.

Proof. Inductive application of Corollary 6.7.7.

Corollary 6.7.9. Let A be an abelian category with exact tensor product and sums. Let F ·A·

and F ·B· be two filtered complexes in A that are finitely filtered in each degree, and either both

bounded above or both bounded below. Then F ·(A·⊗B·) is finitely filtered in each degree.

Proof. Follows from Lemmas 6.7.4 and 6.7.6.

Lemma 6.7.10. For simplicity, let A be the category of sheaves of k vector spaces on a topo-

logical space X. Let F ·A and F ·B be two filtered objects of A with exhaustive filtrations. Then

the induced filtration on F ·(F ·A⊗F ·B) is exhaustive.

Proof. I must show A⊗B ⊆ ∪m∈ZFm(F ·A⊗F ·B). This containment may be checked on the

stalks. Let x ∈ X . I claim Ax⊗Bx ⊆ ∪m∈ZFm(F ·Ax⊗F ·Bx). Let z ∈ Ax⊗Bx. We can write

z = ∑
k
i=1 ai⊗bi, for ai ∈ Ax and bi ∈ Bx. Since the filtrations on F ·Ax and F ·Bx are exhaustive,

there are mi ∈ Z and m′i ∈ Z such that ai ∈ FmiAx and bi ∈ Fm′iBx. Since there are only finitely

many mi,m′i, we may set M = mink
i=1(mi) and M′ = mink

i=1(m
′
i). Since each ai ∈ FMA and

bi ∈ FM′B, we have z∈ FMAx⊗FM′Bx. Thus, z∈ FM+M′(F ·Ax⊗F ·Bx). Since z was an arbitrary

element of Ax⊗Bx, we have shown Ax⊗Bx ⊆ ∪m∈ZFm(F ·Ax⊗F ·Bx). Since this containment

holds for all x ∈ X , we have shown A⊗ B ⊆ ∪m∈ZFm(F ·A⊗ F ·B). Thus F ·(F ·A⊗ F ·B) is

exhaustively filtered.
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Lemma 6.7.11. For simplicity, let A be the category of sheaves of k vector spaces on a topo-

logical space X. Let F ·A· and F ·B· be filtered complexes in A that are exhaustively filtered as

in Definition 6.1.4 (4). Then F ·Tot·(F ·A·⊗F ·B·) is exhaustively filtered.

Proof. Let n ∈ Z. I must show Totn(A·⊗B·) ⊆ ∪m∈ZFmTotn(F ·A·⊗F ·B·). For each p,q ∈
Z with p+ q = n, we have F ·Ap and F ·Bq are exhaustively filtered. By Lemma 6.7.10, we

have Ap⊗Bq ⊆ ∪m∈ZFm(F ·Ap⊗F ·Bq) ⊆ ∪m∈ZFmTotn(F ·A·⊗F ·B·). Since Totn(A·⊗B·) =

⊕p+q=nAp⊗Bq, this shows Totn(A·⊗B·) ⊆ ∪m∈ZFmTotn(F ·A·⊗F ·B·). Thus F ·Tot·(F ·A·⊗
F ·B·) is exhaustively filtered in each degree.

Corollary 6.7.12. Let A be the category of sheaves of k vector spaces on a topological space

X, and suppose F ·A and F ·B are two inductively filtered objects of A as in Definition 6.1.2 (6).

Then F ·(F ·A⊗F ·B) is inductively filtered.

Proof. By Lemma 6.7.3, F ·(F ·A⊗ F ·B) has a terminating filtration, and by Lemma 6.7.10,

F ·(F ·A⊗F ·B) has an exhaustive filtration. Thus, F ·(F ·A⊗F ·B) is inductively filtered.

Corollary 6.7.13. Let A be the category of sheaves of k vector spaces on a topological space

X, and suppose F ·A· and F ·B· are inductively filtered in each degree, with A· and B· either both

bounded below or both bounded above. Then F ·Tot·(F ·A·⊗F ·B·) is inductively filtered.

Proof. Because F ·A· and F ·B· both have filtrations that terminate in each degree, and A· and B·

are either both bounded below or both bounded above, we may apply Lemma 6.7.4 to obtain

that the filtration on F ·Tot·(F ·A·⊗F ·B·) terminates in each degree. Since the filtrations on F ·A·

and F ·B· are both exhaustive, the filtration on F ·(F ·A·⊗F ·B·) is exhaustive by Lemma 6.7.11.

Thus, the filtration on F ·Tot·(F ·A·⊗F ·B·) is inductive in each degree.

The two Lemmas below are elementary.

Lemma 6.7.14. Let k be a field and V a k vector space. Suppose {vi}i∈I is a linearly indepen-

dent subset of V . Let J,K ⊂ I. Then we have equality of subspaces of V :

Span(vi)i∈J ∩Span(vi)i∈K = Span(vi)i∈J∩K
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Proof. The containment Span(vi)i∈J∩K ⊆ Span(vi)i∈J ∩Span(vi)i∈K is clear. Suppose:

w ∈ Span(vi)i∈J ∩Span(vi)i∈K

Then there are ci ∈ k and di ∈ k such that:

w = ∑
i∈J

civi = ∑
i∈K

divi

Thus we have:

0 = ∑
i∈J\K

civi + ∑
i∈J∩K

(ci−di)vi + ∑
i∈J\K

−divi

Since {vi}i∈I is a linearly independent subset of V , this implies ci = 0 for i ∈ J\K,

ci = di for i ∈ J ∩K, and di = 0 for i ∈ J\K. Thus w = ∑i∈J∩K civi ∈ Span(vi)i∈J∩K and this

completes the proof.

Lemma 6.7.15. Let k be a field, V,W k vector spaces, and let A,C ⊆ V and B,D ⊆W be

subspaces. Then we have the equality of subspaces of V ⊗k W:

(A⊗k B)∩ (C⊗k D) = (A∩C)⊗k (B∩D)

Proof. Let {vi}i∈L1 be a basis for A∩C. Let {vi}i∈J1 be a basis for a complement to A∩C inside

of A. Let {vi}i∈K1 be a basis for a complement to A∩C inside of C. Then {vi}i∈L1∪J1 is a basis

for A and {vi}i∈L1∪K1 is a basis for C. Similarly let {wi}i∈L2 be a basis for B∩D. Let {wi}i∈J2

be a basis for a complement to B∩D inside of B. Let {wi}i∈K2 be a basis to a complement to

B∩D inside of D. Then {wi}i∈L2∪J2 is a basis for B, and {wi}i∈L2∪K2 is a basis for D. We have

the basis for (A∩C)⊗ (B∩D):

β(A∩C)⊗(B∩D) = {vi⊗w j | i ∈ L1, j ∈ L2}

The following is a basis for A⊗B:

βA⊗B = {vi⊗w j | i ∈ L1∪ J1, j ∈ L2∪ J2}
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And the following is a basis for C⊗D:

βC⊗D = {vi⊗w j | i ∈ L1∪K1, j ∈ L2∪K2}

By Lemma 6.7.14, we can compute a basis for (A⊗B)∩ (C⊗D) as:

β(A⊗B)∩(C⊗D) = βA⊗B∩βC⊗D

= {vi⊗w j | i ∈ L1, j ∈ L2}

= β(A∩C)⊗(B∩D)

Since this set is a basis for both (A∩C)⊗ (B∩D) and (A⊗B)∩ (C⊗D), it follows

(A∩C)⊗ (B∩D) = (A⊗B)∩ (C⊗D).

Corollary 6.7.16. Let k be a field, X a topological space, and suppose F,G are sheaves of k

vector spaces on X, with A,C ⊆ F and B,D ⊆ G subsheaves. Then we have the equality of

subsheaves of F⊗k G:

(A⊗k B)∩ (C⊗k D) = (A∩C)⊗k (B∩D)

Proof. Let x ∈ X . Then Ax,Cx ⊆ Fx and Bx,Dx ⊆ Gx are subvector spaces. By Lemma 6.7.15,

we have:

(Ax⊗k Bx)∩ (Cx⊗k Dx) = (Ax∩Cx)⊗k (Bx∩Dx)

Since this holds for all x ∈ X , we have the required equality of sheaves.

Lemma 6.7.17. Let k be a field, and let A = Shk(X), the category of sheaves of k vector spaces

on a topological space X. Let F ·A and F ·B· be filtered objects of A . Let C = A⊗k B. Then F ·,·C

is a bifiltered object, where one defines:

F p,qC = F pA⊗k FqB
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Proof. It is clear that F pA⊗k FqB is a subobject of A⊗k B for all p,q ∈ Z. Let p,q, p′,q′ ∈ Z.

It must be shown that:

(F pA⊗k FqB)∩ (F p′A⊗k Fq′B) = Fmax(p,p′)A⊗k Fmax(q,q′)B

By Corollary 6.7.16, we have:

(F pA⊗k FqB)∩ (F p′A⊗k Fq′B) = (F pA∩F p′A)⊗k (FqB∩Fq′B)

= Fmax(p,p′)A⊗k Fmax(q,q′)B

Thus, F ·,·C is a bifiltered object.

Lemma 6.7.18. Let k be a field, X a topological space, and let A = Shk(X). Let F ·A·, F ·B·,

F ·J·, and F ·K· be filtered complexes in A , with F ·ε· : F ·A·→ F ·J· and F ·γ· : F ·B·→ F ·K· two

strong filtered quasi-isomorphisms. Then:

F ·,·(F ·ε·⊗k F ·γ·) : F ·,·Tot·(F ·A·⊗k F ·B·)→ F ·,·Tot·(F ·J·⊗k F ·K·)

is a strong bifiltered quasi-isomorphism as in Definition 6.6.10.

Proof. Let p,q ∈ Z. Since F ·ε· and F ·γ· are both strong quasi-isomorphisms, F pε· : F pA· →
F pJ· and Fqγ· : FqB·→ FqK· are both quasi-isomorphisms. By Lemma 3.2.16, we have:

Tot·(F p
ε
·⊗k Fq

γ
·) : Tot·(F pA·⊗k FqB·)→ Tot·(F pJ·⊗k FqK·)

is a quasi-isomorphism. Since the above chain map is precisely F p,q(F ·ε·⊗k F ·γ·) and

p,q∈Z were arbitrary, this shows that F ·,·(F ·ε·⊗k F ·γ·) is a strong bifiltered quasi-isomorphism.

Corollary 6.7.19. Let k be a field, X a topological space, and let A = Shk(X). Let F ·ε· : F ·A·→
F ·J· and F ·γ· : F ·B·→ F ·K· be strong filtered quasi-isomorphisms of filtered complexes in A .

Then
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F ·(F ·ε·⊗k F ·γ·) : F ·Tot·(F ·A·⊗k F ·B·)→ F ·Tot·(F ·J·⊗k F ·K·)

is a strong filtered quasi-isomorphism.

Proof. We have F ·(F ·ε· ⊗k F ·γ·) is precisely the total filtration of the bifiltered chain map,

F ·,·(F ·ε· ⊗k F ·γ·), which was shown to be a strong bifiltered quasi-isomorphism in Lemma

6.7.18. Since F ·,·(F ·ε·⊗k F ·γ·) is a strong bifiltered quasi-isomorphism, we have F ·(F ·ε·⊗k

F ·γ·) is a strong filtered quasi-isomorphism by Lemma 6.6.11, and this is what we wanted to

show.

Corollary 6.7.20. Let k be a field, X a topological space, and let A = Shk(X). Let F ·ε· : F ·A·→
F ·J· and F ·γ· : F ·B·→F ·K· be strong filtered resolutions in the sense of Definition 6.1.20. Then:

F ·(F ·ε·⊗k F ·γ·) : F ·Tot·(F ·A·⊗k F ·B·)→ F ·Tot·(F ·J·⊗k F ·K·)

is a strong filtered resolution.

Proof. Because F ·ε· and F ·γ· are both strong filtered quasi-isomorphisms, F ·(F ·ε·⊗k F ·γ·) is

a strong filtered quasi-isomorphism by Corollary 6.7.19. And since ε· and γ· are both injective

in each degree, ε·⊗k γ· : Tot·(A·⊗k B·)→ Tot·(J·⊗k K·) is injective in each degree by Lemma

3.2.16 (1). Thus, F ·(F ·ε·⊗k F ·γ·) is a strong filtered resolution.

Corollary 6.7.21. Let k be a field, X a topological space, and let A = Shk(X). Let F ·ε· : F ·A·→
F ·J· be a strong filtered resolution and let k ≥ 1. Then:

F ·Tot·((F ·ε·)[k]) : F ·Tot·((F ·A·)[k])→ F ·Tot·((F ·J·)[k])

is a strong filtered resolution.

Proof. Inductive application of Corollary 6.7.20.

6.8 Filtered Injective Resolutions

This section will be concerned with the existence of filtered injective resolutions in

abelian categories that have enough injectives. Because the lemmas of Section 6.5 are able to
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make claims with filtrations that aren’t necessarily finite in each degree, it may be useful to

develop this section with the same generality if possible. For now I just cite lemmas from [6],

which stay within the context of complexes that are finitely filtered in each degree.

The below is from Definition 12.16.3 6. of [6].

Definition 6.8.1. Let A be an abelian category. A morphism f : A→ B of filtered objects in A

is said to be strict if f (F iA) = f (A)∩F iB for all i ∈ Z.

The following is Lemma 13.26.2 7 from [6]. Recall Fil f (A) is the category of finitely

filtered objects of A .

Lemma 6.8.2. Let A be an abelian category. An object I of Fil f (A) is filtered injective (as in

Definition 6.1.17) if and only if there exist a ≤ b, injective objects In, a ≤ n ≤ b of A and an

isomorphism I ∼=⊕a≤n≤bIn, such that F pI =⊕n≥pIn.

We have the following corollary.

Corollary 6.8.3. Let A be an abelian category and let F ·I be a finitely filtered object of A that

is filtered injective. Then F ·I is strong filtered injective, and I is injective.

Proof. Let a,b and In be as in Lemma 6.8.2, and let p ∈ Z. We have F pI = ⊕p≥nIn is a finite

direct sum of injective objects, and hence, is injective. In the case p = a we have I = FaI is an

injective object.

Corollary 6.8.4. Let A be an abelian category, let F ·A· and F ·I· be filtered complexes in A that

are finitely filtered in each degree and suppose F ·ε· : F ·A·→ F ·I· is a filtered injective resolution

as in Definition 6.1.19. Then F ·ε· is a strong filtered resolution as in Definition 6.1.20 and ε· is

an injective resolution as in Definition 3.2.15.

Proof. Because F ·ε· is a filtered quasi-isomorphism of complexes that are finitely filtered in

each degree, we have by Corollary 6.1.13, that F ·ε· is a strong filtered quasi-isomorphism and

ε· is a quasi-isomorphism. Because F ·I· is filtered injective in each degree and finitely filtered

in each degree, we can apply Corollary 6.8.3 in each degree to get that F ·I· is strong filtered

6https://stacks.math.columbia.edu/tag/0123
7https://stacks.math.columbia.edu/tag/05TP
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injective in each degree and I· is injective in each degree. We have by hypothesis that I· is

bounded below, and that ε· is injective in each degree. At this point we can conclude by the

definition that F ·ε· is a strong filtered injective resolution and ε· is an injective resolution.

The below is Lemma 13.26.5 8 from [6].

Lemma 6.8.5. Let A be an abelian category with enough injectives. For any object A of Fil f (A)

there exists a strict monomorphism A→ I where I is a filtered injective object.

The below is Lemma 13.26.6 9 from [6].

Lemma 6.8.6. Let A be an abelian category with enough injectives. For any object A of Fil f (A)

there exists a filtered quasi-isomorphism A[0]→ I· where I· is a complex of filtered injective

objects with In = 0 for n < 0.

The below is Lemma 13.26.9 10 from [6].

Lemma 6.8.7. Let A be an abelian category with enough injectives. For every K· ∈K+(Fil f (A))

there exists a filtered quasi-isomorphism K·→ I· with I· bounded below, each In a filtered in-

jective object, and each Kn→ In a strict monomorphism.

It should be noted that in [6], being finitely filtered in each degree is part of the

definition of being filtered injective, and so in the above F ·I· is finitely filtered in each degree

as well.

6.9 Hom and Resolutions

Definition 6.9.1. Let A be an abelian category, and let F ·A and F ·B be filtered objects of A .

We can induce a filtration on Hom(A,B) as follows, where for all m ∈ Z, we define:

FmHom(F ·A,F ·B) = { f ∈ Hom(A,B) | f (F iA)⊆ F i+mB, ∀i ∈ Z}

That is, for each i ∈ Z, f restricts to a morphism F i f : F iA→ F i+mB. Note that a

filtered morphism F · f : F ·A→ F ·B is an element of F0Hom(F ·A,F ·B).
8https://stacks.math.columbia.edu/tag/05TS
9https://stacks.math.columbia.edu/tag/05TT

10https://stacks.math.columbia.edu/tag/05TW
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Lemma 6.9.2. In the case that A is not a filtered object of A we can give A the trivial filtration

of F0 = A and F1A = 0. In this case we have:

FmHom(A,F ·B) = Hom(A,FmB)

Proof. Let f ∈ FmHom(A,F ·B). Then we have f (F0A) ∈ f (FmB), and since F0A = A, this

shows f ∈ Hom(A,FmB). Now suppose f ∈ Hom(A,FmB). Let i ∈ Z. For i > 0, we have

F iA = 0, and we trivially have f (F iA)⊆ Fm+i(B). For i≤ 0 we have:

f (F iA) = f (A)⊆ FmB⊆ Fm+iB

So we have f ∈ Homm(A,F ·B). At this point we have shown the equality of sets,

FmHom(A,F ·B) = Hom(A,FmB).

Definition 6.9.3. Let A be an abelian category, and let F ·A· and F ·B· be filtered complexes in

A . Then one may induce a filtration on Hom·(A·,B·) as follows, where for m,n ∈ Z:

FmHomn(F ·A·,F ·B·) = ∏
i∈Z

FmHom(F ·Ai,F ·Bi+n)

where FmHom(Ai,Bi+n) is defined in Definition 6.9.1. That is, if f · ∈FmHomn(A·,B·),

we have f i : Ai→ Bn+i for all i ∈ Z, and for all j ∈ Z:

f i(F jAi)⊆ F j+mBi+n

Corollary 6.9.4. Let A be an abelian category, let A· be a complex in A , and let F ·B· be a

filtered complex in A . Give A· the trivial filtration with F0A· = A· and F1A· = 0·. Then for all

m ∈ Z we have:

FmHom·(A·,F ·B·) = Hom·(A·,FmB·)

Proof. For all m,n ∈ Z we have:

FmHomn(A·,F ·B·) = ∏
i∈Z

FmHom(Ai,F ·Bi+n)
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= ∏
i∈Z

Hom(Ai,FmBi+n) By Lemma 6.9.2

= Homn(A·,FmB·)

Lemma 6.9.5. Let G be a finite group, Λ a commutative ring, and let A, B, and C be ΛG

modules. Let G act diagonally on HomΛ(B,C) and A⊗Λ B. Then the adjoint isomorphism Φ

from Lemma 3.1.2 is a filtered isomorphism. That is, F ·Φ and F ·Φ are filtered morphisms.

Proof. Let m ∈ Z and f ∈ FmHomΛG(F ·(A⊗B),F ·C). I must show:

Φ( f ) ∈ FmHomΛG(A,HomΛ(B,C))

Let a ∈ F iA and b ∈ F jB. Note a⊗b ∈ F i+ j(A⊗B). We have:

Φ( f )(a)(b) = f (a⊗b) ∈ F i+ j+mC

Since Φ( f )(a) ∈ HomΛ(B,C) and b ∈ F jB was arbitrary, this shows

Φ( f )(a) ∈ Fm+iHomΛ(B,C)

Since a ∈ F iA was arbitrary, we have shown:

Φ( f )(F iA)⊆ Fm+iHomΛ(B,C)

Thus, Φ( f ) ∈ Homm(A,HomΛ(B,C)). Since m ∈ Z was arbitrary, this shows F ·Φ is

a filtered morphism.

The argument for showing Φ−1 is a filtered morphism is similar. Let

g ∈ FmHomΛG(A,HomΛ(B,C)), a ∈ F iA, b ∈ F jB

Then we have: Φ−1(g)(a⊗ b) = g(a)(b). We have g(a) ∈ Fm+iHomΛ(B,C), so

g(a)(b) ∈ Fm+i+ jC. This shows Φ−1(g)(F i+ j(A⊗B))⊆ Fm+i+ jC. Thus,
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Φ
−1(g) ∈ FmHomΛG(A⊗B,C)

and this shows Φ−1 is a filtered morphism as well.

Corollary 6.9.6. Let G be a finite group and Λ a commutative ring. Let A·, B·, and C· be

complexes of ΛG modules. Then the adjoint isomorphism Φ· from Lemma 3.1.5 if a filtered

isomorphism of filtered complexes.

Proof. Follows from Lemma 6.9.5.

Corollary 6.9.7. Let G be a finite group, and Λ a commutative ring. Let F ·A·, F ·B·, and F ·C·

be filtered complexes of ΛG modules. Suppose we have the following filtered chain maps in

ΛGMod:

F · f ·,F ·g· : F ·A·→ F ·Hom·Λ(F
·B·,F ·C·)

that are filtered homotopic by filtered homotopy:

F ·h· : F ·A·→ F ·HomΛ(F ·B·,F ·C·)[−1]·

By Corollary 6.9.6, we have the filtered chain maps in ΛGMod:

F ·Φ−1( f ·),F ·Φ−1(g·) : F ·Tot·(F ·A·⊗F ·B·)→ F ·C·

I claim these filtered chain maps are filtered homotopic by the filtered homotopy:

F ·Φ−1(F ·h·) : F ·Tot·(F ·A·⊗F ·B·)→ F ·C[−1]·

Proof. We already have that f · and g· are homotopic by homotopy Φ−1(h·) by Lemma 3.1.6.

So it suffices to show that Φ−1(h·) is a filtered morphism. Since h· is a filtered morphism, we

have:

F ·h· ∈ F0Hom−1
ΛG(F

·A·,F ·Hom·Λ(F
·B·,F ·C·))

Since F ·Φ· is a filtered chain map, we have:
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F ·Φ−1(h·) ∈ F0Hom−1
ΛG(F

·Tot·(F ·A·⊗Λ F ·B·),F ·C)

Thus Φ−1(h·) is a filtered morphism, and we have shown F ·Φ−1( f ·) and F ·Φ−1(g·)

are filtered homotopic.

For the remainder of this section the filtration on the left argument of Hom is assumed

to be trivial.

Lemma 6.9.8. Let A be an abelian category, let A be an object of A , and let F ·B be a fil-

tered object of A with a terminating filtration. Then the induced filtration on F ·Hom(A,F ·B)

terminates.

Proof. Let k ∈ Z such that FmB = 0 for all m≥ k. Then for all m≥ k:

FmHom(A,F ·B) = Hom(A,FmB) = Hom(A,0) = 0

Lemma 6.9.9. Let A be an abelian category and let A· be a bounded above complex in A , and

let F ·B· be a filtered complex in A whose filtration terminates in each degree, and B· is bounded

below. Then F ·Hom·(A·,F ·B·) has a filtration that terminates in each degree.

Proof. Let n∈Z. By Lemma 3.2.18, there are only finitely non-zero terms in the product below:

Homn(A·,B·) = ∏
i∈Z

Hom(Ai,Bi+n)

So for each n, there is a kn and ln such that:

Homn(A·,B·) = ∏
i=0,...,ln

Hom(Akn+i,Bkn+i+n)

Because F ·B· has a filtration that terminates in each degree, for each i there is a

mkn+i+n ∈ Z such that F jBkn+i+n = 0 for all j ≥ mkn+i+n. Set:

Mn = max
i=0,...,ln

mkn+i+n
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This ensures F jBkn+i+n = 0 for all j ≥Mn and i = 0, . . . , ln. For all j ≥Mn, we have:

F jHomn(A·,F ·B·) = ∏
i=0,...,ln

Hom(Akn+i,F jBkn+i+n)

= ∏
i=0,...,ln

Hom(Akn+i,0)

= 0

Thus, the filtration of F ·Homn(A·,F ·B·) terminates at Mn. Since n ∈ Z was arbitrary,

we have shown the filtration of F ·Hom·(A·,F ·B·) terminates in each degree.

Lemma 6.9.10. Let A be an abelian category, V a projective object of A , and F ·B a filtered

object of A . For all m ∈ Z, we have a natural isomorphism:

grmHom(V,F ·B)∼= Hom(V,grmB)

Proof. We have the exact sequence:

0→ Fm+1B ι→ FmB π→ grmB→ 0

Because V is projective, we obtain the exact sequence:

0→ Hom(V,Fm+1B) ι∗→ Hom(V,FmB) π∗→ Hom(V,grmB)→ 0

Hence:

Hom(V,grmB)∼= Hom(V,FmB)/Hom(V,Fm+1B) = grmHom(V,F ·B)

Lemma 6.9.11. Let A be an abelian category with products, let A· be a complex in A , and let

F ·B· be a filtered complex in A . Then for all m ∈ Z,n ∈ Z we have the identity:
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grmHomn(A·,F ·B·)∼= ∏
i∈Z

grmHom(Ai,F ·Bn+i)

Proof. We have:

grmHomn(A·,F ·B·) = grm
∏
i∈Z

Hom(Ai,FmBn+i)

=

(
∏
i∈Z

Hom(Ai,FmBn+i)

)
/

(
∏
i∈Z

Hom(Ai,Fm+1Bn+i)

)
= ∏

i∈Z

(
Hom(Ai,FmBn+i)/Hom(Ai,Fm+1Bn+i)

)
= ∏

i∈Z

grmHom(Ai,F ·Bn+i)

Lemma 6.9.12. Let A be an abelian category, let V· be a complex in in A that is projective in

each degree, and let F ·B· be a filtered complex in A . Then for all m ∈ Z we have:

grmHom·(V·,F ·B·)∼= Hom·(V·,grmB·)

Proof. Let n ∈ Z. Starting with Lemma 6.9.11, we have:

grmHomn(V·,F ·B·) = ∏
i∈Z

grmHom(Vi,F ·Bn−i)

∼= ∏
i∈Z

Hom(Vi,grmBn−i) By Lemma 6.9.10

= Homn(V·,grmB·)

Definition 6.9.13. Let X be a topological space, Λ be a commutative ring, and G a finite group.

Suppose F ·A is a filtered object in ShΛ(X), and let M be a finitely generated ΛG module. Recall
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the object HomΛ(M,A) in ShΛG(X) from Definition 3.2.1. Then we may induce a filtration on

this object as follows, where for m ∈ Z:

FmHomΛ(M,F ·A) = HomΛ(M,FmA)

One could also give a definition for when M is a filtered object as in Definition 6.9.1.

Definition 6.9.14. Let X be a topological space, Λ a commutative ring, and G a finite group.

Let M· be a complex of ΛG modules and F ·A· a filtered complex in ShΛ(X). We have the complex

Hom·
Λ
(M·,A·) in ShΛG(X) from Definition 3.2.7. We may induce a filtration on this complex as

follows, where for m ∈ Z:

FmHom·Λ(M·,F
·A·) = Hom·Λ(M·,F

mA·)

One could also give a definition for when M· is a filtered complex, as was done in

Definition 6.9.3.

Lemma 6.9.15. Let X, Λ, and G be as in Definition 6.9.13, let M be a finitely generated pro-

jective ΛG module, and let F ·A be a filtered object in ShΛ(X) whose filtration terminates. Then

F ·HomΛ(M,F ·A) has a terminating filtration.

Proof. Proof is the same as that of Lemma 6.9.8.

Lemma 6.9.16. Let X, Λ, and G be as in Definition 6.9.14, let M· be a (lowered index) bounded

below complex of finitely generated ΛG modules. Let F ·A· be a filtered complex in ShΛ(X) that

has a terminating filtration in each degree and A· is bounded below. Then F ·Hom·
Λ
(M·,F ·A·)

has a terminating filtration.

Proof. Proof is the same as Lemma 6.9.9, but cite Corollary 3.2.20 instead of Lemma 3.2.18 to

get that there are only finitely many non zero terms in the product below for each n ∈ Z:

Homn
Λ(M·,A

·) = ∏
i∈Z

HomΛ(Mi,An−i)
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Lemma 6.9.17. Let X, Λ, and G be as in Definition 6.9.14. Let V be a finitely generated

projective ΛG module, and let F ·A be a filtered object of ShΛ(X). Then for all m ∈ Z, we have

a natural isomorphism:

grmHomΛ(V,F ·A)∼= HomΛ(V,grmA)

Proof. The steps are identical to the proof of Lemma 6.9.10, but with HomΛ used in place of

Hom.

Lemma 6.9.18. Let X, Λ, and G be as in Definition 6.9.14. Let M· be a complex of finitely ΛG

modules, and let F ·A· be a filtered complex in ShΛ(X). Then for all m,n ∈ Z we have:

grmHomn
Λ(M·,F

·A·) = ∏
i∈Z

grmHomn
Λ(Mi,F ·An−i)

Proof. Steps are the same as the ones used in the proof of Lemma 6.9.11.

Lemma 6.9.19. Let X, Λ, and G be as in Definition 6.9.14. Let V· be a complex of finitely

generated projective ΛG modules, and let F ·A· be a filtered complex in ShΛ(X). Then for all

m ∈ Z, we have the natural isomorphism of complexes in ShΛG(X):

grmHom·Λ(V·,F
·A·)∼= Hom·Λ(V·,grmA·)

Proof. The same steps used in the proof of Lemma 6.9.12 work here as well.

Lemma 6.9.20. Let X be a topological space, k a field, and G a finite group. Let F ·ε· : F ·A·→
F ·I· be a strong filtered injective resolution in Shk(X), as in Definition 6.1.20. That is, F ·A·

and F ·I· are filtered complexes in Shk(X), F ·I· is bounded below, has a terminating filtration

in each degree, is strong filtered injective in each degree, and F ·ε· is an injective strong fil-

tered quasi-isomorphism. Let V· be a projective resolution of k in kGMod, finitely generated in

each degree, with surjective quasi-isomorphism π· : V· → k[0]·. We have the filtered complex

F ·Hom·k(V·,F ·I·). Define the filtered chain map:

F ·ν : F ·A· = F ·Hom·k(k[0]·,F
·A·)→ F ·Hom·k(V·,F

·I·)

to be the map induced by precomposition with π· and postcomposition with F ·ε·. Then

F ·ν· is a strong filtered injective resolution.
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Proof. Let m ∈ Z. We have that Fmε· : FmA·→ FmI· is an injective resolution in Shk(X). So by

Lemma 3.2.21, Fmν· : FmA· = Hom·k(k[0]·,FmA·)→ Hom·k(V·,FmI·) is an injective resolution

in ShkG(X). This implies Fmε· is a quasi-isomorphism for all m ∈ Z, so F ·ε· is a strong fil-

tered quasi-isomorphism. We have ν is injective because it is induced by precomposition with

a surjection and postcomposition with an injection, so we now have F ·ε· is a strong filtered

resolution.

Let m ∈ Z again. Because Fmε· : FmA→ FmHom·k(V·,F ·I·) is an injective resolu-

tion, we have FmHom·k(V·,F ·I·) is injective in each degree. Hence, F ·Hom·k(V·,F ·I·) is strong

filtered injective in each degree. Because V· is (lowered index) bounded below, I· is bounded

below, and F ·I· has a filtration that terminates in each degree, we have by Lemma 6.9.16 that

F ·Hom·k(V·, I·) has a filtration that terminates in each degree. We also have by Lemma 3.2.20

that Hom·k(V·, I·) is bounded below. At this point we have shown all the conditions required for

F ·ν· : F ·A·→Hom·k(V·,F ·I·) to be a strong filtered injective resolution in the category ShkG(X).

Lemma 6.9.21. Let X be a topological space, k a field, and G a finite group. Let F ·ε· : F ·A·→
F ·I· be a filtered injective resolution in Shk(X), as in Definition 6.1.19. That is, F ·A· and F ·I·

are filtered complexes in Shk(X), I· is bounded below, F ·I· is filtered injective in each degree,

and F ·I· has a filtration that terminates in each degree. We also have F ·ε· is an injective filtered

quasi-isomorphism. Let V· be a G projective resolution of k in kGMod, with V· finitely generated

in each degree, and augmentation π· : V·→ k[0]·. We have the kG chain map F ·ν· induced by

precomposition with π· and postcomposition with F ·ε·.

F ·ν· : F ·A = F ·Hom·k(k[0]·,F
·A·)→ F ·Hom·k(V·,F

·I·)

Then F ·ν· is a filtered injective resolution in the category ShkG(X).

Proof. Let m ∈ Z. By invoking the identification of Lemma 6.9.19, we have:

grm
ν
· : grmA· = Hom·k(k[0]·,grmA·)→Hom·k(V·,grmI·)

is induced by precomposition with π· and postcomposition with grmε·. Since grmε· :

grmA·→ grmI· is an injective quasi-isomorphism, and grmI· is a bounded below complex that is
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injective in each degree, we have by Lemma 3.2.21 that grmν· is an injective resolution in the

category ShkG(X). Thus, grmν· is a quasi-isomorphism for all m ∈ Z. Because ν· is induced by

precomposition with a surjection and postcomposition with an injection, ν· is injective. Thus

F ·ν· is a filtered resolution.

Let m∈Z be arbitrary again. Because grmν· : grmA·→ grmHom·k(V·, I·) is an injective

resolution, we have grmHom·k(V·, I·) is injective in each degree. Because V· is (lowered index)

bounded below and I· is bounded below, Hom·k(V·, I·) is bounded below by Corollary 3.2.20.

Because V· is (lowered index) bounded below and F ·I· is bounded below and has a filtration

that terminates in each degree, we have by Lemma 6.9.16 that the filtration on F ·Hom·k(V·, I·)

terminates in each degree. We have now shown enough to conclude that F ·ν· is a filtered

injective resolution in the category ShkG(X).
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Chapter 7

Steenrod Operations on Spectral

Sequences

In this chapter I will show that the Steenrod operations constructed on the algebraic

De Rham cohomology groups from Chapter 5 can be constructed in a way so that they also act

on the first and infinite pages of the Hodge to De Rham spectral sequence. The construction is

general, and can apply to other spectral sequences as well.

For the remainder of the chapter, we will fix the following. Let X be a topological

space. Let F ·A· be a filtered complex of graded commutative Fp algebras on X that is bounded

below and finitely filtered in each degree. Here we insist that the product map:

F ·m· : F ·Tot·(F ·A·⊗Fp F ·A·)→ F ·A·

is a filtered chain map of complexes in ShFp(X). By Lemma 6.8.7 there is a strict in-

jective filtered quasi-isomorphism F ·ι· : F ·A·→F ·I· where F ·I· is a filtered complex in ShFp(X),

with F ·I· bounded below, finitely filtered in each degree, and filtered injective in each degree.

By applying Corollary 6.8.4, we get that F ·ι· is a strong filtered injective resolution and ι· is

an injective resolution. Let T denote the global section functor, ShFp(X)→ Vect(Fp). Because

T is left exact, we have the filtered chain complex in Vect(Fp), F ·K· = F ·T (I·) as in Defi-

nition 6.1.25. The cohomology groups of K· compute the sheaf hypercohomology of X with

coefficients in A·,
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H ·(K·) = H·(X ,A·)

as was the case in Chapter 5. But now we also have the filtration on F ·K· which

induces a spectral sequence E ·,·· (F ·K·) that converges to H ·(K·). In this chapter we will go

through the same construction in Chapter 5 but in a way that is compatible with the filtrations

involved, and we will end up with operations that act on E ·,·1 (F ·K·) and E ·,·∞ (F ·K·), in a way that

must be compatible with the operations constructed on H ·(K·) from Chapter 5.

7.1 Spectral Sequence Classes

For this section let F ·K· denote any filtered chain complex of Fp vector spaces. In [5],

May defines a collection of maps, Di : Hq(K·)→H pq−i(K·) for each q∈Z, where a cohomology

class [x] ∈ Hq(K·) is mapped to θ·([ei⊗π x[p]]), where ei is the generator of the free rank one

Fpπ module Wi. For this definition to make sense we must have that [ei⊗π x[p]] is a well defined

cohomology class in Tot·(W·⊗π (K·)[p]), which is something May verifies. In order to define

the Steenrod operations on the spectral sequence for F ·K·, it would be convenient if we had the

following analogous result:

Question 7.1.1. Let i,a,b ≥ 0, r > 0, and suppose [x] ∈ Ea,b
r (F ·K·). Is [ei⊗π x[p]] is a well

defined element of Eap,bp−i
r (F ·Tot·(W·⊗π (K·)[p]))?

If the above was true, then I could define a map like Di on each page of the spectral

sequence by the following composition, where the first map takes [x] to [ei⊗π x[p]], and F ·θ· is

a filtered chain map to be defined in the next section.

Ea,b
r (F ·K·) Eap,bp−i

r (F ·Tot·(W·⊗ (K·)[p]))

Eap,bp−i
r (F ·K·)

Eap,bp−i
r (F ·θ·)

Then since the Steenrod operations are defined in terms of the Di maps with a rein-

dexing and sign, this would define Steenrod operations on all pages of the spectral sequence.

However it appears that the above question is not true in general. We do at least have the

following two lemmas, whose proofs are a bit detailed and will be included later in this section.
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Lemma 7.1.2. Let i,a,b≥ 0, r > 0, and suppose x ∈ Za,b
r (F ·K·). Then ei⊗x[p] is an element of

Zap,bp−i
r (F ·Tot·(W·⊗π (K·)[p])).

Although we have the above, it appears that [ei⊗ x[p]] is not always a well defined

element of Eap,bp−i
r (F ·Tot·(W·⊗π (K·)[p])). Instead, we have the following:

Lemma 7.1.3. Let i,a,b≥ 0, r > 0, and suppose [x] = [y] in Ea,b
r (F ·K·). Then ei⊗ (x[p]− y[p])

is an element of Bap,bp−i
r+(r−1)(p−1)(F

·Tot·(W·⊗π (K·)[p])).

To ease notation, let L· = Tot·(W·⊗π (K·)[p]).

Corollary 7.1.4. If [x]∈Ea,b
r , then [wi⊗x[p]] is a well defined element of Zap,bp−i

r (F ·L·)/Bap,bp−i
r+(r−1)(p−1)(F

·L·).

If we have Bap,bp−i
r (F ·L·) = Bap,bp−i

r+(r−1)(p−1)(F
·L·), then [wi⊗ x[p]] is a well defined element of

Eap,bp−i
r (F ·L·).

Proof. Follows from Lemma 7.1.3.

Corollary 7.1.5. Let a,b, i≥ 0 and let [x]∈ Ea,b
1 (F ·K·). Then [ei⊗x[p]] is a well defined element

of Eap,bp−i
1 (F ·L·).

Proof. This is Corollary 7.1.4 when r = 1, where we have r+(r−1)(p−1) = 1.

Corollary 7.1.6. Let a,b, i≥ 0, and let [x]∈Ea,b
∞ (F ·K·). Then [ei⊗x[p]] is a well defined element

of Eap,bp−i
∞ (F ·L·).

Proof. Recall from Definition 6.1.27:

Ea,b
∞ =

∩rZ̃
a,b
r

∪rB̃
a,b
r

Since x∈∩rZ̃
a,b
r (F ·K·), we can apply Lemma 7.1.2 for each r≥ 0 to obtain ei⊗x[p] ∈

∩rZ̃
ap,bp−i
r (F ·L·). Now suppose there are x,y ∈ ∩rZ̃

a,b
r (F ·K·) with x−y ∈ ∪rB̃

a,b
r (F ·K·). I must

show ei⊗ (x[p]− y[p]) ∈ ∪rB̃
a,b
r (F ·L·). There is a r′ ≥ 0 such that x− y ∈ B̃a,b

r′ (F
·K·). Since

x,y∈ Z̃a,b
r′ (F

·K·) as well, we have by Lemma 7.1.3 that ei⊗(x[p]−y[p])∈ B̃ap,bp−i
r′+(r′−1)(p−1)(F

·L·)⊆
∪rB̃

ap,bp−i
r (F ·L·). With this, we are done.
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I will now move towards proving Lemma 7.1.2 and Lemma 7.1.3. In what follows,

let I· be a complex of Fp vector spaces in which I0 is free of rank two generated by e0 and e1,

and I−1 is free of rank one generated by e. We define d(e) = e1− e0. In a sense, I represents

a line segment e connecting the two vertices e0 and e1. Unfortunately ei is also used to denote

the generators of the Fpπ complex W·. For the remainder of this section I will use wi to denote

the generators of W·. The following is Lemma 1.1 from [5], on page 156.

Lemma 7.1.7. Let Λ denotes a commutative ring which we take to be Fp. Let V· be a positive

Λπ-free complex.

1. There exists a Λπ-morphism h : I ⊗Λ V → V ⊗Λ I [p] such that h(ei⊗ v) = v⊗ e[p]i for

i = 0,1 for all v ∈Vj and j ≥ 0.

2. If f ,g : K→ L are Λ-homotopic morphisms of Λ-complexes, then 1⊗ f [p],1⊗g[p] : V ⊗Λ

K[p]→V ⊗Λ L[p] are Λπ-homotopic morphisms of Λπ complexes.

3. If Λ is a field and K is a Λ-complex, then K is Λ-homotopy equivalent to H(K) and

V ⊗Λ K[p] is Λπ-homotopy equivalent to V ⊗Λ H(K)[p].

4. Let v ∈ V satisfy d(v⊗π 1) = 0 in V ⊗π Λ; let K be a Λ-complex and let x,y ∈ Kq be

homologous cycles. Then v⊗x[p] and v⊗y[p] are homologous cycles of Tot·(V·⊗π (K·)[p]).

I will need to generalize statement 4 in the above lemma. May proves (4) by using

(1), where he defines a morphism of Λ-complexes f · : I · → K[q]·, where f (e1) = x, f (e0) =

y, and f (e) = (−1)qz where z ∈ Kq−1 satisfies d(z) = x− y. Then one has that the element

ζ = (1⊗ f [p])(h(e⊗ v)) satisfies d(ζ) =±(v⊗π x[p]− v⊗π y[p]) (omitting the sign here), which

shows v⊗π x[p] and v⊗π y[p] are cohomologous. I will now repeat this argument in the context

of the spectral sequence of a filtered complex. Recall from Definition 6.1.27:

Z̃a,b
r = FaKa+b∩d−1(Fa+rKa+b+1)+Fa+1Ka+b

B̃a,b
r = FaKa+b∩d(Fa−r+1Ka+b−1)+Fa+1Ka+b

Ea,b
r
∼= Z̃a,b

r /B̃a,b
r
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Lemma 7.1.8. Suppose F ·X · and F ·Y · are filtered complexes and denote T · = Tot·(X ·⊗Y ·).

Let x ∈ Z̃a,b
r (F ·X ·) and y ∈ Z̃c,d

r (F ·Y ·). Then x⊗ y ∈ Z̃a+c,b+d
r (F ·T ·).

Proof. We have x = x1 + x2 and y = y1 + y2, where x1 ∈ FaXa+b ∩ d−1(Fa+rXa+b+1), x2 ∈
Fa+1Xa+b, y1 ∈ FcY c+d ∩d−1(Fc+rY c+d+1), and y2 ∈ Fc+1(Y c+d). We can show x1⊗ y2, x2⊗
y1, x2⊗ y2 are in Z̃a+c,b+d

r (F ·T ·) simply because of their filtration degrees. We have:

x1⊗ y2 ∈ FaXa+b⊗Fc+1Y c+d ⊆ F(a+c)+1T (a+c)+(b+d) ⊆ Z̃a+c,b+d
r (F ·T ·)

x2⊗ y1 ∈ Fa+1Xa+b⊗FcY c+d ⊆ F(a+c)+1T (a+c)+(b+d) ⊆ Z̃a+c,b+d
r (F ·T ·)

x2⊗ y2 ∈ Fa+1Xa+b⊗Fc+1Y c+d ⊆ F(a+c)+2T (a+c)+(b+d) ⊆ Z̃a+c,b+d
r (F ·T ·)

Now I show x1⊗ y1 ∈ Fa+cT (a+c)+(b+d)∩d−1(F(a+c)+rT (a+c)+(b+d)+1). We have:

d(x1)⊗ y1 ∈ Fa+rXa+b+1⊗FcY c+d ⊆ F(a+c)+r(T (a+c)+(b+d)+1)

x1⊗d(y1) ∈ FaXa+b⊗Fc+rY c+d+1 ⊆ F(a+c)+r(T (a+c)+(b+d)+1)

Since d(x1⊗ y1) = d(x1)⊗ y1 +(−1)a+bx1⊗d(y1), this shows

x1⊗ y1 ∈ d−1(F(a+c)+rT (a+c)+(b+d)+1)

Thus:

x1⊗ y1 ∈ Fa+cT (a+c)+(b+d)∩d−1(F(a+c)+rT (a+c)+(b+d)+1)⊆ Z̃a+c,b+d
r

Hence, x⊗ y ∈ Z̃a+c,b+d
r .

Lemma 7.1.9. Suppose F ·X · and F ·Y · are filtered complexes with x ∈ B̃a,b
r (F ·X ·) and y ∈

Z̃c,d
r (F ·Y ·). Then x⊗ y ∈ B̃a+c,b+d

r (F ·Tot·(X ·⊗Y ·)).
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Proof. We have x = x1 + x2 and y = y1 + y2 where x1 ∈ FaXa+b ∩ d(Fa−r+1Xa+b−1), x2 ∈
Fa+1Xa+b, y1 ∈ FcY c+d ∩d−1(Fc+rY c+d+1), and y2 ∈ Fc+1Y c+d . Like before, we have x1⊗y2,

x2⊗ y1, and x2⊗ y2 are in B̃a+c,b+d
r (F ·T ·) because of their filtration degrees:

x1⊗ y2 ∈ FaXa+b⊗Fc+1Y c+d ⊆ F(a+c)+1T (a+c)+(b+d) ⊆ B̃a+c,b+d
r (F ·T ·)

x2⊗ y1 ∈ Fa+1Xa+b⊗FcY c+d ⊆ F(a+c)+1T (a+c)+(b+d) ⊆ B̃a+c,b+d
r (F ·T ·)

x2⊗ y2 ∈ Fa+1Xa+b⊗Fc+1Y c+d ⊆ F(a+c)+2T (a+c)+(b+d) ⊆ B̃a+c,b+d
r (F ·T ·)

Now I will show x1⊗ y1 ∈ Z̃a+c,b+d
r (F ·T ·). There is an x′ ∈ Fa−r+1Xa+b−1 such that

d(x′) = x1. Consider the element:

x′⊗ y1 ∈ Fa−r+1Xa+b−1⊗FcY c+d ⊆ F(a+c)−r+1T (a+c)+(b+d)−1

Thus, d(x′⊗ y1) ∈ d(F(a+c)−r+1T (a+c)+(b+d)−1). We also have:

x′⊗d(y1) ∈ Fa−r+1Xa+b−1⊗Fc+r(Y c+d+1)⊆ F(a+c)+1T (a+c)+(b+d) ⊆ B̃a+c,b+d
r (F ·T ·)

Since d(x′⊗ y1) = x1⊗ y1 +(−1)a+b−1x′⊗d(y1), this implies

d(x′⊗ y1) ∈ Fa+cT (a+c)+(b+d)∩d(F(a+c)−r+1T (a+c)+(b+d))⊆ B̃a+c,b+d
r

Thus:

x1⊗ y1 = d(x′)⊗ y1 = d(x′⊗ y1)− (−1)a+b−1x′⊗d(y1) ∈ B̃a+c,b+d
r (F ·T ·)

It now follows x⊗ y ∈ B̃a+c,b+d
r (F ·T ·).

Lemma 7.1.10. Suppose F ·X · and F ·Y · are filtered complexes with x ∈ Z̃a,b
r (F ·X ·) and y ∈

B̃c,d
r (F ·Y ·). Then x⊗ y ∈ B̃a+c,b+d

r (F ·Tot·(X ·⊗Y ·)).
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Proof. Symmetric to Lemma 7.1.9.

Corollary 7.1.11. Suppose [x1] = [x2] in Ea,b
r (F ·X ·) and y∈ Z̃c,d

r (F ·Y ·). Then [x1⊗y] = [x2⊗y]

in Ea+c,b+d
r (F ·Tot·(X ·⊗Y ·)).

Proof. We have x1,x2 ∈ Z̃a,b
r (F ·X ·) and y ∈ Z̃c,d

r (F ·Y ·). By Lemma 7.1.8, x1⊗ y and x2⊗ y are

in Z̃a+c,b+d
r (F ·T ·). To show [x1⊗y] = [x2⊗y] in Ea+c,b+d

r (F ·T ·), note x1−x2 ∈ B̃a,b
r (F ·X ·). By

Lemma 7.1.9 we have (x1−x2)⊗y∈ B̃a+c,b+d
r (F ·T ·). Thus [x1⊗y] = [x2⊗y] in Ea+c,b+d

r (F ·T ·).

Corollary 7.1.12. Suppose [y1] = [y2] in Ec,d
r (F ·Y ·) and x ∈ Z̃a,b

r (F ·X ·). Then [x⊗y1] = [x⊗y2]

in Ea+c,b+d
r (F ·Tot·(X ·⊗Y ·)).

Proof. Symmetric to Corollary 7.1.11.

Corollary 7.1.13. Suppose [x1] = [x2] in Ea,b
r (F ·X ·) and [y1] = [y2] ∈ Ec,d

r (F ·Y ·). Then [x1⊗
y1] = [x2⊗ y2] = [x1⊗ y2] = [x2⊗ y1] in Ea+c,b+d

r (F ·Tot·(X ·⊗Y ·)).

Proof. By Corollary 7.1.11, [x1⊗ y1] = [x2⊗ y1] and [x1⊗ y2] = [x2⊗ y2]. By Corollary 7.1.12,

[x1⊗ y1] = [x1⊗ y2] and [x2⊗ y1] = [x2⊗ y2]. Thus, they are all equal.

Corollary 7.1.14. Suppose [x1] = [x2] in Ea,b
r (F ·X ·), and m ≥ 1. Then [x[m]

1 ] = [x[m]
2 ] in

Eam,bm
r (F ·Tot·((X ·)[m])).

Proof. Apply Corollary 7.1.13 m times.

I will now prove Lemmas 7.1.2 and 7.1.3.

Proof of Lemma 7.1.2:

Proof. Let a,b, i ≥ 0, r > 0, and let x ∈ Z̃a,b
r (F ·K·). I must show wi⊗π x[p] ∈ Z̃ap,bp−i

r (F ·L·),

where L·=Tot·(W·⊗π (K·)[p]). We have x= x1+x2 where x1 ∈FaKa+b∩d−1(Fa+rKa+b+1) and

x2 ∈Fa+1Ka+b. Define ε= x[p]−x[p]1 so that x[p] = x[p]1 +ε. I will show wi⊗x[p]1 ∈FapLap+bp−i∩
d−1(Fap+rLap+bp−i+1) and wi⊗ ε ∈ Fap+1Lap+bp−i. We have that ε consists of sums of tensors

where at least one term is x2 and the remaining terms are x1. Thus, the filtration degree of ε is

at least (a+1) ·1+a · (p−1) = ap+1. Thus ε ∈ Fap+1Totap+bp((K·)[p]), and we have:
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wi⊗π ε ∈Wi⊗π (Fap+1Totap+bp((K·)[p]))⊆ Fap+1Lap+bp−i ⊆ Z̃ap,bp−i
r (F ·L·)

Now I will show wi⊗π x[p]1 ∈ FapLap+bp−i∩d−1(Fap+rLap+bp−i+1). Note that:

wi⊗π x[p]1 ∈Wi⊗π (FaKa+b)[p] ⊆Wi⊗π Fap(Totap+bp((K·)[p]))⊆ FapLap+bp−i

Because x[p]1 is a homogeneous tensor product, it is π invariant. Let σ denote the

generator (1 2 3 · · · p) of π. The differential on W· is defined by: d(w2i+1) = (σ− 1)w2i and

d(w2i) = (1+σ+ · · ·+σp−1)w2i−1. In both cases we have d(wi)⊗π x[p]1 = 0 because x[p]1 is fixed

by σ. Note, the fact that σ has even sign for p > 2 is important, due to the signs incurred when

σ transposes the x1 terms. In the case p = 2, we are working in F2 vector spaces and signs don’t

matter. Thus:

d(wi⊗π x[p]1 ) = d(wi)⊗π x[p]1 +(−1)iwi⊗π d(x[p]1 )

= (−1)iwi⊗π d(x[p]1 )

Note the above only holds when the tensor product is over π. We have d(x[p]1 ) is a

sum of tensors that consist of 1 d(x1) term and p− 1 x1 terms. Hence, it has filtration degree

1 · (a+ r)+(p−1) ·a = ap+ r. Thus, d(x[p]r ) ∈ Fap+r(Totap+bp+1((K·)[p])). Therefore:

wi⊗π d(x[p]1 ) ∈Wi⊗π (Fap+r(Totap+bp+1((K·)[p])))⊆ Fap+rLap+bp−i+1

This shows wi⊗π x[p]1 ∈ d−1(Fap+rLap+bp−i+1). Now we have:

wi⊗π x[p]1 ∈ FapLap+bp−i∩d−1(Fap+rLap+bp−i+1)⊆ Z̃ap,bp−i
r (F ·L·)

So we have shown:
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wi⊗π x[p] = wi⊗π x[p]1 +wi⊗π ε ∈ Z̃ap,bp−i
r (F ·L·)

Proof of Lemma 7.1.3:

Proof. Let a,b, i ≥ 0, r > 0, and let x,y ∈ Z̃a,b
r (F ·K·) with x− y ∈ B̃a,b

r (F ·K·). I must show

wi⊗π (x[p]− y[p]) ∈ B̃ap,bp−i
r+(r−1)(p−1)(F

·L·). We have x = x1 + x2 and y = y1 + y2 where x1,y1 ∈
FaKa+b ∩ d−1(Fa+rKa+b+1) and x2,y2 ∈ Fa+1Ka+b. Let z = x− y. Because z ∈ B̃a,b

r (F ·K·),

we have z = z1 + z2 where z1 ∈ FaKa+b∩ d(Fa−r+1Ka+b−1) and z2 ∈ Fa+1Ka+b. We have the

relation z1 = (x1 + ε)− y1, where we set ε = x2− y2− z2 ∈ Fa+1Ka+b. Let γ ∈ Fa−r+1Ka+b−1

such that d(γ) = z1. First note that:

wi⊗ (x[p]− y[p]) = wi⊗ (x[p]1 − y[p]1 )+wi⊗
(
((x1 + x2)

[p]− x[p]1 )− ((y1 + y2)
[p]− y[p]1 )

)
We have (x1 + x2)

[p]− x[p]1 consists of sums of tensors in which at least one term is x2

and the remaining terms are x1. Hence this element has filtration degree at least 1 · (a+ 1)+

(p− 1) · a = ap+ 1. Hence, (x1 + x2)
[p]− x[p]1 ∈ Fap+1(Totap+bp((K·)[p])), and similarly for

(y1 + y2)
[p]− y[p]1 . This shows:

wi⊗
(
((x1 + x2)

[p]− x[p]1 )− ((y1 + y2)
[p]− y[p]1 )

)
∈Wi⊗Fap+1(Totap+bp((K·)[p]))

⊆ Fap+1Lap+bp−i

⊆ B̃ap,bp−i
r+(r−1)(p−1)(F

·L·)

So we are now reduced to showing wi⊗ (x[p]1 − y[p]1 ) ∈ B̃ap,bp−i
r+(r−1)(p−1). Recall d(γ) =

z1 = (x1 + ε)− y1. We have W· is a positive (lowered index) complex of free Fpπ modules.

Invoking part 1 of Lemma 7.1.7, there is a chain map h : I ·⊗W·→W·⊗ (I ·)[p] such that h(e j⊗
wi) = wi⊗ e[p]j for j = 0,1 and i ≥ 0. Recall e0,e1 ∈ I 0 and e ∈ I−1 satisfies d(e) = e1− e0.

Because h is a chain map, the element ν = h(e⊗wi) satisfies:
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d(ν) = d(h(e⊗wi))

= h(d(e⊗wi))

= h(d(e)⊗wi +(−1)e⊗d(wi))

= h(d(e)⊗wi) σ acts trivially on e.

= h((e1− e0)⊗wi)

= wi⊗ (e[p]1 − e[p]0 )

Define the map, f : I ·→K[a+b]· via f (e1)= x1+ε, f (e0)= y1, and f (e)= (−1)a+bγ.

We have dK[a+b]( f (e)) = dK[a+b]((−1)a+bγ) = dK(γ) = z1 = (x1 + ε)− (y1) = f (e1)− f (e0) =

f (dI(e)). So f is a chain map. We have the chain map:

1⊗ f [p] : Tot·(W·⊗ (I·)[p])→ Tot·(W·⊗ (K[a+b]·)[p]) = Tot(W·⊗ (K·)[p])[p(a+b)]·

Define the element:

ζ = (−1)p(a+b)(1⊗ f [p])(ν)

We have:

dW·⊗(K·)[p](ζ) = (−1)p(a+b)dW·⊗(K[a+b]·)[p]

(
(−1)p(a+b)(1⊗ f [p])(ν)

)
= (1⊗ f [p])(dW·⊗(K·)[p](ν))

= (1⊗ f [p])(wi⊗ (e[p]1 − e[p]0 ))

= wi⊗ ( f (e1)
[p]− f (e0)

[p])

= wi⊗ ((x1 + ε)[p]− y[p]1 )

I now calculate the filtration degree and complex degree of ζ. We have e⊗wi ∈
Tot−i−1(I ·⊗W·). Thus ν = h(e⊗wi) ∈ Tot−i−1(W·⊗ (I ·)[p]). Then we have (1⊗ f [p]) is a
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degree p(a+ b) chain map. So ζ = (−1)p(a+b)(1⊗ f [p])(ν) ∈ Totap+bp−i−1(W·⊗ (K·)[p]). For

calculating the filtration degree, we have:

ν = (wi+1⊗π t0)+(wi⊗π t1)+ · · ·+(wi−p+1⊗π tp) =
p

∑
j=0

wi− j+1⊗π t j

where t j ∈ Tot− j(I ·) consists of sums of tensors with exactly j e terms and the rest e0

or e1. Thus:

ζ =
p

∑
j=0

wi− j+1⊗ s j

where s j is a sum of tensors with exactly j (−1)a+bγ terms and the remaining p− j

terms are (x1+ε) or y1. Thus, s j has filtration degree (a− r+1) · j+a · (p− j) = ap+ j(1− r),

and complex degree (a+b−1) · j+(a+b) · (p− j) = ap+bp− j. Thus:

wi− j+1⊗ s j ∈Wi− j+1⊗ (Fap+ j(1−r)(Totap+bp− j((K·)[p])))⊆ Fap+ j(1−r)Lap+bp−i−1

Since the filtration on L is decreasing, and 1− r ≤ 0, we have each wi− j+1⊗ s j ∈
Fap+p(1−r)Lap+bp−i−1 for j = 0, . . . , p. So we have:

ζ ∈ Fap+p(1−r)Lap+bp−i−1

We can rewrite the filtration degree above as ap− (r+(p−1)(r−1))+1, so we now

have:

d(ζ) = wi⊗ ((x1 + ε)[p]− y[p]1 ) ∈ d(Fap−(r+(p−1)(r−1))+1Lap+bp−1)

We also have:

wi⊗π ((x1 + ε)[p]− y[p]1 ) ∈Wi⊗π (FaKa+b)[p] ⊆ FapLap+bp−i

Thus:

wi⊗π ((x1 + ε)[p]− y[p]1 ) ∈ FapLap+bp−i∩d(Fap−(r+(r−1)(p−1))+1Lap+bp−i−1)
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⊆ B̃ap,bp−i
r+(r−1)(p−1)(F

·L·)

We can now finish the proof by observing:

wi⊗π (x
[p]
1 − y[p]1 ) = wi⊗π ((x1 + ε)[p]− y[p]1 )−wi⊗π ((x1 + ε)[p]− x[p]1 )

We have (x1+ε)[p]−x[p]1 consists of sums of tensors in which at least one term is ε and

the remaining terms are x1. So this element has filtration degree at least 1 ·(a+1)+(p−1) ·a =

ap+1, and hence:

wi⊗π ((x1 + ε)[p]− x[p]1 ) ∈Wi⊗π Fap+1(Totap+bp((K·)[p]))

⊆ Fap+1Lap+bp−i

⊆ B̃ap,bp−i
r+(r−1)(p−1)(F

·L·)

This shows wi⊗π (x
[p]
1 − y[p]1 ) ∈ B̃ap,bp−i

r+(r−1)(p−1)(F
·L·), and by the reduction at the be-

ginning, we now have wi⊗π (x[p]− y[p]) ∈ B̃ap,bp−i
r+(r−1)(p−1).

Now that these lemmas have been proven, the corollaries at the beginning of this

section are established.

7.2 The Product on F ·K·

In this section I will show that the product defined in Section 5.1 can be constructed in

a way so that there is an induced cup product on each page of the spectral sequence E ·,·· (F ·K·).

The construction in this section is actually a special case of the construction from Section 5.1.

Definition 7.2.1. We will define a filtered product on F ·K·. Let F ·m· : F ·Tot·(F ·A·⊗F ·A·) denote

the filtered graded product on F ·A·. We have the solid diagram below of filtered complexes in

ShFp(X):
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F ·Tot·(F ·I·⊗F ·I·) F ·I·

F ·Tot·(F ·A·⊗F ·A·) F ·A·

F ·m̃·

F ·m·
F ·Tot·(ι·⊗ι·) F ·ι·

We have by construction that F ·I· is bounded below, has a terminating filtration in

each degree, and is strong filtered injective in each degree. Because F ·A· and F ·I· are finitely

filtered in each degree and both bounded below, we have by Corollary 6.7.9 that F ·Tot·(A·⊗A·)

and F ·Tot·(I·⊗ I·) are both finitely filtered in each degree. Because F ·ι· is a strong filtered

resolution, we have by Corollary 6.7.20 that F ·Tot·(ι·⊗ ι·) is a strong filtered resolution. In

particular, this implies F ·Tot·(ι·⊗ ι·) is an injective filtered quasi-morphism. We can now apply

Lemma 6.5.2 to obtain a filtered chain map F ·m̃· making the diagram commute. By Lemma

6.5.4, F ·m̃· is unique up to filtered homotopy. By applying the global section functor T , we

obtain the filtered chain map in Vect(Fp):

F ·T (m̃·) : F ·T (Tot·(F ·I·⊗F ·I·))→ F ·T (I·)

We have the natural filtered chain map in Vect(Fp):

F ·γ· : F ·Tot·(F ·T (I·)⊗F ·T (I·))→ F ·T (Tot·(F ·I·⊗F ·I·))

induced by the map, T (C)⊗T (D)→ T (C⊗D), when C and D are sheaves. We now

define F ·M· by the composition:

F ·M· : F ·Tot·(F ·T (I·)⊗F ·T (I·)) F ·T (Tot·(F ·I·⊗F ·I·)) F ·T (I·)
F ·γ· F ·T (m̃·)

By Lemma 6.1.26, the uniqueness of F ·m̃· up to filtered homotopy implies the unique-

ness of F ·T (m̃·) up to filtered homotopy. Then because F ·γ· is a filtered chain map, we have

by Lemma 6.1.23, that F ·M· = F ·T (m̃·) ◦F ·γ· is unique up to filtered homotopy. This implies

the product on cohomology and on the pages of the spectral sequence are unique. That is, this

construction gives well defined maps for all n ∈ Z:
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Hn(M·) : Hn(Tot·(K·⊗K·))→ Hn(K·)

And by Lemmas 6.1.28 and 6.1.29, we have well defined morphisms for all a,b ∈ Z

and r ≥ 1:

Ea,b
r (F ·M·) : Ea,b

r (F ·Tot·(F ·K·⊗F ·K·))→ Ea,b
r (F ·K·)

Because the construction of F ·M· is a special case of the construction of M· from

Section 5.1, we have the cup product from Definition 5.1.2:

∪n,m : Hn(K·)⊗Hm(K·)→ Hn+mK·

We also have a cup product defined on each page of the spectral sequence:

Definition 7.2.2. For a,b,c,d ∈ Z and r ≥ 1 we have the spectral sequence cup product:

∪a,b,c,d
r : Ea,b

r (F ·K·)⊗Ec,d
r (F ·K·)→ Ea+c,b+d

r (F ·K·)

defined by the composition:

∪a,b,c,d
r : Ea,b

r (F ·K·)⊗Ec,d
r (F ·K·) Ea+c,b+d

r (F ·Tot·(F ·K·⊗F ·K·))

Ea+c,b+d
r (F ·K·)

ψ′

Ea+c,b+d
r (F ·M·)

where ψ′ is the map [x]⊗ [y] 7→ [x⊗ y], for x ∈ Z̃a,b
r (F ·K·) and y ∈ Z̃c,d

r (F ·K·). The

map ψ′ was shown to be well defined in Corollary 7.1.13.

Lemma 7.2.3. The cup product∪·,· from Definition 5.1.2 and the cup product∪·,·,·,·· of Definition

7.2.2 agree. That is, for all a,b,c,d ∈ Z and r ≥ 1, when x ∈ Za+b(K·)∩ Z̃a,b
r (F ·K·) and y ∈

Zc+d(K·)∩ Z̃c,d
r (F ·K·), we have ∪a,b,c,d

r ([x]⊗ [y]) and ∪a+b,c+d([x]⊗ [y]) are cosets that are both

represented by the common element, Ma+b+c+d(x⊗ y) ∈ Za+b+c+d(K·).
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Proof. Let [x] and [y] denote the cosets of x, and y in Ha+b(K·) and Hc+d(K·) respectively,

and let [x⊗ y] denote the coset in Ha+b+c+d(Tot·(K·⊗K·)). Then for the cup product from

Definition 5.1.2, we have:

∪a+b,c+d([x]⊗ [y]) = Ha+b+c+d(M·)([x⊗ y]) = [Ma+b+c+d(x⊗ y)] ∈ Ha+b+c+d(K·)

Now denote [x] ∈ Ea,b
r (F ·K·) and [y] ∈ Ec,d

r (F ·K·). Let [x⊗ y] denote the coset in

Ea+c,b+d
r (F ·Tot·(F ·K·⊗F ·K·)). Then the cup product from Definition 7.2.2 evaluates as:

∪a,b,c,d
r ([x]⊗ [y]) = Ea+c,b+d

r (F ·M·)([x⊗ y]) = [Ma+b+c+d(x⊗ y)] ∈ Ea+c,b+d
r (F ·K·)

Thus, both cosets are represented by Ma+b+c+d(x⊗ y).

Lemma 7.2.4. The filtered product F ·M· on F ·K· makes F ·K· a filtered homotopy associative

differential graded Fp algebra. The induced cup product ∪·,·,·,·r on E ·,·r (F ·K·) is associative.

Proof. Like in the proof of Lemma 5.1.3, we consider the diagram below of filtered complexes

in ShFp(X). Recall [l] denotes the l-fold tensor product over Fp.

F ·Tot·((F ·I·)[3]) F ·Tot·((F ·I·)[2]) F ·I·

F ·Tot·((F ·A·)[3]) F ·Tot·((F ·A·)[2]) F ·A·

F ·(1⊗m̃·)

F ·(m̃·⊗1)

F ·m̃·

F ·(ι·)[3]

F ·(1⊗m·)

F ·(m·⊗1)

F ·(ι·)[2]

F ·m·

F ·ι·

Because the product on F ·A· is associative, the two compositions along the bottom

row, m· ◦ (1⊗m·) and m· ◦ (m·⊗ 1), are equal. Thus, the two compositions along the top row,

m̃· ◦ (1⊗ m̃·) and m̃· ◦ (m̃·⊗1) are two filtered chain maps making the perimeter of the diagram

commute. We have by Corollary 6.7.21 that F ·(ι·)[3] is a strong filtered resolution. We have by

Corollary 6.7.8 that F ·Tot·((F ·A·)[3]) and F ·Tot·((F ·I·)[3]) are both finitely filtered in each de-

gree. Thus, F ·(ι·)[3] is a filtered quasi-isomorphism, and F ·Tot·((F ·A·)[3]) and F ·Tot·((F ·I·)[3])

are both exhaustively filtered. F ·I· is still strong injective in each degree and has a filtration that

terminates in each degree. Now we invoke Lemma 6.5.4 to obtain a filtered homotopy:
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F ·h· : F ·Tot·((F ·I·)[3])→ F ·I[−1]·

between F ·m̃· ◦F ·(m̃·⊗ 1) and F ·m̃· ◦F ·(1⊗ m̃·). Then by Lemma 6.1.26, we have

F ·T (h·) is a filtered homotopy between the filtered chain maps:

F ·T (m̃·)◦F ·T (m̃·⊗1),

F ·T (m̃·)◦F ·T (1⊗ m̃·)
: F ·T (Tot·(F ·I·)[3])→ F ·T (I·)

Let F ·γ·3 be the natural filtered chain map:

F ·γ·3 : F ·Tot·(T (I·)[3])→ F ·T (Tot·((I·)[3]))

By Lemma 6.1.23, F ·T (h·) ◦F ·γ·3 is a filtered homotopy between the filtered chain

maps:

F ·T (m̃·)◦F ·T (m̃·⊗1)◦F ·γ·3,

F ·T (m̃·)◦F ·T (1⊗ m̃·)◦F ·γ·3
: F ·Tot·(F ·T (I·)[3])→ F ·T (I·)

And these filtered homotopic chain maps are equal to F ·M· ◦F ·(M·⊗ 1) and F ·M· ◦
F ·(1⊗M·) respectively. We have now shown the filtered product on F ·K· is filtered homotopy

associative. By Lemma 6.1.29, the following induced morphisms are equal for all a,b ∈ Z and

r ≥ 1:

Ea,b
r (F ·M· ◦F ·(M·⊗1)),

Ea,b
r (F ·M· ◦F ·(1⊗M·))

: Ea,b
r (F ·Tot·(K·)[3])→ Ea,b

r (F ·K·)

This implies the following are equal, for all a,b,c,d,e, f ∈ Z:

∪a+c,b+d,e, f
r ◦ (∪a,b,c,d

r ⊗1Ee, f
r (F ·K·)) = ∪

a,b,c+e,d+ f
r ◦ (1Ea,b

r (F ·K·)⊗∪
c,d,e, f
r )

Ea,b
r (F ·K·)⊗Ec,d

r (F ·K·)⊗Ee, f
r (F ·K·)→ Ea+c+e,b+d+ f

r (F ·K·)

That is, the cup product on E ·,·r (F ·K·) is associative for all r ≥ 1.
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7.3 Construction of F ·θ·

In this section we will construct the filtered chain map F ·θ· : F ·Tot·(W·⊗(F ·K·)[p])→
F ·K·. Consider the solid diagram below:

F ·Tot·((F ·I·)[p]) F ·Hom·Fp
(W·,F ·I·)

F ·Tot·((F ·A·)[p]) F ·A·

F ·β·

F ·m·p

F ·(ι·)[p] F ·ν·

Where in the above F ·m·p is the p-iterated product on F ·A·, which is a filtered chain

map. In the above we let π, the cyclic group of order p, act on tensors by permuting with

graded signs, and the action on F ·A· is trivial. The action on Hom·Fp
(W·,F ·I·) is induced by

the action on W·. We have that both F ·(ι·)[p] and F ·ν· are filtered chain maps in ShFpπ(X).

Because F ·ι· is a strong injective resolution in ShFp(X), we have by Lemma 6.9.20 the strong

filtered injective resolution F ·ν· in ShFpπ(X). Note that F ·Hom·Fp
(W·,F ·I·) is strong filtered

injective in each degree in ShFpπ(X), is bounded below, and has a terminating filtration in each

degree. By Corollary 6.7.8, F ·Tot·((F ·A·)[p]) and F ·Tot·((F ·I·)[p]) are both finitely filtered in

each degree. Hence their filtrations are exhaustive. By Corollary 6.7.21, F ·(ι·)[p] is a strong

filtered resolution, and hence, F ·(ι·)[p] is an injective filtered quasi-isomorphism. We now have

the conditions to invoke Lemma 6.5.2 to find a filtered chain map F ·β· in ShFpπ(X) that makes

the square commute. By Lemma 6.5.4, F ·β· is unique up to filtered homotopy. Because the

global section functor T is left exact, by Definition 6.1.24 we have the filtered chain map in

FpπMod:

F ·T (β·) : F ·T (Tot·((F ·I·)[p]))→ F ·T (Hom·Fp
(W·,F ·I·)) = F ·Hom·Fp

(W·,F ·T (I·))

By Lemma 6.1.26, F ·T (β·) is unique up to filtered homotopy. There is a natural

filtered chain map:

F ·γ·p : F ·Tot·(T (I·)[p])→ F ·T (Tot·((I·)[p]))

Define F ·θ̂· by the composition:
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F ·θ̂· : F ·Tot·(T (F ·I·)[p]) F ·T (Tot·((I·)[p])) F ·Hom·Fp
(W·,F ·T (I·))

F ·γ·p F ·T (β·)

By Lemma 6.1.23, the filtered homotopy uniqueness of F ·T (β·) implies the filtered

homotopy uniqueness of F ·θ̂·. We have the adjoint isomorphism of Lemma 3.1.5, which was

shown to be a filtered isomorphism in Corollary 6.9.6.

F ·Φ· : F ·Hom·Fpπ(Tot·(T (I·)[p]),Hom·Fp
(W·,T (I·)))→ F ·Hom·Fpπ((Tot·T (I·)[p])⊗Fp W·,T (I·))

We have:

F ·θ̂· ∈ F0Z0(Hom·Fpπ(Tot·(T (I·)[p]),Hom·Fp
(W·,T (I·))))

In the above F ·θ̂· has filtration degree zero because it is a filtered morphism, as men-

tioned in Definition 6.9.1, and F ·θ̂· is in Z0 because it is a chain map. Thus:

F0
Φ

0(F ·θ̂·) ∈ F0Z0(Hom·Fpπ(Tot·(T (I·)[p])⊗W·,T (I·)))

because F ·Φ· is a filtered chain map. Thus, Φ0(F ·θ̂·) is a filtered chain map. By

Corollary 6.9.7, the filtered homotopy uniqueness of F ·θ̂· implies F ·Φ0(θ̂·) is unique up to

filtered homotopy. We have the filtered isomorphism that swaps tensors with sign based upon

grading:

F ·U · : Tot·(W·⊗Fp T (I·)[p])→ Tot·(T (I·)[p]⊗Fp W·)

And now we define F ·θ· by the composition:

F ·θ· : Tot·(W·⊗Fp T (I·)[p]) Tot·(T (I·)[p]⊗Fp W·) T (I·)F ·U · F ·Φ0(θ̂·)

By Lemma 6.1.23, the filtered homotopy uniqueness of F ·θ̂· implies F ·θ· is unique

up to filtered homotopy. The F ·θ· constructed here is actually a special case of the construction
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of θ· from Section 5.2, but now we have that it preserves the filtration. Because F ·θ· is a filtered

chain map, there are induced morphisms for all a,b ∈ Z, r ≥ 1:

Ea,b
r (F ·θ·) : Ea,b

r (F ·Tot·(W·⊗ (F ·K·)[p]))→ Ea,b
r (F ·K·)

Because F ·θ· is unique up to filtered homotopy, these morphisms are uniquely defined

by Lemma 6.1.29.

7.4 Construction of Operations

It should be noted that we defined F ·θ· to be a filtered Fpπ chain map:

F ·θ· : Tot·(W·⊗Fp T (I·)[p])→ F ·T (I·)

but since the action of π on F ·T (I·) is trivial, we have by Lemma 3.1.3 that F ·θ· also

specifies a canonical morphism:

F ·θ· : Tot·(W·⊗π T (I·)[p])→ F ·T (I·)

Definition 7.4.1. We can now define the maps Di on the first and infinite pages of the spectral

sequence for F ·K·. Let r = 1 or ∞ and let a,b ∈ Z. Let [x] ∈ Ea,b
r (F ·K·). Then by Lemma 7.1.1,

[ei⊗π x[p]] is a well defined element of Eap,bp−i
r (F ·Tot·(W·⊗π (K·)[p])), and we can apply the

morphism F ·θ· induces on the spectral sequence:

Di([x]) = Eap,bp−i
r (F ·Tot·(θ·,·))([ei⊗π x[p]]) ∈ Eap,bp−i

r (F ·K·)

Now using the definition of P· and βP· from Corollary 2.0.8, we have induced Steenrod

operations on the spectral sequence E ·,·· (F ·K·). Let a,b∈Z and r = 1 or ∞. Let [x]∈Ea,b
r (F ·K·).

For p = 2 we have:

Ps([x]) = Da+b−s([x]) ∈ E2a,2b−(a+b−s)
r (F ·K·) = E2a,b−a+s

r (F ·K·)

For p > 2 we have:

Ps([x]) = (−1)s
ν(−(a+b))D((a+b)−2s)(p−1)([x])
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∈ Eap,bp−(a+b−2s)(p−1)
r (F ·K·)

= Eap,b+(2s−a)(p−1)
r (F ·K·)

βPs([x]) = (−1)s
ν(−(a+b))D((a+b)−2s)(p−1)−1([x])

∈ Eap,bp−[(a+b−2s)(p−1)−1]
r (F ·K·)

= Eap,b+(2s−a)(p−1)+1
r (F ·K·)

where ν(−q) = (−1) j(m!)ε, with q = 2 j− ε, and ε = 0 or 1.

Lemma 7.4.2. For all r in which the Steenrod operations are defined on E ·,·r (F ·K·), the opera-

tions agree with those previously defined on H ·(K·).

Proof. The proof of this lemma is analogous to the proof of Lemma 7.2.3. Let a,b ∈ Z and

suppose r ≥ 1. Suppose x ∈ Za+b(K·)∩ Z̃a,b
r (F ·K·). Then when one regards [x] ∈Ha+b(K·), we

have the Di map from Definition 2.0.7:

Di([x]) = [θap+bp−i(ei⊗π x[p])] ∈ Hap+bi−i(K·)

And when one regards [x] ∈ Ea,b
r (F ·K·) and uses the Di map from Definition 7.4.1,

we have:

Di([x]) = [Fap
θ

ap+bp−i(ei⊗π x[p])] ∈ Eap,bp−i
r (F ·K·)

Since both cosets are represented by the same element, the forms of Di agree for all

i. Since the Steenrod operations Ps and βPs are defined in the same way in terms of Di, this

implies the operations also agree in this sense.

Theorem 7.4.3. Let X be a topological space and k a field of characteristic p. Suppose F ·A· is

a bounded below filtered complex of sheaves of graded commutative Fp algebras on X, where

A· is finitely filtered in each degree and the product on A· preserves the filtration. That is,

Fm1A· ·Fm2A· ⊆ Fm1+m2A· for all m1,m2 ∈Z. Then the canonically defined Steenrod operations

on the hypercohomology groups, Hn(X ,A·), from Theorem 5.3.5 also act in a canonical and

compatible way on the E1 and E∞ pages of the spectral sequence:
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Ea,b
r (F ·K·) =⇒ Ha+b(K·) = Ha+b(X ,A·)

where F ·A· ↪→ F ·I· is a filtered injective resolution in ShFp(X), F ·K· = F ·T (I·), and

Ea,b
r (F ·K·) is as defined in Definition 6.1.27.

Proof. The construction of F ·θ in this chapter is actually a more specific construction of the θ·

from Chapter 5. So the Steenrod operations from Theorem 5.3.5 can actually be induced by this

F ·θ·, which in turn induces canonical operations on E ·,·1 (F ·K·) and E ·,·∞ (F ·K·) as in Definition

7.4. By Lemma 7.4.2, the operations on E ·,·1 (F ·K·) and E ·,·∞ (F ·K·) are compatible with the

operations F ·θ· induces on H ·(K·) = H·(X ,A·).

7.5 Applications

In this section I will apply Theorem 7.4.3 to a few different bounded below com-

plexes of sheaves of differential graded commutative Fp algebras that are finitely filtered in

each degree.

7.5.1 The Stupid Filtration

Let X be a topological space and let A· be complex of sheaves of differential graded

commutative Fp algebras on X , with A· concentrated in non-negative degree. We may give A·

the stupid filtration, defined as follows, for all n,m ∈ Z:

F iAn =

 An when n≥ i

0 otherwise

We have that the filtered complex F ·A· is finitely filtered in each degree. Because A· is

concentrated in non-negative degree and the product is graded, we have that the multiplication

map

m· : Tot·(A·⊗A·)→ A·

is filtered, since mi+ j(Ai⊗A j)⊆ Ai+ j for all i, j ≥ 0. Since F ·A· is finitely filtered in

each degree and F ·m· is a filtered chain map, we can apply Theorem 7.4.3 to obtain Steenrod
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operations on H·(X ,A·) and E ·,·1 (F ·K·), E∞(F ·K·), where F ·A· ↪→ F ·I· is a filtered injective

resolution in ShFp(X), and F ·K· = F ·T (I·).

As a side note, in choosing a filtered injective resolution F ·ι· : F ·A· ↪→ F ·I·, we can

in fact choose a Cartan Eilenberg resolution, A· ↪→ J·,·, with embedding ε· : A·→ J·,0, and then

define I· = Tot·(J·,·). Let ι· : A· ↪→ I· be induced by ε·. We give I· the first filtration, where one

has for all i,n ∈ Z:

F iIn =
⊕

a+b=n, a≥i

Ja,b

With F ·I· filtered as such and F ·A· given the stupid filtration, the chain map ι· is a

filtered morphism. In fact, F ·ι· is an injective filtered quasi-isomorphism by the construction of

the Cartan Eilenberg resolution. Because both F ·A· and F ·I· are finitely filtered, F ·ι· is a strong

filtered injective resolution, and an injective resolution in the non-filtered sense.

Setting K· = T (I·) with T the global section functor, we have H ·(K·) computes the

hypercohomology groups of X with coefficients in A·:

Hn(K·) = Hn(X ,A·)

And the filtration on K· induces a spectral sequence that converges to these hyperco-

homology groups:

Ea,b
r (F ·K·) =⇒Ha+b(X ,A·)

In fact, with the stupid filtration on A·, we have:

Ea,b
1 (F ·K·) = Hb(X ,Aa)

The above is evident when one chooses F ·I· = F ·Tot·(J·,·) to be the total complex of

a Cartan Eilenberg resolution of A·, given the first filtration.
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7.5.2 The Hodge to De Rham Spectral Sequence

This is a special case of Section 7.5.1. Let X be a smooth projective variety over a

field k of characteristic p. We let A· = Ω·X/k, be the De Rham complex of X , where Ω·X/k is

concentrated in non-negative degree and the wedge product makes Ω·X/k a sheaf of differential

graded commutative Fp algebras on X . We may follow through the steps of Section 7.5.1 to

obtain a filtered injective resolution F ·ι· : F ·A· ↪→ F ·I·. Setting F ·K· = F ·T (I·), we have that

H ·(K·) computes the algebraic De Rham cohomology of X over k.

Hn(K·) = Hn(X ,Ω·X/k) = Hn
DR(X/k)

Meanwhile, the spectral sequence:

Ea,b
r (F ·K·) =⇒ Ha+b

DR (X/k)

is in fact the Hodge to De Rham spectral sequence, where we have:

Ea,b
1 = Hb(X ,Ωa

X/k)

Theorem 7.4.3 gives Steenrod operations that act in a compatible way on H ·DR(X/k),

E ·,·1 , and E ·,·∞ .

7.5.3 A Spectral Sequence of Katz and Oda

Let k be a field of characteristic p and let π : X→ S be a smooth k morphism of smooth

varieties over k, with S affine. We may filter the De Rham complex Ω·X/k as done by Katz and

Oda in [4], page 202:

F i
Ω

n
X/k = im(Ωn−i

X/k⊗OX π
∗(Ωi

S/k)→Ω
n
X/k)

where the map in the above image calculation is the wedge product on Ω·X/k. Katz

and Oda verify that this filtration is finite in each degree and compatible with the wedge product

on page 202 of [4]. Thus, we can apply Theorem 7.4.3 to obtain Steenrod operations acting

on H ·DR(X/k) and in a compatible way on E ·,·1 (F ·K·) and E ·,·∞ (F ·K·), where F ·Ω·X/k ↪→ F ·I· is

a filtered injective resolution in ShFp(X) and F ·K· = F ·T (I·). On page 210, Katz and Oda

compute the E1 page of this spectral sequence:
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Ea,b
1
∼= ΓS(Ω

a
S/k⊗OS H b

DR(X/S))

Thus the Steenrod operations on H ·DR(X/k) also induce operations as described in

Definition 7.4.1 on these objects as well.
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