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4.1 Health State Estimation Flow. Events drive biological changes in the
user’s body. These biological components determine utility state dimension
values. The combination of these utility dimensions provide the health state,
akin to the GPS position. The user’s position is visualized to view the current
state within a certain semantic context defined by the user intent. . . . . . . . 116

4.2 Graph Network Block Unit and Update Process. Each GNB describes
a directed multi-graph, including multiple edges in the same direction or op-
posite directions, as shown between node B and C. Edges can also be to
a self node as shown for Node A. The properties characterizing the entire
multi-graph are summarized as global attributes within U. Step 1 shows the
initialization of a GNB. In the following steps, red highlights the updates.
Step 2 shows the edge update. Step 3 shows the node update. Step 4 shows
the global update, a visualization of algorithm 1. . . . . . . . . . . . . . . . . . . 117

4.3 Nested Microservices. The GNB structure global attributes give rise to a
microservice. These microservices are structured in a nested manner that can
interact with each other in complex networks. This allows for the relevant
level of abstraction to communicate in any system that wishes use the GNB.
Figure adapted from Meyer et al. [179]. . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Knowledge to Graph. Here, we translate cardiac output equations to the
graph structure. Cardiac output refers to the volume of blood that the heart
can pump per minute. Once we have the relationship in graph format in
conjunction with data streams from either cheap continuous sensors like a
weight scale or watch, or a more costly sensor like an ultrasound, we can
update the relationship to more accurately reflect the model of the individual. 120

4.5 User Interface. A user can browse through various domains of interest, or
search for a specific domain of interest in order to populate the a lamina. . . . 123

4.6 Semantic Laminae. For the system to initialize, the user must specify what
goals or domain of interest they have, which is referenced against a domain
knowledge database (DB) curated by experts of various fields. These experts
outline the relevant utility dimensions and have map layers that contain ROIs.
These map layers may also contain the connections between regions and the
layers of information on how to move between states in the region. These
connections will be expanded upon further in Chapter 6. . . . . . . . . . . . . . 124

4.7 Basic Utility Taxonomy. These nodes show the nested microservice archi-
tecture of the utility dimensions. The movement node is expanded to reveal
the next layer of microservices. This layer can be further expanded to more
detailed child nodes. This is a simple overview of the utility GNB at large. . . 125

4.8 Nested Biological Microservices. Human biology is represented as GNB
nodes at various layers of abstraction within the framework. This figure trans-
lates the cardiovascular system knowledge layers in Figure 2.4 into the GNB
structure. The four chosen abstraction layers for this work are the system
level, organ level, tissue level, and molecular level. . . . . . . . . . . . . . . . . . 127
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4.9 Major Factors that Change Health. This figure displays the burden of
health factors in the USA for the 20 years of 1990 to 2010 [185]. The top three
items that change the health state of an individual in the United States are
lifestyle events, followed by environmental and neurological events, validating
the necessity of tracking events for estimating health state. . . . . . . . . . . . 128

4.10 Personal Events: Time Scale of Intervals. The temporal scale of events
that happen to a person have a large range that can span over 15 orders of
magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.11 Event Processing Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.12 Initialization Steps. These are the four steps in initializing the graph struc-

ture for the individual. 1. First, we query the user for their intent. 2. Using
this query, we retrieve the appropriate laminae they can visualize. 3. These
laminae require a certain set of utility dimensions to be displayed. These are
populated next. In order to know the user position on these dimensions, the
appropriate biological blocks need assessment. 4. The fourth step populates
these appropriate blocks to monitor. . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.13 State Update Methods. 1. The system initiates from the user intent. 2. If
there is no data from the event or stream DB reported, self-edges update nodes
which then propagate along the directed edges to give new utility values. 3. If
interface events are detected from the event stream, they update the relevant
biological states, which then propagate. 4. If there are observed biological
attributes directly from sensors, they update the respective biological nodes.
5. If there are observed utility attributes directly from sensors, they update
the respective utility nodes. 6. The health state position is reported on the
lamina of interest, and/or can be viewed as raw utility dimensions, and/or
can be viewed as biological attributes. . . . . . . . . . . . . . . . . . . . . . . . . 136

4.14 Learning Situations. Relationships between nodes update in both inter-
layer edges or intra-layer edges. Situation A. When new knowledge is given
to the system, the appropriate edges or nodes are updated. Situation B.
Event-mining can discover relationships between temporal events within the
user personicle. These events can reflect an update to a biological node that
models behavior or any other biological component. Situation C. When
two nodes that are connected are both measured in parallel, the relationship
between the two nodes can be characterized to match the incoming data.
Situation D. When many source nodes are related to a target node, we can
use all the nodes to learn how they impact the target node. . . . . . . . . . . . 139

5.1 Chapter 5 Experimental Overview. The first part of Chapter 5 is ini-
tializing the system for the test subject in both breadth and depth. The
second phase demonstrates the state estimation in action. The final set of
experiments demonstrate three approaches to update the personal GNB model.143
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5.2 Central Hardware Devices. These are the three main central devices to
which other sensors link via local wireless connections of either Bluetooth,
WiFi, or ANT+ protocols. The devices themselves include their sensors. The
notebook computer contains a microphone, front camera, and HCI capture
software. The mobile phone includes a light sensor, microphone, accelerom-
eter, gyroscope, barometer, front, and rear camera. The wearable watch in-
cludes an optical sensor, accelerometer, gyroscope, barometer, and GPS. . . . 149
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individual including light, sound, temperature, humidity, and smoke. . . . . . . 150
5.8 Custom Gas Sensor IoT Device. This sensor IoT system was built with

multiple gas sensors connected to an Arduino micro-controller that links to
a Raspberry Pi computer. The computer sends the signal via a web Rest-
API that allows for a minute by minute monitoring of the gases in the local
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
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5.10 Exercise Event Understanding. Single exercise event summary with lo-
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5.11 Public Geospatial Dataset Integration. Many aspects of the environ-

ment, including ones that induce stress, can be elucidated from domain lit-
erature and publicly available GIS datasets. Related to pollution, we gather
air, audio, and light as factors that impact the health state. Related to demo-
graphic information, we gather crime, income, and cardiac deaths to estimate
socioeconomic stress [193]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.12 Computer Vision for Biological Measurements. Images can give in-
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height-to-width ratio, lending insight into their baseline testosterone produc-
tion. Second, we use color detection to see how the user’s skin color is changing
based on each month. Skin color is classified using the Fitzpatrick type used
routinely by dermatology physicians [232, 236]. We see on average that spring
time, the user has lighter skin than the rest of the year. Third, we use edge
detectors to characterize the wrinkling of the skin to understand collagen health.161

5.13 Cycling World Lamina. This interface displays many different types of
cycling of interest to the user. The user can select a specific type, zoom in
and out, or view the whole lamina at once. . . . . . . . . . . . . . . . . . . . . . 163
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5.14 Utilities of Human Health. In this work, we have defined five basic clusters
of human utility. Given the selection of the user, we focus on the utility
blocks that are connected to power production. In this work, we focus on the
endurance capacity of critical power production. These nodes are highlighted
in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
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power given duration is the CP curve. . . . . . . . . . . . . . . . . . . . . . . . . 165
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space (background) exists through 4 main biological systems (foreground).
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lipolysis (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.17 Aerobic Glycolysis Domain Knowledge. This figure shows the flow of
oxygen (O2) from the air to the muscles used in glucose oxidation, also il-
lustrating how the nodes are connected in the GNB. The processes are well-
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described mathematically. These processes are captured in the edges of the
GNB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
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many biological components nested within aerobic glycolysis. We focus on
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ing effect on the target node. Red arrows denote an inhibitory effect of the
source node to the target node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
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5.23 Circadian Rhythm of Interface Events. This figure shows different in-
terface events retrieved from the test subject data. Different days of the year
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different times of the day. Events in a day are represented as colored arcs on
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Life’s most valuable asset is health. Continuously understanding the state of our health

and modeling how it evolves is essential if we wish to improve it. Given the opportunity

that people live with more data about their life today than any other time in history, the

challenge rests in interweaving this data with the growing body of knowledge to compute

and model the health state of an individual continually.

This dissertation presents an approach to build a personal model and dynamically estimate

the health state of an individual by fusing multi-modal data and domain knowledge. The

system is stitched together from four essential abstraction elements: 1. the events in our life,

2. the layers of our biological systems (from molecular to an organism), 3. the functional

utilities that arise from biological underpinnings, and 4. how we interact with these utilities

in the reality of daily life. Connecting these four elements via graph network blocks forms

the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this

graph structure are then regularly updated with learning techniques as data is continuously

digested. Experiments demonstrate the use of dense and heterogeneous real-world data from

a variety of personal and environmental sensors to monitor individual cardiovascular health

state.
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State estimation and individual modeling is the fundamental basis for many revolutionary

efforts in health. Continuous access to the individual’s state allows a departure from disease-

oriented approaches, to a total health continuum paradigm. Precision in predicting health

requires a detailed understanding of an individual and their trajectory. By encasing this state

estimation within a navigational approach, a user can use a systematic guidance framework

to plan actions for each moment to transition their current state towards a desired one. This

work concludes by presenting this framework of combining the health state and personal

graph model to perpetually plan and assist us in living life towards our goals.
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Chapter 1

Introduction

It is health that is real wealth and not

pieces of gold and silver.

Mahatma Gandhi

Vibrant health lays the foundation of high-quality living. If we define quality as a function of

positive experiences over time, then we want to optimize those experiences and extend their

duration. Any life experiences rely upon a subset of general abilities to move, think, sense,

and maintain homeostasis of our biology. These abilities arise from a complex interactive

network of molecular machines that are always in flux. Maintaining and expanding the

capacity of these abilities paves the way for enhancing health and, therefore, quality of life.

When these abilities suffer from dysfunction, we realize we must take care of them. Rather

than address health when a person has already fallen ill, the challenge for the next century

and beyond is to ensure long lives of high performing health for each individual, thus enabling

people to flourish in their life goals.

Traditionally, health has been viewed with the lens of avoiding sickness rather than push-

ing towards health optimization. There are exceptions with athletics and military, where
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improved health status directly equates towards the success in the field. Why have the

health sciences generally placed a large number of resources in research and application to-

wards avoiding sickness rather than optimizing health? Based on the historical trend of

communicable disease, it was was a great need.

Figure 1.1: Crude Mortality Rates for All Causes. In the latter half of the twentieth
century, the non-infectious disease continues to be a significant cause of mortality, reflecting
the need for new strategies in health sciences.

Until recently in human history, a significant contributor to mortality and morbidity was

infectious disease and injury. Progress in health sciences during the last century resulted

in a significant decrease in communicable diseases, as shown in Figure 1.1. Antibiotics

reflected one side of the coin, by treating patients in a reactive manner, once an infection

had already become a health concern. On the flip side, advances in preventing infections

through population-level data offered insight into ways to improve public hygiene and contain

infectious agents, while vaccines biologically prevented infections. Continuing progress in

battling infectious diseases today remains a valiant effort in sciences and medicine, but
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it cannot scale as a general approach for all human health. Infection is mostly an episodic

problem, in which diagnoses are made after a patient is under attack and arrives at a medical

facility. Treatment is usually prescribed based on evidence-based rules to solve the problem,

and monitoring of the patient no longer occurs. The process described is an episodic

approach towards an individual’s health. Episodic refers to occasional measurement and

awareness of health state and actions to change the state towards a better one.

Globally chronic diseases, which include cardiovascular disease (CVD), cancers, chronic res-

piratory disease, and diabetes, have emerged as the primary contributor to degrading quality

of health. We see this including impoverished areas of the world, with 80 percent of chronic

disease burden occurring in developing countries [2]. The WHO explains that all regions of

the world have a similar relationship between the major modifiable risk factors and the main

chronic diseases [211]. Modern medicine relies mostly on reactive health systems that take

care of individuals only after they become sick due to the established paradigm of episodic

medicine. This means that healthcare professionals are systematically responding to acute

health problems and are symptom-focused. The overall health is not a priority within health-

care systems [98]. Prescribing medicine is the hallowed strategy medical experts have taken

toward treating disease, just as they approached infectious disease. It is necessary to move

beyond this episodic health model to tackle chronic disease and significantly improve qual-

ity of life. When comparing chronic disease to infectious disease, there are fundamental

differences in how the situation arises. There is no single event that leads to the disease,

rather slow changes in the state of the body. Risk factors, including raised blood pressure

and glucose levels, abnormal blood lipids, and weight (overweight and obesity), express the

causes of chronic diseases. Major modifiable risk factors alongside non-modifiable risk fac-

tors (including age and genetics) are the root causes of these diseases over time [211]. If

we are to apply a control input to keep people on a healthy trajectory via feedback loops,

we must be able to estimate the health state continuously [292]. Control systems inherently

need to know the difference between the current state versus the goal state. This approach
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is taken in acute moments in the hospital after entering an undesirable health state, such as

during anesthesia or Intensive Care Unit (ICU) monitoring. Once again, these are episodic

moments in a person’s life. Hence there is a clear distinction between episodic versus life-long

continuous estimation problems in health.

Health is a dynamic state that is continually changing based on a specific individual’s biology,

environment, and lifestyle. The state space of health is complex and multidimensional, but

for the sake of simplicity, in Figure 1.2, we describe a one-dimensional continuum ranging

from optimal health to death. Everyone is somewhere on this continuum at every moment,

but the quality of life increases if there is a shift towards the optimal (left or green side).

Technology that senses a user’s position on the health continuum can drastically improve

human health. In prehistoric times, only symptoms (perceptual indications) guided people’s

actions. Ancient civilizations started to document medical conditions with basic human

sensory abilities, such as how people visually appeared, their pulse rhythm, or coughing

sounds. In clinical language, symptoms (what a person feels) or signs (what is observable by

another person) are unfortunately latent signals of an already dysfunctional biological state.

Today, advanced methods detect changes in health, but only in a professional health-care

setting after patient visits due to severe enough symptoms or on an annual basis. Reducing

the lag time in recognizing health state changes requires transitioning from the current

measurement approach to a new high-resolution multi-modal continuous-sensing paradigm.
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Figure 1.2: The Health Continuum. Attention to health status occurs when there is a
detectable signal. Ancient civilizations could only use subjective symptoms and signs as an
indicator of the health state. Today, we have episodic measurements of a few criteria to
understand our health state, such as blood pressure or lipids on an annual basis. Beyond
those measurements, we still primarily rely on symptoms as the primary signal. Both of
these signals are sparse, and most individuals do not even collect symptom data. The next
revolution is to have continuous sensing of the health state so we can always have attention to
improving health through the means of ubiquitous computing and modeling at the individual
scale.

A general characteristic of humans and computing systems is the intelligibility and clarity

of understanding a situation, allowing for the best long term, planned decisions for a future

outcome. In today’s society, we see this clearly in economics. The tangible and quantitative

nature of financial capital allows humans or computers to make the decisions they see fit for

their intentions and plan for a quality of life they aspire to have. The difference between

finances and health is that live quantitative health status is virtually invisible to us, especially

when we are healthy. In financial matters, people can quantitatively see how much they are

saving or spending at any given moment. Market data updates every second across the globe.

If people become aware of their biology, they will see how daily life is affecting their health
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and make informed decisions accordingly. Health decisions are too important to be episodic.

They must be an intrinsic part of daily life, giving us the motivation behind proposing the

state estimation and navigation perspective in this work.

Ultimately, individuals, clinicians, and in general cybernetic systems (Figure 1.2), make

decisions based on determining the health state of the individual. Because people are unable

to feel their health change over time from the multitude of factors affecting them, we need

to develop methods to quantify and report health status using continuously collected multi-

modal data sources. If we can track changes before biological dysfunction, we may be able to

correct course, prevent, or delay the onset of chronic diseases. We can use the same principle

to change that health state towards a more optimal direction if the user wishes.

Computing efforts regarding state estimation in other fields have advanced society drastically

in the last several decades. For example, the Global Positioning System (GPS) launched in

1973 by the United States military for location state estimation. It was opened to the public

in 1983 by a bill signed by President Ronald Reagan with limited functionality and was

subsequently offered with full, accurate functionality by a bill signed in 2000 by President

Bill Clinton [175]. In the last 20 years, this allowed for systems to take a user’s location to

provide them with services such as understanding their position on a map, tagging photos,

providing navigation, tracking their movements, hailing a taxi, or ordering pizza to the

home doorstep. The state space of location included four dimensions of latitude, longitude,

altitude, and time. Our work aims to lay the groundwork for similar tasks in the context of

health.

So how can we compute the health state continuously? The primary fuel arises from the

diverse data streams produced about an individual daily. With the rapidly increasing avail-

ability of low-cost sensors in the last decade, there has been an explosion in the amount of

continuously collected multi-modal data. We see the relevance in the field of health with

the advent of wearable, Internet of Things (IoT), and ambient sensors, human-computer
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interactions, images, video, audio, and other digital sensors. Many of these low-cost sensors

produce continuous streams of data usable in a wide range of scenarios. The challenge rests

in leveraging this data to provide perpetual insight into the health of individuals. While

this allows measurement of the user state continuously, the downside of these sensors is that

measurements can be very noisy, cause information overload, produce non-actionable met-

rics, or are not directly related to the attribute we want to measure. These limitations have

so far proven to be a barrier in using low-cost sensors for real-world health state estimation

(HSE) and decision making for health. Furthermore, enabling data assimilation will require

a causal understanding of how sensor information relates to health status. To transform the

data into usable information, existing medical and biological scientific domain knowledge

must be used.

There are many challenges in providing a high-resolution continuous and individualized state

estimation for health. This dissertation aims to establish the preliminary groundwork to

address issues for the general health state concept and methods by which to apply it at an

individual scale.

In the next section, we will look at the thought process transition from traditional medicine

to state-of-the-art approaches towards improving health and state estimation, giving insight

as to what components are emerging needs in computing the health state.

1.1 Overview of Health and Medicine

The history of significant trends are important for us to understand health today and its

future developments, especially in understanding patterns that cause progress. From ancient

times until today, humans pay most attention to their health with the lens of healing from

illness. From a traditional point-of-view, the health of the individual only became a concern
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when negative impact could be perceived, causing the development of systems that operate

in the following steps. First, the individual acts as the primary sensor that their health state

is not the same as earlier. Second, a doctor or domain expert would conduct further tests

to gain an understanding of the causal reason behind the change in the health state. Third,

the doctor or health expert would prescribe medication or procedure that would hopefully

return the individual to their former health state. After this point, the individual is no

longer monitored until then next issue arises. The impacts on the health state occur due to

several critical situations. Situations that are significant impacts on health are listed below.

Each situation has a particular state estimation challenge and a unique set of actions to keep

health and homeostasis.

1. Infections have historically been a threat to health. The resulting invasion from dif-

ferent species battles with natural immune defenses, medical agents such as antibiotics,

or physical removal.

2. Cancer occurs due to errors in the genetic information of a cell. There is a natural

rate of error for DNA replication enzymes, which causes errors during each division

of a cell [101], a component of natural life and the process by which evolution occurs.

We, therefore, see age as a factor for cancer. Additional errors in the DNA structure

happen by insults from carcinogens, inflammation, or stress.

3. Physiological function of the person determines their operation from cellular to

organismal level. This includes the pumping of the heart to supply blood flow, the

strength of bones to provide support, the absorption of nutrition in the digestive sys-

tem, and the capacity to see. Many chronic diseases are a result of physiological

dysfunction.
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4. Injury can occur from either chronic issues or acute events. Overuse or improper use

may eventually result in injury. Acute injuries are caused by unintentional accidents

and or intentional combat. The severity can range from mild to traumatic.

5. Neurological and mental health is a complex topic and traverses a broad range of

sciences. Inherently there are some components of this aspect that are objective and

others that are subjective, leading to unique challenges in scientific progress.

6. Developmental disorders are caused by various factors determined by cellular growth

from fertilization until adulthood. As examples, these can be encoded in genetic er-

rors (chromosomal errors at birth), cell signaling biology (receptor dysfunction), or

deficiency during growth (low bone mass from low dietary calcium).

Before the twentieth century, infectious disease was a key determining factor for mortality.

With emerging infections, finding a cure, or reactively treating the disease that had already

occurred became commonplace. This is why health was primarily determined by the absence

of illness or disease [12]. The progress in the dramatic reduction of infectious disease came

through significant advances in state detection and actionable steps. The state detection

improved through the use of culturing the infection and microscopy to identify the pathogen.

Culturing amplifies the signal from the infectious agent. We use these techniques even today,

although further advances in gene sequencing and other assays promise to speed diagnosis

time and precision. Actionable steps to address the infection are usually antibiotics or

antiviral medications.

Adversarial pathogens became less of a fixture in medical research over the last century, and

chronic diseases became the center point of health challenges. These chronic diseases are

primarily a result of physiological function change. Currently, six in 10 adults in the United

States have a chronic disease; 4 in 10 adults have two or more. This makes chronic disease

the leading cause of death and disability [196]. The major chronic disease that dominated
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epidemiological data since 1940s was and continues to be cardiovascular diseases as shown

in Figure 1.3, with 647,000 Americans dying from heart disease each year (or 1 in 4 deaths)

[42]. Heart disease is, therefore, the leading cause of death in the United States. These above

situations are mostly modeled using large-scale population data by aggregating individuals

to produce statistically significant outcomes due to the lack of high-resolution personal data.

Thus the state estimation for chronic disease is based on a population model that predicts the

health outcomes of an individual. Measurements on the individual are taken generally on an

annual basis to update the state. Medications are given to individuals if the state changes to

a new classification, given population model thresholds. Overall for chronic disease, patient

state estimation is conducted through general modeling, updated on an episodic basis.

Figure 1.3: Death Rates. This graph shows the death rates in the 20th Century United
States [172].
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While genetics and mutations play a role, CVD and a significant portion of cancers are

largely a function of external factors that can be addressed by factors extrinsic to the biolog-

ical risk, such as lifestyle and the environment. Cancer develops from both random intrinsic

DNA replication errors (or “bad luck”) and from factors not related to genetics. Cancer

causation is multi-factorial and the modification of risk factors is critical in cancer preven-

tion [305]. If external and environmental risk factors dominate, then lifestyle choice, which

reduces risk exposure, is crucial for this reduction. One-third of cancers are attributable to

environmental factors or inherited predispositions [264]. The approach to chronic diseases

has been similar to infectious diseases in that treatment has been a reaction to symptoms.

Introductions to medication continue; however, the rate of disease decrease has stabilized, as

shown in Figure 1.3. This motivates the need for more robust methods to address these dis-

eases than sole reliance on medication developments and reactive approaches for addressing

when an individual is already in a state of disease. Furthermore, tracking the lifestyle and

environmental events give substantial clues into the evolving health state of the person in

addition to medications or procedures that assist in reducing risk for disease. In summary,

the actionable items to address the chronic disease are widespread and occurring at every

moment of the day.

Health science disciplines usually still focus on these reactive approaches today. Integrating

the knowledge from this is essential, as the illness lens highlights regions of our health

state that are undesirable. This thesis work will primarily focus on physiological function

concerning cardiovascular function and disease, as it is the primary determinant of major

chronic diseases.
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1.2 Modern Trends in Health Sciences

There is a need for better state estimation and actionable steps for future progress. As

reactive methods for addressing disease is no longer sufficient for a global decrease in rates

of chronic disease, we examine new models. These approaches require a true understanding

of the individual state of health and predicting and preventing entry to poor health state

regions. Personalized methods also acknowledge that individual state must be uniquely

observed, requiring high quality and quantity of data about an individual.

Projections show that medicine and the health sciences will move from a reactive to a

proactive discipline over the next few decades a discipline that is predictive, preventive,

precise, personalized, and participatory [120, 237]. There must be a holistic approach to dis-

ease, emerging technologies, and analytical tools to ensure proactive advancements. Holistic

approaches refer to the total connected network of the individual’s health. Emerging tech-

nologies include the proliferation of sensors and computing power, and analytical tools refer

to the manipulation of large amounts of information to produce meaningful and actionable

insight. Other advances we will also review include developments the growing wellness in-

dustry which are currently outside the scope of the healthcare industry. Wellness focuses on

moving a patient towards the optimal state of health, as shown in the future health contin-

uum in Figure 1.2. In contrast, healthcare focuses on moving the patient from the red area

of dysfunctional health to the level of mediocre health. We will take a deeper dive into these

new approaches as they will be an integral part of the design requirements of this research.

1.2.1 Personalized Health

Personalized health refers to building individual models to represent the health state, and

tailoring inputs for a specific individual. Personalization includes two key sub-models. The
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first is understanding of an individual’s preferences and life situation, encapsulating the

subjective attributes and autonomy of the user. On the other hand personalization for the

biological machinery is an objective model. As an example, in Figure 1.4, the individual

heart electrical patterns are modeled [11]. Data from “omic” sources are incorporated to

understand the complexity of an individual’s biology, which includes genetics, genomics,

microbiome, proteomics, and metabolomics [201]. The word “oma” refers to a mass in

Latin, and in the context of omic data refers to the large mass of information. There must

be a combination of both of these models (subjective and objective) for many use cases.

Examples include food preferences for a diet change and exercise preferences for modulating

cardiovascular health.

Personalized medicine, which is more specific in the treatment of disease, is used in the

context of focusing on a person’s unique molecular profile to help them be less susceptible

to disease. Genetics plays a large role in personalized medicine to understand one’s unique

traits and shape the biological model through this knowledge. The Human Genome Project

had an impact on producing treatments that could be better tailored to the individual.

Reading the sequence of the DNA will allow one to predict how an individual will respond to

a particular drug and to receive earlier diagnoses and risk assessments for more appropriate

treatment [278]. Objective personalization alone is not enough, as the person must be part of

the whole loop [57]. The integration of contextual components relevant to the user’s wishes

and preferences is just as important. As mentioned earlier, augmenting the data and model

with subjective data from the user also has unique challenges. From this model, we can

create predictions, precisely guide the individual, and prevent entry into undesirable regions

of the health state space.
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Figure 1.4: Personalized Heart Models. Patients clinical magnetic resonance imaging
data constructs personalized three-dimensional computer models of post-infarction hearts.
These are assessed for the propensity of each model to develop arrhythmia. In a proof-of-
concept retrospective study, the virtual heart test significantly outperformed several existing
clinical metrics in predicting future arrhythmic events. The non-invasive personalized virtual
heart risk assessment is a form oh highly specialized individual health state modelling[11].

1.2.2 Predictive Health

Prediction refers to estimating the probability of a future event. Improvements in this require

the above personal model. Predictive medicine is a branch of medicine that focuses on

risk identification for a disease, such as a future unwanted biological event, including a

heart attack. The goal is to identify patients at risk that could then enable prevention

or early treatment. This can be done by either single or multiple analyses as markers for

future disease [16]. Risk calculation of particular diseases and obtaining characteristics of
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individuals could help medical professions to predict a patient’s risk for an outcome of interest

and also determine what treatment may be most effective. The Emory Predictive Health

and Society Strategic Initiative and its Center for Health Discovery and Well Being define

health in the context of the entire human experience. They identify measurable variables

that describe and predict a healthy state and to use that knowledge to design health-focused

interventions that are affordable and effective [32]. Predictive health utilizes data sources

from a diverse array including genomics and epidemiology in order to best predict the risks for

an individual. From a computational perspective, this requires data mining to find patterns

that pull in knowledge from population and individual components, while also employing

learning techniques for data-driven pattern discovery.

1.2.3 Precision Health

Precision health refers to more accurate approaches to understanding the health state and

optimizing inputs to produce the ideal state. For example, while doctors may inquire about

family history of disease to understand hereditary risk, a more precise approach would be

to sequence one’s DNA in order to analyze the genetics data for inherited disease risk. This

greater detail in understanding allows for a more targeted approach in the estimation and

input selection. Precision will contribute to improving HSE and inputs through various

avenues that we will discuss below.

• Biological understanding with more precision, allows for better state estimation and

input approaches. At an organ level, each individual has unique biology. In the case of

cardiovascular function, models shown in Figure 1.4 are also precise, in that they try to

pinpoint precisely the nature of the cardiovascular electrical activity [11]. At a molecu-

lar level, the details of signaling pathways and cellular processes allow for better health

and medicine. A classic example in medicine is in the Cyclooxygenase (COX) inhibitor

15



drug class. Ibuprofen is a drug that inhibits all COX enzymes, which help in reducing

pain but also cause problems for COX enzymes, which are part of general functions in

the gut. The classification of Ibuprofen is thus a non-specific COX inhibitor. The dis-

covery of COX-1 and COX-2 specific sub-types gave rise to a new class of medications

that are specific for COX-2 (the component responsible for pain), allowing for more

the development of more advanced pain medications (Figure 1.5). This improvement

in the precision of molecular targets continues to be an active area of science. Lastly,

genetics greatly influences precise and personal biological understanding, which we will

review next.

Figure 1.5: Precision in Biological Understanding. Selective COX-2 inhibitors like
celecoxib are a type of Non-Steroidal Anti Inflammatory Drugs (NSAID) that directly targets
COX-2, an enzyme responsible for inflammation and pain. Targeting selectivity for COX-2
reduces the risk of peptic ulceration and is the main feature of the drug celecoxib. This type
of precision arises from more in-depth biological understanding.

• Genetics plays a fundamental role in having precise information for molecular and

cellular modeling and targeting for an individual. Even more cutting edge in this field

is the use of immune therapy, in which a person’s own white blood cells are trained to

precisely identify and destroy cancer cells in the body rather than delivering poisons
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that impact both healthy and cancer tissue [299]. Furthermore, targeting specific

antibodies can more precisely treat an autoimmune disease. These are examples of

biological targeting using genetics. Risk modelling and predictive efforts may also use

genetics. For example, the BRCA gene is a determinant of breast cancer risk. Patients

having high-risk BRCA genes may elect to have mastectomies or get screened more

frequently, given this genetic risk. In summary, genetics allows for many aspects of

state estimation or technologies to provide a more accurate outcome for an individual.

• Location precision on the body is a general concept that may improve many areas

of health. The traditional crude approach is to give a general pain killer medication

that is distributed to the whole body via the blood and has adverse side effects due

to the lack of a specific target. A precision approach would understand where the

inflammation is in the knee and deliver a medication targeted to only the knee tissue

and molecular pathways of relevance to the disease pathology. For example, a cream

or injection is more precise than an oral pill. Topical NSAIDs may be better for

localized pain near the surface of the skin, such as pain in the hands and knees, while

oral NSAIDs may be better for pain deep within the body. Similarly, location for

surgery can be more precise using laparoscopic methods, rather than an invasive open

procedure. Precision in surgical methods also enables providers to be more accurate in

their procedures, making fewer mistakes and damage to healthy tissue. Laser cataract

surgery is needed to remove a cataract. In this procedure, a small probe is inserted

into the eye, emitting ultrasound waves to break up the cataract into pieces. In laser

surgery procedures, lasers are used to make incisions to create a more precise opening

to the lens capsule [43].

• Dosage of inputs, such as drugs, can be more precise to the needs of an individual.

Context, the personal model, and the components mentioned above characterize precise

needs. When an individual is in high altitude, there is an adverse effect on coagulation
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in patients taking Warfarin [262]. If the dosage of the medication could be controlled

depending on the location of the individual, this could be more precise in controlling

the coagulation more appropriately. Cytochrome P450 is an enzyme that metabolizes

the breakdown of drugs; individuals have different rates of breakdown depending on

their specific enzyme type. Knowing the exact sensitivity and breakdown methods will

better allow for precise drug dosage. Extending beyond drugs, we can understand there

is a precise quantity of inputs that produce the optimal outcome of the individual’s

health state. Knowing the precise amount for each input (such as food, exercise, drugs,

environment, sleep) is a precision challenge.

Precision medicine is a specific subset of precision health focused on optimizing the inputs

to better alter the health state. Medicine is an input that is purposefully designed to change

the health state in a certain circumstance. The NIH defines precision medicine by how

genetics, environment, and lifestyle can help determine the best approach to prevent or

treat disease [202]. More medical institutions such as Stanford Medicine are using precision

medicine via unique biology and life circumstances for diagnostics [230]. Former President

Barack Obama launched the Precision Medicine Initiative to accelerate these advancements,

emphasizing how precision medicine will enable health care providers to tailor treatments to

better suit patients through the use of gene sequencing and lifestyle factors. To get there,

we need data about the patient collected by health professionals and the patients themselves

[125]. From a computational perspective, this requires an in-depth database for capturing

the relevant domain knowledge that matches precisely with each individual’s context and

personal model. Capturing this high resolution of data and having the individual take action

on the best inputs requires them to be a part of the cybernetic loop.
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1.2.4 Participatory Health

Participatory health refers to an individual directly engaging with understanding their health

state and providing inputs for change. Traditionally healthcare providers were the key in-

dividuals who understood patient health state and decided how to alter it. The providers

and patients generally held all information had little interaction with their health state

(other than through following directions on medications). However, more recently, health-

care providers and patients are working as partners in health by using communication tools

to increase active patient participation in medical decisions. This approach uses physical and

physiological tracking devices, “easy-to-use software that records one’s data, analyzes them,

interprets them graphically, and allows one to share and compare them with others. This is

expected to enable more reliable self-monitoring and more self-management of health care”

[170]. Ultimately, participatory medicine refers to the patient taking actions that change

their health state, rather than depending upon the healthcare team to address the changing

health state of an individual. From a computational perspective, this requires development

in human-computer-interaction (HCI) for engagement, integrating into relevant services for

the user, and learning patterns from the event streams, which increase the probability of the

user completing specific actions.

1.2.5 Preventive Health

Prevention refers to altering the probability of a future event / or avoid region of interest.

Preventive health behavior has been described in 1966 by Kasl and Cobb, as “any activity

undertaken by a person who believes himself to be healthy for the purpose of preventive

disease or detecting disease in an asymptomatic stage, in contrast with illness behavior for

an individual who is ill, defining the stage of health and discovering remedy” [142]. Today,

preventive medicine is a medical specialty recognized by the American Board of Medical
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Specialties (ABMS), focusing on promoting health and well-being and preventing disease,

disability, and death. Physicians in the preventive medicine specialty practice in the sub-

specialty areas of public health and general preventive medicine, occupational medicine, and

aerospace medicine [3]. While officially, preventive medicine is practiced medically with these

specific guidelines, the field of preventive medicine continues to ameliorate individual risk for

disease by altering the probability of future risk. It represents a health state as a compilation

of risks and seeks actions that reduce this risk based on evidence. Based on the predictive

component, preventive measures are taken, such as the common practice of reducing risk

factors for heart disease. These risk factors include lowering cholesterol, blood pressure,

and other modifiable components. Knowing the heart health state, however, requires much

more depth. From a computational perspective, this requires mapping the regions which are

undesirable in the health state space, understanding the user health state, and providing

inputs that increase the distance to the undesirable regions.

1.2.6 Healthcare Systems

Healthcare defined in this work includes all services and products that are within the scope

of health insurance coverage. The economic size of this field globally is 7.3 trillion US Dollars

[89]. This field is evolving to encompass new frontiers that will impact individual health. The

healthcare industry is attempting to address the complexity of individual health via techno-

logical advancements such as digital therapeutics, pharmacy supply chain, virtual primary

care, artificial intelligence, genomics, and advancements in consumer health and wellness.

There are also developments for providers including diagnostics, and drug research and devel-

opment to ultimately enhance their services [39]. Trends in the healthcare industry show that

consumers have access to more personalized healthcare options that provide a concierge level

of service and are expanding convenience through services like video conferencing. There is

also greater transparency of healthcare services, given the level of engagement individuals
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are now having with the health system. All together, healthcare is growing in domains for

the individual, providers, and systems at large. The primary computing advancements for

HSE will be in using more advanced diagnostics that are too expensive or exclusive for the

patient to procure on their own.

1.2.7 Performance and Wellness

A large developing area within modern approaches to holistic health is through the modes of

“wellness,” the consideration of inputs of lifestyle, the environment, and social and percep-

tual factors. Together, these bring about a more robust consideration of health in daily living

and behavioral considerations, and an improvement in health performance, rather than an

emphasis on eliminating or reducing disease. The economic size of this field globally is 4.5

trillion US Dollars [89]. The wellness industry is targeting improvement in various compo-

nents of an individual’s life, as outlined by CBInsights [40]. Many of the services provided

involve tracking and developing methods for changing the health state. High growth areas

which include areas for technological advancements for individual health include:

• Personalized nutrition such as food and beverages, vitamins/supplements, and active

nutrition.

• Beauty and personal care.

• Fitness and active living, including gym access applications, activity tracking, and

measurement of physiological changes.

• Mental wellness including behavioral change programs, educational platforms for mind-

fulness/meditation.
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• Corporate wellness as provided by an individual’s employer, that provides comprehen-

sive platforms for interactive with health such as by measuring, tracking, understanding

and making changes to one’s state in multiple domains of their health.

• Sleep technologies to track, change behaviors, and understand the best methods for

sleep improvement specific to an individual.

• E-commerce for the sale of online health specific products.

• Feminine care to address women’s unique health needs.

• Travel/hospitality to provide modes of experiencing wellness via retreats and getaways.

• Clothing and fit unique for one’s active performance.

• Functional health or primary care medical practice with a holistic approach, combining

nutrition, lifestyle, and medical testing.

New forms of wellness demonstrate the convergence of personalized medicine with digital

health, artificial intelligence, systems biology, social networks, big data analysis, and preci-

sion medicine. This field is known as scientific wellness. “The idea of scientific wellness is a

quantitative approach that includes improving the health of individuals, creating personal-

ized treatments, reversing disease transitions and reducing costs distinct from the current

wellness trend focusing primarily on behaviors such as diet and lifestyle” [254]. People will

then be able to use data and tools to modify habits for diet, exercise, sleep, and more to

optimize personal health.

Looking historically and at current advancements, progress in health depends on estimating

the health state in order to realize improvements in the treatment of disease or helping

individuals live well. Thus the state estimation and health measurements over time are

critical for scientific progress.
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1.3 Health State Estimation is Critical for Progress

Even though the World Health Organization (WHO) for 74 years has defined a preliminary

health state, there continue to be inferior methods by which to understand the individual

health state. The first page of Google Scholar with the search term “health state estimation”

(as of January 1st 2020) primarily displays results in the health state of batteries, drilling,

machines, ball bearing, and aircraft engines. The challenge remains in developing a gener-

alized framework for estimating the health state of humans. Health is estimated in most

detail when we are in our worst state in the Intensive Care Unit (ICU) at a hospital. Hu-

mans doctors with minimal historical knowledge or elementary quantitative modeling of the

individual are making judgments about the state of health for their health decisions. Using

this judgment, they provide episodic actions to re-direct the health state to an acceptable

level, not an optimal level.

Methods for measurement have been developed through time to estimate particular com-

ponents of health more accurately and more often. Microscopy and the identification of

microorganisms detected specific pathogens, highlighting the presence of what pathogens

determined disease. The Framingham Heart Study, which started in 1948, has reviewed a

diverse population over time to analyze patterns, trends, and outcomes that may apply to

the general population. One finding was the discovery of cholesterol and its impact on CVD.

From measurements at a population level, the relationship between cholesterol and the pro-

gression of CVD was established [130]. Thus, cholesterol now has become an indicator of

CVD and cardiorespiratory fitness (CRF), as described by the American Heart Association

(AHA) [234, 152].

The more health estimation moves towards real-time, it will open doors for controlling health

more precisely. For example, the first glucose monitor was introduced in the 1970s and then

began the self-monitoring of blood glucose. Advancements in continuous glucose monitoring,
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which read blood glucose monitors more frequently, gave more precise information to manage

diabetes. The accuracy of the sensors has been improving over time, and the frequency

for measurements has increased [118]. Quantified Self, a movement with the motto self-

knowledge through numbers embodies the importance of continuous health measurements.

The movement aids individuals in using different technologies to collect data on their daily

living (i.e., food intake, physiology) to analyze and improve their health state. Sensors are

also more commonly used to collect genetic, environmental, and phenotype information and

storage in the personal health record [170]. Objective Self takes the quantified self concept

towards a more computationally robust representation of the individual by establishing a

basic model about the individual [135].

What we need is a means by which we can continuously know our health state at all times

in high temporal and spatial resolution. A parallel example is accessing GPS location on-

demand, anytime. In a total health state space, an individual can see where they are in their

state space and choose their location within the state space. Disease is just a subset of this

state space of regions that are undesirable, similar to not driving a car into the middle of

the ocean. What one cares about are the places to be, and the health state required to be

there. Ultimately, why is the HSE needed?

Measurement is the first step that leads to control and eventually to improvement.

If you cant measure something, you cant understand it. If you cant understand

it, you cant control it. If you cant control it, you cant improve it.

- H. James Harrington

24



1.4 Contributions

This dissertation contributes towards the advancement of dynamically computing the health

state of an individual throughout every moment in life. The evolving state of the individual

depends on the integration of both domain knowledge and data-driven discovery frame-

works that facilitate computation of how data streams and event streams are related. The

connected nature of life is modeled computationally through graph-based abstraction and

combinatorial generalization. This state estimation paradigm allows individuals or entities

to use the continually computed state as a foundation to build systems that can perturb

the state towards a chosen goal. An application of this is done through a cybernetic and

navigational approach. The focus will be through the physiological function lens, especially

of CVD and CRF. Below the contributions are distilled into two main subgroups of general

concepts and personalization concepts, visualized in Figure 1.6.

The general concepts include, but are not limited to:

1. Precisely defining health. Because health is defined in many different terms, we

focus on the definition at the scale of an individual. A precise definition sets the best

stage for any computation and measurement.

2. Establishing the dimensions of health. The complex nature of health requires

high-level abstraction to represent critical features that make up the health of the

individual. In this work, we use utilities as abstracted microservices to represent the

dimensions of health.

3. Representing the general state space of health. The state space of health

represents all the possibilities that can exist for human health and provides a foundation

map base layer that allows embedding of other layers.

25



4. Structuring the model of inputs to the health state. Each moment in life causes

some small change in the health state of the individual. Capturing these moments and

translating them to inputs into the health state give the next time iteration of the

health state.

5. Integration of domain knowledge and data-driven approaches. In order for

the estimation and modelling to be done in an understandable way, depending on

a single top-down or bottom-up approach will not suffice. Each has advantages and

disadvantages. In this work, we use a combinatorial generalization artificial intelligence

technique of graph network blocks (GNB) to meld the two approaches together.

The personalized concepts include, but are not limited to:

1. Creating a personal health state space relevant to the individual. The true

health state space that is reachable for a single person is a subset of the general state

space. Multiple factors such as genetics and age, carve out the state space for the

individual.

2. Current health state of the individual within their personal state space.

Knowing the current state is the primary objective of this dissertation. Using combina-

torial generalization, we can establish a global set of attributes to give a current state

estimate of the individual. Computing is done by instantiating a graph of an individ-

ual’s utility and biological microservices, and estimating how the microservices change.

These microservices in aggregate determine the global set of health state attributes.

3. Predicting the trajectory of the state at future time points with a personal

model. By using the GNB, we can simulate future time points of inputs and produce

their outputs as the predicted future health state.
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4. Learning the input effect on a given state for a particular individual, edit-

ing the personal model. Given a large quantity of data produced by an individual,

we use modern learning techniques to produce a model at the N=1 level, allowing us to

more accurately model. We observe how inputs to a node in the graph produce results

in the real world setting by modifying domain knowledge-based connections to suit a

particular person.

5. Given a desired direction or goal, reducing the state space dimensions

and presenting the current state in the context of the user intent. People

interact with their health at a high level of abstraction and also have abstract goals. By

decomposing this level of user interaction into the relevant dimensions, we can provide

a user interface to understand their health state.

6. Providing a structure for health navigation. By understanding what inputs

produce certain state changes in the individual, we present a method by which perpet-

ual planning, used to guide an individual to alter their current health state towards

their desired state. The above goal decomposition guides which inputs are most rele-

vant and useful for the individual and presents each moment as a cybernetic control

loop for the navigation system to control each step.

Figure 1.6: Visualization of Contributions.
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1.5 Thesis Outline

Chapter 2 introduces the driving concepts of cybernetics and navigation for health computing

and the flow by which the health state of each individual is dynamically changing. It reviews

the literature to define a comprehensive view of “health,” how this health is continually

changing, and how certain design elements are essential to produce continuous personal

state estimation. Chapter 3 dives into a specific literature review of sensing, estimation, and

modeling techniques used in this work. It concludes by presenting the scope of techniques

for this dissertation. Chapter 4 presents the HSE framework through the detailed assembly

of the design requirements into a cohesive system. Chapter 5 describes the experiments that

illustrate HSE at an individual scale using multi-modal data and knowledge integration.

Chapter 6 discusses the application of HSE by describing the methods of personal health

navigation systems and cybernetics. Chapter 7 discusses the future opportunities in this

field and related fields of work and concludes this dissertation.

28



Chapter 2

Understanding Health Computing

To live effectively is to live with

adequate information.

Norbert Wiener

2.1 Cybernetics: Inspiration for this Work

In the simplest terms, cybernetics is about setting goals and devising action sequences to

accomplish and maintain those goals in the presence of noise and disturbances. The Greek

origins refer to the ‘art of steering’, and the term was introduced into the literature by Nor-

bert Wiener, a mathematician at the Massachusetts Institute of Technology, USA [292]. His

seminal publication “Cybernetics, Control and Communication in the Animal and Machine”

described what we know today as control theory for dynamic systems. Cybernetic principles

are a universal mathematical theme in both natural and artificial machines. The availabil-

ity of sensors that estimate the system state from observation enables communication and

control. This state is perpetually compared to the goal state so the system can perform the
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best actions to maintain the desired goal state. In parallel, biological science also discovered

control mechanisms as “homeostasis” via a series of physiology scientists, including Claude

Bernard, Walter Cannon, and Joseph Barcroft [96]. Homeostasis referred to the stable inter-

nal environment at any given moment. It was first described in French literature originally

in 1854 as milieu intrieur by Claude Bernard in [25]. Norbert Wiener’s work in cybernetics

generalized these principles beyond biology. There are four fundamental principles in con-

necting the information from the physical world to the virtual “cyber” world, as shown in

Figure 2.1.

Figure 2.1: Cyber-Physical Connection. Cybernetics connects physical reality with com-
puting information for control. In the real world, sensors measure various aspects of the world
and translate these observations into data. The system must take the data and produce an
estimate of the system state. Based on this computed estimation and a control goal, the
system produces guidance for the real world. The actions taken in the real world may or
may not be the same as the guidance due to disturbance, noise, or other factors. Thus, we
take continuous measurements to see how the system state has been perturbed based on the
last iteration of guidance. System components can be a human entity such as a doctor or a
computing machine.
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The mathematical model at the core of classic cybernetic systems theory states that:

X[k + 1] = A[k]X[k] +B[k]U[k] (2.1)

Y [k] = C[k]X[k] +D[k]U[k] (2.2)

Where X, U, and Y are the system true state, inputs, and measured output vectors respec-

tively. A, B, C, and D are matrices that provide the appropriate transformation of these

variables at a given time k. The state system describes human health. The previous state

and the inputs into the system play a role in determining health at time k+1. Inputs into

the human cybernetic system are anything that changes gene expression or physical actions

in the body (from molecular interactions to coarse action). Thus a person is continuously

exposed to these inputs. The inputs beyond the control of an individual are external distur-

bances, and the rest are controllable inputs u. The true health state of an individual at a

time k is represented by X. The health state is difficult to obtain and is always estimated.

What we do get are the observable output variables. The state estimation challenge is in

interpreting the observable data to understand the true underlying state. If we solely focus

on this, the challenge of state estimation is in matrix C, with observable components as Y

and our unknown state as X. This representation is visualized in Figure 2.2.
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Figure 2.2: Basic Cybernetic Loop. Cybernetic control occurs through feedback loops.
The loop begins with measurements from one or more sources, compiled into a computational
representation of the system state. This estimated state is compared to the goal state. The
delta between the goal and current state is used to give guidance to operate the controllers
appropriately. These controllers partake in actions in the real-world to perturb the true
system. Disturbances may also perturb the system from the environment or stochastic
inputs. At the next time interval, this loop cycles again with a fresh set of measurements.

Two subsets of inputs determine the true health state of an individual. The first set of inputs

is beyond the control of the individual, such as circumstances of where an individual is born

and how they are raised, the genetic composition and biological processes occurring within

the body, resources available, and the ambient environment. These inputs are usually not

within the ability of an individual to manipulate. We consider these as noise or disturbances

to the system, as shown in Figure 2.2 The other significant subset of inputs into the system

that determines health is traditionally known as “modifiable risk factors.” Modifiable refers

to an ability to decide the control input for the individual. This usually encompasses every

decision moment the person lives but can extend to any situation in which a person has a

choice (i.e., choosing to take a medication, buying a home in a particular neighborhood).

Lifestyle modifications particularly are currently seen as the most promising approach for

inputs that lead to healthier living [134]. This is how we will model controllable inputs in

the above equation as u.
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“No one notices when things go right.” This simple homily underlies the fact that 95 per-

cent of the US healthcare economy is for direct medical care, and only 5 percent for health

improvement [30]. This allocation of resources occurs due to the ongoing challenge of es-

timating the health state of individuals who seem to be healthy. The challenges arise due

to 1) poor sensing ability to develop adverse outcomes with current human perception and

methods, and 2) the long lead time for developing chronic disease. By the time current

clinical measurements such as cholesterol, blood pressure, or glucose metabolism are beyond

the normal range, the user has already been in a dysfunctional health state for quite some

time. Clinical researchers refer to this as the prodromal state. Capturing the change in

health state always (before significant dysfunction begins) is paramount to keeping people

healthy states and preventing them from slipping into a diseased state.

The target of this thesis work aims at structuring data and knowledge so we can have

continuous HSE. It is essential to consider the representation of the system state, as all

computing components of the loop depend on this representation. In general, representation

of the state and state space in addition to searching through this state space are two key

fundamental challenges in any intelligent system [313]. In simple control systems such as

thermostats or even complex systems such as military jets, the representation of the system

is quite well understood [69]. A thorough investigation of defining what the true health state

is must be the first step towards building a robust and universal computational health state

representation.

2.2 Defining Health

There is a multitude of definitions of health. We will first review two general approaches to

health, the first being continuous versus classification approaches and the second being objec-

tive and subjective approaches. Following this, we take the various lenses of health definitions
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and amalgamate central principles of each. These lenses include biological, environmental,

functional, and perceptual views on defining health. In order to build a comprehensive and

robust definition of health, we must consider all aspects for a complete understanding. This

work will primarily focus on the integration of these definitions into a single unified approach

at the individual level definition of health.

Classification vs Continuum

Before 1948, the WHO defined health as the absence of disease or infirmity [301]. The original

definition indicated that health is static or unilateral (disease or no disease). This method

is a classification approach for having a definitive understanding of health. Medical systems

and approaches in modern-day continue to classify health based on disease, conditions, and

various metrics to define the state of one’s health. For example, coronary heart disease,

high blood pressure, and heart failure are all cardiovascular diseases that are considered

diseases based on a range or threshold. These thresholds are recorded in the International

Classification for Disease, which is used as the universal basis for the health field [209]. It

has the word classification in the middle of the name. If an individual does not meet the

threshold, they do not have the disease. This has large implications. As an example, the

American Heart Association formed ranges for cardiovascular risk, and medical professionals

take into consideration ranges to determine if an individual is normal, elevated, or at risk,

as shown in the blood pressure diagram in Figure 2.3. The thresholds are usually pre-

determined for the entire population, assuming in the model that each person is identical to

another and represented by a static system.

On the other hand, some classification approaches rely on the presence or absence of an

attribute. A few examples include how an individual can either be positive or negative for

an infection, have had a pregnancy or not, has an artificial limb or not, or has a chromosomal

set of XX or XY. In summary, the classification approach to health is a combination of two
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subsets, the first subset of classifications use thresholds, and a second subset is similar to

Boolean or categorical attributes [285].

Figure 2.3: Blood Pressure Characterization. Doctors use a classification approach
with threshold values to have predetermined categories of defining health. The nature of
health operates on a continuum basis, as shown in red. The state of resting blood pressure
for each individual is always changing over time dynamically. Regardless of the approach,
the individual is unable to sense their state position at any time, highlighting the need for
continuous sensing.

In 1948, the WHO updated the definition of health to encompass health as a “state of

complete physical, mental and social well-being” [301]. This shifted the thought towards

defining health on a spectrum beyond disease and takes into consideration the full physical,

mental, and social state of an individual. The WHO did not go further to quantitatively

define what this means. In 1972, a physician named John Travis proposed a concept of health,

referred to as the “illness-wellness continuum,” which states that a medical approach relying

on the presence or absence of disease to demonstrate health is insufficient [265]. This concept

introduces the idea that an individual falls somewhere on the spectrum of dysfunction and

wellness. Where they are at each moment would be their health state on this single axis.

The states in which dysfunction is perceivable is reflected by signs, symptoms, and disability.

This approach to health is the “health continuum,” also described in chapter 1 Figure 1.2.

The health continuum implies that individuals would wish to strive for a higher level of
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optimal living through the means of health, not just as a unilateral classification of being

labeled with a disease. This modern outlook of health acknowledges its dynamic nature and

subject to constant change within an axis of illness and wellness. “Both health and illness are

dynamic processes, and each person is located on a graduated scale or continuous spectrum

(continuum) ranging from wellness and optimal functioning in every aspect of one’s life, at

one end, to illness culminating in death, at the other” [256]. However, it is important to

note that the continuum may be interpreted as static if observing a single point in time or

location within the spectrum. Regardless, this concept proposes a single dimension concept

of state and paves the way for a continuous and quantitative approach.

Clinically, resting blood pressure illustrates the continuum approach. People are unable to

feel the biological change as it happens over time, and thus do not even know they are being

affected. Second, the blood pressures vary due to a complex impact from both daily actions

and environmental exposures, not just a single source or pathogen. Third, these diseases

are not truly categorical in nature but are declines in physiologic function over time. In

the example of hypertension, the medical practice uses cutoff thresholds to decide when

to change the labeled blood pressure status of an individual, when in reality, the average

pressure is increasing over time, as shown in Figure 2.3. The thresholds provide a basic

region mapping of the blood pressure health state, but this does is not based on a precise

model for each individual, instead of a population model.

Objective vs Subjective

In the literature, health has an expanded definition through the introduction of objective

and subjective components. Objective components are quantifiable and externally visible,

and subjective components are within an individuals internal state of mind. The objective

states have four components: the biological ability to exist, the environmental impact

and handling of this impact on an individual, and the ability or capacity to function. The
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Author Biological Environmental Functional Perceptual

Dubois X X X X
Dunn X
Galen X X X
Hippocrates X X
Lalonde Report X X X
Ohlansky X X
Institute of Medicine X X
Parsons X X
Sartorius X X X X
Simon et al. X X
Spencer X
Stokes et al. X X X X
Travis X X
World Health Organization X X X
Nag X X X X

Table 2.1: Literature Review of Health Definitions. Throughout health research his-
tory, various attempts have been made to define health. Here is an overview of these at-
tempts.

subjective component generally is understood through the individuals perception of their

quality of life.

Various reports integrate objective and subjective components as a critical part of defining

the scope of health:

a) Two prominent figures had established definitions of health used in modern medicine to-

day. Hippocrates of the fifth century BCE, considered to be the Father of Modern Medicine,

established the relationship between environmental and personal cleanliness and the origin

of disease. He had classified health based on disease, resulting from internal physical imbal-

ances. In the Roman Empire, Galen expanded on Hippocratess definition by stating that

bodily fluids also determined temperament and personality, [17]. These combined outlined

health as the idea of physical, environmental, and behavioral factors.
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b) The updated WHO definition to expand the realm of health beyond disease and include

mental and social well-being: Health is a state of complete physical, mental and social

well-being and not merely the absence of disease or infirmity [301].

c) The 1974 Lalonde Report from Canada introduces the concept of “health field concept,” in

which identified determinants of health is through lifestyle (personal decisions), environment,

human biology (all components of the body influenced by genetics), and health care systems

[90].

d) The Croatian Medical Journal describes health as three types: 1) absence of disease, 2)

a state allowing the individual to cope with demands of daily life adequately, and 3) a state

of balance, an equilibrium that an individual has establishes within himself and between

himself and his social and physical environment [241].

e) The Center for Educational Development Health (CEDH) at Boston University and the

Association of Teachers of Preventive Medicine Foundation (ATPMF) define health as a state

characterized by anatomic integrity, including “performing personally valued family, work,

and community roles; ability to deal with physical, biological and social stress; a feeling of

well-being; and a freedom from the risk of disease and untimely death” [252]. Furthermore,

the health status estimates of individual’s health from “one or more anatomic, functional,

adaptive, and subjective indices.”

f) A qualitative study by Simon et al. understands health through an individual’s self-

assessment, which is largely linked to one’s physical health, functional capacity, health be-

havior, and other psychological components. Health also encompasses other aspects includ-

ing health comparison, health transcendence, externally focused, non-reflective, social role

activities, and social relationships [248].

g) U.S. Institute of Medicine Committee on Health and Behavior: Research, Practice, and

Policy in Washington, D.C. describes the need to integrate all the above approaches. “Ac-
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ceptance of the fact that stress is linked to cardiovascular disease or to other health problems

has become commonplace. However, research also reveals many reciprocal links among the

central nervous system, which recognizes and records experiences; the endocrine system,

which produces hormones that govern many body functions; and the immune system, which

organizes responses to infections and other challenges.” The Committee illustrates how per-

ception and biological health are tightly coupled, hence the call for an integrative approach

to defining health [132].

The above approaches are compared in Figure 2.1. In the following sections within this

chapter, we will first explore the individual components of objective health in biological,

environmental, functional aspects. The subjective and social components of health will be

discussed as a perceptual component. It is also important to note that there are large health

systems that are part of the ecosystem that contributes to health for the individual.

2.2.1 Biological

Biological health is the sustenance of life through the homeostasis of natural systems. Work-

ing biological health supports the basic living functions of life. The literature consensus of

what these tenets are: Organization of Structure, Metabolism, Homeostasis, Growth, Repro-

duction, Response to Stimuli, and Evolution. The only main contention in general literature

of living biology is in the case of viruses. Viruses do not conduct their metabolism and thus

do not maintain any homeostatic state. They also cannot reproduce on their own.

Human biological health has been quantified by looking at lifespan or by the calculation of

healthy aging and life expectancy [34]. The 2010 Global Burden of Disease Study provides

quantifiable health metrics for calculating healthy life expectancy. Lozano et al. estimated

life tables and annual number of death for 187 countries from 1970 to 2010. The estimation

included number and rate of deaths by age and sex to determine the burden of disease in order
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to constrain estimates of cause-specific mortality [161]. A look at lifespan is only a primary

attribute of biological existence. The biological understanding of a human is understood more

deeply by the genetic composition and biological processes occurring within the body. Illness

or disease negatively impacts the overall homeostasis of biological processes and therefore

reduces the lifespan.

With stress from its surroundings, an individual must remain stable internally for its biolog-

ical success. This stress is the particular reason behind the “response to stimuli” factor of

biological health. “Under normal conditions, the external environment changes constantly

in an unpredictable manner. In order to survive and to continue to function effectively the

organism must make adaptive responses to the modifications. It must, as well as possible,

repair destructive tissue damage and restore its own internal environment” [70]. The ability

to adapt and hold resilience is therefore critical for survival when introduced to external

stresses or threats, such as disease. Biological health can, therefore, include the definition as

“the perfect, continuing adjustment of an organism within its biology to its environment”

[306].

Biological health operates through the complicated yet harmonious interaction of non-living

molecules to maintain the steady-state of living functions. A narrow slice of this complex

interaction network can be visualized through the basic chart of metabolism, as seen in

Figure 2.4. The health of this network to sustain itself in a stable state can be considered

the generalized approach to biological health. A full biological health state framework would

require a system that can incorporate all the abstraction levels from atomic to the whole

organism, as shown in Figure 2.4, and the ability for computation at any level of choice.

40



Figure 2.4: Biological health is at the level of inanimate molecules interacting
to provide the organism with the fundamental components of life. Metabolic
pathways provide the methods by which energy and materials can be synthesized to support
these components. Here is an example of biological health at various abstraction levels.
We zoom into the heart. There is the tissue of the heart, each heart cell (myocardiocyte),
the metabolism network in this cell, a particular central pathway called the Tri-Carboxylic
Acid Cycle (TCA Cycle), Adenosine Tri-Phosphate (ATP) which is an energy currency in
biological systems produced by the TCA Cycle, and the oxygen atom within this ATP
molecule.

2.2.2 Functional

Functional health is defined as the performance capacity to provide a service or utility. This

definition is applies to any abstraction level on the biological spectrum. At a whole human

level, the function may be how well a person can run. At an organ level, the function can

be how well the heart circulates blood, and at a molecular level, it may be how well a cell
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regulates a specific hormone such as insulin. Functional health assumes that health is a

resource that allows individuals to be able to use their bodies and minds to perform specific

tasks. The function abstracts away biology from health. A biological bone and a titanium

bone both provide a service of structure to the body. A natural pancreas and artificial

digital pancreas both provide a service of glucose regulation. A biological sinoatrial node

in the heart and an electronic pacemaker both provide heartbeat regulation as a service.

Functional health fully encompasses biological health, but can extend far beyond biological

systems for defining health.

Aristotle’s “Four Causes” is a realm of thought that explores the reason for existence [81].

This concept can help answer “why” our biological health truly matters. In Aristotle’s telos

philosophy, the end goal or purpose of anything is what function comes about. We can use

this in making a parallel to how health is ultimately a utility function. Figure 2.5 visually

describes his classical example of the “cause” of a table. Material cause refers to the physical

matter that makes an object. Wood makes up a table, and molecules make up a human.

Formal cause refers to the design of an entity. A table may have a simple design, and a

human has an intricate design of interacting parts. Efficient cause refers to how an object

comes into existence. Carpentry makes the table and reproduction and cell growth from a

single cell (zygote) makes up a human. Final cause, also known as telos, refers to the reason

for existence. A table exists to dine upon, and a human exists to exhibit certain capacities

such as movement and thinking.

42



Figure 2.5: Aristotle’s Four Causes. Aristotle’s Four Causes refers to the various lenses
we can understand why something exists. Aristotle argues that the final cause is by far the
most important since without it, the other causes may not have a direct purpose to exist.

Both Aristotle and modern-day organizations, like WHO, have contributed to the evolution of

defining health. The WHO identified health as a “resource for everyday life, not the objective

of living.“ Health includes social and personal resources, as well as physical capabilities.

in the first International Conference for Health Promotion in 1986 [297] Furthermore, it

encompasses “the ability to lead a socially and economically productive life.” Health is also

viewed as the ability to perform valued social roles, emphasizing functional views and the

concept of health to include personal beliefs and values by a society [252]. This means that

a loss of a leg is grieved just as much because this means a loss of mobility, and thus, a

loss of self. If an individual were to receive a prosthetic for a leg as a replacement, the

mobility would be maintained and fully functional. However, the biological basis would alter

to a mechanical one. The same can be said for porcelain teeth-replacing biological teeth for

cutting food. However, to an individual, there is functional value due to the mobility or

cutting and, thus, would no longer be a loss of self.
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While the maximum lifespan may have increased, there may not be enough emphasis on the

healthspan of the population. While there is a longer lifespan by reduction of child mortality

rates, elimination of diseases through modern medicine, the human biological design is not

for long-term use (i.e., maintaining healthy functioning knees, heart) [208]. This increased

lifespan now becomes an issue of function; to address the functional component there must

be an emphasis on the healthspan and the quality of life, not just the length. The WHO

has quantified the Disability Adjusted Life Year (DALY) as one lost year of healthy life due

to disability or poor health [210]. DALYs for a disease or health condition are calculated

as the sum of the Years of Life Lost (YLL) due to premature mortality in the population

and the Years Lost due to Disability (YLD) for people living with the health condition or

its consequences. This metric indicates that disability or poor health is a loss of function

that ultimately leads to a shorter lifespan. Individuals may also define themselves as healthy

because they are functioning as well as expected in their age and gender group of the general

population. Functional health is, therefore, interwoven with perceptual health.

With living comes the capability to respond to stressful situations. There is a functional

capacity to cope and be resilient to the demands of daily living [241]. From a cybernetic

perspective, this is the stability of the system to perturbation to the external environment.

The diminishing function of an individual in their ability to perform tasks that they would

have otherwise been able to can be directly related to disease or illness, much of which can

be caused by the surroundings.

2.2.3 Environmental

Environmental health encompasses external factors outside of an individual that impact the

state within the individual. The environment plays a significant role in the exposures that an

individual has over time, and thus is inevitably a major component of one’s health. Dubois
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explains that “health and happiness cannot be absolute and permanent values, however

careful the social and medical planning. Evolutionary fitness requires never-ending efforts

of adaptation to the total environment, which is ever-changing” [258]. Because of this con-

tinuous change in an individual’s environment, this theory supports the health continuum

method in which health is dynamic. While the environment is continually changing, and thus

human health is continually changing, humans attempt to create equilibrium within them-

selves and the social and physical environment via self-maintenance systems [241]. This

theory supports that health relies on an adaptation mechanism to the external environment

to produce homeostasis at various layers of biology and function.

The Health Grid Model was developed by Dunn et al. to show how external factors impact

the quality of life [71]. The graph below shows peak performance as an optimal state of

health based on the individuals age and makeup but highly linked to a favorable and unfa-

vorable environment. Dunn called for a more integrated approach to human health via the

integration of environmental factors. There may be favorable and unfavorable environments

that may positively and negatively impact health. Individuals may be exposed to various risk

factors and inputs to their health through the environment (i.e., pollution, water sanitation,

chemicals, occupational risks, climate change, radiation, agricultural practices). Individuals

may also have exposures to external risk factors through their social environment (i.e., fam-

ily, friends, society, decisions based on social circumstances). The social environment that

an individual surrounds themselves with has a significant impact on daily lifestyle factors,

for example, food choices and physical activities.

Understanding an individual’s environment furthermore gives the livability of the location of

how healthy a particular area may be for the individual. The Economist Intelligence Unit’s

Where-to-be-born Index and Mercer’s Quality of Living reports are measuring the livability of

a given city or nation [178, 73]. This environmental component is a combination of subjective

measurements such as life satisfaction surveys and objective determinants such as divorce
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rates, safety, and infrastructure. These studies review the livability for populations at large

but directly links to predicting an individual’s health state based on a chosen environment.

A part of this local environment includes any system built in regards to health.

Figure 2.6: Dunn’s Health Grid Modeling: External environment and its rela-
tionship to wellness. Dunn’s model of health highlights the strong relationship between
a favorable environment and achieving peak wellness. If a good environment or good health
exist exclusively, one cannot achieve an optimal level of health.

2.2.4 Systems

Systems health is the overarching structure for providing health to individuals at a population

level. Systems for providing health services largely contribute to the outcome of health

for individuals. The effectiveness of these systems is tracked by reviewing populations at

large. Health systems play an economic role in providing a positive return to individuals.

Williamson et al. conceptualize health as a type of capital that invested in many individuals
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and institutions for positive health returns that reflect higher individual capacity. Health

cannot be exchanged or sold for goods and services. Instead, “as a type of capital, health

is a stock of biopsychosocial resources that people can draw on to participate in society

[297]. A modern approach to health, such as value-based healthcare, puts what patients

value at the center of healthcare. It helps ensure that they receive the care that can provide

them with outcomes they think are essential and that limited resources are focused on high-

value interventions. In order to do this, there is a need for flexible definitions of health,

personalized and tailored to patient values [88]. Another system approach that is becoming

more prevalent is the continuum of care. The continuum f care concept involves an integrated

system that guides and tracks a patient over time through a comprehensive array of health

services spanning all levels of intensity of care. The array of services includes promotion,

prevention, treatment, and recovery as an individual goes through the process of receiving

healthcare services [237]. While systems are of relevance in defining health, the economic

and population level of health will not be part of the scope of this work. Instead, the focus

will be on computing how a system may impact an individual as part of their environment.

2.2.5 Perceptual

Perceptual health is an individual’s outlook on their health state and judgment of their quality

of life. The view of one’s self has become a large component of subjective determinants of

health, including one’s emotional state, social connectedness, intellectual stimulation, self-

awareness, and development of lifestyle behaviors. With perception is an individual’s ability

to think and feel in the way of good health, as understood by their internal state. In addition

to “anatomic, functional and adaptive dimensions, much of health is simply about feeling

good” [252].
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Health is of relevance to the individual concerning their defined goals and value in living.

Aristotle’s Telos philosophy indicates there is an end or purpose, in “teleology” or the study of

purpose within biology. Telos, which means “end”, “purpose” or “goal” as shown in Figure

2.5. Dubois in the Mirage of Health has also defined “good health as the condition best

suited for each individual to reach his or her personal and social goals” [258]. The concept

of personalized goals and values in living becomes critical to the state of health because it

links to how an individual perceives the state of their life. Individuals act and function in

alignment with their own values. Stokes has described Health as with the incorporation of

the “ability to perform personally valued family, work, and community roles” and dealing

with psychological and social stress [252].

Kimball et al. at the University of Michigan, along with prominent thought leaders such as

Janet Yellen and Daniel Kahneman, put together a concept of Utility and Happiness where

they connect how the perception of living happily relates to the utility for the individual

[145]. They have separated short-term happiness as “elation” due to relative change in utility

and long-run happiness as the “baseline mood” for the utility. Thaler’s work in connecting

behavioral psychology with economics shows how the “baseline mood” (i.e., influenced by

sleep, exercise, eating habits, genes, time with friends) is linked to the true health utility

[145]. Both of these examples show how the quality of life is related to psychology bridged

with economic principles of utility to an individual.

Increasingly described in the literature are understanding ones self, motivations, and goals as

a foundation for health. The health continuum also highlights that awareness of self, educa-

tion, self-growth, and adopting healthy lifestyles are critical in moving towards the wellness

end of the spectrum and reaching a more optimal level of health. In addition to values,

self-perception is another measure for differentiating a healthy state from a diseased state

and how this can be dependent on an individuals outlook on the situation and how they feel

internally (or subjective well-being) [31]. Physical and psychological wellness of an individual
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plays a role in the health continuum in the constant strive for improvement. The domains

of wellness can include social (lifestyle behaviors), emotional (stress, resilience), physical

(activities), spiritual (meaning, purpose), occupational, intellectual components [131]. The

combination of these domains creates a wellness state that incorporates both the mind and

the body.

Maslows “Hierarchy of Needs” indicate that humans are built upon physiologic needs as a

baseline, but are ultimately striving for self-actualization. This approach sees physiologic

needs as the core need to be satisfied before needing safety, love/belonging, esteem, and

self-actualization. This work is quite prevalent in the literature in psychological sciences.

Figure 2.7: Maslow’s Hierarchy of Needs. There are base physiologic and safety needs
(food, shelter, security) as a fundamental requirement, psychological needs such as a sense
of belonging and esteem, and finally needs for self-fulfillment such as reaching one’s full
potential.

The Iceberg model of health and illness, as presented by Travis in the illness-wellness contin-

uum [265], describes the state of health to be built upon the foundation of self-understanding,

psychological motivations, and lifestyle and behavior. For both Travis and Maslow, the pre-
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sentation of health state regards perceptual components as integral considerations that layer

on top of high-functioning biological machinery. In this perspective, biological health di-

rectly impacts the perceptual health. On the flip side, perceptual health can directly impact

biological health. As shown in Figure 2.8, mental states directly impact the biological com-

ponents of the entire rest of the body. Thus, there is a need to build a network representation

of these two views with a bi-directional relationship. The body impacts the mind, and the

mind impacts the body.

Figure 2.8: Mind - Body Connection: How Stress Impacts Physiology. How a person
perceives their environment has a direct impact on their physiology. When an individual
perceives stress, the evolutionary encoded response of increasing blood pressure occurs to
deliver high-performance blood delivery for a “fight or flight” response. This can be both
a positive or negative impact on the health state, depending on the context. For example,
a skier negotiating a racecourse may have stress from turning at high speeds. This stress
allows the muscles to function at high forces and serves as a positive acute stressor. Blood
pressure returns to normal after the race. In contrast, a professor who is worried about
getting funding approved may have this stress effect chronically rather than acutely. In this
context, the stress response may damage parts of the vessels and organs. Thus stress is a
highly context-dependent component of computing the health state.
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We can also quantify the perception of how an individual perceives themselves and their

quality of life (QoL). QoL is a term for the quality of various life domains and is measured as a

standard that considers what a good life is for an individual. Many of the factors determining

the quality of life may be driven by values and goals and encompassing of emotional, physical,

and social well-being. The factors ultimately determine ones life satisfaction or how an

individual feels about his or her life. Measurements can be seen globally in the World

Happiness Report of 2019, which explores how happy citizens consider themselves to be,

which directly impacts their emotional and social well-being.

Ultimately, all the above definitions of health mention important components of health for

an individual. We must consider these definitions in a generalized computing framework

for computing the health state. These components are also highly interdependent, and this

must be clear in the representation. The next phase of research describes how we can pull

these components together in a common framework.

2.2.6 Integrating a Holistic Approach

As an individual, we want to consider all aspects of our health when making life choices, a

holistic approach. For this reason, this thesis uses an integrated approach to the definition of

health by integrating the four components as described previously: biological, environmental

(including systems), functional, and perceptual. All four components contribute to the

quality of living and a total health state computing framework. We will utilize the approach

of the health continuum view and recognize that health is evolving and dynamic by nature

on this continuum. This method still allows for classification approaches through thresholds

and categories. There is also a nesting of various layers that build a single individual model.

Nesting may occur for various domains such as biology, as shown in Figure 2.4. Depending

on the abstraction level from a molecular level to a whole person level, various connected
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components rely on the functioning of the lower-level components. Measurements may come

at various layers of abstraction, and the user or domain expert such as a doctor or intelligent

agent may want to perturb or interact at a particular abstraction layer. A holistic model must

accommodate this ability to zoom in and out in a fluid manner. Coupling these concepts

also requires an understanding of what causal orientation they are related to each other in

the real world. The dissertation goal is to bring all components of defining health together

holistically in order to best estimate the health state. In the next section, we go into the

depth of how this holistic approach translates into detailed design requirements.

2.3 Design Requirements for Health State Estimation

After considering the nature of different health definitions in this chapter, and the emerging

frontiers in chapter one, we can establish the following design principles for a health estima-

tion framework that can support a variety of complex applications. We will describe these

requirements below.

1. Personalized Modeling. To predict the future, provide guidance, and understand

the preferences and particularities of an individual, researchers must build personal

models. These models, which establish the premise that each individual is a unique

system, are needed to best estimate the users health state and how various inputs

uniquely move them in the state space. Models are accessed for state estimation

or providing guidance. The personal model can build knowledge and predict many

aspects of an individuals life, such as how an individual reacts to different stimuli

under specific conditions or physiological changes from an intervention. To model a

person, a combination of long and short term information must interact. Long-term

models of an individual can come from the genome or the history of event patterns

and behavior. Biological or high-resolution continuous sensors can capture short-term
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models. These models are not static; they continuously change with an individuals

age, life events, and other life parameters, which makes model-building a dynamic and

causal understanding process. Models must have a general representation that can at

least address the following health attributes:

Physiologic function. Dynamic health attributes include biological health, such as

organ function and capacity (CRF, bone strength, and metabolism). Models may have

various time and size levels in terms of detail, depending on the application. Short-term

models can already predict how electrical activity in the heart may produce arrhythmia

(such as in Figure 1.4 while a long term model may predict the impact of long-term

lifestyle habits on developing atherosclerosis. Cellular or gross organ-level processes

can be modeled separately or in combination, as shown in Figure 2.4. These functions

constantly change based on daily factors that include sleep, nutrition, medication, or

stress.

Psychological function. Extrapolating and modeling mental health will be a com-

plex challenge that requires advanced sensing mechanisms such as affective comput-

ing. Mental health components could include various time resolutions of interest, such

as overall mental stability or minute-by-minute affect analysis. Evaluating risks for

erroneous modeling before field deployment will be essential for the users safety. Un-

derstanding user preferences, influences, and motivations will be essential to close the

loop when humans are involved as actuators in a participatory approach. The system

uses this information to tailor guidance in a way that makes a healthy lifestyle plea-

surable and convenient, enhancing the quality of life. For effective modeling, irrational

behavior, social tendencies, and situations in which short term pleasure overrides long-

term goals must be included. Risky behaviors may warrant preventive help to reduce

harmful events such as drunk driving.

Risk. Researchers can model risk assessment for reversible and irreversible physiologic

dysfunction, undesired events, or regions of the health state space a person wishes
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to avoid. Disease risk refers to the health state entering an undesirable region of

the state space. An example would be the chance that an individual would develop

metabolic syndrome, a condition that medical professionals could reverse with an early-

stage intervention. Damage risk refers to the risk in which an individual is negatively

permanently altered. An example of this would be the likelihood of metabolic syndrome

turning into type 1 diabetes, resulting in permanent pancreatic damage. Risk modeling

will also include behavior and mental condition models to understand the propensity

for self-harm, accidents, or harm to others, as mentioned previously in the psychological

function section. For the greatest value, we must prioritize resources and investments

based on evaluating the likelihood and consequence of combined risks. Risk models of

the individual are directly related to prediction and prevention.

The personal model is essentially a virtual twin of the individual, which allows for

modeling the current and future state of the person in various aspects of their biology

and psychology. The model’s state space must be compatible with continuum and

classification approaches.

2. Predictive and Preventive Capability. The above model should be able to simu-

late what the health state will be at various future time points. Given a set of chosen

inputs, we can test various scenarios to perturb the health state model to see how the

current state changes. These simulations should be able to help predict a trajectory

path to compare which input set would produce the most desirable health state for the

user. A prediction that falls in an undesirable region can advise preventive actions to

steer the state away from the region.

3. Precision through Understanding and Learning. A health estimation framework

inherently will have errors in the outputs that may not be compared to a ground

truth measurable factor, making it challenging to compare various models and judge

performance of the model, state estimation, and predictions. The system must have
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a method by which to give an estimated error range so the user or computer can

understand the quality of the estimation. Precision should improve in the model and

estimation with increasing information. The two main approaches for this would be

bottom-up data-driven methods and top-down knowledge-driven methods.

4. Participation with User. The system must be able to interact with various types of

users. These users include the individual themselves, any healthcare professionals, do-

main and research experts in any respective field, or other computing clients that access

the health state for further services provided to the user. Facilitated human interac-

tion with the framework requires representation in a tangible human-understandable

form to bridge the gap between the physical and cyber worlds. The HCI should have

easy to understand interfaces, a simple way to query the health state and model, and

explainable to the human. Developers that wish to create software using the health

state and personal model should have secure yet easy access to Software Development

Kits (SDK) that can create such HCI and services.

5. Encompass Holistic Definition of Health. As we explored above, there are various

lenses and dimensions all part of a total health state for an individual. Any complete

HSE framework must be able to include these lenses. Biological mechanisms give

rise to functional and perceptual experiences and how the environment and systems

impact this. Systems can be clumped as part of the environment. Based on the work

presented by Kimball et al., we can also view perception through a utility lens, and thus

can model this as a functional component of health. Thus, the requirements for the

holistic definition must include the biological, functional, and environmental aspects.

6. Capture Connectedness. As shown in Figure 2.4 and Figure 2.8, health state is

tightly connected to many different parameters in a networked web. This connectedness

must be captured to give the best quality estimate of health.
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7. Causal and Explainable. Given a large number of connections, many of these

may be spurious or artifacts of data. Understanding why something is connected and

characterizing its true effect is key for a high-quality system. For trust by users,

scientists, health experts, and computation outcomes, this explainable aspect is also

essential. Many modern artificial intelligence techniques lack in this requirement [103].

Current approaches in using data and machine learning to estimate health are falling

short due to their non-understandable black-box nature. Knowing why an individual

has a certain health status will be paramount for explaining why a recommendation or

treatment is best. Purely data-driven methods can be components in a large system

but will have a difficult time explaining the reason for the classification without the

incorporation of relevant domain knowledge.

8. Domain Knowledge Integration. The best source of understanding causal relation-

ships and connectedness rests within the vast array of domain knowledge already in the

literature. Leveraging this domain knowledge is essential, especially as a cold start,

to build an explainable system. Any new domain knowledge discovered should also

have the ability to integrate. Hard-wiring the domain knowledge is thus not an option.

Domain knowledge also is organized at various levels of study (molecular to societal

sciences), and the best approach would be to take advantage of the vast knowledge in

all these layers.

9. Zoom Fluidly Between Abstraction Layers. As mentioned in the previous design

requirement, the ability to zoom in and out of abstraction layers should be part of

the system. This gives domain knowledge various entry points to participate in the

framework and allows for the user or domain expert to understand a layer of interest.

Looking at Figure 2.4, the framework should allow jumping between any box layer of

interest, while still preserving the connectivity.
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10. Flexible and Modular Architecture. Because health can be abstracted away from

biology through the functional lens, the framework must allow for flexibility through

a modular approach. Imagine a patient who receives a kidney transplant. This new

kidney has a whole new set of genetics and biology from the patient’s original kidney.

If the kidney is replaced with a mechanical kidney, this would have an entirely different

operational structure. A flexible approach would allow the appropriate module, which

modeled the kidney, to swap out for the current one. This ensures that no matter how

technology adapts and situations change, the framework continues to be robust for the

future.

11. Diverse Data Fusion and Transformation. In addition to taking advantage of

domain knowledge of all abstraction layers, the system should be able to take advantage

of any data produced about the individual. This could include a vast array of sources,

types, and frequencies of data and event streams. Any type of data should be able to

get processed in a way that is then useful to update the health state or improve the

model. By acquiring data from different types of sensors, we can create a more precise

understanding of how to model the individual health state. This process needs to

collect, aggregate, and process heterogeneous data from multiple sources to infuse into

the model. Data transformation methods are needed to convert data to a representation

that is suitable for digestion into the personal health model framework.

12. Perpetually Updating. As pointed several times in the last two chapters, the health

state is in a dynamic flux. With data and domain knowledge, the system needs to

continually update the health state of an individual regardless of the situation to give

the current state. Similar to how a GPS is always refreshing its alignment with the

signal satellites. As an example, the highest performance GPS receivers can update at

50 Hertz (1 Hertz = 1 cycle per second). For the health state, various applications will

require a minimum update rate in order to perform.
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Using these above requirements for building a state estimation framework, we will dive

into the current day literature to see how the research community is approaching these

requirements. We will review the various methods for collecting data, approaching state

estimation, and constructing a model for individual health.
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Chapter 3

Literature Review

Science is organized knowledge.

Wisdom is organized life.

Immanuel Kant

Given the goal of this work is to have a model for computing the individual health state,

we explore a literature review of methods for modeling and state representation on human

health. The organization of the literature review includes four sections. First, we look

at an overview of methods for personal data acquisition to obtain measurements about an

individual. Second, we review how to estimate the health state from various measurements.

Third, we survey models developed for representing human health. Fourth, we look at

relevant techniques by which models can be made intelligent and dynamic. The chapter

concludes with challenges that remain in the field of HSE and how this dissertation aims to

address these challenges in a novel method.
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3.1 Health Data Acquisition

To begin any endeavor in estimation, we must first gather measurements in the real world

that we can use towards computing the estimate. These measurements are gathered through

a sensor. Sensors bridge the computing world with the physical world, as shown in Figure

2.1. The cost and accuracy of sensing mechanisms vary, so data stream continuity and

availability will always be different depending on the modality. For example, a wearable

heart-rate monitor is an inexpensive and continuous way to measure heart rate but will be

less insightful than cardiac perfusion testing with a computerized tomography scanner to

evaluate heart attack risk or tissue oxygen delivery. Intuitively, an estimation system that

can ingest the most types of data streams will perform better due to capturing a more well-

rounded picture of a given situation. This highlights the need for the estimation framework

to have a versatile ability to ingest data types. In order to ensure the constructed estimation

framework best meets this need, we will review a wide variety of literature demonstrating

how personal health data can be acquired through sensors, as summarized in Figure 3.1.

Figure 3.1: Sensor categories for acquiring health data.
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3.1.1 Self Insight

The most primitive and natural sensor is the person’s biological signals and cognition. Two

sets of signals influence our understanding of our own mental and physical health. First,

sensory organs capture sensory signals about the world external to our skin through sight,

hearing, touch (including sensory pain, temperature, texture), taste, and smell. These nat-

ural sensors measure various attributes to understand the individual’s physical environment

or directly perceivable attributes. Internal to our skin, we then use internal cognizance to

make interpretations about the external signals and integrate them with signals about our

biology. The interpretation occurs through feelings of perceived pain, gut motility, energy,

proprioception, and mood, to name a few. Humans use both these abilities to understand

their health state and how their environment is impacting them. The ways our natural

biological sensors unify, store, quantify, and use these data are not easily compatible with

modern computing. Tedious methods that do not capture data continuously, such as ques-

tionnaires and surveys, are used to capture these signals in most scientific fields that study

these signals. We go over traditional and emerging techniques for extracting self-insight

computationally.

Sensory Organs capture data streams (sight, hearing, touch, smell, taste) that give us

the ability to garner information about the external world. There are several mechanisms

to understand insight computationally, capturing a human’s experience with its outside

world. These sensors mimic and measure human sensory experience. Here we review sensors

developed to mimic the body’s unimpaired natural functionality.

Concerning touch, tactile gloves serve as pressure sensors applied by the hand. High-

resolution pressure sensing and mapping enable understanding of human movements, com-

fort, and ergonomics through visual feedback of hand interactions [216]. Electronic instru-

ments, including the electronic tongue, measure and compare tastes. These instruments can
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detect an array of dissolved organic and inorganic compounds like the human taste receptors

via reactions for each sensor. They generate electric signals as potentiometric variations, to

relate the signal strength to the concentration of these molecules [165]. Microphones can

easily capture the audio experiences of an individual and are ubiquitous in today’s world

through mobile phones, computers, wearables, and IoT devices. Cameras and videos provide

visual representations of what a human sees. Google Glass and Snap Glasses are both wear-

able cameras that are worn as a pair of glasses but can record or observe all the information

that an individual sees directly[183]. Lifelogging cameras have thus been in research for

several years now [300]. An example of cameras understanding human perception includes

the three-dimensional gesture recognition vision systems in which video of the user’s gestures

are understood for certain meaning and actions [163]. These sensory signals give us detailed

information about our experiences. Understanding experiences is one set of clues towards

HSE. For example, if an event is relaxing, it may impact the health state positively versus a

stressful event impacting the state negatively.

Perception and Internal Cognizance Experiences combined with internal signals that in-

terpret health is another avenue by which to collect data about the individual. The self-

perception theory indicates that people will know their emotions, attitudes, and other inter-

nal states based on their own understanding of their behavior and the circumstances at hand.

“If these signals are weak or non-interpretable, the individual becomes an observer and must

rely on cues to understand their inner state” [23]. This theory implies that internal sensory

signals are learned and understood from making interpretations about their behavioral and

physical circumstances.

Furthermore, our internal receptors and neurons enable us to comprehend our sense of po-

sition and movement. Proprioception is the sense of position and movement of the limbs,

occurring by activity in sensory neurons located in the skin, muscles, and joint tissues.

Proprioceptors (sensory receptors) play a pivotal role [100]. As these receptors are sensi-
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tive to both tension and pressure, they relay information concerning muscle dynamics to

the conscious and subconscious parts of the central nervous system. They provide the brain

with proprioceptive information at the subconscious level, about the body’s positioning with

respect to gravity[223].

Perception data may give us one’s view regarding their illness, and thus play a major role

in the outcome of disease. The treatment of depression in CVD patients may benefit from

a psychological intervention focused on patients’ illness representations, self-efficacy beliefs,

and their perceived social support [99, 92]. People who are feeling susceptible to an illness,

expect to benefit if they change their behavior, and perceive their social environment as

encouraging the change, but if they lack a belief that they can indeed change, their efforts

are not likely to succeed. “Substantial empirical evidence suggests that self-efficacy beliefs

(and the related concept of optimism) are reliable predictors of behavior, and that they

mediate the effects of intervention on behavior change, including a number of health-related

behaviors” [112].

The importance of identifying internal signals is to note the link between how internal cog-

nizance and sensory experiences directly impact physiology. Two commonly known exam-

ples are the stress-response and the gut-brain connection. The common example of cognitive

stress impacting physiology is in Figure 2.8 within chapter 2. About 100 trillion bacteria in

the gut make neuro-active compounds, including the neurotransmitter serotonin, that regu-

late our emotions. The neurotransmitter can transmit signals directly to the gastrointestinal

system to stimulate or suppress digestion [286]. The “gut-wrenching feeling” that people

have historically is a person’s stomach, or intestinal distress may cause anxiety or stress.

Psycho-social situations directly influence gastrointestinal physiology and symptoms [286].

The methods for measuring or capturing information about sensory signals and internal

cognizance is a computing challenge, as the information is difficult to attain continuously and

unobtrusively. Currently, methods for capturing information is done through self-tracking,
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querying the user through surveys, yet there is no integration at a broader scale of other

objective data streams. There is an increasing number of “Quantified-Self” individuals who

diligently track many kinds of data about themselves, via data collection tools and self-

experimentation methods [49]. There may be several obstacles to this self-tracking, including

tracking too much information and not tracking triggers with sufficient context. The current

state of the field is to use Ecological-Momentary-Assessment (EMA) to have context-aware

triggers that prompt the surveys [246, 72].

Capturing the natural senses with the tools mentioned above helps to feed data towards the

estimation, but there is an obvious need to go beyond this. The next section describes data

capture methods that go beyond our human senses.

3.1.2 Digital Sensors

Throughout history, quantifying health at a higher resolution has always changed what it

means to be considered healthy. The stethoscope, blood pressure cuff, and microscope all

modified the definition because of their ability to sense a change in the health state beyond

human senses. Modern continuous sensors, digital interactions, and biological measurement

devices produce vast amounts of data. Continuous digital sensors including computers,

smartphones, and wearables, are relatively inexpensive in cost, energy, and computing power.

The significant progress in this technology makes it widely available for monitoring individ-

ual health data streams continuously [167]. While continuous sensing gives us information

readily, non-continuous or episodic sensors are still crucial for attaining high-resolution in-

formation with known levels of accuracy. Non-continuous methods that medical experts use

with professional equipment give a deeper understanding and verification of ground truth.

These methods include imaging techniques such as functional magnetic resonance imaging

(fMRI), electrical signal capture such as electroencephalogram (EEG) and electrokardiogram
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(EKG), and other clinical methods that provide one time-slice high-resolution information.

The noncontinuous methods give a good baseline of an individual’s state. There is a need

for merging information from both continuous and episodic sensors for the best quality esti-

mation over time.

Transitioning further into the digital sensor age, we will explore both continuous and episodic

digital sensors. The four key sensor themes for continuous sensors include: perceptual, bio-

logic, environmental, and event sensors. Perceptual quantification records human sensory

information and provides continuous streams of data about emotions, sensory inputs, and

brain activity. Biological sensors capture physiologic and molecular changes in the bi-

ology of the individual. Modern biological sensing mechanisms include omic data arrays,

wearables, IoT devices, bio-markers, advanced imaging, and electrical signals. Environ-

mental sensors track the external environment to understand a persons surroundings and

social situations. Event sensors track events or outcomes continuously that can be done

virtually or physically. Virtual events include how we use our computers, phones, wear-

ables, and other computing devices into a single collection called a screenome [228]. Physical

events include the real-world daily life events of individuals, such as those as described by

Nobel laureate Daniel Kahneman These are captured in personal life-logging applications

such as personicle [141, 205]. There are various modalities for acquiring information about

these themes. These include sensing mechanisms such as imaging, electrical sensing, optical

sensing, HCI, audio, radio-frequency, and strain gauges.

Perceptual quantification of human sensory information can be observed by methods of

observing sensory inputs and brain activity. It is a computational challenge to find methods

for quantifying human perception via sensors; however, there are growing mechanisms to

compute behavior and perception.

Galvanic skin resistance (GSR) refers to the electrical resistance between electrodes when

a weak current passes between them. The electrodes are placed apart and the resistance
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will vary based on the emotional state of the subject due to variations in sweat gland fluid

production. This sensor can be useful for the skin, as the skin serves as a conductor of elec-

tricity in situations when internal or external stimuli are physiologically arousing. “Arousal

is widely considered to be one of the two main dimensions of an emotional response. Mea-

suring arousal is not the same as measuring emotion, but is an important component of it.

Arousal has been found to be a strong predictor of attention and memory” [180]. Stress

sensors have been built based on GSR to measure test stress responses and detect stress

states of an individual [274].

The advent of the smartphone and wearable devices has increased the possibilities of em-

bedding sensors such as the accelerometer, GPS, optical sensors, and microphone. The

integration of the sensors can collectively analyze patterns to understand an individual’s

mental health. We can use passive data collected via devices (such as call history, text

messages) or by active interpretation methods, such as analyzing voices in the microphone

to measure stress. We can capture data on physical activity and movement during sleep

from an accelerometer, optical heart rate, and GPS for a location to determine context. The

combination of all of these gives a picture of an individual’s mental state [167].

The detection of emotions is becoming an increasingly growing area of research and devel-

opment via emotion recognition methods. Corive et al. describes two channels of human

interaction, one transmitting explicit messages and other transmitting implicit messages

about speakers. The explicit channel is understood by linguistics and technology, but im-

plicit messaging, such as understanding emotions, is not well understood [58]. Techniques

by which to process imaging and audio helps establish pattern recognition to uncover human

emotions. The techniques may include signals from bio-sensors, such as Haag’s method for

training computers to recognize the emotions of the wearers[108]. “Biosensors may be used

based on the synchronization between audiovisual stimuli and the corresponding physiolog-
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ical responses” [127]. Emotion recognition techniques may also include analyzing speech

signals (such as pitch and energy) [148].

In a broader sense of computing intelligence, The Turing test grades the ability of a com-

puter to exhibit intelligent behavior indistinguishable from a real person [267, 245]. Human

health services such as a human doctor have a heightened sensory ability to understand

the above perceptual aspects about a person, and hence are still sought after to deliver

healthcare to people. If a computer can understand these same factors, we may be able to

scale health services to more people with better performance. Hence, the above perception

and emotion-sensing research and related challenges are vital if computing intelligence aims

towards improving human health. Human doctors do not solely use this mode of sensing.

They also incorporate objective information about a person’s biology.

Biological sensors measure internal changes in biological and physiologic function over

time. There currently exists a vast selection of sensors that exist for capturing biological

information beyond the scope of this thesis. We focus on devices such as wearables and

smartphones that act as biological sensors in a continuous manner [167].We review a few

modalities for biological sensing below:

a) Optical sensors within a wearable device continuously and unobtrusively monitor heart

rates over a wearer’s wrist or head [119]. Optical sensors also detect oxygen saturation in

the blood, and current research is conducted on blood pressure and glucose monitoring. The

optical sensors work by using a reflected light pattern scatter from skin surface contact to

estimate then the parameter of choice similar to a radar mechanism.

b) Imaging modalities are useful when screening blood for hemoglobin through cameras to

understand a patient’s response to iron supplement treatment [282]. With a light source

shining through a person’s finger, they have performed a chromatic analysis to analyze the

color of their blood, estimating the hemoglobin level. Here a camera is directly collecting
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light, rather than looking for a return signal of scatter. Traditional images of the skin can

also be used to detect changes in texture for wrinkles, color for changes in melanin and

jaundice [64].

c) Audio modalities such as the microphone can serve as a spirometer to measure lung

function. Home spirometry is more widely accepted for its ability to continuously detect

pulmonary exacerbation and improve outcomes of chronic lung ailments. Larson et al. pre-

sented SpiroSmart, a low-cost mobile phone application that performs spirometry sensing

using the built-in microphone [151]. Audio methods also capture lung, heart, and bowel

sounds though digital stethoscopes [154].

d) Strain gauge sensors measure the amount of force on the system. These are prevalent in

many applications such as power meters, accelerometers, and the old-fashioned weight scale.

Strain gauges work on the principle of Hooke’s Law as given in Equation 3.1.

F = kx (3.1)

Where F is the force applied, k is the spring constant, and x is the distance the spring

changes. The most classic strain gauge sensor, yet still valuable, is the simple weight scale

to measure body weight. These have been combined with electrical impedance sensors to

get both body weight and body adipose tissue content [24]. Flexible skin-attachable strain-

gauge sensors are an essential component in the development of artificial systems that can

mimic the complex characteristics of the human skin. Pang et al. describe a strain sensor

that enables the detection of pressure, shear, and torsion. Strain-gauge sensors are used

to monitor signals from human heartbeats [213]. We can also measure respiration rate and
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volume measurements with wearable strain sensors and are useful for monitoring patients

with chronic respiratory diseases [51].

The strain gauge sensor is also used in bicycle ergometers and crank arms to measure the

torque applied onto the pedals [60, 27]. Strain gauges can measure general movement activ-

ity (such as through wearable accelerometers) and aerobic exercise work capacity as CRF.

CRF has a much stronger established relationship with true cardiovascular health [296].

Widespread use of standard wearable accelerometers that measure steps or higher semantic

activities like walking, jogging, biking are indicative of activity only, hence the need for using

wearables that can give estimates of CRF for better HSE. Wearable devices have estimated

energy expenditure through various computational approaches such as deep learning [315],

knowledge-based regression [162], and data filtering and segmentation techniques [6]. Energy

expenditure provides insight into the total amount of activity performed by an individual

but does not provide maximal work output to estimate CRF.

Computational research in CRF prediction began in the 1970s with the formulation of exer-

cise stress scoring metrics based on the newly available chest strap based heart rate monitors

[19, 29]. Recently, contextual understanding improved the performance of heart rate based

CRF estimation and was further refined by calibrating custom algorithmic parameters for a

particular user [8, 7]. Heart rate data incorporates additional features, such as vagal tone

(commonly referred to as heart rate variability) and respiratory rate, to provide regression

analysis more features for prediction [250]. Improvements in accelerometer-based CRF pre-

diction have been achieved through body placement optimization [215]. The only known

research that has attempted the use of multi-modal data for CRF prediction is by Firstbeat

Corporation. They use both heart rate and speed information with a proprietary algorithm

to filter periods of heart rate that are indicative of steady-state metabolism [56].

e) Omics, including genomic, microbiomic, metabolomic, proteomic, transcriptomic, and

epigenomic data, is more widely used in understanding the biological model and state. This
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data can be used given a particular scope of the individual that is being reviewed. A

genome consists of all genetic material, microbiome (all microbiota or bacteria that live in

and on the body), metabolome (all metabolites), transcriptome (all RNA transcripts for

gene expression), and epigenome (all epigenetic material or changes to DNA not based on

genetics). There are two broad types of omic data: static data and dynamic data. Genetic

information is more static due to the fixed measurements that give information on risk and a

person’s unique model. For example, given the same sun exposure, two different individuals

may have different responses to the sun due to their genetics. One may be sunburned, and

another may not be. The genetics information gives insight into the relationship between sun

exposure and the skin type, and thus the risks associated with genetics. Genetics is, therefore,

a system model rather than a determinant for the state. Companies like 23andMe and Helix

are focused on providing precise reports for genetics directly for the user via DNA genotyping

methods done by mass sequencing technologies for individuals to understand their health

model [1, 113]. Dynamic omics data, including data from the metabolome, transcriptome,

microbiome, and epigenome, is always in flux with a high rate of change. These give us a

systems state with continuous information over time. For example, glucose is a metabolite

that is constantly changing. With the transcriptome, each exercise event an individual may

partake in rapidly changes one’s total RNA and gene expression. The research challenge with

dynamic omic data is two-fold. Time-series data is needed to understand how the parameters

are changing, and the data still is not available at a low-cost to both user intrusiveness and

burden. Omic data research is an active area focused on further understanding of one’s

precise state [304, 133, 255]. Overall, the use of various omic techniques is referred to as a

multi-omics approach, as shown in Figure 3.2.

In general, low-cost continuous sensors, computing methods, and lifestyle integration of

cardiovascular health hence provide a unique opportunity towards advances in HSE. A robust

framework to integrate vast amounts of temporal data and knowledge from biological sensors

in cardiovascular health has yet to be published today.
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Figure 3.2: Multi-Omics. “Oma” means mass in Latin. Each layer of omic data is a massive
array of data parameters regarding the specific layer. The advent of omic data mechanisms
allows for high-resolution understanding of the biological state at various abstraction levels.
Figure adapted from [144].

Environmental Environmental sensors allow for understanding the surroundings of an in-

dividual and their exposures. Many environmental sensors are measured directly (such as

pressure and temperature sensors) or by sensor networks. Wireless sensor networks sense

noise pollution in urban areas, and are available continuously. Traditionally noise pollution

measurement has been involved and expensive. Santini et al. present a tool known as tiny-

LAB, a Matlab-based tool, enabling real-time acquisition, processing, and visualization of

data collected in wireless sensor networks [240].

While public data regarding the quality of the environment is readily available, it is not

incorporated and tracked at the individual level. An open-source software platform, called

EventShop, ingests and assimilates different data streams [86]. It combines different environ-

mental data streams ranging from climate data, air quality, pollen counts, and micro-blogs
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(like Instagram and Twitter) to understand how the environment is evolving. Also, the

GPS allows us to track an individual’s location data and via geospatial data to understand

exposures over time [65].

The concept of generalizing environmental impacts on a person is known as the “exposome,”

or one’s exposure history. The United States Centers for Disease Control and Prevention

(CDC) defines exposome as the “measure of all the exposures of an individual in a lifetime and

how those exposures relate to health” [41]. This includes a longitudinal exposure throughout

one’s life since conception. The environmental impact, in conjunction with one’s biology,

creates the personal exposome, as shown in Figure 3.3.

Figure 3.3: Personal Exposome. The exposome consists of both biological agents we are
exposed to, and physical components such as light, sound, and chemicals. These exposures
are related to a certain location and time. Figure adapted from [137].
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This concept of personal exposome is noted in several studies [294, 41, 279, 249, 166]. Wild

describes the exposome in three domains: 1) general external environment including the

urban environment, education, climate factors, social capital, stress, 2) a specific external

environment with specific contaminants, radiation, infections, lifestyle factors (e.g. tobacco,

alcohol), diet, physical activity, etc., and 3) an internal environment to include internal bio-

logical factors such as metabolic factors, hormones, gut microflora, inflammation, oxidative

stress [294]. He describes that the exposome requires consideration for both the nature of

exposures and their changes over time. Jiang et al. developed a sensitive method to monitor

personal airborne biological and chemical exposures. They found that human exposomes are

diverse, dynamic, spatiotemporally-driven interaction networks with the potential to impact

human health [137]. The exposome allows us to gather information specifically about an in-

dividual and be tracking their exposure history and how this may impact their health from

a personalized level. Listed below are various tools used for measuring the exposome [294].

Measuring changing environmental pollutants can help model human exposure to micro-

environments. Having the ability to measure the local environment of each individual will

give insight into how they are affected by unnoticeable factors. For example, air and water

pollution increase the risk of diabetes [226]. Long term exposure to particulate matter in the

air can activate pathophysiological responses that can induce insulin resistance [314, 159]. A

methodology developed and implemented by Dias provides the time-sequence of the exposure

events, making possible association of the exposure with the individual activities and delivers

main statistics on an individuals air pollution exposure with high spatiotemporal resolution

[65]. The data combined with air pollutant concentrations for traffic pollution, estimate the

micro-environments given a probabilistic model.

Events Digital methods are increasingly capturing events of human life. An event is a

signal capturing the occurrence of an action. These daily life actions are what make up

the history of each human life and also provide an input that changes the health state.
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Approach Tools

Biomarkers (omics)
General Genomics, transcriptomics, proteomics, metabolomics, epigenomics
Targeted Adductomics, lipidomics, immunomics
Sensor technologies Environmental pollutants, physical activity, stress, circadian rhythms, location
Imaging Diet, environment, social interactions
Portable computerized devices Behavior and experiences (EMA), stress, diet, physical activity
Improved conventional measurements Job-exposure matrices; dietary recall

Table 3.1: Exposome tools for measurement. Figure adapted from [294].

With the rise of smartphone applications capturing events, individuals can easily track daily

human activities, nutrition, sleep, and location to give a few examples. Physical activities

can be tracked by wearable devices that can measure activity type, location, distance, and

other relevant attributes [253]. Photos can easily capture food consumption habits. Image

recognition of these photos can help to understand nutrition behaviors. There is growing

accuracy in recognition of food photos and large scale images [309] [143]. The “personicle”

concept is the most holistic application to collect lifelog events [136]. Life events can be

at various scales of time and space. Molecular interactions occur at the atomic size and

nanosecond scale, while an event such as “attending college” can last years and span a

large area of space. Building a unified data structure to capture any event is essential for a

robust data collection system. There have been efforts in pulling a unified view on how to

represent these events, which include six key aspects (Structural, Temporal, Causal, Spatial,

Experiential, Informational) [289].

Unique to the digital era, time spent with screens is a large part of awake events in the

current world. There are growing mechanisms for capturing event data about an individual

in this light. The “screenome” reflects the use of digital media and screen time to analyze

what people do and spend time with on their screens [228]. Each digital interaction gives

insight into a neurological event. Smartphone applications such as Apple ScreenTime and

RescueTime tracks habits and time spent on particular applications or time on web [10].

Human interactions with social media capture much of an individual’s time spent (i.e., inter-

ests, activities, mental well-being). The interactions give us an understanding of individual
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choices, behavior, culture, and habits. To further understand one’s relationship with the

screen, there is a proposition for a Human Screenome Project in which “screenomics data

should be sifted using a gamut of approaches from deep-dive qualitative analyses to algo-

rithms that mine and classify patterns and structures” [228]. The project proposes reviewing

an individual’s screen time to investigate physiological and psychological health states and

sociological dynamics of interpersonal relations over time. Further research continues on the

“screenome” for understanding screen time and human behaviors [310].

Episodic sensors Healthcare practice relies primarily on episodic or non-continuous sensors

for dependable data acquisition. Professional-grade equipment generally has a higher expense

but also higher accuracy and depth, which provides greater certainty in medical decision

making. Professional equipment generally needs an operator for the measurements and may

be more challenging to obtain this information unless it is a medical necessity. Although

useful at the time taken, data collected in this manner is generally not used for any future

steps in the person’s life after the clinical encounter. Professional-grade equipment provides

calibrations at a current snapshot of the health state rather than continuous monitoring.

Computing methods that are suitable for this include Kalman filtering [106]. Observing the

role of accuracy and precision for each sensor is important based on the system goals. While

many professional-grade types of equipment have high accuracy, it may be more relevant

to hold precision (with continuous measurements), to detect a change in the health state.

Episodic measurements combined with continuous measurements are therefore most ideal,

increasing the accuracy of the current state with high temporal resolution to changes in the

state.

Conventional professional equipment used for collecting individual data includes imaging,

microscopy, and blood work. For example, magnetic resonance imaging (MRI) techniques

are sensitive to changes in cerebral blood flow and blood oxygenation [149], and cranial

magnetic resonance imaging (cMRI) have been used in cardiovascular studies to determine
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that sulcal width, ventricular size, and white matter signal intensity change with age, sex, and

race [312]. Other equipment such as dual-energy X-ray absorptiometry (DEXA) scanners,

allow for one-off measurements of bone density and visceral fats [48].

Several medical procedures to gather data have risks associated that may be adverse to

an individual. For example, an angiogram is an invasive medical procedure that holds the

risk of radiation exposure from X-rays used, major complications including injury to the

catheterized artery, arrhythmia’s, allergic reaction to dyes, kidney damage, and more [54].

Thus, in addition to being episodic, there are also non-trivial risks to these high-quality

measurements. These expensive sensing mechanisms initialize, calibrate, or validate a health

state, and the less expensive sensors, which are more continuous, non-invasive, and accessible,

would be available to estimate the current state from the most recently calibrated state.

3.1.3 External Data Sources

There may be sources that are external to the individual that may be capturing the individ-

ual’s health information. This includes domain experts who are capturing measurements or

observations on the individual, or external agents that an individual interacts with, such as

a business.

Domain Experts Domain experts who are trained professionals can have a role in col-

lecting data manually. For example, a physical therapist may use direct measurements and

observations for determining an individual’s flexibility or with goniometers. Clinicians com-

monly use norm-referenced, standardized measurements [122]. In the field of psychology,

experts question individuals to understand their psychological state and needs, and thus

mental health relies on domain experts for detecting and determining psychiatric issues.

This system largely relies on domain experts to act as the sensor [266].

76



External Platforms Data acquisition about individuals is also common through platforms

operated by external entities and businesses. The platforms designed to collect individual

data are for pattern analysis to observe the individual’s behavior. Loyalty programs for

restaurants, credit cards, and stores collect information on individuals by observing their

purchasing behavior. The programs have sophisticated tracking mechanisms between a cus-

tomer and a brand that can help the program better understand the buyer’s habits. Current

progress in this field aims to use this information during a live interaction with a customer

[61]. Companies may be using searches, clicks, and views on particular topics in order to

understand an individual’s interest and target advertisements accordingly. This process may

not be at the request of the individual but based on the websites an individual visits and

items they buy. External data gathering may also allow agents to track habits, behaviors,

and patterns on individuals, giving the insight to develop the business [173]. The world’s

largest consumer-facing technology companies, such as Google, Facebook, Amazon, and Net-

flix, critically depend on this data acquisition process for their business performance.

The data digitally collected and stored externally is vast and expanding rapidly. As a result,

organizations convert this information and knowledge for their objectives, whether it be in

“astronomy (e.g., the Sloan Digital Sky Survey of telescopic information), retail sales (e.g.,

Walmart’s expansive number of transactions), search engines (e.g., Google’s customization

of individual searches based on previous web data), and politics (e.g., a campaign’s focus

of political advertisements on people most likely to support their candidate based on web

searches)” [184]. According to Murdoch, it is inevitable that this data will have a large role

in providing insight into the health state, such as data gathering mechanisms to observe

broader trends to predict emergency room visits. Google Trends (a free, publicly available

aggregator of relevant search terms) has been used to predict surges in flu-related emergency

room visits [95]. Similarly, Twitter updates were as accurate as official reports at tracking

the spread of cholera in Haiti after the January 2010 earthquake [173].
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Data collection through sensing mechanisms remains a considerable research challenge for

humans due to the complex nature of understanding and capturing the health state. The

above review is just the tip of the iceberg. The next step in the health state computing

pipeline is to use these sensor measurements within an estimation approach.

3.2 State Estimation for Individual Health

State estimation for health allows us to understand the current health situation for an indi-

vidual. We will review the various approaches for how health can be estimated: quantified

approaches, classification approaches, probabilistic approaches, and subjective approaches.

It is important to note that though various approaches may exist, they are highly intercon-

nected, and each one alone may not be sufficient.

Figure 3.4: Estimation Approaches are Interconnected.
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3.2.1 Quantified Approaches

Quantified approaches give insight into where an individual is within a state space based on

objective measurements. Individuals take blood tests, such as a basic metabolic panel, which

is a group of tests that measures different chemicals in the blood, including blood glucose,

calcium, electrolytes, and lipoproteins. However, the extrapolation of the information then

allows the physician to come to a conclusion or learn what these levels may indicate. A

physician can form a conclusion about the readings depending on the parameter of the state

space. For example, if HDL cholesterol is 20, that is considered in a poor state, compared

to a value of 70, which is a good state. A visualization of these quantified states in the case

of hormones is in Figure 3.5.

Figure 3.5: State Space for Quantified Health. Here are four charts showing how
hormonal fluctuation occurs during menstruation. At each moment, an ovulating female has
a point on this state space they exist. Regions specific the limits to which the state can exist
and what the state means [268].

One’s blood alcohol level is determined based on measurements that determine the specific

amounts of alcohol in the blood. If the blood alcohol content (BAC) reaches a threshold of

79



0.08, it indicates legal intoxication, which is a threshold-based classification. Quantification

is necessary, but may not be sufficient alone within an interpretation or added meaning of

what this measurement indicates. Similarly, eye power is measured by a diopter, a unit of

measurement of the optical power of a lens or curved mirror, which is equal to the reciprocal

of the focal length measures in meters [66]. The objective measurement of power can be

useful when determining thresholds, such as determining whether an individual is legally

blind or not. This need for classification may be determined external to the individual (i.e.,

safety, legal) not necessarily based on the health state of the individual. Thus placing a layer

of information on top of the quantification approach provides more meaningfulness to the

health state.

3.2.2 Classification Approaches

Classification methods, as we have described in Chapter 2, define health based on disease,

conditions, and various measurements to define the state of one’s health. Classifications

may help in creating standards that may be beyond an individual’s specific situation. In the

example of the blood alcohol content, the standards of classifications can identify toxicity

and thus concerns about safety. Disease classification is internationally recognized through

the International Classification for Disease (ICD), Tenth Revision, by the World Health

Organization. The ICD-10 code serves as a classifying method to label whether an individual

is in a disease state. The ICD allows for systematic recording analysis, interpretation of

mortability and morbidity in various locations globally, and disease classification for health

problems [209].

Widely used classifications of disease include (1) topographic, by bodily region or system (i.e.,

vascular disease), (2) anatomic, by organ or tissue (i,.e. heart disease), (3) physiological (i.e.,

metabolic disease), by function or effect, (4) pathological (i.e., inflammatory disease), by the
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nature of the disease process, (5) etiologic (causal) (i.e., staphylococcal causing pneumonia),

(6) juristic, by speed of advent of death, (7) epidemiological (i.e., typhoid), and (8) statistical

(i.e., diet as a cause of atherosclerosis) [231]. For each of these classifications, we see that

there may or may not be threshold values that contribute to classification.

Threshold Classification approaches are defined by how an individual’s health can be labeled.

It may be a particular threshold met to define whether an individual has a disease or does not.

Thresholds are, therefore, a region of interest within a continuum. For example, in Figure

3.6 showing the Fletcher Curve for lung function decline, the classification of where one falls

along the curve can be “onset of symptoms,” “disability,” or “death” [259]. The thresholds

are determined generally by population data. It would not be possible to estimate the

health of one individual solely and classify this individual’s state unless it was a postmortem

analysis. Therefore thresholds are more commonly generated given population data.

81



Figure 3.6: Fletcher Curve. Lung function is measured through a quantitative mean of
FEV1, which is the Forced Expired Volume a person can exhale in 1 second. This parameter
is then placed upon the map of which regions and thresholds are relevant for understanding
health state. [259].

Categorical Classification approaches are also important in a categorical sense. For example,

in many cases of cancer, a tumor can be defined as metastasized or benign without any

particular threshold met. One either has cancer or does not. The same applies to infection;

one can either test positive or negative for infection with no thresholds to determine the

disease. We also see classifications of sex if an individual either has chromosomes XX or XY.

There is no in-between threshold for these classifications.

Classification approaches alone are not sufficient for defining the state of an individual’s

health if used solely; there will be no observation of state change at a high resolution, and

change will only be detected when crossing a threshold. The continuum is essential for

recognizing alongside classifications.
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3.2.3 Probabilistic Approaches

Probabilistic approaches measure the likelihood of a future event. Risk factors are needed to

compute the probability of having a disease. There are methods of calculating risk that takes

into consideration age, biometrics, and gender to determine chances for having a disease. The

information in this approach may be based on the estimation of a population or based on

an individual’s unique information. Essentially this approach is giving a person a distance

between an undesired region on the state space and their current state.

Population Based Population-based probabilistic approaches use population samples that

are most similar to the individual. It is essentially using other people as a model for one’s

self. Population health is “the health outcomes of a group of individuals, including the dis-

tribution of such outcomes within the group,” including health outcomes, patterns of health

determinants, and policies and interventions that are links to outcomes and determinants

[146]. Health can be measured at a population level to understand the functioning and well-

being of a group that is similar to an individual. Classic factors for calculating population

health include geography and demographics information.

In regards to CVD, population-level health estimation is a primary way of understanding

behaviors that contribute to cardiovascular disease for individuals. Multifactorial cardiovas-

cular health risks have been investigated in many of the extensive epidemiological studies

such as the Framingham Study, which lay the foundation for most modern clinical guidelines

by the AHA and American College of Cardiology (ACC). Conclusions from these large stud-

ies are useful in current clinical practice through the Atherosclerotic Cardiovascular Disease

(ASCVD) calculator [130]. This pooled cohort algorithm was based on linear regression anal-

ysis for four separate cohorts of individuals female blacks, male blacks, female whites, male

whites. They also take into account age, systolic and diastolic blood pressure, cholesterol,

smoking history, diabetes (binary field: yes or no), medication history (hypertension, statins,
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aspirin only), and is only applicable for patients in the age range of 40-79. The limitations of

this calculator include the requirement of invasive blood data and non-consumer based lab

processing. The estimated risks and scores are specific to defined combinations of the risk

factors and demonstrate how they vary over a broad spectrum of potential profiles. These

determined risks are now primarily used as guidelines for understanding individual risk [290].

The American College of Cardiology takes the inputs of risk factors for ASCVD such as age,

gender, blood work (systolic blood pressure, diastolic blood pressure, cholesterol), medical

history, and medication status. The calculation will generate the chances by percentage

for the likelihood of ASCVD. More information such as genetics and behavior can further

enhance the accuracy of the risk calculation [290, 36, 160].

There are many human health risk assessments, models, and tools developed by the En-

vironmental Protection Agency (EPA). For example, the “All Ages Lead Model (AALM)

predicts lead concentration in body tissues and organs for a hypothetical individual, based

on a simulated lifetime of lead exposure” and “statistical methods extrapolate to a popu-

lation of similarly exposed individuals.” This model provides risk assessors with a tool for

evaluating the sources of lead in a population or potential exposure to lead [76].

There have been several efforts for making long-term population health research using prob-

abilistic approaches more expansive, include the United States Precision Medicine Initiative

led by President Barack Obama. The Precision Medicine Initiative is a long-term research

endeavor, involving the National Institutes of Health (NIH) and multiple other research cen-

ters, which aims to understand how a person’s genetics, environment, and lifestyle can help

determine the best approach to prevent or treat disease [125]. Other examples of long-term

population health research include Mobile Sensor Data to Knowledge [147], and Alpha-

bet’s Verily division [273]. These approaches seek to understand what population cohort

characteristics allow for similarity comparisons between individuals to group them into sub-

populations. These sub-populations allow for a more specific estimation of an individual’s
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health state. The World Health Organization has conducted long term studies for lung can-

cer as rates had rapidly increased in the 20th century; sub-populations and geography were

closely examined in the epidemiological studies to understand the reasons for the spike in

disease [26]. Long term research efforts for acquiring data may take decades before we have

data available for meaningful insight, as they largely depend upon outcomes of morbidity

and mortality before they become sufficiently robust. For this reason, they are inappropriate

to use as the benchmark for state estimation at the individual level.

Non-population based Personalized models are used in probabilistic approaches to determine

one’s health state. Current approaches to identify patients at risk for arrhythmia are of

low sensitivity and specificity. Personalized approaches to assess Sudden Cardiac Death

(SCD) risk in post-infarction patients have been developed based on cardiac imaging and

computational modeling. Personalized three-dimensional computer models constructed post-

infarction hearts from patients’ clinical magnetic resonance imaging. The propensity of

each model to develop arrhythmia was assessed [11], as shown in Figure 1.4 in chapter 1

(personalized heart models).

Personal experience may also account for valuable information in probabilistic approaches.

For example, if an individual experiences knee pain when cycling that leads to knee ten-

dinitis, by experience, they can determine if the probability of the same pain occurring to

be associated with the tendinitis if they have data collected. These are experience-based

probabilities that can help individuals estimate their health state. The personal experience

and perception of pain in determining the probability of a health state may also a subjective

approach.
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3.2.4 Subjective Approaches

Subjective approaches for estimating health include observation and perceptual data that can

be used as information to understand one’s state and also future risks. If any individual holds

information such as self history, changes in feelings over time (i.e., pain increase over time),

this information can be used in correlation to other objective metrics to generate a conclusion

about the current state. This method for gathering knowledge and information depends on

a user’s intent or experience. We can observe this, for example, in the dynamic nature of

recreation experience. Experience patterns capture engagement over time. Seven qualities

of hikers’ experiences (four mood measures, two satisfaction measures, and landscape scenic

beauty) were assessed at twelve moments during a hike in Hull’s study. The subjective data

components may be relevant for understanding the experience and how this is contributing

to the state of the individual [128].

There have been advancements in tools for data collection methods, such as facial recogni-

tion, natural language processing (NLP), and surveys that combine pieces to generate an

estimation for how an individual is feeling. Facial recognition attempts to estimate emo-

tions and track feelings over time. NLP relates thoughts, language, and patterns of behavior

learned through experience to specific outcomes [169, 85]. Basic survey methods for asking

individuals about their lifestyle and behavior are also still common forms to gain knowledge

about an individual’s health trajectory.

All of the above-mentioned estimation approaches have a unique value. The integration of

the above approaches is still highly sought after in the research and clinical communities.

In order to truly have the integration at an individual level for state estimation, we need to

investigate modeling techniques.
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3.3 Personal Human Health Models

Given the measurements described above and estimation approaches, we need to have a per-

sonal model to fulfill some essential design requirements mentioned. A model characterizes

the relationship between the inputs and outputs to one’s health. The most obvious benefit

the ability to predict, which requires having a model by which to estimate a future state.

Thus, we review various approaches in forecasting or modeling long term health. To design

a robust model, we must incorporate domain knowledge, taking epidemiological data, and

individual data to ultimately make a generalized personal model. We must note that the

model is not always static and needs to be updated.

There are several distinct levels we consider for building a personal model. In the first level,

researchers have applied general rules directly related to known human domain knowledge

(i.e., biology, physiology, behavior) to establish a general human system model. This model

approach is most familiar in the form of textbooks. In the second, we incorporate specific

knowledge that applies to sub-categories of similar people that we call cohort generalization

or sub-population fitting. This layer is the function of the individual at a specific time

and place. Clinicians use this method quite often when suggesting a course of action for a

particular patient. Third, we consider “static” variables such as genetics and birthdate (fixed

individual parameters). Fourth, dynamic individual models use the previously mentioned

three layers with constant real-time data to update the model. The visualization of these

layers is shown in Figure 3.7.

Figure 3.7: Layers of personal data modeling.
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3.3.1 General Human Systems

We first review models using general rules provided by medical and biological knowledge to

represent the human. These are objective models based on well-defined textbook knowledge

that gives us the insight to forecast human health. Models help us understand a human’s

relationship to the environment, its current situation, and plans for the future. We will

review models using biological and behavioral domain knowledge.

Physiological modeling takes biological knowledge and apply this to our understanding of

how a person functions. Biological information regarding the individual is captured in, for

example, the Athlete Biological Passport (ABP). This model is based on the monitoring

of biomarkers to catch doping with performance-enhancing drugs. The ABP gives a unique

mark on an individual’s hematological profile as a baseline, and any deterrence in the system,

such as through doping, will trigger a physiological change [251]. This model applies a

standard set of thresholds to all athletes, such as having a hematocrit under 50 is considered

normal.

Researchers have also built models regarding functional biological components, such as a

model of the heart for better understanding the functional interactions between cells, organs,

and systems, as well as how interactions between them change disease states. “The rapid

growth in biological databases; models of cells, tissues, and organs; and the development of

powerful computing hardware and algorithms have made it possible to explore functionality

in a quantitative manner all the way from the level of genes to the physiological function

of whole organs and regulatory systems” [203]. Figure 3.8 is a model determined by several

human samples, giving us a representation of the constriction of blood flow within an example

heart. This type of model allows for the simulation of various physiological situations.
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Figure 3.8: Modeling the Heart. This figure shows the left coronary circulation model
subjected to constriction of one of the main branches leading to blocked blood flow [203].

Computational modeling can be used for biological processes that are occurring within the

mind. For example, the neurological process of associative memory has a model of processing.

This model demonstrates how the brain handles pieces of information in a serial order. A

study conducted sequentially arranged patterns to simulate memory serving as a digital

representation of human memory [287].

Behavioral modeling allows for the interpretation of human behavior and preferences. Human

behavior can be very complex, and models are often simplified within a system or domain.

A traditional behavioral model is Pavlov’s classical and operant conditioning, which pairs a

neutral stimulus with an unconditioned stimulus to elicit a desired response [53, 97]. Another

early theoretical model developed for understanding health behaviors was the health belief

model in Figure 3.9, which shows how particular human attributes contribute to perceived

severity, benefits, and motivations to take action on health.
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Figure 3.9: Health Belief Model. This model predicts the probability of a person taking
action that would benefit their health. The model focuses on understanding what people
believe in and where they see benefits in certain actions. [295].

A third example of a human behavior model shows that behavior has multiple layers that are

interconnected. This research was conducted in the modeling the behavior during training

laparoscopic surgeons [288], shown in Figure 3.10.
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Figure 3.10: Behavior Models. Rasmussen’s behavior model outlines behavior in three
different levels: Skill-based behaviour represents human behaviour that takes place without
conscious control. Rule-based behaviour involves task execution controlled by rules. In
unfamiliar situations in which there are no rules or procedures, behavior is knowledge-based
[288].

The model of human driving gives a specific representation of behavior. “The model of the

driver includes lateral and longitudinal control tasks such as path-following, obstacle avoid-

ance, and headway control, examples of steering and braking activities performed by the

human driver” [164]. Macdam et al. recognize that both physical limitations and other at-

tributes that make the human driver unique, characterize human control behavior. Knowing

this model predicts the performance of the human over time.

Quantification methods are needed for behavior models to be more comprehensive and pre-

cise. Human interactions have been modeled through Bayesian computer vision systems to

recognize human behaviors in visual surveillance. Oliver et al. designed a system combining

a top-down with bottom-up information in a closed feedback loop, comparing two differ-

ent state-based learning architectures for modeling behaviors and interactions [207]. There
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are also quantification methods applied to human performance modeling to analyze human

function and development of systems for optimal user experience. Sebak et al. summarize

this well in their review of behavior models describing how “human performance models

predict human behavior in a task, domain, or system. However, these models must be based

upon and compared against empirical human-in-the-loop data to ensure that the human

performance predictions are correct” [242].

Many of these approaches use a connection between various functional abilities or biological

components connected through an informal or formal graph structure. We can see this clearly

in many of the figures visually. While using these objective measurements to model general

health through biology and behavior may be useful, combining this with models based on

demographic data gives us further precision into one’s long term health state.

3.3.2 Sub-Population Fitting

Demographic, cohort, or population-based models refine general health models. Cohort gen-

eralizations consider population-level findings and apply this data to an individual, based on

most similarities to the individual. For example, risk calculators predict cardiac arrest. The

Revised Cardiac Risk Index is a cardiac risk stratification tool that allows us to model humans

by making taking population data and making calculations based on known unique factors

(gender, age, blood panel) a [105]. A defined cohort allows estimation of distributions of

prevalence rates of relevant variables, such as risk factors. Advantages of a population-based

cohort study arise from the specific health-related parameters for the reference population,

which allows the estimation of population risk figures used for planning [257]. This is a

typical medical approach to sub-group matching.

Sub-population data is useful for making assumptions about individuals based on others

who are similar to them, known as collaborative filtering. This is a typical computer rec-
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ommender system approach to sub-group matching. This method makes predictions and

recommendations based on feedback information from a community of users. The method

assumes that people are similar when they have similar interests and do not assume causal

modeling. We see the collaborative filtering techniques commonly used for online platforms,

such as Facebook, Google, Netflix, and Amazon, used in recommendations to an individual

based on the preferences of others who are similar. The technique applies to healthcare in

systems with limited prevalence. Personal healthcare modeling for communications between

users in online forums uses this method to monitor the condition of patients and help people

with similar conditions interact and exchange experiences [276].

3.3.3 Static Individual Parameters

Individual parameters that are not constantly changing over time and are “fixed” can be

used to understand an individual’s model at a given point in time. These parameters may

include genetics data, birth information, and their unique medical history, or developmental

disorders. “Fixed” is in quotations because all components are subject to change, including

genetics, thorough DNA damage, and technologies like CRISPR [55]. Recognizing fixed

parameters allows for modeling an individual upon these constraints. For example, the bone

length is usually a fixed parameter when an individual reaches adulthood. As the growth

plates close, the bone will remain a particular length going forward, providing information

on one’s body size and enabling customization for health or shopping for clothing. We have

seen these models developed in Retul’s bike fit testing for helping users select appropriate

bike models, improving pedaling technique and selecting bike components for one’s specific

biomechanics and measurements, as shown in Figure 3.11 [229]. Orthotic specialists use this

approach as well. Many multimedia efforts focus on understanding which clothing best suits

the fit of an individual’s parameters [13, 82].
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Figure 3.11: Retul Bike Fit Personal Model. Individual measurements are collected and
applied to a highly customized bike fit.

Other static parameters, including genetics, can be useful to model an individual’s exposures

and future health risk. Companies such as 23andMe are using genetics data to model an

individual and give them information about their objective genetic parameters. With this, we

can make predictions about a person’s future health state, such as genetic predispositions for

developing heart disease, cancers, relationship to various foods and activities, and behavioral

tendencies [1].

3.3.4 Towards Dynamic Personal Models

The modeling techniques mentioned above so far assume that the person is an entity that does

not change over time. These models assume that the individual model is static. In reality,

this is a false assumption. A human model must continuously change due to circumstance,

aging, and events that are impacting the person. There have been further efforts in building

adaptive modeling techniques.
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Contemporary digital technologies measuring constant change, such as on-engine monitors

in airplanes, are used to maintain the well-being of jet engines and also similarly could be

applied to humans [260]. Tarrasenko’s “digital twin” consists of a particular engine and

a unique computer model that accurately adapts to estimate the state of that particular

engine. For example, if an engine flies from Los Angeles to Houston where the weather is dry,

compared to an engine that flies a rainy route from Vancouver to Montreal, the model of how

the engine state changes is different, even if the engine is from the same manufacturer. When

applied to people, the digital twin is a computer simulation of an individual that dynamically

reflects the individual’s molecular status, physiology, and lifestyle over time. An alternative

concept of digital human twins relies on a large information infrastructure that characterizes

each individual for demographics, biological data, physiology, anatomy, and environment,

along with treatment and outcomes for medical conditions. Tarrasenko et al. describe “the

twin represent(ing) the nearest-neighbor patient, derived from the algorithmic matching of

the maximal proportion of data points using a sub-type of AI known as nearest-neighbor

analysis.” This example harks back to the collaborative filtering methods mentioned above.

The Howard Chang Personal Dynamic Regulome Lab works on understanding what inputs

change the state of an individual. Their concept is to “create the GPS system for navi-

gating the regulomic landscape of human health and disease. Each gene has a system of

switches that controls when and where a gene will turn on. The regulome is the complete

set of switches for all genes. Regulated gene expression plays key roles in nearly every de-

velopmental program and disease state, and dozens of human therapeutics act through this

regulation to alter gene expression. We aim for technologies to determine rapidly how the

regulomes of individual patients and disease tissues maps into a global landscape, and how

each intervention changes their trajectories in real-time. This real-time information feed-

back between perturbation and outcome is essential to tailor precise medical treatments for

individual patients. They face challenges of how these new technologies must be compatible

with the small sample sizes of human biopsies and clinical workflows if they are to be widely
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adopted” [225]. Essentially, the regulome integrates events with specific changes in biological

gene expression. This concept is visualized in Figure 3.12.

Figure 3.12: Personal Regulome. This consists of the complete set of switches for all
genes within an individual. Here is a rendition of chromosomes 18-20 of an individual
whereby certain events either turn on or turn off the gene expression of specific genes within
the individual. This regulome has specificity down to the cell level and is a key pillar in
developing dynamic individual models.

Dynamic modeling can be crudely done currently in systems like STELLA, a visual pro-

gramming language created to run models through a graphical interface. This model is

represented by stocks, flows, and variables to represent a single entity moving in the system.

Each of the interconnected icons is defined mathematically. STELLA can be used to repre-

sent a biological model for human cholesterol dynamics, circadian rhythm control, and more

[111]. STELLA can be used for modeling cardiovascular function [233]. Other examples of

systems dynamics programs to see entities changing in a system is through Insight Maker,

an open-source program to use loop diagrams to create simulation models [168]. Important

to note, the “dynamic” word in these approaches refers to the system state is dynamic, while

the relationships between variables are generally static.
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In order to have a successful dynamic model, the constantly changing health measures are

recorded using real-time sensor data. Firstbeat Technologies collects various data sources

through wearables and makes sense of the information together and its relevance to an

individual’s health state. The dynamic model of a person’s aerobic fitness level uses the

calculation of the maximum volume of oxygen (VO2max). The method uses the heart rate

and speed relationship and detects the reliable data period for VO2max estimate during

the exercise. Firstbeat has created a method to calculate the VO2max in an uncontrolled

real-life exercise. This includes a physiological basis, the linear relationship between oxygen

consumption and running speed. The “technology (such as GPS sensors and foot pods in

wrist devices or mobile phones) enables reliable measurement of running speed along with

heart rate. These parameters can be monitored continuously and automatically during each

workout” [84]. They capture the personal information of the individual, such as age. They

use a device that calculates heart rate segmentation to estimate the fitness data through

the person’s heart rate and speed data [84]. These models are a good start, but still remain

quite primitive in that they only use a handful of variables to build a dynamic model about

the individual.

Once again, there is a common theme of needing to use continuous data streams to build

models about people that improve over timeconnecting the data to the person’s model has

the most promise in the simple graphical approach. Modern artificial intelligence modeling

techniques also have been utilizing graphs as a primary method of connecting data and mean-

ing [235]. For this reason, we move into reviewing the various techniques for representing

the individual dynamically through graph modeling below.
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3.4 Artificial Intelligence and Graphs

Humans have spent a greater part of the last century developing machines that can improve

the quality of life. Computing, with machine processing information towards a goal, con-

tributed to a large portion of this progress. Machines that can execute complex thinking

tasks such as reasoning, planning, and learning is artificial intelligence (AI) [235]. Modern

research efforts continue to investigate how these artificial intelligence principles can apply

to health. Health is a product of functional interactions of many objects such as molecules,

cells, organisms, and the environment. Based on this premise of connectedness in the world,

graphs are one of the most potent ways to represent the real world computationally. We

review key relevant principles in AI for HSE.

3.4.1 Graph Networks

Established by Leonhard Euler in 1736, graph theory is the study of modeling relationships

between objects [102]. Undirected graphs are a tool used to capture symmetrical relationships

between objects. Directed graphs contain connections that have a source object and a target

object, thus establishing a direction by which relationships flow. Graphs are an excellent

computing methodology for capturing the connectedness of information about our health.

Graph networks connect how genes are expressed in cancer and healthy tissue to identify

topology that distinguishes them apart [239]. Gene identification methods can also determine

pathways for CVD, merging omics data with biological knowledge, as shown in Figure 3.14.

By identifying the biological networks for a system, we can see transitions from a healthy to a

diseased state [67].Graph networks can construct the human brain networks (brain regions as

nodes and pairwise associations as edges) by combing functional and material causes (shown

in Figure ) [21]. There may be a clustering of physiologic patterns related to the nodes, as
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seen by measuring REM activity as a risk for CVD (shown in Figure ) [124]. Lastly, by using

graph structures, we can start observing causal relationships.

Figure 3.13: Workflow of Human Brain Network. Connections can be made using both
functional and material causes for establishing the graph network.

3.4.2 Causal Reasoning

Causal reasoning is the process of understanding the relationship between a cause and its

effect. Causal events usually have a temporal aspect in which the cause is antecedent to the

effect. Graph structures are typically employed to represent causal pathways. Computing

methods that understand and can discover causal reasoning is of great interest to the AI and
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statistical fields. Turing award winner, Judea Pearl, describes causal calculus as “the ability

to infer intervention probabilities from conditional probabilities in causal Bayesian networks

with unmeasured variables” [219]. A benchmark of this work is the detection and description

of confounding variables within data. Pearl’s criterion, which he calls “backdoor,” provides

a robust definition of confounding variables, enhancing the identification of variables worthy

of measurement [220]. An investigation into causal reasoning in early AI research conducted,

uses pathophysiological knowledge in medical diagnoses [218]. The medical community con-

tinues to seek a causal understanding. Goodman et al. use the Framingham model as an

example to identify causal factors (such as smoking cholesterol, blood pressure, i.e.) through

prior knowledge and changes in risk factor [93]. Causal relationships also conduct simulations

using demographic information [47].

Figure 3.14: The Heart Network. The merging of omics data and biological domain
knowledge is used to create graph networks, highlighting causal relationships.

3.4.3 Knowledge Structures

Similar to a database, a knowledge base stores information about the real world. The

first knowledge bases were “expert systems” [44]. Knowledge in health largely consists of
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understanding the output of a system after it is perturbed given an input. This knowledge

arrives from established causality from scientific discovery. A graph structure can store the

causal relationship of various parts of health through directed edges which store the cause

as a source node, and the effect as the target node. From a molecular level to a societal

level, these relationships are routinely in the scientific literature. In light of this, we review

knowledge structures in graph format, also known as knowledge graphs.

Google harbors one of the largest knowledge graphs at the current time, with over 70 billion

facts [275]. Knowledge graphs have been described in various forms [74]. Collectively, the

aim of knowledge captured in this format is for use in further sharing and computing. Within

the domain of health, there have been various efforts to capture this knowledge. Cytoscape

is an open-source software platform to capture the relationships between molecular entities

for biological research [244]. An example of Cytoscape software is given in Figure 3.15. Non-

profit databases such as Pathway Commons store the molecular pathways used in Cytoscape

[217]. Heterogeneous networks, or HetNets in short form, have also been described in biology

through the work of Himmelstein et al. [117]. By gathering public domain literature into a

connected knowledge base, queries are run to determine distances between entities to discover

pathways for re-purposing drugs. A data-model of how these HetNets are shown in Figure

3.16. These efforts in accumulating knowledge into data structures can be extended for use

in further applications, yet have mostly been limited to specialized domains of research.
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Figure 3.15: Cytoscape. Cytoscape is an open source bioinformatics software platform for
visualizing molecular interaction networks and integrating with gene expression profiles and
other state data. [212].

Figure 3.16: Heterogeneous Networks in Biology. Hetnets contain edges and nodes
that have type specificity as part of their properties. Using these types as distinctions,
various visualizations, queries, and algorithms can be applied. This particular HetNet maps
relationships between compounds and diseases [117].

In the field of cardiovascular research, there has been a call for the integration of diverse

knowledge graphs to work together. This approach has been called multi-scale cardiology
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by Johnson et al. Current clinical knowledge in cardiovascular health derives insight broad

clinical trials and studies. This knowledge is placed into sweeping standardized guidelines.

Johnson et al. describe future research needs in applying AI and knowledge network models

to enable a more precise understanding of patients and matching the best therapies for a

particular person [138], shown in Figure 3.17. This work highlights the issue of integrating

knowledge even within a specific sub-field of research as a formidable challenge.
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Figure 3.17: Multiscale Cardiology. There are multiple layers of consideration for practic-
ing precision cardiology including integration of knowledge, experiments, data, environment,
and person’s lifestyle. Computing techniques to extract understanding of how actions can
be best taken to help the cardiovascular state are still needed [138].
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As we think forward about establishing a state estimation model for health, knowledge graphs

can help instantiate a model of an individual at various abstraction scales. Knowledge graphs

are essential to overcome the cold start problem of personal HSE.

3.4.4 Systems Thinking

Systems thinking approaches problems through an eagle-eye view of interrelated components,

contrasting reductionist approaches that try to isolate the view of study to a highly controlled

environment within which we understand perturbations. A system may express emergent

behavior when the parts accumulate, giving homage to the famous term “greater than the

sum of its parts.” As described by Fang et al., “a fundamental tenet of systems biology

is that cellular and organismal constituents are interconnected, so that their structure and

dynamics must be examined in intact cells and organisms rather than as isolated parts”

[83]. Inputs to one part of the system can propagate to other parts of the system. Systems

approaches can predict how these effects will propagate.

Figure 3.18: Systems Thinking. By considering an entire ecosystem of components, sys-
tem thinking aims to understand the behavior of complex entities. This approach includes
understanding how sub-entities are connected and related, how effects can circularly impact
the system, what emergent properties arise from the system as a whole through synthesizing
the system into a single architecture. Adapted from Leyla Acaroglu.
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STELLA and InsightMaker are examples of modeling systems with stocks and flows [168, 68].

The user places interconnected icons and defines functions mathematically of how a particular

value is flowing into and out of stocks. The most classic example of this method is a bathtub

with an in-flow from the faucet and an out-flow through the drain. This approach has been

used in modeling cardiovascular function, as shown in Figure 3.19 [233]. Systems models

that are intelligent that change their structure remain a challenge in this field.

Figure 3.19: Cardiovascular Function. Blood flow is shown here moving through stocks
and flows through the STELLA interface. This model can only focus on a single dynamic
variable within these containers [233].
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A robust HSE requires a systems approach due to the complexity of biology. At the same

time, we must incorporate reductionist science discovery to have the best performance. To

address this computationally, we look towards microservices.

3.4.5 Microservice Architecture

Microservice architecture is a software development technique whereby an application is

made from a compilation of loosely coupled services. These services provide a specified

interaction with other services. Reductionist science is a microservice reporting on the

behavior of an isolated system. An extensive collection of these systems that have knowledge-

driven connections between them can start to build a systems approach to using these smaller

nuggets of knowledge. The modular nature of microservices also means that a system can

easily swap out, add, or delete a service if there is an updated or out-dated version without

breaking the whole system structure. Hence microservices are readily understood as a graph

network of interacting Application Programming Interfaces (API).

This approach is used in primarily identifying device or software performance health, and

security. As examples, microservices are used in modeling IoT devices for health [116],

monitoring the health of the software itself [263], and implementing security measures [77].

No one known to date has used the microservice approach to represent the health of an

individual directly.

3.4.6 Data-Driven Learning

Uncovering complex patterns specific to an individual requires harmony between top-down

approaches through knowledge, as mentioned above, alongside data-driven bottom-up ap-

proaches. These data-driven approaches can discover patterns that human analysis may fail
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to see. We can use data in learning how to adapt models to best fit reality constantly. A

large part of these patterns in health and life is temporal. This approach is the particular

aim of event-mining research.

Event mining encompasses techniques for automatically and efficiently extracting valuable

knowledge from the historical event and log data [157]. Event Mining: Algorithms and

Applications presents state-of-the-art event mining approaches and applications with a focus

on computing system management [157]. Event mining can be challenging as it requires

familiarity with domain literature for meaningful pattern discovery.

In general, temporal data is considered as a sequence of a primary data type, most commonly

numerical or categorical values and sometimes multivariate information. Temporal data

is presented in a numerical time series of values or events (e.g., EEG, stock price), click

streams). Some primary goals of temporal data mining include pattern analysis, search,

prediction, and clustering. Translating knowledge maps for events into a temporal visual

representation [283]. Different variants of sequential patterns are described [5, 45, 155].

Multidimensional patterns are particularly interesting for health since there are usually many

parameters to compare at once [312, 110, 15]. There have been extractions of knowledge in

literature for event mining in the context of systems biology [9]. By using the knowledge

above as a basis for constraints, the search space for mining these patterns can be reduced

in computational complexity [221, 182, 222, 298]. Machine learning approach based on

Bayesian networks is trained on medical health records to predict the probability of having

a cardiovascular event. Unfortunately, their model fails to use high temporal resolution data

[18]. Temporal patterns are just one avenue by which to use data-driven approaches. A

breakthrough in machine learning and AI systems in the last decade has been through the

advancement of neural networks.

Neural Networks represent a broad class of algorithms modeled after the human neuronal

connections for pattern recognition. A network starts with input as stimuli and propagates
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a signal to neighboring nodes by an activation function, such as sigmoid or tanh. Each pair

of nodes have particular edge weights. Below are these activation functions and weights.

Activation(W (eights) ∗X + b(ias))Activation(W (eights) ∗X + b(ias))

Training the network is based upon defining a cost function that is optimized. This concept

is shown visually in Figure 3.20. As of 2020, neural networks have provided a valuable

computing method to recognize patterns when given large amounts of data. This data-hungry

need for neural networks is a double-edged sword. For systems that continuously produce

large amounts of homogeneous data, it is advantageous. Unfortunately, large amounts of

data about an are rarely collected, and thus there has not yet been much progress in using

this method for personal HSE. Regardless, there has been some research into using neural

networks for HSE.

We explore two avenues within neural networks for HSE: 1) temporal data streams and 2)

deep learning. Temporal data streams such as signal based learning for EEG signals [206].

We also see temporal-based data streams in health condition management and predictions

using neural networks [303, 104]. There are several examples of using deep learning for

better classifying diseases. Image recognition in a clinical setting is prevalent. We see this in

radiology, dermatology, pathology, as these fields are dependent on images [227, 63, 78]. Deep

imaging continues to grow in in biomedicine, such as for predicting genetic variations and

altercations [280]. Image Recognition applied to health state has a broad scope of research

conducted to date and will be beyond the scope of this thesis to cover.
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Figure 3.20: Neural Networks. Given an input layer of data, the neural network learns
patterns and features to match an output layer.

3.4.7 Robust Artificial Intelligence

Recent AI progress in domains such as vision, language, and decision-making fit the strengths

of neural networks. Many characteristics desired from intelligent systems are still sought after

and remain out of reach. In particular, generalizing beyond the story of observable data re-

mains a formidable challenge for modern AI, requiring approaches that structure meaningful

representations and integrate data coming from the real world. We will explore approaches

that benefit from the complementary strengths of top-down and bottom-up thinking below.

Probably Approximately Correct approaches use a combination of estimation and probabil-

ity as a learning approach. Turing award winner, Leslie Valiant, describes how probably

approximately correct algorithms can explain how effective models are learned without di-

rect, explicit instructions. Satisfactory solutions are generated in the absence of any theory

about the problem. This approach rests on choosing the appropriate information gathering

mechanism and a reasonable learning protocol [270, 269].
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Knowledge Infusion aims to endow computers with the ability to apply commonsense knowl-

edge with human-level performance. Here the computer represents pieces of knowledge about

the world with uncertainty. Knowledge infusion rules are learned from the world to reduce

this uncertainty [271].

Combinatorial generalization is the ability to understand and produce a new understand-

ing of familiar components through new inferences, predictions, and behaviors from known

building blocks. This signature of human intelligence to extend data from life experiences

with knowledge is “infinite use of finite means” [140, 50]. Battaglia et al. have explored im-

plementing a combinatorial generalization approach by biasing learning towards structured

representations and computations that operate on graphs. They claim, “Just as biology uses

nature and nurture cooperatively, we reject the false choice between hand-engineering and

end-to-end learning, and instead advocate for an approach which benefits from their comple-

mentary strengths” [22]. They explored how to capitalize on the structured representations

through nested layers of graphs called graph network blocks (GNB). Combinatorics can help

answer what combination of blocks is optimal in modeling the system [102].

Other researchers have attempted to build frameworks for combinatorial generalization. A

hybrid model approach of mechanically producing real-world data to feed into a neural net-

work has been attempted by combining neural networks with a physical audio engine [284].

This approach is mostly data-driven and doesn’t take advantage of knowledge, even though

the authors claim to have achieved combinatorial generalization. One explored approach to

using both data and knowledge has been to use combinatorial building blocks into neural

networks [277]. Representing symbols through “vectors approach to representing symbols”

(VARS) allows training standard neural architectures to encode symbolic knowledge explic-

itly at their output layers [272]. In these cases, the knowledge put into an overarching

data-driven approach is the primary driver. At the time of publication, there are no known

HSE approaches that use graph network blocks or combinatorial generalization techniques.
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3.5 Unmet Challenges and Scope of Dissertation

Especially in chronic diseases, the current medical practice continues to use sparse hospital-

based biological metrics (i.e., blood tests, expensive imaging) to understand the health status

of an individual. The apparent research direction ahead points to utilizing a combination

of the approaches above to shift towards a continuous and abundant HSE paradigm. To

achieve this requires the harmony of using personal data, estimation techniques, and mod-

eling. Enabling data assimilation will require an intelligible understanding of how sensor

data relates to health status. We must use existing medical and biological scientific domain

knowledge to guide the data assimilation and conversion matrices from signal to state, as

shown in Equation 2.1 and Equation 2.2 with causal intelligibility. Knowing why an indi-

vidual has a particular health status will be paramount to explanation, recommendation,

and treatment. Purely data-driven methods can be components in an extensive system but

will have difficulty in leveraging existing knowledge. Purely knowledge-based systems do

not take advantage of data giving insight into the dynamic state of the individual. For this

reason, complementary methods needed to take advantage of both approaches. Combina-

torial generalization approaches allow for the pooling of understanding at different levels of

abstraction, the encoding of domain knowledge, and learning from data. In so far, at the

time of writing, these approaches seem the most promising for leveraging computing power

to aid in the HSE problem.

We will discuss the unmet challenges in this work by focusing on bridging together several

components of the literature mentioned uniquely. Foremost, continuous sensing through the

self, sensors, and external agents is an absolute must for in-depth high temporal resolution

HSE. A graph-based approach aims to fuse the connectedness of causal reasoning with do-

main knowledge. By nesting these graphs into microservice blocks, we gain the ability to

zoom between abstraction layers fluidly. This ease in movement allows for a flexible, holis-

tic, and reductionist approach to work symbiotically. These blocks can contain their unique
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models and estimation techniques that suit their level of abstraction optimally. We will de-

scribe these efforts in the context of bioenergetics and cardiovascular health at an individual

level.
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Chapter 4

Health State Estimation Framework

Knowledge is power.

Francis Bacon

In the era of information technology, we harness the power to know the state of key aspects

of our life. In an instant, we can know our physical location, financial situation, or the

quality of our batteries. Based on this high-quality state estimation, we have a host of

rich computing services that serve our needs, such as mapping directions, trading assets,

and energy optimization. To date, we cannot see the details of our evolving health state

in this way: on-demand and at every moment. The host of problems this issue poses are

described in Chapters 1, 2, and 3. As defined in Chapter 2, health must go beyond just

biological components by including elements of function. In order to know the state of our

health in each moment, we need to combine all possible sources of data and knowledge into

a seamlessly connected framework in the context of both biology and real-life needs. These

two factors are the core of how we build a useful HSE paradigm. This chapter describes the

principal concept of this dissertation by which to build a state estimation model for each

person connecting these two factors.
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4.1 Health State Estimation General Overview

The value of good health to an individual is largely based upon the wishes of how they wish

to live. In order to practice a well-lived life, certain abilities determine the possibility of

these wishes coming true. Take the example of an individual who is keen to play the guitar,

ride a bicycle, travel to hiking destinations, or solve interesting computing problems. Each

of these endeavors requires abilities for the individual to embark on the respective goal. For

example, an individual who wishes to play the guitar and enjoy music must have the ability

to use their fingers with dexterity, have the endurance to hit the strings repeatedly, and a

heightened sense of hearing to engage satisfactorily in this activity. All these abilities depend

upon harmoniously operating biology of neuro-muscular function, cellular metabolism, and

auditory sensory cells. These biological mechanisms are in constant flux. So in order to

determine how the state is continuously changing, we must understand what inputs cause

change to the system state as given in Equation 2.1 and Equation 2.2.

These inputs are the events of our life in every moment aggregated in sequence. Each

event interacts with our biology and causes changes in the system. The basis of this change

rests in the central dogma of biology, whereby these events change our gene expression,

metabolism, and other molecular processes, which then cause a change in the biological

state [59]. Our health state is rooted in the flow of events shaping our biology, which in turn

determine our abilities to do the things we want to do. This flow is shown in Figure 4.1. This

HSE and modeling distinctly capture these flowing elements. The proposed framework thus

contains four key abstraction blocks that serve these unique needs. The first is the semantic

laminae, which are the layers of information by which humans can easily interact with natural

language and visualizations. In the above example, this is at the abstraction level of wanting

to play the guitar. The second is the utility state block, which captures all the fundamental

functionality a human has. In the above example, this refers to the abilities to capture audio

and the mechanics of playing the strings. The third block is the biological block, composed
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of all the natural components that give rise to the utility functions, exemplified through the

muscular, neuronal, and sensory biological systems that allow us to play and enjoy music

from a guitar. The fourth block contains all the events that are inputs into the human

system. In the case of a guitar player, they could be practice or jam sessions with other

musicians. The four blocks are described below. The remainder of this chapter outlines the

intricacies and interactions of these blocks.

These four blocks interact in a specific flow. Events in a person’s life change their biology,

and these biological changes are reflected in the change of our utilities. The set of utilities

relevant for a particular domain provides the dimensions by which to position the user state

within the health state space for that domain. The flow of these four blocks is demonstrated

in Figure 4.1. We go over the atomic construction material of this system next, the GNB.

Figure 4.1: Health State Estimation Flow. Events drive biological changes in the user’s
body. These biological components determine utility state dimension values. The combina-
tion of these utility dimensions provide the health state, akin to the GPS position. The user’s
position is visualized to view the current state within a certain semantic context defined by
the user intent.

4.2 Graph Network Block Structure

To begin describing the framework details, we start with the most basic component, a GNB.

This approach takes inspiration from the work of Battaglia et al. to use relational induction
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within a system to elucidate a generalized understanding of a system [22]. Because all the

parts of life are related together, a graph concept suits our needs of connectedness the best.

The GNB structure is defined by a directed multi-graph, summarized into a global set of

attributes. A visual description is given in Figure 4.2. This GNB concept represents the

utility and biological blocks in this estimation framework.

Directed : Edges travel from a “source” node to a “target” node.

Attribute : properties of each node or edge are stored as a set within the respective edge

or node.

Global attributes : This is a set of attributes about the entire graph structure, which may

be computed from the properties of the nodes and edges.

Multi-graph : Between two nodes, there can be edges in both directions and multiple edges

in any given direction. A node may also have a self edge.

Figure 4.2: Graph Network Block Unit and Update Process. Each GNB describes a
directed multi-graph, including multiple edges in the same direction or opposite directions,
as shown between node B and C. Edges can also be to a self node as shown for Node A.
The properties characterizing the entire multi-graph are summarized as global attributes
within U. Step 1 shows the initialization of a GNB. In the following steps, red highlights the
updates. Step 2 shows the edge update. Step 3 shows the node update. Step 4 shows the
global update, a visualization of algorithm 1.

We represent the relationship between two parameters as a directed edge from the cause to

its effect. Every node is a GNB with its global update. The update cycle for each block is

as follows:
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1. Update incoming edges: We call the update method associated with each edge coming

in to block and defined within the block. For most edges, this method reads the global

parameters of the source node and passes those to the target node. If needed, we can also

perform more sophisticated transformations on the incoming data. An edge can be updated

when there is a new update in an associated source node or an update in the relationship

itself.

2. Update the nodes in the block: Every node in the block updates by applying the node’s

global update function on the incoming edge parameters.

3. Global update: Once all the edges and nodes in the block updates, we can aggregate the

updated values of nodes and edges to update the global parameters of the block.

4.2.1 Nested Microservices

Each of these GNBs can represent a set of microservices working together to provide a higher

level microservice. The output of the higher level service is within the global attributes of

a GNB. The purpose of using this microservice approach is to ensure the framework is able

to allow for modular exchange with any biological (i.e., organ transplant, chimera) or non-

biological system (i.e., metal bones). It also allows for systems and focused reductionism

to work together by zooming to the appropriate block. This structure is shown in Figure

4.3. This design allows for incorporation of the nested service layers that biological systems

provide to the human body. This hierarchy of services is shown in Figure 2.4.
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Figure 4.3: Nested Microservices. The GNB structure global attributes give rise to
a microservice. These microservices are structured in a nested manner that can interact
with each other in complex networks. This allows for the relevant level of abstraction to
communicate in any system that wishes use the GNB. Figure adapted from Meyer et al.
[179].

4.2.2 Causal Knowledge Infusion

In the case of the directed edges within a GNB, each edge represents a relationship between

two real-world entities. These entities and relationships are built initially on domain knowl-

edge. Thus, each edge is a causal relationship that extends for causal calculus or backdoor

confounder analysis (beyond the scope of this dissertation). By using the nested microservice

approach, we can insert knowledge at the correct abstraction level and can scale between

depth and breadth through the blocks. The knowledge sources for each edge are also stored

within the edge for reference. An example of the knowledge transformation process is shown

in Equation 4.1 and Figure 4.4 as an example for cardiovascular physiology. The equation

dictating cardiac output CO is below, where SV is the stroke volume of blood each heart-

119



beat ejects and HR is heart rate. CO at rest is determined by body weight. The knowledge

source is from Exercise Physiology: Human Bioenergetics and Its Applications [33].

CO = SV ∗HR (4.1)

Figure 4.4: Knowledge to Graph. Here, we translate cardiac output equations to the
graph structure. Cardiac output refers to the volume of blood that the heart can pump per
minute. Once we have the relationship in graph format in conjunction with data streams
from either cheap continuous sensors like a weight scale or watch, or a more costly sensor
like an ultrasound, we can update the relationship to more accurately reflect the model of
the individual.

4.2.3 Data-Driven Model Updates

The relationships encoded in the edges can be modified in the future when we identify

two nodes that have incoming data streams of both the source and the target node. This

approach allows for both domain knowledge and data-driven structures to co-exist and help

each other. In Figure 4.4, this is shown as either low-cost or high-cost sensor data validating

the value of specific nodes. If we can measure the heart rate and stroke volume, then the

value of cardiac output can be known with high accuracy. We modify the base relationship

of weight to cardiac output to fit the data.
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4.2.4 Combinatorial Generalization

In any situation where we update a value of a node or edge through either a learning process

or through new domain knowledge, we can recompute the global attributes of all edges and

nodes within the total graph network system. These updates result in new values for all

global attributes, including the utility states, resulting in a combined new generalized state

of the system used in the next time iteration. Hence, this updates the value along each

dimension of the user health state.

Algorithm 1 Graph Network Block Update

function: Update (E, N , U)
Input: All blocks (E, N , U), Updated Knowledge, Attributes, Values
Output: Updated Values of (E, N , U)’
Begin
1: for each block
2: for each edge (E)
3: Update all edge relationship attributes with domain knowledge.
4: Update all edge relationship attributes with learned knowledge.
4: Return (E)’
5: endfor
6: for each node (N)
7: Updated node attributes with new values from data.
8: Propagate updates through outgoing edges from updated nodes.
4: Return (N)’
9: endfor
10: for each set of global attributes within the block (U)
11: Using (N)’ and (E)’, compute (U)’
12: endfor
13: endfor
14: Return (E’, N ’, U)’
End

Algorithm 1 is the method by which we compute the estimated global attributes of each

block microservice within the system for both biological and utility blocks at large. Each

update cycle refreshes the utility dimensions to reflect the current state.
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4.3 Semantic Laminae: Interactive Layers

Lamina (plural: Laminae) refers to a thin sheet. These layered sheets represent themed

data in a particular state space, such as in the case of bicycle riding or guitar playing. The

laminae integrate perceptual elements so that a user can interact at the abstraction level

that is relevant for their needs. Parallel to Geographic Information Systems (GIS), the map

layer selected can be a street map, satellite imagery, or weather information depending on if

the user is looking for directions, planning a camping spot, or choosing to go to a pleasant

vacation destination. The underlying dimensions that support these map layers are all tied to

latitude, longitude, and altitude. These are the three dimensions of space that GIS systems

use. For a person to exist in Irvine, they must ensure that these three dimensions are within

the appropriate range. Similarly, people generally think about their life in the semantic space

of natural language. Engaging in any particular goal in life requires having the person exist

in a specific range of health state dimensions. These interaction layers need a foundation

concept of dimension. In the case of health, we call the dimensions, utilities.
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Figure 4.5: User Interface. A user can browse through various domains of interest, or
search for a specific domain of interest in order to populate the a lamina.

User intent can be captured through various means. A sample browser interaction to capture

intent is given in Figure 4.5. In this case we use natural language to query the user for a

general topic of interest or regions-of-interest (ROI). If the user chooses a ROI, the associated

topic is retrieved. This topic then is used to retrieve the relevant coordinates or dimensions.

Mapping the coordinates of a “healthy pregnancy” ROI or “marathon running” topic in

the state space requires matching relevant laminae and dimensions that are of interest to

the user intent. Each lamina has a name, a set of dimensions, and a set of ROIs. ROIs

each contain a label, an enclosed boundary, and a set of attributes. The operation of the
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laminae within the developed system occurs through four components, which are explained

in Figure 4.6. The first is a user interface where the goal or domain of interest is entered.

The second component uses the user input to retrieve all laminae that relevant to the user.

The user can select a lamina to view from this list. When selected, the visualization loads

the utility dimensions and plots the regions of interest on the user interface. The user health

state location may or may not be shown on this visualization. The state space shown on

the screen can be selected to be the general health state space of all possibilities within the

domain, or confined to just the user’s own health state space. This whole system relies upon

the set of utility dimensions, which we discuss next.

Figure 4.6: Semantic Laminae. For the system to initialize, the user must specify what
goals or domain of interest they have, which is referenced against a domain knowledge
database (DB) curated by experts of various fields. These experts outline the relevant utility
dimensions and have map layers that contain ROIs. These map layers may also contain the
connections between regions and the layers of information on how to move between states
in the region. These connections will be expanded upon further in Chapter 6.

4.4 Utilities: The Dimensions of Health

Utilities describe the fundamental dimensions of health state, akin to the latitude, longitude,

and altitude of GIS systems. Utilities are the fundamental abilities of a living human. In this

work, we define five parent nodes for the utility taxonomy based upon consensus literature

in the life sciences. These major categories include movement, sensing, thinking, managing
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homeostasis, and reproduction. These primary groups have many nested sub-dimensions

within them. The importance of utilities rests in abstraction away from the material cause

of existence and instead focuses on the final cause of use, as described in Figure 2.5. The

utilities generally arise from biological underpinnings but are not dependent on biological

function. A person may have a biological joint or a metal joint. The end utility is the same:

to move the body in a specific manner.

As mentioned above, the dimensions of health state space are defined through the utilities

they provide. Utilities serve as a parameter with a particular value or categorical assignment.

Structured taxonomy of human utility state space in this work is given in a simplified version

to demonstrate the concept of utility space. These five categories within this block are shown

in Figure 4.7. If “movement” is the parent node, then there are many child nodes that are

part of movement. One of the child nodes in Figure 4.7 is the flexibility of the skeletal

system, which encapsulates the entire summary of joint function in the body. A list of joint

articulation utilities is in Table 4.1 to show how there can be categorical strings, Booleans,

floats, or integers as attributes for each utility. Because the majority of a person is generally

composed of biology, we need to connect how utilities arise from biological systems.

Figure 4.7: Basic Utility Taxonomy. These nodes show the nested microservice architec-
ture of the utility dimensions. The movement node is expanded to reveal the next layer of
microservices. This layer can be further expanded to more detailed child nodes. This is a
simple overview of the utility GNB at large.
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Joints Joint Classification Range of Motion

proximal radioulnar joint Pivot joint 190

distal radioulnar joint Pivot joint 210

median atlanto-axial joint Pivot joint 50

elbow Hinge joint 150

jaw Hinge joint 30

proximal interphalangeal joints Hinge joint 90

distal interphalangeal joints Hinge joint 100

foot Hinge joint 100

knee Hinge joint 150

talocrural joint Hinge joint 50

subtalar joint Hinge joint 60

distal tibiofibular joint Hinge joint 45

carpometacarpal joint Saddle joint 53

sternoclavicular joint Saddle joint 35

incudomalleolar joint Saddle joint 20

acromioclavicular Plane joint 30

metacarpophalangeal joints Condyloid joint 40

metatarsophalangeal joints Condyloid joint 45

hip joint Ball and socket joint 300

shoulder joint Ball and socket joint 320

Table 4.1: Joint Utility Table.This table is a sample list of human joint utilities. For
each utility, there is a set of output attributes that determine the utility value, in this case
“Range of Motion.”
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4.5 Biological Blocks: Natural Micro-Services

This block contains the material cause of what humans are composed of [81]. The biological

components all serve certain utilities. The isolated state of biology has been traditionally

the study of bioscience and is the target of health state study in most medical fields. These

components nest in various levels of scientific and spatial abstraction, which can be molecular

to an organ system. The microservice architecture for the GNBs allows for representing these

levels of abstraction. The nesting is represented in GNB format in Figure 4.8.

Figure 4.8: Nested Biological Microservices. Human biology is represented as GNB
nodes at various layers of abstraction within the framework. This figure translates the
cardiovascular system knowledge layers in Figure 2.4 into the GNB structure. The four
chosen abstraction layers for this work are the system level, organ level, tissue level, and
molecular level.

Personalized information that is in this structure includes anatomical, physiological, cellular,

and signaling interactions. Demographic information about an individual such as age and

gender may also be used to personalize the biological blocks. Genetic information is stored

as relationship or node attributes that modify a generic model. Biological systems are highly
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complex and always in flux. A changing system inherently is temporally dependent on its

inputs. Temporal data about an individual is captured in the details of their life events.

4.6 Events: Inputs to Life

What changes our health state, and when does it happen? Every event at each moment of

the day affects our health. Investigating the significant factors that impact health, we see

that life events are the central premise behind changes in health state. As shown in Figure

4.9, these factors are all part of daily life events for an individual.

Figure 4.9: Major Factors that Change Health. This figure displays the burden of
health factors in the USA for the 20 years of 1990 to 2010 [185]. The top three items that
change the health state of an individual in the United States are lifestyle events, followed
by environmental and neurological events, validating the necessity of tracking events for
estimating health state.
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A person’s life history is traditionally documented with a biography. A biography consists of

a series of events that flow over time. These events of life happen at varying time-scales. Take,

for example, nanosecond molecular interactions of cell receptor binding compared to a four-

year college degree. The difference between these time scales is 16 orders of magnitude. The

temporal scope of life events is shown visually in Figure 4.10. Event architecture allows for a

flexible design where various event types are recorded. Within any particular time window,

a set of events will contain inputs that the change in biology, a phenomenon constant from

conception until death.

The HSE framework classifies events into three main categories. The first category, the

exposome events, are all events happening outside the body of the person, including all

environmental exposures of light, sound, weather, pollution, and any other physical attribute

outside the skin. This environment can also include social events or interactions with external

people or agents. The second category of events, the life events, includes all events the

person’s body engages in from a molecular level to the whole body. At a coarse level, these

events include any activity, food intake, sleep, or any general life events as described by

the Personicle system or Daniel Kahneman’s day reconstruction method [205, 141]. At a

granular level, this could include events of organ systems such as the heart (such as an

arrhythmia event, volume overload event, pressure overload event), pancreas, or gut. Even

more granular are events such as reactions of molecules such as ultraviolet light damaging

DNA. The third category of events is called neurological events, including all events that are

perceived by the mind. These events are generally subjective in nature and include events

such as joy, stresses, or dreams. In summary, the three classifications of stored events are

everything outside the skin, inside the skin, inside the mind.
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Figure 4.10: Personal Events: Time Scale of Intervals. The temporal scale of events
that happen to a person have a large range that can span over 15 orders of magnitude.

Events happening to a person are captured and then stored in a DB system with three

containers. The first container is an event stream, where interval-based events can be stored

and retrieved. The second container is the stream database, where continuous data streams

can be stored and retrieved. The third container is a specialized version of the stream

database, where the location data stream can be stored and retrieved. A table characterizing

this storage schema is in Table 4.2. Operationally, the event module connects to incoming

data streams through parsers and adapters. These data are stored in a Raw file DB and

redundantly backed up as the most original form of the user’s data. After cleaning the data

of erroneous data through predetermined filters, the data is translated to either the event

format or the stream format and copied into the Event DB or Stream DB appropriately.

The location stream in the Stream DB then fetches environmental data at the particular

location and time stamps the user has data to gather weather, pollution, demographics

and any other requested geospatial data. Both the Event DB and Stream DB are used in

the Interface Event Retrieval process, which we will go over in the following section. A

visualization of this framework is given in Figure 4.11.
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Figure 4.11: Event Processing Framework.
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Stream Field name Data type

Event Event type String

Event name String

Start time Timestamp

End time Timestamp

Parameters Key-Value pairs

Data streams Set

Real valued Data Stream Timestamp Timestamp

Value Numeric

Unit String

Source String

Location Data Stream Timestamp Timestamp

Value Location

Unit String

Source String

Table 4.2: Event Schema.Event schema uses an interval approach to define the event and
associated parameters. Data streams are split into two schemas, one for general data streams,
and one specifically for a location that includes a geospatial value of latitude, longitude, and
altitude stored as “LOCATION.”

We conclude the introduction to the four major components of the HSE framework. To set

up the system, we jump into initializing the system in the next section.
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4.7 Initializing the System

In order to begin the state estimation process for the individual, we need to populate the

four main components concerning the person. The state space of all possible dimensions

of health is vast, and to narrow the state space to an appropriate level, we query the user

for their particular interest. Given this intent, we can give a list of laminae that match the

intent. The user can then select to visualize a particular lamina. Once this lamina is chosen,

the relevant dimensions must be populated to generate the state space. This process requires

retrieving the utility dimensions and the supporting biological blocks, as visualized in Figure

4.12.

1. Obtain User Intent. By providing a certain intent, the user can request to view

their health state on a lamina that is their interest. Similarly, if a computing agent

wants to understand a particular aspect of the health state, it may also have an intent.

2. Retrieve Associated Semantic Laminae. Given this intent, relevant layers are

retrieved from a database with domain knowledge of the particular query intent.

3. Populate Utility State Dimensions. These layers are placed upon their respective

dimensions of utility.

4. Populate Biological Blocks. Given this set of utilities, the system then populates

all relevant biological components that determine the utility state.
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Figure 4.12: Initialization Steps. These are the four steps in initializing the graph struc-
ture for the individual. 1. First, we query the user for their intent. 2. Using this query, we
retrieve the appropriate laminae they can visualize. 3. These laminae require a certain set
of utility dimensions to be displayed. These are populated next. In order to know the user
position on these dimensions, the appropriate biological blocks need assessment. 4. The
fourth step populates these appropriate blocks to monitor.

4.8 State Update Method

There is constant flux within an individual’s personal health state space (PHSS). We must

be able to assign an accurate location within the PHSS for state estimation. Understanding

this location in real-time is best powered by multi-modal data sources that update the

health estimation. For example, monitoring a cardiovascular health state is useful to both

endurance athletes and heart disease patients. Estimation techniques have been of great

interest in designing many applications, but health applications will require increasingly

deep biological knowledge layers to define and estimate health states. This process uses the

knowledge generated graph structure model from the system initialization of an individual to

deliver updated states. To compute the state of health using this flow, we need to continually

compute the individual’s position along each dimension of utility from any new source of

data or knowledge. Below is outlined the step-by-step overview of how this occurs. Figure

4.13 shows a visual flow of how these steps carry out.
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1. Initialize System and Connect to Personicle. As given above, the set of utilities

and relevant biological components are populated. The person’s event and data history

are then loaded from a personicle.

2. Time Based Updates Any nodes with self-edges update within the biological blocks.

This will be the only update within the whole cycle if there is no data in the personicle.

The only piece of information used here is the time since the last update.

3. Event Based Updates. If there is an event that has occurred within the personicle,

the interface event retrieval system gathers any events that connect to the populated

biological states. The attributes of these events determine the change in a particular

biological block. Interface event retrieval is in more detail below.

4. Observed Biology If there are direct observations in the personicle of any biological

components (nodes or edges), they are updated.

5. Observed Utilities If there are direct observations in the personicle of any utility

dimensions (nodes or edges), they are updated.

6. Update Utility dimensions. All estimated values are propagated forward along the

directed edges to update the utility nodes required to show the position of the user in

the health state space.

7. Visualization of Current Health State Position. The updated values for the

utility states are then shown as an updated position on the selected visual lamina to

the user.
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Figure 4.13: State Update Methods. 1. The system initiates from the user intent. 2.
If there is no data from the event or stream DB reported, self-edges update nodes which
then propagate along the directed edges to give new utility values. 3. If interface events
are detected from the event stream, they update the relevant biological states, which then
propagate. 4. If there are observed biological attributes directly from sensors, they update
the respective biological nodes. 5. If there are observed utility attributes directly from
sensors, they update the respective utility nodes. 6. The health state position is reported
on the lamina of interest, and/or can be viewed as raw utility dimensions, and/or can be
viewed as biological attributes.

4.8.1 Interface Event Retrieval

Interface events are particular sub-events with specified attributes that are responsible for a

particular change in health state, interfacing between the actions in our lives and the state

of our health. After combining general events and data streams from different sources, we

specify the interface events as logical statements. Each interface event has direct causal edges

on particular biological nodes. These events and relationships are well studied in biomedical
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literature and can be defined as a combination of data and event streams using an event

operator language. When we detect an interface event, the relationship with the biological

variables contributes to the update of the health state. This work will retrieve interface

events from five main event categories in chapter 5. These categories include nutrition,

exercise, neurological, environment, and sleep events. Logical statement examples are given

below describing left ventricular volume overload cardiac events (VolOverload), and pressure

overload left ventricle cardiac events (PressOverload).

Representations of these events are given below:

V olOverload ∶= (HR > 140) ∨ (Cycling ∧ detect − climb(Altitude))

PressOverload ∶= detect − spike(HR) ∨ (Power > 400W )

The state update mechanism uses the same node and edge structure as new data arrives. In

order to change the graph structure itself, we need to update the GNB model itself.

4.9 Individual Dynamic Model Updates

To improve the performance of the GNB model, we use both data and domain knowledge

approaches to edit the GNB structure itself. We update the node attributes, edge relation-

ships between nodes, adding new nodes, adding new edges, or removing edges and nodes.

There are four key methods by which these updates can occur, one based in knowledge-driven

approaches, and the other three based on data-driven approaches.
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Knowledge-based approaches reference a knowledge DB in order to establish the graph struc-

ture. When a scientist discovers new knowledge or a new genetic association, the system

can access these updates to update the individual GNB. An overview is given below in a list

format. Figure 4.14 describes these four approaches visually.

1. Knowledge Update. If there are new static knowledge that is associated with the

GNB or individual (such as their genetic information), they apply to the relationships

within the graph.

2. Event Mining. Event mining establishes relationships on a temporal scale between

events. This work does not directly address event mining. It provides a framework

that allows for this type of approach in future research.

3. Parallel Observations. When data is observed regarding two nodes that are con-

nected, the relationship can be updated using the data relationships. If the predictive

quality is suitable, the respective edges are updated with this relationship.

4. Cross-Modal Estimation. If there are multiple relationships with a certain node,

they can be used in combination to learn their relationship to the target node. If the

predictive quality is suitable, the node updates with this relationship to its sources.
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Figure 4.14: Learning Situations. Relationships between nodes update in both inter-layer
edges or intra-layer edges. Situation A. When new knowledge is given to the system, the
appropriate edges or nodes are updated. Situation B. Event-mining can discover relation-
ships between temporal events within the user personicle. These events can reflect an update
to a biological node that models behavior or any other biological component. Situation C.
When two nodes that are connected are both measured in parallel, the relationship between
the two nodes can be characterized to match the incoming data. Situation D. When many
source nodes are related to a target node, we can use all the nodes to learn how they impact
the target node.

The above two sections cover the process of how we estimate the health state and continu-

ously modify the graph structure model of an individual to reflect what we learn from data.

In order to verify if these approaches satisfies the needs of HSE, we compare this framework

overview against the design requirements.

4.10 Revisiting the Design Requirements

Based on the discussions so far, we have defined the following design principles essential to

the HSE framework in chapter 2. Below describes how we meet these particular demands

with the above framework.
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1. Participation with User. We begin addressing the design requirements by directly

engaging with the user’s intent in the semantic laminae. This is the root of instantiating

the system and ensuring that it works towards the user’s goals.

2. Encompass Holistic Definition of Health. Because a holistic definition of health

goes beyond biology, we abstract health needs into utility states.

3. Capture Connectedness. In order to capture how aspects of health are constantly

evolving as a system, we choose to use a graph-based approach.

4. Flexible and Modular System. By nesting the graphs into blocks, we can take

advantage of microservice architecture to represent and model the components of in-

terest.

5. Zoom Fluidly Between Abstraction Scales. These nested blocks allow the user or

system to interact at an abstraction level that is appropriate for the situation. Scales

can range from molecular to person level health.

6. Causal and Explainable. To have a causal and explainable system, we choose to

have directed edges in the graph that represent causal relationships. Understanding

the root of how something is changing can be traced in reverse on this causal pathway.

7. Domain Knowledge Integration. To determine what directed edges to add to the

system, we reference domain knowledge to establish the relationships as a cold start

instantiated personal model.

8. Diverse Data Fusion and Transformation. Using the high-level abstraction of

events, biology, and utility, we can transform various types of data into these three

layers.

9. Perpetually Updating. When new data arrives into the system, we can propagate

updates to other nodes via the directed edges.
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10. Personalized Modeling. Physiologic function, psychological function, risk, and any

other attributes that are related to genetics, life history, age, or other demographics

data can modify the relationships between nodes to personalize the graph network.

11. Precision through Understanding and Learning. When data about two related

nodes arrive in parallel, we can use learning approaches to characterize the relationship

better. The general domain knowledge relationship can then be updated to reflect a

precise model for the individual.

12. Predictive and Preventive Capability. By using this constantly adapting network,

we can simulate inputs to the graph and compute future outputs. If a future output is

undesirable, we can prevent it by testing inputs that lead to a desirable future state.

In summary, the structure of this framework satisfies the design requirements we set out to

address. In the next chapter, we dive into the details of how we can operationally implement

such a framework for a real person.
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Chapter 5

Instantiating Personal Health State

Estimation

A healthy vision of the future is not

possible without an accurate

knowledge of the past.

Daisaku Ikeda

Chapter 5 describes using the framework described in chapter 4 within a real-world imple-

mentation of personal HSE. The chapter begins with an overview of the methods and tools

used to initialize the HSE GNB at an individual scale. Initialization is for both biological

breadth and depth with a focus on CRF. We then cover the types of data collected, and how

they are processed towards the state estimation given various data situations. Insights from

the state estimation are discussed. We conclude this chapter by showing how we dynamically

edit the model with new knowledge and data-streams to fit the individual better. A visual

experimental set up is shown in Figure 5.1.
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5.1 Experimental Overview

Figure 5.1: Chapter 5 Experimental Overview. The first part of Chapter 5 is initializing
the system for the test subject in both breadth and depth. The second phase demonstrates
the state estimation in action. The final set of experiments demonstrate three approaches
to update the personal GNB model.
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5.2 Methods

Applying the concept described in Chapter 4 within a real experiment set-up provided a

few challenges. First, there is no dataset in existence at the level of detail required for

this research, posing the most significant barrier to implementing this research. Although

a great task to build such a comprehensive data collection pipeline, we decided to create

the dataset organically to specification around CRF. We chose to focus on a single subject,

with a personalized approach. We also needed data over a long temporal span to show how

the health state is changing. Data collection is also necessary to be non-intrusive to cause

minimal observer effect. We also want these experiments replicated within the scientific

and clinical settings. Hence we chose mostly commercially available hardware and software.

These decisions resulted in exemplifying the state estimation framework in chapter 4 within

real-world settings and allow for using complex personal data. The next four subsections

cover these experimental methods in detail.

5.2.1 Longitudinal

As we want the state estimation to provide continuous estimates over time, the most ap-

propriate experimental approach would be a longitudinal one on a specific subject, rather

than a cross-sectional study of many individuals. Longitudinal studies consist of repeated

observations and measurements of the same variables, such as people, over periods (could

be decades at a time). The data collected is a combination of quantitative and qualitative

exposures and outcomes data of the controlled variables. This type of study is useful in

determining relationships between risk factors and disease development [37].

A cross-functional observational study, on the other hand, analyzes data from a population

with multiple variables at a specific point in time, often used in cohort studies [153]. These
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studies can be useful to understand the prevalence of disease in a clinic-based sample [243].

However, with no information with the influence of time, the difficulty is to derive causal

relationships [37].

5.2.2 N=1

Because we are trying to build personal estimation models, the incoming data must only be

from the individual. Population-level data is helpful as a part of the knowledge-based edges,

but cannot be used to personalize the graph network for the individual. For this reason,

we choose to have an N=1 approach. N=1 approaches are also gaining traction in clinical

settings. An N of 1 trial is a clinical trial in which one patient is the entire scope of the

case study. These studies include experimental and control interventions in the design. The

goal of this type of trial is to determine the optimal intervention for a patient, given data-

driven criteria [158]. While N=1 studies are not highly common in the medical community,

Lillie proposes further use of this method given the “contemporary focus on individualized

medicine.” There has been further research conducted supporting the feasibility of N=1

clinical trials [107, 176, 204]. Table 5.1 lists several simple experimental designs to conduct

these N=1 trials. When updating the state, we use an A-B method using domain knowledge

to establish a causal relationship. When we update the model using data-driven approaches,

we use the A-B-A-B experimental method to capture many instances of A and B and then

derive the relationship.

Design Causality Use

A-B Quasi experiment Often the only possible method
A-A1-A Experiment Placebo test design where A1 is a placebo
A-B-A Experiment Withdrawal Study where effect of B can be established
A-B-A-B Experiment Further Validation of Above Study Design

Table 5.1: Quasi Experiments. Quasi experiments cannot definitively establish causality,
but provide evidence towards a related mechanism (correlation or causal). Experiments
establish proof through demonstration [46].
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5.2.3 Multi-Modal Fusion

We explored the vast multitude of data acquisition approaches in Chapter 3. To have the

most holistic and high-resolution health state estimate, we need data of all types about the

individual. This data range includes low-cost sensors that have a high temporal resolution

or low user burden and high-cost sensors that may only have sparse readings. This approach

takes inspiration from sensor fusion approaches that aim to use all possible information to get

better situational awareness, precision, and accuracy. Sensor fusion combines sensory data

from different sources of uncertainty but provides greater insight when combined. There

may be “uncertainty reduction” as the aggregation of the data can be more dependable

than each piece alone [106, 75]. Distributed sensors are represented in a network with

dynamically changing topology between each data source [307]. Numerical representations

of sensor fusion, such as the “certainty grid,” create probabilistic geographic mapping given

the assimilation of sensor data [181]. Our approach uses a centralized sensor fusion approach,

where all sensors are uploaded together into a single system for analysis. When appropriate,

we use weighted averages of various sensors depending on their data quality to derive the

fusion.

5.2.4 Living-Labs Implementation in the Real World

The final choice involved in choosing methods for the following experiments was to use

devices and software that is readily available to the public. Other than one of the exposome

sensors, the entire suite of products used for the experiments is available in the consumer

goods market without any special restrictions. We chose this approach to reduce the burden

of developing proprietary components, demonstrate how the fusion of various sources is key

for novel health state insight, and scale and implement these types of experiments easily

for future researchers or for those who wish to implement these experiments for themselves.
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Furthermore, the available sensors are minimally intrusive to collect the best continuous data

streams in a natural setting. Nobel Laureate Richard Thaler’s work inspired the thought

process in behavioral economics regarding nudges that unconsciously incentive our behaviors

[261]. By designing the data collection to be mostly unconscious, we can help ensure that

observer effects are at a minimum, and the data represents real life most accurately. Observer

effects are also known as the Hawthorne effect, a type of response in which people modify

their behavior when they are observed. This response can change the integrity of the research

and relationships between variables [238]. Aims for quantifying the Hawthorne effect have

been conducted [4, 291] and specifically in clinical trials [174, 62]. By having measurements

as a background part of normal daily life, these observer effects are minimized.

The first step in starting these experiments is to collect data about the subject. We will

review the tools for data compilation in the next section.

5.3 Data

To fuel the HSE framework, we need to collect various types of data. The data needs are

dictated by the user’s intent and any biological or utility parameters related to this intent.

We use a combination of hardware and software alongside public data resources and open

source-based tools to collect data about the user within our scope of CRF.

5.3.1 Collection Tools

There are three main central hardware components: a computer, mobile phone, and wearable

described in Figure 5.2, which tether together all the sensors and data collection through

local or cloud network connections. Because the user participates in many activities, the

suite of activity sensors includes rowing machines, cycle ergometers, heart rate, and cadence
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accelerometers, as shown in Figure 5.3. The data streams resulting as an output from

these devices are explained further in Figure 5.9 and Figure 5.10. We capture biological

measurements about the user through a host of smart-connected devices, as shown in Figure

5.4. The ability of these devices to track and record metadata alongside the primary sensor

without any extra burden to the user is critical towards encouraging data collection and

reducing friction to use. This reduction in friction is part of the real-world implementation

concept as people need to have a seamless experience to be nudged towards engaging with

these tools. Some measurements are still challenging to capture through smart devices due

to this need for user engagement.

In this experiment, all these measurements are related to body surface measurements are

captured with traditional analog tools, as shown in Figure 5.5. Integration with costly

clinical tools is also an important factor in using data for HSE. These types of tools can aid

in ensuring the accuracy of lower-cost sensors and validate their use in the implementation.

They can also serve as a ground truth reference from which low-cost sensors can track the

change in the state. The four clinical tools that are used in this work to demonstrate this

integration (Figure 5.6). Three sets of hardware are used in sensing the environment of the

individual. The first includes synchronizing the GPS location from the mobile phone and

wearable with the nearest public sensors and data. The second involved a host of readily

available IoT devices that monitor the home setting (Figure 5.7). The third includes a low-

cost constructed gas sensor kit linked to a Raspberry Pi (Figure 5.8). An overview of these

hardware components and the outputs they produce is in Table 5.2.
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Figure 5.2: Central Hardware Devices. These are the three main central devices to
which other sensors link via local wireless connections of either Bluetooth, WiFi, or ANT+
protocols. The devices themselves include their sensors. The notebook computer contains a
microphone, front camera, and HCI capture software. The mobile phone includes a light sen-
sor, microphone, accelerometer, gyroscope, barometer, front, and rear camera. The wearable
watch includes an optical sensor, accelerometer, gyroscope, barometer, and GPS.

Figure 5.3: Activity Sensor Hardware.

Figure 5.4: Biological Measurement Hardware.
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Figure 5.5: Manual Measurement Tools. These tools were used to capture basic physical
measurements.

Figure 5.6: Clinical Hardware. These machines are used as examples of reference values
to compare with the accuracy of lower cost sensors.

Figure 5.7: IoT Devices. These sensors are used to monitor the local exposome of the
individual including light, sound, temperature, humidity, and smoke.
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Figure 5.8: Custom Gas Sensor IoT Device. This sensor IoT system was built with
multiple gas sensors connected to an Arduino micro-controller that links to a Raspberry Pi
computer. The computer sends the signal via a web Rest-API that allows for a minute by
minute monitoring of the gases in the local environment.

Software that was used as a sensor to track the user includes two varieties. The first variety

of software sensors directly query the user for input. For the mental state of the individual,

the open-source tracking mobile application (app) Nomie was used. The Sleep Cycle app

was used to gather information about the mental state before falling asleep and asses the

mood and perceived quality of sleep upon waking up. The second variety of software used as

a sensor operates through background tracking that does not interact with the user. Google

Timeline captures location history and the personicle of the individual. LifeCycle app is a

secondary personicle capture. Garmin MoveIQ is a third source that captures background

activity personicle. The RescueTime mobile app and desktop applications track screen time.

Time Out software tracks desktop computer visual strain by engaging with the user for
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Hardware Manufacturer Sensors Datastreams

Cadence Garmin Accelerometer Cadence
Crankset Stages Accelerometer Torque

Gyroscope Force
Strain Gauge Power
Thermometer Cadence

Chest Strap Garmin Electrical conductance Heart Rate
Rowing Ergometer Concept2 Strain Gauge Power

Magnet Cadence
Cycle Ergometer Elite Accelerometer Torque

Gyroscope Force
Strain Gauge Power
Thermometer Cadence

Smart Watch (Fenix 5) Garmin Optical Heart Rate
Accelerometer Cadence
Gyroscope Movement
Barometer Altitude
Thermometer Temperature
GPS Location

Measuring MyoTape Distance Body Measurements
Goiniometer EMI Angle Joint Measurements
Plumb Bob Generic Gravity Body Alignment
Spirometer AirMD Air Pitot FEV1 / FVC
Pulse Oximeter Hypoxico Optical O2 Saturation
Breathalyzer BAC Track EtOH Blood Alcohol
Blood Glucose Monitor One Touch Glucose Glucose
Weight Scale Weight Gurus Strain Gauge Weight

Electrical Impedance Body Fat Percentage
Thermometer Kinsa Thermometer Body Temperature
Gas Analyzer Lumen CO2 / O2 Respiratory Exchange
Blood Pressure Machine Balance Pressure Blood Pressure
Thermostat Nest Thermometer Local Temperature
Smoke Detector Nest CO2 / CO Gas / Smoke
Thermometer SensorPush Thermometer Local Temperature

Humidity Humidity
Echo Plus Amazon Microphone Audio
Smart Plug SmartLife Electrical Usage Electrical Usage

Table 5.2: Hardware Sensors.

screen breaks. The software used to track the individual is summarized in Table 5.3. Public

datasets are the third source of “tracking” we use about an individual. Based on the GPS

location and timestamp, we match the location to the current nearest sensors for various
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environmental streams. These environmental streams are in Table 5.3. We will discuss the

details of any relevant sensing in the sections below. The Appendix contains further details

on hardware, software, and public data sources used in this work.

Category Interaction Method Source Data-Streams

Neurological Active Mobile App Nomie Mood
Pain
Symptoms

Neurological Active Mobile App Sleep Cycle Mood
Rest Quality

Personicle Background Desktop+Mobile Google Timeline Location
Activities

Personicle Background Desktop+Mobile LifeCycle Location
Activities

Personicle Background Wearable Garmin Move IQ Activity Type
Intensity

Screenome Background Desktop+Mobile RescueTime Focus Level
Screen Timeline

Screenome Active Desktop Time Out Eye Strain

Table 5.3: Software Sensors.Software sensor systems used to track the user’s neurological
state and lifestyle events.

5.3.2 Events

The scope of implementation around CRF determined the tools we choose for data collection

regarding events that can power state estimation. The data collection methods focus on

capturing the details of five categories regarding the subject’s life events. These events

were chosen because they have a well-understood impact on health state in large bodies of

literature. They also compose a large portion of the daily life of individuals. We will describe

these five categories in the next sections.
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Activity

All instances where the user is conducting any movement, physical activity, and exercise

are captured in detail. Movement and physical activity are defined as energy expended to

move, occuring through any physical action taken. Exercise, in particular, is defined as an

intentional activity designed around exerting effort to improve physical fitness. These terms

have been well described in the literature [38]. Both activities at large and exercise events

are logged in the user’s personicle. The activities at large are recorded as events with time

intervals of 2 minutes. Because exercise events provide a higher insight into the operational

status of both the utility and biological states, they are an excellent event source to capture

in detail for state estimation. Therefore exercise events are captured at 1-second intervals.

Figure 5.9 and Figure 5.10 show sample exercise event data-streams. Table 5.4 lists all the

sensor streams collected during the activity.
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Figure 5.9: Exercise Event Understanding. Single exercise event streams.
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Figure 5.10: Exercise Event Understanding. Single exercise event summary with loca-
tion data, heart rate zone charts, and power data zone charts.

Nutrition

Epidemiological data suggest that food is the most influential event on human health, accord-

ing to the Journal of the American Medical Association [185]. Nutrition includes all energy

or nourishment obtained from food intake. All nutrition events include any food consump-

tion that occurs. Nutrition events are tracked at each instance of food or beverage ingestion

through images. Images are run through the Calorie Mama platform for object detection.

Objects are then verified for labels and weights by the user. The app references the United

States Department of Agriculture DB, extracting nutritional content of each item and then

can aggregate the nutrition intake per meal. The nutrition data is sent to HealthKit on the

user’s mobile phone as a central data aggregator. Metadata of timestamps and location are

also captured.
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Category Source Data-Stream Units

Utility Stages Power Watts
Biology Stages Energy Balance Wbal
Utility Stages Power Delta Watts/s
Biology Garmin Heart Rate bpm
Biology Garmin Temperature Celsius
Environment Garmin Altitude meters
Environment Garmin Slope percent
Environment Garmin Temperature Celsius
Utility Stages IsoPower Watts
Biology Stages + Garmin Aerobic TSS TSS
Biology Stages + Garmin Anaerobic TSS TSS
Utility Stages xPower Watts
Utility Stages aPower Watts
Biology Garmin Heart Rate Delta bpm
Utility Garmin Speed kph
Utility Garmin Acceleration m/sˆ2
Biology Garmin Cadence rpm
Biology Garmin Cadence Delta rpm/s

Table 5.4: Sensor Streams. Sensor streams captured at 1 second intervals during exercise
activity.

Neurological

Understanding the mental perception of each individual’s state is a subjective component of

a health state. Neurological events include stress, mood, and even one’s screen time. Stress,

in the medical context, is a physical, mental, or emotional factor that causes psychological

or physical strain to an individual. Stress also includes an individual’s response to a change.

One’s mood is a temporary state of feeling that the individual experiences, reflecting their

current state of mind. Each digital interaction also gives insight into neurological events.

The screenome consists of all interactions with one’s screen. The screenome reflects the use

of digital media and screen time to give insight into how individuals are choosing to spend

their time [228]. Although viewed as subjective, there are clear physical impacts on human

physiology, as described in Chapter 2. Therefore, the mental state of the individual is in

both subjective and objective formats. Stress and mood are captured subjectively through a

157



direct query to the user, as given in Table 5.3. Stress is captured objectively with heart rate

variability (HRV) through the Garmin Fenix 5 smartwatch, as HRV is a strong indicator of

stress. Lastly, the screenome is collected through background tracking software RescueTime

and Time Out, also shown in Table 5.3.

Sleep

This portion of data collection includes time spent in the prone position. Prone position

activities refer to the body in a horizontal position. The individual may be awake or asleep

while tracking this activity. Sleep is a condition in which the nervous system is relatively

inactive, eyes are closed, and postural muscles relaxed. During sleep, consciousness is typ-

ically suspended. Sleep data is collected through objective and subjective sensors. The

objective sensors include ambient noise, accelerometer-based movement, heart rate, HRV,

temperature, humidity, and timestamps. Subjective measures include mood before sleep and

perceived quality of sleep upon waking up.

Environment

The external environment directly impacts various components of health, as described in

Chapter 2. The external environment includes all factors outside the body that affect the

individual; these can be local factors in one’s home like lighting or broader environmental

exposures such as the air. We use both public GIS data and devices that are precisely placed

within the immediate vicinity of the user to collect environmental information. GIS data is

collected through public sensors near the user’s time and location. Public data about the

user covers a large variety of data types, as shown in Figure 5.11. Hyperlocal systems gather

data about the user’s in-room environment. These streams come from the IoT devices and
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the Raspberry Pi. Table 5.5 lists the sensors we use to build the exposome stream for the

individual.

Figure 5.11: Public Geospatial Dataset Integration. Many aspects of the environment,
including ones that induce stress, can be elucidated from domain literature and publicly
available GIS datasets. Related to pollution, we gather air, audio, and light as factors that
impact the health state. Related to demographic information, we gather crime, income, and
cardiac deaths to estimate socioeconomic stress [193].

We use this detailed collection of data for the event and stream DB system to power the

HSE.

5.3.3 Biology and Utility Direct Measurements

Data capture about the biology of an individual is done concurrently with many of the

events, as shown above. Data from smart devices and manual tools are shown in Figure

5.4 and Figure 5.5. The data capture of utility in the case of this experiment is the power

output capability of the individual, also captured concurrently with activities. One additional

method of biological data capture is with images of the user. Jaw shape and facial proportions

are associated with testosterone levels. Here we use social media images of the individual

to estimate the facial proportions and shape and derive a relative score of testosterone
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Type Source Data-Stream

GIS Matched EPA PM2.5
EPA PM10
EPA NO
EPA NO2
EPA NO3
EPA Ozone
EPA UV
Open Street Maps Altitude
In-the-Sky Light

Hyper Local Sensor Push Temperature
Humidity

Decibel-X Sound Level (dB)
Sleep Cycle Sound Level (dB)
Nest Protect Smoke
Nest Thermostat Temperature

Humidity
Raspberry Pi Temperature

Pressure
Altitude
Humidity
Carbon Monoxide (CO)
Smoke
PM10
PM2.5
Large Particulate (LPG)
Volatile Compounds (tVOC)
Ethanol / Fuel
Carbon Dioxide (CO2)
Ozone (O3)
Dust

Table 5.5: Exposome Sensors. There are two forms of exposome data collection within
this experiment. The first is GIS matched data, which uses the user’s location to retrieve
the nearest public sensors as an estimate of their local environment. The second set of data
uses hyper-local in-room sensors to capture data about the immediate vicinity of the user’s
environment.

for the individual [193]. Testosterone levels affect the cardiovascular health of individuals

and the ability to recover from fatigue [20, 247, 14, 35]. From a user’s full social media

data, images were filtered that had a high-quality resolution and direct frontal view of the

subject. Open Computer Vision resources were used to pinpoint the face height-to-width
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ratio. An example of a photo analysis is shown in Figure 5.12. The theme of this biological

measurement technique from a computing perspective is that we can garner a plethora of

information regarding the subject’s health if we use modern image recognition techniques.

We also investigated these images for skin health through pigmentation tracking and wrinkle

detection. This investigation is shown here as part of the image-based health tracking theme,

but it will not be used in further CRF estimations. The appendix contains resources used

in data collection, analysis, and visualization in Table B.2.

Figure 5.12: Computer Vision for Biological Measurements. Images can give insight
into a person’s health state. In this figure, we use facial images for three purposes. First,
we detect landmarks on the person’s face to identify their height-to-width ratio, lending
insight into their baseline testosterone production. Second, we use color detection to see
how the user’s skin color is changing based on each month. Skin color is classified using the
Fitzpatrick type used routinely by dermatology physicians [232, 236]. We see on average
that spring time, the user has lighter skin than the rest of the year. Third, we use edge
detectors to characterize the wrinkling of the skin to understand collagen health.
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5.4 HSE System Initialization

The precursors to the state estimation sys-

tem require having the above data streams

and background work. Next, we begin the

process of implementing the system for the

test subject. The first sequence of steps is

initializing the system, as explained in Chapter 4. We run through this process to set up the

GNB structure, created once the user specifies a domain or intent. Following this, we can

populate the relevant layers of utility dimensions and biological layers. This section walks

through all these steps for the test subject.

5.4.1 Translating User Intent

To start the HSE process for the subject, we begin by

inquiring the user for their intent or domain of interest.

The test subject’s chosen interest in the experiment is in

the realm of cycling. We display a lamina of cycling types

to the user for visualization and interaction, as shown in Figure 5.13. The user can see the

relationships of different types of cycling on a particular health state space. The proximity of

the various types of cycling shows the similarity of the health state required to participate.

For example, BMX, track, and downhill styles of riding are all quite comparable on the

upper left-hand side of Figure 5.13. Similarly, cross country, road, and gravel are also close

together. Enduro riding sits in between these two clusters. The subject selects interest in

the disciplines of enduro and gravel riding and wishes to see the health state in the context

of this region-of-interest in the lamina. The next step for the system is to generate the utility

dimensions for this lamina.
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Figure 5.13: Cycling World Lamina. This interface displays many different types of
cycling of interest to the user. The user can select a specific type, zoom in and out, or view
the whole lamina at once.

5.4.2 Retrieval of Relevant Utility State Space

Given the intent of cycling by the user, the knowledge

DB retrieves the dimensions of endurance, specifically the

Critical Power (CP) curve, to display this specific lam-

ina. The CP is the amount of power that can be applied

maximally in a given period. It serves as the tolerance or

biological threshold for the whole body in exercise (such
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as in cycling) for an individual [139, 224]. For example,

a 5-minute CP is the maximum amount of power an in-

dividual can produce for 5 minutes. An untrained person can generally produce about 2

Watts per kilogram of body weight. For a 70kg person, this would be 140 Watts of power.

A world-class athlete can produce around 7 Watts/kg, sustaining 490 Watts of power for a

70kg person. CP is usually shown as maximum power for each one-second interval of time

from 1 second to several hours. Every living individual has a CP utility dimension value for

producing power for 1 second, 2 seconds, 3 seconds...60 seconds (1 minute)...3600 seconds

(1 hour). For measurement of these dimensions up to 5 hours, there are 18,000 utility state

dimensions (5 hours x 60 minutes x 60 seconds). There are many other laminae related to

cycling using utility dimensions of skill, sensing, or thinking abilities. We do not cover these

in the dissertation for the sake of brevity. This selection of CP as part of the dimensions

within the GNB of movement is shown in the utility state space in Figure 5.14.

Figure 5.14: Utilities of Human Health. In this work, we have defined five basic clusters
of human utility. Given the selection of the user, we focus on the utility blocks that are
connected to power production. In this work, we focus on the endurance capacity of critical
power production. These nodes are highlighted in red.
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Figure 5.15: Translating Regions-of-Interest to Utility State Space. On the left, we
see all different types of cycling that a user may be interested in participating in a cycling
lamina. On the right, these types of cycling are overlaid on the utility dimensions of power
production versus duration. This state space of power given duration is the CP curve.

5.4.3 Populating Biological Blocks

Once we have retrieved the relevant utility dimensions,

such as CP, we need to retrieve next what nodes in the

biological block determine the value of these dimensions.

There are two challenges to implement this. First, there

is a breadth of biology that is needed to explain a par-

ticular utility dimension. For example, if the utility is

walking ability for movement, it is insufficient only to un-

derstand the isolated biology of the toes or knees. The

whole biomechanics and bioenergetics of walking must be populated into the system for a

proper understanding of walking. A superficial understanding is a good start, but under-

standing the depth of details about the system will give a better picture of the factors that

are changing the utility state. The next two sections cover these two challenges of breadth

and depth in the biological GNBs.
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Breadth of Biology

To capture the parent nodes that are directly related to

the utility dimensions of CP, we reference the pertinent do-

main knowledge of human bioenergetics [33]. Bioenerget-

ics focuses on how cells transform energy in cells, tissues,

and organisms, which may be done by storing, transfer-

ring or consuming energy [197]. Depending on the duration of the energy need, there are

four significant systems the human body uses to move. These four systems of interest are in

Figure 5.16 overlaid on top of the utility dimensions. The dimensional boundaries of enduro

and gravel riding (the user’s selected region-of-interest), the utility dimensions to focus on

are from the 100 second CP value to the 1,200 second CP value (20 minutes). The biological

energy system connected to these utility dimensions is aerobic glycolysis, as shown in Figure

5.16. Aerobic glycolysis ability is synchronous with CRF and measured in units of VO2max

(mL O2 / minute / kg).

Figure 5.16: Populating Biological Blocks from Utility Blocks. The CP utility state
space (background) exists through 4 main biological systems (foreground). The first is the
ATP-CP system (orange and yellow), the second is the anaerobic glycolysis (blue), the third
is aerobic glycolysis (gray), and the fourth is lipolysis (red).
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Given this target system, we populate the range of involved biological nodes at the gross

organ level. The organ systems involved in this process and the edges between them are given

in Figure 5.17. Each organ has a set of major global attributes describing its microservice

output to the system. The microservice edge relationships are captured in the equations in

Figure 5.17. The global attributes of these organ nodes are in Table 5.6. Next, we dive into

deeper layers of biology by expanding these organ level nodes.

Organ Node Global Attribute

Lungs O2 diffusion, CO2 diffusion
Blood O2 carrying capacity, heat capacity (through fluid volume)
Heart Cardiac Output
Vasculature O2 diffusion, CO2 diffusion, density
Muscles O2 extraction, rate of ATP synthesis, myofibril force

Table 5.6: Organ Global Attributes. Global attributes of major organ system GNBs

Figure 5.17: Aerobic Glycolysis Domain Knowledge. This figure shows the flow of
oxygen (O2) from the air to the muscles used in glucose oxidation, also illustrating how the
nodes are connected in the GNB. The processes are well-characterized through the scientific
literature, and in some instances, can be described mathematically. These processes are
captured in the edges of the GNB.
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Depth of Biology

To face the challenge of biological depth, we build the GNB

with deeper layers of biology. We will address four layers

of depth in the experimental model. The first and second

layers are the system layer and organ layer, as described in

the broad sense above. We then dive into the tissue level

and the molecular cell biology level in further depth. For

the cardiac (heart) system, we see there are several key tissues that comprise the heart. The

left ventricle is the tissue chamber that is responsible for cardiac output, which is the key

attribute of interest for the utility dimensions at hand. This nesting of microservices in the

GNB for biological depth is shown in Figure 5.18.

Figure 5.18: Nested Graph Network Blocks within Aerobic Glycolysis. There are
many biological components nested within aerobic glycolysis. We focus on the details of
gene expression inside the left ventricle in this experiment set. These nodes are highlighted
in red.
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Within the left ventricle, there is a highly complex network of molecules that signal changes

in the tissue. These changes include growth or degradation of tissue and cellular proteins

through changing gene expression. Events are the primary input that alters gene expres-

sion. The understanding of these networks is usually stored in natural language within the

body of traditional literature. Recently, graph DB systems that store domain knowledge in

cellular signaling have also started flourishing. Cytoscape is the most popular of this graph-

based knowledge and research systems [212]. Harnessing the knowledge in these systems,

along with traditional literature, helps to populate the molecular networks for the tissue of

interest. Figure 5.19 describes the process by which mitochondrial biogenesis networks for

this experimental GNB is populated from public domain knowledge. Domain knowledge of

how events impact this network are also curated from traditional literature to build this

knowledge graph. The process of using public graph networks of biology and traditional

literature is also shown for cardiac tissue in Figure 5.20. The biological network for cardiac

tissue is sourced from Cytoscape, and the event relationships to these nodes are sourced from

traditional literature.
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Figure 5.19: Translating Domain Knowledge to Graphs. Mitochondrial biogenesis
pathways are taken from literature to populate the molecular GNB layers of the HSE system
for our test subject. This GNB is stored as a node within the muscle tissue nodes.
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Figure 5.20: Cardiovascular Graph Network Block. This network shows how events
impact the cardiovascular state down to the gene expression level. The graph network of
biology is taken from compiling open-source data from graph knowledge database Cytoscape
and other literature. Consolidation of this into a unified graph was done by the author. Green
arrows denote an activating effect on the target node. Red arrows denote an inhibitory effect
of the source node to the target node.

These knowledge graphs at the molecular level populate the deepest level of the personal

GNB structure in this experiment. Now that we have the HSE GNB system built at all

the desired levels of abstraction, we can plug incoming data streams to see how they are

changing the state.
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Figure 5.21: Graph Network Block Structure Summary. The total overview of the 4
main system components instantiated for the test user. Red circles denote areas of focus for
the experiments carried out in the next chapter.

172



5.5 Health State Update

After setting up the GNB structure for the

individual’s intent, the next step is to use the

network to show how the state is changing.

Time intervals at which to update the state

were chosen to be one day. There are two

overarching approaches to update the state. The first approach uses event data streams

about the individual as inputs. Events can include time intervals where there is no other

data stream other than time itself. The second approach is measuring a biological or utility

attribute directly through a sensor, and we use that information to arrive at an updated

estimation of the health state. This section addresses these two approaches in separate

sub-sections below.

5.5.1 Time and Event Based HSE Updates

The first update approach uses temporal streams as events

that perturb the GNB. Temporal streams are understood

as events in this work. Not all events impact the health

state regarding the utility dimensions of interest. To de-

tect events that are relevant in changing the health state

we are focused on, we need to know what types of features to look for and characterize the

impact of that event on the health state. This process is called interface event retrieval.
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Interface Event Retrieval

“In computing, an interface is a shared boundary across which two or more separate com-

ponents of a computer system exchange information” [121]. In the context of our work in

HSE, the two sides that exchange information are the events in our life with the state of

our health. Interface events bridge this gap by describing how to transform a particular

event attribute into an input value for nodes within the HSE GNB structure. For events

used in this experiment, we use validated aggregation metrics that connect the events to

how they impact the health state of CRF. For activities, we use three algorithms of Chronic

Training Load (CTL) [80], Gravity Ordered Velocity Stress Score (GOVSS) [281], and High

Power Activity (HPA). In a nutshell, CTL captures the long-term (42-day rolling average)

of cardiac volume overload output [80]. GOVSS captures the work done against gravity and

inertia to produce motion [281]. HPA captures high-intensity activity that stimulates muscle

fiber growth and motor unit training adaptations. HPA interface events are any 5 second

periods with over 10 watts per kg of power. The extraction of these features from activity

data is shown for the two years of test subject data in Figure 5.22. Using the time-stamps

from the event stream, we can also inspect the circadian pattern of when particular interface

events occur during the day. We show this for both activity events and environmental events

in Figure 5.23.
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Figure 5.22: Exercise Interface Events. For the years of 2018-2019, CTL is given in
purple, GOVSS is given in green, HPA Load by day is given in red. These specific interface
events are used to determine impact to the CRF health state.

Figure 5.23: Circadian Rhythm of Interface Events. This figure shows different inter-
face events retrieved from the test subject data. Different days of the year are represented
as concentric circles, and various sectors of the circle represent different times of the day.
Events in a day are represented as colored arcs on that circle. Volume and pressure overload
events that occur in the left ventricle are retrieved as inputs towards changing the health
state. This figure also shows the environmental interface events. High PM2.5 intake events
are recognized over one week. These are the instances where per minute PM2.5 intake was
greater than 0.7 µg. Low blood oxygen events are recognized over one year, where blood oxy-
gen saturation goes below 95%. The highlighted sectors roughly represent the time between
sunrise and sunset. Thus we can see how different events overlap with circadian patterns.
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In this experiment, we summarize the impact score of exercise (Figure 5.22), sleep as a total

quality metric, food through relevant nutrients, stress through a combined score of objective

and subjective data, and environmental pollution as quantity per day. The algorithms for

these computations are given in the appendix. The CTL, sleep, and stress scores per day are

presented in Figure 5.24, preparing the system to now propagate the effects of these events

into the GNB.

Figure 5.24: Interface Event Summary. Total Exercise impact, sleep quality impact and
stress impact by day for years 2018-2019 in the test subject. Exercise events are shown in
quartiles showing periods of higher impact in the upper quartile, and minimal impact in the
lower quartile. High variance within sleep and stress occurs daily.
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5.5.2 Observation Based HSE Updates

When we have instances of directly measuring the utility

or biological values, we use these values in priority over

the estimated values provided from event-based inputs.

For the biological layers of the GNB, these values are pro-

vided at the organ level, or system level through the sensor

collection. Examples of these values include body weight

and heart rate. The node that is measured may have parent nodes that can be updated.

In this experiment, we use resting heart rate and weight to derive stroke volume of the left

ventricle, and thus cardiac output. For the utility states, we directly measure CP and weight

during instances that indicate maximal power output. These measurements can be retrieved

through looking at power intervals where heart rate is within ten beats of age-defined max-

imal heart rate.

5.5.3 Propagating Updates

Using the data streams of these events and direct observations, we feed new input values into

the connected nodes as described in Algorithm 1. An example time-lapse of this update cycle

for the CRF case is given in Figure 5.25. We use this update system to compute the health

state of the individual on a daily cycle interval for the two years of data collection (2018-

2019) on the test subject’s GNB structure. The results in this section show updated values

for all the layers in the GNB. Through the story of queries by the user, domain expert, or

interfacing computing agent may have, we describe the health state update results in various

levels of depth.
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Figure 5.25: GNB Update Cycle. This illustration shows the time-lapse of steps within
the update cycle for a GNB system. Step 1 colors the layers of the HSE GNB structure
from the initialization. Step 2 shows how the value updates are given for inputs (green)
consisting of an exercise CTL of 40, age of 30, weight of 58kg, and resting heart rate of 48.
The estimated nodes are blue.
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Q1 User: How ready am I for the race?

The original intent of the user was to be ready for enduro and gravel cycling. Based on

the user weight, the power to produce at minimum for these events is 2.5 watts per kg for

sustained periods of over 1000 seconds, equating to 152 Watts of power for this particular

CP dimension. If we can estimate the utility dimension of this particular value over time,

we can see when the user is capable of participating in the races they desire to do. Figure

5.26 shows this particular utility dimension, with the green top section showing if the user

is in the health state to fulfill their desire. We see the user has a total of 5 periods in the

last two years where the user was within the appropriate utility state. Figure 5.27 shows

the values of the entire 18,000 utility dimensions of CP (x-axis) at four different time points

throughout the last two years. Figure 5.26 shows just a summary daily value of the HSE for

one of these dimensions over time.

Figure 5.26: Single-Dimension Health State. Here is a single dimension of one hour CP
value for the subject over the course of time.
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Figure 5.27: Multi-Dimension Health State. Here we see all 18,000 utilities of CP at
six month intervals.
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Q2 User: How does the air I breathe during a workout impact my health?

Our test subject wants to know how the environment interacts with their health state. GIS

visualizations can give readily accessible methods by which to answer this query. Figure

5.28 shows how pollution parameters like CO, O3, PM2.5, and PM10 are monitored for un-

derstanding where respiratory and cardiovascular health is changing during outdoor exercise

events. This visualization uses the location tracked activities synchronized to the public data

sets generated personal exposome. For improved accuracy in providing this GIS estimation,

we use heart rate data to understand breathing volume mapped with the local air quality

sensors via constant GPS tracking [191]. Breathing rate is derived from heart rate streams

generated during exercise [87]. Tidal volume is the volume of air inhaled during a normal

breath. It is computed from gender, weight, and height of an individual, which are sourced

from the respective GNB nodes. Estimation of the total volume of air intake would be the

product of breathing rate and tidal volume. The total volume of air multiplied by the air

particulate content gives total exposure to the particulate of interest. In summary, this query

uses both the environmental data and the biological streams in conjunction to provide the

result.
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Figure 5.28: Location Impact on Health State. Here we can see how four different
pollutants impact a single bike ride activity. Blue is low exposure, red is moderate exposure,
and yellow signifies high exposure to the particular pollutant during the unique time-points
and location during the bike ride. The EPA defines these levels. The levels can be used
to inform the user, health experts, civil engineering, and recommendation systems of health
state impact to aid in planning.
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Q3 Doctor: How is my patient’s heart health?

Our test subject visits the doctor and wants to understand if they are healthy enough

to continue riding bicycles and how their health is changing. For clinical use, organ and

tissue level analysis is most common. A cardiologist specialist wants to know how the left

ventricular wall thickness is changing based on various life events as shown in Figure 5.29.

The physician can use the GNB to compute the summary of the heart node global attributes.

This state is shown in Figure 5.30. The subject can see there are periods where heart health

is improving, and heart health is hampered. The top row of the figure shows if healthy genes

are expressed in the heart, and the bottom row shows the unhealthy genes. The second row

shows how much positive physiological hypertrophy is occurring. This is when the heart’s

left ventricle expands in its interior volume, thus allowing for an increased stroke volume.

The fourth row shows the pathological hypertrophy, where fibrosis and left ventricular wall

thickness may be increasing, causing the left ventricle interior volume to decrease and leads

to unhealthy states such as heart failure. The middle row shows the balance of healthy and

pathological processes to see if the global attributes of the heart are improving or degrading.

Based on these observations, the clinician can discuss best actions towards improving heart

health.
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Figure 5.29: Interface Events for Physiological and Pathological Changes. This
figure demonstrates the difference in response between physiological and pathological heart
changes resulting from various types of events. Volume overload is when the heart needs to
pump at a high volume flow rate. This causes physiological hypertrophy which strength-
ens the stroke volume of the heart. Pressure overload causes the heart to push against
higher forces which increases wall thickness, therefore reducing stroke volume and reducing
cardiovascular function.

184



Figure 5.30: Daily changes in Cardiovascular Biological Health. This figure demon-
strates the balance between healthy and pathological heart function on a day-by-day basis
computed through the graph structure in Figure 5.32.
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Q4 Doctor: How is my patient’s left ventricular function?

Our test subject visits the doctor and wants to understand how their heart health is changing

in regards to the left ventricular function. Again clinical use, organ and tissue level analysis

is most common. The physician can use the GNB to see how the left ventricular volume

is being updated on a daily basis. This state is shown in Figure 5.31. The subject can see

there are periods where left ventricular health is improving or decreasing. A clinician can

verify the stroke volume using ultrasound if they want a higher accuracy measurement.

Figure 5.31: Daily Changes in Left Ventricular Stroke Volume. This figure demon-
strates the balance between healthy and pathological heart function on a day-by-day basis
computed through the graph structure in Figure 5.32.
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Q5 Scientist: What are the molecular changes in this particular heart?

The test subject participates in a research study where scientists are trying to understand

what molecular pathways are potentially activated and deactivated in an individual. The

scientist would like to know how cycling events are possibly changing molecular pathways

that are related to heart health for potential further research and therapeutic targets. The

scientist can zoom into the GNB level of the heart node molecular signaling and gene ex-

pression, as shown earlier in Figure 5.20. To see how the molecular signaling molecules are

changing in the heart, a graph-based visualization is produced showing the pathway in each

month of the year in 2019 (Figure 5.32).
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Figure 5.32: Health State Graph Updates. This figure demonstrates the estimated
signaling pathway nodes for cardiovascular health change at the molecular gene expression
level. An average for each month is shown in the year 2019. Legend is given in Figure 5.20.
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The various queries above demonstrate the usability of the health state estimation at different

levels of abstraction. This outlines the framework by which any HSE system can be built.

Concluding this section, we see how the health state updates can be used readily by the

user, healthcare provider, and scientist to inquire how and why the health state is changing.

Next, we discuss altering the HSE GNB structure to use incoming data to model the user

better.
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5.6 Personal Model Update

To update the GNB model for the individ-

ual, we take both a bottom-up and a top-

down approach on the system. We start

by using a top-down approach as a “Knowl-

edge Update” on the model. Following this,

we take two bottom-up approaches to better

model the GNB. These data-driven approaches use two different methods of learning. One

uses data incoming from two sources that are linked together to modify the edge. We call this

parallel observation learning. The other uses many sources of incoming data to one node, to

better estimate the values for that node. We call this approach, cross-modal learning.

5.6.1 Knowledge Update

Two forms of knowledge can inform the HSE system to

update the GNB for the individual. The first form of

knowledge is an update from the scientific literature on the

structure and relationships between the entities. In this

example, we update the relationship between an event cat-

egory and biological nodes. Recently discovered knowledge

in molecular biology shows how mitochondria increase in

the muscles best from low-intensity exercise [311]. This

finding is quite contrary to the commonly accepted research idea that high-intensity interval

training (HIIT) was the most effective way to improve mitochondrial density in myocytes

[123]. In light of this discovery, we increase the edge weights between the low-intensity exer-
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cise interface events causing mitochondrial biogenesis and show the decreased edge weights

for mitochondrial biogenesis from HIIT, as presented in Figure 5.33.

Figure 5.33: Updating Model of Event to Biological Node. This figure demonstrates
the difference in the model between the original knowledge-based edge weights and after
the knowledge update from the literature. High Intensity (HI) exercise was thought to be
the primary causal pathway to increased mitochondrial biogenesis in the muscle and heart.
New literature shows that Low Intensity (LI) exercise does this much more than HI exercise.
Using this update, the edge weights on the right are changed.

The second approach to a knowledge update is the genetics of an individual. Most genetics

studies establish the correlation or causation of a gene to either an event, another biological

node, or a utility. In the case of this subject, we gathered the full 23andMe Single Nucleotide

Polymorphism (SNP) of the individual and filtered out any genetics information that is

pertinent to the GNB structure related to CRF. We find that the subjects have several genes

associated with nutrition, exercise, and sleep that impact the graph structure, as shown in

Table 5.7. We choose to focus the example on the exercise gene, Alpha-actinin-3 (ACTN3).

ACTN3 is a binding protein that plays a role in skeletal muscle fibers. This gene regulates the

fast-twitch muscle fibers, essential for regulating the coordination of muscle-fiber contraction

[171].
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Given this genetic makeup of one C and one T variant, the strength between low-intensity

exercise and high power exercise will have a balanced effect on the user’s GNB biological

nodes. If this user were to have two C copies of the ACTN3 gene SNP, then the edge between

power exercise and muscle node attribute values would change. In this case, for a given

high power interface event detected would increase the resulting change in the muscle fiber.

However, for a low-intensity exercise event, the consequent change in muscle composition

would be less.

Subject Genetics Characteristic Gene Variant/Marker

Nutrition Alcohol Flush ALDH2 2G
Caffeine CYP1A2 rs2472297
Caffeine AHR rs4410790
Lactose Intolerance LCT rs4988235, 1A 1G
Saturated Fat & Weight APOA2 rs5082

Exercise Muscle Composition ACTN3 rs1815739, 1C 1T
Sleep Deep Sleep ADA rs73598374, 2C

Sleep Movement BTBD9 rs3923809, 1G 1A

Table 5.7: Genetics SNP. Genetics SNP profile of subject related to the CRF GNB.

Figure 5.34: Genetic Update of Model of Event to Biological Node. This figure
demonstrates the difference in the model between using the most updated general knowledge
and knowledge, specifically about the user’s genetics. Because this user has two different
types of ACTN3 gene, the impact of both HI Exercise and LI Exercise is higher.
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This summarizes the knowledge-based approach to updating the graph. We continue next

with data-driven model updates.
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5.6.2 Parallel Observations

The first of two data-driven learning models we employ in

this work is applicable when two nodes are observed with

incoming data and are linked together. In the instance of

our experiment, the two nodes that are linked are heart

rate and power. Increases in heart rate result in increased

power, and this is well understood both colloquially and

in the biomedical literature. For each individual, this pa-

rameter is also always changing based on how their CRF

state is changing. When plotting heart rate versus power, we notice the data ends up in

two patterns. The first pattern is split with various linear clusters, as shown on image A in

Figure 5.35. This pattern occurs due to a physiological phenomenon called heart rate drift,

also known as aerobic decoupling. Aerobic decoupling is when the heart rate dramatically

shifts for the same power output due to cardiac fatigue. Instances like image A show this

effect happening. The green-colored portion of Figure 5.35 shows the beginning of the ride,

and the red nodes indicate the values at the end of the ride. We can see that there is a

shift in this twice reflecting initial fatigue followed by another step of extreme exhaustion.

Because the relationship is changing so much within one ride, this instance is not a good

source of parallel observation learning. The aerobic decoupling algorithm confirms this, with

a decoupling of 40.3 percent. Image B, on the other hand, shows a single linear cluster that

does not have any distinct separation. The aerobic decoupling algorithm confirms this, with

a decoupling of 0.9 percent. Therefore the data from this ride can be used to give a quality

relationship between the two variables. We use simple linear regression for this model, but

more complex learning approaches can easily be applied if desired. To teach the system to

look for high-quality relationships, we can compute the aerobic decoupling factor for each

ride easily with the Algorithm 2. Using the latest value of this relationship, we can update
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the edges between heart rate and power in the GNB. The latest value for the last month of

data (December 2019) on the test subject is shown in Figure 5.36.

Algorithm 2 Aerobic Decoupling

Input: Power and Heart Rate event streams (P , HR)
Output: Aerobic Decoupling Percentage (AD)’
Begin
1: for each activity
2: if power and heart rate data present (P , HR)
3: Compute power-heart rate ratio for starting half of event, (S).
4: Compute power-heart rate ratio for last half of event , (L).
4: (D) = (S) - (L)
5: (AD)’ = (D)*100 / (S)
6: end for
7: end for
8: Return (AD)’
End
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Figure 5.35: Parallel Data Model Learning. The above two graphs show heart rate data
related to power data in two different activities. During activity A, we can see three distinct
linear bands of relationships in red, magenta, and green. These clusters are separated due to a
phenomenon called aerobic decoupling. We can check the causal agent of these multi clusters
in the ride data by referencing the aerobic decoupling node. In ride A, it is 40.3 percent,
versus Ride B is 0.9 percent. For this reason, the graph system can causally understand that
activity B is a better sample. This allows for learning the relationship with higher quality.

Figure 5.36: Heart Rate and Power Relationship. This box plot shows the relationship
between heart rate and power for the test subject from various instances within a one month
period.
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5.6.3 Cross-Modal

Cross-modal is defined as understanding of a situation

from multiple types of inputs [150]. In this case, cross-

modal learning takes various inputs of the biological vari-

ables and events to estimate the value of a utility node.

This set of experiments show that we can improve the qual-

ity of CRF estimation via this cross-modal approach. The

estimations can improve by combining multiple cheap (in

terms of monetary or energy costs) sensors. We use three

features from the user’s event and data-streams that all have a direct impact on CRF: 1) Rate

of vertical ascent in meters (VAM), 2) Training Impulse (TRIMP), and 3) Cadence-detected

Active Time.

Per second power output values collected from the strain gauges serve as the ground truth in

our experiments for bio-variable estimation. We used a rolling average of maximum 4-minute

power output per day over 42 days to generate the ground truth for our experiments as the

utility node to estimate. Forty-two days is a gold standard when understanding short-term

changes in CRF [33]. Unsatisfied with this static parameter, we experimented to find out

the optimum time to be considered for aggregating the metrics while estimating CRF values.

We plotted the test error for the global models utilizing one metric in Figure 5.37. We can

see that while there is some variation in mean error, the 95% confidence intervals overlap for

all time windows, and we cannot find an optimum time window to use in our experiments

based solely on the data. Therefore we have used the clinically recommended period of 42

days to aggregate the past exercise events.
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We trained two sets of linear regression models for a global model and a personal model

for each feature. The personal model for each individual was trained on with a 70 percent

training subset of data for the subject and tested on the remaining 30 percent data.

VAM models are trained to predict average power output (normalized by body weight) in

4-minute windows in an activity using the VAM in the time window, and the maximum

estimated power output is then used to compute a continuous daily estimate for VO2max

[52]. We trained models with varying slope thresholds to identify the impact of slope on

estimate accuracy. As the slope increases, the effect of other resistance factors (such as

wind, rolling resistance) decreases, and the model performs better (Table 5.8). We choose

which model to use based on the maximum slope observed in the 4-minute windows, for

example, if in a ride the maximum slope observed in a 4-minute interval is 5.3%, we would

choose the model trained on intervals where the slope is greater than 5%. Since we are

predicting body weight normalized power using VAM, none of the two metrics are greatly

influenced by individual parameters. This is reflected in similar global and individual model

performances for VAM (Figure 5.38).

TRIMP is a method to quantify training load, and considers the intensity of exercise calcu-

lated by heart rate during exercise [109]. TRIMP captures the workload on an individual’s

heart in the last 42 days. We trained a linear regression model to predict an individual’s

VO2max value based on their total TRIMP score in the past 42 days. This metric proved

to be more effective in a personal model than a global model as different individuals have

different heart rate responses to the same exercise intensity, Fig 5.38

Active time is the actual amount of time the individual was actively putting in effort in

the past 42 days. We obtained this metric using cadence values collected at per the second

resolution. We also trained a linear regression model to predict an individual’s VO2max

value based on their total activity time in the past 42 days. Similar to TRIMP, this metric
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performs better in a personalized model than in the global model as different individuals

would have a different response to the same exercise volume (fig. 5.38).

Combination models outperform their constituent models in all our experiments, as shown

by the error plots in Fig 5.38. The estimates from the previous models were combined using

a weighted average, where weights for a model estimate are inverse of the model’s training

error. The error in estimates for these models is reported in Figure 5.38 and discussed in

this section. We can see from the plot that the best model in terms of average error and

variance in error utilizes all available data streams.

Figure 5.37: Memory Parameter Optimization. For each of the three sensor modes, we
tested the model to see if there was an optimal amount of days to use as a memory for the
CRF prediction. Any model memory of 10-100 days gave similarly accurate learning results,
demonstrating there was no optimal learning memory for the model.
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Table 5.8: Slope optimization of VAM models.

Slope
threshold (%)

Test Set RMSE
(Rel. Power)

Training Set RMSE
(Rel. Power)

Training
R Squared

Size of
training set

0+ 0.726 0.665 0.381 16810792
1+ 0.620 0.537 0.527 10728610
2+ 0.557 0.473 0.593 7952334
3+ 0.488 0.424 0.655 6236507
4+ 0.451 0.391 0.695 4884243
5+ 0.420 0.363 0.732 3509724
6+ 0.405 0.344 0.760 2294199
7+ 0.395 0.328 0.781 1400488
8+ 0.365 0.318 0.793 781841
9+ 0.347 0.317 0.797 423315

Table 5.9: VAM Parameter Optimization. For the VAM based model, there is a ben-
eficial effect to choose samples in which the slope gradient of the activity is steeper, which
quantifies how much weight to assign to data samples through the quality metric of slope in
our learning model.

Figure 5.38: Cross-Modal Sensor Fusion. By using multiple nodes in our learning model,
we can see a direct improvement in the CRF utility estimation, which shows the value of
having a multi-modal sensor fusion approach.
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In these experiments, we leverage cross-modal data to estimate a needed utility node. From

our experimental results, we can see that increasing the number of data streams provide

increased performance characteristics in achieving this goal.

The total health of an individual is much higher than any single node attribute, and that we

need to understand better the total health state of a particular individual or organ system.

We cover some actionable and semantically meaningful visualizations to see how to use the

HSE.

5.7 Other Visualizations of HSE

How can we further assimilate HSE in a use-

ful way for individuals and health providers?

A first step is in the visual analysis of the

HSE by users and health experts. Sim-

ple mobile applications such as the system

mocked in Figure 5.39 can give a quick overview of the HSE, similar to checking the finan-

cial market state or weather state. Expanding this idea to a population provides insight in

a detailed manner that can be useful to scientists, researchers, and health experts. We go

over an experiment to show such a system in the next section.
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Figure 5.39: Personal Mobile Dashboard View. The personal mobile dashboard view is
a concept design mock-up of how a user may access their health state. Screen 1 we show how
health state can fuel recommendations. Inspired by jet engine dashboards, screen 2 can give
a live snapshot of the health state. Screen 3 provides a comprehensive list of all bio-variables
and health states being tracked, with a ranking system to provide relevant results at the top.

5.7.1 Multi-Person View

Using the same HSE approach for the test subject, we applied this to multiple subjects to

produce a health state overview for population health analysis. The dataset used in these

experiments includes the same activity sensor data streams at one-second resolution collected

on 24 male cycling athletes over an average of 5 years in the United States. Athletes also

had strain gauges installed on their bicycles to measure true physiologic power output. The

total dataset includes 31,776 activities and 70,178 hours of exercise data (252.6 million data

intervals). Social media outlets of Instagram and LinkedIn were also used to gather an image

dataset of 50 images per athlete and general demographic background information. From

this, we assimilate various CRF biological and environmental nodes through the health state

estimation using this data for each of the 24 subjects, as shown in Figure 5.40. We find that

even though most of these subjects are all cycling athletes, they have a wide range in these
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nodes. Modern-day primary care doctors would not be able to see this when a patient visits.

Looking at this data panel across the subject pool, we discover some interesting trends in

Figure 5.40. As expected, as the age increases the overall heart health state decreases, since

age is a large factor of cardiac health (age range in the panel is 18-57). As age increases,

we also see a reduction in crime and noise pollution, suggesting that older individuals can

afford to live in safer and quieter neighborhoods. We also see circadian rhythm disruption

maximally in the middle ages (20-29), suggested a more erratic lifestyle for those in their

twenties. Circulation and metabolism scores also trend (including VO2max / CRF) lower as

age increases. Although this is a small sample size to make any strong conclusions, we can

begin to see the usefulness of using this cross-modal analysis for clinical applications. This

work was published at Association for Computing Machinery’s (ACM) Multimedia 2018 in

the Brave New Idea track [193].
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Figure 5.40: Patient Dashboard View. The patient dashboard view is a heat map of
bio-variables and summary scores that affect each subject. Variables are normalized to a
specific color for each box. The variables are graded on a scale ranging from blue being most
healthy and red being least healthy. This type of visualization integrates cross-modal data
in a manner that a clinician, hospital, public health agency, or any domain expert can use to
monitor the health of a patient panel or population. Clicking on a particular box would pull
up further insights and details. This highlighted box in this image shows the noise pollution
insight for patient 22.

Concluding this chapter, we see how the framework in Chapter 4 can be implemented at a

detailed level for estimating the health state of an individual, and how this can scale over

time and across more individuals. This working framework is shown in Figure 5.41. The

next chapter explores ideas within the original inspiration of using HSE for navigation and

control. This exploration is intended to extend HSE beyond this dissertation.

204



Figure 5.41: Total Health State Estimation System. Here we can see all the blocks of
Chapter 5 in a system overview.
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Chapter 6

Personal Health Navigation

Knowing is not enough; we must apply.

Willing is not enough; we must do.

Johann Wolfgang von Goethe

Knowing the health state provides information about one’s health situation; however, indi-

viduals need to take action with this information. Akin to GPS for position, the possibilities

to take action with this information are vast. Making decisions about events in one’s life

allow individuals to change their state towards their wishes. These chosen events become

experiences, which are valuable for determining a person’s quality of life. If we define qual-

ity of life as a function of positive experiences and time, then we want to optimize those

experiences and extend their duration. As discussed, health is a dynamic state that is con-

tinually changing, based on biology, the environment, and lifestyle. Technology that senses

a change in a user’s position on the health continuum can drastically improve human health,

especially once it is actionable. If people become aware of their biology, they could see how

daily life is affecting their health and make informed decisions accordingly. Health decisions

are too important to be episodic; they must be an intrinsic part of daily life. We propose
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Box 1: A Navigational Approach to Health

Health and well-being are shaped by how lifestyle and the environment interact with
biological machines. A navigational paradigm can help users reach a specific health goal
by using constantly captured measurements to estimate how their health is continuously
changing and provide actionable guidance. Cover Issue IEEE Computer April 2019 [186]

Measure : Data about the user and relevant environment are collected, processed, and
stored continuously, including how the latest actions are affecting the user.

Estimate : The health state of the user is estimated from multi-modal data streams
and models. Measurements are also transformed to update models. Quantitative
health status at every moment is provided.

Guidance : Given the goal, model, and health state estimate, the optimal routing and
next steps for real-world execution are calculated. The best method by which
actions should be fulfilled includes knowledge of all available resources, context,
and the particularities of the user model.

Action : Actions in the real world are executed by the user, another human, or through
an automated system.

Model : The physiological and psychological patterns are modeled for each individual
and used to further personalize the system estimates and guidance.

the navigation perspective, to make actionable guidance for improved quality of life [186].

This chapter discusses in detail the guidance and action components of navigation.

Navigation is different from recommendation systems and purely cybernetic control. This

goal-based guidance system perpetually estimates the current state, computes the best route

through intermediate states, and guides actions that lead to health goals. For success,

this system requires robust continuous sensing, accurate estimation of the current state,

control systems, actuation mechanisms, understanding of the outside world and context,
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Figure 6.1: Navigation Vision for Health. Navigation for health has four key compo-
nents: Measure, Estimate, Guide, Action. Step 1: Take measurements in the real world
through a variety of sensors. Step 2: Additional measurements may be needed if they are
not sufficient for a reasonable estimate. Step 3: From these measurements, we can produce
an Estimate of the current health state. Step 4: Guide the user based on a reference goal
and the user’s model. Step 5: Take actions in the real world through a variety of mecha-
nisms. Step 6: Assisted mechanisms may contribute to the executing of these actions. Step
7: Retake measurements to understand how the person’s health state has changed, and this
updates the personal model perpetually.

long-term planning, and goal decomposition at various levels of detail. Navigation must also

manage stochastic, chaotic, and noisy environments effectively. This goal-driven, closed-

loop sense-compute-then-act cycle combines the pioneering elements from cybernetic systems

(well described in electromechanical systems and biology by Wiener et al. and the general

problem solver by Newell et al. [292, 199].

The purpose of personal health navigation (PHN) is to help an individual reach and maintain

their desired health state. Systems that provide health navigation are broad, and humans

may be integral components. Examples include a personal device such as a mobile phone

and an entire Internet of Things (IoT) ecosystem within a building, a human trainer at a
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gym, or an advanced cancer center. PHN starts with a user-specified health goal. From

there, the system starts to collect measurements about the persons health that relate to his

or her goal to estimate current health states. To most optimally reach the desired goal, the

system breaks the steps from the current state and provides the next step to an actuation

mechanism. All actions, whether advised by the system or not, are continuously measured

to provide a new estimation of the individuals health state. A change in the state updates

the next action. A cycle of these actions moves the users current health state closer to the

target. Upon reaching the destination, the system continuously ensures minimized deviation

from that state. The vast unknown nature of health means that we will obtain more diverse

multi-modal data in the future and that this phenomenon requires combining these data

sources.

While navigation is not the core of this dissertation work, it establishes the purpose of the

health state estimation and how to best guide the better health of an individual. In this

chapter, we will discuss the step by step process of personal health navigation and work that

has been done to address certain challenges [186].

6.1 General Health State Space

The first step of navigation is establishing the general health state space, as described in

Chapter 4. The “flight envelope” of an aircraft is the inspiration for the state space concept.

The envelope encompasses measurements (load factor, atmospheric density, altitude, etc.),

which determines the space in which it is safe for the plane to fly in, as shown in Figure 6.2.

Similarly, the state space defines all possibilities and capabilities to understand the scope

in which the navigation will occur. This state space includes all possible health states a

human can exist in. For example, if the state space is the cardiovascular state, all possible
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Figure 6.2: Flight Envelope. This graph shows the area of total possible states in which
the plane is able to fly given its unique parameters.

measurements for the cardiovascular state will be considered, including all components of

fitness (with specific measurements such as VO2max), cardiovascular disease, and more.

6.2 Personal Health State Space

When we apply the state space to an individual, we create a personal health state space,

which includes all the possibilities for an individual given their situation. This is by definition

a subset of the general health state space. Each person has a unique and finite possibility

of biological states. Classic examples such as height, eye color, or fingerprints have a small

set of states after reaching adulthood. However, many aspects of biology have an wide

range of possible states, which change based on daily life. Consider how exercise changes the

mitochondrial content of cells, how nutrition alters our metabolic processes, how medications

modulate our blood pressure, and how ultraviolet light damages DNA. The changes in these
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Figure 6.3: General Health State Space. The state space includes all the possible states
that all humans can exist, with several dimensions. In order to interact with this state space
effectively, a user may provide a particular intent, which can reduce the dimensionality to
the relevant regions to visualize the general health state space.

states are what determines the movement in the state space. Mapping the personal health

state space (PHSS) in totality is a complex, multidimensional challenge. We can apply this

concept to what we observe in flight envelopes, in which specific models of planes have unique

state spaces. Each type of plane will have its possibilities by which it can fly. Narrowing

the state space to the individual’s possibilities give a more specified scope best set up for

personalized navigation.

6.3 State Transition Network

Within the personal health state space, there are connections made between each of the

individual state possibilities. The connections themselves are the state transition network.

Each edge within the network represents transitions that take the person from one node

to another. With the cardiovascular state, for example, we determine which inputs will

transition the heart state. The state transition takes into consideration all the inputs that

will lead to the next state, therefore making connections or relationships between states.

If one were to exercise, experience stress, or have a high salt meal, they are transitioning
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Figure 6.4: Personal Health State Space. The PHSS includes all the possible states
that a specific human can exist at the current moment and at future time points. This state
space is a subset of the general health state space. To convert this space to a computationally
efficient world, we may apply a discrete layer on top of this state space, allowing for graph-
based approaches for further applications.

between these states in their PHSS. To understand the PHSS in more detail, we must identify

the knowledge layers and regions of interest within the space relevant to the topic of interest.

Connections within a PHSS between two nodes will be unique based on the individual. For

example, for person A and B to grow one pound of muscle, the inputs needed for A will be

different than person B. Therefore the state transition network is also a unique part of the

PHSS.

6.4 Knowledge Layers and Regions of Interest

Layers on top of the PHSS contains all relevant health domain knowledge, similar to physical

maps that use latitude, longitude, and altitude to describe the globe independently of any

knowledge layers. Information layers such as roads, oceans, country borders, and satellite im-

agery allow for navigation within the space, depending on the context (driving requires roads

and traffic layers, while flight requires air class, way-points, and airport layers). Knowledge

layers represent the real world, in which humans can make sense of their state concerning

their interests. A semantic translation to the relevant PHSS will depend on the user’s re-
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Figure 6.5: Connected State Space Network. The state space network includes all the
possible transitions from one state to another for the specific individual. The connections
contain the information of what inputs the matrix will cause a particular state to convert to
the next state. The edges here are directed (although not visually shown). These connections
are not static and are repopulated, given a reflection of the current situation.

gion of interest. For example, mapping the coordinates of a “cyclist” in the PHSS requires

matching relevant coordinates within the desired region of interest in the state space. This

region of interest is a particular area within the state space relative to where the individual

currently is in their health status. A defined distance allows the individual can see how close

or far they are from being in this region and the various nodes or states that would cause one

to get there. Similarly, one can determine their risk for heart disease based on their current

state’s distance from an undesirable region. Mapping current location distance from regions

of poor health brings about a new approach to quantify one’s relationship to disease risk.

6.5 Current State Estimation

It is important to note that there is constant flux within an individual’s PHSS based on

one’s location in the state space. For success, navigation must be able to assign an accurate

location within the PHSS, just as GPS provides physical world navigation. Understanding

this location is the HSE (all previous chapters). The same HSE tool may be useful for
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Figure 6.6: Knowledge Layers. Layering information on the state space allows for semantic
interactions. Domain knowledge specifies these layers from the relevant database. We can
gather specific regions of interest from knowledge sources that can label the state space
so a user can understand the possibilities for their health in natural language or a relevant
visualization. In this example, specific regions of interest are labeled with the colors of green,
orange, yellow, and red. Red is an example of an undesirable region, while blue represents
regions that are not within the person state space possibilities of the user. The black boxes
represent points of interest, which is essentially a more confined region of interest.

many applications. For example, monitoring a cardiovascular health state is useful to both

endurance athletes and heart disease patients. Estimation techniques have been of great

interest in designing many applications, but health applications will require increasingly

deep biological knowledge layers to define and estimate health states. This estimation could

indicate its proximity to biological dysfunction or its capacity for the desired goal.

6.6 Goal Decomposition

For navigation to occur, an individual’s requires specifying a goal state. Goal states can be

specified as ROI or a specific point. If an individual has a region of interest for becoming

a cyclist, they can more specifically choose a pointed goal such as competing in a 100-mile

road cycling race. Goal decomposition is needed to translate the goal state into short-term
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goals. This process occurs through breaking down the goal to identify the unique utilities

relevant for the specified goal.

First, in this process, the system will need to translate the semantic goal to the PHSS.

Because the PHSS is large, we must break down a macro health goal into several intermediate

states and subgoals that the system can focus on reasonably. There may be a set of short-

term goals at any given moment, each with its own set of intermediate states and subgoals.

At the lowest atomic level for an application, PHN lists fulfillment tasks in priority order so

that users can execute them in the real world to attain a subgoal or the next intermediate

state.

To become a road cyclist, for example, there will need to be a process broken down into

the key utilities (i.e., develop muscle strength, improve cardiovascular health, ensure body

alignments). Each of these intermediate steps will have various subgoals required for the

optimization process. If the individual’s utility is to develop bone strength, they will need

adequate nutrition and weight training. Each subgoal translates to a smaller state space. In

the case of nutrition, models will list macro (carbohydrates, protein, fat) and micro (vitamins,

minerals) nutrients. These components may then be the chosen atomic-level intermediate

states for applying nutrition.

6.6.1 Timescales

Goals and corresponding subgoals occur at various timescales. Take for example the cyclist

whose race is in six months. The cyclist must maintain daily subgoals such as establish

cardiovascular endurance (i.e., a two-hour bike ride, four days a week). We can then break

it down into minute by minute subgoals to maintain a particular power output for interval

training, to build a higher power to weight ratio. When looking at the biological level,
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the subgoals may be positive gene expression for mitochondrial biogenesis and improved

metabolism, which has a second by the second timescale.

6.6.2 Recurring Goals versus Achievement Goals

There are two types of goals. One is a recurring goal that is an ongoing goal, such as a habit

or way of living. For example, brushing teeth would be considered a recurring goal that an

individual maintains over time. This requires constant navigation till the recurring goal is

terminated by the user. There are also achievement-based goals, which are defined situations

that once achieved terminate the navigation. Once the user meets the achievement (such as

winning a race), they must then set a new goal.

6.6.3 Synergistic Goals versus Competing Goals

We must note that there may be multiple goals that are either working in synergy or com-

peting with one another. For example, if an individual has the goal for high performance in

a road race and also would like to be an enduro mountain bike racer, there may be overlap

in synergistic goals, such as the cardiovascular training required to perform in both types of

events. However, as enduro mountain bike racing relies on high skill in demanding terrain

and upper body strength (therefore increased weight), it will conflicting with the training

for high endurance activities, such as the 100-mile road race which require being at a lighter

weight.
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6.6.4 Identifying User Motivations for Goals

Identifying user motivations is critical for goal setting and, ultimately, the effectiveness of any

lifestyle change. Engagement is dependent on providing recommendations that primarily fuel

intrinsic motivation while using extrinsic motivation for further support. This understanding

builds the foundation of sustainable behavioral adaptation for optimal personalized health

benefits. Intrinsic motivation arises from internal enjoyment or satisfaction in a particular

task, while extrinsic motivation refers to motivating factors from the outside world, such

as rewards or punishment. While both can lead to lifestyle activities that benefit health,

intrinsic motivation drives long term user engagement.

We can use multi-modal data to learn if a user is executing an action from intrinsic motivation

or external factors. For instance, if a user repeats an activity without prompting and without

external influence, this gives us an increased weighting that the motivation is intrinsic. If

we detect themes and concepts in their social media consumption, and one takes part in an

activity when a reward prompts them, we can consider this as more weighting towards the

extrinsic motivation [187].

6.7 Guidance

The guidance process towards the defined goal includes creating a route and recommending

the next steps along the way. Computers play a role in providing both short-term guidance

and longer-term guidance; however, to predict the future, provide guidance, and understand

the preferences and particularities of an individual, personal models are needed. These

models, which establish the premise that each individual is a unique system, are needed

to best estimate the users health state and how various inputs uniquely move them in

their PHSS. Models are then accessed to provide precise guidance towards a goal state.
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Box 2: Intrinsic and Extrinsic Motivation Modeling Essential for Multi-
Modal Health Recommender Systems

Distinguishing intrinsic and extrinsic motivations from multi-modal data is key to pro-
vide recommendations that primarily fuel the intrinsic intentions, while using extrin-
sic motivation to further support intrinsic motivation. This understanding builds the
foundation of sustainable behavioral adaptation for optimal personalized lifestyle health
benefits. This paper was written in collaboration with Mathias Lux of Alpen-Adria-
Universitt Klagenfurt, Austria. Arxiv, August 2018 [187]

• Understand what components are intrinsic and extrinsic motivators for an individ-
ual are key to develop more intelligent recommendations to guide a person towards
good health.

• Using intrinsic motivations as a basis for lifestyle change is much more effective for
long term engagement.

• Extrinsic motivations are useful to engage in short bursts to push behaviors, but
should be used judiciously.

The personal model can build knowledge and predict many aspects of an individuals life,

such as how a person reacts to different stimuli under specific conditions or physiological

change from an intervention. To model a person, a combination of long- and short-term

information must interact. Long-term models of an individual can come from the genome or

the history of event patterns and behavior. Biological or high-resolution continuous sensors

can capture short-term models. These models are not static; they continuously change with
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Figure 6.7: Goal Selection and Route Planning. Given a particular interaction layer,
a user can select a goal of choice. We compare this goal to the current state of the user in
order to determine routes that can lead to the goal state. Multiple routes may be generated
based on optimization criteria that the user or the system can weigh.

an individuals age, life events, and other life parameters, which makes model-building a

dynamic and causal understanding process.

After measuring, estimating, modeling the individual, and receiving a goal the user needs

to receive guidance on the next step needed to reach that goal. For an individual to make

decisions about events leading up to their goal state, the system routes through intermedi-

ate steps through the PHSS. At each moment in time instructions are given for the next

appropriate actions.

6.7.1 Routing

Having a map, location, and goal (or destination) now sets the stage for routing. As we

cannot go back to previous time points, we must move forward through intermediate states

over time towards a desired goal state. Making a route on a map requires not only knowing

the start and endpoints but also all the layers of roads and traffic. In the case of PHN,

each set of intermediate states and sub-goals will have its layer of information, which is

relevant for mapping, along with costs and constraints to transition among intermediate

states. Interactions in PHN will be extremely complex due to its large dimensionality. We
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must handle competing user goals, through methods such as prioritization or weighting.

Meansends analysis or other problem-solving techniques, along with appropriate routing

algorithms, will reveal the best intermediate states for the user to reach the goal. There

may be multiple routes to get to the desired goal. However, route selection may be made by

various optimization criteria that include user preferences, efficiency, speed, and resources.

For the example case of food routing for pregnancy. It is necessary to map available food

options, nutrition, and locations, along with how each choice can fulfill the tasks demanded

over a period of time of nine months. Consider models for breakfast, lunch, snack, and

dinner in the daily sub-goal of a nutritional state. There must be coordination of total

components to reach the sub-goal appropriately. For example, if breakfast does not provide

enough iron, then it must be compensated for in other meals. Researchers must further

consider the logistics of adding a dish into the equation. Hence, solving routing for various

PHN components remains an open opportunity.

6.7.2 Actions and Cybernetic Control

Actions of the person help lead them to a specified goal. Cybernetic control pairs the

individual user and digital assistance to enact these real-world changes to transition the

health state. Control mechanisms steer individuals towards the state transition on vari-

ous timescales. Therefore, recommendation serves as a tool for the cybernetic control in a

particular moment in time. Recommendation may help plan for a single moment in time,

but it does not consider routing through the state space. This is a key difference between

navigation and recommendation.

When applied to health, combining sub-population and individual data dynamically into a

system gives real-time personalized evidence-based actions unique for each individual through

sensors and specific feedback guidance loops. In the case of the cyclist, the control mechanism
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Box 3: Cybernetic Health

Cybernetics extracts the full potential of data to help control steps along the navigation
pathway. This paper presents five connected components to enhance control. Arxiv,
May 2017 [192]

• Personalization must take into account the individual model.
• Prediction is possible with this model.
• Precise guidance can be given based on the goal set in the cybernetic system.
• Persuasion of the individual to execute the guided steps is key for lifestyle based

intervention.
• Prevention of undesirable regions-of-interest further teaches the model to improve

in the next iterative cycle.

for ensuring they are on target for getting to their next state is determined by the power

out for each training interval from data collected from the power meter. If their power is

too high or too low, the recommendation may be to adjust for the optimal power output in

the live moment of training. Based on their biology and the effort during the training ride,

they can have actionable next steps on what food they should eat next for optimal recovery

[192].

Computing optimal control mechanisms, however, are not enough. For meaningful impact,

we must implement the cybernetic control principles in the real world which includes noise
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Figure 6.8: Control and Re-Planning. Once a specific route is selected, the user and
system only need to worry about controlling the state transition for the current time iteration.
Cybernetic loops are employed to ensure that the state transition is controlled successfully
in the presence of disturbances and noise. Once the state has transitioned to a new state,
the system re-plans the most optimal route again. Due to changes in resources, health state,
or other factors, the route may be different at the next time iteration. Here we see route Y
selected at time k, and at the next time iteration, the route plan has changed to Y.2 based
on the updated state and resources at time k+1.

and disturbances. For the system to be effective in the physical work, we must consider the

spectrum of actuation ranging from fully-automated systems to human-fulfilled actions.

Automated Actions

Many machines automate tasks such as laundry or aircraft control, which are instances of

completely automated control mechanisms that can make an action in the real world control

a task. For a type 1 diabetic patient, continuous glucose monitoring through the artificial

pancreas, paired with insulin pumps, can control blood sugar far better than humans can

and acts in a minute by minute timescale. Heart pacemakers have electrodes that detect the

heart’s electrical activity and send data to generate electrical pulses to the heart to control

and monitor the heartbeat at a second by the second timescale. In these closed-loop systems,

the executed actions are entirely automated, and no human intervention or uncertainty is

involved, so these cases can be considered deterministic actuators in PHN.
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Partial Assistance

Automation can assist humans in taking action. For example, building a Smart Home System

helps modulate an individual’s environment for circadian control, which ultimately assists

in sleeping. Automated biological circadian rhythm control can be via connected lights,

digital screen color variation, thermostats that mimic natural temperature fluctuations, and

motorized curtains with smart white noise. While this may assist in circadian control and

developing habits for sleep, the human needs to take action to ensure a consistent sleep

schedule.

User Actions

Humans are not always good at understanding complex instructions or remembering them

at the right time and in the right situations. They also are easily influenced and distracted,

which makes them non-deterministic actuators. Even when the user fully intends to reach

a health goal, adhering to healthy routines can be difficult. The primary challenging task

is to understand how to influence people at the right time and with the best medium to

produce the desired action. For each individual, actions must be persuasive in the given

context, practically feasible, and encourage participation. Richard Thaler won the 2017

Nobel Prize for understanding the psychological underpinnings and control of the decision-

making process in humans [261]. Specifically, the following three high-impact contributions

interweave directly with health navigation.

1. Limited rationality: Simplified decision-making focuses on the narrow impact of each

decision rather than on its overall effect. Computing these complex effects can offload

these tasks from the user.
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2. Lack of self-control: A plannerdoer model describes the relationship between long-term

planning and short-term actions. Short-term temptations to make healthier lifestyle

choices often fail. By quantifying the health cost or benefit in any situation, users can

make more controlled and informed decisions.

3. Nudging and Probabilistic Nature of Inputs: By using subtle cues, users are pushed to

make a confident decision without force, thus avoiding the pitfalls of self-control and

limited rationality. Systems that employ these tactics can unobtrusively steer choices,

leading to the goal state.

As PHN is able to model better the behavior of an individual, we can increase the probability

of executing a given action using the considerations listed. The system explains why it

suggests the nudge or action to users, and it offers alternate options to embolden the feeling

of choice. Another avenue for human actuation will be to reduce the decision burden by

eliminating the tediousness involved in being healthy. Even professional athletes do not

measure every gram or determine every ingredient in their food due to the information and

calculation burden. Translated into simple, step-by-step, context-aware guidance, users can

better fulfill PHN actuation steps. PHN can start to apply control to the health state, either

with fulfillment by a machine or with user participation, to move the health state toward

the goal and close the loop.

Many of these actions are driven by daily decisions. Some of these decisions stem from he-

donistic tendencies programmed in our biology from prehistoric times. Reward mechanisms

were biologically encoded based on survival in a low resource environment with high uncer-

tainty of the future. In the domain of food, these resources included factors such as caloric

energy, water, and salt. Thus, humans have been optimized through evolution to accumu-

late these scarce resources in their body. Unfortunately the current era of civilization makes

these types of problems largely irrelevant and much of our programmed biology is actually
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maladaptive in this context. In order to move our health towards a positive direction, we

need better actionable insight about our health than just our naturally encoded tendencies.

When a user is a final actuator in the system, there must be a probabilistic approach to

knowing if a user will take a specific planned step. One way to increase the chance is to have

high-quality recommendation systems.

6.7.3 Recommendation

Recommendation systems play a role as a subset of cybernetic control. While the guidance

is a full path to a goal, the recommendation systems increase the probability that a step in

the process will take place for a particular state transition. A recommender system is also a

filtering system that seeks to predict the rating or preference a user would give to an item.

For example, services like Spotify have playlists generated based on user preferences. In

the context of health, we use computed guidance and recommendation systems to guide an

individual in lifestyle, nutrition, and other contextual components. Recommender systems

have three components: 1) the user, 2) items to recommend, and 3) the context at a specific

time and point that changes the relationship between the user and the items.

User Profile

The user health state is primarily a product of our everyday lifestyle actions, yet we have

minimal access to recommendations on making everyday choices. Recommendations are

the key to current content consumption and decisions. Cybernetic navigation principles

that integrate health media sources can power dynamic recommendations to improve health

decisions dramatically. Cybernetic components give real-time feedback on health status,

while the navigational approach plots the health trajectory. These two principles coalesce
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Box 4: Health Multimedia: Lifestyle Recommendations Based on Diverse
Observations

Cybernetic components give real-time feedback and control on immediate health status,
while the navigational approach plots health trajectory for long-term planning. Published
in ACM International Conference on Multimedia Retrieval, June 06-09, 2017, Bucharest,
Romania. [188]

• Cybernetic loops and navigation systems need to understand user health state.
• Integration of health media sources can power dynamic recommendations to dra-

matically improve our health decisions.

data to enable personalized, predictive, and precise health knowledge that can contextually

disseminate the right actions to keep individuals on their path to wellness [188].

Unique individual preferences are critical for determining the user profile, as preferences

determine whether or not a user will proceed with the recommendation. Understanding a

user’s model allows us to build a more precise and personalized recommendation system.

We have investigated the relationship between cuisines and their inherent taste by collecting

data on an individual’s food photos. We used image metadata and computer vision tools to

extract distinct insights from each user to build their food profile (unpublished).
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Box 5: Personalized Taste and Cuisine Preference Modeling via Images

From the image metadata and using computer vision tools, we can extract distinct
insights for each user to build a personal taste and cuisine profile. Arxiv, 2020

• Development of rank system for cuisines based on user’s preferences.
• Weighting preferences based on event mining nutrition events.
• Identification of ingredients commonly preferred, allowing the system to generate

recommendations that are novel and exciting to the user.

A combination of preferences for physical activity and conditions can also be applied in a

recommender system to give an individual the most optimal plan for their exercise. For

example, we have used a method for using GPS data from a human-powered cyclist to

classify if the user is on a paved road or unpaved trail. Because road cyclists may prefer

smooth roads, versus mountain bike riders who prefer dirt roads, we can begin to understand

user preferences for bicycle travel paths. We can draw other relevant insights from the data

we collect through Strava. We can collect social media platforms to determine the weather

preference of the user, the kind of roads they prefer to cycle on, the time during which

they regularly perform the activity, and much more. These can be combined in order to

recommend suitable activities to improve the health state [191].
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Box 6: Surface Type Estimation from GPS Tracked Bicycle Activities

By estimating if the road taken by the user has high or low variations in their directional
vector, we classify if the user is on a paved road or on an unpaved trail without accessing
expensive satellite imagery or databases. Arxiv, September 2018 [191]

• Providing exercise recommendations by profiling the users path choices.
• Understanding rolling resistance for power estimation for cardiovascular applica-

tions in VO2max estimation.
• In the above figure, the orange slice highlights smooth roads, and the blue slice

shows undulating terrain as part of the model regarding the test subjects prefer-
ences.

Just as motivation is critical for goal setting, it is also vital for one’s willingness to follow

through with a recommendation. Strong recommendations need to be set based on the in-

trinsic preferences of the user. Combining the right triggers with context, we can maximize

the effectiveness of sustainable positive health recommendations. Over time, the recom-

mender system should adapt to the user and identify triggers that are needed to support

their motivations. For example, exercising every day should become habitual rather than

a constant suggestion from the recommendation engine. In addition to one’s health, user

enjoyment is also a critical component of determining the user profile. Enjoyment leads to

a higher quality of living, so it is critical to incorporate the best preferences.
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Box 7: Flavour Enhanced Food Recommendations

An empirical method to determine the flavour of food is incorporated into a recommen-
dation engine based on major gustatory nerve signals. MADiMa ’19: Proceedings of the
5th International Workshop on Multimedia Assisted Dietary Management, October 2019
[195]

• Readily available data about nutrition can help in identifying item flavor.
• Our long term vision is to integrate health factors to recommend healthy and tasty

food to users for a high quality dining experience.

Items

We must capture in detail the items or characterization of specific objects that change the

health state. By knowing the user profile, we can then match a user model with items.

For food recommendations, we propose a mechanism to determine the taste profile of items.

We incorporate into a recommendation engine an empirical method to determine the flavor

of food. Such a system has advantages of suggesting food items that the user is more likely

to enjoy based upon matching with their flavor profile through the use of the taste biological

domain knowledge. This preliminary intends to spark more robust mechanisms by which

flavor of food can apply to recommendation systems [195].

229



Figure 6.9: The Long Tail Problem. Usually users only see items that are top rated by
other users. This leaves items that are highly relevant for the user far down in the search
results, such as items that are healthy.

Along with the taste profile, we propose that food items should also have a health profile

associated. Recommending items based on unique preferences comes challenges. For exam-

ple, the Long Tail Problem highlights items that are not popular but highly relevant to the

user, shown in Figure 6.9 [214]. However, by understanding the health status of the user,

we can match health-relevant items that a user would not usually browse through. This

matching process allows the user to discover healthy items that are relevant but would have

been difficult to find through popularity based rating systems. Thus, a recommender system

should provide relevantly matched items to reduce browsing burden. The goal of this system

is to capture the healthy items in the long tail and match them to the personal needs of a

user based on, for example, sodium needs. [190, 194, 189].

People want to know what foods they can consume at a specific place, alongside the taste,

ingredients, allergens, nutrients, and visual and other sensory characteristics. Combining

both taste profiles and health profiles for food items give us a basic food atlas [302]. This

food atlas is a location-based database that has a live data base of nutritional items of food
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Box 8: Pocket Dietitian: Automated Healthy Dish Recommendations by
Location

Pocket dietitian refers to the application built that can rapidly locate healthy dishes on
a mobile application. 2017 [194]

• Algorithms are needed to constantly interpret nutrition information.
• We have calculated nutritional facts about products to determine which products

are healthiest for several types of patients.
• Our system is designed to give the user a rapid way to connect with healthy food

in their vicinity, reducing barriers to taking a step in their health actions.

along with all parameters about each physical entity within inventory. The information

regarding each food type can be globally available and creates standardization for food

computing purposes. This idea has just recently been launched to the public as an open

source project. “The World Food Atlas project is an open source effort to prepare a live

atlas of specific food at a specific geographic location. World Food Atlas (WFA) aspires

to provide information relevant to all dishes and food items for health and enjoyment that

foods offers us, wherever you are in the world. We want to make it widely available so it can

be converted to actionable information for a person in specific context” [302].
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Context

The next step is understanding the context (location and resources) for a given individual

situation, which then determines the relationship between the user profile and items. We

can continue to improve recommender systems with in-depth context provided. The utility

function is the primary ranking method to predict what a given person would explicitly

prefer. There are two layers of user and context modeling, coupled with traditional recom-

mender system approaches. One is an endogenous context, which integrates data to estimate

the physiologic or innate needs of the user (health state) or preferences, and second is the

exogenous context, which incorporates factors outside of the person’s body (i.e., points of

interest, geospatial resources, social context) [190].

Through multi-modal sensor data integration applied to domain-specific utility functions,

filters, and re-ranking weights, we can use context in recommendations. We showcase this

concept through a nutrition guidance system focused on controlling sodium intake at a

personalized level, dramatically improving upon the fixed recommendations. For a particular

user, identifying contexts through continuous sensing is the best execution strategy. For

one’s nutrition, the system will need to decide the best meal choice to move the user’s health

state closer to his or her goal state based on situational constraints. This decision will

require knowledge of all available meals, as well as their locations, hours, nutrition facts, and

ingredients along with the personal sensor data modeling the physiologic needs.

A challenge that arises is the user’s inability to delineate and demand healthy food in a

quantitative manner. We have developed a technological solution that is continuously able to

interpret nutrition information, ingest nutritional facts about products to efficiently calculate

which items are healthiest, and deliver these results to users based on their location context.

Our system gives the user a fast way to connect with healthy food in their vicinity, reducing

the barriers to a healthy diet. Addressing the correct granularity of recommendations, such
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Box 9: Endogenous and Exogenous Multi-Modal Layers in Context Aware
Recommendation Systems for Health

Key Points August 2018 [190]

• The utility function is the primary ranking method to predict a person’s prefer-
ences.

• We review both endogenous and exogenous layers determine user preferences, using
multi-modal sensor data integration applied to domain-specific utility functions,
filters, and re-ranking weights.

• Our approach is showcased with a nutrition guidance system at a personalized
level.

as meals, is essential for simple decision making. We have made a decision support system

using multi-modal data relying on timely, contextually aware, personalized data to find

local restaurant dishes to satisfy a user’s needs. Algorithms in this system take nutritional

facts regarding products, efficiently calculate which items are healthiest, then re-rank and

filter results to users based on their personalized health data streams and environmental

context. The primary goal of lowering barriers to a healthy personalized choice drives our

recommendation engine [189].
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Box 10: Live Personalized Nutrition Recommendation Engine

Key Points August 2018 [189]

• Automated adaptive guidance combined with expert knowledge can use multimedia
data to technologically scale health guidance.

• We introduce a decision support recommendation system for finding local dishes
satisfying a user’s personalized needs.

• The recommendation engine aims to reduce barriers to healthy eating by suggesting
dishes with a health score.

Expert Guidance

There may be guidance mechanisms beyond the scope of computing. Human experts may be

utilized for recommending change to an individual’s health state in person or through various

forms of telecommunication. These forms of guidance can be synchronous in time (real-time),

or they can be asynchronous through various forms of communication and multi-media.

Through multi-modal sensor data integration applied to domain-specific utility functions,

filters, and re-ranking weights, we can use context in recommendations. We showcase this

concept through a nutrition guidance system focused on controlling sodium intake at a
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personalized level, dramatically improving upon the fixed recommendations. For a particular

user, identifying contexts through continuous sensing is the best execution strategy. For

one’s nutrition, the system will need to decide the best meal choice to move the user’s health

state closer to his or her goal state based on situational constraints. This decision will

require knowledge of all available meals, as well as their locations, hours, nutrition facts, and

ingredients along with the personal sensor data modeling the physiologic needs.

The end purpose of the PHSS is to ensure that the individual arrives closer to their end

goal destination, which may mean high-quality intermediate events that determine one’s

experience in the navigation process. The quality of the experience provided is, therefore,

one of the requirements of the system. In order to have a long-term engagement success

with the navigation system, we must understand the individual’s motivations, preferences,

context, and other factors that may make the individual more engaged with the system.

The personal navigation system to health allows for concrete actions to be taken for the

future performance of one’s health. Future systems can leverage modern computing power

with rich multi-modal data to understand movements on the health state space continuously

and to contextually guide users toward wellness. The nexus of biomedical knowledge, sensor

technology, computing power, mobile networks, and artificial intelligence will fuel significant

growth in PHN systems.
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Chapter 7

Conclusions and Future Work

If you’re walking down the right path

and you’re willing to keep walking,

eventually you’ll make progress.

Barack Obama

Advancing the understanding of our health state is essential for improving human health.

Throughout time, humans have primarily taken an episodic approach to interact with health.

The next evolution in health will depend upon a continuous and high-resolution understand-

ing of our health state to better control the future of our well-being.

This thesis introduces an open framework and concept to use a diverse array of data streams

and knowledge to enhance the health state estimation of an individual. The product is

graph modeled a digital twin that parallels the user’s physical life. The first main research

contribution provides a consolidation of defining health and it’s role within the influence

of control systems (Chapter 2). The second research contribution builds a computational

framework to represent this health. The representation is based on connecting the user’s

life events, biology, and general utilities through a graph network block approach (Chapter

236



4). This work has the dual coupling of bottom up data-driven modeling and top-down

domain knowledge. By consolidating systems into smaller blocks that can continuously be

updated with new data or knowledge, the graph network can flexibly evolve and improve its

representation of the user’s health state. Demonstration of this framework with diverse high-

resolution personal data is conducted with a focus on bioenergetics, cardiovascular disease,

and performance (Chapter 5). Given this approach to health state estimation, we can enable

personal health navigation systems that continuously guide an individual to a desired health

state using a combination of planning intelligence and cybernetic control (Chapter 6). We

hope individuals may be more motivated to track their health state, especially if it will

be used in professional clinical decision making or influencing their daily actions through

such navigational systems. Instant feedback on the health state can give insight on how

lifestyle modification, medicine, environment and other inputs are causally changing the

person’s overall quality of life. The highest motivation of this work is to catalyze the research

community to advance these ideas of health state estimation and personal health navigation.

There remain significant challenges and opportunities in this endeavour. An non-exhaustive

set of these challenges is given below.

7.1 Technical Challenges

Improvements in various technical areas are necessary to bring further fruition of this frame-

work to individuals. Many of the challenges need to be understood in depth.

7.1.1 Building Rich Knowledge Atlases

The work presented here focuses only on one domain of cardiovascular and athletic perfor-

mance. Experts must also address areas beyond cardiovascular health. To establish the
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best cold-start graph representation of an individual, we need accessible domain knowledge.

This accessibility needs to cooperate with both human and computational interfaces. There

have been substantial efforts in both of these interfaces in general domains as well as health-

specific fields. Examples of knowledge bodies that are widely used today include Wikipedia,

PubMed, and Google Scholar [293, 198, 94]. For physicians and healthcare providers, the

most commonly used atlas of knowledge is UptoDate [268]. Most of these knowledge atlases

store information in static natural language, which is very useful to interface with humans.

The computational interface with these knowledge sets will require robust Natural Language

Processing techniques to produce a virtual representation of knowledge. Efforts have been

made in specific domains to encode the knowledge in a more computable format. MDCalc is

a website that allows domain experts to define formulas by which other users or applications

can run domain knowledge-based calculations for precise biological estimations of physiol-

ogy, risk, or medication dosing [177]. One step further for computational representation is

the entire field of knowledge graphs. Open source platforms such as Cytoscape and HetNets

have shown promise in taking the current domain knowledge and producing a connected

system that can incorporate within further applications [244]. The ultimate ideology behind

the knowledge atlases would be a dynamic reference database that applications can use to

access the latest scientific understanding to build systems of navigation, estimation, and

other services. These atlases would require the coordinated representation of both highly

complex data and human knowledge structure and taxonomy.

7.1.2 Hardware

Hardware improvements for health state estimation largely depend upon sensors that can

unobtrusively gather data about events, biological metrics, and utility measures. Event

sensors that can capture more attributes in detail can give insight on how the event is

impacting the health state, and exactly what aspects of the event are relevant. Improved
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biological sensors are needed to know what the observed values of biological health state

components are to better estimate an all encompassing health state. State estimation may

also become computationally demanding depending on the case. There remains a need

to use computing hardware to include local, edge, and cloud based approaches for high

performance health estimation. In various contexts, there will be a need for both online

and offline methods to digest and compute the information. The online approaches need to

synchronize at appropriate times to update models in the offline approaches.

7.1.3 Computing

On the mathematical side, computing through modern modeling techniques can increase

the computing efficiency and capability to handle higher loads of computational complexity

with more efficiency. Black box artificial intelligence techniques to improve data driven

relationships need to transition into explainable systems. If any health estimation is done on

a battery powered device, energy management also becomes a key issue for constant updates

of the health state. Given the high cost of accuracy and complexity, there needs to be better

optimization of computing resources.

7.1.4 Accuracy and Precision

Precision in estimation will be best suited for measuring relative change in an individual, as

it refers to the closeness of measurements to one another. Accuracy refers to the closeness in

measurements of to a specific value, giving a definite health measurement. Estimation in its

initial iteration may not be accurate, but it is assumed to improve over time with refining

of equations, algorithms, feature extraction methods, learning methods, as well as with

improvements in hardware technology. We use basic methods in this paper as a starting

point for further advancement with modern learning and predictive techniques. Because
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of the relative large range in accuracy, wearable devices and similar low cost sensors are

promoted for use as a screening tool to identify if a user is at risk or has a change in their

health state [129]. Clinical gold standard testing, a more expensive alternative, may be

used to confirm the true state of the user if the state estimation passes a certain screening

threshold. More work will need to be done to ensure the robustness of the estimations are

good enough for key decision-making, such as ensuring validated clinical and biomedical

research.

7.1.5 N=1 Statistics

Baseline comparisons are also difficult when studying individual subjects, and will require

statistical methods for n of 1 studies [176, 46]. Even while referencing established clinical

science research we still have no way to validate ground truth about an individual until

decades into the future when a person becomes verified in their disease or die. Therefore,

comparisons are not the best way to experimentally validate the estimation model. Perfor-

mance comparisons for this type of experiment will need to be validated through large scale

data collection and monitoring in prospective studies as mentioned in related works. Parallel

models may compete for the best representation of the individual through an adversarial and

recurrent network that is temporally dynamic. Ultimately, high quality validation techniques

using only a single individual need to be advanced in order to definitively improve and verify

the state estimation quality.

7.1.6 Event Mining

Efficiently extracting knowledge from events and log data for an individual remains a chal-

lenge. Tracking of individual data may be limited, and barriers to efficient extraction of

useful information exist. We see problems with the accessibility of data, more adequate
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sensors developed for determining events, and event descriptions. There are also issues with

semantic variability in the real-world, including multilevel event semantics, implicit seman-

tics facets, and the influence of context [308]. The field of behavioral modeling can benefit

greatly by having more data-driven personal models that can be fed into a navigation system

to provide more engaging routing for the individual. Event mining can also help understand

causal chain of events and discover edges in the graph that are unknown.

7.2 Real-World Adoption

For real-world adoption of this work into tangible services for society and individuals, we

must consider various usability, economics, legal, ethical, and protection issues. For health

state estimation to occur, users must have some reason to engage in collecting and sharing

data about themselves. This estimation must be made useful through services back to

the individual that is part of the broader health economy. All the sharing of information

must also occur safely. Privacy refers to the rights to control personal information by the

individual and how authorized agents use it. Security, on the other hand, refers to how

personal information will be protected and defended against unauthorized and malicious

access. Since health data inherently contains sensitive information about an individual, we

must address these at both individual and societal levels.

7.2.1 Engagement

One of the greatest struggles in the health field is individual engagement with their health.

In the current healthcare model, individuals predominantly interact with their health when

there is a problem or urgent need (a reactive approach). Individuals must see value in state

estimation and proactively engage in collecting their health data. We see a few challenges:
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1) Health state estimation relies heavily on computing mechanisms and may provide com-

plexities for humans to understand and use effectively. Humans need to be technologically

savvy in interacting with sensors that are collecting their health information. Sensors must

provide ease of use, and individuals must trust that the sensors are not harming them in any

capacity.

2) It is not very easy to visualize the health state as it is so robust that a person may not be

able to comprehend all the various components and relationships. There will be challenges

with simplifying information to the semantic understanding of the individual.

3) Currently, individuals interact with their health through service providers (i.e., doctors,

health professionals, insurance companies). Because of health’s interconnectedness with

external systems, service providers must be involved in the health estimation in order to

help the individual in both understandings and taking steps towards better health.

4) Individuals may be disinclined to engaging with their health. It is necessary to consider

behavioral psychology to see where there are gaps in engaging with health and having moti-

vation for improving future health. There is the problem of temporal discounting, in which

“value of a reward decreases as the time delay until its receipt increases” [91]. Humans are

less inclined to make changes in the present day if the outcomes are far in the future.

7.2.2 User Autonomy, Authority, and Ownership

As more personal health data is acquired to estimate the health state, there will arise issues

with data ownership and utilization by external sources, introducing legal and ethical barriers

and ambiguity in who will ultimately make use of the data. The privacy and security issues

regarding sensitive health data can be at an individual level, organizational level, or national

level for civilian protection. Emerging threats and vulnerabilities will continue to grow as
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data becomes expansive, and it will be a challenge to balance innovation in health estimation

with the regulation of health data.

7.2.3 Privacy

A challenge with user health data is ownership of the information and the ability to release

this data to external agents such as healthcare service providers. As the information is

sensitive and robust, there must be controls and policies in place to ensure ownership of

data by the individual and appropriately used. There are regulations in place today that

help with data privacy issues such as the Health Insurance Portability and Accountability

Act (HIPAA) passed by Congress in 1996. This law created rules to address disclosure of

“protected health information” by organizations and created privacy rights standards for

individuals to control the use of their health information [114]. Similarly, The European

Union has established the General Data Protection Regulation (GDPR) in May 2018 to

strengthen individual privacy rights by clarifying rules for companies and public bodies in

the digital market [79].

We must carefully address information sharing as there can be external threats and harm to

the individual with improper data management.

7.2.4 Security

Security is a significant concern for personal health data as from breaches by external threats,

hackers and ransomware are highly prevalent. Mishandling of information can stem from

insider information misuse and lack of security for mobile devices. Healthcare providers

may fail to evaluate risk when working with outside vendors. There becomes an issue with

individuals sharing information voluntarily on the web or via apps, in which case attackers
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can take disparate information pieces from many sources, including social networks, public

records, and search engines [156].

Some methods for addressing security are being taken, such as blockchains used for storing

and sharing information that is secure because of its transparency. Blockchain systems are

more commonly used in healthcare to protect information but are susceptible to attacks

[126]. Encryption methods take the data and convert it to encoded text. Data is unreadable

unless an individual has the necessary key or code to decrypt it.

With the sensitivity of the information at hand, we must ensure further advancements to

ensure all individual data is secure for the protection of the individual.

7.2.5 Health Economics

Determining the widespread adoption of the health state estimation relies on external stake-

holders and the nature of health economics. Healthcare today heavily relies on an infrastruc-

ture set by hospital systems, insurance agencies, and other health service providers. These

agents are primarily focused on consumer demand, cost, and profitability, while individual

health improvement may not be at the forefront. The incorporation of the health state esti-

mation concept will depend on stakeholder alignment and building a model to incentive both

providers and individuals. As the health economy continues to expand, there will inevitably

arise challenges managing multiple stakeholders.

7.2.6 Standards and Interoperability

Information and Communication Technologies (ICTs) play notable roles in the improvement

of patient care via the exchange of information among healthcare providers. For complex

systems to work together in an open way, the private and public sectors to collaborate and
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build frameworks for building health tools and services, technical specifications, and content.

It becomes a challenge to unite multiple stakeholders. The Standards and Interoperability

Framework within the Office of the National Coordinator for Health Information Technology

has made progress to take input from various stakeholders and create health IT specifications

for us throughout the U.S. [115]. The Fast Healthcare Interoperability Resources (FHIR)

is an international standard for exchanging healthcare information electronically, advancing

interoperability in the healthcare community [200]. FHIR allows for the sharing of informa-

tion in a standard way regardless of ways local electronic health records represent or store

data, allowing for more access to real-time data. However, there remain challenges with the

seamless exchange of patient information across different healthcare systems.

7.2.7 Research Community

Collaboration between many different fields of medicine, bioscience, social science, computer

science, statistics, and engineering must come together to have an inter-disciplinary approach

towards these challenges. HealthMedia can be viewed as one response from the multime-

dia community to rise to this challenge. There is an increasing number of research work

that shows how core multimedia research is becoming an essential enabler for solutions with

applications and relevance for the societal health questions. Within this workshop, we con-

tinue to explore the relevance, contribution, and future directions of multimedia to health

care and personal health. This workshop brings together researchers from diverse topics

such as multimedia, tracking, life-logging, accessibility, HCI, but also health, medicine, and

psychology to address challenges and opportunities of multimedia in and for health. To

forward this mission through my contributions to the research community, I have led several

projects, including leading a workshop committee chair for HealthMedia at the ACM Multi-

media 2019 Conference in Nice, France [28], founding the Institute for Future Health at the
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University of California, Irvine, and leading a session during an international workshop for

Food Computing alongside Professor Ramesh Jain.

7.3 Final Words

Health State estimation is just one piece of the total health continuum concept. Ultimately,

there must be advancements to ensure the development of reliable, practical, and useful sys-

tems to guide people towards better health through a navigational paradigm. Additionally,

privacy and security methods must evolve concurrently for such systems to function in the

real world. This research invites others to participate in building the foundations of health

state estimation and navigational approaches to health. This starting point sets the aim by

which people can enjoy peak health by utilizing the combined advancements in computer

science, medical research, and technology at large. We hope this builds research momentum

towards providing a high-quality, healthy life for every person.
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Appendices

A Abbreviations

Table A.1: Abbreviations

Abbreviation Expansion

ABMS American Board of Medical Specialties

ACM Association for Computing Machinery

AALM All Ages Lead Model

ABP Athlete Biological Passport

ACC American College of Cardiology

ACTN3 Alpha-actinin-3

AHA American Heart Association

API Application Programming Interface

ASCVD Atherosclerotic Cardiovascular Disease

ATP Adenosine Triphosphate

ATP Association of Teachers of Preventive Medicine Foundation

BAC Blood Alcohol Content

CDC Centers for Disease Control and Prevention

CEDH Center for Educational Development Health

cMRI Cranial Magnetic Resonance Imaging
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CO Cardiac Output

COX Cycloxygenase

CP Critical Power

CRF Cardio-respiratory Fitness

CTL Chronic Training Load

CVD Cardiovascular Disease

DALY Disability Adjusted Life Year

DB Database

DEXA Dual-energy X-ray absorptiometry

EEG Electroencephalogram

EKG Electrocardiogram

EMA Ecological Momentary Assessment

EPA Environmental Protection Agency

FHIR Fast Healthcare Interoperability Resources

fMRI Functional Magnetic Resonance Imaging

GDPR General Data Protection Regulation

GIS Geographical Information Systems

GNB Graph Network Block

GOVVS Gravity Ordered Velocity Stress Score

GPS Global Positioning System

GSR Galvanic Skin Resistance

HCI Human-Computer-Interaction

HIPAA Health Insurance Portability and Accountability Act Regulation

HIIT High-Intensity Interval Training

HPA High Power Activity

HR Heart Rate
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HRV Heart Rate Variability

HSE Health State Estimation

ICD International Classification of Disease

ICTs Information and Communication Technologies

ICU Intensive Care Unit

IoT Internet of Things

MRI Magnetic Resonance Imaging

NIH National Institute of Health

NLP Natural Language Processing

NSAID Non-Steroidal Anti Inflammatory Drugs

O2 Oxygen

PHSS Personal Health State Space

QoL Quality of Life

ROI Region of Interest

SCD Sudden Cardiac Death

SDK Software Development Skit

SNP Single Nucleotide Polymorphism

SV Stroke Volume

TCA Cycle Tricarboxylic Acid Cycle

TRIMP Training Impulse

VAM Vertical Ascent in Meters

VO2max Maximum Volume of Oxygen

WHO World Health Organization

YLL Years of Life Lost
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B Resources

See next page for Table.
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Table B.2: Hardware, Software, Knowledge Sources, Data Tools, and Visualization Resources

Hardware Description Website

Garmin GPS multi-sport smartwatch https://www.garmin.com/en-US/

Garmin Heart rate monitor with chest strap https://www.garmin.com/en-US/

Garmin Pedaling cadence wireless sensor https://www.garmin.com/en-US/

23andMe Health and ancestry genetic reports https://www.23andme.com/

Concept2 Rowing ergometer, indoor rowing machine https://www.concept2.com/indoor-rowers

Stages Bicycle crank with strain gauge https://stagescycling.com/

Elite Cycling trainer that includes a power meter. https://www.elite-it.com/it

AccuFitness Measuring tape https://www.accufitness.com/

Elite Medical Protractor Goiniometer https://www.elitemedicalemi.com/

Plumb Bob A perpendicular reference line to gravity https://en.wikipedia.org/wiki/Plumb bob

Software

Strava Tracking physical activity using GPS data https://www.strava.com/

Zwift Online cycling/running physical training program https://zwift.com/

Sleep Cycle Sleep pattern analysis and REM-based alarm clock https://www.sleepcycle.com/

Nomie Mood tracking app https://nomie.app/

Balance Health Blood pressure data analysis https://greatergoods.com/
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Weight Gurus Weight tracking app connecting data from weight scale https://weightgurus.com/

Kinsa Smart Smart body temperature readings and tracking https://www.kinsahealth.co/

Nuvoair Lung function data collection and analysis https://www.nuvoair.com/

Life Cycle Tracking time on phone automatically http://www.northcube.com/lifecycle/

Apple Health Kit Health informatics mobile application and integration https://developer.apple.com/healthkit/

Sensor Push Monitors humidity, temperature, etc. https://www.sensorpush.com/

Lumen Measuring metabolism through gas analyzer https://www.lumen.me/

RescueTime Tracking time on phone and computer https://www.rescuetime.com/

Concept2 Rowing data collection application https://www.concept2.com/

Amazon Alexa Virtual assistant AI technology https://www.amazon.com

Nest Thermostat Smart thermostat https://nest.com/

Nest Protect Smart smoke detector https://nest.com/

IFTTT Chains of simple conditional statements https://ifttt.com/

Phillips Hue Wireless LED lamps https://www2.meethue.com/

Amazon WiFi smart plugs https://www.amazon.com

Calorie Mama Food image recognition app https://www.caloriemama.ai/

Google Maps Satellite mapping and routing by GPS https://www.google.com/maps

Epic Medications, tests, appointments, medical bills, pricing https://www.mychart.com/

BAC Track Estimated blood alcohol level https://www.bactrack.com/
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Hypoxico Pulse oximeter with Bluetooth connectivity https://hypoxico.com/

One Touch Blood glucose monitor https://www.onetouch.com/

Withings Health Mate Tracking and analysis of activity, sleep, weight, etc. https://www.withings.com/

Time Out Time tracking software https://cws-software.com/

Knowledge Sources

Cytoscape Open source platform for visualizing complex networks https://cytoscape.org/

UptoDate Point-of-care medical, evidence-based clinical resource https://www.uptodate.com/home

Nature Reviews Publishing Agency https://www.nature.com/

PubMed Accessing database references/abstracts on life sciences. https://www.ncbi.nlm.nih.gov/pubmed/

DarkSky Information on weather

In the Sky Information on daily sunset times https://in-the-sky.org/sunrise.php

Google Scholar Web search engine of scholarly literature https://scholar.google.com/

Mendeley Reference Manager https://www.mendeley.com/

Aqicn World-wide air quality monitoring data coverage https://aqicn.org/sources/

EPA Agency of the United States federal government https://www.epa.gov/

Data Analysis

QGIS Open Source Geographic Information System https://www.qgis.org/en/site/
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Golden Cheetah Open Source Activity Data Analysis Platform https://www.goldencheetah.org/

Google Sheets Spreadsheet program https://www.google.com/sheets/about/

Apple Photos Photo download, editing platform https://www.apple.com/ios/photos/

Calorie Mama Food image recognition and analysis https://www.caloriemama.ai/

Insight Maker Creating dynamic simulation models https://insightmaker.com/

Visualization

Tableau Data visualization software https://www.tableau.com/

Gephi Open-source network visualization software https://gephi.org/

Draw.io Network drawing software https://www.draw.io/

Keynote Drawing and Presentation Software https://www.apple.com/keynote/
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