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Genetic characterization and therapeutic targeting of
MYC-rearranged T cell acute lymphoblastic leukaemia

T-cell receptor (TCR) driven MYC translocations characterize

a rare but aggressive subtype of T cell acute lymphoblastic

leukaemia (T-ALL). In these tumours, the proto-oncogene

MYC is juxtaposed to enhancer elements of the TCR a/d
(TRA/TRD) locus by the translocation, t(8;14)(q24;q11),

eventually resulting in its constitutive activation (Erikson

et al, 1986). Given that MYC regulates the leukaemia-initiat-

ing capacity of malignant T cells (King et al, 2013), elevated

MYC levels might have a severe impact on the clinical beha-

viour of this rare T-ALL subtype. Indeed, TRA/TRD-MYC

positive T-ALLs have been associated with an unfavourable

prognosis, rapid disease progression and poor response to

conventional therapy (Parolini et al, 2014). Here, we per-

formed a detailed molecular genetic characterization of an

extensive series of t(8;14)(q24;q11) positive paediatric T-ALL

patients (n = 26, Table SI) and evaluated a new therapeutic

strategy for the treatment of this poor prognostic subtype of

human leukaemia. See the Supplemental Methods for

methodological details.

TRA/TRD-MYC positive T-ALLs were characterized by fre-

quent loss of the T-ALL tumour suppressor genes PTEN

(23%), CDKN2A/B (73%) and LEF1 (8%), and often dis-

played genomic deletions that cause aberrant activation of

the STIL-TAL1 or LMO2 oncogenes (30%) [Fig 1A, fre-

quency for a general T-ALL group is reported in brackets

(Liu et al, 2017)]. Sequence analysis revealed lack of

NOTCH1 or FBXW7 mutations, but a high number of loss-

of-function mutations targeting PTEN (34%). Therefore, t

(8;14)(q24;q11) positive leukaemias represent a NOTCH1-

independent subtype of T-ALL that often depends on acti-

vated PI3K/AKT signalling [PTENmut/del in 12 out of 26

(46%)] (La Starza et al, 2014). In line with this notion, the t

(8;14)(q24;q11) positive T-ALL cell lines, KE-37 and

MOLT16, lack NOTCH1/FBXW7 mutations and present with

genomic loss of PTEN, displaying aberrant phosphorylated

AKT activation in the absence of activated NOTCH1

(Figure S1).

Although the TRA/TRD-MYC-rearranged T-ALL patients

analysed in this study were treated according to different

protocols, the available clinical information confirmed the

aggressive nature of this specific genetic subtype of paediatric

leukaemia. Indeed, most cases [19 out of 22 (86%)] pre-

sented with high white blood cell counts at diagnosis

(>100 9 109/l), poor response to glucocorticoid therapy and

largely unfavourable outcomes. More specifically, the

leukaemia was fatal in 13 of 26 (50%) of TRA/TRD-MYC

positive T-ALLs due to progressive disease, the development

of a secondary malignancy, specific toxicities or infections.

Moreover, relapse of leukaemia occurred in 8 out of 23 cases

(Table SII). Although the prognostic significance of PTEN

alterations in T-ALL remains highly debated (Zuurbier et al,

2012; Jenkinson et al, 2016), some studies have suggested

that this particular genetic subtype (PTEN loss in the absence

of NOTCH1/FBXW7 mutations) identifies a subset of highly

aggressive human T-ALLs (Petit et al, 2018).

Previous studies have also shown that TRA/TRD-MYC-re-

arranged T-ALLs cluster with TAL1/LMO2-rearranged

mature leukaemias based on their gene expression signature

(Homminga et al, 2011; La Starza et al, 2014). To further

characterize the transcriptional differences between TAL1/

LMO2-rearranged T-ALLs with and without MYC transloca-

tions, 13 TAL1/LMO2-rearranged T-ALLs (5 TRA/TRD-

MYC positive and 8 TRA/TRD-MYC negative leukaemias)

were RNA-sequenced. Unsupervised clustering of RNA

sequencing data revealed the presence of two clusters,

including one group that consisted of all 5 TRA/TRD-MYC

positive T-ALLs and 2 additional TRA/TRD-MYC negative

cases (Figure S2). Notably, copy number profiling and

mutational analysis revealed that both of these TRA/TRD-

MYC negative T-ALLs also displayed PTEN alterations with-

out NOTCH1 abnormalities, resembling the characteristic

genetic landscape of TRA/TRD-MYC T-ALLs. Therefore, we

grouped these leukaemias together and termed them TRA/

TRD-MYC-like T-ALL. Differential expression analysis

revealed a common transcriptional signature of these TRA/

TRD-MYC-like T-ALLs compared to the 6 other non-MYC

rearranged TAL1/LMO2 T-ALLs (Fig 1B), with 1856 tran-

scripts differentially expressed between both tumour entities

(adjusted P-value <0.05; 852 up- and 1004 down-regulated

in TRA/TRD-MYC like). Interestingly, several canonical

NOTCH1 target genes, including NOTCH3, HES1, HES4,

PTCRA, IL7R and DTX1, were significantly downregulated

in the TRA/TRD-MYC like group, in line with the lack of

NOTCH1 or FBXW7 mutations in this genetic subtype

(Fig 1B). Differential expression analysis of NOTCH1 target

genes was confirmed by reverse transcription quantitative

polymerase chain reaction (qRT-PCR) analyses using a lar-

ger series of TRA/TRD-MYC rearranged cases and an inde-

pendent cohort of non-MYC rearranged TAL1/LMO2

T-ALLs (Fig 1C, Figure S3). Nevertheless, and as expected,
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Fig 1. Genetic characterization of TRA/TRD-MYC translocated T-ALLs. (A) Copy number and targeted mutation screening of 26 TRA/TRD-

MYC rearranged T-ALLs. Graphical representation of deletions (dark blue), mutations (light blue) and amplifications (grey) present in a set of

T-ALL oncogenes and tumour suppressor genes. Male and female T-ALL cases are indicatedas green and pink rectangles, respectively. All studied

T-ALLs are paediatric cases (age <18 years). The frequency of described aberrations is reported for this cohort and in brackets for a general

T-ALL group. (B) The top 75 most differentially expressed genes between TRA/TRD-MYC like T-ALLs (n = 7) and non-MYC rearranged TAL1-

LMO2 T-ALLs (n = 6) based on RNA sequencing. NOTCH1 target genes are indicated by red arrows. M = TRA/TRD-MYC positive T-ALL;

T = TAL1-LMO2 T-ALL. Value shown as colour scale are mean centred regularized log counts. (C) Validation of NOTCH1 target expression in

an independent set of TRA/TRD-MYC translocated T-ALLs (n = 16) and non-MYC translocated TAL1-LMO2 T-ALLs (n = 7). HES4, PTCRA,

IL7R, NOTCH3 mRNA expression was assessed by reverse transcription quantitative polymerase chain reaction. Mann–Whitney test was per-

formed to compare the different groups (**P < 0.01, ***P < 0.001). Horizontal lines represent the median for each group. (D) MYC expression

in TRA/TRD-MYC translocated T-ALLs (n = 13) and in TAL1-LMO2 T-ALLs (n = 7). Mann–Whitney test was performed to compare the differ-

ent groups (*P < 0.05). Horizontal lines represent the median for each group.

Fig 2. BET bromodomain inhibition in t(8;14)(q24;q11) positive T-ALL. (A) Hockey-stick plot representing the normalized rank and signal of

H3K27ac peaks in t(8;14)(q24;q11) positive MOLT16 cells. TRA/TRD enhancer elements (in red) showed the highest level of H3K27ac. (B) Cell via-

bility in a panel of human T-ALL cell lines after 72 h of JQ1 treatment, relative to control cells treated with dimethylsulfoxide. TRA/TRD-MYC rear-

ranged T-ALL cell lines are represented in red. Average and standard deviation of 3 independent experiments are plotted. 50% inhibitory

concentration (IC50) values (nmol/l) are reported for each cell line. (C) Schematic representation of the t(8;14)(q24;q11) translocation, H3K27ac

chromatin immunoprecipitation (ChIP) sequencing tracks at TRA/TRD locus in MOLT16 cell line and H3K27ac levels after JQ1 treatment (7 h,

2 lmol/l) as evaluated by ChIP quantitative polymerase chain reaction (qPCR) analysis. Primers used were designed on putative TRA/TRD enhancer

regions (H3K27ac positive targets, red bar). Signal enrichment at target regions is reported in H3K27ac and IgG ChIP vs. relative inputs. Negative

regions downstream of the positive target were analysed as control (chr14:22,626,300-22,626,420). Means were calculated on 4 replicates with stan-

dard deviation represented by the error bars (**P < 0.01). (D) JQ1 in vivo treatment experimental design. NSG mice were retro-orbital injected with

TRA/TRD-MYC translocated cells from a T-ALL patient (Case 4, see Table SI) to generate primary xenografts. After leukaemia engraftment, blasts

were isolated from primary models and injected in other NSG mice to obtain a larger cohort of secondary xenografts for treatment. hCD45 positivity

was checked from peripheral blood after 3 weeks. Upon engraftment, JQ1 (50 mg/kg bodyweight) was intraperitoneally administered twice/day for

14 days. Vehicle was administered to the control group following the same schedule. At the end of the experiment, animals were sacrificed and tissues

analysed. (E) Percentage of hCD45 leukaemic cells in peripheral blood of NSG mice xenotransplanted with TRA/TRD-MYC T-ALL cells after 14 days

of JQ1 treatment vs. control (dimethyl sulphoxide, DMSO). (F) Percentage of hCD45 leukaemic cells in the bone marrow at the end of the experi-

ment (day 15). (G) Xenografts spleen weight (mg) after 14 days of JQ1 treatment versus DMSO. Mann–Whitney test was used to compare the treat-

ment groups (**P < 0.01). Horizontal lines on the graph indicate the median for each group.
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TRA/TRD-MYC leukaemias displayed higher MYC expres-

sion as compared to their TAL1/LMO2 rearranged counter-

parts (Fig 1D).

BET bromodomain inhibitors, such as JQ1, exploit the

transcriptional addiction of cancer cells. At low concentra-

tions, it has been shown that JQ1 preferentially targets
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enhancer elements with the highest levels of H3K27ac (Hnisz

et al, 2013). Here, we performed H3K27ac chromatin

immunoprecipitation (ChIP) sequencing analysis on t(8;14)

(q24;q11) positive MOLT16 cells and identified the highest

levels of H3K27ac in the enhancer elements of the TRA/TRD

locus (Fig 2A, Figure S4). Therefore, and given that these

strong TRA/TRD locus control regions drive MYC expression

in these tumours, we anticipated that BET bromodomain

inhibition could serve as a valuable therapeutic strategy for

this aggressive T-ALL subtype.

In vitro drug sensitivity screening, using a panel of 7

human T-ALL cell lines, revealed that the TRA/TRD-MYC

positive cell lines, MOLT16 and KE-37, showed the highest

sensitivity towards JQ1 treatment (MOLT16

IC50 = 199 nmol/l; KE-37 IC50 = 497 nmol/l) (Fig 2B, Fig-

ure S5). In addition, using ChIP qPCR, we confirmed that

loss of MYC expression upon JQ1 treatment was accompa-

nied by decreased levels of H3K27ac at the rearranged enhan-

cer region of the TRA/TRD locus (Fig 2C).

Finally, we established patient-derived xenograft (PDX)

models from t(8;14)(q24;q11) positive primary T-ALLs to

study JQ1 drug efficacy in vivo. A primary xenograft was first

treated for 14 days with one single administration a day of

JQ1 (50 mg/kg), revealing a decrease of leukaemic blasts in

the peripheral blood and a reduction in splenomegaly,

although a limited effect was observed in the bone marrow

(Figure S6). Therefore, the therapeutic schedule was reset

and a second PDX was treated with JQ1 double dosage

(50 mg/kg, twice/day) (Fig 2D). Notably, the intense treat-

ment resulted in a marked reduction of human leukaemic

blasts both in peripheral blood (Fig 2E) and bone marrow

(Fig 2F) and produced a significant decrease in splenomegaly

(Fig 2G). The in vivo effect of JQ1 was further confirmed by

treating an additional xenograft model established from a

different TRA/TRD-MYC translocated T-ALL patient, follow-

ing the same treatment schedule (Figure S7).

Altogether, our study reveals that TRA/TRD-MYC rear-

ranged T-ALL is an aggressive and NOTCH1-independent

high-risk subtype of human leukaemia that displays thera-

peutic sensitivity towards BET bromodomain inhibition.
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Table SI. Biological and clinical characteristics of 26 stud-

ied T-ALLs carrying t(8;14)(q24,q11) translocation.

Table SII. Primers used for mutation screening, qRT-PCR

and ChIP qPCR analyses.

Fig S1. T-ALL cell lines screening for cleaved NOTCH1,

AKT and PTEN protein expression or activation. Among the

cell line panel, MOLT16 and KE-37 are TRA/TRD-MYC

translocated cells (*) presenting NOTCH1 and FBXW7 wild-

type, PTEN deletion or mutation and pAKT activation. Dele-

tion and mutation are reported in dark and light blue,

respectively.

Fig S2. Transcriptomic profiling by RNA-seq analysis of

TRA/TRD-MYC translocated TALLs (n = 5) and TAL1-

LMO2 T-ALLs (n = 8). Unsupervised clustering of the two

T-ALL subsets revealed the presence of two clusters of leuke-

mias, including one group that consisted of all 5 TRA/TRD-

MYC positive T-ALLs and 2 additional TRA/TRD-MYC neg-

ative leukemias, named TRA/TRD-MYC like.

Fig S3. NOTCH1 target genes validation in an indepen-

dent set of TRA/TRD-MYC translocated T-ALLs (n = 16)

and TAL1-LMO2 T-ALLs (n = 7). HES1 and DTX1 expres-

sion was assessed by qRT-PCR in the studied T-ALL sub-

groups. Mann–Whitney test was performed to compare the

different groups (**P < 0.01, ***P < 0.001). Horizontal lines

represent the median for each group.

Fig S4. Schematic representation of TRA/TRD locus in

MOLT16 cell line detected by H3K27ac CHIP sequencing

analyses (chr14:22 275–22 597 kb, GRCh38). In pink, TRA/

TRD enhancer elements (chr14:22 507 600–22 570 848 bp)

identified by high level of H3K27ac and reported in the

Hockey-stick plot (Fig 2A, red dot).

Fig S5. MYC mRNA and protein downregulation after

JQ1 treatment (1 lmol/l) in MOLT16 and KE-37 cell lines.

Control cells were treated with dimethylsulfoxide. MYC

mRNA expression was analyzed after JQ1 treatment at 6 and

12 h. MYC protein expression was studied after 72 h upon

JQ1 treatment for MOLT16, KE37, JURKAT, ALL-SIL and

HPB-ALL cell lines. Protein downregulation was confirmed

after JQ1 treatment in both t(8;14)(q24;q11) positive cell

lines (*). Minor effects at protein level were observed in less

sensitive cell lines, such as ALL-SIL and HPB-ALL.

Fig S6. NSG mice xenotransplanted with primary TRA/

TRD-MYC T-ALL cells and treated with JQ1 (50 mg/kg)

once/day for 14 days. Percentage of hCD45 leukemic cells in

peripheral blood and in bone marrow. Xenografts spleen

weight (mg). Mann–Whitney test was used to compare the

treatment groups (*P < 0.05, **P < 0.01).

Fig S7. NSG mice xenotransplanted with primary TRA/

TRD-MYC T-ALL cells (from patient 17, see Table SI) and

treated with JQ1 (50 mg/kg) twice/day for 14 days. Percent-

age of hCD45 leukemic cells in peripheral blood and in bone

marrow. Mann–Whitney test was used to compare the treat-

ment groups (*P < 0.05).
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