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Overtrust in AI Recommendations 
About Whether or Not to Kill: 
Evidence from Two Human‑Robot 
Interaction Studies
Colin Holbrook 1*, Daniel Holman 1, Joshua Clingo 1 & Alan R. Wagner 2

This research explores prospective determinants of trust in the recommendations of artificial agents 
regarding decisions to kill, using a novel visual challenge paradigm simulating threat-identification 
(enemy combatants vs. civilians) under uncertainty. In Experiment 1, we compared trust in the advice 
of a physically embodied versus screen-mediated anthropomorphic robot, observing no effects of 
embodiment; in Experiment 2, we manipulated the relative anthropomorphism of virtual robots, 
observing modestly greater trust in the most anthropomorphic agent relative to the least. Across 
studies, when any version of the agent randomly disagreed, participants reversed their threat-
identifications and decisions to kill in the majority of cases, substantially degrading their initial 
performance. Participants’ subjective confidence in their decisions tracked whether the agent (dis)
agreed, while both decision-reversals and confidence were moderated by appraisals of the agent’s 
intelligence. The overall findings indicate a strong propensity to overtrust unreliable AI in life-or-death 
decisions made under uncertainty.

Keywords  Artificial intelligence, Human–robot interaction, Human–computer interaction, Social robotics, 
Decision-making, Threat-detection, Anthropomorphism

Although the exact figures may never be known, US military forces and the Central Intelligence Agency have 
killed scores of civilians in drone attacks. Official reports acknowledge the deaths of hundreds1, whereas 
independent estimates reach the low thousands, including hundreds of children2,3. Although some of these 
deaths may have been anticipated but deemed morally defensible by those responsible, most were presumably 
unintended and, at least in part, attributable to human cognitive biases4. We highlight decisions to launch drone 
strikes in this paper to exemplify the broader class of grave decisions made with imperfect and incomplete 
information which will increasingly be made with input from artificial intelligence (AI), but the legal and moral 
imperatives to minimize unintended casualties are applicable to combatants employing any weapons modality. 
On the one hand, AI-generated threat-identification and use-of-force recommendations may save lives in various 
military or police contexts insofar as AI is capable of outperforming humans5,6; on the other hand, when human 
decision-capacities would otherwise outperform AI, tendencies to overtrust may increase loss of life. Here, 
we seek to identify determinants of trust in the latter category of unreliable AI recommendations regarding 
life-or-death decisions. Although our methodological focus centers on deciding whether to kill, the questions 
motivating this work generally concern overreliance on AI in momentous choices produced under uncertainty.

An extensive human factors literature has explored the determinants of trust in human–machine 
interaction7–9. Anthropomorphic design mimicking human morphology and/or behavior has emerged as an 
important determinant of trust—the attitude that an agent will help one to achieve objectives under circumstances 
characterized by uncertainty and vulnerability10—in many research designs11,12. Anthropomorphic cues 
suggestive of interpersonal engagement, such as emotional expressiveness, vocal variability, and eye gaze have 
been found to increase trust in social robots13–15, much as naturalistic communication styles appear to heighten 
trust in virtual assistants16. Similarly, social cues such as gestures or facial expressions can lead participants to 
appraise robots as trustworthy in a manner comparable to human interaction partners17. Remarkably, a robot 
programmed to display humanlike emotional facial and vocal responses in response to having committed an 
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overt error was perceived to be more trustworthy than a neutral version of the same robot which did not commit 
an error, in an effect attributed to inferences of intelligent situational awareness engendered by its capacity to 
detect and react in a socially appropriate manner to its own mistakes18.

Much of the research on trust in AI agents has centered on the effects of their observed performance19–21, 
including ways of repairing trust in the aftermath of performance failures22,23. But what of trust under 
circumstances where the AI agent’s accuracy is uncertain? Although in some contexts human interactants can 
readily gauge AI’s performance success, the ultimate outcomes of consequential real-world decisions are often 
unknown at the time that they are made, such as when prioritizing casualties during emergency triage, identifying 
lucrative financial investments, or inferring others’ intentions or moral culpability. Thus, the extent to which 
individuals are disposed to adopt the recommendations of AI agents despite performance uncertainty during 
the period allotted to decide is an important and understudied question, particularly with regard to decisions 
which significantly impact human welfare.

Results
We conducted two pre-registered experiments to assess the extent to which participants would be susceptible to 
the influence of an unreliable AI agent using a simple model of life-or-death decision-making under uncertainty. 
We framed the task as a drone warfare simulation, and included an overt reminder of the potential suffering 
and death of children should errors be committed, in order for the task to be intuitively understood and treated 
seriously by participants (which they also confirmed via self-report, Supplementary Table S1). Importantly, our 
task was not intended to model actual image classification or target-identification procedures used by the military 
in drone warfare, but rather to instill a sense of grave decision stakes.

In 12 trials, participants initially categorized ambiguous visual stimuli as containing either enemies or civilians 
(Fig. 1), then received an opportunity to repeat or to reverse their initial decision in light of an agent’s feedback 
(which they did not know was random), and finally chose whether or not to deploy a missile. Participants also 
rated their degree of confidence in both their initial and post-feedback threat-identifications. Following this drone 

Figure 1.   Example threat-identification trial. There were 12 trials, each consisting of a series of 8 greyscale 
destination images with superimposed enemy versus ally symbols. These images were presented for 650 ms 
each with no interstimulus intervals. In each trial, 4 enemy and 4 ally symbols appeared over the 8 images, in a 
pseudorandomized order such that the target image was always displayed within images 3–6. Next, the target 
image reappeared on the screen without a symbol and remained for as long as the participant deliberated. The 
challenge was to correctly identify whether this destination image had been previously marked as containing 
enemy combatants or civilian allies. The visual stimuli were randomized across trials, such that the robot’s 
threat-identification feedback at each destination was random.
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warfare task, we collected individual differences in appraisals of the agent’s intelligence, among other qualities 
(i.e., anthropomorphism, animacy, likability and safety), using the Godspeed Questionnaire Series (GQS)24.

We did not provide feedback during the simulation regarding the accuracy of threat-identification decisions, 
hence this paradigm models decision contexts in which the ground truth is unknown. Participants were therefore 
confronted by a challenging task designed to induce uncertainty regarding their own perception and recollection 
of what they had just witnessed, as well as uncertainty regarding whether they or the agent had chosen correctly 
in prior trials. Many commonly studied forms of decision-making under uncertainty involve known outcome 
probabilities (e.g., a 50% chance of a desired outcome) which provide the decision-maker the information needed 
to gauge risk. By contrast, our task paradigm was designed to model decision-making under ambiguity, where 
important decision-relevant information is clearly missing25. Relative to decision-making under probabilistic 
risk, ambiguous uncertainty has been shown to evoke higher activation of neural regions related to detection 
and evaluation of salient decision-relevant stimuli, in a profile hypothesized to reflect functional mobilization 
of cognitive and behavioral resources to obtain additional information26.

In Experiment 1, we assessed the effects of physical embodiment, which has been found to heighten 
perceptions of machine agents as trustworthy individuals rather than mere tools11. Physical robots have been 
found to be both more persuasive and more appealing than virtual agents displayed on screens27, although 
this effect has not replicated consistently28. For example, Bainbridge and colleagues reported that when robots 
suggested unexpected and seemingly inadvisable actions such as throwing books into the trash, participants 
were more likely to comply when the robot was physically present than when the suggestion was made by a 
screen-mediated instantiation29. Physical embodiment has been found to heighten human perceptions of social 
interactions with robots as engaging and pleasurable29,30, although disembodied agents have also been found 
engaging31,32, particularly when incorporating anthropomorphic characteristics such as facial expressions or 
gestures33. Motivated by these prior findings, we manipulated whether a highly anthropomorphic robot was 
physically embodied versus virtually projected.

Predictions
The design allowed us to test a number of related predictions:

1.	 The robot’s input will influence decision-making (across conditions).

a.	 Threat-identification. When the robot disagrees, participants will tend to reverse their initial enemy/
ally categorization.

b.	 Use of force. When the robot disagrees, participants will tend to follow the robot’s recommendation to 
deploy missiles or withdraw (i.e., they will deploy [withdraw] despite initially categorizing the target as 
an ally [enemy]).

c.	 Subjective confidence. When the robot disagrees [agrees], participants who repeat their initial enemy/
ally threat-identifications will report lower [greater] confidence in their final enemy/ally threat-
identifications.

2.	 Physical embodiment Predictions 1a–c above regarding the robot’s influence on decision-making will be more 
evident when the robot is physically embodied.

3.	 Perceived intelligence Predictions 1a–c above will be more evident among participants who appraise the robot 
as relatively high in intelligence.

In addition, we also explored whether having initially been correct reduced the likelihood of reversing threat-
identifications when the robot disagreed, and whether participants were more or less disposed to reverse their 
decisions after identifying enemies versus allies.

Experiment 1
In a between-subjects design (N = 135), the robot was either a virtual projection (the Disembodied condition, 
N = 69) or physically present (the Embodied condition, N = 66; Fig. 2). The robot was introduced as a partner 
that would aid in the decision task by providing its independent assessment. The robot described itself as 
programmed to process imagery, yet fallible, and stressed that the ultimate decisions were up to the participant. 
After participants first chose whether the symbol over the destination had indicated an enemy or an ally and 
linearly rated their confidence (0 = Not at all; 100 = Extremely), the robot provided its recommendation, [dis]
agreeing with the participant’s initial decision in 50% of trials, without regard for accuracy. Participants were 
then asked to choose again and to again rate their confidence. The robot reacted contingently to participants’ 
choices using a variety of statements (e.g., “I don’t agree”, “I think that’s the right choice”) with accompanying 
nonverbal facial, postural and gestural cues to maximize anthropomorphism. Multiple, semantically equivalent 
response variations were selected randomly to reduce “robotic” repetitiveness and thereby enhance perceived 
anthropomorphism (see Supplementary Information for the tree of potential speech variations). Lastly, the 
participant decided in each trial whether to deploy a lethal missile or peacefully disengage. Following the drone 
warfare simulation, participants completed surveys, including appraisals of the robot’s intelligence, in order to 
clarify the extent to which decision reversals stemmed from trust in the robot’s performance competence as 
opposed to other possible motives to conform (e.g., deference to authority)34, as has been suggested in prior 
human–robot interaction research35.
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Robot appraisals
Pearson’s correlations confirmed that the appraisal dimensions were all moderately positively associated 
(Supplementary Table S2). Analyses of variance revealed no significant effects of embodiment on appraisals 
of Anthropomorphism, Likeability, or Safety, ps 0.154–0.687, and modestly greater appraisals of Intelligence 
(Embodied: Mintelligence = 4.09, SD = 0.60; Disembodied: Mintelligence = 3.86, SD = 0.69), F(1,133) = 4.35, p = 0.039, 
ηp

2 = 0.03, 95% CI [− 0.45, − 0.01], and on Animacy (i.e., aliveness. Embodied: Manimacy = 3.29, SD = 0.89; 
Disembodied: Manimacy = 2.98, SD = 0.75), F(1,133) = 4.60, p = 0.034, ηp

2 = 0.03, 95% CI [− 0.58, − 0.02], in the 
Embodied condition. In both conditions, on average, the robot was appraised to be notably high in Intelligence, 
Safety and Likeability, slightly non-anthropomorphic, and near the midpoint between animacy and inanimacy 
(Supplementary Table S2).

Robot feedback, but not embodiment, influences threat‑identification and decisions to kill
In support of Prediction 1a, robot disagreement significantly predicted reversal of participants’ initial threat-
identifications and related decisions to kill. When the robot randomly disagreed, participants reversed their 
threat-identifications in 58.3% of cases, whereas participants almost universally repeated their choices when the 
robot agreed with them (98.8% of cases). In support of Prediction 1b, robot disagreement likewise significantly 
predicted reversal of participants’ decisions to deploy missiles or withdraw relative to their initial threat-
identification decisions. When the robot disagreed with their initial threat-identifications, participants reversed 
their decisions about whether to kill (i.e., [not] deploying the missile despite initially categorizing the target as 
containing [enemies] civilians) in 61.9% of cases. Participants’ initial threat-identifications were accurate in 
72.1% of trials, confirming that, although difficult, the task could be performed at well above chance. Threat-
identification accuracy fell to 53.8% when the robot disagreed, a decline of 18.3%. Against Prediction 2, we 
observed no interactions between the robot feedback and embodiment conditions on either threat-identifications 
or decisions to kill (Table 1).

We also found that participants who initially identified the targets as allies were less likely to reverse their 
identifications or lethal force decisions than were those who initially identified the targets as enemies, indicating 
that participants were engaged seriously and reluctant to simulate killing. In addition, participants whose 
initial threat-identifications had been incorrect were more likely to reverse their decisions when the robot’s 
disagreement was (randomly) correct.

Robot feedback, but not embodiment, influences confidence
Mean initial confidence scores confirmed that the threat-identification task induced subjective uncertainty 
(M = 55.31%, SD = 22.57), as intended. In support of Prediction 1c, we observed a significant interaction between 
the robot feedback condition and whether participants repeated or reversed their threat-identifications: those 
who repeated their initial choices following robot agreement reported an average of 16% greater confidence, 
whereas those who repeated their initial threat-identifications despite robot disagreement reported an average 
of 9.48% less confidence (Fig. 3). Participants who repeated their initial threat-identifications despite the robot’s 
disagreement had been more confident in those choices (M = 65.96%, SD = 21.71) than those who decided to 
reverse their choices following disagreement (M = 48.86%, SD = 20.43), indicating that uncertainty heightened 
tendencies to trust. Among the latter cases, in which participants reversed their threat-identifications to accord 
with the robot, their final confidence (M = 48.39%, SD = 22.29) was closely equivalent to their initial confidence, 
suggesting that they acceded to the robot’s opinion despite continued uncertainty about whether the robot 

Figure 2.   Participants in Experiment 1 interacted with either an animated humanoid projected onto a screen 
(left) or a life-sized humanoid (right) of equivalent stature (RoboThespian)53.
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was correct. Again departing from Prediction 2, we observed no interaction between the robot feedback and 
embodiment conditions (Table 1).

Intelligence appraisals moderate robot influence on threat‑identification, decisions to kill, 
and confidence
To test whether assessments of the robot’s intelligence would moderate trust, we added the interaction between 
intelligence ratings and the robot feedback condition as a potential predictor to the three models of trust 
outcomes given in Table 1. (See Supplement for exploratory tests of effects of the other robot appraisals and 
trust outcomes in both experiments.) In support of Prediction 3, significant interactions were observed between 
the intelligence subscale and robot feedback condition for threat-identification reversal (coeff: 1.08, t = 3.31, 
p < 0.001, 95% CI [0.44, 1.72]), use of force reversal (coeff: 0.85, t = 3.03, p = 0.002, 95% CI [0.30, 1.40]), and 
shifts in confidence (coeff: − 0.14, t =  − 3.01, p = 0.003, 95% CI [− 0.23, − 0.05], for full models, see Supplementary 
Table S3). In follow-up models including only the robot disagreement cases, intelligence ratings predicted 
reversing both threat-identification (coeff: − 0.55, t =  − 3.90, p < 0.001, 95% CI [− 0.83, − 0.27]) and use of force 
decisions (coeff: − 0.55, t =  − 4.16, p < 0.001, 95% CI [− 0.82, − 0.29]). In the subset of cases where participants 
reversed their threat-identifications to accord with the robot, intelligence appraisals did not predict shifts 
in confidence, p = 0.145, whereas in contexts where participants repeated their initial threat-identifications 
despite robot disagreement, intelligence appraisals were negatively associated with confidence (coeff: − 0.14, 
t =  − 2.90, p = 0.004, 95% CI [− 0.23, − 0.04]). Participants who viewed the robot as more intelligent also reported 
greater increases in confidence following robot agreement (coeff: 0.14, t = 5.18, p < 0.001, 95% CI [0.09, 0.20]) 
(Supplementary Fig. S1). This overall pattern indicates that participants changed their minds, at least in part, 
because they viewed the robot as possessing competence rather than due to conformist motivations orthogonal 
to assessments of the robot as competent (e.g., deference to the robot as an authority).

Experiment 2
In Expt. 1, the virtual versus physical instantiations of the robot equivalently influenced threat-identifications, 
associated feelings of confidence, and decisions to kill, in effects which were more acute among participants who 
appraised the robot as relatively intelligent. The null effects of physical embodiment on trust may owe to the 

Table 1.   Parameter estimates for models of predictors of changes in threat-identification, decisions to kill, or 
confidence following robot feedback (Expt. 1). N = 135. Multilevel models with all predictors and outcomes 
entered at Level 1, save for the between-subjects robot Embodiment variable at Level 2. All linear variables 
were standardized. Random intercept included to account for shared variance within participants; covariance 
matrices were unstructured. Robot Feedback: 0 = Agree, 1 = Disagree. Embodiment: 0 = Disembodied, 
1 = Embodied. Initial Threat-ID: 0 = Ally, 1 = Enemy. Initial Correctness: 0 = Correct, 1 = Incorrect. Reversed 
Threat-ID: 0 = Repeated, 1 = Reversed.

Parm. Est. SE t p 95% CI

Change 1: Threat-identification

 Robot feedback 5.29 0.48 11.04  < 0.001 4.35, 6.23

 Embodiment 0.22 0.26 0.82 0.414  − 0.30, 0.73

 Feedback × embodiment  − 0.12 0.67  − 0.18 0.860  − 1.44, 1.20

 Initial threat-ID 0.49 0.17 2.95 0.003 0.16, 0.81

 Initial correctness 0.83 0.18 4.56  < 0.001 0.48, 1.19

 Intercept  − 1.33 0.25  − 5.40  < 0.001  − 1.81, − 0.85

Change 2: Decisions to kill

 Robot feedback 4.95 0.41 12.16  < 0.001 4.15, 5.75

 Embodiment 0.15 0.25 0.62 0.535  − 0.33, 0.64

 Feedback × embodiment  − 0.00 0.58  − 0.01 0.996  − 1.13, 1.13

 Initial threat-ID 0.75 0.16 4.60  < 0.001 0.43, 1.07

 Initial correctness 0.54 0.18 3.02 0.003 0.19, 0.88

 Intercept  − 1.38 0.24  − 5.82  < 0.001  − 1.84, − 0.91

Change 3: Confidence

 Robot feedback  − 0.95 0.15  − 6.46  < 0.001  − 1.23, − 0.66

 Embodiment 0.12 0.06 1.86 0.064  − 0.01, 0.25

 Feedback × embodiment  − 0.08 0.09  − 0.90 0.367  − 0.26, 0.10

 Reversed threat-ID  − 0.79 0.29  − 2.73 0.006  − 1.36, − 0.22

 Feedback × reversed threat-ID 1.20 0.30 4.05  < 0.001 0.62, 1.79

 Initial threat-ID 0.01 0.05 0.16 0.873  − 0.08, 0.10

 Initial correctness 0.12 0.05 2.30 0.022 0.02, 0.22

 Intercept 0.21 0.10 1.98 0.048 0.00, 0.41
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highly anthropomorphic presentation of the robot, which may have swamped the effect of physicality reported 
in prior research. Anthropomorphism has been defined as the attribution of human characteristics or traits 
to nonhuman agents, a tendency theorized to be heightened in interactions with artificial agents by (i) lack of 
understanding of their inner workings, (ii) need to make sense of agents in order to interact effectively with them, 
and/or (iii) social motives to establish affiliative connections36. Our task paradigm plausibly involved at least the 
first two of these determinants, as participants were not provided insight into how the robot’s software functioned, 
and as participants were instructed to attempt to perform as accurately as possible within the threat-identification 
task. In addition, there may have been some motivation to socially affiliate with the robot, given its overtly 
personlike emotive and conversational self-presentation, and given that the robot was rated as moderately likable, 
on average, in both the virtual and physical conditions. Although humans are prone to anthropomorphize even 
simple shapes when they exhibit seemingly goal-oriented behavior37, agents that morphologically mimic human 
appearance have been found to evoke greater attributions of humanlike mental states36, which has been found to 
potentially heighten trust11,12. Thus, in addition to the nature of the task, the highly physically anthropomorphic 
nature of the robot in Experiment 1 may have contributed to the strikingly high degree of trust observed.

To test the extent to which anthropomorphic physical presentation heightened overtrust, in Expt. 2 we 
contrasted the influence of the same virtual robot with that of less anthropomorphic virtual robots. The Interactive 
Humanoid was identical to the animated robot used in Expt. 1 and evinced the same physical, sociolinguistic, 
postural, facial and gestural anthropomorphism (N = 146); the Interactive Nonhumanoid consisted of an inert, 
camera-equipped machine that spoke with the same verbal contextual responses to participants’ choices 
(N = 139); the Nonhumanoid was visually identical but evinced less responsiveness (N = 138) (Fig. 4). Specifically, 
the Nonhumanoid provided the same initial verbal explanation of the task as in the other conditions to avoid 
potential confounds regarding task comprehension, but did not display any responses to the participants’ choices, 
nor any speech during the drone warfare simulation, instead only indicating via a text box whether it had 
categorized the image as an enemy or an ally. Aside from the manipulation of anthropomorphism and move 
to a virtual room encountered online, the drone warfare simulation task was identical to that used previously.

Figure 3.   Boxplots of changes in confidence between the initial threat-identification decisions and the 
final decisions following robot feedback (difference scores), by decision context, in Expt. 1 (top) and Expt. 2 
(bottom), pooling robot conditions. The width of the shaded areas represents the proportion of data located 
there; means are represented by the thick, black horizontal bars; medians are indicated by the thin, grey bars; 
error bars indicate 95% CIs. Note that participants seldom reversed threat-identifications following robot 
agreement (1.2% of cases, Expt. 1; 2.2% of cases, Expt. 2).
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The design of Expt. 2 allowed us to test Predictions 1 and 3 once again, and to test additional predictions:

4.	 Anthropomorphism and trust. Predictions 1a–c above regarding the robot’s influence on decision-making 
will be more evident in the Interactive Humanoid condition than in the Nonhumanoid condition.

5.	 Anthropomorphism and intelligence. The Interactive Humanoid will be rated more intelligent than the 
Nonhumanoid.

Note that our directional predictions only concerned the contrasts between the Interactive Humanoid and 
the Nonhumanoid; the Interactive Nonhumanoid condition was included to assess the potential additive impact 
of the Humanoid’s visual anthropomorphism. The use of online data collection in Expt. 2 also allowed us to test 
the generalizability of the previous lab-based findings derived from a university sample with a larger and more 
demographically diverse sample.

Robot appraisals
Pooling conditions, as before, the robot appraisal dimensions were moderately to strongly positively associated 
(Supplementary Table S2). Analyses of variance revealed significant effects of condition with regard to GQS 
ratings of Intelligence, F(2, 420) = 3.32, p = 0.037, ηp

2 = 0.02, Anthropomorphism, F(2, 420) = 3.27, p = 0.039, 
ηp

2 = 0.02, Animacy, F(2, 420) = 5.61, p = 0.004, ηp
2 = 0.03, and Safety, F(2, 420) = 4.33, p = 0.014, ηp

2 = 0.02, but 
not Likability, p = 0.152 (pooled Mlikability = 3.90, SD = 0.78).

Figure 4.   Participants in Expt. 2 (online) encountered the physically and behaviorally anthropomorphic 
Interactive Humanoid robot used in Expt. 1 (top), an Interactive Nonhumanoid robot with equivalent speech 
behavior (middle), or a Nonhumanoid which did not react to participants’ choices, but rather displayed its 
threat-identification feedback via textbox (bottom).
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Follow-up contrasts with Bonferroni corrections revealed that, against Prediction 5, the Interactive Humanoid 
(Mintelligence = 4.00, SD = 0.79) was not appraised to be significantly more intelligent than the Nonhumanoid 
(Mintelligence = 3.97, SD = 0.70), p = 0.100, or the Interactive Nonhumanoid (Mintelligence = 4.17, SD = 0.66), p = 0.131. 
The two Nonhumanoid conditions also did not significantly differ in Intelligence ratings, p = 0.051. The mean 
scores across conditions were well above the midpoint, indicating that they were rated as highly intelligent.

With regard to Anthropomorphism, the Interactive Humanoid (Manthropomorphism = 2.61, SD = 1.09) was rated 
higher than the Nonhumanoid (Manthropomorphism = 2.30, SD = 1.06) p = 0.015, 95% CI [0.06, 0.55], but not the 
Interactive Nonhumanoid (Manthropomorphism = 2.54, SD = 1.03), p = 0.100. The two Nonhumanoid conditions did 
not significantly differ in Anthropomorphism ratings, p = 0.168. Notably, the mean scores across conditions 
were just below the midpoint, indicating that they were rated as somewhere between anthropomorphic and 
mechanistic according to the GQS.

With regard to Animacy, the Interactive Humanoid (Manimacy = 3.08, SD = 0.94) was rated higher than the 
Nonhumanoid (Manimacy = 2.78, SD = 0.86), p = 0.012, 95% CI [0.05, 0.55], but not the Interactive Nonhumanoid 
(Manimacy = 3.08, SD = 0.82), p = 0.100. The Interactive Nonhumanoid was also rated significantly more animate 
than the Nonhumanoid, p = 0.011, 95% CI [0.06, 0.56]. The mean scores for Animacy across conditions were just 
around the midpoint, indicating that they were rated as somewhere between living and nonliving.

Finally, with regard to Safety, the Interactive Humanoid (Msafety = 4.22, SD = 0.90) was rated lower than the 
Nonhumanoid (Msafety = 4.47, SD = 0.64), p = 0.021, 95% CI [− 0.48, − 0.03], but not the Interactive Nonhumanoid 
(Msafety = 4.24, SD = 0.80), p = 0.100. The two Nonhumanoid conditions did not significantly differ in Safety ratings, 
p = 0.054. The two items making up this score essentially reference calm as opposed to agitation. Speculatively, 
the minimally interactive Nonhumanoid may have been rated more safe than the Humanoid because it did not 
nonverbally express dissent when participants disagreed.

The overall pattern of comparability between appraisals of the Interactive Humanoid and Interactive 
Nonhumanoid indicates that their sociolinguistic responsivity to participants’ choices largely trumped the 
physical differences between them. Where significant contrasts between conditions were detected, the differences 
were modest. All three robots were appraised to be relatively high in Intelligence, Safety and Likability, while 
moderately Anthropomorphic or Animate (Supplementary Table S2). This overall pattern is consistent with the 
view that  people are disposed to attribute a considerable degree of intelligence and affiliative qualities even to 
minimally anthropomorphic agents38.

Robot feedback and anthropomorphism influence threat‑identification and decisions to kill
Replicating the support for Prediction 1a obtained in Expt. 1, robot disagreement again predicted reversal 
of participants’ initial threat-identifications and related decisions to kill (Table 2). When the robot randomly 
disagreed (pooling conditions), participants reversed their threat-identifications in 67.3% of cases, and almost 
universally repeated their threat-identifications when the robot agreed with them (97.8% of cases), in a pattern 
closely resembling that observed previously. Participants’ initial threat-identification accuracy was 65.0% but fell 
to 41.3% when the robot disagreed, a decline of 23.7%. In further support for Prediction 1b, robot disagreement 
again predicted reversal of participants’ decisions to deploy missiles or withdraw relative to their initial threat-
identification decisions. When the robot disagreed, participants reversed their threat-contingent decisions about 
whether to kill in 66.7% of cases.

We tested whether the degree of anthropomorphism would intensify overtrust by dummy coding the 
Interactive Humanoid and the Interactive Nonhumanoid conditions, with the Nonhumanoid as the control 
category. In support of Prediction 4, despite the modest effects of the anthropomorphism manipulation on 
self-report appraisals of the robots, we observed interactions between the robot feedback condition and both 
the Interactive Humanoid and Interactive Nonhumanoid conditions with respect to threat-identifications 
(Table 2). Participants reversed their threat-identifications to a modestly greater extent when either the Interactive 
Humanoid disagreed (67.9% of cases) or the Interactive Nonhumanoid disagreed (68.9% of cases) relative to 
when the Nonhumanoid disagreed (65.1% of cases). With regard to decisions to kill, we observed a similar, albeit 
marginal, interaction between robot feedback and the Interactive Humanoid condition (p = 0.050), but not the 
Interactive Nonhumanoid condition (p = 0.214). The effects of anthropomorphism were small: participants were 
disposed to reverse their threat-identifications in approximately two-thirds of all cases when any of the agents 
disagreed (Fig. 5). At scale, however, even the modest tendency to be more swayed by anthropomorphically 
interactive AI observed here merits consideration given the stakes of life-or-death decisions.

We also found that, as in Expt. 1, participants were less prone to reverse their identifications or lethal force 
decisions when targets were initially identified as civilian allies than when identified as enemies, again suggesting 
reluctance to simulate killing. Also replicating the results of Expt. 1, when their initial threat-identifications were 
correct, participants were less likely to reverse their decisions to accord with the robot (Table 2).

Robot feedback and anthropomorphism influence confidence
Mean initial confidence scores confirmed that, as in Expt. 1, the threat-identification task induced uncertainty 
(M = 56.29%, SD = 23.96). In support of Prediction 1c, we observed a significant interaction between robot 
feedback and whether the participant reversed or repeated their initial threat-identification: those who repeated 
their initial choices following robot agreement reported an average of 16.06% greater confidence, whereas 
those who repeated their initial threat-identifications despite robot disagreement reported an average of 8.35% 
less confidence (Fig. 3). Participants who repeated their choices despite disagreement were more confident in 
those initial choices (M = 66.98%, SD = 23.10) than were those who decided to reverse their choices following 
disagreement (M = 50.03%, SD = 22.70), indicating that, as in the prior experiment, uncertainty heightened 
tendencies to trust. Mean confidence modestly increased when participants reversed their threat-identifications 
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to accord with the robot (Mfinal_confidence = 53.99%, SD = 23.22), suggesting trust in the robot as possessing task-
competence. Nevertheless, as in Expt. 1, participants who acceded to the robot’s opinion evinced moderate 
uncertainty about whether the robot was correct.

In partial support of Prediction 4, we observed a significant interaction between robot feedback and the 
Interactive Humanoid condition (Table 2), such that participants were an average of 10.64% less confident 
relative to their initial baseline when the Interactive Humanoid disagreed yet they repeated their initial choices, in 
comparison to a 7.07% average decrease in confidence when the Nonhumanoid disagreed (Supplement Fig. S3). 
Against Prediction 4, however, participants were 6.75% more confident on average when they reversed their 
initial choice following the Nonhumanoid’s disagreement than when the Interactive Humanoid disagreed (2.58% 
more confident). There was no interaction between robot feedback and the Interactive Nonhumanoid condition, 
p = 0.524 (Table 2).

Intelligence appraisals moderate robot influence on threat‑identification, decisions to kill, 
and confidence
Finally, we tested whether individual differences in assessments of the robot’s intelligence would moderate the 
three trust outcomes as in Expt. 1 (see Supplementary Table S13 for full models). In support of Prediction 3, and 
as in Expt. 1, significant interactions were observed between the intelligence ratings and robot feedback condition 
for threat-identification reversal (coeff: 0.39, t = 2.37, p = 0.018, 95% CI [0.07, 0.71]), use of force reversal (coeff: 
0.71, t = 4.96, p < 0.001, 95% CI [0.43, 0.98]), and shifts in subjective confidence (coeff: − 0.07, t =  − 2.67, p = 0.008, 
95% CI [− 0.11, − 0.02]). In follow-up models including only the robot disagreement cases and intelligence as the 
predictor, intelligence ratings predicted reversing both threat-identification (coeff: − 0.63, t =  − 8.78, p < 0.001, 

Table 2.   Parameter estimates for models of predictors of changes in threat-identification, decisions to 
kill, or confidence following robot feedback (Expt. 2). N = 423. Multilevel models with all predictors and 
outcomes entered at Level 1, save for the between-subjects robot variables (Interactive Humanoid, Interactive 
Nonhumanoid) at Level 2. All linear variables were standardized. Random intercept included to account for 
the shared variance within participants; covariance matrices were unstructured. The Interactive Humanoid 
and Interactive Nonhumanoid conditions were dummy-coded with the Nonhumanoid as the control category. 
Robot Feedback: 0 = Agree, 1 = Disagree. Initial Threat-ID: 0 = Ally, 1 = Enemy. Initial Correctness: 0 = Correct, 
1 = Incorrect. Reversed Threat-ID: 0 = Repeated, 1 = Reversed.

Parm. Est. SE t p 95% CI

Change 1: Threat-identification

 Robot feedback 6.67 0.49 13.63  < 0.001 5.71, 7.63

 Interactive humanoid 0.17 0.17 0.97 0.331  − 0.17, 0.51

 Interactive nonhumanoid 0.21 0.18 1.17 0.244  − 0.14, 0.55

 Feedback × interact. human.  − 0.90 0.36  − 2.54 0.011  − 1.60, − 0.21

 Feedback × interact. Nonhum.  − 1.31 0.40  − 3.29  < 0.001  − 2.10, − 0.53

 Initial threat-ID 0.45 0.09 4.82  < 0.001 0.27, 0.63

 Initial correctness 0.74 0.10 7.29  < 0.001 0.54, 0.94

 Intercept  − 1.80 0.23  − 7.75  < 0.001  − 2.26, − 1.35

Change 2: Decisions to kill

 Robot feedback 5.64 0.43 13.08  < 0.001 4.79, 6.48

 Interactive humanoid 0.31 0.16 1.98 0.048 0.00, 0.62

 Interactive nonhumanoid 0.32 0.16 2.01 0.044 0.01, 0.63

 Feedback × interact. human.  − 0.70 0.36  − 1.96 0.050  − 1.39, − 0.00

 Feedback × interact. nonhum.  − 0.42 0.33  − 1.24 0.214  − 1.07, 0.24

 Initial threat-ID 0.85 0.09 9.29  < 0.001 0.67, 1.03

 Initial correctness 0.70 0.10 7.14  < 0.001 0.51, 0.89

 Intercept  − 2.09 0.21  − 9.73  < 0.001  − 2.51, − 1.67

Change 3: Confidence

 Robot feedback  − 0.95 0.05  − 19.79  < 0.001  − 1.04, − 0.86

 Interactive humanoid  − 0.02 0.04  − 0.51 0.611  − 0.10, 0.06

 Interactive nonhumanoid  − 0.07 0.04  − 1.79 0.074  − 0.16, 0.01

 Feedback × interact. human.  − 0.14 0.06  − 2.36 0.018  − 0.25, − 0.02

 Feedback × interact. nonhum.  − 0.04 0.06  − 0.64 0.524  − 0.15, 0.08

 Reversed threat-ID  − 0.70 0.12  − 6.05  < 0.001  − 0.93, − 0.47

 Feedback × reversed threat-ID 1.21 0.12 9.98  < 0.001 0.97, 1.45

 Initial threat-ID  − 0.08 0.02  − 3.12 0.002  − 0.12, − 0.03

 Initial correctness 0.10 0.03 4.07  < 0.001 0.05, 0.15

 Intercept 0.38 0.03 11.18  < 0.001 0.31, 0.44
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95% CI [− 0.77, − 0.49]) and use of force decisions (coeff: − 0.60, t =  − 8.98, p < 0.001, 95% CI [− 0.73, − 0.47]. In 
the subset of decision contexts where participants reversed their threat-identifications to accord with the robot, 
intelligence appraisals predicted increases in confidence (coeff: 0.07, t = 2.54, p = 0.011, 95% CI [0.02, 0.12]), 
suggesting that participants who viewed the robot as intelligent were more sanguine that it had correctly caught 
their initial error. Also in line with Prediction 3, and replicating Expt. 1, participants who viewed the robot 
as more intelligent reported greater increases in confidence following robot agreement (coeff: 0.09, t = 6.01, 
p < 0.001, 95% CI [0.06, 0.12]) (Supplementary Fig. 2). However, against Prediction 3 and the findings of Expt. 
1, intelligence appraisals did not significantly predict reductions in confidence in contexts where participants 
repeated their initial threat-identifications despite robot disagreement, p = 0.158.

Whereas the intelligence measure was framed to participants as assessing the robot’s general competence, we 
also obtained a similar overall pattern of moderation using a measure, added to Expt. 2, that narrowly probed 
the extent to which the robot and the participant were viewed as capable of correctly performing this specific 
threat-identification task (1 = Terrible; 2 = Bad; 3 = Fair; 4 = Good; 5 = Perfect; see Supplementary Tables S19, S20 
for details and analyses). On average, pooling conditions, participants rated the robot as more capable (M = 3.78, 
SD = 0.76) than themselves (M = 2.85, SD = 0.89), and the degree to which participants perceived the robot as 
task-competent relative to themselves predicted reversals of both their threat-ID and use of force decisions when 
the robot disagreed, feeling more confident when either the robot agreed or when they reversed their choices in 
order to agree with the robot, and feeling less confident when the robot disagreed yet they did not reverse their 
choice (Table S20). In sum, participants appear to have been motivated to change their decisions due to trust in 
the robots’ intelligence and task-competence, rather than (or in addition to) other possible motives to conform.

Discussion
Across two experiments, in a paradigm designed to simulate life-or-death decision-making under 
ambiguous uncertainty, participants evinced considerable trust in the random recommendations of AI agents, 
whether instantiated as a physically present anthropomorphic robot or as virtual robots varying in physical and 
behavioral anthropomorphism. The premise that uncertain decision-makers will tend to reverse their choices 
when another agent disagrees is not controversial, but the high frequency with which participants changed their 
minds merits attention, particularly given the simulated stakes—the deaths of innocent people—and that the AI 
agents were trusted despite both (i) overtly introducing themselves as fallible and (ii) subsequently providing 
entirely unreliable, random input. Indeed, one might reasonably envision a different pattern of results wherein 
participants tended to disregard the guidance of agents that randomly disagree half of the time, perhaps inferring 
(correctly) the agents to be faulty given that the agents had explicitly acknowledged their fallibility in performing 
the task. To the contrary, our findings portray the people in our samples as dramatically disposed to overtrust 
and defer to unreliable AI.

The results of our manipulation of anthropomorphism in Expt. 2 indicate that humanlike social interactivity, 
largely independent of physical anthropomorphism, can modestly heighten trust in AI agents within task domains 
involving perceptual categorizations under uncertainty. Future research should explore the generalizability of 
these effects to task domains in which physical anthropomorphism may be more consequential. For example, in 
social decision contexts (e.g., evaluating others’ ambiguous intentions, negotiating), physically anthropomorphic 
agents such as the Interactive Humanoid which orchestrate facial expressions, eye gaze, verbal utterances, 
gestures, and postural cues may be perceived as possessing domain-relevant sociocognitive or emotional 
capacities, and hence as substantially more trustworthy. By the same token, minimally interactive, physically 

Figure 5.   Pyramid count of threat-identification reversals (i.e., participants changed their choices) and repeats 
(i.e., participants did not change their choices) following robot disagreement (grey bars) versus agreement 
(white bars), by anthropomorphism condition in Expt. 2. Error bars indicate 95% CIs.
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nonanthropomorphic agents such as the Nonhumanoid of Expt. 2 may be deemed comparably capable to a highly 
anthropomorphic agent in the context of asocial tasks (e.g., as here, image classification) which they appear 
well-suited to perform. The likelihood that trust in robots and other AI agents is not intrinsically determined 
by characteristics such as anthropomorphism, but rather reflects the human decision-maker’s perceptions 
of the fit between the agent’s characteristics and the focal task39, may reconcile the relatively small effects of 
anthropomorphism observed in this threat-identification task with the prior reports of sizable effects in other 
contexts11.

Notably, we found in Expt. 2 that the Interactive Nonhumanoid was rated equivalently anthropomorphic 
and alive as the Humanoid, and that the minimally interactive Nonhumanoid’s appraisals were not much lower, 
in line with work indicating that cognitive resources are required to suppress an otherwise reflexive tendency 
to anthropomorphize40. If this hypothesis is true, then the cognitive load induced by our threat-identification 
task may have heightened the tendency to attribute humanlike mental qualities to both the Humanoid and 
Nonhumanoids—all of whom were overtrusted in our simple model of life-or-death decision-making. Integrating 
evidence for a baseline anthropomorphizing tendency requiring cognitive resources to suppress with Epley 
et al.‘s influential model of the psychological determinants of anthropomorphism36, humans interacting with 
agents under cognitively and emotionally demanding situations (e.g., stressful combat, policing, emergency 
evacuation or medical triage scenarios) may be particularly prone to anthropomorphize and trust because such 
situations enhance motives to act effectively and to socially connect with fellow team-members41. Although our 
present task was sufficiently difficult as to require significant cognitive resources, and our task framing (i.e., a 
simulation in which mistakes would mean killing children) appears to have inspired participants to take the 
task seriously, it could not be described as particularly stressful. Future work exploring the extent to which 
demanding and threatening circumstances up-regulate anthropomorphism and related decision biases should 
incorporate methods that maximize realism and emotional engagement (e.g., VR)42. Likewise, whereas our simple 
task bears no resemblance to real-world military threat-detection procedures, future applied research should 
explore whether the overtrust dynamics we observed translate to ecologically valid decision paradigms, and 
should include samples equipped with relevant expertise (e.g., military, police, or emergency medical personnel).

While the research community has recognized the problem of overtrust in AI38, the preponderance of studies 
have focused on benign decision contexts. Future work should focus on identifying interventions to counter 
problematic overtrust when, as in the present studies, the decision stakes are grave. For example, Buçinca and 
colleagues recently demonstrated that cognitive forcing functions—interventions that increase analytical over 
heuristic reasoning—can successfully reduce overtrust in a task involving planning healthy meals43. Cognitive 
forcing functions such as requiring a period of conscious deliberation before receiving AI recommendations, 
or making AI input optional (i.e., rather than being provided automatically, only accessible upon the human’s 
request), might similarly improve performance outcomes when AI provides flawed feedback regarding life-or-
death choices, insofar as heuristic representations of AI agents as competent decision partners promote deference 
to their input and decreased human reflection.

Participants in both experiments were less inclined to reverse identifications of civilian allies than they were 
to reverse identifications of enemies. These findings underline the seriousness with which participants engaged in 
the simulations, and suggest that in real-world decision contexts humans might be less susceptible to unreliable 
AI recommendations to harm than to refrain from harm.

When their initial threat-identifications were incorrect, participants in both experiments were less confident 
and more inclined to reverse their choices at the robot’s behest. Despite this protective effect of initial accuracy, 
the magnitude of the observed overtrust in random AI feedback, which caused a ~ 20% degradation in accuracy 
in both experiments, carries disquieting implications regarding the integration of machine agents into military 
or police decision-making. AI agents are under active development as resources to enhance human judgment41,44, 
including the identification of enemies and the use of deadly force45. For example, the US Air Force recently 
integrated an AI “co-pilot” tasked with identifying enemy missile launchers into a reconnaissance mission during 
a simulated missile strike46, the US Army is incorporating machine-learning algorithms which identify targets to 
be destroyed by an unmanned aerial vehicle if a human operator concurs47, and, at the time of writing, the Israel 
Defense Forces are reported to use AI to automate the targeting of suspected enemy operatives for bombing in 
densely populated areas48.

Rather than seek to mitigate overtrust, some might argue that efforts would be best invested in optimizing 
AI to produce reliable guidance. This view appears sound within narrow problem domains in which AI can 
clearly exceed human abilities, but may not be as feasible in task domains requiring holistic understanding of the 
situational meaning or dynamically changing relative pertinence of variables49,50. Further, attempts to engineer 
threat-identification AI through machine learning strategies reliant on human-generated training data can 
introduce human biases leading to inaccurate, harmful predictions51,52. Similarly, development approaches reliant 
on comparing machine-generated threat-identification outputs to the ground truth are liable to be hampered 
when performance accuracy is difficult to gauge or systematically biased, as when, for example, the people killed 
in military strikes are assumed to be combatants unless proven otherwise53. Similar constraints may apply in 
optimizing AI to produce guidance in non-military domains, from healthcare to driving and beyond. Although 
technological advances can indeed augment some forms of life-or-death decision-making, the human propensity 
to overtrust AI under conditions of uncertainty must be addressed.
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Methods
The pre-registrations, full materials, example videos depicting all study conditions, and the datasets for both 
experiments are publicly archived (see https://​osf.​io/​cv2b9/). Both studies were approved by the University of 
California, Merced, Institutional Review Board, informed consent was obtained prior to participation, and all 
methods were in accord with relevant guidelines and regulations.

Experiment 1
Participants
Our pre-registered target sample size was 100 undergraduates recruited in exchange for course credit. However, 
due to software development delays in preparation for a separate study, we had the opportunity to collect a 
raw sample of 145 participants. Data were prescreened for technical problems occurring in ten of the study 
sessions (e.g., the robot or video projection failing), yielding a final sample of 135 participants (78.5% female, 
Mage = 21.33 years, SD = 4.08).

Design
Decision task
The decision task consisted of a simulated series of military unmanned aerial vehicle (UAV) flights over 12 
destinations. Participants were informed that some destinations were occupied by violent enemies (e.g., members 
of the extremist group ISIS), whereas others were occupied by civilian allies. The objective was to accurately 
identify and kill enemies without harming civilians. Once the self-piloting UAV arrived at each destination, the 
visual challenge consisted of a series of 8 rapidly presented greyscale images (650 ms each) depicting aerial views 
of buildings, with either an “enemy symbol” (a checkmark) or an “ally symbol” (a tilde) superimposed over each 
location (see Fig. 2). The 12 visual challenge stimuli (displayed 55 cm by 45 cm) were selected in random order 
and projected on a wall 2.2 m from where the participant was seated. The robot was programmed to turn and 
orient toward the images when displayed as though attending to them (in reality, the robot was not programmed 
to process imagery). Following the image series, one of the previously displayed images reappeared, now absent 
either symbol, the other images having served as distractors. The challenge for the participant was first to identify 
whether this final image, displayed for as long as the participant took to make their decision, had contained an 
enemy or an ally symbol, and relatedly to choose whether to kill the people on the ground (in which case an 
animation of the site exploding would appear) or to withdraw without deploying a missile. The visual challenge 
trials were pilot-tested to ensure that they were not so easy as to lead participants to feel highly certain, and hence 
have no cause to defer to the robot’s recommendation should it disagree, nor so difficult as to lead participants 
to feel low certainty, and hence lack motivation to disregard the robot.

The paradigm was explained with an accompanying slideshow to both preview the task mechanics and, 
crucially, to emotionally engage participants with the premise that the lives of innocent people were at stake—
if not in actuality given that the study involved a simulation, then in analogous real-world circumstances. 
Participants were encouraged to treat the task as seriously as possible, and were shown imagery of innocent 
civilians (including children), a UAV firing a missile, and devastation wreaked by a drone strike. The task was 
framed as a zero-sum dilemma wherein failure to kill enemy targets would also bring harm and death to civilians, 
such that a pacifistic strategy of refraining from using force would not protect the innocent. The only way to 
save the civilian allies was to correctly identify and destroy enemy targets while disengaging from ally targets. 
Debriefing interviews indicated that participants took the task seriously.

The robot was introduced as a partner that would aid in the decision task by providing its independent 
assessment. Before the experimental trials, the robot described itself as programmed to process imagery of the 
sort used in the simulation, yet as fallible, and stated that the ultimate decisions were up to the participant. The 
robot also claimed that its software was separate from the software presenting the visual challenges. Participants 
first chose in a dichotomous question whether the symbol over the destination had indicated an enemy or an 
ally, then rated their confidence on a linear scale (0 = Not at all; 100 = Extremely). Next, the robot provided its 
recommendation, [dis]agreeing with the participant’s initial decision in 50% of trials, without regard for accuracy 
(fixed order; see Supplementary Methods for details). Participants were then asked to once again decide which 
symbol had been displayed, and to rate their degree of confidence. In this way, participants were provided a 
means of changing their final decisions regarding whether enemies or allies were present contingent on the 
robot’s feedback.

Lastly, the participant decided in each trial whether to deploy a missile or disengage. Immediately before 
this final decision, the robot expressed its agreement or disagreement with the participant’s preceding threat-
identification choice. For example, in instances where the participant had repeated their initial enemy/ally 
choice despite the robot’s disagreement, the robot reiterated its disagreement. Alternatively, in instances where 
the participant had either reversed their initial threat-identification choice to align with the robot’s input, or 
repeated their initial choice after the robot had agreed, the robot reiterated its agreement. Accordingly, decisions 
whether to use lethal force in each trial are closely related to, yet distinct from, the final threat-identification, 
both because choosing whether to kill is inherently more consequential than threat-identification, and because 
the robot provided additional feedback prior to the decision to kill or withdraw.

Anthropomorphic robot
Participants were randomly assigned to team with the Embodied (N = 66) versus Disembodied (N = 69) version 
of the humanoid robot (RoboThespian)54, which features an actuated torso, legs, arms, fingers, and head designed 
to mimic human expression and gestures. The head unit enabled rich variation in facial characteristics and 
expressions using a rear-projected face55. The physically embodied robot stands 1.75 m and was positioned 

https://osf.io/cv2b9/
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2 m away from a table at which participants were seated; the projected robot was displayed at the same height 
and approximate distance (2.2 m) from participants (Fig. 2). The Disembodied and Embodied robot behavior 
sequences were identical. The robot explained the decision task to participants in order to acquaint participants 
with the highly anthropomorphic characteristics of the robot prior to the UAV simulation (see Supplement for 
links to example videos).

To further convey a sense of anthropomorphism, participants were provided a lavalier microphone 
enabling them to speak with the robot. Using speech-to-text software, the robot responded contingently to 
participants’ verbal responses of “yes”, “no”, or typical variations thereof (e.g., “yeah”, “yep”, “not really”, “nope”). 
While explaining the task, the robot would periodically ask participants whether they understood (e.g., “Does 
that make sense?”). If not, the robot would provide reworded explanations before checking comprehension 
once again; in practice, however, almost no participants indicated difficulty understanding any portion of the 
explanation. Next, participants were given a practice trial; the robot was programmed to agree with their practice 
threat-identification.

During the experimental trials, the robot reacted contingently to participants’ choices using a variety of 
statements (e.g., “I’m glad we agree”, “I think that’s the right choice”, “I don’t agree—I think that this image 
contained an enemy checkmark”, “I still think these are allies”, “Thank you for changing your mind—I really 
do think these are enemies”, or “Wait—you’re disengaging when we both agree they are enemies?”) with 
accompanying nonverbal facial, postural and gestural cues. These variations were selected randomly, such that 
the robot did not always respond in the same way across trials and interaction contexts (e.g., agreement versus 
disagreement; see Supplement for links to example videos and to the full library of response sequences). The 
variation in speech, facial expression and movement was intended to maximize anthropomorphism. No responses 
were produced through “Wizard of Oz” control by a human operator.

Survey measures
Following the final trial, the robot thanked the participant and directed them to complete a series of surveys 
related to their experience during the simulation (random order, see Supplement). The research assistant then 
escorted the participant to a workstation positioned out of sight of the robot to preclude participants from 
attempting to interact with the robot while completing the survey measures.

Robot appraisals
The Godspeed Questionnaire Series (GQS)24 measures appraisals of social robots according to five dimensions: 
Intelligence (α = 0.83), Anthropomorphism (α = 0.83), Animacy (α = 0.85), Likeability (α = 0.92), and Safety, 
r(134) = 0.67, p < 0.001. Our version of the GQS omitted one item from the Safety scale that used the contrastive 
anchors Quiescent/Surprised due to concern with its face validity, and was comprised of a total of 23 ratings 
using five-point bipolar semantic differential scales (presented in random order), with opposing anchors such as 
Incompetent/Competent or Artificial/Lifelike. As the five GQS dimensions were positively correlated, we conducted 
a confirmatory factor analysis (CFA) which indicated that the five-factor latent construct model was indeed an 
acceptable fit (see Supplement), although the dimensions of Anthropomorphism and Animacy exhibited high 
positive covariance, suggesting that combining them as a single factor would be more parsimonious. However, 
we decided to retain the conventional five-dimension structure of the GQS to facilitate comparison between our 
findings and prior research using the GQS.

Finally, participants completed demographics questions, including items probing their attitudes toward drone 
warfare, ratings of how difficult the threat-identification visual challenge seemed and how seriously they took the 
task. Responses confirmed that, as intended, the sample was not characterized by strong opinions for or against 
drone warfare which might obscure the potential influence of the robot, that the task was experienced as highly 
challenging but not impossible, and that the task was treated seriously (see Supplementary Table S1). Once the 
final surveys were complete, participants were thanked and debriefed.

Modeling robot influence on threat‑identification, decisions to kill, and confidence
We used multilevel modeling to test the effects of the robot’s feedback (agree versus disagree) or embodiment 
on trust according to the following three change outcomes: (i) target-identification reversals (0 = Repeated, 
1 = Reversed), (ii) reversals in decisions to use lethal force relative to initial target-identifications (0 = Did not 
reverse, 1 = Reversed), and (iii) linear changes in target-identification confidence (their initial confidence 
rating subtracted from their final confidence rating). The predictors included the robot feedback condition 
(0 = Agree, 1 = Disagree), embodiment condition (0 = Disembodied, 1 = Embodied), the participant’s initial 
target-identification category (0 = Ally, 1 = Enemy) and whether the participant’s initial threat-identification had 
been correct (0 = Correct, 1 = Incorrect). (Follow-up tests confirm that removing the initial target-identification 
category or initial correctness does not alter the pattern of significant results.) The models included all predictors 
and outcomes entered at Level 1, with the exception of the between-subjects embodiment variable entered at 
Level 2.

The models assessing linear shifts in confidence added a variable capturing whether the participant had 
reversed their initial target-identification (i.e., the first change outcome, now entered as a predictor variable), 
and the interaction between target-identification reversal and the robot feedback condition, in order to test the 
predicted differences in confidence shifts in contexts where participants had repeated versus reversed their initial 
target-identifications in light of the robot’s feedback. Random intercepts and slopes were included in all models 
to account for the shared variance in decisions within participants; unstructured covariance matrices were used. 
All linear variables were standardized (z-scored) to increase ease of model interpretation.
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Exploratory measures
We also conducted exploratory tests of potential effects of sex on trust outcomes, as well as tests of potential 
effects of individual differences in appraisals of the robot, attitudes toward the robot, and attitudes toward 
automation in general (see Supplement) (measures of individual differences in political orientation and religiosity 
were also collected; results are currently being prepared for separate publication).

Experiment 2 methods
Participants
Our pre-registered target sample size was ~ 450 online U.S. participants recruited in exchange for $4.50 using the 
recruitment platform Prolific.co. Data were prescreened for completeness and correctly answering three catch 
questions ensuring they used a desktop or laptop computer, the web browser Chrome (for which the online 
paradigm was optimized), and reported taking the task seriously, yielding a final sample of 423 participants 
(42.8% female, Mage = 42.2 years, SD = 13.08).

Design
After confirming according to two catch questions that video and audio were streaming properly, participants were 
randomly assigned to one of three between-subjects robot conditions in which the degree of anthropomorphism 
was manipulated. Aside from the manipulation of anthropomorphism and shift of the task setting to a virtual 
online room (Fig. 4), the drone warfare simulation task was identical to that used previously (note that the 
relative size of both the robots and the threat-identification visual challenge task was variable and contingent 
on the size of the computer screens used by the online participants). The Interactive Humanoid (N = 146) was 
identical to the animated robot used in Experiment 1 and evinced physical, sociolinguistic, postural, facial and 
gestural anthropomorphism; the Interactive Nonhumanoid (N = 139) consisted of an inert device equipped with 
apparent cameras and a graphic audio equalizer corresponding to its speech, yet which spoke with the same voice 
and sociolinguistically humanlike responses to participant choices as the humanoid robot; the Nonhumanoid 
(N = 138) was depicted as the same machine and provided the same initial interactive verbal explanation of the 
task to prevent potential confounds regarding task comprehension, but subsequently did not display context-
sensitive spoken responses to the participants’ choices, instead indicating via a text box whether it categorized 
the image as an enemy or an ally (Fig. 4).

Survey measures
Following the final trial, the robot thanked the participant and directed them to a series of online surveys 
including the measures described for Experiment 1, in addition to an added measure designed to capture the 
extent to which participants rated the robot as capable of performing the threat-identification visual challenge 
task relative to themselves. This measure was added to confirm that participants reversed their decisions and 
felt more/less confident in light of the robot’s feedback due to misplaced trust in its perceived competence. Once 
the final surveys were complete, participants were thanked and debriefed (additional exploratory measures of 
potential effects of individual differences in sex and attitudes toward the robot, drone warfare, or automation in 
general were also collected and analyzed, as in Experiment 1, see Supplement).

Modeling robot influence on threat‑identification, decisions to kill, and confidence
We used the same multilevel modeling approach employed in Experiment 1 to test the effects of the robot’s 
feedback (agree versus disagree) or anthropomorphism on target-identification reversals, reversals in decisions 
to use lethal force relative to initial target-identifications, and changes in target-identification confidence. 
Experiment 2 utilized a manipulation of relative anthropomorphism with three levels, therefore the Interactive 
Humanoid and Interactive Nonhumanoid conditions were dummy-coded with the Nonhumanoid as the control 
category. The models included all predictors and outcomes entered at Level 1, with the exception of the between-
subjects robot variables (Interactive Humanoid, Interactive Nonhumanoid), which were entered at Level 2. As 
before, all linear variables were standardized, a random intercept was included to account for the shared variance 
within participants, and the covariance matrices were unstructured.

Data availability
The dataset and full materials are available on the Open Science Framework: https://​osf.​io/​cv2b9/.
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