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| INVESTIGATION

Two-Locus Likelihoods Under Variable Population
Size and Fine-Scale Recombination Rate Estimation

John A. Kamm,*,†,1 Jeffrey P. Spence,‡,1 Jeffrey Chan,† and Yun S. Song*,†,§,**,2

*Department of Statistics, †Computer Science Division, ‡Computational Biology Graduate Group, and §Department of Integrative
Biology, University of California, Berkeley, California 94720, and **Departments of Mathematics and Biology, University of

Pennsylvania, Philadelphia, Pennsylvania 19104

ABSTRACT Two-locus sampling probabilities have played a central role in devising an efficient composite-likelihood method for
estimating fine-scale recombination rates. Due to mathematical and computational challenges, these sampling probabilities are
typically computed under the unrealistic assumption of a constant population size, and simulation studies have shown that resulting
recombination rate estimates can be severely biased in certain cases of historical population size changes. To alleviate this problem, we
develop here new methods to compute the sampling probability for variable population size functions that are piecewise constant. Our
main theoretical result, implemented in a new software package called LDpop, is a novel formula for the sampling probability that can
be evaluated by numerically exponentiating a large but sparse matrix. This formula can handle moderate sample sizes (n# 50) and
demographic size histories with a large number of epochs (D$ 64). In addition, LDpop implements an approximate formula for the
sampling probability that is reasonably accurate and scales to hundreds in sample size (n$ 256). Finally, LDpop includes an importance
sampler for the posterior distribution of two-locus genealogies, based on a new result for the optimal proposal distribution in the
variable-size setting. Using our methods, we study how a sharp population bottleneck followed by rapid growth affects the correlation
between partially linked sites. Then, through an extensive simulation study, we show that accounting for population size changes
under such a demographic model leads to substantial improvements in fine-scale recombination rate estimation.

KEYWORDS coalescent with recombination; two-locus Moran model; sampling probability; importance sampling

THE coalescentwith recombination (Griffiths andMarjoram
1997) provides a basic population genetic model for re-

combination. For a very small number of loci and a constant
population size, the likelihood (or sampling probability) can
be computed via a recursion (Golding 1984; Ethier and
Griffiths 1990; Hudson 2001) or importance sampling
(Fearnhead and Donnelly 2001), allowing for maximum-
likelihood and Bayesian estimates of recombination rates
(Fearnhead and Donnelly 2001; Hudson 2001; McVean
et al. 2002; Fearnhead et al. 2004; Fearnhead and Smith
2005; Fearnhead 2006).

Jenkins and Song (2009, 2010) recently introduced a new
framework based on asymptotic series (in inverse powers
of the recombination rate r) to approximate the two-locus

sampling probability under a constant population size and
developed an algorithm for finding the expansion to an
arbitrary order (Jenkins and Song 2012). They also proved
that only a finite number of terms in the expansion are needed
to obtain the exact two-locus sampling probability as an ana-
lytic function of r. Bhaskar and Song (2012) partially extended
this approach to an arbitrary number of loci and found closed-
form formulas for the first two terms in an asymptotic expan-
sion of the multilocus sampling distribution.

When there aremore than a handful of loci, computing the
sampling probability becomes intractable. A popular and
tractable alternative has been to construct composite likeli-
hoods by multiplying the two-locus likelihoods for pairs of
SNPs; this pairwise composite likelihood has been used
to estimate fine-scale recombination rates in humans
(International HapMap Consortium 2007; 1000 Genomes
Project Consortium 2010), Drosophila (Chan et al. 2012),
chimpanzees (Auton et al. 2012), microbes (Johnson and
Slatkin 2009), dogs (Auton et al. 2013), and more and was
used in the discovery of a DNA motif associated with
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recombination hotspots in some organisms, including hu-
mans (Myers et al. 2008), subsequently identified as a bind-
ing site of the protein PRDM9 (Baudat et al. 2010; Berg et al.
2010; Myers et al. 2010).

The pairwise composite likelihood was first suggested by
Hudson (2001). The software package LDhat (McVean et al.
2004; Auton and McVean 2007) implemented the pairwise
composite likelihood and embedded it within a Bayesian
MCMC algorithm for inference. Chan et al. (2012) modified
this algorithm in their program LDhelmet to efficiently utilize
the aforementioned asymptotic formulas for the sampling
probability, among other improvements. The program LDhot
(Myers et al. 2005; Auton et al. 2014) uses the composite
likelihood as a test statistic to detect recombination hotspots,
in conjunction with coalescent simulation to determine ap-
propriate null distributions.

Because of mathematical and computational challenges,
LDhat, LDhelmet, and LDhot all assume a constant population
sizemodel to compute the two-locus samplingprobabilities. This
is anunrealistic assumption, and itwouldbedesirable toaccount
for known demographic events, such as bottlenecks or popula-
tion growth. Previous studies (McVean et al. 2002; Smith and
Fearnhead 2005; Chan et al. 2012) have shown that incorrectly
assuming constant population size can lead these composite-
likelihood methods to produce biased estimates. Furthermore,
Johnston and Cutler (2012) observed that a sharp bottleneck
followed by rapid growth can lead LDhat to infer spurious re-
combination hotspots if it assumes a constant population size.

Hudson (2001) proposed Monte Carlo computation of
two-locus likelihoods by simulating genealogies. While this
generalizes to arbitrarily complex demographies, it would be
desirable to have a deterministic formula, as naive Monte
Carlo computation sometimes has difficulty approximating
small probabilities.

In this article, we show how to compute the two-locus
sampling probability exactly under variable population size
histories that are piecewise constant. Our approach relies
on the Moran model (Moran 1958; Ethier and Kurtz 1993;
Donnelly and Kurtz 1999), a stochastic process closely related
to the coalescent. We have implemented our results in a freely
available software package, LDpop, that efficiently produces
lookup tables of two-locus likelihoods under variable population
size. These lookup tables can then be used by other programs
that use composite likelihoods to infer recombination maps.

Ourmain result is an exact formula, introduced in Theorem
1, that involves exponentiating sparse m 3 m matrices con-
taining OðmÞ nonzero entries, wherem ¼ Oðn6Þ under a bial-
lelic model, with n being the sample size. We derive this
formula by constructing a Moran-like process in which sam-
ple paths can be coupled with the two-locus coalescent and
by applying a reversibility argument.

Theorem 1 has a high computational cost, and our imple-
mentation in LDpop can practically handle low to moderate
sample sizes (n, 50) on a 24-core compute server. We have
thus implemented an approximate formula that is much
faster and scales to sample sizes in the hundreds. This

formula is computed by exponentiating a sparse matrix with
Oðn3Þ nonzero entries and is based on a previous two-locus
Moran process (Ethier and Kurtz 1993), which we have
implemented and extended to the case of variable population
size. While this formula does not give the exact likelihood, it
provides a reasonable approximation and converges to the
true value in an appropriate limit.

In addition to these exact and approximate formulas,
LDpop also includes a highly efficient importance sampler
for the posterior distribution of two-locus genealogies. This
can be used to infer the genealogy at a pair of sites and also
provides an alternative method for computing two-locus
likelihoods. Our importance sampler is based on an optimal
proposal distribution that we characterize in Theorem 2. It
generalizes previous results for the constant-size case, which
have been used to construct importance samplers for both the
single-population, two-locus case (Fearnhead and Donnelly
2001; Dialdestoro et al. 2016) and other constant-demography
coalescent scenarios (Stephens and Donnelly 2000; De Iorio
and Griffiths 2004; Griffiths et al. 2008; Hobolth et al. 2008;
Jenkins 2012; Koskela et al. 2015). The key ideas of Theorem 2
should similarly generalize to other contexts of importance
sampling a time-inhomogeneous coalescent.

Using a simulation study, we show that using LDpop to ac-
count for demography substantially improves the composite-
likelihood inference of recombination maps. We also use
LDpop to gain a qualitative understanding of linkage disequi-
librium by examining the r2 statistic. Finally, we examine how
LDpop scales in terms of sample size n and the number D of
demographic epochs. The exact formula can handle n in the
tens, while the approximate formula can handle n in the
hundreds. Additionally, we find that the runtime of LDpop
is not very sensitive to D; so LDpop can handle size histories
with a large number of pieces.

LDpop is freely available for download at https://github.
com/popgenmethods/ldpop.

Background

Here we describe our notational convention and review some
key concepts regarding the coalescent with recombination
and the two-locus Moran model.

Figure 1 An ancestral recombination graph (ARG) at two loci, labeled
“a” and “b”, each with two alleles (• and ∘). The notations n;nij ;nðabcÞ are
illustrated for the configuration between the first coalescence and second
recombination event. The symbol * denotes a missing allele.
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Notation

Let u=2 denote the mutation rate per locus per unit time,
P ¼ ðPijÞi;j2A be the transition probabilities between alleles
given a mutation, and A ¼ f0; 1g be the set of alleles (our
formulas can be generalized to jAj. 2; but this increases the
computational complexity). Let r=2 denote the recombi-
nation rate per unit time. We consider a single panmictic
population, with piecewise-constant effective population
sizes. In particular, we assume D pieces, with end-
points2N ¼ t2D , t2Dþ1 ,⋯, t21 , t0 ¼ 0;where 0 corre-
sponds to the present and t, 0 corresponds to a time in the
past. The piece ðtd; tdþ1� is assumed to have scaled population
size hd:Going backward in time, two lineages coalesce (find a
common ancestor) at rate 1=hd within the interval ðtd; tdþ1�:

We allow the haplotypes to have missing (unobserved)
alleles at each locus and use * to denote such alleles. We
denote each haplotype as having type a, b, or c, where a
haplotypes are observed only at the left locus, b haplotypes
are observed only at the right locus, and c haplotypes are
observed at both loci. Overloading notation, we sometimes
refer to the left locus as the a locus and the right locus as the b
locus. We use n ¼ fni*; n*j; nkℓgi;j;k;ℓ2A to denote the configu-
ration of an unordered collection of two-locus haplotypes,
with ni* denoting the number of a types with allele i, n*j
denoting the number of b types with allele j, and nkℓ denoting
the number of c types with alleles k and ℓ:

Suppose n has nðabcÞ ¼ ðnðaÞ; nðbÞ; nðcÞÞ haplotypes of type
a; b; c; respectively. We define the sampling probability ℙtðnÞ
to be the probability of sampling n at time t, given that we
observed nðaÞ; nðbÞ; nðcÞ haplotypes of type a; b; c; under the
coalescent with recombination (described below).

The ancestral recombination graph and the coalescent
with recombination

The ancestral recombination graph (ARG) is themultilocus
genealogy relating a sample (Figure 1). The coalescent
with recombination (Griffiths 1991) gives the limiting dis-
tribution of the ARG under a wide class of population
models, including the Wright–Fisher model and the Moran
model.

Let nðcÞt be the number of lineages at time t that are ances-
tral to the observed present-day sample at both loci. Similarly,
let nðaÞt and nðbÞt be the number of lineages that are ancestral at
only the a or b locus, respectively. Under the coalescent with
recombination, nðabcÞt ¼ ðnðaÞt ; nðbÞt ; nðcÞt Þ is a backward-in-time
Markov chain, where each c-type lineage splits (recombines)
into one a and one b lineage at rate r=2; and each pair of
lineages coalesces at rate 1=hd within the time interval
ðtd; tdþ1�: Table 1 gives the transition rates of nðabcÞt :

After sampling the history of coalescence and recombina-
tion events fnðabcÞt gt# 0; we drop mutations down at rate u=2
per locus, with allelesmutating according to P; and the alleles
of the common ancestor assumed to be at the stationary dis-
tribution. This gives us a sample path fntgt# 0;where n0 is the
observed sample at the present, and nt is the collection of
ancestral haplotypes at time t. Under this notation, the sam-
pling probability at time t is defined as

ℙtðnÞ :¼ ℙ
�
nt ¼ njnðabcÞt ¼ nðabcÞ

�
: (1)

Two-locus Moran model

TheMoranmodel is a stochastic process closely related to the
coalescent and plays a central role in our results. Here, we
review a two-locus Moranmodel with recombination dynam-
ics from Ethier and Kurtz (1993). We note that there are
multiple versions of the two-locus Moran model, and in par-
ticular Donnelly and Kurtz (1999) describe a Moran model
with different recombination dynamics.

Table 1 Backward-in-time transition rates of nðabcÞ
t ¼ ðnðaÞ

t ;nðbÞ
t ;nðcÞ

t Þ
within time interval ðtd ; tdþ1� under the coalescent with
recombination

End state Rate

nðaÞt þ 1; nðbÞt þ 1; nðcÞt 21 r
2n

ðcÞ
t

nðaÞt 21; nðbÞt ;nðcÞt
1
hd

nðaÞt

�
nðaÞt 21

2
þ nðcÞt

�

nðaÞt ; nðbÞt 21;nðcÞt
1
hd

nðbÞt

�
nðbÞt 21

2
þ nðcÞt

�

nðaÞt ; nðbÞt ;nðcÞt 21
1
hd

�
nðcÞt
2

�

nðaÞt 21; nðbÞt 21;nðcÞt þ 1
1
hd

nðaÞt nðbÞt

Figure 2 A finite two-locus Moran model with N ¼ 4 particles. Each
lineage copies itself onto every other lineage at rate 1=2h: Mutations
arise at rate u=2 per allele per locus. Recombination follows dynamics
from Ethier and Kurtz (1993): every pair of lineages experiences a cross-
over recombination at rate r=2ðN2 1Þ: Here, the second and third line-
ages swap their b alleles through a crossover. The sampling probability for
this model agrees with the coalescent at each locus marginally, but not
jointly at both loci (although the discrepancy disappears as N/N).
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The Moran model with N lineages is a finite population
model evolving forward in time. In particular, letMt denote a
collection of N two-locus haplotypes at time t (with no miss-
ing alleles). ThenMt is a Markov chain going forward in time
that changes due to mutation, recombination, and copying
events.

Let Ld
ðNÞ denote the transition matrix of Mt within

ðtd; tdþ1�: We describe the rates of Ld
ðNÞ: For the mutation

events, each allele mutates at rate u=2 according to transition
matrix P: For the copying events, each lineage ofMt copies its
haplotype onto each other lineage at rate 1=2hd within the
time interval ðtd; tdþ1�: Biologically, this corresponds to
one lineage dying out and being replaced by the offspring
of another lineage, which occurs more frequently when
genetic drift is high (i.e., when the population size hd
is small). Finally, every pair of lineages in Mt swaps
genetic material through a crossover recombination at
rate r=2ðN2 1Þ: A crossover between haplotypes ði1; j1Þ
and ði2; j2Þ results in new haplotypes ði1; j2Þ and ði2; j1Þ;
and the configuration resulting from the crossover is
Mt 2 ei1; j1 2 ei2;j2 þ ei1;j2 þ ei2;j1 : See Figure 2 for illustration.

Let ℙðNÞt ðnÞ be the probability of sampling n at time t under
this Moran model, for a configuration n with sample size

n#N: ℙðNÞt ðnÞ is given by first sampling Mminðt;t2Dþ1Þ from

the stationary distribution l2D
ðNÞ of L2D

ðNÞ; then propagating
fMsgs#0 forward in time to t, and then sampling n without
replacement from Mt: So,

h
ℙðNÞðMt ¼ MÞ

i
M
¼ l2D

ðNÞ
Y21

d¼2Dþ1

eL
d
ðNÞ½minðt;tdþ1Þ2minðt;tdÞ�

ℙðNÞt ðnÞ ¼
X
M

  ℙðNÞðMt ¼ MÞℙðnjMÞ;

(2)

where ℙðnjMÞ denotes the probability of sampling n without
replacement from M; and ½ℙðNÞðMt ¼ MÞ�M and l2D

ðNÞ are row
vectors here.

In general, ℙðNÞt ðnÞ 6¼ ℙtðnÞ; so Mt disagrees with the co-
alescent with recombination. However, the likelihood under
Mt converges to the correct value, ℙðNÞt ðnÞ/ℙtðnÞ as N/N:

In fact, even for N ¼ n ¼ 20; we find that ℙðNÞt ðnÞ provides a
reasonable approximation for practical purposes (see Fine-
scale recombination rate estimation and Accuracy of the

approximate likelihood). We refer to (2), i.e., the likelihood
under Mt; as the “approximate-likelihood formula,” in con-
trast to the exact formulawe present in Theorem 1 below. This
approximate formula is included in LDpop as a faster, more
scalable alternative to the exact formula of Theorem 1.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Scripts to reproduce the simulated data
analysis are available from the authors on request.

Theoretical Results

In this section, we describe our theoretical results. Proofs are
deferred to the Appendix.

Exact formula for the sampling probability

Our main result is an explicit formula for the sampling prob-
ability ℙðnÞ; presented in Theorem 1. We present an outline
here; the proof is shown in the Appendix.

The idea is to construct a forward-in-time Markov
process ~Mt and relate its distribution to the coalescent
with recombination. ~Mt is similar to the Moran model
Mt described above, except that ~Mt allows partially spec-
ified a and b types, whereas all lineages in Mt are fully
specified c types. Specifically, the state space of ~Mt is
N ¼ fn : nðabcÞ ¼ ðk; k; n2 kÞ; 0# k# ng the collection of
sample configurations with n specified (nonmissing) alleles
at each locus. The state of ~Mt changes due to copying, muta-
tion, recombination, and “recoalescence” events. Copying
and mutation dynamics are similar to Mt; but recombination
is different: every c type splits into a and b types at rate r=2;
and every pair of a and b types “recoalesces” back into a c type
at rate 1=hd: An illustration is shown in Figure 3B; ~Mt is de-
scribed in more detail in the Appendix. Within interval
ðtd; tdþ1�; we denote the transition rate matrix of ~Mt as ~L

d
;

a square matrix indexed by N ; with entries given in Table 2.
~Mt does not itself yield the correct sampling probability.

The basic issue is that ~Mt has c types splitting into a and b
types at rate r=2 going forward in time, but under the co-
alescent with recombination, this needs to happen at rate
r=2 going backward in time. Similarly, pairs of a and b types
merge into a single c type at rate 1=hd going forward in time

Figure 3 The process f ~Mtgt#0 with rates ~L
d
(Table 2)

used to prove Theorem 1. This process is similar to fMtg
(Figure 2), in that n is fixed, and alleles change due to
copying and mutation. However, ~Mt allows partially spec-
ified a and b types, with c types recombining into a pair of
a and b types, and pairs of a and b types recoalescing into
c types. (A) The process fCtgt#0 of just recombination
(c/a;b) and recoalescence (a;b/c) events. (B) The full
process f ~Mtgt#0 including copying, mutation, recombina-
tion, and recoalescence events.

1384 J. A. Kamm et al.



under ~Mt; but going backward in time under the coalescent
with recombination.

However, it is possible to “reverse” the direction
of the recombinations (c/a; b) and recoalescences
(a; b/c), to get a new process that does match the two-
locus coalescent. In particular, let Ct be the number of c
types in ~Mt; illustrated in Figure 3A. Then Ct is a revers-
ible Markov chain, whose rate matrix in ðtd; tdþ1� is Gd; a
tridiagonal square matrix indexed by f0; 1; . . . ; ng; with
Gd
m;m21 ¼ ðr=2Þm; Gd

m;mþ1 ¼ ðn2mÞ2ð1=hdÞ; and Gd
m;m ¼

2Gd
m;m21 2Gd

m;mþ1: Exploiting the reversibility of Ct allows
us to relate the distribution of ~Mt to the coalescent with
recombination and obtain the following result:

Theorem 1. Let ðgd
0; . . . ; g

d
nÞ be the stationary distribution

of Gd; and let the row vector ~gd be indexed byN ; with ~gd
n ¼ gd

m
if n has m lineages of type c. Denote the stationary distribu-
tion of ~L

d
by the row vector ~L

d ¼ ðldnÞn2N : Let ⊙ and O de-
note component-wise multiplication and division, and recursively
define the row vector pd ¼ ðpdnÞn2N by

p2Dþ1 ¼ ~l
2D

O~g2D

pdþ1 ¼ ½ðpd⊙~gdÞe~L
dðtdþ12tdÞ�O~gd:

(3)

Then, for n 2 N ; we have ℙ0ðnÞ ¼ p0n:
Note that Theorem 1 gives ℙ0ðnÞ for n 2 N : This includes

all fully specified n; i.e., with nðabcÞ ¼ ð0; 0; nÞ; and suffices for
the application considered in Fine-scale recombination rate
estimation. If necessary, ℙ0ðnÞ for partially specified n can
be computed by summing over the fully specified configura-
tions consistent with n:

For jAj ¼ 2 alleles per locus, ~L
d
is an Oðn6Þ3Oðn6Þ

matrix, so naively computing the matrix multiplication
in Theorem 1 would cost Oðn12Þ time. However, ~L

d
is

sparse, with Oðn6Þ nonzero entries, allowing efficient
algorithms to compute Theorem 1 (up to numerical preci-
sion) in Oðn6T Þ time, where T is some finite number of
matrix–vector multiplications. See the Appendix for more
details.

Importance sampling

In addition to the approximate (Equation 2) and exact (Equa-
tion 3) formulas for the sampling probability, LDpop includes
an importance sampler for the two-locusARGn# 0 ¼ fntgt#0:

This provides a method to sample from the posterior distri-
bution of two-locus ARGs and also provides an alternative
method for computing ℙ0ðnÞ: This importance sampler is
based on Theorem 2 below, which characterizes the optimal
proposal distribution for the two-locus coalescent with re-
combination under variable population size.

Let the proposal distribution Qðn#0Þ be a probability dis-
tribution on fn# 0 : n0 ¼ ng whose support contains that of
ℙðn#0jn0 ¼ nÞ: Then we have

ℙ0ðnÞ ¼
Z
n#0:n0¼n

dℙðn#0Þ
dQðn#0Þ

  dQðn#0Þ;

and so, if nð1Þ
# 0; . . . ;n

ðKÞ
# 0 � Q i.i.d., the sum

1
K

XK
k¼1

dℙ
�
nðkÞ
#0

�
dQ

�
nðkÞ
# 0

� (4)

converges almost surely to ℙ0ðnÞ as K/N by the law of large
numbers. Hence, (4) provides a Monte Carlo approximation
to ℙ0ðnÞ: The optimal proposal is the posterior distribution
Qoptðn# 0Þ ¼ ℙðn# 0jn0Þ; for then (4) is exactly

1
K

XK
k¼1

dℙ
�
nðkÞ
#0

�
dℙ

�
nðkÞ
#0

���n0

� ¼ 1
K

XK
k¼1

dℙ
�
nðkÞ
#0

�
dℙ

�
nðkÞ
#0

�.
ℙðn0Þ

¼ ℙðn0Þ;

even for K ¼ 1.
The following theorem, which we prove in the Appendix,

characterizes the optimal posterior distribution Qoptðn#0Þ ¼
ℙðn#0jn0Þ for variable population size:

Theorem 2. The process fntgt# 0 is a backward-in-time
Markov chain with inhomogeneous rates, whose rate matrix
at time t is given by

qðtÞn;m ¼
f
ðtÞ
n;m

ℙtðmÞ
ℙtðnÞ

; if m 6¼ n;

f
ðtÞ
n;n 2

d
dt

logℙtðnÞ; if m ¼ n;

8>><
>>:

where fðtÞ ¼ ðfðtÞ
n;mÞ is a square matrix, indexed by configura-

tions n; with entries given by Table 3 and equal to

f
ðtÞ
n;m ¼ d

ds

h
ℙ
�
nðabcÞt2s ¼ mðabcÞ

���nðabcÞt ¼ nðabcÞ
�

3   ℙ
�
nt ¼ njnt2s ¼ m; nðabcÞt ¼ nðabcÞ

�i���
s¼0

:

(5)

Intuitively, the matrix fðtÞ in Table 3 is a linear combina-
tion of two rate matrices, one for propagating nðabcÞt an

Table 2 Nonzero entries of the rate matrix
~
L

d
for the interval

ðtd ; tdþ1�

m ~L
d
n;m

n2 ei* þ ej* 1
hd

ni*

�
1
2
nj* þ

X
k2A

njk

�
þ u

2
Pijni*

n2 e*i þ e*j 1
hd

n*i

�
1
2
n*j þ

X
k2A

nkj

�
þ u

2
Pijn*i

n2 eij þ ekl
1

2hd
nijnkl þ

u

2
ðdikPjl þ djl PikÞnij

n2 eij þ ei* þ e*j
r

2
nij

n2 ei* 2 e*j þ eij ni*n*j
1
hd

n 2
1
hd

�
nðaÞ þ nðbÞ þ nðcÞ

2

�
2

r

2
nðcÞ 2

u

2

X
i2A

X
j2A[f*g

ðnij þ njiÞ
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infinitesimal distance backward in time and another for prop-
agating nt an infinitesimal distance forward in time. This is
because nðabcÞt is generated by sampling coalescent and re-
combination events backward in time, and then nt is gener-
ated by dropping mutations on the ARG and propagating the
allele values forward in time.

Theorem 2 generalizes previous results for the optimal
proposal distribution in the constant-size case (Stephens
and Donnelly 2000; Fearnhead and Donnelly 2001). In that
case, the conditional probability of the parent m of n is
fn;mðℙðmÞ=ℙðnÞÞ: Note the constant-size case is time homo-
geneous, so the dependence on t is dropped, and the waiting
times between events in the ARG are not sampled (i.e., only
the embedded jump chain of n# 0 is sampled).

We construct our proposal distribution Q̂ðn# 0Þ by ap-
proximating the optimal proposal distribution Qoptðn# 0Þ ¼
ℙðn# 0jn0Þ: This requires approximating the rate qðtÞn;m ¼
fðtÞ
n;mðℙtðmÞ=ℙtðnÞÞ: We use the approximation q̂ðtÞn;m ¼

fðtÞ
n;mðℙ

ðNÞ
t ðmÞ=ℙðNÞt ðnÞÞ; with ℙðNÞt ðnÞ from the approximate-

likelihood Equation 2. To save computation, we compute

ℙðNÞt ðnÞ only along a grid of time points and then linearly

interpolate q̂ðtÞn;m between the points. See the Appendix for

more details on our proposal distribution Q̂:
As detailed in Runtime and accuracy of the importance

sampler, Q̂ is a highly efficient proposal distribution, typically
yielding effective sample sizes (ESS) between 80% and 100%
per sample for the demography and r values we considered.

Application

Previous simulation studies (McVean et al. 2002; Smith and
Fearnhead 2005; Chan et al. 2012) have shown that if the

demographic model is misspecified, composite-likelihood
methods (which so far have assumed a constant population
size) can produce recombination rate estimates that are
biased. Many populations, including those of humans and
Drosophila melanogaster, have undergone bottlenecks and
expansions in the recent past (Choudhary and Singh 1987;
Gutenkunst et al. 2009), and it has been argued (Johnston
and Cutler 2012) that such demographies can severely affect
recombination rate estimation and can cause the appearance
of spurious recombination hotspots.

In this section, we apply our software LDpop to show that
accounting for demography improvesfine-scale recombination
rate estimation. We first examine how a population bottleneck
followed by rapid growth affects the correlation between
partially linked sites. We then study composite-likelihood esti-
mation of recombination maps under a population bottleneck.
We find that accounting for demography with either the exact
(Theorem 1)- or approximate (Equation 2)-likelihood formula
substantially improves accuracy. Furthermore, this improve-
ment is robust to minor misspecification of the demography
due to not knowing the true demography in practice.

Throughout this section, we use an example demography
with D ¼ 3 epochs, consisting of a sharp population bottle-
neck followed by a rapid expansion. Specifically, the popula-
tion size history hðtÞ; in coalescent-scaled units, is given by

hðtÞ ¼

8<
:

100; 20:5, t# 0;
0:1; 20:58, t# 2 0:5;
1; t# 2 0:58:

(6)

Under this model and n ¼ 2; the expected time of the
common ancestor is E½TMRCA� � 1: We thus compare this
demography against a constant-size demography with
coalescent-scaled size of h[ 1; as this is the population
size that would be estimated using the pairwise heterozygos-
ity (Tajima 1983). We use a coalescent-scaled mutation rate
of u=2 ¼ 0:004 per base, which is roughly the mutation rate
of D. melanogaster (Chan et al. 2012).

While the size history hðtÞ of (6) is fairly simple, with only
D ¼ 3 epochs, we stress that LDpop can in fact handle much
more complex size histories. For example, in Runtime and Accu-
racy of Likelihoods, we show that LDpop can easily handle a
demographywithD ¼ 64;with little additional cost in runtime.

Linkage disequilibrium and two-locus likelihoods

One statistic of linkage disequilibrium is

r̂2 ¼

h
x̂112x̂ðaÞ1 x̂ðbÞ1

i2
x̂ðaÞ0 x̂ðaÞ1 x̂ðbÞ0 x̂ðbÞ1

;

where x̂ij ¼ nij=n is the fraction of the sample with haplotype
ij; with x̂ðaÞi ¼

P
jx̂ij and x̂ðbÞj ¼

P
ix̂ij: In words, r̂2 is the sam-

ple square correlation of a random allele at locus a with a
random allele at locus b. We let r2 ¼ limn/Nr̂2 denote the
population square correlation. There has been considerable

Table 3 Nonzero entries of the fðtÞ matrix of Theorem 2, for
t 2 ðtd ; tdþ1�

m fðtÞ
n;m

n2 ei* þ ej* u

2
Pjiðnj* þ 1Þ

n2 e*i þ e*j u

2
Pjiðn*j þ 1Þ

n2 eij þ ekl
u

2
ðdikPlj þ djl PkiÞðnkl þ 1Þ

n2 eij þ ei* þ e*j
r

2
nðcÞðni* þ 1Þðn*j þ 1Þ

n2 eij
1
hd

�
nðcÞ

2

��
nij 2 1

�

n2 ei*
1
hd

"�
nðaÞ

2

��
ni* 2 1Þ þ nðaÞnðcÞ

X
j

nij

#

n2 e*i
1
hd

"�
nðbÞ

2

��
n*i 2 1Þ þ nðbÞnðcÞ

X
j

nji

#

n 2
1
hd

�
n
2

�
2

r

2
nðcÞ 2

u

2

X
i

ð12 PiiÞ½ni* þ n*i þ
X
j

ðnij þ njiÞ�

1386 J. A. Kamm et al.



theoretical interest in understanding moments of r2; r̂2; and
related statistics (Ohta and Kimura 1969; Maruyama 1982;
Hudson 1985; McVean 2002; Song and Song 2007). Addi-
tionally, nr̂2 approximately follows a x2

1 distribution when
r2 ¼ 0; which provides a test for the statistical significance
of linkage disequilibrium (Weir 1996, p. 113).

Using LDpop, we can compute the distribution of r̂2 for
piecewise constant models. In Figure 4, we show E½̂r2� for a
sample size n ¼ 20 under the three-epoch model (6) and the
constant population size model. Under the three-epoch de-
mography, E½̂r2� is much lower for small r and decays more
rapidly as r/N: In other words, the constant model requires
higher r to break down linkage disequilibrium (LD) to the
same level, which suggests that incorrectly assuming a con-
stant demography will lead to upward-biased estimates of
the recombination rate (as pointed out by an anonymous
reviewer). We confirm this below.

Fine-scale recombination rate estimation

For a sample of n haplotypes observed at L SNPs, let n½a; b� be
the two-locus sample observed at SNPs a; b 2 f1; . . . ; Lg; and
let r½a; b� be the recombination rate between SNPs a and b.
The programs LDhat (McVean et al. 2002, 2004; Auton and
McVean 2007), LDhot (Myers et al. 2005; Auton et al. 2014),
and LDhelmet (Chan et al. 2012) infer hotspots and recom-
bination maps r; using the composite likelihood due to
Hudson (2001), Y

a;b:  0, b2 a,W

ℙ
�
n½a; b�; r½a; b�

�
; (7)

where W denotes some window size in which to consider
pairs of sites [a finite window size W removes the computa-
tional burden and statistical noise from distant, uninforma-
tive sites (Fearnhead 2003; Smith and Fearnhead 2005)].

We used LDpop to generate four likelihood tables, which
we then used with LDhat and LDhelmet to estimate recom-
binationmaps for simulated data. The four tables, denoted by
Lconst; Lexact; Lapprox; and Lmiss; are defined as follows:

1. (“Constant”) Lconst denotes a likelihood table that as-
sumes a constant population size of h[ 1:

2. (“Exact”) Lexact denotes a likelihood table that assumes
the correct three-epoch population size history h defined
in (6).

3. (“Approximate”) Lapprox denotes a likelihood table with
the correct size history h in (6), but using the (much
faster) approximate-likelihood Equation 2 with N ¼ n
Moran particles.

4. (“Misspecified”) Lmiss denotes a likelihood table that as-
sumes a misspecified demography ĥ; defined by

ĥðtÞ ¼

8<
:

90:5; 20:534, t# 0;
0:167; 20:66, t# 2 0:534;
1:0; t# 20:66;

(8)

which was estimated from simulated data (Appendix)

Overall, we found that using the constant tableLconst leads to
very noisy and biased estimates of r (as might be expected from
Figure 4). The other tables Lexact; Lapprox; and Lmiss all lead to
muchmore accurate estimates. UsingLexact (the exact-likelihood
table with the true size history) produces slightly more accurate
estimates of r than using Lapprox or Lmiss: However, the three
nonconstant tables Lexact; Lapprox; and Lmiss all produce very
similar results that are hard to distinguish from one another.

Figure 5 and Figure 6 show the accuracy of estimated re-
combinationmaps r̂ on simulated data. We simulated n ¼ 20
sequences under the three-epoch demography defined in (6),
with the true maps r taken from previous estimates for the X
chromosome of D. melanogaster (Chan et al. 2012). In all,
there were 110 independent data sets, with estimated maps
r̂ of length 500 kb. See the Appendix for further details.

In Figure 5, we plot r and r̂ for a particular 500-kb region.
Qualitatively, the constant-size estimate r̂Lconst

is less accurate
and has wilder fluctuations. Figure 6 shows that over all
110 replicates, the constant-size estimate r̂Lconst

has high bias
and low correlation with the truth, compared to the estimates
r̂Lexact

; r̂Lmiss
; and r̂Lapprox

that account for variable demography.
Following Wegmann et al. (2011), we plot the correlation
of r̂ with r at multiple scales; at all scales, the constant-
demography estimate r̂Lconst

is considerably worse than the
other estimates. In general, using an inferred demography or an
approximate lookup table results in only a very mild reduction
in accuracy compared to using the true sampling probabilities.

We also considered a constant (flat)mapr; the estimated r̂
are shown in Figure 7. Consistent with Johnston and Cutler

Figure 4 Expected linkage disequilibrium E½̂r2� for the three-epoch
model in (6) and the constant-size model with h[1; as a function of
recombination rate r for a sample size of n ¼ 20: Under the three-epoch
model, even nearby sites are expected to be quite uncorrelated.
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(2012), we find that the constant-demography estimate
r̂Lconst

can have extreme peaks and is generally very noisy.
On the other hand, the estimates r̂Lexact

;  r̂Lmiss
;  r̂Lapprox

that
account for demography have less noise and fewer large
deviations.

Runtime and Accuracy of Likelihoods

Runtime of the exact and approximate-likelihood
formulas

Both the approximate (Equation 2)- and exact-likelihood
formulas (Theorem 1) require computing products veA for

some k3 kmatrix A and 13 k row vector v:Naively, this kind
of vector–matrix multiplication costs Oðk2Þ: However, in our
case A is sparse, with OðkÞ nonzero entries, allowing us to
compute veA up to numerical precision in OðkT Þ time, where
T is some finite number of sparse matrix–vector products
depending on A (Al-Mohy and Higham 2011). In particular,
k ¼ Oðn3Þ for the approximate formula, whereas k ¼ Oðn6Þ
for the exact formula. Thus, computing the likelihood table
costs Oðn3T Þ and Oðn6T Þ for the approximate (Equation 2)
and exact (Theorem 1) formulas, respectively. See the Appen-
dix for a more detailed analysis of the computational com-
plexity and a description of the algorithm for computing veA:

Figure 5 Comparison of recombination maps inferred using different lookup tables. We simulated n ¼ 20 haplotypes under the three-epoch model (6)
and using the recombination map shown as a black dashed line. (A) Inferred map r̂Lexact

obtained using the exact likelihoods for the true demography.
(B) Inferred map r̂Lmiss

obtained using the empirically estimated demography in (8). (C) Inferred map r̂Lapprox
obtained using an approximate lookup table

for the true demography. (D) Inferred map r̂Lconst
obtained assuming a constant population size of h[1: Note that r̂Lconst

is much noisier than the other
estimates, while using an inferred demography or an approximate lookup table results in only a very mild reduction in accuracy compared to using the
true sampling probabilities. These r̂ were produced with LDhelmet; using LDhat led to very similar results.
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Note that T depends nontrivially on the sample size n, as well
as the parameters r, u, hd; and td:

We present running times for LDpop in Figure 8. We used
LDpop to generate likelihood tables with r 2 f0; 1; . . . ; 100g;
using 24 cores on a computer with 256 GB of RAM. On the
three-epoch demography (Equation 6), we ran the exact for-
mula up to n ¼ 40 (17 hr) and the approximate formula up to
n ¼ 256 (13 hr). The constant demography takes nearly
the same amount of time as the three-epoch demography,
which agrees with our general experience that computing
the initial stationary distribution ~l

2D
is more expensive than

multiplying the matrix exponentials e~L
d
t: Using faster algo-

rithms to compute ~l
2D

should lead to substantial improve-
ments in runtime.

Figure 8 also examines how LDpop scales with the number
of epochs in the demography. We split ½2Tmax; 0� into D in-
tervals of length Tmax=D; each with a random population size
1=hd � log Uniformð0:1; 10Þ; with 10 repetitions per setting
of Tmax and D: Empirically, LDpop scales sublinearly with D;

and LDpop has no problem handlingD ¼ 64 epochs. We also
note that Tmax has a greater impact on runtime thanD; this is
because the matrix exponentials are essentially computed by
solving an ordinary differential equation (ODE) from 2Tmax

to 0, as noted in the Appendix; see Computing the action of a
sparse matrix exponential.

Accuracy of the approximate likelihood

In the Fine-scale recombination rate estimation section, we
found that using the approximate likelihood (Equation 2)
has little impact on recombination rate estimation, suggest-
ing that it is an accurate approximation to the exact formula
in Theorem 1. We examine this in greater detail in Figure 9,
for n ¼ 20; the three-epoch demography (Equation 6), and
a lookup table with r 2 f0; 1; . . . ; 100g We compare the
approximate against the exact values for N ¼ 20 and N ¼ 100

Moran particles in the approximate model. The approximate
table with N ¼ 20 is reasonably accurate, with some mild
deviations from the truth. The approximate table with
N ¼ 100 is extremely accurate and visually indistinguishable
from the true values.

Runtime and accuracy of the importance sampler

Weplot the runtime of our importance sampler in Figure 10A.
For the previous three-epoch demography (Equation 6), we
drew K ¼ 200 importance samples for each of the 275 config-
urations n with n ¼ nðcÞ ¼ 20; with r 2 f0:1; 1; 10; 100g The
runtime of the importance sampler generally increased with
r; using 20 cores, sampling all 275 configurations took
�4 min with r ¼ 0:1; but about 1 hr with r ¼ 100: We fur-
ther analyze the computational complexity of the importance
sampler in the Appendix.

The number K of importance samples required to reach
a desired level of accuracy is typically measured with
ESS,

ESS ¼

�X​ K

k¼1
wk

�2
X ​ K

k¼1
w2
k

;

where wk ¼ dℙðnðkÞ
# 0Þ=dQ̂ðn

ðkÞ
# 0Þ denotes the importance

weight of the kth sample (see Equation 4). Note that
ESS#K always, with equality achieved only if the wk have
0 variance.

Compared to previous coalescent importance samplers,
our proposal distribution is highly efficient. We plot the
ESS per importance sample (i.e., ESS=K) in Figure 10B. Typ-
ically ESS=K. 0:8; for r 2 f10; 100g; the ESS is close to its
optimal value, with ESS=K � 1: In Figure 10C, we compare
the log-likelihood estimated from importance sampling to
the true value computed with Theorem 1; after K ¼ 200

Figure 6 Accuracy of the estimated maps r̂Lexact
; r̂Lmiss

; r̂Lapprox
; r̂Lconst

over 110 simulations similar to Figure 5. The estimate r̂Lconst
obtained assuming

constant demography is substantially more biased and noisier than the other estimates. (A) The average per-base bias r̂2r: (B) The square Pearson
correlation coefficient R2 over different scales. This R2 is distinct from the r2 statistic measuring linkage disequilibrium. To compute R2 for scale s, the
middle 500-kb region of each 1-Mb simulation was divided into nonoverlapping windows of size s and we compared the average of r̂ to the average of
r in each window. The x-axis is stretched by x↦

ffiffiffi
x

p
:
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importance samples, the signed relative error is well under
1% for all n:

By contrast, the previous two-locus importance sampler of
Fearnhead and Donnelly (2001), which assumes a constant
population size, achieves ESS anywhere between 0:05K and
0:5K; depending on n; u; r (result not shown). This impor-
tance sampler is based on a similar result to that of Theorem
2, with optimal rates fn;mðℙðmÞ=ℙðnÞÞ: However, to approx-
imate ℙðmÞ=ℙðnÞ; previous approaches did not use a Moran

model, but followed the approach of Stephens and Donnelly
(2000), using an approximate “conditional sampling distri-
bution” (CSD). We initially tried using the CSD of Fearnhead
and Donnelly (2001) and later generalizations to variable
demography (Sheehan et al. 2013; Steinrücken et al. 2015),
but found that importance sampling failed under popula-
tion bottleneck scenarios, with the ESS repeatedly crashing
to lower and lower values. Previous attempts to perform
importance sampling under variable demography (Ye et al.

Figure 8 Runtime of LDpop to compute a likelihood table with r 2 f0;1; . . . ;100g: Experiments were performed using 24 cores on a computer with
256 GB of RAM. (A) Runtime as a function of sample size, for both the approximate and exact formulas and for two demographies [a constant-size
history and the three-epoch model (6)]. (B) Runtime as a function of the number of epochs D on ½2Tmax; 0�; for the exact formula with n ¼ 20; with
10 repetitions with random population sizes. Note that runtime depends more on Tmax than D and grows sublinearly with D (a twofold increase of D
yields less than a twofold increase in runtime).

Figure 7 Inferred recombination maps r̂ produced by LDhelmet using four different lookup tables (Lconst;Lexact;Lapprox;Lmiss), when the true
recombination rate is constant at r ¼ 0:01/bp. Results for 20 simulated data sets are shown. Each simulation was done under the three-epoch
demography defined in (6). Results for LDhat were very similar (not shown). (A) Inferred recombination maps r̂: (B) The same plot but zoomed out.
For the figure corresponding to Lconst; the highest peak reaches r ¼ 2:5 (not displayed), which is 250 times the true value.
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2013) have also encountered low ESS, although in the con-
text of an infinite-sites model (as opposed to a two-locus
model). However, Dialdestoro et al. (2016) recently devised
an efficient two-locus importance sampler using the CSD ap-
proach, in conjunction with advanced importance sampling
techniques. Their importance sampler allows archaic samples
and is thus time inhomogeneous, but it models only constant
population size histories.

Discussion

In this article, we have developed a novel algorithm for
computing the exact two-locus sampling probability under
arbitrary piecewise-constant demographic histories. These
two-locus likelihoods can be used to study the impact of

demography on LD and also to improve fine-scale recombi-
nation rate estimation. Indeed, using two-locus sampling
probabilities computed under the true or an inferred de-
mography, we were able to obtain recombination rate esti-
mates with substantially less noise and fewer spurious peaks
that could potentially be mistaken for hotspots.

We have implemented our method in a freely available
software package, LDpop. This program also includes an
efficient approximation to the true sampling probability
that easily scales to hundreds in sample size. In practice,
highly accurate approximations to the true sampling prob-
ability for sample size n can be obtained quickly by first
applying the approximate algorithm with N Moran par-
ticles .n and then downsampling to the desired sample
size n.

Figure 9 The approximate table flogℙ̂ðnÞg plotted against the exact table flogℙðnÞg; for a lookup table with n ¼ 20 and r 2 f0; 1; . . . ;100g; under the
three-epoch model in (6). (A) N ¼ 20 Moran particles. (B) N ¼ 100 Moran particles. Note that the approximate table with N ¼ 100 is extremely accurate
and visually indistinguishable from the true values.

Figure 10 Accuracy and runtime of importance sampling, on the three-epoch demography (6) with u ¼ 0:008 and r ¼ 1:0; drawing 200 genealogies
for each of the 275 fully specified configurations n with n ¼ 20: (A) Runtime for each n; as a function of the number of importance samples. Higher r
generally took a longer time. Using 20 cores, the time to sample all 275 configurations took �4 min when r ¼ 0:1; but 1 hr for r ¼ 100: (B) The ESS per
importance sample, for each configuration n: (C) The signed relative error ðEst2 TruthÞ=Truth of logℙ̂ðnÞ; as a function of the number of importance
samples. The true values were computed via Theorem 1.
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In principle, one could also obtain an accurate approxima-
tion to the samplingprobability usingour importance sampler,
which is also implemented in LDpop. We have not optimized
this code, however, and we believe that its main utility will be
in sampling two-locus ARGs from the posterior distribution.
Finally, we note that, in addition to improving the inference of
fine-scale recombination rate variation, our two-locus likeli-
hoods can be utilized in other applications such as hotspot
hypothesis testing and demographic inference.
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Appendix

Proposal Distribution of Importance Sampler

For our importance sampler, we construct the proposal distribution Q̂ðn# 0Þ by approximating the optimal proposal distribution
Qoptðn# 0Þ ¼ ℙðn# 0jn0Þ given in Theorem 2.We start by choosing a grid of points2N, t1 , t2 ,⋯, tJ ¼ 0 and then set Q̂ to
be a backward-in-time Markov chain, whose rates at t 2 ðtj; tjþ1Þ are the linear interpolation

q̂ðtÞn;m ¼
tjþ12 t
tjþ12 tj

q̂ðtjÞn;m þ
t2 tj

tjþ1 2 tj
q̂ðtjþ1Þ
n;m ; (A1)

with the rates at the grid points given by

q̂ðtjÞn;m ¼
f
ðtjÞ
n;m

ℙ̂tjðmÞ
ℙ̂tjðnÞ

; if m 6¼ n;

2
X
n6¼n

q̂ðtjÞn;n ; if m ¼ n;

8>>>><
>>>>:

with ℙ̂tjðnÞ an approximation to the likelihood ℙtjðnÞ: In particular, we set ℙ̂tjðnÞ ¼ ℙðNÞtj
ðnÞ; using the approximate-likelihood

formula (2). The approximate likelihoods fℙðNÞtj
ðnÞg can be efficiently computed along a grid of points, using the method

described below (see Computing the action of a sparse matrix exponential and Complexity of importance sampler).
To sample from Q̂; we note that for configuration n at time t, the time S, t of the next event has cumulative distribution

function ℙðS, sÞ ¼ expð
R t
S q̂

ðuÞ
n;nduÞ for s, t: Thus, S can be sampled by first sampling X � Uniformð0; 1Þ and then solving for

logðXÞ ¼
R t
S q̂

ðuÞ
n;ndu via the quadratic formula [since q̂ðuÞn;n is piecewise linear; see (A1)]. Having sampled S, we can then sample

the next configuration m with probability 2q̂ðSÞn;m=q̂
ðSÞ
n;n:

Details of Simulation Study

Simulated data

We simulated independent 1-Mb segmentswith n ¼ 20 haplotypes under the three-epoch demographyhðtÞ in (6). To do so, we
generated trees using the program MaCS (Chen et al. 2009) and then generated mutations according to a quadraallelic
mutational model. For the variable recombination maps used in Figure 5 and Figure 6, we divided the recombination map
of the X chromosome of D. melanogaster from Raleigh, North Carolina inferred by Chan et al. (2012) into 22 nonoverlapping
1-Mbwindows and simulated five replicates, for a total of 110Mb of simulated data. For the constant map used in Figure 7, we
generated 20 data sets with r ¼ 0:01 per base.
Estimation of misspecified demography ĥðtÞ

To estimate the misspecified demography ĥðtÞ of (8), we pooled all biallelic SNPs from the 110 simulated segments of the
variable recombination map and then used the folded site frequency spectrum (SFS) of the simulated SNPs to estimate ĥðtÞ:
Specifically, we fitted ĥðtÞ by maximizing a composite likelihood, viewing each SNP as an independent draw from a multino-
mial distribution proportional to the expected SFS. We computed the expected SFS with the software package momi (Kamm
et al. 2016) and fixed the most ancient population size to 1.0 due to scaling and identifiability issues.
Recombination map estimation

After removing all nonbiallelic SNPs, we ran both LDhat and LDhelmet on the resulting data, using a block penalty of 50 as
recommended by Chan et al. (2012) for Drosophila-like data (the block penalty is a tuning parameter that is multiplied by the
number of change points in the estimated map r̂ and added to the log composite likelihood; thus a high block penalty
discourages overfitting). We took the posterior median inferred at each position to be the estimated map r̂: We used only
the centermost 500 kb of each estimate r̂ to avoid the issue of edge effects.

Computational Complexity

Computing the action of a sparse matrix exponential

Both Theorem 1 and the approximate formula (2) rely on “the action of the matrix exponential” (Al-Mohy and Higham 2011).
Let A be a k3 k matrix and v a 13 k row vector. We need to compute expressions of the form veA: Naively, this kind of
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vector–matrix multiplication costs Oðk2Þ: However, in our case A will be sparse, with k nonzero entries, allowing us to more
efficiently compute veA:

In particular, we use the algorithm of Al-Mohy andHigham (2011), as implemented in the Python package scipy. For s 2 ℤþ;

define Tmðs21AÞ ¼
Pm

i¼0ðs21AÞi=i!; the truncated Taylor series approximation of es
21A: Then, we have

veA ¼ v
�
es

21A�s � v


Tm

�
s21A

��s
:

Now let bj ¼ v½Tmðs21AÞ�j; so Bj is a 13 k row vector. Then

bj ¼ bj21Tm
�
s21A

�
¼

Xm
i¼0

bj21

�
s21A

�i
i!

;

with veA � bs; and bs evaluated in T ¼ ms vector–matrixmultiplications, each costingOðkÞ by the sparsity ofA:Approximating
veA thus costs OðT kÞ time. Both m and s are chosen automatically to bound

kDAk1
kAk1

# tolerance � 1:13 10216;

with DA defined by ½Tmðs21AÞ�s ¼ eAþDA and the matrix norm given by A1 ¼ supw 6¼0ðkwAk1=kwk1Þ: To avoid numerical
instability, m is also bounded by m#mmax ¼ 55: Al-Mohy and Higham (2011) provide some analysis for the size of
T ¼ ms; but this analysis is rather involved. Very roughly, T is proportional to kAk (for arbitrary matrix norm k � k), so
computing ve2A takes twice as long as computing veA; and computing vetA is roughly proportional to t. This is because vetA

is essentially computed by numerically integrating the ODE =f ðsÞ ¼ f ðsÞA for s 2 ½0; t�:
We note that bj � ves

21jA; and thus this algorithm approximates vetA along a grid of points t 2 fs21; 2s21; . . . ; 1g If vetA is
needed at additional points, then extra grid points can be added at those times.

Complexity of the exact-likelihood formula (Theorem 1)

We consider the computational complexity of computing ℙ0ðnÞ via Theorem 1. Note that the formula (3) simultaneously
computes ℙ0ðnÞ for all configurations n 2 N :

As usual, we assume two allelesA ¼ f0; 1g; as is assumed by LDhat and the applications considered in this article. We start
by considering the dimensions of the sampling probability vectors pd and rate matrices ~L

d
for intervals ðtd; tdþ1�: The set of

a; b; c haplotypes is H ¼ f00; 01; 10; 11; 0*; 1*; *0; *1g; so jHj ¼ 8: Thus, there are Oðn6Þ possible configurations n
with nðaÞ ¼ nðbÞ ¼ n2 nðcÞ: In particular, there are Oðn6Þ ways to specify n00; n01; n10; n11; n0*; n*0; and then
n1* ¼ n2

X
i;j2f0;1gnij 2 n0* and n*1 ¼ n2

X
i;j2f0;1gnij 2 n*0 are determined. Thus, pd is a row vector of dimension

13Oðn6Þ; and ~L
d
is a square matrix of dimension Oðn6Þ3Oðn6Þ; but ~L

d
is sparse, with only Oðn6Þ nonzero entries.

By using the aforementioned algorithm for computing the action of a sparse matrix exponential, we can compute

pdþ1 ¼
��

pd⊙~gd
�
e~L

dðtdþ12tdÞ


O~gd from pd in OðT dn6Þ time, where T d is the number of vector–matrix multiplications to

compute the action of e~L
dðtdþ12tdÞ: We note that the stationary distribution ðgd

0; . . . ; g
d
nÞ can be computed in nþ 1 steps: Gd is

the rate matrix of a simple random walk with nþ 1 states, so gd
iþ1 ¼ gd

i ð½Gd�i;iþ1=½Gd�iþ1;iÞ and
P

ig
d
i ¼ 1:

Similarly, the initial value p2Dþ1 ¼ ~l
2D

O~g2D can be computed via sparse vector–matrix multiplications, using
the technique of power iteration. For m ¼ 1=maxij½~L

2D�ij and arbitrary positive vector vð0Þ with kvð0Þk1 ¼ 1; we
have vðiÞ :¼ vð0Þðm~L

2D þ IÞi/~l
2D

as i/N: In particular, we set the number of iterations, T 2D; so that
klogðvðT 2DÞOvðT 2D21ÞÞk1 , 13 1028; where log v is the element-wise log of v: As noted in Runtime of the exact- and
approximate-likelihood formulas, in practice we found T 2D � T d for d. 2D; i.e., computing the initial stationary distri-
bution ~l

2D
was more expensive than multiplying the matrix exponentials e~L

d
t:

To summarize, computing ℙ0ðnÞ for allOðn6Þ configurations n 2 N of size n costsOðn6T Þ;with T ¼
P21

d¼2DT d:We caution
that T depends on n; ftdg; f~L

dg
The memory cost of Theorem 1 is Oðn6Þ; since ~L

d
has Oðn6Þ nonzero entries.
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Comparison with Golding’s equations

Under constant population size, Golding (1984) proposed a method to compute ℙ0ðnÞ by solving a linear system of
equations gG ¼ g; where g ¼ ½ℙ0ðnÞ�n2N 9 is the vector of sampling probabilities indexed by the Oðn8Þ configurations
N 9 ¼ fn : maxðnðaÞ þ nðcÞ; nðbÞ þ nðcÞÞ#ng with at most n alleles at each locus. Hudson (2001) solves this linear system,
costing Oðn8T Þ where (as above) T is some finite number of sparse matrix–vector multiplications.

For the case of constant population size, Theorem 1 reduces to solving a sparse system ~l
2D ~L

2D ¼ ~l
2D

; which is similar in
spirit to solving Golding’s equations gG ¼ g: TheOðn6T Þ runtime of Theorem 1 at first seems superior to theOðn8T Þ runtime of
Golding’s equations, but in fact the number of matrix multiplications T is not comparable between the two methods. Most
importantly, Hudson (2001) exploits the structure of the Oðn8Þ equations to decompose them into smaller subsystems ofOðn4Þ
equations, which may lead to smaller T : Algorithmic details also lead to important differences: we use power iteration,
whereas Hudson (2001) uses a conjugate gradient method, with less stringent convergence criteria (stopping when the
relative l2 error for each subsystem of equations is ,1024).

Preliminary tests suggest that theC code ofHudson (2001) and a similar implementation byChan et al. (2012) are faster than our
current method for solving ~l

2D ~L
2D ¼ ~l

2D
: We are planning future updates to LDpop that will speed up the initial stationary

distribution ~l
2D

; either by changing the algorithmic details of our solver or by using Golding’s equations to compute ~l
2D

instead.

Complexity of approximate-likelihood formula

Themethod of computing the approximate-likelihood formula (2) is similar to computing Theorem1, in thatwe can compute an
initial stationary distribution l2D

ðNÞ by power iteration and then propagate it forward in time by applying the action of the sparse
matrix exponential eL

d
ðNÞðtdþ12tdÞ: However, instead of Oðn6Þ states, there are OðN3Þ total states: there are four possible fully

specified haplotypes f00; 01; 10; 11g; and thus the requirement that the number of lineages sums to N yields OðN3Þ possible
states for the Moran model Mt: Thus, computing the approximate-likelihood formula (2) costs OðN3T Þ time and OðN3Þ
memory space.

Complexity of importance sampler

Here we examine the computational complexity of our importance sampler.
To construct the proposal distribution Q̂ described in Proposal Distribution of Importance Sampler, we must compute

approximate likelihoods ℙðNÞt ðnÞ defined by (2) along a grid of points t 2 ft1; t2; . . . ; tJg We start by computing the Moran
likelihoods fℙðNÞðMtjÞgj; using the action of the sparse matrix exponential. As discussed above, the method of Al-Mohy and
Higham (2011) yields fℙðNÞðMtjÞgj as a by-product of computing ℙðNÞðM0Þ at essentially no extra cost. Thus, computing the
terms fℙðNÞðMtÞg costs OðN3T Þ (absorbing the minor cost of an additional J extra grid points into T ).

We then compute ℙðNÞt ðnÞ by subsampling from ℙðNÞðMtÞ as in (2) and thus set N ¼ 2n; since 2n is the maximum number of
individuals in n (because each of the original n lineages can recombine into two lineages). However, it is inefficient to compute
ℙ̂tðnÞ by subsampling for every value of n separately. Instead, it is better to use a dynamic program ℙ̂tðnÞ ¼

P
mℙ̂tðmÞℙðnjmÞ;

where the sum is over all configurations m obtained by adding an additional sample to n:
This costs Oðn8JÞ time and space, since there are J grid points and Oðn8Þ possible configurations of n: Then, assuming a

reasonably efficient proposal, the expected cost to draw K importance samples is OðnJKÞ; since the expected number of
coalescence, mutation, and recombination events before reaching the marginal common ancestor at each locus is OðnÞ
(Griffiths 1991). This approach thus takes Oðn3T þ n8J þ n4JKÞ expected time to compute ℙ0ðnÞ for all Oðn3Þ possible n:
In practice, we precomputed ℙ̂tðnÞ only for theOðn4Þ fully specified n (withoutmissing alleles), but computed and cached ℙ̂tðnÞ
as needed for partially specified n (with missing alleles). The theoretical running time to compute the full lookup table is still
Oðn3T Dþ n8J þ n4JKÞ; but in practice, many values of n are highly unlikely and never encountered at each tj:

Proofs

For a stochastic process fXtgt# 0; we denote its partial sample paths with the following notation: Xs:t ¼ fXu : u 2 ðs; t�g and
X# s ¼ X2N:s:

Proof of Theorem 1

We start by constructing a forward-in-time Markov jump process ~M# 0 with state space N ¼ fn : nðabcÞ ¼ ðk; k; n2 kÞ;
0# k# ng ~Mt changes due to four types of events: mutation, copying, recoalescence, and “recombination”:

1. Individual alleles mutate at rate u=2 according to transition matrix P:
2. Lineages copy their alleles onto each other, with the rate depending on the lineage type. Each pair of a types experiences a

copying event at rate 1=hd; with the direction of copying chosen with probability 1=2: The rates are the same for every
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pair of b and every pair of c types. Pairs of ða; cÞ and ðb; cÞ types also experience copying at rate 1=hd; however, the
direction of copying is always from the c type to the a or b type and happens only at one allele (left for a, right for b).

3. a types do not copy onto b types, and vice versa. Instead, they merge (recoalesce) into a single c type at rate 1=hd per pair.
Note this is similar to the coalescent, but here the recoalescence happens forward in time rather than backward in time.

4. Each c type splits into a and b types at rate r=2: Again, this is similar to the coalescent; however, here the recombination
happens forward in time, while in the coalescent with recombination it happens at rate r=2 going backward in time.

Then ~Mt has forward-in-time rate matrix Ld in ðtd; tdþ1�; with Ld given in Table 2.
Now let Ct denote the number of c types in ~Mt (so the numbers of a and b types are each n2Ct). Note that Ct is unaffected by

mutation and copying events, and so Ctþh is conditionally independent of ~Mt given Ct; for h$ 0: Thus Ct is a Markov jump
process with rate matrix Gd in ðtd; tdþ1�; where Gd is a tridiagonal square matrix indexed by f0; 1; . . . ; ng; with
Gd
m;m21 ¼ ðr=2Þm; Gd

m;mþ1 ¼ ðn2mÞ2ð1=hdÞ; and Gd
m;m ¼ 2Gd

m;m21 2Gd
m;mþ1:

We can therefore sample ~M# 0 in two steps, as illustrated in Figure 3:

1. First, sample the recoalescence and recombination events. In other words, sample C# 0 using its rate matrices fGdg
2. Next, sample from ℙð ~M# 0jC# 0Þ: For h. 0; ~Mtþh can be obtained from ~Mt and C#0 by superimposing two Poisson point

processes, conditionally independent given C# 0 :

(a) a point process of directed edges between lineages (the copying events), with rate 1=2hd for a/a; b/b; c/c edges
and rate 1=hd for c/a; c/b edges, and (b) a point process of mutations hitting the lineages, at rate u=2 per locus per
lineage.

To see that this superpositioning of point processes yields the correct distribution ℙð ~M#0Þ; note that mutation and copying
events do not affect the rates of recombination and recoalescence events and that the four types of jump events that make up
the Markov jump process ~M# 0 occur at the desired rates given by fLdg:

Now define C*
t to be the backward-in-time Markov chain with rates Gd in ðtd; tdþ1� (whereas Ct has the same rates but going

forward in time). Let ~M*
t be the stochastic process with conditional law ℙð ~M*

# 0

��C*
# 0 ¼ CÞ ¼ ℙð ~M#0jC# 0 ¼ CÞ: Thus ~M*

# 0 can
be sampled in the same two steps as ~M# 0; except the first step (coalescences and recombinations) is backward in time. We
illustrate the conditional independence structure of ~M*

t and C*
t via a directed graphical model (Koller and Friedman 2009) in

Figure A1. [A graphical model is a graphwhose vertices represent random variables, with the property that if all paths between
V1 and V2 pass through W, then there is conditional independence ℙðV1;V2jWÞ ¼ ℙðV1jWÞℙðV2jWÞ].

We next show that for n with nðaÞ ¼ nðbÞ ¼ n2 nðcÞ;

ℙtðnÞ ¼ ℙ
�
~M*
t ¼ njC*

t ¼ nðcÞ
�
: (A2)

We use a similar argument as in Durrett (2008, theorem 1.30, p. 47), tracing the genealogy of n backward in time (Figure 3B).
Under ℙð ~M  *Þ; recombination events occur backward in time at rate r=2 per c-type lineage, as in the coalescent. Likewise,
coalescence between an a and a b type occurs at the usual rate 1=hd:Next, note that copying events between ancestral lineages
induce coalescences within the ARG; these are encountered as a Poisson point process at rate 1=hd per ancestral pair not of type
ða; bÞ: Thus, the embedded ARG is distributed as the coalescent with recombination. Finally, conditioning on the full history of
recombination, copying, and coalescence events, we can drop down mutations as a Poisson point process with rate u=2 per
locus per lineage, and so the ARG with mutations follows the coalescent with recombination and mutation. Note that the
alleles at the common ancestors of each locus follow the stationary distribution: the common ancestors are fixed under the
conditioning (of recombination, copying, and coalescence events), and if vs is the conditional distribution of an ancestral allele
at time s#TMRCA; then vs ¼ vs9eðP2IÞðu=2Þðs2s9Þ for s9, s; sending s9/2N yields the stationary distribution.

Having established (A2), we next observe

ℙtdþ1ðnÞ ¼ ℙ
�
~M*
tdþ1

¼ njC*
tdþ1

¼ nðcÞ
�

¼
X
m

  ℙ
�
~M*
td ¼ mjC*

td ¼ mðcÞ
�
ℙ
�
C*
td ¼ mðcÞ

���C*
tdþ1

¼ nðcÞ
�
3 ℙ

�
~M*
tdþ1

¼ njC*
tdþ1

¼ nðcÞ;C*
td ¼ mðcÞ; ~M*

td ¼ m
�

¼
X
m

  ℙtdðmÞℙ
�
C*
td ¼ mðcÞ

���C*
tdþ1

¼ nðcÞ
�
3 ℙ

�
~Mtdþ1 ¼ njCtdþ1 ¼ nðcÞ;Ctd ¼ mðcÞ; ~Mtd ¼ m

�
: (A3)
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Note that in the second equality, we use the conditional independence of ~M*
td and C*

tdþ1
given C*

td ; which follows from the
graphical model of Figure A1 by setting s ¼ td and t ¼ tdþ1:

Next, note that Gd is the transition matrix of a simple random walk with bounded state space and no absorbing states and
thus is reversible. Thus, with gd the stationary distribution of Gd;

gdnðcÞℙ
�
C*
td ¼ mðcÞ

���C*
tdþ1

¼ nðcÞ
�
¼ gdnðcÞ

h
eG

dðtdþ12tdÞ
i
nðcÞ;mðcÞ

¼ gdmðcÞ

h
eG

dðtdþ12tdÞ
i
mðcÞ;nðcÞ

¼ gdmðcÞℙ
�
Ctdþ1 ¼ nðcÞ

���Ctd ¼ mðcÞ
�
: (A4)

Recall that we defined ~gd
n ¼ gd

nðcÞ : So plugging (A4) into (A3) yields

ℙtdþ1ðnÞ ¼
X
m

  ℙtdðmÞ ~g
d
m

~gdn
ℙ
�
Ctdþ1 ¼ nðcÞ

���Ctd ¼ mðcÞ
�
3 ℙ

�
~Mtdþ1 ¼ n

���Ctdþ1 ¼ nðcÞ;Ctd ¼ mðcÞ; ~Mtd ¼ m
�

¼
X
m

  ℙtdðmÞ ~g
d
m

~gdn
ℙ
�
Ctdþ1 ¼ nðcÞ; ~Mtdþ1 ¼ n

���Ctd ¼ mðcÞ; ~Mtd ¼ m
�
¼

X
m

  ℙtdðmÞ ~g
d
m

~gdn

�
e
~L
dðtdþ12tdÞ



m;n

;

which proves half of the desired result; i.e., pdþ1 ¼ ½ðpd⊙~gdÞe~L
dðtdþ12tdÞ�O~gd;where pd ¼ ½ℙtdðnÞ�9n: To show the other half, that

p2Dþ1 ¼ ~l
2D

O~l
2D

; where ~l
2D

is the stationary distribution of L2D; we simply note that for all t# t2Dþ1;

ℙtðnÞ~g2D
n ¼ ℙ

�
~M*
t ¼ njC*

t ¼ nðcÞ
�
g2D
nðcÞ ¼ ℙ

�
~Mt ¼ njCt ¼ nðcÞ

�
g2D
nðcÞ ¼ ℙð ~Mt ¼ nÞ ¼ ~l

2D
n ;

where the second equality follows by reversibility of G2D; which implies ℙðC# tjCtÞ ¼ ℙðC*
# t

��C*
t Þ; and thus

ℙð ~M# tjCtÞ ¼ ℙð ~M*
# t

��C*
t Þ:

Proof of Theorem 2

We first check that ℙðns1 jns2 ;ns3Þ ¼ ℙðns1 jns2Þ; for 2N, s1 , s2 , s3 # 0; and so nt is a backward-in-time Markov chain.
Recall that we generate nðabcÞt as a backward-in-time Markov chain and then generate nt by dropping down mutations

forward in time. The conditional independence structure of ns1 ;ns2 ;ns3 is thus described by the directed graphical model
(Koller and Friedman 2009) in Figure A2.

Doing moralization and variable elimination (Koller and Friedman 2009) on Figure A2 results in the undirected graphical
model in Figure A3. The graphical model of Figure A3 then implies

ℙðns1 jns2 ;ns3Þ ¼
X
nðabcÞ
s2

  ℙ
�
ns1 jns2 ; n

ðabcÞ
s2

�
ℙ
�
nðabcÞs2

���ns2 ;ns3

�
¼ ℙðns1 jns2Þ;

where the second equality follows because nðabcÞs2 is a deterministic function of ns2 : Thus, nt is a backward-in-timeMarkov chain.
We next compute the backward-in-time rates qðtÞn;m for the Markov chain nt at time t. Starting from the definition of qðtÞn;m;

qðtÞn;m ¼ d
ds

ℙðnt2s ¼ mjnt ¼ nÞjs¼0 ¼ d
ds

ℙ
�
nt2s ¼ m;nt ¼ njnðabcÞt ¼ nðabcÞ

�
ℙ
�
nt ¼ njnðabcÞt ¼ nðabcÞ

�
�����
s¼0

¼ 1
ℙtðnÞ

d
ds

h
ℙ
�
nðabcÞt2s ¼ mðabcÞ

���nðabcÞt ¼ nðabcÞ
�
ℙ
�
nt ¼ njnðabcÞt ¼ nðabcÞ;nt2s ¼ m

�
ℙt2sðmÞ

i���
s¼0

¼ 1
ℙtðnÞ

h
ℙ
�
nðabcÞt ¼ mðabcÞ

���nðabcÞt ¼ nðabcÞ
�
ℙ
�
nt ¼ njnðabcÞt ¼ nðabcÞ;nt ¼ m

� d
ds
ℙt2sðmÞjs¼0 þ  f

ðtÞ
n;mℙtðmÞ

i

¼
f
ðtÞ
n;m

ℙtðmÞ
ℙtðnÞ

; if m 6¼ n;

f
ðtÞ
n;n 2

d
dt

logℙtðnÞ; if m ¼ n;

8>>><
>>>:
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Figure A1 Probabilistic graphical model for the processes C*
t and ~M*

t ; with 2N, s, t#0: Random variables are represented as vertices, and the
edges encode conditional independence relationships. Specifically, if all paths between V1 and V2 pass through W, then there is conditional in-
dependence ℙðV1;V2jWÞ ¼ ℙðV1jWÞℙðV2jWÞ:

Figure A2 Probabilistic graphical model for the coa-
lescent with recombination and mutation, with
2N, s1 , s2 , s3 #0:

Figure A3 Undirected graphical model, after moralization and variable elimination on Figure A2. We add edges to form cliques on the left and right
sides of nðabcÞs2 ;ns2 and then eliminate all the variables except the ones pictured here.

where the penultimate equality follows from the product rule and the definition of fðtÞ in (5).
The specific entries of fðtÞ listed in Table 3 can be obtained by applying the product rule to (5) and noting that

ðd=dsÞℙðnðabcÞt2s

���nðabcÞt Þ
���
s¼0

and ðd=dsÞℙðntjnðabcÞt ;nt2sÞ
���
s¼0

are, respectively, the backward-in-time rates of nðabcÞt (as listed in
Table 1) and the forward-in-time rates for dropping mutations on nt:
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