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Abstract of the Dissertation

Inference from Incomplete Data in Coherent

Diffraction Imaging

by

Sara Salha

Doctor of Philosophy in Physics

University of California, Los Angeles, 2014

Professor Jianwei (John) Miao, Chair

Progress in nanotechnology and biotechnology are propelled by our ability to ma-

nipulate and resolve the structure of matter on fine scales. As imaging at higher

resolution is limited by the probing light source and the numerical aperture, lens-

less imaging offers an advantage over lensed microscopy. Dispensing with lenses

allows one to overcome certain intrinsic aberrations and to bypass fabrication

costs, in the optical and the X-ray regimes. The long penetration depth of X-rays

renders coherent X-ray diffraction imaging (CXDI) the method of choice for high

resolution structure determination with broad applications from materials science

to biology; moreover, the same methodology is extensible to electrons, optical

photons, or even gamma rays or neutrons. Since coherent diffraction imaging

(CDI) bypasses the need for focusing optics, it relies upon computer algorithms

to reconstruct the structure of the scattering object. Currently, one of the main

obstacles to nanometer resolution of biological imaging is noisy, incomplete data

due to radiation damage. With the rapid development of new light source facilities

and the advancement in image reconstruction techniques, determining the struc-

ture of individual virons or cells at high resolution is becoming more feasible. In

particular, the femtosecond pulse of a free electron laser (FEL) is shorter than the

coulomb explosion of the specimen, and thus, it is possible to collect diffraction
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data prior to radiation damage. However, to fully exploit the computational as-

pect of lensless imaging, prior knowledge about the object should be incorporated

into the image reconstruction process and yet so far such methods are generally

lacking. In this thesis, we develop tools that incorporate prior knowledge and

reduce the amount of necessary data to recover the structure. We begin by a brief

overview of lensless imaging and its place in the natural sciences. we then review

the process of image formation in coherent X-ray scattering, the corresponding

phase problem and the current state of image recovery. The contributions to this

field are two fold. We first demonstrate that three dimensional information can be

extracted from a two dimensional diffraction pattern collected at a high numerical

aperture. Second, we present a framework for image discovery through Bayesian

inference, where we introduce four general constraints: symmetry, sparsity and

bounded local and total variation. Using simulated noisy, incomplete data, we

recover the solution in situations where traditional algorithms fail. We anticipate

that these results will encourage the broader application of Bayesian learning into

the phase retrieval problem from noisy, incomplete diffraction data and further

enhance the possibility of single shot three dimensional structure determination.
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CHAPTER 1

Introduction

From the 11th century to the present time, our ability to resolve structures on

fine scales has been broadening our understanding of nature. The magnification

power of a lens was first investigated by Alhazen (1021 AD); six hundred years

later, the systematic use of a microscope to study objects unresolved by the naked

eye was first documented by Robert Hooke who also coined the word cell as a

building block of life. Subsequently, the discovery of bacteria by Leeuwenhoek

strengthened the evidence of the germ theory of diseases. Fast forwarding to

recent decades, with the development of higher resolution imaging using light and

electron microscopy, details at the mesoscopic/atomic world are becoming more

accessible to technological developments. Take, for example, how the structure

determination of an isolated single layered graphene had prompted new areas of

research from high speed electronics to low cost solar cells [1].

In this thesis, we focus on a relatively new imaging modality, lensless imag-

ing. This type of imaging has the potential of determining structures of cells at

nanometer resolutions and beyond. The structure of this chapter is as follows: we

begin with a brief history of lensless imaging, the related phase problem, and how

the revolutionary work in information theory inspired a solution to this problem.

With the emergence of high brilliance coherent X-ray sources, new research terri-

tories and challenges arise; in particular, the problem of structure recovery from

insufficient data. To address this issue, we review current developments aimed at

suppressing the main problem of radiation damage, overview our proposed algo-
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rithmic methods: first by using high numerical aperture data and second by the

incorporation of prior knowledge through Bayesian inference.

Lensless imaging is a type of microscopy that dispenses with focusing optics.

To form an image, partially coherent light is scattered off the object creating a

diffraction pattern which is then synthesized using a computer algorithm or a

reference beam. The principle of lensless imaging is founded on the observation

of Ernest Abbe (1873) who explained the process of image formation in a com-

pound microscope in two steps: analysis at the focal plane of the objective lens

and a synthesis at the eyepiece [2]. As the partially coherent light enters the first

lens, it forms a diffraction pattern at the back focal plane; the scattered rays then

converge to form a magnified image as shown in figure 1.1. The pattern formed

at the focal plane was overlooked by most microscopists; it took nearly a cen-

tury later, before Gabor investigated the pattern closely and invented holography

(1947), where he removed the objective lenses to eliminate spherical aberration in

the transmission electron microscope (TEM). This new lensless microscope was

first demonstrated with partially coherent optical light. Its success relied on the

ingenious idea that the wavefront phases are preserved by interfering the primary

incident wave with the secondary scattered wave. By re-creating the full wave-

field, it is possible to obtain the three dimensional structure of the object [3, 4].

The source size, however, limits the resolution from reaching atomic resolution,

unless the atoms themselves are used as the source of the reference wave [5, 6].

Another familiar form of lenless imaging is crystallography. With the discov-

ery of X-ray by Roentgen (1895), and the demonstration of X-ray diffraction by

Max Von Laue (1912), crystallography played a fundamental role in understand-

ing atomic and molecular objects under crystallization. This form of imaging is

limited to materials that can be crystallized, where the phase problem is solved

through various methods, i.e molecular replacement or using the Patterson func-

tion, etc. For a general object, amorphous, un-crystalized object, however, the
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Figure 1.1: Image formation using a simple microscope. For a compound micro-
scope, a second lens (eyepiece), placed upstream from the image plane, magnifies
the image formed by the first lens.

solution to the phase problem requires a new approach.

With the development of crystallography during the middle of the last century,

another field was born outside of physics that would prove to have a significant

impact upon science in general and lensless imaging in particular, laying the foun-

dation for the solution to the phase problem. With the foundational work of

Claude Shannon, the field of information theory rapidly progressed, where among

many other contributions, he proved the sampling theorem that bears his name,

which gives the conditions under which the exact recovery of a bandlimited signal

from the discrete measurements is possible [7, 8]. A few years later, David Sayre,

while working on protein crystallography, was inspired by Shannon’s work and

realized that the main limitation to X-ray crystallography is the limited sampling

measurements due to Bragg peaks which, according to Shannon’s theorem, are in-

sufficient to determine the electron density. Subsequently, he wrote an insightful

note about the possibility of reconstructing a signal from the phase-less diffraction

data, under the condition of extra sampling, namely oversampling, using a non-

crystalline object, where the diffraction pattern is continuous, unlike the discrete

pattern of crystals [9].

In addition to the oversampling idea, coherent X-ray diffraction imaging

(CDI) from general objects became possible due to progress in two different fields:

the light source technology and algorithmic methods. With the emergence of high

brilliance coherent X-ray sources [10, 11, 12], it became possible to obtain excellent
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quality X-ray diffraction data from amorphous objects. Furthermore, the rapid

development of computational power, facilitated the implementation of iterative

projection algorithms. These algorithms recursively apply the constraints in mul-

tiple spaces, i.e measurement and image space, discussed in chapter 3. Initiated

by the work of Saxton and Gerchberg for two intensity measurements [13] and

later vastly accelerated by the work of James Fienup in his attempt to correct for

lens aberration on Hubble telescope [14, 15], the error reduction and the hybrid

input output algorithms were also implemented as phase retrieval algorithms on

lensless imaging data. With the first experimental demonstration of CDI, where a

fabricated object was reconstructed from the oversampled diffraction pattern [16],

this lensless form of microscopy became an important tool for imaging biological

objects, such as bacteria, whole cells, cellular organelles, viruses, and biomaterials

where the highest resolution of < 15 nm is been achieved on biological samples

[17, 18, 19] and a resolution of ∼ 2 nm is obtained with inorganic materials

[20, 21, 22, 23, 24, 25].

Although conventional phase retrieval algorithms perform well in the case of

diffraction data with adequate signal to noise ratio, the case of noisy and incom-

plete data remains challenging. Such data is prevalent in high resolution diffrac-

tion patterns, where the extreme cases correspond to single molecule and protein

structure determinations [26, 27]. At fixed beam energy, to increase the resolution,

a larger scattering angle is required, which translates into either higher exposure

time or higher radiation level, each of which causes radiation damage. As the

main causes for limited data are due to finite flux and radiation sensitivity of the

samples [28], various methods had been developed to overcome this effect. Some

of the experimental developments are: freeze hydrating the sample to increase the

radiation dose tolerance [29], the use of electrospray-generated particles to obtain

multiple diffraction patterns of identical copies [30], building femto-second X-ray

sources where the samples’ electronic destruction time is longer than the pulse du-
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ration [31], namely diffract and destroy [32]. Simultaneously, algorithmic methods

for the noisy incomplete data are also being developed. For example, the field of

compressed sensing is recently being extended to phase retrieval where several

algorithms are being proposed based upon specific sparsity constraints [33, 34].

The two main contributions in this thesis are ankylography (chapters 4 and

5) and the adaptive phase retrieval algorithm (APR) (chapter 8). Ankylogra-

phy is as a high numerical aperture lensless imaging method which extrapolates

three dimensional information from high numerical aperture data by accurately

accounting for the geometrical distribution of the two dimensional measurements

(chapter 4). Using ankylography, we successfully reconstructed a simulated glass

particle at atomic resolution and a polio virus at < 2 nm resolution. Furthermore,

using experimental soft X-ray and optical diffraction data of thin objects, we ob-

tained three dimensional information by accurately recovering the corresponding

tilt angles, in reference to the incident beam [35, 36]. Although this method is

currently limited to small sized objects (∼ 143 voxels), with the implementation

of robust prior constraints, we anticipate that practical sized entities can be re-

constructed as well.

To complement on the previous work of ankylography, we present a method

that improves the performance of projection based phase retrieval algorithms when

the data are noisy and incomplete (chapter 8). We propose a framework for infer-

ring accurate image estimates from the data through a recursive feedback loop. We

extract information subject to certain known constraints from the data, we then

apply a non-parametric model from which we extract new constraints. The nu-

merical studies are performed on two dimensional (2D) objects, whereas the gen-

eralization to 3D will be the topic of subsequent research (chapter 9). The three

dimensional (3D) phase retrieval problem differs from the 2D case as it is plagued

by noisy, incomplete data to a much greater extent than in 2D [37, 38, 39, 40],

primarily due to radiation sensitivity, finite flux, and practical experimental con-
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cerns; however, the extreme undersample 2D case forms a good testing ground.

The chapters in this thesis focus on the phase problem in CDI with an em-

phasis on noisy, incomplete data. Chapter 2 reviews the theory that lead to un-

derstanding the scattering phenomena, chapter 3 presents current phase retrieval

algorithms, chapters 4 and 5 report on the experiments and lastly chapters 6− 9

focus on algorithmic methods for overcoming the inverse problem in the case of

noisy, incomplete data.
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CHAPTER 2

Elements of CDI

In this chapter we present the theoretical elements of a coherent diffraction imag-

ing (CDI) microscope. We review the interaction between the beam and the

scattering object, the beam quality and the effects of measurements on the wave-

field which give rise to the phase problem whose solution is further discussed in

the algorithmic component of CDI in chapter 3.

2.1 Interaction between beam and object

Here we focus on elastic scattering using monochromatic incident beam, where

we follow the treatment of Born and Wolf [41]. As we are mainly interested in

isotropic, non-magnetic materials, we can later justify the scalar approximation of

the wavefield. To derive the scattering equation, we start by Maxwell’s equations

in matter, also known as the macroscopic equations, where ~E and ~B are the electric

and magnetic induction fields, while ~D and ~H are the electric displacement and

the magnetic fields. Given a scattering medium with volume V and surface S (Fig.

2.1), with free charge density ρf , and a magnetic permeability µ (∼ 1 for non-

magnetic materials), and a scalar dielectric constant ε independent of direction

(isotropic material), we have:
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Figure 2.1: A simple sketch of a scattering event; figure obtained from [41].

∇ · ~D = 4πρf Gauss’s law (2.1)

~D = ε ~E (2.2)

∇× ~E = −1

c

∂ ~B

∂t
Faraday’s law (2.3)

~B = µ ~H (2.4)

∇× ~H =
4π

c
~Jf +

1

c

∂ ~D

∂t
Amper’s law (2.5)

~Jf is the current density

After applying the curl and replacing ~B with ~H, Faraday’s law yields:

∇× (
1

µ
∇× ~E) +

1

c
∇× ∂ ~H

∂t
= 0 (2.6)

The time derivative of Ampere’s law yields:

∇× ∂ ~H

∂t
=
ε

c
~̈E (2.7)

Here we assumed that the material is not a source of charge and hence the conti-

nuity equation holds; thus,
∂ ~Jf
∂t

= 0.
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Plugging Eq. 2.7 in 2.6, we find:

∇× (
1

µ
∇× ~E) +

ε

c2
~̈E = 0

∇×∇× ~E + µ∇ 1

µ
× ~E +

ε

c2
~̈E = 0

∇2 ~E −∇(∇ · ~E) +∇ln(µ)× ~E − ε

c2
~̈E = 0

(2.8)

Using Gauss’s law, we can find an expression for ∇(∇ · ~E):

∇ · ε ~D = ε∇ · ~E + ~E · ∇ε = 4πρf

Take the gradient

∇(ε∇ · ~E) +∇( ~E · ∇ε) = ∇(4πρf ) = 0

then divide by ε

∇(∇ · ~E) +∇( ~E · ∇lnε) = 0 (2.9)

Again by plugging Eq. 2.9 in 2.8, we have:

∇2 ~E +∇( ~E · ∇lnε) +∇ln(µ)× ~E − ε

c2
~̈E = 0 (2.10)

As we mentioned at the beginning of this section, we are interested in non-

magnetic isotropic materials, where µ ≈ 1 and ε varying slowly on the order

of the oscillations ω = 2π
λ

= kc of the monochromatic wave ~Ee−iωt. As a result,

we can neglect variations in both ε, µ terms in Eq. 2.10, and hence the field

equation simplifies to:

∇2 ~E + εk2 ~E = 0 (2.11)
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Figure 2.2: The elastic scattering approximation; sketch obtained from [41].

Unlike equation 2.10, equation 2.11 does not couple spatial directions, and

hence it is possible to treat the vector equation, component wise. Thus; hereafter,

we use the scalar field equation ψ, as the component representation of the original

field ~E:

∇2ψ(~r, ω) + k2n2(~r, ω)ψ(~r, ω) = 0 where n2 = ε(~r, ω) (2.12)

where r is the spatial coordinate (Fig. 2.2), and n is the index of refraction.

For convenience, we can express the above equation in a form that is math-

ematically equivalent to the time independent Schroedinger equation for non-

relativistic particles:

∇2ψ(~r, ω) + k2(~r, ω)ψ(~r, ω) = −4πF (~r, ω)ψ(~r, ω)

where F (~r, ω) =
k2(n(~r, ω)2 − 1)

4π
(2.13)

is the scattering potential of the medium.

Physically, ψ(~r, ω) is the field resulting from the interaction between the in-
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cident wave and the medium V , hence it is the superposition of the total field:

incident ψ(i) and scattered ψ(s) fields.

ψ(~r, ω) = ψ(i)(~r, ω) + ψ(s)(~r, ω) (2.14)

By decomposing ψ into these two components, we can further simplify the

subsequent treatment, as the ψ(i) (a plane wave) obeys the helmholtz equation.

(∇2 + k2)ψi(~r, ω) = 0 (2.15)

And hence, the scattering equation reduces to :

(∇2 + k2(~r, ω))ψs(~r, ω) = −4πF (~r, ω)ψ(~r, ω) (2.16)

By introducing the symmetric Green’s function G(~r− ~r′, ω) as the solution to

the non-homogeneous helmholtz equation, we have:

(∇2 + k2(~r, ω))G(~r − ~r′, ω) = −4πδ(3)(~r − ~r′) (2.17)

Multiplying Eq 2.17 and 2.16 by ψ(s) and G respectively, and subtracting the

corresponding equations from each other we find:

ψs(~r, ω)∇2G(~r − ~r′, ω)−G(~r − ~r′, ω)∇2ψs(~r, ω)

= 4πF (~r, ω)ψ(~r, ω)G(~r − ~r′, ω)− 4πδ(3)(~r − ~r′)ψs(~r, ω) (2.18)

To easily solve this equation, we will integrate over the whole space, using the

volume V r. While r′ is the coordinate confined to the small volume V , r extends

over V r, as in Fig 2.2.
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∫
VR

[ψs(~r, ω)∇2G(~r − ~r′, ω)−G(~r − ~r′, ω)∇2ψs(~r, ω)]dr3

=

∫
VR

[4πF (~r, ω)ψ(~r, ω)G(~r − ~r′, ω)− 4πδ(3)(~r − ~r′)ψs(~r, ω)]dr3 (2.19)

By integrating over the δ(3)(~r−~r′) function and re-arranging the terms above,

one can express ψs as:

ψs(~r′, ω) =

∫
VR

F (~r, ω)ψ(~r, ω)G(~r − ~r′, ω)]dr3

− 1

4π

∫
VR

[ψs(~r, ω)∇2G(~r − ~r′, ω)−G(~r − ~r′, ω)∇2ψs(~r, ω)]dr3

Subsequently, we convert the second volume integral to surface integral using

Green’s theorem, taking note that F (~r, ω) is confined within V :

ψs(~r′, ω) =

∫
V

F (~r, ω)ψ(~r, ω)G(~r − ~r′, ω)]dr3′

− 1

4π

∫
SR

[ψs(~r, ω)
∂G(~r − ~r′, ω)

∂n′
−G(~r − ~r′, ω)

∂ψs(~r, ω)

∂n′
]dSR

Where SR is the surface corresponding to VR, and ~n′ is the corresponding

normal vector. The Green’s function is the solution to the point source wave

equation Eq. 2.17, which can be expressed as:

G(~r − ~r′, ω) =
eik|~r−~r

′|

|~r − ~r′|
(2.20)

The surface integral SR is negligible for R → ∞. Hence the scattering formula

reduces to:
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ψ(s)(~r, ω) =

∫
V

F (~r′, ω)ψ(~r′, ω)
eik|~r−~r

′|

|~r − ~r′|
d3r′ (2.21)

with ψ(i) = eik~s0·~r (~s0 is the incident beam direction), we obtain the potential

scattering equation:

ψ(~r, ω) = ψi(~r, ω) +

∫
V

F (~r′)ψ(~r′, ω)
eik|~r−~r

′|

|~r − ~r′|
d3r′ (2.22)

Once the total field ψ(~r, ω) inside the scattering volume integral V is deter-

mined, then one can find the total field outside the volume. So this is really a

tricky embedded solution. In order to solve it, we use the first order perturba-

tion approximation of Born. This approximation is justified for the case of elastic

scattering that we are mainly interested in, where a high incident energy interacts

with a weak potential well.

2.1.1 Born approximation

For a medium that scatters weakly, we can use the method of perturbation to

solve the scattering equation, and hence inside the integral, the total field can be

simply approximated by the incident field. For large R, we have:

|r − r′| = r − ~s · ~r′

~r = r~s ~s2 = 1 (2.23)

For the denominator in Eq. 2.22, we can use |r− r′| ≈ r, while the exponent term

is more sensitive to such an approximation, and thus we keep both terms. As a

result, we now have:

ψ(~r, ω) = ψi(~r, ω) +
eikr

r

∫
V

F (~r′, ω)ψi(~s · ~r′, ω)e−ik~s·r
′
d3r′ (2.24)
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Therefore, for an incident beam that goes through a single scattering event, the

output field ψ(~r, ω) is a combination of the original incident field and a spherical

wave eikr

r
with a scattering amplitude f :

f(~s, ~s0, ω) =

∫
V

F (~r′, ω)ψi(~r, ω)e−ik~s·r
′
d3r′

=

∫
V

F (~r′, ω)e−ikr
′(~s−~s0)d3r′ (2.25)

Which can be recognized as the Fourier transform of the scattering potential.

Recall Eq. 2.13 for the relation to the macroscopic behaviour of the index of

refraction, which in turn can be linked to the electron density by:

n = 1− Nλ2re(f1 + if2)

2π
(2.26)

where re is the radius of the electron, N is the number of atoms in unit volume,

and f1 + if2 is the atomic scattering factor of the material, related to the atomic

number and the wavelength λ of the incident beam [42]. In the case where the

incident radiation has frequency much smaller than the natural frequency of the

material, example visible light scattering off a piece of glass, the scattering factor

is negative, and the index of refraction is larger than unity. However, in the

X-ray range, the frequency is usually larger than the natural frequency of the

material, and hence the index of refraction is negative. The index of refraction

is complex, when the two frequencies are within the same range, which is the

case for anomalous scattering, or light absorption. In this thesis, we are mainly

interested in elastic coherent scattering, with real index of refraction.

As part of the image recovery discussion, we seek the inversion of Eq. 2.25,

namely relating f(~s, ~s0, ω) to the measurements.
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2.2 The coherence of the incident beam

For the information encoded in the diffraction pattern to be exclusive of the scat-

tering object, the intrinsic beam parameters should satisfy stringent coherence

criteria; across the sample and along the propagation distance between the scat-

terer and the measurement plane. As the light source generator plays a role in

shaping the beam’s characteristics, we categorize the coherence study into two sec-

tions: visible lasers and undulators, applicable to optical and synchrotron X-ray

radiations, respectively. Coherent sources are not restricted to X-ray and optical,

but these were the two light sources I worked with during my graduate study

[36, 43]. A more thorough study would include X-ray free-electron laser and table

top soft X-ray sources. For more information about these systems and facilities

please see [44, 45, 46].

2.2.1 Optical laser

Light generated by a laser cavity with planar mirrors produces plane wave. Un-

fortunately, such mirrors configuration is a highly unstable system. As a result,

confocal cavities with spherical mirrors are generally used [47]. Here we will follow

the treatment provided by Saleh and Teich [48], in describing the beam generated

in such a system.

The solution to the wave equation satisfying the boundary conditions of confo-

cal mirrors, and under the paraxial approximation of the Helmholtz wave equation,

is a Gaussian field:

U(~r) = A0
W0

W (z)
exp−( r

W (z)
)2 exp−i(kz+

r2

2R(z)
−ξ(z)) (2.27)

where z0 is the Rayleigh range along which the beam cross section doubles, as

measured from the waist W0 location (z = 0), with
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W0 = (
λz0

π
)
1
2 W (z) = W0(1 + (

z

z0

)2)
1
2

R(z) = z +
z2

0

z
r2 = x2 + y2 ξ = tan−1 z

z0

(2.28)

Hence the spatial profile of the Gaussian beam imparts not only three dimen-

sional amplitude variations, but an additional phase shift in both the transverse

and the longitudinal spatial beam profile.

For a continuous wave laser, the temporal coherence and monochromaticity are

related by the Heisenberg uncertainty principle τc∆f ≈ 1. Temporal coherence

is practically a measure of the longitudinal coherence, and can be designated by

lc = cτc. For a propagation path length lmax << lc, coherence is satisfied.

2.2.2 Undulators

Accelerated electrons produce radiation; when the acceleration is originated by

a magnetic field, the resulting radiations are called synchrotron radiation. Us-

ing radio frequency (RF) type of accelerator, built from a sequence of bending

magnets, undulators form an important tool of synchrotron radiation at the third

generation light sources [49]. The bending magnets produce a sinusoidal magnetic

field ~B which acts on the accelerating electrons, and thus confine them into a cir-

cular trajectory. The resulting electric field is not static, and hence it becomes

possible to accelerate the electrons to a high energy (hard X-rays ∼ 0.5Å). As the

electrons circulating the synchrotron are ultra relativistic, the emitted radiation,

in the laboratory frame, has a small divergence angle (fig 2.3), with respect to the

electron travelling at a velocity v, such that:

tan θ =
1

βγ
(2.29)
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Figure 2.3: A sketch for the accelerated electrons and emitted X-rays in a syn-
chrotron facility; figure obtained from [50].

where β = v/c and γ >> 1. The undulator parameters, namely the magnetic

field ~B and the oscillation period of the bending magnets λu, both determine the

synchrotron radiation wavelength λ, expressed as:

λ =
λu
2γ2

(1 +
K2

2
+ γ2θ2) (2.30)

Where K = eB̂λu
2πmc

, a dimension less quantity. For a more in depth review of third

generation radiation facilities, please see [49].

To computed the spatial coherence, let us examine a point emitter located at

the central optical axis, with size d and a half opening angle of ∆θ. Following

Heisenberg’s uncertainty principle, we have:

∆x∆p = d∆p < h̄/2 = d∆k < 1/2

By forming a triangle with k and ∆k as adjacent and opposite sides, we find
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∆k = k∆θ. Thus, the spatial frequency criterion is:

d∆θ <
λ

2π
(2.31)

For a higher spatial coherence, smaller source size d is desirable, which could

be achieved with the use of pinholes.

The temporal coherence should satisfy the same criterion for laser light, namely

lmax << lc, where lc can be found, following Attwoods’ derivation [50]. Let lc be

the coherence length, where the wave with wavelength λ travels N cycles before

it becomes π out of phase with the wave λ+ ∆λ, then we have:

lc = Nλ

lc = (N − 1

2
)(λ+ ∆λ)

And hence N = λ/(2∆λ), as λ >> ∆λ. Thus the coherence length is:

lc =
λ2

2∆λ
(2.32)

To achieve a suitable temporal coherence at the expenses of light brilliance, a

series of monochromators can be added, with very narrow bandwidth.

2.3 The phase problem

The relationship between the sample and the diffracted wave is to a first approx-

imation through the Fourier transform (Eq. 2.25). The act of measurement is

only restricted to the intensity values I(~k) = |f(~s, ~s0)|2 = |F (~k)|2. According to

Emil Wolf, even if we were able to actually measure the phases, it is not pos-

sible to agree on a specific phase for a given intensity point, as no laboratory

light source produces a strictly monochromatic wave [51]. Thus, the wavefield can
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only be measured statistically, where the phase information are washed out by

the averaging process. To retrieve the sample’s structure, we formulate the phase

retrieval as an inverse optimization problem and discuss the algorithmic tools in

the following chapters.
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CHAPTER 3

Iterative Projection Algorithms

The role of a lens in imaging is to synthesize the analytical Fourier transform of

the scattered waves and form an image. In CDI, computer algorithms take the

lens’ role by numerically reconstructing the structure from the scattered waves’

amplitudes. In this chapter, we examine the phase problem in detail, in particular

why it is considered a hard optimization problem §3.2. As a result, iterative pro-

jection algorithms, instead of direct methods, are used to compute a solution. The

computational wavefront reconstruction using iterative methods was first intro-

duced by Gerchberg and Saxton for the two intensity measurements [13], where

the modulus of a complex valued image as well as the modulus of its Fourier

transform are measured, as in electron microscopy and wavefront sensing; unlike

the phase problem which is a one intensity measurement. Fienup showed that the

Gerchberg and Saxton algorithm can be extended to the one intensity measure-

ment [52]. In §3.2, 3.3, we review the conventional constraints and the current

phase retrieval algorithms. To gain more insight into the most successful type

of phase retrieval methods which employs a feedback mechanism, we study the

performance of such method on a toy model §3.4.

3.1 Notation

Given a real density ρ(~x), where ~x ∈ R3, we can represent ρ as an n-dimensional

vector, i.e ρ(~x) ∈ Rn. Where n is the number of pixels in a given structure.
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Similarly, let

√
I(~k) be a measurement point, where ~k refers to the coordinates

in reciprocal space; I(~k) spans an m-dimensional vector space, where m is the

number of measured data points; m = od×n where od is the oversampling degree

defined in the next chapter.

We also introduce the constraint set Ci and the corresponding projection op-

erators Pi. For example, if ρ is bounded, then Ci is the set of points that are

within the given bounds. Pi is the operator that maps a general point ρ(ν) to the

constraint set by minimizing the Euclidean distance as:

Piρ
(ν) = argmin |ρ(ν) − Ci|. (3.1)

ν is the iteration number.

Let ρe refer to the exact density and ρ refers to the solution obtained by phase

retrieval.

3.2 Constraint sets, projections and error metrics

For a smooth, bounded and positive valued density ρ(~x), the forward model in

CDI, is an elastic scattering process under the Born approximation, where the far

field scattered amplitudes
√
I or |ρ̂e| are related through the Fourier transform F

as [53] [41]:

Fρe(~x) =
√
I(~k) expiφ(~k) = ρ̂e(~k) (3.2)

Since the sample size can be estimated a priori, the approximate support of ρe

is usually assumed, where sampling above the Nyquist rate pads ρe with zeros.

Solving for φ(~k) is then formalized as a constrained optimization problem using

the modulus and the support projection operators Pm,Ps+ [54]:
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Figure 3.1: Low dimensional support set (left): ρ(~x) ∈ R3, where ρ is non zeros
only in R2. Modulus Set for one complex point in reciprocal space (right)

The modulus projector: Each measurement is represented in the complex

plane by a phase and a magnitude (Fig 3.1, right). The projection operator P̃m

enforces the known magnitude, by minimizing the Euclidean distance between a

given iterate and the modulus set:

Pm[ρ] = F−1P̃mF [ρ] = F−1P̃mρ̂ (3.3)

where P̃mρ̂ =
√
I
|ρ̂| ρ̂. Assuming |ρ̂| 6= 0, and hence avoiding the additional compli-

cation of a multivalued P̃m [55].

The non-convexity of the modulus constraints creates an energy landscape

with local minima. This is not obvious from the reciprocal space diagram (Fig.

3.1 right). Hence, to understand the problem more easily, we examine the effects

of non-convexity in the object domain (Fig. 3.2). Each of the measurement

points is a function of all the density points and forms an equation, namely the

autocorrelation function:

I(~k) =
∑
~x,~x′

ρ(~x)ρ(~x′) cos(~k · (~x− ~x′)) (3.4)

This equation can be visualized as an ellipse/hyperbola for the simplified three-

pixel system, and as an ellipsoid for higher dimensions. Local minima are intersec-
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Figure 3.2: Set intersections. Each ellipse/parabola is a real space solution sat-
isfying one equation 3.4. The global minimum and its twin correspond to the
intersection among all sets (located in the red contour).

tions between sets; the global minimum is the intersection among all sets. Areas

between intersections are high error regions. If a given density ρ belongs to these

area, it does not satisfy any of the equations. Hence, the geometrical formation

of local minima, in the energy landscape can be appreciated by studying the set

intersections. From this simplified diagram (Fig.3.2), we can also deduce that the

number of local minima increases with the size of the problem, and hence further

enriching the complexity of the problem.
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The support and positivity projector:

Ps+ρ(x) =

 ρ(x) for x ∈ γ

0 otherwise.
(3.5)

Where γ denotes the set of points that satisfy the support and positivity con-

straint. Convergence is monitored through one of the scalar metrics: fidelity or

compactness (positivity) terms:

ε2m(ρ) = ||(I−Pm)ρ||2 ε2s+(ρ) = ||(I−Ps+)ρ||2 (3.6)

I is the identity operator. Hereafter, to clear our notation, we will denote ρ(x) by

ρi.

The goal is to minimize the distance norm between a potential image ρ and the

corresponding measurements Pmρ, i.e ε2m(ρ). The presence of oversampled data

facilitates this step by providing a complementary real space constraint. The

earliest phase retrieval algorithm, error reduction, follows the gradient:

−∇ε2m(ρ) = −2(I−Pm)ρ −∇ε2s+(ρ) = −2(I−Ps+)ρ

However, due to the presence of the local minima, strictly minimizing the gradient

is not ideal as the iterate would stagnate at the local minima. In the next sec-

tion, we briefly discuss the error reduction method, then we review the feedback

mechanism which provides a solution to the stagnation problem.

3.3 Feedback mechanisms

Phase retrieval algorithms had their initial success with the error reduction algo-

rithm, which is a generalization of the Gerchberg Saxton algorithm. The error

reduction algorithm proceeds in two steps, starting from a random density distri-
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bution ρ(0):

1. Apply the modulus constraint:

ρ̂′(ν) = Pm[ρ(ν)] (3.7)

2. Apply the object domain constraint i.e a support projection Ps+:

ρ(ν) = Ps+ρ
′(ν) (3.8)

This process is repeated till the error metric ε2m stagnates. The error reduction

algorithm is a steepest descent method; these genre of gradient algorithms have

slow convergence and stagnate in local minima. There are two reasons for the

stagnation: 1) the constant step size which is not optimized at each iteration, 2)

the reduced partial gradient∇ρ along Ps+ [54]. The feedback mechanism alleviates

the stagnation and convergence problem, as shown in the following sections.

3.3.1 Hybrid Input Output (HIO)

Before we explain the HIO algorithm, let us detail the relationship of the error

metric gradient ∇ε2m and the projection operator Pm following Fienup’s [52]. As-

sume a complete measurement in reciprocal space, the scalar error metric εm can

be computed as:

ε2m = N−2

N∑
k=0

|ρ̂k − P̃mρ̂k|2 = N−2

N∑
k=0

[|ρ̂k| −
√
Ik]

2 (3.9)

Where N is the size of the full dimensional Fourier transform space, or the over-

sampled region. Note that ρ̂k and P̃mρ̂k have the same phases, hence we needed

to compute only the difference in their moduli. The corresponding gradient term

is:
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∇ε2m =
∂ε2m
∂~ρ

= 2N−2

N∑
k=0

[|ρ̂k| −
√
Ik]
∂|ρ̂k|
∂~ρ

(3.10)

From ρ̂k =
∑N

j=0 ρj exp−2πi kj
N , we have ∂ρ̂k

∂ρj
= exp−2πi kj

N . Thus now we can

compute ∂|ρ̂k|
∂~ρ

:

∂|ρ̂k|
∂ρj

=
∂[|ρ̂k|2]1/2

∂ρj
=
∂[ρ̂kρ̂

?
k]

1/2

∂ρj
=

1

2|ρ̂k|
[ρ̂?k

∂ρ̂k
∂ρj

+ ρ̂k
∂ρ̂?k
∂ρj

]

=
1

2|ρ̂k|
[ρ̂?k exp−2πi kj

N +ρ̂k exp2πi kj
N ]

Now, let us insert this information back into the gradient equation, by com-

puting the element wise terms:

∂ε2m
∂ρj

= 2N−2

N∑
k=0

[|ρ̂k| −
√
Ik]
∂|ρ̂k|
∂ρj

= 2N−2

N∑
k=0

[|ρ̂k| −
√
Ik]

1

2|ρ̂k|
[ρ̂?k exp−2πi kj

N +ρ̂k exp2πi kj
N ]

= N−2

N∑
k=0

[ρ̂?k exp−2πi kj
N +ρ̂k exp2πi kj

N −
√
Ikρ̂

?
k

|ρ̂k|
exp−2πi kj

N −
√
Ikρ̂k
|ρ̂k|

exp2πi kj
N ]

Also note that we are dealing with real functions, hence:

ρ?j = N−1

N∑
k=0

ρ̂?k exp−2πi kj
N = ρj = N−1

N∑
k=0

ρ̂k exp2πi kj
N (3.11)

Which leads us to conclude:
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∂ε2m
∂ρj

= 2[ρj − ρ′j] (3.12)

In the steepest descent method, a half step in the opposite gradient direction

is implemented, hence:

ρ(ν+1) − ρ(ν) = −∇ε
2
m

2
= [ρ′ − ρ(ν)] = [Pm − I]ρ(ν) (3.13)

ρ(ν+1) = ρ′ (3.14)

To speed up the convergence, Fienup devised the Hybrid input output algo-

rithm as a form of nonlinear feedback. As a result, great flexibility in the iterative

system is introduced by relaxing the object domain constraint and forming the

iterate ρ(ν) unconfined to a subspace but as linear combination. To examine the

details of this step, we follow [56]’s analysis:

A small change in the input (∆ρ) results in a change of the output (∆ρ′) in

the same direction:

∆ρ = β∆ρ′ (3.15)

Hence for pixels i /∈ γ, one needs to modify the input such that the next output

ρ′(ν+1) would be driven to zero:

∆ρ′ =��
��*

0
ρ′(ν+1) − ρ′(ν) = −ρ′(ν) (3.16)

Thus,

∆ρ = ρ(ν+1) − ρ(ν) = β∆ρ′ = −βρ′(ν) (3.17)

The flexibility in choosing an input that drives to a more desirable output, gave

the algorithm its name, where both of ρ(x) and ρ′(x) are used at each iteration.

Combining Eq. 3.13 and Eq. 3.17, we find:
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ρ(ν+1)(x) =

 ρ′(ν)(x) x ∈ γ

ρ(ν)(x)− βρ′(ν)(x) x /∈ γ
(3.18)

Where β is a relaxation parameter.

To understand HIO’s empirical sucess, we examine the work of Marchesini

where he expressed HIO as a saddle point operations §3.3.2 and the work of Elser

where he showed that the difference maps are a generalization of HIO §3.3.3.

3.3.2 Saddle point optimization

Here we follow Marchesini’s derivation expressing HIO as a function of the La-

grangian of the two error metrics [54]. Using Eq. 3.6, we define the Lagrangian

as the difference between the two square metrics:

L = ε2m − ε2s (3.19)

The Gradient expression is:

∇L = ∇ε2m −∇ε2s

= 2[Ps −Pm]ρ (3.20)

Let us define the following projection:

Ps = I−Ps (3.21)

Now we are ready to express HIO in terms of L:
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ρ(ν+1) = Psρ
(ν) − βPsPmρ

(ν) + PsPmρ
(ν)

= [I−Ps]ρ
(ν) − βPsPmρ

(ν) + PsPmρ
(ν)

= ρ(ν) + Ps[Pm − I]ρ(ν) − βPsPmρ
(ν)

= ρ(ν) + Ps[Pm −Ps]ρ
(ν) − βPs[Pm −Ps]ρ

(ν) as PsPs = Ps and PsPs = 0

= ρ(ν) + [Ps − βPs][Pm −Ps]ρ
(ν)

= ρ(ν) +
1

2
[Ps − βPs][∇L]ρ(ν) (3.22)

Hence, by minimization the subspace of object constraint and maximization

the complementary subspace, HIO is recast as a saddle point optimization. HIO’s

ability to escape local minima is conceptually understood by this minmax ap-

proach.

3.3.3 Difference map

Veit Elser showed that HIO belongs to a generalized map, called the difference

map D, where:

D = 1 + β∆ (3.23)

∆ = Pi ◦ fj −Pj ◦ fi

fi(ρ) = (1 + γi)Pi(ρ)− γiρ

Where γ, β are relaxation parameters. The form of fi, which is a generalized

line passing through the two points (1 + γi)Pi(ρ)− γiρ and γiρ and parametrized
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by γi, enhances convergence to a fixed point ρ? such that:

(P1 ◦ f2)ρ? = (P2 ◦ f1)ρ? (3.24)

Note, however, a fixed point is not necessarily a global solution due to the non-

convexity of the Pm constraint, and hence Eq. 3.3 does not necessarily lead to a

solution:

P1ρsol 6= P2ρsol (3.25)

On the other hand, a solution is a fixed point. But that is not an insightful

statement, as once the solution is found, we anticipate it to be a unique fixed

point.

For HIO, we have the following parameters:

P1 = Ps P2 = Pm

γ1 = −1 γ2 = β−1 (3.26)

Locally Ps,Pm can be considered orthogonal, and the choice of γ is more optimized

if [57]:

γ1 = β−1 γ2 = −β−1 (3.27)

Here also, the main characteristic of the difference map, is its ability to escape

local minima, as each iterate is not a member of a particular subspace defined by

the constraint, but a combination of the respective constraints.
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3.3.4 RAAR

Luke devised the Relaxed Averaged Alternating Reflections (RAAR) to eliminate

one disadvantage of HIO [58]: as the iterate becomes closer to the solution, HIO

map occasionally wanders away with continuing iterations while RAAR anchors

the solution back to the nearest optimal point. The map V can be expressed as

follows:

V(τ?, β) = βτ? + (1− β)Pm

τ? =
1

2
(RS+RM + I)

RC = 2PC − I (3.28)

For β = 1, RAAR, HIO and D, all yield the same sequence. The optimal

β used in RAAR, is a variable βn that approaches unity, as the iterate becomes

closer to the solution.

3.4 Insight

To further understand the behavior of difference map algorithms in general and

HIO in particular, we examine the iterative process in the case of two simple

constraint sets. A more accurate representation with constraints that correspond

to the phase retrieval problem is presented in §6.2.1. Nonetheless, the simplicity of

the current discussion provides a deep insight into the dynamics of these iterative

maps, as explained by Rankenburg and Elser [59]. In analogy with the support

and modulus constraints, we define:

1. Sg is a convex set with an associated geometric projection operator Pg

2. Se is a non-convex set constraint with an associated energy projection op-
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erator Pe

With β = 1, in Eq 3.23, the difference map can be expressed as follows:

∆ = dg − de

de = Peρ and dg = Pg(2Pe − I)ρ

dg is the projection of the mirror reflection of ρ across the boundary Se and onto

Sg.

3.4.1 Local minima, fixed points and the global minimum

The difference map iterate ρ(ν+1) does not satisfy either constraints and is defined

as follows:

ρ(ν+1) = ρ(ν) + ∆

= ρ(ν) + dg − de

= (I + Pg(2Pe − I)−Pe)ρ
(ν)

At a local minima, the iterate moves steadily away from the two constraints

with a constant step ∆ = ρ(ν+1)−ρ(ν) = min |Se−Sg| as shown in figure 3.3. Note

the alternation between de, dg in table 3.1, where dgρ
(ν) = deρ

(ν+1) from 2 → 10,

as the iterate hovers above a local minimum. Instead of stagnating at a local

minimum, the difference map iterate is repelled monotonically, with a step ∆. A

stagnation point occurs when Pg(2Pe − I)ρ(ν) = Peρ
(ν+1), as depicted in figure

3.4, where the distance between the white squares corresponds to Pg(2Pe−I)ρ(ν),

and the distance between the yellow dots corresponds to Peρ
(ν+1).

Figure 3.5 shows that for larger distances between the sets, the algorithm

converges faster, as the step size ∆ increases.
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Figure 3.3: Difference Map with a suc-
cessful path: Se is the non-convex double
circular surfaces. Sg is the one dimen-
sional vertical line. Red dot is the start-
ing point. Green dots traces the differ-
ence map iterates, which are repelled by
the local minimum, and finally fall into
a fixed point, which is a point satisfying
the following equation:
Pg(2Pe − I)ρ? = Peρ

?.

n de dg |dg − de|
1 30 45 15
2 42 57 15
3 57 73 16
4 73 89 16
5 89 105 16
6 105 121 16
7 121 137 16
8 137 153 16
9 153 169 16
10 169 185 16
11 184 177 7
12 174 175 1
13 175 176 1

Last Peρ
? |dg − de|

14 176 176 0

Table 3.1: The difference map
iterates. A local solution cor-
responds to dgρ

(ν) = deρ
(ν+1),

as can be seen in iterations
2 → 10. In this case the step
∆ between iterates is equal to
the distance between the sets,
and thus |dg−de| = const 6= 0.
A fixed point is reach when
|dg − de| → 0. A fixed point
is one step away from the solu-
tion, namely
ρ(sol) = Pgρ

? = Peρ
?
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Figure 3.4: A stagnation point occurs when Pg(2Pe − I)ρ(ν) = Peρ
(ν+1). For

two consecutive iterates ρ(ν), ρ(ν+1), depicted by the neighboring green and yellow
dots, the white square on the far right is (2Pe − I)ρ(ν). Pg(2Pe − I)ρ(ν) is the
distance between the two white squares. Peρ

(ν+1) is the distance between the two
yellow dots. Hence a stagnation occurs when the distance between the two white
squares is equal to the distance between the two yellow dots; in other words, when
the projection of the mirror image (2Pe−I)ρ(ν) on Sg is equal to the projection of
ρ(ν+1) on Se. For this case, the step between iterates ∆ (yellow and green circles)
is equal to the separation between the constraints: min |Se − Sg|.
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Figure 3.5: Clockwise, starting top left: as the local minimum depth increases,
the number of iterations required for convergence decreases.
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Fixed point and global minimum: The mechanism of escaping a local mini-

mum, relies on the proximity of the non-convex surfaces. In figure 3.6, the iterate

ρ(ν−1) represented by the blue dot is closer to the upper circle, while ρ(ν) is closer

to the lower circle. The global solution is at the lower surface, and hence, the

next step projects the iterate to a fixed point, where ∆ → 0. With ∆ = 0, the

iterative process stagnates. In this simple example, the global solution is one step

away from the fixed point, and hence we have:

ρ(sol) = Pgρ
? = Peρ

? (3.29)

3.4.2 When difference map fails

Fig 3.7 and table 3.2 show a case where the difference map’s iterate fails to emerge

out of stagnation and oscillates between three positions. This particular arrange-

ment of the constraint surfaces is analogous to a standing wave. Figures 3.8, 3.9

and 3.10 show how the geometrical distribution of the constraint sets affects the

ability of the iterate to escape stagnation points. The green line is the difference

map trajectory, while the yellow line is the trajectory after the addition of a prior

knowledge constraint. The prior constraint provides enough perturbations to al-

leviate stagnation. Figures 3.8 and 3.9 show more cases where the difference map

algorithm fails to emerge out of stagnation which is due the constraint boundaries:

at the verge of escaping a local minimum, the third surface constraint perpetually

reflects the iterate to a previous stagnation point. The boundaries in figure 3.10

are less restrictive, and hence an escape out of the local minimum was possible.

In conclusion, even though difference map algorithm performs remarkably well by

escaping local minima, in certain conditions, the boundary constraints form reso-

nance cavity as in fig 3.8, 3.9. It is for these cases that we introduce the adaptive

phase retrieval (APR) algorithm in chapter 8 as an improved map that breaks
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Figure 3.6: How does the difference map escape local minima? This figure en-
capsulates the answer. At a local minimum, the difference map algorithm is not
passive; at each iteration, ρ inches away from the constraints with a step ∆. The
iterates ρ(ν−1), ρ(ν) are represented by the blue/green dots. When the lower cir-
cle in Se becomes the closer projection, (2Pe − I)ρ(ν) gets projected down (the
far right white square, corresponds to the reflection of the green dot across the
lower circle). At this iteration, the step ∆ corresponds to (Pg(2Pe− I)−Pe)ρ

(ν),
which is the distance between the yellow dot and the white square, also equal to
the distance between the two subsequent iterates (green and yellow circles). The
yellow dot is a fixed point ρ?, as the distance between the sets at this location is
0. At this point, we simply project the iterate ρ? to find the global solution ρsol.
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such stagnation, by approaching an approximate solution.
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Figure 3.7: The difference map fails when
it enters into endless oscillations (oscil-
lations among blue, black squares and
the green dot. Red square is the start-
ing location.). Intuitively, as the iterate
emerges from a given stagnation, it is re-
flected back into stagnation by another
constraint surface.

n de dg |de − dg|
0 43 56 13
1 25 43 17
2 38 54 16
3 34 75 41
4 15 39 24
5 31 48 17
6 35 79 44
7 13 41 28
8 31 46 15
9 37 79 42
10 13 40 27
11 30 45 15
12 37 80 43
13 13 39 26
14 29 44 15
15 38 79 41
16 13 39 26
...

...
...

...
296 29 44 15
297 38 79 41
298 13 39 26
Last Peρ

? |de − dg|
299 29 44 15

Table 3.2: A three point oscil-
lations that yields a deep stag-
nation. The pattern observed
from n = 14→ 16, repeats for
endless iterations. The oscil-
lations are between three dis-
tances 15, 41, 26.
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Figure 3.8: The geometric location of the
third non convex surface affects the os-
cillations or the standing wave. A three
point oscillations that yields a deep stag-
nation, where the difference map is un-
able to emerge successfully (green trace).
By adding prior knowledge (blue Guas-
sian), the map is perturbed enough to
emerge out of stagnation (yellow trace).

n de dg |de − dg|
0 43 56 13
1 25 42 17
2 30 70 40
3 9 35 26
4 27 43 16
5 30 66 36
6 12 37 25
7 30 46 16
8 28 67 39
9 11 36 25
10 29 46 17
11 28 67 39
12 11 36 25
13 29 46 17

Last Peρ
? |de − dg|

14 28 46 18

Table 3.3: Here we have
39, 25, 17 as the repeating
pattern.
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Figure 3.9: A two point oscillations due
to the symmetry between the constraint
sets. The difference map is unable to
emerge successfully. With the addition
of prior knowledge (blue Gaussian), the
iterates (yellow line) emerge out of stag-
nation.

n de dg |de − dg|
0 43 56 13
1 25 42 17
2 21 58 37
3 1 17 16
4 16 33 17
5 22 58 36
6 4 13 9
7 12 28 16
8 25 62 37
9 8 9 1

Last Peρ
? |de − dg|

10 8 9 1

Table 3.4: As the constraint
surfaces are re-aranged, we
obtain a double standing
wave at 16, 37 as the repeat-
ing pattern.

Figure 3.10: In this case, both the differ-
ence map and the map with prior knowl-
edge are successful.

n de dg |dg − de|
0 43 56 13
1 25 42 17
2 38 54 16
3 43 77 34
4 5 28 23
5 24 40 16
6 31 70 39
7 4 28 24
8 16 20 4
9 17 19 2
10 18 19 1

Last Peρ
? |dg − de|

11 19 19 0

Table 3.5: A chaotic tum-
bling towards the global min-
imum.
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CHAPTER 4

Ankylography

Ankylography is a coherent diffraction imaging modality whose inception was

inspired by high numerical aperture data. At high numerical aperture, the mea-

surements have a natural curvature which is a direct result of the elastic scattering

phenomenon §4.1; in other words, the data is written (graphy) on a curved surface

(ankylos). Ankylography requires fewer tilt angles, in comparison to conventional

CDI data, as the informational content in the acquired measurements is higher,

due to the non-linear distribution of information in Fourier space. The initial goal

of Ankylography, was three dimensional structures determination from a single

diffraction pattern, but was later extended to multiple patterns for cases of insuf-

ficient information [60]. Single shot imaging, however, is still an active goal which

is possible using additional constraints, as we explore in chapter 8. Ankylography

was first demonstrated using soft x-ray table top source [35] and optical laser [36].

In §4.2, we examine the resolution gained from such method; in §4.3, we detail

the required data analysis steps and constraints. In §4.4, we demonstrate anky-

lography on simulated objects: a glass structure and a polio virus; in the next

chapter we discuss the experimental results.

4.1 Elastic scattering

For a weakly scattering semi transparent material, and under coherent illumina-

tion with wavelength λ, the measured amplitudes |F (~k)| are related to the density
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of the material by the Fourier Transform.

|F (~k)| = |
∫
ρ(~r)e−i

~k·~rd3~r| (4.1)

~r spans the density coordinates, also known as real space. In the measurement

space (reciprocal space), ~k lies on a spherical surface, as for elastic scattering the

magnitude |~k| is preserved.

4.2 Resolution

Following the geometry in figure 4.1, we compute the transverse resolution as:

dx =
λ

sin θmax
(4.2)

The longitudinal resolution can be found as:

sin
θmax

2
=

l
2
1
λ

where l2 =
1

dz2
+

1

dx2

dz =
λ

2 sin2 θ
2

At large scattering angles, where max(kz) ≈ max(kxy), the geometrical dis-

tribution of the data along the Ewald sphere carries more information about the

structure than the corresponding flat panel i.e where kz ≈ 0.

4.3 Data analysis and constraints

At the present time, all experimental coherent diffraction data are collected on

a planar detector. To account for the scattering geometry, we perform two step

analysis on the data: flux normalization and planar to spherical interpolation.
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Figure 4.1: High numerical aperture diffraction geometry. (dx, dz) correspond
to the transverse and longitudinal resolutions. θmax is the half-angle maximum
scattering. λ is the wavelength of the coherent beam. The curvature of the Ewald
sphere is proportional to 1

λ
.

4.3.1 Flux normalization

For a detector with spherical geometry, the solid angles per measurement pixel

are equivalent. However, for the case of planar detector, the solid angle per

pixel decreases with higher scattering angle. To account for this discrepancy, the

intensity measurements IM are first normalized to IN as follows:

IN(kdx, k
d
y) =

∆Ω(0, 0)

∆Ω(kdx, k
d
y)
IM(kdx, k

d
y) (4.3)

[61]

kdx, k
d
y are unitless integers representing the Cartesian coordinates on the detector.

∆Ω(0, 0),∆Ω(kdx, k
d
y) are the solid angles formed at the central pixel and a general

pixel kdx, k
d
y , respectively (Figure 4.2). ∆Ω can be computed by integrating the
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corresponding surface area as:

∆Ω(kdx, k
d
y) = R

∫ kdx+1/2

kdx−1/2

∫ kdy+1/2

kdy−1/2

dkxdky
(k2
x + k2

y +R2)3/2
(4.4)

R is a unitless measure of the distance between the scatterer and the detector,

which can be computed as follows:

sin θ =
n∆p

L
=
n

R
(4.5)

and ∆p is the physical size of a CCD pixel, L is the distance from the detector

and n is the number of pixels measured at θ angle.

4.3.2 Interpolation

After projecting the equiangular spherical coordinates kcx, k
c
y, k

c
z onto the planar

detector, we obtain a new set of points kd
′
x , k

d′
y :

kd
′

x =
Rkcx
R− kcz

kd
′

y =
Rkcy
R− kcz

(4.6)

To find the intensity at these locations, we conduct a spline interpolation from

IN(kdx, k
d
y). With the normalized intensity, the measurement at IN(kd

′
x , k

d′
y ) corre-

sponds to IN(kcx, k
c
y, k

c
z).

To prepare the data for three dimensional reconstruction, the spherical pattern

is embedded into the corresponding 3D array. For a real electron density, where

x-ray absorption is negligible, we can also include the centro-symmetric pattern.

Through the phase retrieval process, only points on the spherical patterns are

enforced, the rest of the points in reciprocal space are treated as unknown and

updated at each iteration.
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Figure 4.2: A sketch for a high numerical aperture experimental setup, using a
planar detector. ~k′ represents a vector in the detector plane. ~k is the corresponding
location on the Ewald sphere.
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4.3.3 Constraints

For a single diffraction pattern, the data is incomplete; as a result, this is an ill

posed problem. Such problems are hard to solve, unless we incorporate additional

information. Here we introduce two general constraints: smoothness and phase

extension.

Smoothness constraint is a form of regularization, which can be implemented

inside and outside the support region. In the outside support region, we apply the

uniformity constraint, using a box filter, in conformity with the prior knowledge

of zero scattering. Inside the density region, we apply the continuity constraint,

using a Gaussian filter. Recently, this constraint was shown to outperform various

forms of denoising strategies used in phase retrieval [62].

Amplitude extension is a method that gradually incorporates information

from reconstructions obtained at lower resolutions. Phase retrieval with small

sized data (≤ 173), quickly converges. To obtain lower resolution reconstructions,

we truncate the measurement to a suitable resolution, by excluding high angular

measurements. After obtaining such a small sized reconstruction, we use the

corresponding Fourier transform amplitudes as constraints, and hence the higher

resolution reconstruction will be more constrained by the data. By incrementally

increasing the resolution of the structure, we minimize the amount of missing

data, and as a result the phase retrieval process becomes easier for larger arrays.

4.4 Simulations

To demonstrate the potential of single shot imaging using ankylography, we simu-

lated the experiment in two cases: using a material science and biological samples.

In the following subsections, we detail the simulations and the reconstructions.
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4.4.1 Glass structure

The peculiar characteristic of the glass structure is its long range aperiodic form.

Although a solid material, the glass structure resembles a liquid arrangement,

where the structural order is correlated at long scales prohibiting structure deter-

mination with crystallographic techniques.

The glass model used in this experiment is 25Na2O–75SiO2, (figure 4.3). These

sodium silicate glasses are the most typical glass form used in a variety of applica-

tions, from glasswares to photonics devices. Visualizing these types of structures

at atomic resolution will provide an insight into the mysterious formation of these

long range molecular morphologies, and hence enable better understanding of their

formation and subsequently improve their usage.

The 3D glass structure was simulated by computationally annealing the glass

using molecular dynamics. The final geometry of the core and valence electrons

was obtained by optimization using ab-initio density functional theory calcula-

tions. The molecular dynamics simulations include a series of melt and quench

with partial charge potentials as described in [63]. The sample used contains 204

atoms, with volume of 14 × 14 × 14 Å3 and density of 2.43 g/cc. A simulated

incident beam generated by an Energy Recovery Linac, with 1014/s coherent pho-

tons and a 2 Å wavelength, focused down to a 100 nm spot [64], scattered off the

glass particle. Data was assumed to be collected on a spherical detector, where

the signal is acquired up to 2θ = 90◦, with an exposure time of 5.1 s as shown in

Fig 4.3. Poisson noise was added to the diffraction pattern which is measured on

a shell embedded in a volume of 64× 64× 64, corresponding to an oversampling

degree Od = 2.7.

Phase recovery is carried through the iterative projection algorithm HIO. The

initial density estimate is a random distribution. The constraints used are the
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Figure 4.3: (a) Schematic layout for the high numerical aperture diffraction experi-
ment, where a coherent beam scatters off the sample, with a maximum diffraction
angle 2θ = 90◦ (The colorbar shows the dynamic range in the data). (b) The
simulated glass structure with volume 14 × 14 × 14 Å3 obtained by molecular
dynamics simulations. The red, purple and yellow correspond to oxygen, sodium,
and silicon atom’s positions, respectively.

Figure 4.4: Left panel: (a,c) are two reconstructed slices along xy and xz. Right
panel: (b,d) are the original electron density distributions obtained through molec-
ular dynamics simulations. By measuring the distance between the two binding
atoms, we confirm the resolution of 2 Å, which corresponds to λ = 2 Å in
agreement with 90◦ scattering angle. (a, c) are reconstructed from the measured
spherical shell though phase retrieval, along the xy, yz planes respectively. The
slight discrepancy between the reconstructed and the simulated density, is due to
noise in the measurement.
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modulus constraint enforcing the measured points on the shell, and positivity,

boundedness and smoothness. Smoothness constraint inside the support is im-

plemented periodically to prevent stagnation, while the uniformity outside the

support is applied at each iteration to reduce the dimensionality of the problem.

In both cases, the corresponding convolution kernel is a 3×3×3 voxels, a Gaussian

smooth edge curve inside the support, and a box filter outside the support. To

monitor the convergence of the retrieval process, the error metric εm on the Ewald

shell is computed. As the initial seed dictates the evolution of the algorithm, fifty

different random starts were conducted, and the smallest εm is selected as the

optimal solution.

Fig 4.4 (a, c) are the two slices obtained along the xy and xz directions. The

distance between the nearest neighbour atoms demonstrate that the resolution

obtained is indeed 2 Å in agreement with the resolution computed for a λ = 2 Å

and a scattering angle of 90◦. Fig 4.4 (b, d) are the corresponding molecular dy-

namics simulations. The agreement between the reconstructed and the simulated

structure is high; the slight discrepancy is attributed to the noise level present in

the measured data.

4.4.2 Polio virus

The Polio virus is an excellent model system for studying the cell entry mechanism

of simple non-enveloped viruses. How this kind of non-envelop virus releases its

viral RNA into the host cell is not known. This virus contains a single-stranded

RNA genome within an icosahedral capsid that is delivered into a host cell via in-

teraction of virus coat proteins with a poliovirus receptor. During the process, the

virus undergoes an irreversible conformational change that results in an increased

affinity for the poliovirus receptor, producing what is know as the 135S particle.

The particle was obtained by cryo-electron microscopy where 8244 particles were

averaged [65]. The particle was downloaded from the Electron Microscopy Data
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Bank at http://www.ebi.ac.uk/pdbe/emdb/entry1136.

Here we simulate an XFEL pulse at wavelength λ = 1.77 nm with 1013 photons,

focused down to a 100 nm spot, scattering off the 135S particle. Measurements

with added Poisson noise were calculated on the Ewald sphere up to 62.6◦ angle,

corresponding to 2.0 and 3.3 nm transverse and depth resolutions. To simulate

the beam stop, the central 7×7×7 pixels were removed. Fig 4.5, left panel shows

the front view of the spherical diffraction pattern used for this simulation, with a

dynamic range from 0 to ∼ 106 photons. The right panel shows the reconstructed

poliovirus. This iso-surface rendering is in excellent agreement with the model,

where the reconstructed capsid form the five fold symmetry resolved by the star-

shaped mesa (red dots), and the propeller tip (blue dots) forming the three fold

symmetry. Fig 4.5 a, b also show the canyon (arrow) which is the expected binding

site of the poliovirus receptor. Phase retrieval was performed through a similar

process as for the glass structure reconstruction. However, due to the larger array

size in this case, in addition to the smoothness constraint, we used the amplitude

extension constraint, as detailed in 4.3.3; table 4.1 shows the incremental steps

used. The total oversampling degree Ot refers to the total reciprocal space points

divided by the number of unknowns in real space. The points in the recipro-

cal space include the Ewald sphere as well as the points acquired by amplitude

extension. Diffraction angle refers to the maximum scattering angle used for a

particular low resolution simulation. εmewald
is the data fidelity error as measured

on the Ewald sphere. As this is a simulated experiment, we have access to the

entire domain; εmentire
is error acquired in the entire reciprocal space volume.

Due to the discrete nature of the model, it is impossible to exactly simulate

the continuous diffraction intensities on the Ewald sphere. To resolve this issue,

we first interpolate the structure into a 10×10×2 voxels (table 4.1), and calculate

its oversampled noisy Fourier magnitudes A1 embedded in the Ewald sphere with

a 40 × 40 × 6 voxels. By using the iterative algorithm, we reconstruct the low
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Figure 4.5: Left panel: Front view of the noisy spherical diffraction pattern (dy-
namic range [0, 1.4 × 106] photons) used for the reconstruction of the Poliovirus,
where the intensities at the central 7 × 7 region were removed. The pattern was
embedded into a volume of 128 × 128 × 78 voxels. Right panel. Reconstructed
structure of an individual poliovirus from a single simulated X-FEL pulse. (a)
Iso-surface rendering of the reconstructed viral capsid structure, showing a five-
fold mesa (red dots) and the tips of a three-fold propeller (blue dots). The canyon
between the mesa and the propeller structure (arrowed) is the expected binding
site to its receptor the volume occupied is 32 × 32 × 20. (b) A 1.65 nm thick
central slice of the reconstructed 3D virus structure across the five-fold mesa and
the propeller structure. The arrow indicates the receptor binding site. Scale bar,
5 nm. The two panels (diffraction pattern and reconstructed structure) are not
shown to the correct relative scale.

R-space Array K-space Array Ot Diffraction Angle εmewald
εmentire

10× 10× 2 40× 40× 6 7.29 16.1◦ 0.0004 0.002
16× 16× 4 64× 64× 16 7.34 26.3◦ 0.0007 0.010
20× 20× 6 80× 80× 24 14.58 33.7◦ 0.002 0.015
24× 24× 10 96× 96× 38 13.99 41.7◦ 0.002 0.021
32× 32× 20 128× 128× 78 9.07 62.6◦ 0.003 0.14

Table 4.1: Progressive amplitude extension used in Polio virus.
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resolution virus structure as well as the entire Fourier magnitudes, |FA1
Recon(~k)|.

We then interpolate the reconstructed structure into a 16 × 16 × 4 voxels, and

also calculate its Fourier magnitudes on the Ewald sphere with Poisson noise,

|FA2
Ewald(

~k)|, where A2 represents a 64× 64× 16 voxels. To implement amplitude

extension, we calculate the hybrid Fourier magnitudes by:

|FA2
hybrid(

~k)| =

 ω · |FA2
True(

~k)|+ (1− ω) · |F
A1
Recon(~k)|
|FA1

True(~k)|
· |FA2

True(
~k)| ~k ∈ A1

|FA2
Ewald(

~k)| ~k ∈ A2

(4.7)

Where |FA1
True(

~k)| and |FA2
True(

~k)| represent the entire Fourier magnitudes calculated

from the 10× 10× 2 and 16× 16× 4 voxels, and ω is a parameter between 0 and

1. We adjusted ω such that:

∑
||FA2

Hybrid(
~k)| − |FA2

True(
~k)||2∑

|FA2
True(

~k)|2
=

∑
||FA1

Recon(~k)| − |FA1
True(

~k)||2∑
|FA1
True(

~k)|2
~k ∈ A1 (4.8)

The assembled |FA2
Hybrid(

~k)| is then used to reconstruct the 16× 16× 4 voxels. We

repeat the amplitude extension procedure in table 4.1 until the full-size recon-

struction of the poliovirus structure is obtained.
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CHAPTER 5

Experimental Methods and Reconstructions

In this chapter, we detail three experiments conducted with hard x-ray, soft x-

ray and optical microscopes. The first experiment was performed at Spring-8

in Japan, where we used a mitochondria as a sample. The data quality was

not optimal for a reconstruction, nonetheless, we gained important experience

regarding the experimental setup §5.1. The second experiment was conducted at

Jila in Colorado as a proof of concept for table top diffraction imaging [66]. In

this case we also used the data to demonstrate ankylography with soft x-ray data

[35], §5.2. Lastly, the optical experiment was fully conducted at UCLA where we

obtained clean measurements as well as an excellent reconstruction, demonstrating

the feasibility of ankylography in the optical regime [36], §5.3.

5.1 The coherent X-ray microscope

Hard x-rays, between ∼ 0.1 and 2 Å wavelengths, diffracting on the atomic scale

can provide high resolution images of the scattering electron densities. Unlike

table top light sources, access to coherent synchrotron radiation requires collabo-

ration between institutions. Synchrotron facilities offer advantages such as small

beam divergence, continuous energy modulation, and high beam flux and thus

greatly facilitate the acquisition of high resolution data. Such beam characteris-

tics are due to the underlying sophisticated ring and beamline design. To provide

an overview of the coherent x-ray diffraction microscope (CXDM), we describe

the beamline BL29XUL at the Super Photon Ring 8 GeV (SPring-8) and detail
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Figure 5.1: A sketch for the x-ray optics showing the beam circulating in the ring,
entering the undulator, subsequently, passing through the first monochromator to
enhance the beam spectral coherence. The focussing mirrors and the additional
monochromators downstream further improve spectral coherence. This sketch was
obtained from [68].

the experimental setup.

BL29XUL is the third beamline constructed at Spring-8 with three major

parts: front-end, optics hutch, and three experimental hutches (EH1, EH2, EH3)

[67]. At the front end, a standard in vacuum undulator is located, with tunable

140 periodic magnets resulting in an optimized x-ray flux emission (∼ 1013 pho-

tons/s) and covering a spectral range of 4.5 to 18.7 KeV. At the optics hutch,

there is a liquid nitrogen cooled Si Double Crystal Monochromator (DCM) and a

pair of reflecting mirrors used to control the spectral-flux modulation and beam

collimation (Fig 5.1).

The experimental hutch (EH1) houses the customized diffraction microscope,

which is located ∼ 52 m from the x-ray source. Fig 5.2 shows the schematic layout

of the diffraction microscope. The incident beam delivered to EH1 is 1.3 mm in

width and 0.7 mm in height; a relatively large area in comparison with a typical

sample size of around ∼ 1− 10 µm. Here we describe the experimental hutch by

dividing it into three regions: upstream, sample and downstream region.

To enhance spatial coherence, a 20 µm-diameter pinhole aperture is installed

about 1 m upstream from the sample [69]. Downstream of the pinhole, two thick
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Figure 5.2: A sketch of the CXDM microscope; figure is obtained from [43].

silicon windows with beveled edges are introduced inside the sample chamber as

L-shaped guard corners, where the lower-right corners are used to minimize the

scattering from the pinhole edges. The combination of pinhole and corners pro-

duce clean diffraction signal in three adjacent quadrants on the detector.

The sample is mounted on a thin, 30 nm thickness, silicon-nitride membrane

framed by 200 microns thick Si. The thin membranes are transparent to the x-ray

energies, and hence they form a non-interfering sample holder. One imperative re-

quirement for CXDM is that the sample be well isolated on the membrane and that

the membrane be free from films, residue, dust and condensate. Non-uniformities

in the region surrounding the sample result in noisy interference measured in the

diffraction pattern which would hinder the image reconstruction, as specifying

the support which includes the noisy regions would be a harder problem. To

reduce the background signal, the CXDM is operated in vacuum (∼ 10−4 Pa).

In-vacuum piezo-actuator coupled motion stages (Newport CMA-25) with a res-

olution of 1 µm/step are used to manipulate guard corners and sample positions.

Motion stages are controlled using LabView. Prior to mounting the sample inside

the chamber, the sample’s relative position referenced by the membrane edges is

mapped using a high resolution optical microscope.

A movable attenuator, positioned downstream of the sample, permits a di-

rect beam measurement, and facilitate the alignment of optical components. The
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location of the incident beam provides a rough estimate of the central pixel, cor-

responding to the missing center in the measurements; this location is further

determined in the subsequent data analysis. At the downstream of the attenu-

ator, a movable photodiode measures the beam strength. As a cautionary step,

the attenuator is used, when measuring the intensity of the incident beam, as pre-

ventive measure shielding the CCD from the intense direct beam. The diffraction

patterns are measured by a deep-depletion and liquid-nitrogen-cooled CCD cam-

era with 1340× 1300 pixels and a pixel area of 20× 20 µm2 (PI-LCX1300). The

distance between the sample and the CCD camera is adjustable in order to fulfill

the oversampling requirement [70], which is a function of the x-ray wavelength,

the sample size and the detector pixel size [71]. A large beamstop, mounted just

in front of the CCD detector, is used to block the fourth noisy quadrant as well

as the direct beam. As the membrane edges are the only landmark for the sample

location, the sample stage is scanned to find the designated edges. This step is

performed using the photodiode as the intensity counter. At the moment the in-

cident beam hits the sample on the membrane, the scattering is quite noticeable

as seen on the detector. Once the edge position is known, the sample can be lo-

cated using the offset coordinates obtained from the optical microscope mapping.

Fine adjustment of the sample position is carried out by maximizing the counts

recorded on a CCD detector. A 2D scanning of the sample is performed in the

plane perpendicular to the beam direction. A low-resolution diffraction pattern

is measured by the CCD for each scanning position of the sample. The optimal

sample/beam relative position corresponds to the position that yields maximum

diffraction intensity. In order to measure a 3D data set, the sample stage is

mounted on a rotary stage. The sample is usually restricted to rotation angles

between ∼ ±70◦ - 80◦, due to the obstruction with the silicon-nitride-membrane

edges [43].
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Figure 5.3: (a) Oversampled 2D diffraction pattern on the Ewald sphere. (b,c)
Iso-surface renderings of the 3D reconstructed image in the transverse, and the
longitudinal planes respectively. (d) Line scan along the dashed line in (c) indi-
cates the width of the tilted sample’s projection onto the z-axis to be 405 nm.
(e) SEM image of the sample (scale bar 1µ m). Insets (right) show two struc-
ture defects (blue arrows) in the sample which are spatially resolved in the 3D
reconstructed image (blue arrows in b).

5.2 Table top soft X-ray data

Although, I have not participated in the experimental setup, we re-used the data

to demonstrate Ankylography. Here, we detail the 3D reconstruction and briefly

describe the experimental setup. For more detailed description of the experiment

please see [66]. The diffraction data was obtained with a soft x-ray table top light

source, with a wavelength λ = 47 nm, and a temporal coherence λ
∆λ
≈ 104 where a

2D reconstruction was performed [66]. The sample is a thick aperture of a waving

stick figure. The test pattern was etched on a substrate made of silicon nitride

membrane with thickness ≈ 100 nm. The substrate is opaque to the soft x-ray,

except at the etched location. The test pattern had a slant along the longitudinal

direction of the beam, and thus provided a 3D depth to the sample. A CCD

detector was placed 14.5 mm from the sample, where the 2D diffraction pattern

was measured. The CCD detector is an Andor with 2048× 2048 pixels, operating

at the extreme ultraviolet regime, with 13.5× 13.5 µm2 per pixel area.

For the case where the experimental data has a high oversampling, it is ben-
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eficial to bin the data to enhance the signal to noise ratio in the measurements.

Hence, here we integrated the intensity over a 3× 3 pixel area. Subsequently, we

interpolated the data on the Ewald sphere as described in §4.3. The spherical

diffraction pattern with an angle 2θ = 35.9◦ was embedded into a 3D array of size

420× 420× 240 voxels with an oversampling degree Od = 2.6.

Similar to the simulation objects in §4.4, phase retrieval is implemented through

the iterative projection algorithm using HIO, where positivity, smoothness inside

the support, and uniformity outside the support were enforced. Fig 5.3 b,c show

the iso-surface rendering of the 3D reconstruction in the transverse as well as the

longitudinal plane. The array size of the reconstructed image is embedded in a

100 × 170 × 7 voxels. In Fig 5.3 b, the blue arrows correspond to dust particles

present in the scanning electron microscope (SEM) image (Fig 5.3 e). The spatial

resolutions of the reconstruction along the xy and xz planes were estimated to be

80, 14 nm, respectively. We also measured the tilt angle of the sample relative

to beam to be 5.1◦ (Fig 5.3 b). Figure 5.3 d shows a line scan along the z axis of

the reconstructed image. From the reconstruction analysis, the sample’s depth is

405 nm which is in close agreement with the expected value of 389 nm calculated

from the sample geometry and tilt angle [35].

5.3 Table top optical microscope

A naive description of the optical setup makes it sound simple: a planar monochro-

matic wavefront weakly scatters off an isolated sample; the scattered signal is

measured on a planar detector. However, in practice, the minutae of the sensitive

details, play the major role in the success of this optical diffraction microscope.

Here we describe the four major experimental steps, in addition to the algorithmic

step which facilitate the success of this optical microscope: sample preparation,

beam quality, direct beam suppression, data collection and lastly image analysis
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Figure 5.4: DIC microscope image of the raftlike thin object with volume ∼
4× 7× 1 µm3.

and reconstruction.

The Sample preparation is a very delicate step which requires the isolation

of 7 − 12 µm sized particles on a 30 nm transparent membrane of SiN4. Such

membrane is completely transparent to the beam as its thickness falls below the

incident beam’s wavelength (0.543 µm). Any dust particle (> 0.4µm) in the

beam adds an undesirable noise to the interference pattern. To prevent noise

due to airborne dust particles, the experiment was mounted on an optical bench,

with clean air blower. The sample is an optically transparent particle, a dielectric

phase pattern made of non-absorbing SU-8 epoxy photoresist that had been cross

linked by using an Ultratech XLS stepper [72, 73]. The differential-interference-

contrast (DIC) image shows a raft like arrangement of letters (WWWA) with size

∼ 4× 7× 1 µm3 (Fig. 5.4).

Beam quality is a function of the source generator and the auxiliary optics used

to reduce its size. The finite atomic transitions of the HeNe Gas laser render these

kind of sources with an exceedingly narrow frequency bandwidth, suitable for a

diffraction experiments. Such lasers can operate with transverse mode TEM00

of a Gaussian beam profile. This profile is desirable for two main reasons: it is

the closest approximation for the spatially confined plane wave and preserves its
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Figure 5.5: Wavefront curvature as a function of propagation distance.

shape as it passes through a collimation system.

Due to the difficulty of isolating the sample to within the beam cross sectional

area of ∼ 1350 µ m, we reduce the beam size to ∼ 200 µ m and hence drastically

minimize the probability of scattering from a parasitic object in close vicinity to

the sample. Ideally, a top hat beam profile of cross section slightly larger than

the sample’s cross section is desirable to avoid any defects that may be present

on the membrane. However, the inverse relation between beam size and beam

divergence places a lower limit on how small the beam size can be. To reduce

the beam size, we used a combination of two lenses. The distance between the

lenses and the respective positions from the sample and the laser were optimized

following the theoretical wave propagation of the beam through the lenses, and fine

tuned experimentally. The transmission of a Gaussian beam through the optical

lenses alters the beam waist W0, the radius of curvature R as well as the depth of

focus z0, however the beam profile is preserved. For laser cavity with a confocal

resonator, the beam waist is located at the cavity’s center. To bring the focal waist

in front of the cavity, we place a 500 mm plano-convex lens, at a close distance

from the laser, such that the beam entering the first lens is approximately planar,

as the curvature of the beam is infinite at the waist, but drastically decreases,

to a minimum at the Rayleigh’s distance z0 = 4.5 m. However, by placing the
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first lens at z << z0 such that the curvature is still low (Fig. 5.5), we find that

the focused location of the beam is within the ray optics calculation. Hence by

adding the second lens at one focal distance from the first focal point, we reduce

the beam by a factor of f2
f1

. The propagated waves quickly acquire a curvature,

once the beam size is reduced, as the new depth of focus zR is further reduced by

(f2
f1

)2. Therefore it is important to operate very near the beam waist, where R is

large:

R(z) =

 ∞ for z << zR

z for z >> zR
(5.1)

Internal reflections at the lenses’ surfaces add additional challenges to the set

up. By slightly tilting the lenses while keeping the beam within the central lens

region, we offset the reflected beam. Furthermore, the laser’s lasing medium, the

red halo, is also transmitted along the laser beam. To eliminate this parasitic light,

we place a pinhole at the first focal point. The pinhole acts as a spatial filter,

where the opening is painstakingly adjusted not to vignette the direct beam, but

narrow enough to block the multiple reflections of both the lasing medium and the

reflected direct beam. Figure 5.6 shows a sketch of the optical set up. The sample

holder was rotated at 45◦ to create additional depth as the sample’s thickness was

below detection.

The Beam stop protects the CCD from intense direct radiation that will de-

stroy pixels hit by direct exposure. In figure 5.6, the faint shadow is the beam

stop seen through the pattern; the dark region on the pattern is the projection of

the beam stop. The direct beam amplitude is many orders of magnitudes larger

than the scattered beam, and is beyond the detector’s dynamic range. Hence,

it is crucial to completely block the direct beam once it has passed through the

sample. To collect high numerical aperture diffraction data, the CCD was placed

very close from the sample. The compactness of the setup required a very delicate
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Figure 5.6: A sketch of the experimental set up.

construction of the beam stop which was made of highly reflective SiO2 material.

In order to minimize the reflection, we also blackened the surface of the beamstop.

The reflection direction was optimized such that the reflected beam does not in-

tercept any other reflective surfaces which would have added an extra background

to the detector. In this case the reflection from the beam stop was aimed on the

wall covered by a black cloth and towards the blind side of the detector.

Data collection The intensity measurements were recorded on a liquid Nitro-

gen cooled CCD camera. To minimize dark current noise, the CCD temperature

was held low during the experiment. With 1340×1300 pixels and 20×20 µm2 per

pixel area, we collect a thousand exposures for each high and low resolution data

(fig 5.7). The high resolution exposures were taken with a shorter time length due

to the faster saturation of the detector, as the signal is stronger at a location close

to the CCD. The reason we acquired data at low resolution was to ensure that

the missing center is confined within the centrospeckle [26]. Prior to recording the

scattering intensities, we collect background exposures with the same acquisition

length. For each CCD position, we optimize the lenses to suppress any additional
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Figure 5.7: High and low resolution diffraction patterns collected at distances of
31, 108 mm respectively from the sample.

scattering, where we obtain a clean background. At the high resolution position,

we acquired four patterns. To obtain highest possible angles, we translated the de-

tector both horizontally and vertically. The span of these translation was limited

by the camera’s mechanical rail and not by the signal’s strength.

Data analysis As mentioned above, four diffraction patterns were acquired at

high resolution, and one at low resolution. After background subtraction, the four

diffraction patterns were seamlessly merged by aligning and normalizing the over-

lapping regions. Prior to aligning with the high resolution data and to account

for the larger oversampling, the low resolution data were binned. Subsequently,

we performed image pre-processing which includes flux normalization and inter-

polation (§4.3 for more details) before the image reconstruction step, where the

pattern was embedded in the respective 3D volume (fig. 5.8).

Image Reconstruction of the WWWA sample. HIO was used to perform the

phase retrieval. The transverse support was first estimated from the reconstruc-

tion of the 2D pattern, where the reconstructed image shows defocusing effects

related to the curvature of the data, nonetheless it provides a rough estimate of

the cross sectional support area. We project the 2D support along the longitudinal

direction where the thickness can be roughly estimated from the longitudinal reso-
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Figure 5.8: Patterns used for the Ankylographic reconstruction, post flux nor-
malization and spherical shell interpolation, the corresponding diffraction angle is
32.3◦.

Figure 5.9: Surface rendering of the WWWA reconstruction.

lution and the transverse support. Subsequently, the 3D support was refined using

the 3D reconstruction algorithm, where we applied the smoothness constraint to

minimize the effects of stagnation, as discussed in §4.3. The convergence of the

algorithm was monitored through the εm metric. Unlike a 2D reconstruction, 3D

requires a large number of iterations (∼ 5000). Figure 5.9 shows a surface render-

ing of the reconstruction, where the tilt angle, with respect to the incident beam,

is accurately recovered. The transverse and longitudinal resolutions obtained were

1.0 µm and 3.5 µm.
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CHAPTER 6

Experimental and Computational Challenges

Noisy, incomplete data can be directly attributed to the experimental challenges

which subsequently cause the computational challenge. With the availability of

new high flux sources, radiation damage is the main obstacle to higher resolution

imaging. In this chapter, we first review the radiation damage problem §6.1.1,

then we list current experimental methods aimed at overcoming this obstacle

§6.1.2 6.1.3. We then show that the computational difficulty of noisy incomplete

data leads to degenerate, non-unique solutions §6.2. To gain further insight into

the computational problem, we examine a low dimensional system §6.2.1, we also

offer a quick preview to the adaptive phase retrieval algorithm §6.2.1.1, which is

fully described in chapter 8.

6.1 Experimental challenges

Higher resolution structure determination using x-ray diffraction, requires shorter

wavelengths and larger numerical aperture. While the high frequency radiation

increases the potential of specimen damage, collecting signal at high diffraction

angle requires longer exposure time or higher flux, each of which also cause sample

deterioration §6.1.1. Various experimental methods were developed to overcome

this challenge: femtosecond imaging §6.1.2, generating reproducible samples and

using statistical averaging to improve the signal to noise ratio §6.1.3.
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6.1.1 Radiation damage

The scattered intensity is proportional to the fourth power of the resolution

[74, 75], as a result, high resolution imaging requires a tremendous increase in

the scattering power, which requires higher incident flux. With a stronger flux,

the additional energy deposited into the sample can cause structural changes and

higher order scattering events. In CDI, we are mainly interested in single elas-

tic scattering, where the relation between the measurement and the structure is

well defined. Furthermore, the energy of high frequency radiation deposited onto

the sample destroys the electrostatic bonding between the molecules, and also

lead to sample deterioration [76, 75, 77]. While cryo-protection has been used

to increase the maximum tolerable dose for certain bio-particles [78], with femto-

second imaging it is possible to obtain data prior to the occurrence of radiation

damage §6.1.2.

6.1.2 Diffract and destroy

With the intense short x-ray pulses of X-FEL ( < 10 fs, 1012−13 photons), a bil-

lion times more powerful than the third generation synchrotron radiation light

source, it is possible to collect diffraction data, before the coulomb explosion of

the specimen takes place [79, 80]. Reconstruction from single pulse was recently

demonstrated with the aerosolization of mimivirus, and the live cell solution ex-

periments [81, 82]. For three dimensional structure determination, and in the

absence of prior knowledge, a single diffraction pattern might not contain suffi-

cient information; as a result, diffraction from multiple copies is further explored

§6.1.3.
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6.1.3 Multiple copies

To collect multiple diffraction patterns of particles at random orientations, deli-

cate methods of sample preparation are being developed. Container free sample

injection alleviates the need for a manual sample replacement and takes advantage

of the fast pulse rate of X-Fel sources. Various methods of particle streaming have

already been successfully demonstrated, for example the gas phase injector as used

in the mimivirus data [81] and the liquid phase injector used for the nano-crystal

data [78]. Two competent strategies for recovering a single bio-molecule structure

from correlation data are being explored. a) Using a single particle diffraction

and by maximizing the correlations among multiple snapshots of identical copies,

structural information can be recovered, as proposed by Fung et al where they

predicted the assembly of three dimensional information from faintly scattering

objects, based on the common-line method where the curvature of the Ewald

sphere is manifested in a line intersection among the various orientations [83][84].

b) The concept of multiple particles in solution using correlated x-ray scattering

measurements, is being re-visited now that the high intensity sources are coming

online; for an excellent review please see [85].

6.2 Computational challenges

Because the energy landscape ε2m is a non-convex function, projection based iter-

ative algorithms, thereafter referred to as IPPRA, are prone to getting stuck in

local minima. This problem is magnified as the amount of missing data increases.

Here we simulate reconstructions from diffraction data with increasing level of

missing points as plotted in figure 6.1. With εm on the x-axis and εr (image qual-

ity) on the y-axis, each of these plots contains a batch of reconstructionsNb = 256.

The top left plot correspond to measurements with high signal to noise ratio; the

correspondence between εk, εr is one to one, as can be inferred from the slope of
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the linear trend. As the noise level increases (going clockwise across the panels),

the slope approaches ∞, and hence it becomes insufficient to measure the accu-

racy of a reconstruction using only εm. To summarize, the non convexity in the

energy landscape yields local minima which can create degeneracy in case of very

high level of missing data. To further understand this transition between a well

defined local minima and degenerate states, let us examine the energy landscape

for a three-pixel system §6.2.1.

6.2.1 Low dimensional study

A qualitative description of the energy landscape is best understood using a graph-

ical representation; however, with high dimensional images (∼ 106 pixels) no such

visual representation exists. While low dimensional versions of high dimensional

problems can often build intuition about their high dimensional counterparts, they

cannot be taken too seriously since qualitatively different behaviour may emerge

in the high dimensions. Nonetheless, using a simple model of a three-pixel system

can provide an insight into the missing data problem. Here, we present figure

6.2 as simple illustration of the basic problem associated with missing and noisy

data. Given a simple model ρ(~x) of a three-pixel system, with the corresponding

measurement matrix I(~k), i.e:

ρ(~x) =


0 0 0 0

0 7 5 0

0 1 0 0

0 0 0 0

 and I(~k) = |Fρ(~x)|2 (6.1)

we compute the energy landscape ε2m as:

ε2m(x1, x2) =
||
√
I(~k)− |ρ̂(~k)||22
||I(~k)||2

(6.2)
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Figure 6.1: εm, εr as a function of noise, for a batch of 256 reconstructions. From
top left to bottom right, the amount of missing data gradually increases.
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Figure 6.2: Energy landscape (ε2m) for a two dimensional system (x1, x2), where the
missing measurements increase from 0, 20 to 50% (left to right). The red arrows
display the gradient. The solution lies within the black contour, local minima
within the gray contour (far left subplot). As the missing data increases, the
location of the global minimum becomes undefined, as the black contour stretches
over a shallower landscape.

By plotting ε2m as a function of the real space variables x1, x2, for different

amount of missing data (Fig 6.2), one observes qualitative differences. Note x3

can be computed through normalization. The left most sub-plot is for complete

data where the location of the global minimum (black contour) is conspicuous, as a

result, an IPPRA successfully reaches the global solution. The middle and far right

sub-plots for incomplete measurements, where the high resolution measurements

are missing, we observe smoother landscape, as the error vector in Eq. 6.2 has

less components. The solution is somewhere within the shallow (black) contour.

In such case, the IPPRA stagnates wandering around with no clear direction. To

solve this problem, additional metrics should be included, as we demonstrate in

chapter 8.

6.2.1.1 Adaptive phase retrieval (Preview)

Here we give a quick preview of the performance of adaptive phase retrieval (APR)

algorithm, we show the low dimensional study, in comparison with IPPRA. In

particular, structure determination for a three pixel system is implemented using
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three different iterative algorithms, namely alternating projection (AP), difference

map (DM) and adaptive phase retrieval (APR). All maps are listed below for easy

reference:

ρ(n+1) = PSPmρ
(n) AP

ρ(n+1) = ρ(n) + (PS(2Pm − I)−Pm)ρ(n) DM

ρ(n+1) = ρ(n) + (PS(2Pm − I)−Pm)ρ(n) + β(Pprior − I)ρ(n) APR

The underlying image whose energy landscape is shown in fig. 6.3, fig. 6.4 is

nine dimensional ρ = [a, b, c, 0, 0, 0, 0, 0, 0], oversampled by three. As c =
∑
ρ −

a− b, this problem is a two dimensional phase retrieval problem. Note, that the

twin image occurs at ρ = [c, b, a, 0, 0, 0, 0, 0, 0]. Hence, we expect global minima

at (a, b) and (c, b). The background of the energy landscape ε2m is computed using

Eq.6.2. The global solutions are marked by the cyan squares, which are also

the points of total intersections between all ellipses. Each ellipse corresponds to

a single measurement point at k. We have nine measurements, but because of

the symmetry in the Fourier transform (real density), we show only five sets (for

k = 0, we have the whole plane). The sets are generated using Eq 3.4.
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Figure 6.3: Background is the energy landscape ε2m. The white ellipses correspond

to I(~k), for k = 1, 2, 3, 4 (k = 0 is the whole plane, k = 5, 6, 7, 8 are equivalent
to 1, 2, 3, 4, respectively). The global minima (twin) are marked by the cyan
squares (or within the cyan contour). Within the red contour, a local minimum
is located. The Gaussian located at the upper part of the outskirt of the yellow
energy contour corresponds to the prior knowledge. Notice how the AP (yellow)
and DM (red) iterations are stuck at the local minimum, while the APR (blue)
easily emerges out of the stagnation point and into the global solution, despite the
uncertainty in the prior knowledge. The beginning and the end of the iterative
map is marked by a circle (the red dot is where DM ends, a local min.)

73



Figure 6.4: Top row: The performance of the algorithms using different starting
points and prior location; APR successfully identifies the location of the global
minima. Bottom row: Cases where APR might fail; when the prior is closer to a
local minima; a case of an inaccurate prior.
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CHAPTER 7

Bayesian Methods and Prior Knowledge

In this chapter, we give a brief review of Bayes’rule and its history in solving

inference problems §7.1. We subsequently introduce Bayesian methods into phase

retrieval for the case of noisy incomplete data §7.2.

7.1 Background

Bayesian methods provide a mathematical framework for calculating inferences.

First documented by Thomas Bayes, an amateur mathematician (in the 17th), as

a method for solving inverse probabilities. Bayes’ rule re-emerged in its current

elegant form, due to the work of Pierre Simon Laplace who re-discovered Bayes’s

rule while estimating the mass of Saturn (early 19th century), yielding a value

with a one percent uncertainty. After many years of accumulated data, today the

estimation of the mass of Saturn lies within the estimate calculated by Laplace

with an improved uncertainty of only 0.63%. In her book the theory that would

not die, Sharon McGrayne highlights the history of Bayes’ rule, from obscurity to

time of tremendous success [86]. The main argument against the Bayesian method

came from statisticians, in particular frequentists who adhered to the concept that

the only way to measure probability is through the frequency of occurrence.

Although there are certain experiments, where physicists learn about the phys-

ical world through measuring the frequency of occurrence, as in classical statistical

mechanics, the scope of these experiments is limited. Frequentists define proba-
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bility as a measurable description of the physical world and not as a measure of

our ignorance about certain events. Although the frequency designation of prob-

ability is familiar: by counting the occurrence of heads and tails in a coin toss

experiment, one can predict the coin bias in the forward sense. This approach,

however, does not take into account relevant prior information. For example, the

maximum likelihood solution in the case of a single head flip, corresponds to the

hypothesis that the coin has heads on both sides. Using the most simple prior,

such a uniform distribution which reflects our ignorance, one can obtain a more

plausible outcome. Thus making sense of the data, using the inverse probability

has a wider range of applications.

To understand inverse probability in its simplest form, take the urn experiment

as formulated by Edwin Jaynes [87]. Given a box with two different balls of colors

white or black, let A designate the first draw out of the urn and B the second

draw. The probability of A being white is P (A = w|I1) = 1
2

where I1 is the

background information that there are only two balls in the urn with different

colors. Imagine then the following scenario, we pick A without examining the

color, we thus have P (A = w|I1) = P (A = b|I1) = 1
2
. We pick the second ball and

find out it is white, as a result P (B = w|I1) = 1. What is P (A = w|I1, I2) now?

where I2 is the knowledge gained from the second draw. A moment of thought

will yield P (A = w|I1, I2) = 0.

This last example showed that logical inference rather than causal inference

leads to a knowledge update. Not a measure of the state of a physical world (white

or black ball), probability defines our ignorance about the ball’s identity. It is not

because B is a white ball caused A to be a black ball, but rather because we knew

the color of B, we were able to update our knowledge about the color of A.

By formally stating the prior information, we are objectively evaluating the

subjectivity in a given assumption. Two people with the same knowledge will

come to the same conclusion. As a result, a standardized framework of appraisal
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Figure 7.1: Inductive versus deductive logic diagrams. Figure obtained from [88].

is possible [87]. Before we go into the details of this method, let us review the

two kinds of logic we are familiar with, so as to highlight the vastness of scientific

inquiries where the second form of logic is prevalent.

7.1.1 Deductive versus inductive logic

Let A and B be two propositions. For A to imply B, the outcome is certain and

is referred to as deductive logic, as depicted by figure 7.1 (top). For example, if

we have the crystal structure, we can compute the diffracted intensities, and it

will agree with the experimental results. Another example, if A is the proposition

of a rainy weather and B is the proposition of cloudy skies, then the conclusion

that rain implies clouds is certain. On the other hand, the existence of clouds

does not imply rain, only renders the possibility of rain more plausible. This is

a form of a bottom up reasoning (fig. 7.1, bottom ) where the observation does

not define the cause or outcome. Most scientific problems are reasoning of the

second type, where inductive logic plays a role in assessing the state of knowledge

by numerically evaluating the given propositions using inverse probabilities, as

described in §7.1.2.
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7.1.2 Fundamental rules of probability

To reason the best we can with the incomplete information we have is the goal of a

systematic Bayesian inference, as stated by Jaynes [89]. To illustrate this idea, and

following Jaynes [87] Tribus [90] explanation, we discuss the four essential pillars of

the inference strategy: unambiguity, universality, consistency, and candor. Given

these desired properties, Bayes’ rule will naturally follow:

Unambiguity refers to the description of certain propositions. For example, if

A is the proposition of rain in the afternoon, the proposition does not contain other

implicit assumptions. Propositions are given within a context, i.e A given I or

A|I, where I is the additional information explicitly indicated. The contradiction

of A is referred to as Ā.

Universality associates real numbers to the probabilities, such that various

events can be compared on an absolute scale.

Consistency among various ways of reasoning is essential. If we have the same

state of knowledge about certain propositions, we need to assign the same numer-

ical values in order to be consistent. Richard T. Cox (1946) formally proved that

the two laws of probability listed below are to be satisfied for consistency to be

preserved:

P (AB|C) = P (A|BC)P (B|C) product rule (7.1)

P (A+ Ā) = P (A) + P (Ā) sum rule (7.2)

Candor is stating explicitly the unknown information. Maximum entropy, which

was the contribution of Jaynes [91], signifies the concept of candor. The maximum

entropy approach will become obvious as we include an uncertainty measure into

78



the prior information as shown in §7.2.1.

7.1.2.1 Bayes Rule

Bayes’ rule can be trivially derived using the joint probability P (A,B), and the

product rule (Eq.7.1), as well as the symmetry in P (AB) = P (BA):

P (AB|C) = P (B|C)P (A|BC)

P (BA|C) = P (A|C)P (B|AC)

P (A|BC) ∝ P (A|C)P (B|AC)

7.1.3 One dimensional example of Bayesian inference

To further understand the importance Bayes’ rule plays in a variety of disciplines,

let us work out a simple example related to disease diagnosis, following the deriva-

tion in [92]. Let θ be the hypothesis to be tested; for example, θ can take on two

values θ1 chicken pox or θ2 shingles. Let x be the random variable signifying the

symptom, i.e a rash. A patient comes to a doctor, with a rash outbreak, wondering

whether it is due to chicken pox or shingles. With the likelihood function relating

the percentage of cases where chicken pox versus shingles causing a rash, we have

P (x|θ1) = 0.8 and P (x|θ2) = 0.5. Thus, a diagnosis that doesn’t involve any other

information will mistakengly attribute the symptoms to chicken pox. However,

if we take into account the prior knowledge, available through the public health

diagnosis database, the diagnosis might vary. For example, if the percentage of

the population diagnosed with chicken pox over the past ten years is 3%, in other

words P (θ1) = 0.03, while shingles patients are more common with P (θ2) = 0.8,

the posterior probability is updated to:
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P (θ1|x) ∝ P (x|θ1)× P (θ1) = 0.8× 0.03 = 0.24

P (θ2|x) ∝ P (x|θ2)× P (θ2) = 0.5× 0.8 = 0.4

Hence, using the posterior probability, a doctor can more accurately predict

that the underlying cause of the rash is shingles. In this simple example, one can

see how the initial characterization of a certain disease based on prior knowledge

obtained from public health records, improves the diagnosis accuracy.

7.2 Bayes rule in image reconstruction

Unlike the one parameter hypothesis testing of §7.1.3, the phase retrieval problem

is testing a hypothesis with mega dimensions; however, we can still formulate the

problem in a Bayesian framework. Let ρ ∈ Rn be the multi-dimensional structure

in analogy with the hypothesis θ above, and
√
I represents the measurements,

in correspondence with the random variable x above. Using a certain model M

which specifies the prior information, the goal is to maximize P (ρ|
√
IM). Bayes’

rule yields:

P (ρ|
√
IM) ∝ P (ρ|M)P (

√
I|ρM)

∝ P (ρ|M)P (
√
I|ρ) (7.3)

P (
√
I|ρM) = P (

√
I|ρ) as once we define ρ, the informational content ofM is

irrelevant. Eq. 7.3 is a multi-dimensional probability distribution which is hard

to visualize, but we can use optimization methods to solve this problem (chapter

8). Let us first examine the prior and likelihood distributions.
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7.2.1 Prior knowledge

In order to formulate the prior distribution, we introduce the notion of entropy

as defined in information theory by Shannon. Subsequently, by maximizing the

entropy subject to some constraints we derive the corresponding probability dis-

tribution.

Shannon’s Entropy Let x be a random variable, p(x) its probability distri-

bution and h(x) the information measure describing the uncertainty in the mea-

surements. There are two concepts that define this measure: monotonicity and

statistical independence:

• If x is a predictable event, we expect the informational content to be very

low. On the other hand, if x is highly improbable, than the informational

content is high. Thus h(x) should be monotonically increasing function of

p(x).

• For two statistically independent events x and y, the informational measure

adds up; h(x, y) = h(x) + h(y). Using the product rule, we deduce h(x):

h(x) = − ln(p(x)) (7.4)

As 0 < p(x) < 1, the minus sign prevents negative value for the informa-

tional content. For a high probability event p(x) ≈ 1, the informational

content approaches zero. While for a low probability event p(x) ≈ 0, the

informational content is very high.

• For a distribution of xi, the sum of the expectation values of h(xi) defines

the entropy:
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H(x) = −
∑
i

p(xi) ln(p(xi)) (7.5)

The probability distribution As we will show in chapter 8, the noise en-

countered in a batch of reconstructions obtained through phase retrieval, yields

a specific standard deviation σ with an average µ. The global noise in the batch

reflects the noise level of the measurements. Hence the prior distribution should

satisfy the following constraints:

∫ ∞
−∞

p(x)dx = 1 Normalization constraint∫ ∞
−∞

xp(x)dx = µ Noise specific constraints∫ ∞
−∞

(x− µ)2p(x)dx = σ2

To solve this constrained optimization problem, we use the Lagrange multiplier

to maximize the following functional, in addition to the entropy:

J(p(x)) ≡ −
∫ ∞
−∞

p(x) ln p(x)dx+ λ1(

∫ ∞
−∞

p(x)dx− 1)

+λ2(

∫ ∞
−∞

xp(x)dx− µ) + λ3(

∫ ∞
−∞

(x− µ)2p(x)dx− σ2) (7.6)

By differentiating in respect to p(x), we have:

∂J(p(x))

∂p(x)
=

∫ ∞
−∞

(− ln p(x)− 1 + λ1 + λ2x+ λ3(x− µ)2)dx (7.7)

At the maximum, we have ∂J(p(x))
∂p(x)

= 0, thus:
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− ln p(x)− 1 + λ1 + λ2x+ λ3(x− µ)2 = 0

or

p(x) = exp−1+λ1+λ2x+λ3(x−µ)2 (7.8)

Thus the prior distribution is a member of the exponential family. To solve

for λ1, λ2, λ3, we use our knowledge of the Gaussian integral and substitute p(x)

back in the first constraint equations:

∫ ∞
−∞

expλ2x+λ3(x−µ)2

exp1−λ1
dx = 1

(7.9)

Hence, we deduce that λ1 = 1 − ln 2πσ2

2
, λ2 = 0, λ3 = −1

2σ2 . Hence the prior is

a Gaussian distribution, dominated by the error term λ3(x − µ)2. By assuming

a prior knowledge model M, where PM is the corresponding projection operator

(further discussed in chapter 8), with an associated error metric εM, such that

ε2M(ρ) = ||(I−PM)ρ||22, we deduce P (ρ|M) ∝ exp−αε2M.

7.2.2 Likelihood

The likelihood function relates the measurement to the hypothesis in the for-

ward manner. For each measured point, assume a specific standard deviation

1/
√
βi, with an average value

√
Ii, then the probability distribution is P (Ii) ∝

exp−βi(|ρ̂i| −
√
Ii)

2, where |ρ̂i|,
√
Ii represent the reconstructed and measured in-
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tensities, respectively. Assuming that the intensity measurements are statistically

independent data points, the likelihood follows:

P (
√
I|ρ) ∝

n∏
i=0

exp−βi||ρ̂i| −
√
Ii|2 ≈ exp−βε2m

Note here, that the likelihood function is not a probability distribution, hence

the fact that it does not necessarily add to unity should be of no concern.

7.2.3 Posterior distribution

Unlike the likelihood, the posterior function encapsulates more information about

the structure ρ, as it is related to the joint probability distribution P (M, ρ).

This distribution does not provide a solution but offers a platform for risk anal-

ysis. The most common solution obtained from this probability distribution is

the Maximum a posteriori (MAP). In the case of image reconstruction, where the

multi-dimensional probability distribution is not convex, to seek a solution we im-

plement a hybrid gradient descent with feedback mechanism, as further discussed

in chapter 8.
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CHAPTER 8

Adaptive Phase Retrieval

Limited by flux and radiation damage, the extent to which coherent diffraction

imaging (CDI) requires less exact measurements, the more powerful tool it be-

comes. From nanomaterials to single proteins, structure recovery from incomplete

diffraction data is at the forefront of advancement in biological and material sci-

ences. As the diffracted signal scales with sample size [74], the amount of missing

data is aggravated at the nanoscale. We have seen in previous chapters, how iter-

ative projection phase retrieval algorithms, denoted hereafter by IPPRA, play a

fundamental role in CDI. We will refer to these maps (i.e difference map, RAAR,

particularly those covered in [54]) with the compact notation µ:

∆ρ(ν) = µ(ρ(ν)) (8.1)

Although phase retrieval in the case of high SNR data had been successful, the

case of noisy incomplete data is a bottleneck in the field. Here we focus on phase

retrieval from incomplete noisy data through the incorporation of prior knowledge

using Bayesian learning. In §8.1, we give a short overview of the algorithm; more

detailed explanations follow from §8.2.

8.1 Introduction

The phase problem is to solve for n unknown variables from a large number m of

non-linear, non-convex equations. The classical phase retrieval algorithms require
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m > 2n [70]. Motivated by our previous progress in determining the structure of

simple 3D objects from limited diffraction data [35], and by the successes in com-

pressed sensing where the phases are assumed to be known, we seek a method for

recovering images from diffraction patterns that are not sufficiently oversampled.

In what follows, we develop a general method for incorporating prior knowledge

to compensate for fewer measurements or for restrictive measurement geometries.

We find that we can robustly recover structural information from m ∈ [αn, 2n]

coefficients, where typically α ∼ 1.5 for natural images; and α ∼ 0.9 for sim-

ple images. Here, we present a framework that incorporates priors as projection

operators into the existing IPPRA; we show that these operators also have a prob-

abilistic interpretation §8.2.1. We introduce three novel constraints: symmetry,

total and local variation §8.2.2. We demonstrate the numerical success of this

method in §8.3. We discuss the extensibility of this framework to general types

of prior knowledge §8.4.

8.2 Methods

There are two sources of uncertainty in IPPRA using incomplete data. (a) The

lack of convergence guarantee, as missing data deforms the energy landscape, and

hence stagnation becomes a problem. In §8.2.1, we introduce a general map that

incorporates prior knowledge, alleviating the stagnation problem. (b) Indepen-

dent reconstructions result in distinct and inconsistent outputs, a consequence of

the non-convexity in ε2m(ρ). In §8.2.2, we use these outputs to infer constraint

information. In §8.2.3, we summarize the algorithm.

8.2.1 Reconstruction map

The adaptive phase retrieval algorithm (APR) is a general algorithm for incorpo-

rating new information into the phase recovery problem. There are two ways to
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formulate APR: using µ as a starting map or optimizing a probabilistic model,

heuristically.

Based on µ, we begin with the observation that conventional algorithms typ-

ically fail because their maps do not contain enough information to move out of

local minima, long valleys, or plateaus of the energy landscape as in figure 6.2,

where missing data generally flattens the landscape. We introduce a feedback

condition through a set of constraint functions ε2Pi
, preferably convex, where a

gradient descent method is sufficient to minimize these metrics. Thus, we simply

extend µ(ρ) to:

(µ−
h∑
i=1

βi
2
∇ε2Si)ρ (8.2)

Where β
(ν)
i is iteration and case dependent parameter, which can be optimized

empirically; h is the number of the various types of additional information we in-

clude. When the iterate is near the constraint solution, ∇ε2Siρ
(ν) ≈ 0. If ε2m(ρ) has

sufficient structure to move the iterate towards the solution, the original map µ

will dominate the sum. By contrast, if the energy landscape is flat, far from the

solution, and we are also far from satisfying the constraints, then ∇ε2m << ∇ε2Si .

This creates the feedback condition between the constraints and the modulus er-

ror function.

The Probabilistic interpretation follows from Bayes’rule: The probability

of having ρ as the density, given
√
I for the measurements and a background
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knowledge X, can be expressed as the posterior equation:

P (ρ|
√
IX) ∝ P (

√
I|ρX)P (ρ|X) (8.3)

For the first term, we treat the intensity points as nearly independent 1, and

by using the central limit theorem, we can express the likelihood term as ∝

exp(−βε2m(ρ)). Hence in the absence of further information (assuming oversam-

pling and positivity), the conventional methods tend to minimize the negative log

(NL) likelihood (i.e Eq. 8.1). The second term represents the prior functional,

designating a global feature of ρ. Given a set of constraints with associated pro-

jection operators PPi
on convex sets, we can define the corresponding ε2Pi

(ρ) as

||(I − PPi
)ρ||2, where we defer further discussion of PPi

till §8.2.2. Hence the

prior is ∝ exp(−
∑h

i=1 βiε
2
Pi

(ρ)), and thus we seek to minimize the NL posterior

equation: argminρ{(βε2m +
∑h

i=1 βiεi
2)ρ}. To restate, the map µ minimizes the

first term, while gradient descent minimizes the second term, granted ε2Pi
(ρ) are

convex functions.

8.2.2 Constraints

Using a given µ(ρ), we obtain a batch of reconstructions, {ρz} where z ∈ [1,Nb]

and Nb ≈
√
n. As the reconstructed batch represents all we can know about the

data through µ, we can interchange
√
I and {ρz} in Eq.8.3. Furthermore, assum-

ing independence among the individual reconstructions, the generalized likelihood

distribution can be expressed as:

P ({ρz}Nb
z=1|ρX) ∝ exp(−

Nb∑
z=1

wzεzm
2) (8.4)

1Even though they are related through the scattering object, where the correlation among
the data points is intractable
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Where εzm is the error at the zth reconstruction, and wz is the weight associated

with reconstruction ρz, based on the ranking of the batch elements (For more

details on wz please see §8.6.1).

There are two types of consistent priors that we introduce here: informative

and weakly informative; the symmetry informative prior is inferred directly from

the data, while the total and local variation priors simply incorporate empirical

facts about natural images.

8.2.2.1 Symmetry

Natural images can be approximated by a set of coefficients v ∈ Rk such that

k << n. Independent systematic studies (by the authors) have shown that phase

retrieval is significantly facilitated if the iterate ρ(ν) is confined to a sparser rep-

resentation M such that:

ρ ≈M =
k∑
j=1

Sjvj Sj is the jth segment (8.5)

The robustness to this approximate representation to noise, in retrieving the

phases, can be explained in terms of phase error further discussed in §8.6.3. The

symmetry constraint 2 consists of two operations: inferring M and refining ρ(ν).

To infer M, we first extract a template ρ? from the batch, using the Bayesian

update equation:

P (ρ?|{ρz}Nb
z=1X) ∝ P ({ρk}Nb

z=1|ρ?X)P (ρ?|X) (8.6)

2the name will become obvious by the end of this section.
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Where the likelihood can be obtained as in Eq.8.4. Since the spatial complexity

is proportional to the change points, we seek a prior that minimizes the isotropic

total variation semi norm of ρ? i.e ∝ exp−TV (ρ?). As a result, the convex optimiza-

tion problem can be expressed as:

argmin
ρ?

Nb∑
z=1

wz||ρz − ρ?||2F + 2λTV (ρ?) (8.7)

ρ? is obtained using the Fast Gradient Algorithm (FGP) of Beck and Teboulle[93].

Subsequently, M is solved by k means segmentation of ρ?:

argmin
S

k∑
j=1

∑
i∈Sj

||ρ?i − µj||2 where µj =< ρ? >i∈Sj (8.8)

Where i ∈ [1, n]. The value µj is of little concern to us, as we are mainly interested

in how the pixels {i} are associated. As we will see in the subsequent sections,

the modulus constraint, in conjunction with the estimator will enhance accurate

value convergence within the segments Sj.

To estimate ρ(ν), we model ρ
(ν)
i ∈ Sj as linearly corrupted with Gaussian iid

noise (Please see §8.6.2 for more details):

ρ
(ν)
i ≈ vj + ξ

(ν)
i ∀ i ∈ Sj (8.9)

ξ accounts for the unknown error in the piece-wise approximation of ρ. In this case,

the maximum likelihood estimate is given by < ρi >i∈Sj . Hence the symmetry

projection operator PS on the set {Sj} yields:

PSρ =< ρi >i∈Sj (8.10)
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One can verify the idempotency of PS , by the simple observation that the average

of the average is the average. Note that PS applies equally well inside the support

as well as outside. In fact, we have previously introduced smoothing outside the

support as a heuristic operation in [35]. However, this operation can be derived

more formally by projecting ρ onto the most likely prior knowledgeM, whereM

includes the oversampled region, as an additional segment with a smooth noise

function.

M gradually improves over the course of the algorithm (§8.2.3); and thus

at the onset, edge pixels remain unconstrained by PS , due to their uncertain

classification. Given the fact that most natural images are smooth, we enforce

a smooth transition across the segments’ edges; having previously obtained ρ?,

we can further constraint its isotropic TV semi norm, i.e c ≈ TV (ρ?). Thus we

introduce the following inner optimization problem:

min
ρ̃
||ρ(ν) − ρ̃||2F s.t TV (ρ̃) ≤ c (8.11)

Where we associate a projection operator with the solution ρ̃ (Please see §8.6.4

for details on solving Eq.8.11):

PT Vρ
(ν) = ρ̃ (8.12)

8.2.2.2 Local variation

The smooth edge constraint can also be enforced on hot pixels. At the onset of

the iterations, the values at each pixel are dynamically varying. To detect a hot

pixel i, we not only check the pixel value but also its gradient. Hence i will satisfy
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the following tests:

ρi > 2∇ρi

|ρi − µ| > 4σ

µ and σ are the average and the standard deviation of the iterate ρ(ν); computed

at each iteration. Here also we associate a projection operator on the hot pixel:

PLVρ
(ν)
i =< ρ

(ν)
j >j∈B (8.13)

where B are the neighboring pixels .

8.2.3 The APR algorithm

APR takes advantage of the non-uniqueness and degeneracy observed in IPPRA

for the noisy incomplete measurements, and extract statistical information which

are then incorporated into the projection based algorithm as a form of an empirical

Bayes prior. This bayesian prior is obtained from the reconstruction batch using

machine learning as described in §8.6.1. This approach is also generalized to

various domains, as we will see in §8.4.

The overall algorithm can be summarized in two steps:

• Repeat until convergence (min ε2m):

1. Fix constraints, and reconstruct using the map in Eq. 8.2

2. Infer constraints, as described in §8.2.2

With each iteration, M and c are refined and as a result ε2m decreases. An

increase in ε2m signals a re-adjustment for the number of segments k or amount of

edge pixels; hence, the adaptivity of the algorithm is anchored by ε2m. Figure 8.1
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Figure 8.1: This panel shows the evolution of the reconstructions as the algo-
rithm evolves. The top left figure corresponds to the best HIO reconstruction,
the remaining figures correspond to reconstructions using prior knowledge that is
updated through the refinement of M.

shows a typical performance of the algorithm, where at each cycle the improved

M causes the reconstruction to become more refined.

8.3 Numerical results

The geometrical distribution of the diffraction data, i.e polar or random distribu-

tion (Please see figures 8.2, 8.3), impacts the reconstruction quality using IPPRA,

whereas APR achieves consistent results in both cases. Data in polar geometry

contains more information, as the crucial low resolution data are preserved, unlike

in a random distribution where missing data is extended uniformly. The purpose
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Figure 8.2: Using the sparse measurements, (top left figure), as the simulated data
with an oversampling degree of 0.23, we obtain the HIO output (bottom left),
while the output of the APR algorithm (bottom right) is in striking agreement
with the original image (top right).

for exploring random geometry, is to analyse extreme undersampling case, bene-

ficial for the 3D case. With APR, coherence among the reconstruction becomes

stronger, as the addition of prior knowledge, restrict the search space, as can be

seen in figure 8.2.

8.4 Discussion

APR framework is fairly general and works for more constraints that the two we

introduce above. For example, we have successfully implemented these methods

using wavelet and atomicity constraints. We only show the wavelets results for
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Figure 8.3: Here the measurements are randomly distributed, with an oversam-
pling degree of 1.49. The HIO output is chaotic, while the APR output is almost
undistinguishable from the original image.
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Figure 8.4: Here we test the robustness of APR in the case of noisy data. Top
row shows oversampling degree of 1.49 noise less. Middle row shows data with 1%
noise. Bottom row with 6% noise. In all these case HIO output is chaotic, while
the APR output is robust and consistent.
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brevity. The systematic numerical results shows the robustness of this new con-

straint in high noise, under sampled data. The numerical studies are performed

on 2D objects, while eventually we will apply these methods to three dimensional

(3D) data, which encounters noisy, incomplete data [37, 38, 94, 40], primarily due

to radiation sensitivity, finite flux, and practical experimental concerns. While

the extreme undersampled 2D cases shown in this manuscript form a good testing

ground, the generalization to 3D will be the topic of subsequent research.

8.4.1 Generalization to other domains

Once we obtain M, we can use this information in other domains. For example,

we can compute the corresponding wavelets coefficients in the wavelet domain,

and extract another map in that domain as explained below:

8.4.1.1 Wavelet domain

In general, the sparsity of an image is not restricted to the object domain. Here

we explore the advantage of wavelet domain sparsity which can be implemented

simply based onM. AsM represents an improved reconstruction, we can extract

the region where the wavelet coefficients are small, but first, it is important to

choose a wavelet that is orthogonal so as to prevent leakage.

ρW =Wρ (8.14)

WTW = I (8.15)

P̃W ,PW projection operators in the wavelet and the object domains.

PW =WT P̃WW
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P̃WρWij
=

 ρWij
i, j ∈ γW

0 otherwise

Where γW refers to the spatial region of coefficients of interest. Here we also

introduce the corresponding error metric:

ε2W(ρ) = ||(I−PW)ρ||22 (8.16)

8.5 Summary

By using Bayesian inference we inferred information from conventional IPPRA

outputs, and subsequently applied this information as priors within the phasing

algorithm. We were able to determine structures from significantly fewer measure-

ments than by standard methods. We anticipate the framework presented here

will have a significant impact on solving the phase problem in the case of noisy

incomplete data.

8.6 Appendix

8.6.1 The batch filter

Some reconstructed images from Fourier modulus (
√
I) exhibit the twin image

characteristic. This feature is an entangled state between a local solution and its

flipped image, where the orientation dominance of the two possible states fluctu-

ates. While visually detecting these images is possible, the associated error metric

(εm) does not always indicate their presence. Here we implement an automatic

guide that removes twin images, and failed reconstructions from the reconstruc-

tion batch, and subsequently rank the individual reconstructions in terms of their

deviation from a reference (ρref ).
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Given the batch, we obtain an aligned set by minimizing the deviation from

ρref whose error metric:

ερ
ref

m = min{ερjm}j∈Nb
(8.17)

To find a better reference, we segment the batch elements using k-means segmen-

tation with k = 2 centroids 3. Then choose a newer reference, which yields the

lowest εm, after segmentation. This method of updating the reference is more

robust than simply choosing the reconstruction with the smallest εm. To select

the set of reconstructions {ρj}j∈Nb′
that are within the neighbourhood of ρref , we

compute the mean square error deviation MSEj of the discrete wavelet transform

of {ρj}j∈B′ from ρref , as:

MSEj =

nwl∑
wl=0

|Wρref −Wρj|2wl (8.18)

The wavelet level l is the decomposition that exhibits the largest standard devia-

tion across the batch, which designates the scale level at which the reconstructions

diverge most, and hence it is the scale of choice when differentiating among re-

constructions. nwl is the number of coefficients at l. We disregard reconstructions

{ρj} such that MSEj > σMSE, from further analysis.

With the reconstructions ranked from ρref , the weight ωj are assigned as fol-

lows:

ωj =
1

N ′b

Nb′∑
j=1

1

j
(8.19)

Figures in 8.5 show a typical performance of the batch filter. Here we only show

16 elements from the batch.

3The more centroids the better the outcome, as long as the uncertainty in these distributions
is low.
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Figure 8.5: Left: The first 16 elements of a batch. Right: The first 16 elements of
the filtered batch. Notice how the batch filter eliminated the twin image problem.
In particular, the first figure at top row and the last figure in the second row are
both disregarded from further analysis.

8.6.2 Noise in the batch

Figures in 8.6 plot the noise distribution for random pixels chosen from the im-

age, across the batch. The histogram distribution is an exponential distribution,

that is approximately Gaussian. The blue dot is the location of the zero noise

which is off-center and hence a simple averaging of the batch elements is not a

sufficient method for denoising. The yellow dot is the location of the reference

reconstruction.

Figure 8.7 shows the histogram for the noise distribution within a reconstructed

image ρ̃. This plot shows a zero mean Gaussian distribution which encourages

the use of simple averaging (Eq. 8.2.2.1), as a form of denoising.

8.6.3 Phase error

The propagated error η due to an inaccurate M, can be evaluated by examining

the phase and modulus errors: ∆φ, ∆m. Let us assume η is an additive noise in
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Figure 8.6: Histogram of randomly chosen pixels across multiple reconstructions
(256). Blue dot is the location of the zero mean. The dashed line is the Guassian
fit. The yellow dot is the location of the reference reconstruction.

Figure 8.7: Error histogram of ρ− ρ̃. A zero mean Gaussian noise distribution.
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M,then:

M = ρT + η (8.20)

The phase at position k is:

φk = tan−1

∑n
i=1Mi sin θik∑n
i=1Mi cos θik

where θik =
2πik

n

= tan−1

∑n
i=1 ρTi sin θik +

∑n
i=1 ηi sin θik∑n

i=1 ρTi cos θik +
∑n

i=1 ηi cos θik

= tan−1[tan(φTk)
1 + ε̂η
1 + ε̂′η

]

where ε̂η =

∑
i ηi sin θik∑
i ρTi sin θik

, ε̂′η =

∑
i ηi cos θik∑
i ρTi cos θik

Thus, we have:

φk ≈ φTk for εη, ε
′
η << 1 or εη = ε′η

and ∆φ = φk − φTk ≈ 0 as long as η << ρT (8.21)

And the corresponding modulus error from:

|M̂|2 = |ρ̂T |2 + |η̂|2 + 2ρ̂T ? η̂

∆m = |η̂|2 + 2ρ̂T ? η̂ (8.22)

Unlike ∆φ, the modulus error is magnified by the signal’s strength ρ̂T . However,

by using the modulus constraint Pm, ∆m is eliminated entirely. In summary,

both ∆φ and ∆m, for the case of approximate symmetry are negligible if:

||ρT −M|| << ρT (8.23)
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8.6.4 TV Projection Operator

To solve Eq.8.11, we follow the steps outlined in [93], where we preserve the

geometrical dimensionality of the image, i.e: ρ ∈ Rm×m (m2 = n), and re-express

the TV operation as:

TV (ρ̃) = max
p,q∈P

Tr(L(p, q)T ρ̃) (8.24)

TV (ρ̃) = max
p,q∈P

Tr(L(p, q)T ρ̃) (8.25)

where

P = {p, q} s.t (p2
ij + q2

ij ≤ 1 , |pim|, |qmj| ≤ 1)

Lij = pij + qij − pi−1j − qij−1

pij = ρ̃ij − ρ̃i+1j qij = ρ̃ij − ρ̃ij+1

Hence our goal is to solve the following objective H:

max
p,q∈P

max
λ≥0

min
ρ̃∈Rm×m

(||ρ(ν) − ρ̃||2F + λ(Tr(L(p, q)T ρ̃)− c)) (8.26)

By differentiate in respect to ρ̃, we find:

ρ̃ = ρ(ν) − λ

2
L(Q), Q = (p, q) (8.27)

And the reduced objective can be written as:

H(Q, λ) =
−||L(Q)||2F

4
+ λ(Tr(LT (Q)ρ(ν))− c) (8.28)
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Figure 8.8: Error convergence. (left) HIO. (right) APR. Note the improvement in
(b) and the non-stagnating error metric due to the addition of prior knowledge.

Here we compute ∂H
∂Q

and ∂H
∂λ

, to iteratively update Q, λ using gradient ascent with

variable steps α1, α2, and thus optimizing the corresponding H:

λ := λ+ α1
∂H
∂λ

(p, q) := (p, q) + α2
∂H
∂Q

(8.29)

From which, L is updated, and using Eq. 8.27, we find ρ̃.

8.6.5 Error convergence

With the incorporation of prior knowledge, ARP enhances the error convergence,

as shown in the right figure of 8.8. The non-stagnation of the reconstruction error,

from noisy and incomplete data, demonstrates the success of APR.

Figure 8.9 shows the radial error in the reconstructed images using both HIO

and APR.

8.6.6 Additional test objects

Figures 8.10 to 8.21 show a variety of test objects, where we implemented HIO

and APR reconstruction algorithms. For each test object, we show two differ-

ent measurement distributions: Polar and random coordinate. The improvement
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Figure 8.9: Blue HIO, red APR. The radial error profile shows a remarkable
improvement at the lower resolution region.
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using the APR algorithm is consistent in all cases.

8.6.7 Effect of Image complexity on error tolerance

Using the Schelling segregation model [95], we generated various structures where

the complexity is measured by the spatial information within each structure, as

shown in the sub-figures of 8.22. To study these structures in low dimension,

we confined the images to three values. With the use of the map M transform-

ing the high dimensional image to low dimension, we were able to generate the

corresponding low dimensional energy landscape figure 8.23 (b). By varying the

complexity level (a) and the measurement noise (c), we obtain different energy

landscapes (b) which can be quantified by one value, ε2ls. ε
2
ls corresponds to the er-

ror in the energy landscape due to the noise in the measurements, and is computed

as follows:

ε2ls =

∑
|ε2m0 − ε2m|∑

ε2m0

(8.30)

where

ε2m0 =

∑
||ρ̂| − Inl|2∑

I2
nl

ε2m =

∑
||ρ̂| − In|2∑

I2
n

(8.31)

where Inl, In correspond to the noiseless and noisy data, respectively. |ρ̂| is the

absolute value of the Fourier transform of a hypothetical density, where the two

independent values are varied through the plane (the third value is confined once

the two values are chosen). Figure 8.24 shows the condensed information related

to the various complexities and noise levels. The pixel values in figure 8.24, across

and down the graph correspond to an increase in the measurement noise and a

decrease in the image complexity, respectively. This phase diagram confirms that

images with high complexity are less tolerant to noise, as the high error on the

upper right corner shows.
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Figure 8.10: Diffraction data collected randomly in cartesian space. a, b, c) HIO
reconstruction with two zoom windows d,e,f) The APR reconstruction g, h, i) The
original image. The total oversampling degree τosd is 2.8, with 7% poisson noise.
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Figure 8.11: Diffraction data collected in polar coordinates with noise level of 4%.
a, b, c) HIO reconstruction and two zoom in windows d,e,f) The corresponding
APR reconstruction g, h, i) The original image. The total oversampling degree
τosd is 0.97
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Figure 8.12: Diffraction data collected randomly in cartesian coordinates with
7% noise. a, b, c) HIO reconstruction and zoom in windows. d,e,f) APR re-
construction g, h, i) The original image. The total oversampling degree τosd is
1.25
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Figure 8.13: Diffraction data collected randomly in cartesian coordinate with 7%
noise. a, b, c) HIO reconstruction and two zoom windows. d,e,f) APR recon-
struction g, h, i) the original image. The total oversampling degree τosd is 2.48

110



Figure 8.14: Diffraction data collected in polar coordinates with 2% noise. a, b,
c) HIO reconstructions and two zoom windows. d,e,f) APR reconstruction g, h,
i) the original image. The total oversampling degree τosd is 1.0
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Figure 8.15: Diffraction data collected randomly in cartesian coordinate with 5%
noise. a, b, c) HIO reconstruction with two different zooms d,e,f) APR recon-
struction g, h, i) the original image. The total oversampling degree τosd is 1.83
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Figure 8.16: Diffraction data collected in polar coordinates with 3% noise. a, b,
c) HIO reconstruction with two different zooms. d,e,f) APR reconstruction g, h,
i) the original image. The total oversampling degree τosd is 1.0
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Figure 8.17: Diffraction data collected randomly in cartesian coordinate with
5% noise. a, b, c) HIO reconstruction with two different zoom. d,e,f) APR
reconstructions g, h, i) the original image. The total oversampling degree τosd is
2.32
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Figure 8.18: Diffraction data collected in polar coordinates with 2% noise. a, b,
c) HIO reconstruction with two zoom windows. d,e,f) APR reconstruction. g,
h, i) the original image. The total oversampling degree τosd is 0.74. The linear
oversampling is 1.5

115



Figure 8.19: Diffraction data collected randomly in cartesian coordinate with 4%
noise. a, b, c) HIO reconstruction and zoom in windows. d,e,f) APR reconstruc-
tion g, h, i) the original image. The total oversampling degree τosd is 1.32. The
linear oversampling is 1.5.
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Figure 8.20: Diffraction data collected in polar coordinate with 2% noise. a, b, c)
HIO reconstruction with zoom windows. d,e,f) APR reconstructions g, h, i) the
original image. The total oversampling degree τosd is 1.0.
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Figure 8.21: Diffraction data collected randomly in cartesian coordinate with 5%
noise. a, b, c) HIO reconstruction with zoom windows. d,e,f) APR reconstructions
g, h, i) the original image. The total oversampling degree τosd is 2.64.
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Figure 8.22: Using the Schelling model for segregation, we generated various
images with decreasing complexities: Top left is a random partition into three
values, bottom right maximum seggregation. The complexity can be assessed
visually, or by measuring the change in the sobel gradient. By increasing the size
of the neighborhood, the structure becomes simpler.
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Figure 8.23: In column (a) we have two stuctures, high and lower complexities.
The energy landscape for each case (noise and noisless data) (b). The correspond-
ing measurements with varying noise levels (c). In (b) the red arrow designates
the shift in the global minimum between noiseless and noisy measurements. Con-
clusion: For simple structures, the tolerance (as a function of noise level) in the
energy landscape is higher than the case of a complex structure.
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Figure 8.24: Error in the energy landscape εls (defined in the text), as a function
of the measurement noise (horizontal axis) and image complexity (vertical axis).
Conclusion: Less complex images are more robust to noise
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CHAPTER 9

Conclusion

Coherent diffraction imaging (CDI) by X-rays at third and fourth generation syn-

chrotron radiation facilities has opened a new horizon for three dimensional quan-

titative high resolution structure determination, with applications ranging from

materials science to biology [70, 22, 39, 40]. Limited by the scattering angle and

the incident beam energy, the quality of the reconstructed structure is directly

affected by the signal to noise ratio of the collected data and the phase retrieval

algorithm. To improve the resolution in CDI, we offered two contributions: Anky-

lography (chapter 4 and 5) and the adaptive phase retrieval algorithm (chapter 8).

Although high numerical aperture (NA) imaging offers higher resolution, the

conventional phase retrieval methods suffered from the effects of geometrical aber-

rations [66]; the data is collected on planar detector, while the diffracted waves lie

on a spherical geometry (figure 4.2). We demonstrate Ankylography as a novel

imaging modality for high NA data; this new method increases the resolution of

the reconstructed structure in three dimensions and offers many new advantages

[35, 36].

At the inception of Ankylography, the goal was to enhance the quality of recon-

structions obtained from a table top high NA soft x-ray source [66], by adapting

to the natural curvature of the data following the kinematic theory of scatter-

ing under the Born approximation [41]. By conforming to the geometry of the

measurement, the three dimensional structural information is also extracted [35].

122



Hence, the idea of single shot imaging was immediately conceived as a method

to extract three dimensional information from a single diffraction data. With a

single shot imaging, the amount of tilt angles is greatly reduced and hence improv-

ing the possibility of a single shot diffraction prior to a destruction (Figure 9.1)

[32]. To further test this new idea, we conducted systematic simulations where we

used simulated pulse from an FEL and an energy recovery linac to reconstruct a

sodium silicate glass particle as well as a polio virus structure, from high NA single

diffraction pattern. With the excitement of the possibility of three dimensional

imaging from a two dimensional diffraction pattern, a buzz in the scientific com-

munity emerged. This concept of three dimensional imaging was challenged on

two grounds: the experimental data used to demonstrate Ankylography is a tilted

aperture, hence not a true 3D object; furthermore, the simulations are obtained

on relatively small sized objects, most interesting biological structures occupy a

larger volume [96, 97]. To vindicate the first criticism, we performed an optical

experiment, where we successfully reconstructed a phase object [36]. To address

the dimensionality curse, we re-examined phase retrieval in the case of noisy in-

complete two dimensional data.

As the main source of noise in diffraction data is radiation damage, a robust

phase retrieval method in the case of noisy, incomplete data plays an important

role in the advancement of CDI’s range of applications. Hence the second theme

of this thesis is phase retrieval in the case of noisy and undersampled data. To

this end, we developed novel algorithmic tools that are robust for this case of in-

terest. For extremely undersampled diffraction data, conventional phase retrieval

algorithms suffer from a stagnation problem, due to the non-uniqueness of the

search space. This stagnation is a direct effect of insufficient information. The

approach we offer, directly incorporates prior knowledge according to the fully

self consistent theory of Bayesian inference. We developed a framework that in-

123



Figure 9.1: Multiple molecules fall through the bright x-ray source. With the short
pulse on the order of femtoseconds, it is possible to collect diffraction data before
the molecule is destroyed by the intense source. Figure courtesy of Lawrence
Livermore National Laboratory.

fers prior knowledge from the data, and subsequently refines the phase retrieval

by adding additional navigation metrics. We introduced four navigation met-

rics: symmetry, wavelet, bound on the total variation and local variation. The

symmetry metric was inferred from the data, using convex optimization on the

batch of reconstructions obtained with conventional phase retrieval algorithms,

as well as machine learning. Using the fast gradient descent algorithm devel-

oped by Beck and Teboulle [93], we optimize the output from the reconstruction

batch. We obtain a simplified model of the structure, by clustering the output

into segments using unsupervised learning algorithm (k-means). The key finding

here was that even one single bit of information per pixel inside the support is

sufficient to obtain accurate reconstruction from extremely undersampled diffrac-

tion data. In addition, this symmetry metric is convex, hence a gradient descent

optimization method is sufficient to find a solution. The nomenclature of symme-

try constraint is justified under the approximation of exchange symmetry among

pixels within each segment. Hence this constraint has the effect of drastically

reducing the dimensionality of the phase problem, which justifies its seemingly
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Figure 9.2: 3D reconstruction of sparse shepp Logan, using one curved diffraction
pattern at 90◦.

unrealistic success. The wavelet constraint is complementary to the symmetry

constraint, this method can be implemented in the case of lower resolution image

obtained through other imaging modality. While the total variation and local

variation constraint are general constraints, and the corresponding functions are

convex as well. Hence the adaptive phase retrieval algorithm incorporates these

metrics into the conventional algorithm using the gradient terms as additional

navigation directions. With APR, we demonstrate a tremendous improvement in

the quality of the reconstructions from noisy incomplete data (chapter 8).

Lastly, with the additional complexity that the iterative projection algorithm

became engulfed in, an improved computational platform was needed. With the

large computational time required at each iteration, due to the addition of the

new constraints and the large number of reconstructions performed, it became

necessary to optimize the performance of the iterative algorithm and re-write

the total variation function in C + +. Hence the third back stage theme in this

thesis, is the incorporation of object oriented programming into the phase retrieval

algorithm, allowing the modularization of constraints and hence providing an

easier platform for future function updates. We optimized the total variation

constraint using ideas from the fast gradient projection of Beck [93]. Although,

the algorithmic codes are not included in this thesis, we are in the process of
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uploading a user friendly version as on open source on the git repository. For

more information or inquiries about the software, please contact the authors [98].

Due to time and resource constraints, our simulations were only tested on two

dimensional data. Although, we obtained preliminary 3D reconstruction of the

shepp logan, from a single diffraction pattern Fig. 9.2, fully developed three di-

mensional algorithmic tool will be a future endeavour. The three dimensional case

entails designing three dimensional wavelet and total variation constraints.

By incorporating informative prior into phase retrieval, we re-formulated this

ill posed inverse problem, where the consistency of our results became a trade-

mark of a better defined problem. We anticipate that the adaptive phase retrieval

algorithm and in conjunction with the high numerical aperture of Ankylography,

will have an impact on single particle imaging; the promise of X-FEL [27, 32].
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[45] C. Pellegrini and J. Stöhr, “X-ray free-electron lasersprinciples, properties
and applications,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 500, no. 1, pp. 33–40, 2003.

130



[46] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ali-
auskas, G. Andriukaitis, T. Baliunas, O. D. Mcke, A. Pugzlys, A. Baltuka,
B. Shim, S. E. Schrauth, A. Gaeta, C. Hernndez-Garca, L. Plaja, A. Becker,
A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ul-
trahigh harmonics in the kev x-ray regime from mid-infrared femtosecond
lasers,” Science, vol. 336, no. 6086, pp. 1287–1291, 2012.

[47] E. Hecht, Optics. Pearson, 2014.

[48] B. Saleh and M. Teich, Fundamentals of photonics. Wiley, 2014.

[49] D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next
generation synchrotron light sources,” Journal of Physics B: Atomic, Molec-
ular and Optical Physics, vol. 38, no. 9, p. S773, 2005.

[50] D. Attwood, “Spatial and temporal coherence,” Lecture notes, 2007.

[51] E. Wolf, “Solution of the phase problem in the theory of structure deter-
mination of crystals from x-ray diffraction experiments,” Phys. Rev. Lett.,
vol. 103, p. 075501, Aug 2009.

[52] J. R. Fienup, “Phase retrieval algorithms: a comparison.,” Applied Optics,
vol. 21, no. 15, pp. 2758–2769, 1982.

[53] J. Goodman, Introduction to Fourier Optics. Ben Roberts, 2005.

[54] S. Marchesini, “Invited article: A unified evaluation of iterative projection
algorithms for phase retrieval,” Review of Scientific Instruments, vol. 78,
no. 1, pp. –, 2007.

[55] D. R. Luke, J. V. Burke, and R. G. Lyon, “Reconstruction : Theory and
Numerical Methods ,” vol. 44, no. 2, pp. 169–224, 2002.

[56] J. R. Fienup, “Iterative method applied to image reconstruction and
to computer-generated holograms,” Optical Engineering, vol. 19, no. 3,
pp. 193297–193297–, 1980.

[57] V. Elser, “Phase retrieval by iterated projections,” JOSA A, vol. 20, no. 1,
pp. 40–55, 2003.

[58] D. R. Luke, “Relaxed averaged alternating reflections for diffraction imag-
ing,” Inverse Problems, vol. 21, no. 1, p. 37, 2005.

[59] I. C. Rankenburg and V. Elser, “Protein structure prediction by an iterative
search method,” arXiv preprint arXiv:0706.1754, 2007.

[60] L. S. Martin, C.-C. Chen, M. D. Seaberg, D. E. Adams, and
J. Miao, “Multiple-shell ankylography,” in CLEO: Science and Innovations,
pp. CF3C–6, Optical Society of America, 2012.

131



[61] C. Song, D. Ramunno-Johnson, Y. Nishino, Y. Kohmura, T. Ishikawa, C.-
C. Chen, T.-K. Lee, and J. Miao, “Phase retrieval from exactly oversam-
pled diffraction intensity through deconvolution,” Physical Review B, vol. 75,
no. 1, p. 012102, 2007.

[62] J. A. Rodriguez, R. Xu, C.-C. Chen, Y. Zou, and J. Miao, “Oversampling
smoothness: an effective algorithm for phase retrieval of noisy diffraction
intensities,” Journal of applied crystallography, vol. 46, no. 2, pp. 312–318,
2013.

[63] J. Du and L. R. Corrales, “Compositional dependence of the first sharp
diffraction peaks in alkali silicate glasses: A molecular dynamics study,” Jour-
nal of non-crystalline solids, vol. 352, no. 30, pp. 3255–3269, 2006.

[64] D. H. Bilderback, P. Elleaume, and E. Weckert, “Review of third and next
generation synchrotron light sources,” Journal of Physics B: Atomic, molec-
ular and optical physics, vol. 38, no. 9, p. S773, 2005.

[65] D. Bubeck, D. J. Filman, N. Cheng, A. C. Steven, J. M. Hogle, and D. M.
Belnap, “The structure of the poliovirus 135s cell entry intermediate at 10-
angstrom resolution reveals the location of an externalized polypeptide that
binds to membranes,” Journal of virology, vol. 79, no. 12, pp. 7745–7755,
2005.

[66] R. L. Sandberg, C. Song, P. W. Wachulak, D. A. Raymondson, A. Paul,
B. Amirbekian, E. Lee, A. E. Sakdinawat, L.-O. Chan, M. C. Marconi, et al.,
“High numerical aperture tabletop soft x-ray diffraction microscopy with 70-
nm resolution,” Proceedings of the National Academy of Sciences, vol. 105,
no. 1, pp. 24–27, 2008.

[67] K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura,
M. Suzuki, and T. Ishikawa, “Spring-8 riken beamline iii for coherent x-ray
optics,” Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 467,
pp. 686–689, 2001.

[68] Y. Takata, K. Tamasaku, T. Tokushima, D. Miwa, S. Shin, T. Ishikawa,
M. Yabashi, K. Kobayashi, J. Kim, T. Yao, T. Yamamoto, M. Arita, H. Na-
matame, and M. Taniguchi, “A probe of intrinsic valence band electronic
structure: Hard x-ray photoemission,” Applied Physics Letters, vol. 84,
pp. 4310–4312, May 2004.

[69] Y. Kohmura, Y. Nishino, T. Ishikawa, and J. Miao, “Effect of distorted illumi-
nation waves on coherent diffraction microscopy,” Journal of applied physics,
vol. 98, no. 12, p. 123105, 2005.

132



[70] J. Miao, D. Sayre, and H. Chapman, “Phase retrieval from the magnitude
of the fourier transforms of nonperiodic objects,” JOSA A, vol. 15, no. 6,
pp. 1662–1669, 1998.

[71] J. Miao, T. Ishikawa, E. H. Anderson, and K. O. Hodgson, “Phase retrieval
of diffraction patterns from noncrystalline samples using the oversampling
method,” Physical Review B, vol. 67, no. 17, p. 174104, 2003.

[72] C. J. Hernandez and T. G. Mason, “Colloidal alphabet soup: monodisperse
dispersions of shape-designed lithoparticles,” The Journal of Physical Chem-
istry C, vol. 111, no. 12, pp. 4477–4480, 2007.

[73] J. Wilking and T. Mason, “Multiple trapped states and angular kramers hop-
ping of complex dielectric shapes in a simple optical trap,” EPL (Europhysics
Letters), vol. 81, no. 5, p. 58005, 2008.

[74] Q. Shen, I. Bazarov, and P. Thibault, “Diffractive imaging of nonperiodic ma-
terials with future coherent x-ray sources,” Journal of synchrotron radiation,
vol. 11, no. 5, pp. 432–438, 2004.

[75] M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. Holton, C. Jacobsen,
J. Kirz, E. Lima, S. Marchesini, H. Miao, et al., “An assessment of the res-
olution limitation due to radiation-damage in x-ray diffraction microscopy,”
Journal of Electron Spectroscopy and Related Phenomena, vol. 170, no. 1,
pp. 4–12, 2009.

[76] C. Jacobsen, J. Kirz, and S. Williams, “Resolution in soft x-ray microscopes,”
Ultramicroscopy, vol. 47, no. 1, pp. 55–79, 1992.

[77] R. Henderson, “The potential and limitations of neutrons, electrons and
x-rays for atomic resolution microscopy of unstained biological molecules,”
Quarterly reviews of biophysics, vol. 28, no. 02, pp. 171–193, 1995.

[78] H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila,
M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, et al., “Femtosecond
x-ray protein nanocrystallography,” Nature, vol. 470, no. 7332, pp. 73–77,
2011.

[79] H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-
Riege, S. Marchesini, B. W. Woods, S. Bajt, W. H. Benner, et al., “Fem-
tosecond diffractive imaging with a soft-x-ray free-electron laser,” Nature
Physics, vol. 2, no. 12, pp. 839–843, 2006.

[80] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential
for biomolecular imaging with femtosecond x-ray pulses,” Nature, vol. 406,
no. 6797, pp. 752–757, 2000.

133



[81] M. M. Seibert, T. Ekeberg, F. R. Maia, M. Svenda, J. Andreasson,
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