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Abstract

Trajectory Planning for Autonomous Vehicles for Optimal Exploration of Spatial

Processes

by

Sisi Song

Autonomous vehicles are becoming the platform of choice for large-scale explo-

ration of environmental processes, owing to their low cost and dependability of

sensors. Standard trajectory planning methods often preplan a trajectory in ad-

vance, or are based on information criteria, and do not use the observations taken

at earlier locations on the trajectory to decide where the vehicle should go next.

In this dissertation, we propose a framework for real-time, adaptive generation of

trajectories that are optimal with respect to some exploration goal, with a focus

on smooth continuous trajectories for nonholonomic vehicles. We develop an al-

gorithm that enables the vehicle to gather data, reconstruct the environmental

process, and generate piecewise optimal trajectory segments that use the data

collected at previously visited locations. Our approach is based on Gaussian pro-

cess priors and Bayesian optimal design. Gaussian processes provide a method to

fuse any prior knowledge of the environmental process with the collected data to

obtain the most updated estimation of the process. Through Bayesian optimal

design, we develop reward functions that explicitly reflect the operational goal

and naturally address the exploration-exploitation trade-off in a principled way.

We include a number of empirical evaluations of the methodology and show the

advantages of our algorithm on different archetypes of spatial processes. Field

tests of the planner on an autonomous ground vehicle demonstrate the practi-

cal usefulness of our algorithm. We then extend the framework to incorporate

xiii



supplementary information from different types of off-vehicle sensors. Three in-

corporation methods, depending on the nature of the supplementary source, are

developed and tested, resulting in performance improvement, especially in the

early stages of exploration. Finally, we turn to the case of multiple vehicles and

develop an extension of our optimal trajectory algorithm that uses collective infor-

mation to estimate the process and individual trajectory planning for each vehicle.

As a result, computation time per vehicle does not increase as more vehicles are

added, while the time required to achieve the exploration goal is reduced nearly

linearly.
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Chapter 1

Introduction

The aim of this dissertation is to develop a flexible framework for optimal

trajectory planning that enables autonomous vehicles to generate real-time tra-

jectories onboard the vehicle that adapt to information collected by the vehicle.

Automated trajectory planning (i.e., the determination of the path and velocity

of the vehicle so that it can accomplish its mission) is a critical but difficult task,

particularly in the case of uncertain environments (where trajectories cannot be

pre-planned in advance but need to be determined online) and nonholonomic ve-

hicles (in which vehicle constraints can seriously limit the number of trajectories

available) [42, 56].

Figure 1.1 shows the four standard platforms for unmanned vehicles. While

unmanned can (and often) mean remote operation by humans, this dissertation

addresses methods for fully autonomous trajectory generation onboard the un-

manned vehicles, i.e. no human involvement in deciding where the vehicle travels

to and how it gets there.

1



(a) UAV (b) UGV (c) USV (d) AUV

Figure 1.1: Autonomous/unmanned vehicles and manufacturers: (a) unmanned
aerial vehicle, Dragon Eye by AeroVironment, (b) unmanned ground vehicle, Mars
rover prototype by NASA, (c) unmanned surface vehicle, SeaWorker by ASV
Global, and (d) autonomous underwater vehicle, Remus by Woods Hole Oceano-
graphic Institution.

1.1 Traditional goals of trajectory planning

Trajectory planning for autonomous vehicles has received considerable atten-

tion in the engineering literature. Traditional applications of trajectory planning

are motion planning (i.e., navigating the vehicle from a beginning to end con-

figuration), traveling salesman-like problems, and target tracking or following.

Algorithms have been extensively developed for the case when the planner has

access to a complete and accurate model of the environment in which the vehi-

cle operates [43, 3, 41]. Trajectory planning in uncertain environments has been

discussed in [75, 61] for target following and in [83, 45, 47] for target tracking,

where the target location is unknown and moves around a possibly cluttered en-

vironment. In the context of motion planning while avoiding obstacles, a survey

of methods is presented in [31], while navigation in unknown or dynamic environ-

ments are discussed in [38, 29]. Often navigation problems include an optimality

goal such as using minimal time or distance [69, 74].

2



1.2 Informative, explorative goals

More recently, attention has turned to the problem of informative path plan-

ning [15, 11, 52], where the goal is to maximize the amount of sensor information

obtained about an underlying field of interest. Informative path planning is es-

pecially critical for autonomous vehicles involved in environmental sensing. Au-

tonomous vehicles provide an advantageous platform for studying environmental

processes such as ocean currents, soil nutrient levels, and atmospheric pollution,

especially in toxic environments (such as hazardous gas plumes) or for tasks that

involve long time horizons (such as exploring a large part of an ocean).

In this context, the adaptive design of optimal trajectories that dynamically

incorporate information as it is collected is a fundamental task. More specifically,

we are interested in planning optimal trajectories online for autonomous vehicles

that investigate unexplored environmental processes using onboard sensors taking

periodic point-referenced measurements. The planning algorithm uses the data

collected during the mission and direct the vehicle to sampling locations that

contain the most useful information to achieve the specific task at hand. The

optimality of trajectory planning algorithms is necessarily defined in relation to

a specific operational goal. In this thesis we focus on two common tasks that

appear in studying environmental fields: optimal field reconstruction, and extrema

identification.

1.2.1 Optimal reconstruction goal

Optimal reconstruction, i.e., estimating the process with minimal error, is

an essential task upon which other goals can be built. Previous work related

to optimal reconstruction attempts to either minimize the variance associated

with the field reconstruction (G- or I-optimality) [82, 48] or to optimize objective

3



functions based on information theoretic concepts such as mutual information or

conditional entropy (A- or D-optimality) [32, 39]. The former focuses on selecting

sampling locations that minimize the uncertainty of the field estimates, while the

latter focuses on reducing uncertainty of the reconstruction by selecting sampling

locations that are maximally informative about the parameters of the model of

the environmental process. A method based on Kalman filtering that minimizes

the norm of the state covariance matrix is presented in [44]. A feature of all these

approaches is that their optimal solutions only depend on the sampling locations

and not on the actual measurements gathered. This allows for the path to be

pre-computed, thereby avoiding the challenge involved in continuously updating

the trajectory, but fails to fully utilize the information collected by the vehicle.

1.2.2 Extremum identification goal

Another important operational goal we consider in this thesis is extrema iden-

tification, i.e., locating the maximum or minimum of the environmental process

(and reporting the associated extreme value). Locating extrema can be of interest

on its own, or used as a proxy for other features of interest, such as the unknown

source of a chemical plume.

The bulk of previous work on finding extrema of a field uses gradient-based

methods similar to those used for numerical optimization. For example, [13] pro-

poses that an underwater vehicle emulate the steps taken by numerical optimiza-

tion methods. In the situation where there is a single source or the goal is just to

find local maxima or minima, [49] and [19] prove local exponential convergence to

the source by a vehicle with constant forward velocity and angular velocity tuned

by a control law that allows the vehicle to estimate the gradient. Gradient-based

approaches work well when there is a single extremum and the surface is convex.

4



However, for more general surfaces and multiple sources, the resulting trajectories

are susceptible to being trapped in local extrema and plateaus. An alternative ap-

proach that uses biased random walks inspired by bacteria chemotaxis is presented

by [24]. This method can handle multiple, time-varying sources and multimodal

functions, but it converges slowly.

1.3 Our framework

In this thesis we introduce a novel method for online, adaptive, informative

trajectory planning for autonomous vehicles subject to movement constraints,

such as a minimum speed or a maximum turning rate. Like in [32] and [39], our

approach is inspired by ideas taken from the Bayesian sequential experimental

design literature [16]. However, unlike previous work, we focus on the design

of full trajectories rather than on waypoint or sensor placement selection. The

focus on trajectory planning rather than waypoint selection is particularly key

in situations in which the vehicle’s movement is subject to constraints, where

waypoint-based methods can lead to infeasible trajectories.

In our approach, the unknown field over a given region of interest being studied

is modeled using Gaussian process priors. Gaussian process models have a long

history in the statistics and machine learning literatures as nonlinear regression

tools [64, 5, 51, 21, 68]. In the engineering literature, Gaussian process mod-

els have been widely used to model unknown environments [15, 78, 72, 39, 52].

From these Gaussian process models, we construct objective functions that trade

off exploration of the unknown field with exploitation of its perceived features,

allowing us to handle multimodal or information-heterogenous fields. Adaptiv-

ity is achieved by recomputing the optimal trajectory after each batch of new

observations is collected.
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In the context of unmanned aerial vehicles, the literature on payload directed

flight addresses problems similar to the ones that motivate our work. Payload di-

rected flight focuses on effectively using payload sensor data to accomplish mission

objectives [40]. Most of this literature uses image data to perform vision-based

tracking or mapping [8, 46], so the approach we present here for optimal explo-

ration using scalar measurement data complements existing work.

1.3.1 Multiple sources of information

The framework detailed in the next two chapters allows for incorporating data

from supplementary, off-vehicle sources (such as other stationary or remote sen-

sors, or from a computer model of the environmental phenomenon). In this thesis

we investigate the statistical challenges associated with incorporating supplemen-

tary data into the control system.

Incorporating supplementary information for the navigation of autonomous

vehicles has been previously discussed in the literature by several authors. For

example, [84] discusses the use of a mobile boat along with a stationary sensor

network consisting of buoys to monitor the temperature of a lake surface. Simi-

larly, [71] discusses the use of underwater vehicles to track ocean processes using

predictions from a regional ocean model, and [33] considers the use of satellite

imagery providing remote sensing data for monitoring chlorophyll concentration.

On a slightly different vein, [57] looks at the sensor fusion problem of combining

measurements arriving at different times and at different scale lengths.

1.3.2 Multiple vehicles

The framework also allows for adding additional vehicles, thereby creating

a multi-vehicle system for exploring the environmental process. Cooperation of
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multiple autonomous vehicles is a large research area on its own and has many

applications including flight formation, mapping, surveillance, search and rescue,

and mobile sensor networks for environmental sampling [55]. Having more vehicles

has demonstrated advantages; [70] shows that two aerial robots are comparable

to a stationary network of thirty sensors for monitoring a radiation release. In

the literature for identifying the maximum of the process, [17] involves multiple

vehicles and decentralizes the computations, and shows that even with an algo-

rithm that uses gradient climbing, the vehicles can split up into two groups and

find both peaks when the true field is bimodal. In related work, [60] extends the

gradient following techniques to groups of vehicles and also addresses optimal for-

mations for the group. For reconstruction goals, [22] extends mutual information

methods to multiple underwater vehicles and shows consensus in field estimation

by four vehicles.

The notion of formations is prevalent in the coordination of multiple vehicles,

ranging from applications in pollution source localization to navigation with ob-

stacles [7, 23, 26]. While formations have advantages of having a protocol for

collision avoidance and improved efficiency in cooperative task allocation, we feel

that the resulting trajectories are too restrictive. Another class of methods that

produce restricted movement of vehicles are those that involve Voronoi diagrams,

which are common for mobile sensor networks and distributed computation over a

network [20]. In this thesis, the extension to optimal trajectory planning for mul-

tiple vehicles performing environmental exploration allows for vehicles to travel

independently of each other in the region of interest.
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1.4 Organization

This following chapters of the dissertation are organized as follows. Chapter 2

provides an overview of the mathematical concepts used and develops our models

for the environmental and planning processes. Chapter 3 applies and evaluates

the models to trajectory optimization for a single vehicle. Chapter 4 develops

and evaluates methods to incorporate off-vehicle sensor information into the es-

tablished framework. Chapter 5 extends the trajectory planning method from one

to several vehicles. Lastly Chapter 6 summarizes the contributions and provides

directions for future work.
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Chapter 2

Theoretical Foundations

2.1 Gaussian process model

This section describes our statistical model for the unknown spatial field

f : S ⊂ R2 → R that is to be reconstructed from noisy, point-referenced ob-

servations y1, y2, . . . collected at locations s1, s2, . . . ∈ S. Because our methods

rely on a Bayesian approach to learning and prediction, building such model re-

quires the specification of a likelihood describing the distribution of y1, y2, . . .

conditional on the unknown function f , a prior distribution for f that captures

our assumptions about the environmental process before any data is collected,

and hyperprior distributions on key parameters of the prior distribution for f .

The resulting posterior distribution for f given the data, which is obtained by

applying Bayes theorem, is one of the essential ingredients necessary to derive the

objective functions that are optimized by our trajectory planning algorithm.

To derive the likelihood function, we assume that, given f , the observations

collected by the vehicle are independent with additive noise,

yi = y(si) = f(si) + εi, (2.1)
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where εi ∼ N(0, σ2) represents the measurement noise and is modeled as following

a normal distribution. The noisy observations {y1, y2, . . .} of the field f , along

with the locations {s1, s2, . . .} where they are taken, are referred to as the data.

For our prior on f we use a Gaussian process prior with mean functionm(x;ϕ)

and covariance function Cov {f(x), f(x′)} = C(x,x′;ψ), where x,x′ ∈ S, and ϕ

and ψ are vectors of hyperparameters associated with the mean and covariance

functions of the Gaussian process. (Notation: f | ϕ,ψ ∼ GP(m(· ;ϕ), C(· , · ;ψ)).)

The Gaussian process prior implies that, for any finite set of locations x1, . . . ,xm

in S,


f(x1)

...

f(xm)


∣∣∣∣∣∣∣∣∣∣
ϕ,ψ ∼ N




m(x1;ϕ)

...

m(xm;ϕ)

 ,

C(x1,x1;ψ) · · · C(x1,xm;ψ)

... . . . ...

C(xm,x1;ψ) · · · C(xm,xm;ψ)



 .

In this dissertation, we assume that no prior information is available about

the shape of f and therefore use a constant prior mean function m(x;ϕ) = ϕ,

where ϕ is a scalar parameter to be estimated from the data. This assumption is

not central to our approach; if prior information is available, for example from a

computer model of the underlying phenomena, it can be incorporated by altering

the form of m. Section 4.4 considers this exact situation.

2.1.1 Covariance function choice

The choice of the covariance function controls properties of the Gaussian pro-

cess such as the degree of differentiability of its realizations [4]. A common choice

is the exponential covariance function

C(x,x′;ψ) = τ 2 exp
(
−‖x− x′‖

λ

)
, (2.2)
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where ψ = (τ 2, λ) and ‖x − x′‖ is the distance between x and x′. The hyperpa-

rameter τ 2 is the variance of the process, i.e., τ 2 = Var{f(x)} for any x ∈ S, and

λ is the common length scale of the process in all directions.

Realizations from a stochastic process with an exponential covariance function

are continuous but non-differentiable. Although lack of differentiability might be

appropriate in some applications, it is restrictive unless substantial prior informa-

tion is available. Furthermore, a single length scale λ that applies in every direc-

tion implies that realizations of the Gaussian process are isotropic, which means

that the covariance depends only on the distance, C(x,x′;ψ) = C(‖x − x′‖;ψ).

The isotropy assumption has been shown to lead to poor results when the real f

does not satisfy this property [15]. Hence, we recommend the use of generalized

Matérn covariance functions that allow for geometric anisotropy

C(x,x′;ψ) = τ 2‖x− x′‖νA
2ν−1Γ(ν) Kν (‖x− x′‖A) , (2.3)

where ψ = (τ 2, ν,A), Γ(·) is the gamma function, and Kν(·) is the modified

Bessel function of the second kind with order ν. Geometric anisotropy is a form

of anisotropy that can be reduced to isotropy by a linear transformation of the

coordinates. That is, if C is an isotropic covariance function, C(‖x − x′‖A;ψ) is

geometric anisotropic, where A is a 2×2 positive definite matrix and ‖x−x′‖A =√
(x− x′)TA(x− x′). It is convenient to parametrize A = PΛPT, where P is a

2 × 2 rotation matrix of angle ϑ in the plane, and Λ is a diagonal matrix with

positive elements λ1 and λ2,

P =

cosϑ − sinϑ

sinϑ cosϑ

 , Λ =

λ1 0

0 λ2

 .

In the anisotropic Matérn covariance function (2.3), the smoothness parameter

11
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Figure 2.1: Simulated Gaussian processes using Matérn covariance functions
with λ1 = λ2 and different smoothness parameters.

ν governs the differentiability of the realizations of the process, as illustrated

in Figure 2.1, λ1 and λ2 are the length scales along the principal directions of

the process, and the principal directions are given by the rotation of ϑ in P.

These parameters allow us to capture varying degrees of smoothness and geometric

anisotropy in the environmental process, and as before, τ 2 is the variance of the

process.

A third covariance function is the rational quadratic function extended to two

dimensions

C(x,x′;ψ) = τ 2[
1 +

(
x1−x′1
λ1

)2] [
1 +

(
x2−x′2
λ2

)2] , (2.4)

where ψ = (τ 2, λ1, λ2), (x1, x2) = x, (x′1, x′2) = x′, and τ 2, λ1, λ2 are the variances

and length scales. Despite having fewer hyperparameters, a major advantage of

the rational quadratic is the computability of the integrals

∫ ∫
C(x,x′;ψ)dxdx′ and

∫
C(x,x′;ψ)dx (2.5)

in closed form (see Appendix). These integrals emerge as covariance values when

f is integrated, which is required when aggregated observations are taken of f .
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For example, in a satellite image of f , each pixel represents the average value of

f over a small grid cell. This scenario is illustrated in detail in Section 4.3.

2.1.2 Estimation of the field

Gaussian process priors are particularly attractive because, conditional on the

hyperparameters ϕ and ψ, estimates of the field f at unobserved locations are

straightforward to obtain. In our setting, denote y1:n = (y1, . . . , yn) as the obser-

vation history collected at locations s1, . . . , sn. If f is modeled as a realization of

a Gaussian process, the vector f1:n = (f(s1), . . . , f(sn)), corresponding to the true

values of the environmental process at the sampled locations, follows a normal

distribution with mean m1:n = (m(s1;ϕ), . . . ,m(sn;ϕ)) and covariance matrix

C1:n with entries [C1:n]ij = C(si, sj;ψ), for i, j = 1, . . . , n. Given the assumption

that observations are independent conditional on f , i.e., y1:n | f1:n ∼ N(f1:n, σ
2In),

then the marginal distribution of the observations is also a Gaussian distribution,

y1:n | σ2,ϕ,ψ ∼ N
(
m1:n,C1:n + σ2In

)
, (2.6)

and, for any arbitrary location x ∈ S, the posterior distribution of f(x) is also

Gaussian, f(x) | y1:n, σ
2,ϕ,ψ ∼ N

(
µy1:n(x), κ2

y1:n(x)
)
, where

µy1:n(x) = m(x;ϕ) + cT
1:n(x)

[
C1:n + σ2In

]−1 [
y1:n −m1:n

]
(2.7)

and

κ2
y1:n(x) = τ 2 − cT

1:n(x)
[
C1:n + σ2In

]−1
c1:n(x), (2.8)
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with c1:n(x) = (C(x, s1;ψ), . . . , C(x, sn;ψ)). Similarly, the marginal predictive

distribution of a new observation y(x) at an arbitrary location is

y(x) | y1:n, σ
2,ϕ,ψ ∼ N

(
µy1:n(x), σ2 + κ2

y1:n(x)
)
. (2.9)

Equations (2.7) and (2.8) can be used to provide a reconstruction f̂n of the true

process f over S based on the n observations of y1:n. In particular, a point estimate

at location x ∈ S can be obtained from the mean of the posterior distribution

f̂n(x) = E {f(x) | y1:n, σ
2,ϕ,ψ} = µy1:n(x), which is sometimes referred to as the

kriging equation [73]. Similarly, κ2
y1:n(x) = Var {f(x) | y1:n, σ

2,ϕ,ψ} can be used

to quantify the uncertainty of this estimate.

The quality of the reconstruction f̂n depends on the fitness of the hyperpa-

rameters σ2, ϕ, and ψ. Hence, rather than fixing their values, we treat them as

unknown parameters and estimate them from the observed data using an empirical

Bayes-like approach [54, 66],

(
σ̂2
n, ϕ̂n, ψ̂n

)
= arg max

(σ2,ϕ,ψ)

[
log p

(
y1:n | σ2,ϕ,ψ

)
+ log p

(
σ2,ϕ,ψ

) ]
, (2.10)

where p (y1:n | σ2,ϕ,ψ) is the marginal density of y1:n implied by (2.6) and

p (σ2,ϕ,ψ) is a prior distribution for the hyperparameters. Equation (2.10) can

be maximized numerically using, for example, the Nelder-Mead algorithm [58].

With ϕ = ϕ constant, ϕ can be estimated analytically (see Appendix). We focus

on this empirical Bayes approach rather than full Bayesian inference because a

Markov Chain Monte Carlo algorithm would be slow, and we want to implement

our algorithm onboard the vehicle in real-time.
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2.2 Bayesian experimental design

In the trajectory planning setting, experimental design refers to trajectory

design – determining the sampling locations for the autonomous vehicle in or-

der to learn some relationship between the location and the environmental field.

Bayesian approaches to experimental design involve the maximization of an ex-

pected utility function,

Ũ(s) =
∫
U(s, f) p(f | data) df, (2.11)

where the data, consisting of the noisy measurements y1:n and their locations,

provide information about an unknown parameter f (which in our case corre-

sponds to the environmental field under study), and U(s, f) is a utility function

that depends on the unknown f and the design parameter s (which in our case

corresponds to a location, or series of locations, where future measurements will

be collected). Ũ(s) is the expectation of U(s, f) over the posterior distribution of

f , p(f | data).

Bayesian design methods [16] have important advantages over classical statisti-

cal tools. For example, Bayesian approaches to experimental design naturally deal

with the exploration-exploitation trade-off [80]. Furthermore, under mild condi-

tions, Bayesian experimental design procedures are not influenced by the stopping

rule used [10], so they can be applied in a sequential manner without the need

for ad hoc adjustments. In the next subsections we discuss two expected utility

functions that are the basis from which we construct the objective functions we

use in our trajectory planning algorithm.
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2.2.1 Optimal reconstruction of f

The current data provided by observations y1:n at s1, . . . , sn offer a recon-

struction of f through the point estimate f̂n. Suppose that our goal is to collect

additional observations that allow us to make this estimate as close as possible to

the true field f . An appropriate utility function evaluated at a new data point

s and associated measurement y(s) would aim to reduce the (squared) predic-

tion error of the resulting point estimate f̂n+1. As the prediction error based

on the current data is completely determined by (2.7), maximizing the reduc-

tion in prediction error is reduced to maximizing −[f(x) − µy1:n,y(s)(x)]2, where

µy1:n,y(s)(x) = E{f(x) | y1:n, y(s), σ2,ϕ,ψ} is the prediction at x based on the

existing observations y1:n and new observation y(s). Averaging over all x ∈ S,

the utility function is

U (s, f) = −
∫
S

[
f(x)− µy1:n,y(s)(x)

]2
dx, (2.12)

whose maximization is equivalent to minimizing reconstruction error with addi-

tional data point y(s). Both the function f and new observation y(s), which is

implicitly a function of both sampling location s and the function f but is not

fully determined by them due to measurement noise, are unknown. Hence the

expected utility is obtained by taking the expectation of (2.12) with respect to

the joint posterior distribution of y(s) and f given the observations collected so

far,

Ũ(s) = −
∫
S

∫ ∫ [
f(x)− µy1:n,y(s)(x)

]2
p (y(s), f | y1:n) dy(s) df dx. (2.13)
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Under the Gaussian process model, this becomes

Ũ(s) = −
∫
S

{[
µy1:n(x)− µy1:n,ŷ(s)(x)

]2
+ κ2

y1:n,ŷ(s)(x)
}
dx, (2.14)

where ŷ(s) = E{y(s) | y1:n, σ
2,ϕ,ψ} = µy1:n(s) is the value of the observation we

expect at s (which is equal to the posterior mean of the field at s given y1:n), and

µy1:n,ŷ(s)(x) and κ2
y1:n,ŷ(s)(x) are the mean and variance of the posterior distribu-

tion of f(x) given existing observations y1:n and that location s is sampled with

observed value ŷ(s). See the Appendix for their explicit expressions, as well as the

derivation of (2.14). In other words, the expected utility function is the spatial

integral of

−
[
E{f(x) | y1:n} − E{f(x) | y1:n, ŷ(s)}

]2
− Var{f(x) | y1:n, ŷ(s)} (2.15)

over all x ∈ S. The integral (2.14) consists of two terms, an exploration term

−κ2
y1:n,ŷ(s)(x) and an exploitation term −

[
µy1:n(x)− µy1:n,ŷ(s)(x)

]2
. The explo-

ration term is high (less negative) in regions where there is good coverage by

the observations, and favors new locations s that would provide such coverage by

being in an unexplored or comparatively less explored region. The exploitation

term is high when the predictions with and without the new observation match,

and favors new locations that are consistent with furthering the accuracy of the

predictions. Maximizing (2.14) involves a trade-off between the exploration and

exploitation terms that resembles the bias-variance trade-off that traditionally

appears in many statistical procedures.

From a practical point of view, the integral (2.14) will need to be approximated

numerically, for example, by using a Riemann sum that evaluates the integrand
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over a uniform grid G that covers S,

Ũ(s) ≈ −
∑
x∈G

{[
µy1:n(x)− µy1:n,ŷ(s)(x)

]2
+ κ2

y1:n,ŷ(s)(x)
}
. (2.16)

(Technically the expression (2.16) is not equivalent to the integral (2.14) because

it is missing the area of the region that each grid point represents; however, the

result of the optimization does not change if the grid is uniform and constant for

all function evaluations of Ũ(s).)

2.2.2 Finding the maximum of f

For the operational goal of locating the maximum of f , we build our algo-

rithm on the idea of expected improvement [81, 79, 34], which has been widely

applied in finding optimal inputs of computer experiments [9, 76, 28]. Let ymax
1:n =

max{y1, . . . , yn} be the maximum observed value so far. We define the improve-

ment at location s ∈ S as U(s, f) = max{f(s) − ymax
1:n , 0}, which depends on

the unknown field f . If we take the expectation of U(s, f) with respect to the

posterior distribution of f , the expected utility reduces to

Ũ(s) =
[
µy1:n(s)− ymax

1:n

]
Φ
(
µy1:n(s)− ymax

1:n
κy1:n(s)

)
+ κy1:n(s)φ

(
µy1:n(s)− ymax

1:n
κy1:n(s)

)
,

(2.17)

where φ and Φ are the density and the cumulative distribution functions of the

standard normal distribution. Intuitively, locations with the highest expected

improvement provide the most substantial information about the location of the

maximum of f .

Similar to (2.14), (2.17) consists of two terms that highlight how expected im-

provement trades off exploration and exploitation. For locations s where µy1:n(s)

is large and κ2
y1:n(s) is small, the first term of (2.17) dominates, whereas for lo-
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cations where µy1:n(s) is small and κ2
y1:n(s) is large the second term dominates.

Hence the first (exploitation) term favors locations where we expect, with little

uncertainty, f to be high, while the second (exploration) term favors locations

where uncertainty of the field is large.

The expected improvement can be generalized by introducing a tuning pa-

rameter c > 0 such that Ũ(s) = E (max{f(s)− cymax
1:n , 0}). Tuning c can in-

crease or decrease the first term of (2.17), which affects how long the vehicle

stays close to the current maximum before the vehicle explores other regions.

Assuming that ymax
1:n > 0, which is usually true for real data from environmen-

tal processes, and if 0 < c < 1, then µy1:n(s) − cymax
1:n > µy1:n(s) − ymax

1:n and

Φ
(
µy1:n (s)−cymax

1:n
κy1:n (s)

)
> Φ

(
µy1:n (s)−ymax

1:n
κy1:n (s)

)
, so the contribution of the exploitation term

increases. (The exploration term may increase or decrease, depending on how

large |µy1:n(s) − cymax
1:n | is compared to |µy1:n(s) − ymax

1:n |.) Similarly, if c > 1, the

contribution of the exploitation term decreases. This suggests that the tuning

parameter c can be used to control how the expected utility trades off exploration

and exploitation.

2.2.3 Alternative utility functions

Alternative utility functions for selecting the next sampling location are pre-

sented here.

Information based methods

Information theoretic methods can be used for the reconstruction problem.

Consider a grid G ⊂ S of possible locations to sample. The maximum entropy

(D-optimal) solution is

s∗ = arg max
s∈G

log κ2
y1:n(s), (2.18)
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and selects the grid location that has the largest reconstruction variance. Maxi-

mizing the related mutual information criterion gives

s∗ = arg max
s∈G

[
log |ΣGrs|+ log κ2

y1:n(s)
]
, (2.19)

where ΣGrs is the posterior covariance matrix associated with G excluding s,

ΣGrs = CGrs −CT
1:n,Grs

[
C1:n + σ2In

]−1
C1:n,Grs (2.20)

with

[CGrs]ij = C(xi,xj), xi,xj ∈ G r s

[C1:n,Grs]ij = C(si,xj), si ∈ {s1, . . . , sn}, xj ∈ G r s.

These information-based criteria do not depend on the observed values y1:n, only

on the existing sampling locations {s1, . . . , sn} so far.

P-algorithm for global optimization

The P-algorithm, extensively analyzed as a technique for stochastic global

optimization in [85], selects the location that maximizes the probability of an

increase of δn ≥ 0

s∗ = arg max
s∈S

Φ
(
µy1:n(s)− ymax

1:n − δn
κy1:n(s)

)
. (2.21)

For larger δn, search is more global, while δn = 0 degenerates to repeated ob-

servations at the current maximum location. Criterion (2.21) is similar to the

exploitation term in the expected improvement, and a choice of δn to be a frac-

tion of the current maximum ymax
1:n results in a similar result as tuning c in the
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generalized expected improvement. However, the exploitation term in the ex-

pected improvement has a multiplication factor of µy1:n(s) − ymax
1:n that naturally

prevents the degeneration of repeated sampling at exactly the maximum location.

In Chapter 3, we compare the performance of these alternative utility functions

to (2.14) and (2.17). More details of the derivations of the alternative utility func-

tions are available in the Appendix. Note that entropy and mutual information

criteria are also expected utilities of the form (2.11).
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Chapter 3

Single Vehicle

In this chapter we build on the ideas introduced in Chapter 2 to construct

our trajectory planning algorithm. In particular, our design parameter is the

trajectory Q : R≥0 → S followed by the vehicle. This trajectory determines the

locations s1, s2, . . . at which observations are taken, with si = Q(i∆) and ∆ being

the sampling period.

We construct the trajectory Q by stitching together optimal trajectory seg-

ments q∗1,q∗2, ... , each of which is followed by the vehicle for k∆ time units, i.e.,

Q({k[j−1]+i}∆) = q∗j (i∆) for i = 1, . . . , k. The segments are sequentially deter-

mined by repeatedly optimizing an appropriate objective function Rj(qj) over a

planning horizon of pk∆ time units. This objective function is either an extension

of the expected gain in prediction accuracy (2.16) (if we are interested in optimal

reconstruction) or the expected improvement (2.17) (if we are interested in locat-

ing the maximum of the function) over the planning horizon. pk is thought of as

the number of lookahead steps, and the longer the time horizon pk∆, the more

likely the computed trajectory is to be globally optimal. In practice, pk cannot

be too large due to computation cost. The integer constants p, k ≥ 1 are design

parameters; p controls how myopic the algorithm is, and k controls how quickly
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the trajectory adapts to new information. The choices of ∆, p, and k depend on

the sampling frequency of sensors, the speed and maneuverability of the vehicle,

and the size of S. The algorithm is initialized by selecting an initial location and

heading angle and setting q∗1(t) to be a straight line for t ∈ [0, k∆]. It is halted

when some stopping rule has been met, such as a fixed amount of time has passed,

or the maximum reward over S falls below a predetermined threshold.

Maximize reward

Go to optimal locations

Gather data

Update belief

Figure 3.1: Components of the trajectory planning algorithm.

3.1 Objective functions for trajectory planning

We describe here the construction of objective functions Rj+1 associated with

the design of the {j+1}th optimal trajectory segment q∗j+1 that is appropriate for

the two applications we’ve chosen. In both cases, the objective function uses the

information contained in observations y1:n = (y1, . . . , yjk) collected by the vehicle

at previously visited locations s1, . . . , sjk to determine the best future sampling

locations sjk+i = qj+1(i∆) for i = 1, . . . , pk for the vehicle, of which k locations

are visited, and the trajectory is recalculated with the newest k observations.

Both of the objective functions we present below share the following structure

Rj+1 (qj+1) = Ũj+1 (qj+1)− αPleave (qj+1) , (3.1)

where Ũj+1 is the extension of the expected utilities (2.16) and (2.17) to the
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multiple locations of a planning segment, whose explicit forms are given in the

following subsections, and Pleave is a penalty function

Pleave (qj+1) =


0 if qj+1(i∆) ∈ SB for all i = 1, . . . , pk

max
i=1,...,pk

‖qj+1(i∆)− x0‖ if any qj+1(i∆) /∈ SB

where SB ⊃ S is a ball that contains S with center x0.

The first term in (3.1) measures the performance of the trajectory segment

with respect to our main inferential goal, while the second term is a penalty that

discourages the vehicle from wandering away from S [65]. In our experience,

the inclusion of the penalty term is important, particularly in the early stages of

exploration. Indeed, when little information about the structure of the field f

is available, or when there exist local maxima near the boundary of S, directly

optimizing Ũj+1 can lead to trajectories that lie outside our region of interest. We

have chosen a structure for P such that, if the trajectory segment qj+1 contains

sampling locations that are outside SB, we penalize Ũj+1 with a term that is

proportional to the maximum distance between a sampling point and the center

of S. The constant α ≥ 0 is a tuning parameter that is generally a couple orders

of magnitude smaller than the average value for Ũj+1. When α = 0 there is

no penalty for exploring far away from S, while taking α → ∞ implies that

trajectories that move the vehicle out of SB are disallowed.

3.1.1 Extended objective function for optimal reconstruc-

tion of f

The expected utility function (2.16) can be adapted to the context of our

trajectory planning algorithm by evaluating the quality of the reconstruction pro-

vided by adding a group of pk additional measurements whose locations are given
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by the trajectory segment qj+1. More specifically, we define

Ũj+1(qj+1) = −
∑

x∈Sg

{[
µy1:n(x)− µy1:n,ŷqj+1

(x)
]2

+ κ2
y1:n,ŷqj+1

(x)
}
, (3.2)

where ŷqj+1 = (µy1:n(qj+1(∆)), µy1:n(qj+1(2∆)), . . . , µy1:n(qj+1(pk∆))) is a vector

of the current estimates of f at the pk locations on qj+1, and µy1:n,ŷqj+1
(x) and

κ2
y1:n,ŷqj+1

(x) are the posterior mean and variance of f(x) computed from using

both y1:n and ŷqj+1 as the observations. The explicit expressions for µy1:n,ŷqj+1
(x)

and κ2
y1:n,ŷqj+1

(x) are given in the Appendix.

3.1.2 Extended objective function for finding the maxi-

mum of f

When the goal is locating the maximum of the field f , we construct our utility

function by extending the notion of expected improvement in (2.17) to handle

multiple locations. There are many ways in which this can be accomplished,

but here we focus on a relatively aggressive approach that selects the trajectory

segment where the maximum of the expected improvement over the segment is

the largest,

Ũj+1 (qj+1) = max
i=1,...,pk

E (max {f (qj+1(i∆))− ymax
1:n , 0}) , (3.3)

where E (max {f (qj+1(i∆))− ymax
1:n , 0}) is computed using Ũ(f (qj+1(i∆))) in (2.17)

for each i = 1, . . . , pk. Writing it all out, Ũj+1(qj+1) =

max
i

{
[µy1:n(qj+1(i∆))− ymax

1:n ] Φ (z(qj+1(i∆)))+κy1:n(qj+1(i∆))φ (z(qj+1(i∆)))
}
,

(3.4)
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where z(qj+1(i∆)) = µy1:n(qj+1(i∆))− ymax
1:n

κy1:n(qj+1(i∆)) .

3.2 Constraints and parametrization of qj

Given n = jk total observations collected during the first j locally optimal

trajectory segments, the next local trajectory q∗j+1 = arg maxRj+1(qj+1) is subject

to the initial conditions and constraints

c1(qj+1) = qj+1(0)− q∗j (k∆) = 0,

c2(qj+1) = q̇j+1(0)− q̇∗j (k∆) = 0, (3.5)

c3 (q̇j+1(t), q̈j+1(t), t) ≥ 0, t ∈ [0, pk∆]

The conditions c1 and c2 enforce continuity of the position and velocity fields

of the vehicle, while c3 represents problem-specific constraints on the vehicle’s

velocity and acceleration. These can include, for example, forward velocity only,

bounded velocity, maximum acceleration, and maximum turning rate. With these

constraints, the structure of a general trajectory planning algorithm is outlined in

Algorithm 1. In practice, we simplify the optimization process by parametrizing

q1,q2, . . . in terms of a small set of parameters ξ1, ξ2, . . ., thereby transforming

the trajectory planning problem into a low-dimensional nonlinear optimization

problem (see [36] for a theoretical development of parametric optimal control).
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Algorithm 1 Optimal trajectory algorithm (general, single vehicle)
Input: goal, S, vehicle kinematics, vehicle’s initial location and heading angle,

sampling period ∆, trajectory segment size k, planning horizon parameter p,
out-of-bounds penalty parameter α, prior distributions for hyperparameters
(σ2,ϕ, ψ), and stopping rule

Output: Optimal trajectory Q
1: Set j = 1 and n = k.
2: Initialize Q with k locations by going straight along initial heading angle from

vehicle’s initial location
3: Initialize y1:n with the measurements taken at Q
4: while stopping rule is not met do
5: Estimate (σ2,ϕ, ψ) by maximizing (2.10)
6: Obtain q∗j+1 by maximizing Rj+1(qj+1) in (3.1) subject to (3.5)
7: Append q∗j+1(i∆), i = 1, . . . , k to Q
8: Sample at q∗j+1(i∆), i = 1, . . . , k
9: Add new measurements to y1:n
10: Set j = j + 1 and n = n+ k
11: end while

3.2.1 Constant speed circular arcs

As an example, consider the kinematic model for a simple car [43],

ẋ = v cos θ

ẏ = v sin θ (3.6)

θ̇ = v
uθ
Rmin

with constant forward velocity v, minimum turning radius Rmin, and control input

uθ ∈ [−1, 1]. In this context, x and y represent position coordinates, and θ

represents the vehicle’s heading angle relative to the x-direction. We can rewrite

θ̇ as θ̇ = v
R
, where R is the turning radius with |R| ≥ Rmin. If uθ (and hence R) is

constant1 for t ≥ 0, integrating the system (3.6) with initial conditions x(0) = x0,
1Having the control sequence be piecewise constant over a specified number of time steps,

and recomputing the trajectory at short intervals, allows for a longer planning horizon without
too much cost. These solutions are considered ‘quasi-optimal’.
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y(0) = y0, and θ(0) = θ0 results in

x(t) = R sin
(
v

R
t+ θ0

)
+ x0 −R sin θ0

y(t) = −R cos
(
v

R
t+ θ0

)
+ y0 +R cos θ0.

Using the identities sin(θ) = cos(θ− π/2) and cos(θ) = − sin(θ− π/2), the above

is equivalent to

x(t) = R cos
(
v

R
t+ θ0 −

π

2

)
+ x0 −R sin θ0 (3.7)

y(t) = R sin
(
v

R
t+ θ0 −

π

2

)
+ y0 +R cos θ0, (3.8)

which parametrizes a circular arc for the vehicle segment

qj(t) =

qj,1(t)

qj,2(t)

 =

ξj,1 cos(ξj,2t+ ξj,3) + ξj,4

ξj,1 sin(ξj,2t+ ξj,3) + ξj,5

 , t ∈ [0, pk∆], (3.9)

where ξj,1ξj,2 = v is the fixed forward velocity, and ξj,1 = R is the (signed) turning

radius of the arc. ξj,1 > 0 results in a counterclockwise arc and ξj,1 < 0 clockwise,

corresponding to turning left and right, respectively. A straight segment arises as

a special case when ξj,1 goes to positive or negative infinity. An upper bound on

the turning rate of the vehicle can be specified though a minimum turning radius,

so we constrain |ξj,1| ≥ Rmin.

For continuity of position and velocity, ξj,1, . . . , ξj,5 in the parametrization (3.9)
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are constrained by

|ξj,1| ≥ Rmin

ξj,2 = v

ξj,1

ξj,3 = θj−1 −
π

2
ξj,4 = q∗j−1,1(k∆)− ξj,1 sin θj−1

ξj,5 = q∗j−1,2(k∆) + ξj,1 cos θj−1

leaving only ξj,1, corresponding to how much and in which direction the vehicle will

turn, for optimization. The derivation for these requirements are in the Appendix.

Thus finding the optimal trajectory segment reduces to finding the optimal radius

ξj,1 for the circular arc subject to |ξj,1| ≥ Rmin. This is a univariate maximization

problem that can be solved using a numerical method such as Brent’s method

[12]. Algorithm 2 summarizes the trajectory planning algorithm with the constant

speed circular arc parametrization.

3.2.2 Variable speed circular arcs

For more generality, the vehicle is allowed to move at variable speeds in a range

v ∈ [vmin, vmax]. Modifying (3.6) to allow for variable speeds gives

ẋ = v cos θ

ẏ = v sin θ

θ̇ = v
uθ
Rmin

= v

R

v̇ = uv
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Algorithm 2 Optimal trajectory algorithm (constant speed circular arcs)
Input: goal, S, vehicle speed v, minimum turning radius Rmin, vehicle’s initial

location (q1,1(0), q1,2(0)) and heading angle θ1, sampling period ∆, trajectory
segment size k, planning horizon parameter p, out-of-bounds penalty param-
eter α, prior distributions for hyperparameters (σ2,ϕ,ψ), and stopping rule

Output: Optimal trajectory Q
1: Initialize j = 1 and n = k
2: Initialize Q by q∗1(t) = (q1,1(0) + vt cos(θ1), q1,2(0) + vt sin(θ1)) for t ∈ [0, k∆]
3: Initialize y1:n with the measurements taken at q∗1(∆), . . . , q∗1(k∆)
4: while stopping rule is not met do
5: Set j = j + 1
6: Estimate (σ2,ϕ,ψ) by maximizing (2.10)
7: Compute q∗j = arg max Rj(qj) subject to:

|ξj,1| ≥ Rmin
ξj,2 = v/ξj,1
ξj,3 = θj−1 − π/2
ξj,4 = q∗j−1,1(k∆)− ξj,1 sin θj−1
ξj,5 = q∗j−1,2(k∆) + ξj,1 cos θj−1

8: Append q∗j (i∆), i = 1, . . . , k to Q
9: Sample at q∗j (i∆), i = 1, . . . , k and append new measurements to y1:n

10: Set θj = atan2
(
q̇∗j,2(k∆), q̇∗j,1(k∆)

)
11: Set n = n+ k
12: end while

with control inputs uθ and uv. Again, supposing uθ and uv are constant for an

integration time, the position of the vehicle is

x(t) = R sin
(
uv
2Rt

2 + v0

R
t+ θ0

)
+ x0 −R sin θ0

y(t) = −R cos
(
uv
2Rt

2 + v0

R
t+ θ0

)
+ y0 +R cos θ0,

which can be written in the form

qj(t) =

qj,1(t)

qj,2(t)

 =

ξj,1 cos
(

1
2
ξj,2
ξj,1
t2 + ξj,3t+ ξj,4

)
+ ξj,5

ξj,1 sin
(

1
2
ξj,2
ξj,1
t2 + ξj,3t+ ξj,4

)
+ ξj,6

 , t ∈ [0, pk∆], (3.10)
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where ξj,1 = R, ξj,2 = uv, and ξj,1ξj,3 = v0, the velocity at the start of the segment.

Equation (3.10) parametrizes the vehicle segments as circular arcs with variable

speed that are continuous for all t, and with angular velocities that are piecewise

continuous during each iteration j of the algorithm. ξj,2 is a linear acceleration

term and setting ξj,2 = 0 reduces (3.10) to (3.9).

With this parametrization, ξj,3 and ξj,4 are set by enforcing continuity of veloc-

ity, and ξj,5 and ξj,6 are set by enforcing continuity of position between segments

ξj,3 =
‖q̇∗j−1(k∆)‖

ξj,1

ξj,4 = θj−1 −
π

2
ξj,5 = q∗j−1,1(k∆)− ξj,1 sin θj−1

ξj,6 = q∗j−1,2(k∆) + ξj,1 cos θj−1.

This leaves optimizing over ξj,1 and ξj,2 subject to the constraints

|ξj,1| ≥ Rmin

ξj,2 ∈
[
vmin − ‖q̇∗j−1(k∆)‖

t
,
vmax − ‖q̇∗j−1(k∆)‖

t

]

for all t ∈ [0, pk∆], where ‖q̇∗j−1(k∆)‖ is the speed of the vehicle at the end

of the previous segment. We solve this bivariate maximization problem using a

quasi-Newton method with box constraints [14]. The summary of the optimal

trajectory algorithm with variable speed circular arc parametrization is provided

by Algorithm 3.

More complicated parametrizations are available; for example, [27] uses clothoid

arcs to enforce continuous curvature when transitioning between curves of differ-

ent curvatures. However, we focus on sequential circular arcs for fast computation
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Algorithm 3 Optimal trajectory algorithm (variable speed circular arcs)
Input: goal, S, vmin, vmax, Rmin, vehicle’s initial location q1(0), speed ‖q̇1(0)‖,

and heading angle θ1, sampling period ∆, trajectory segment size k, planning
horizon parameter p, out-of-bound penalty α, prior distributions for hyperpa-
rameters (σ2,ϕ,ψ), and stopping rule

Output: Optimal trajectory Q
1: Set j = 1 and n = k
2: Initialize Q by q∗1(t) = (q1,1(0) + ‖q̇1(0)‖t cos(θ1), q1,2(0) + ‖q̇1(0)‖t sin(θ1))

for t ∈ [0, k∆]
3: Initialize y1:n with the measurements taken at q∗1(∆), . . . , q∗1(k∆)
4: while stopping rule is not met do
5: Set j = j + 1
6: Estimate (σ2,ϕ,ψ) by maximizing (2.10)
7: Compute q∗j = arg max Rj(qj) subject to:

|ξj,1| ≥ Rmin
vmin ≤ ‖q̇j−1(k∆)‖+ ξj,2t ≤ vmax for all t ∈ [0, pk∆]
ξj,3 = ‖q̇j−1(k∆)‖/ξj,1
ξj,4 = θj−1 − π/2
ξj,5 = q∗j−1,1(k∆)− ξj,1 sin θj−1
ξj,6 = q∗j−1,2(k∆) + ξj,1 cos θj−1

8: Append q∗j (i∆), i = 1, . . . , k to Q
9: Sample at q∗j (i∆), i = 1, . . . , k and append new measurements to y1:n
10: Set θj = atan2(q̇∗j,2(k∆), q̇∗j,1(k∆))
11: Set n = n+ k
12: end while

and leave the fine trajectory smoothing to the vehicle’s autopilot.

3.3 Computational details

In summary, the trajectory planning algorithm consists of sequentially opti-

mizing an objective function appropriate for the goal. The objective function is

based on expected utility, where the expectation is taken with respect to the most

recent distribution of f (the vehicle’s current belief of f). The objective function

and belief updates are based on the data collected so far, and are updated regu-

larly at short intervals, allowing (1) the belief to adapt quickly to the new data,
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Figure 3.2: (a) A vehicle trajectory composed of straight lines and circular arcs.
Large (small) black dots show where the vehicle has taken (will possibly take)
measurements. Yellow curves sweep over an area of feasible trajectories for the
next pk∆ time period. (b) Sequential replanning of trajectory segments.

and (2) efficient computation of optimal segments.

Figure 3.2a shows a short trajectory parametrized by constant speed circular

arcs as described in Section 3.2.1. Figure 3.2b illustrates the planning and exe-

cution horizons. Note that the locations of the planning horizon form a fan-like

shape. Figure 3.3 shows our algorithm in action, with the goal of finding the max-

imum. Pictured is a trajectory consisting of n = 160 sampling locations overlaid

on the current belief of f . The Mean plot shows µy1:n(x) for x in a 101 × 101

regular grid of S. The Variance plot is κ2
y1:n(x). The Expected Improvement plots

E (max{f(x)− ymax
1:n , 0}), and the red dots in the panel indicate the next optimal

segment, having maximized (3.3) over the fan extending from s160.

Fast computation is important for real-time trajectory planning, and as y1:n

grows, computation time for our algorithm, which is dominated by matrix com-

putations, increases polynomially. In addition to saving time, reducing the com-
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Figure 3.3: Plots of the belief after 160 observations taken at black dots. Red
dots show the next optimal segment. Darker colors indicate higher values.

putational load is important for conserving battery life and maximizing vehicle

deployment time. We can reduce the computational load by updating the hyper-

parameters (σ2,ϕ,ψ) of the Gaussian process prior by the maximization in (2.10)

less frequently, and by stopping the updates to these parameters after a predeter-

mined number of observations has been collected.

Another way to reduce computation is by simplifying matrix inversions using

formulas for block matrices. In the optimal reconstruction problem, calculating

µy1:n,ŷqj+1
(x) in (3.2) requires the inversion of an (n + pk) × (n + pk) matrix.

This calculation is required for every function evaluation of the reward function

Rj, which is multiple times per iteration j, depending on how Rj is maximized2.

Using blockwise inversion, N inversions of an (n+ pk)× (n+ pk) matrix involves

a single n × n inversion (reflecting the current n observations) and N smaller

pk× pk inversions (for the contending pk new observations on the next segment).

The same application of inverting block matrices should be implemented if the

hyperparameters are no longer being updated, as the upper left corner of the

variance-covariance matrix C1:n + σ2In does not change as the matrix grows.
2In our implementations, we first evaluate Rj over a grid of the parameters in qj , finding

the interval (or box, in the variable speed parametrization) that contains the maximizer of Rj .
This interval (or box) then provides the bounds of the numerical maximization method.
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The trajectory planning algorithms can be slightly modified by adding a restart

step in which the vehicle is moved to a location selected uniformly at random on

S before computing the next segment of the trajectory. In that case, it can be

shown that, under some mild conditions on the differentiability of the mean and

covariance functions m and C, as well as the true field f , the point estimator f̂n

generated by the above algorithm is consistent as n→∞. The result follows from

an application of Theorem 6 in [18] (see also [30] and [77]).

3.4 Evaluations

Here we implement the methods described in Sections 3.1 and 3.2 for optimally

reconstructing or locating the maximum of a few different simulated fields. The

evaluations in this section are carried out in silico using observations simulated

from fields fi(x), for i = 1, 2, 3 and x ∈ S = [0, 1]2. These true fields are designed

with increasing complexity, exhibiting isotropy (i = 1), anisotropy (i = 2), and

nonstationarity (i = 3). These true fields, which are shown in Figure 3.4, share a

common functional form, a sum of two Gaussians

fi(x) = 0.75 exp
(
− ai1‖x− xi1‖Ai1

)
+ exp

(
− ai2‖x− xi2‖Ai2

)
, (3.11)

with values ai1, ai2,xi1,xi2, Ai2, and Ai2 listed in Table 3.1. These fields all have

a local maximum (with value around 0.75) in the lower left and a global maximum

(with value around 1) in the upper right. In all cases, the true measurement noise

is randomly generated from a normal distribution with mean 0 and variance 0.04.

We implement our algorithm using both the exponential and anisotropic Matérn
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Figure 3.4: Fields used as the truth in simulations.

Isotropic i = 1 Anisotropic i = 2 Nonstationary i = 3
ai1 15 10 10
ai2 15 10 15
xi1 (0.25, 0.25) (0.3, 0.3) (0.25, 0.25)
xi2 (0.75, 0.75) (0.7, 0.7) (0.7, 0.7)

Ai1

[
1 0
0 1

] [
1.75 0.75
0.75 1.75

] [
1.75 0.75
0.75 1.75

]

Ai2

[
1 0
0 1

] [
1.75 0.75
0.75 1.75

] [
1.75 −0.75
−0.75 1.75

]

Table 3.1: True field details.

covariance functions and compare their performance. The prior distributions3

used for σ2, ϕ, and ψ are given in Table 3.2. As discussed in Section 2.1, the

only hyperparameter in the mean function m(x;ϕ) is ϕ, which is given a flat prior

distribution, p(ϕ) ∝ 1. The prior distributions for 1/σ2, 1/τ 2, λ (in the exponen-

tial covariance), λ1, λ2 (in the anisotropic Matérn covariance), and ν are all given

Gamma distributions with shape parameter 2 and scale parameter b set to a value

that reflects the size of the parameter, leading to weakly informative priors. For

1/σ2 and 1/τ 2, bσ and bτ are set to equal to half of the variance of the observations
3The hyperpriors in Table 3.2 are consistently used for all experiments involved in this doc-

ument, with the only modifications for length scales, as the area of S varies in different appli-
cations.
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1/σ2 ϕ 1/τ2 λ λ1, λ2 ν ϑ

Exp. Ga (2, bσ) p(ϕ) ∝ 1 Ga (2, bτ ) Ga (2, bλe) - - -
Matérn Ga (2, bσ) p(ϕ) ∝ 1 Ga (2, bτ ) - Ga (2, bλm

) Ga(2, 2) U(0, 2π)

Table 3.2: Hyperprior distributions. ϑ is the angle of rotation in rotation matrix
P in equation (2.3). Ga(a, b) represents the Gamma distribution with mean a

b

and variance a
b2 .

y1:n, up until n = 100, and equal to the variance of y1:100 once n > 100. This

choice reflects the assumption that, a priori, we expect about half the variability

of the data to be due to measurement noise and about half to come from the vari-

ability in the underlying field f . For the prior on the length parameter λ of the

exponential, we set bλe = −
√

2 log(0.05), reflecting the assumption that, a priori,

the correlation between measurements taken at the farthest points on S is around

0.05. The parameters λ1 and λ2 are given the same prior distribution, and similar

reasoning is used for setting their hyperprior bλm . The hyperprior choice for ν

reflects the assumption that, a priori, f is on the edge of differentiability (ν ≤ 1

means the Gaussian process is nondifferentiable, and ν > 1 generates increasingly

smooth processes as ν increases). ϑ is uniform in the interval (0, 2π), reflecting

that the anisotropy in the Matérn covariance is equally likely in any direction.

In the following simulations, we use Algorithm 2 with ∆ = 1, k = 4, p = 3,

Rmin = 0.035, and v = 0.046. These values correspond to a AeroVironment RQ-14

Dragon Eye UAV4 flying at 20 km/h with maximum bank angle 45◦ over a 2.5

kilometer by 2.5 kilometer region taking measurements every ten seconds, scaled

down to S = [0, 1]2.

To evaluate the performance of our methods, we run 200 Monte Carlo sim-

ulations using each of the exponential and Matérn covariance functions for each
4The AeroVironment RQ-14 Dragon Eye is used in the United States military as a small

reconnaissance UAV. It is also a platform in NASA’s Airborne Science Program for low altitude
remote sensing and in situ sampling.
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type of ground truth. In every simulation the vehicle starts at the origin with a

heading angle of π
4 , which means that the local maximum at xi1 obstructs access

to the global maximum located at xi2. We assume that no data is available at the

beginning of the simulation and instruct the vehicle to go straight for k∆ time

units, collecting k measurements that are used to initialize our algorithm.

3.4.1 Results and comparisons: optimal reconstruction

First, we investigate the performance of our algorithm in reconstructing f as

accurately as possible. With 200 Monte Carlo simulations of each case, the per-

formance of our algorithm with exponential and Matérn covariances are compared

to each other and also compared to that of a raster scan, “lawnmower” trajectory

with the same speed. The flight time of each simulation is 332∆, which is the

time the lawnmower trajectory uses to cover S with turns with minimum turning

radius Rmin. Figure 3.5 shows a full typical trajectory generated by our optimal

reconstruction algorithm for each of the six cases. The trajectories are overlaid on

the posterior mean f̂332 = µy1:332 (which provides the reconstruction at t = 332,

first column), the variance of posterior distribution κ2
y1:n (which provides an esti-

mate of the uncertainty associated with the reconstruction, second column) and

the squared prediction error
[
f − f̂332

]2
(third column). Note that the trajecto-

ries tend to cover the region of interest evenly and that the uncertainty in the

estimate f̂332 is roughly constant. These patterns appear reasonable given the

operational goal of optimal reconstruction. Variance and squared error are plot-

ted with the same scale for all six cases, suggesting that using the exponential

covariance function results in higher variance and reconstruction error compared

to the Matérn.
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Figure 3.5: Trajectory samples of the six different cases using (a) exponential
covariance and (b) Matérn covariance are computed for isotropic, anisotropic, and
nonstationary fields.
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To judge the accuracy of the reconstruction over time, we track the mean

squared prediction error

MSE(n∆) = 1
|Sg|

∑
x∈Sg

[
f(x)− f̂n(x)

]2
, n = 1, . . . , 332, (3.12)

for some grid Sg that covers S, where |Sg| denotes the number of gridpoints. Note

that we use the same Sg for the computation of the reward in (3.2) as in the

computation of the mean squared prediction error in (3.12), but these sets can be

different. The average log-mean squared error of the 200 simulations is plotted in

Figure 3.6 for each of the six combinations of three true fields and two covariance

functions. While the log-MSE values start at the same level in all cases, the

log-MSE from the trajectories generated by our adaptive algorithm soon drops to

about half of the beginning level and is much smaller for most of the run time.

At the end of the simulations, when the lawnmower trajectories complete their

sweep of S, the log-MSE values are again close. Comparing across exponential and

Matérn covariance models, we see that using the Matérn improves performance
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Figure 3.6: Average over all simulations of the log-mean squared prediction
error for adaptive and lawnmower trajectories, using the exponential and Matérn
covariances for prediction.
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in optimal reconstruction as expected, and the nonstationary truth is usually the

most difficult to accurately reconstruct.

Comparison with mutual information criterion

For a comparison to the mutual information (MI) criterion, we discretize S

using a regular grid G. Then we select the location within a radius of pk∆ distance

from the vehicle’s current location that maximizes (2.19). This location is the next

waypoint target (but may not be reached before replanning occurs) and determines

the next direction for the vehicle. A path connecting the current location to the

MI maximizer is formed using a minimum radius turn and straight line, which is

followed for k∆ time. The process is repeated for the same number of iterations,

resulting in a trajectory of 332 locations. Like the previous set, 200 simulations

are run for each truth type using the Matérn covariance, and the comparisons

of resulting log-MSEs are shown in Figure 3.7. The performance using MI is

comparable to that of our algorithm, doing slightly worse for the isotropic and

anisotropic truths, but slightly better in the first half for the nonstationary truth.

A major drawback of using mutual information, at least for online planning of

trajectories, is computation cost. In (2.19) the covariance matrix ΣGrs associated

with the unsampled points is typically large. For example, if G is a 21× 21 grid,

ΣGrs is 440× 440, which is larger than the (n+ pk)× (n+ pk) matrices involved

in our algorithm. In our experience, a coarse 11 × 11 grid for G takes roughly

the same computation time as our algorithm using (3.2) with |Sg| = 31 × 31.

Another feature of MI is that the objective function (2.19) does not directly use

the information y1:n. The values of the hyperparameters depend on y1:n, but

the objective function only depends on the sampling locations and not on the

observed values so far, nor the possible observed values in the future. This means
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that with fixed hyperparameters, all simulations would have produced the same

optimal trajectory. This indicates that MI is not very adaptive to data, and is

better suited for offline trajectory planning.
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Figure 3.7: Comparing log(MSE) of our algorithm to one that uses mutual
information. The shaded area indicates the 25th-75th percentile.
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3.4.2 Results and comparisons: finding the maximum

We run another set of simulations in which we evaluate the ability of our

algorithm to identify the location of the global maximum of the field. For each of

the 200 simulations in each of the six cases, the algorithm is run for 200 iterations,

resulting optimal trajectories consisting of 200 local trajectory segments and a

total flight time of 800∆.

Figure 3.8 shows snapshots taken at iteration j = 83 of typical trajectories

obtained with the exponential and anisotropic Matérn covariance functions for

estimating each of the three field types. The first two columns contain the esti-

mate of the field and the associated variance, while the third column shows the

expected improvement. Unlike the optimal reconstruction examples, the gener-

ated trajectories when using the reward function given in (3.3) do not attempt

to cover the region of interest. Instead, they tend to find and circle the local

maximum a few times and then head toward and find the global maximum. The

exception is the case of the exponential covariance estimating the nonstationary

field, where the trajectory does not leave the local maximum. Nonetheless, the ex-

pected improvement is also high in the unexplored region of the space, illustrating

the trade-off between exploration and exploitation. We also note that the poste-

rior mean surfaces computed using either the exponential or Matérn covariance

function capture most of the features of the true field, although the contours of

the Matérn examples are closer to the truth. Moreover, in the Matérn examples,

the trajectories seem to concentrate less at the two peaks and explore more of the

region.

A summary of the results for all 6× 200 simulations locating the maximum is

presented in Figure 3.9, which shows the probability that the trajectories gener-

ated by our algorithm have found the global maximum as a function of time.
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Figure 3.8: Trajectory snapshots at iteration j = 83 of the six different cases
using (a) exponential covariance and (b) Matérn covariance.
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Figure 3.9: The proportion of our simulations that have located the global
maximum as a function of time.

Based on the resolution for computing the estimate of the field, we determine

that the global maximum has been found if the location of the maximum of the

posterior mean is inside an ε-disk centered at the true global maximum’s location,

and preset ε = 0.025
√

2. The algorithm is more effective at locating the maximum

of the isotropic truth, especially when using the exponential covariance, which is

isotropic, compared to the other two truths. The performance for all three truths

using the Matérn covariance is very close and show more exploratory trajectories

and better estimation than using the exponential covariance. This can largely be

explained by the Matérn covariance function’s additional smoothness parameter

ν. From equation (3.11) the true fields have smooth peaks that rapidly decay.

This smoothness of the peaks can be captured by the estimate of ν whereas the

exponential covariance is inflexible and rather unsmooth.

Controlling the exploration-exploitation trade-off

In Section 2.2.2 we discussed the ability to affect the exploration-exploitation

trade-off by tuning c in E (max{f(s)− cymax
1:n , 0}). The previous results are with

c = 1. To see the effect of tuning c, an additional set of Monte Carlo simulations
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Figure 3.10: Controlling the exploration-exploitation trade-off.

with the anisotropic field as the truth are run with varying values of c. Figure 3.10

shows the effect of smaller and larger values of c under the exponential and Matérn

covariance models. We see that increasing the value of c raises the probability

curves, so the global maximum is found sooner as c increases. Hence if we are

interested in exploring the field more aggressively, we could set c to be slightly

greater than one. The results are in line with the analysis presented at the end

of Section 2.2.2. Note that choosing c > 1 is especially helpful in the exponential

case.

Comparison with variable speed and biased random walk

A third set of simulations are compared, where we run additional 200 simula-

tions using Algorithm 3 (variable speed circular arcs) and 200 simulations using a

biased random walk strategy5. Figure 3.11 shows snapshots of sample trajectories

obtained from using Algorithm 2, Algorithm 3, and the biased random walk after

224 measurements have been taken. We see that the trajectories generated by
5The biased random walk chooses the next radius ξj,1 randomly from uniformly distributed

curvature. If the resulting arc is climbing a gradient, the vehicle follows the same arc for 0.25k
more sampling locations, chosen to comply with the bias of 25% used in [24].
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Figure 3.11: Examples from using constant speed, variable speed, and biased
random walk algorithms.

our constant and variable speed algorithms find and circle a few times the local

maximum and then head toward and find the global maximum. However, the

biased random walk trajectory so far has stayed mostly in the lower half of S and

has not gotten near enough to the global maximum to estimate the field or the

location of the global maximum accurately.

Figure 3.12 shows the probability of finding the global maximum as a function

of flight time for the three algorithms. In both constant and variable speed cases,

our algorithm seems to be able to find the global maximum with high probability

more quickly than the biased random walk strategy. Moreover, the curves for

constant and variable speed are very close. We show in Figure 3.13 a representative

path for the optimal speed resulting from Algorithm 3. The vehicle goes through
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Figure 3.12: The proportion of our simulations that have located the global
maximum as a function of time.

periods of flying at maximum speed, slowing down, and going back to maximum

speed. Moreover, the vehicle tends to fly at maximum speed when it moves

away from the currently estimated maximum and it tends to slow down when it

approaches and flies over a local maximum. The result that the two algorithms

seem to perform very similarly and the fact that the two-dimensional optimization

associated with the variable speed algorithm is computationally expensive suggest

that the constant speed algorithm is better suited for online, real-time trajectory

generation for a physical system.
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0.
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Variable Speed
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         Time

Figure 3.13: An example of the speed path under Algorithm 3.
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Figure 3.14: Comparing expected improvement to the P-algorithm.

Comparison with P-algorithm

For final comparison with the goal of locating the maximum of f , we implement

the constant speed algorithm using the P-algorithm (2.21) replacing the expected

improvement as the utility (and similarly extending it to the segment qj). The

P-algorithm contains an exploration-exploitation tuning parameter δn. We set

δn = [1 − c]ymax
1:n for a direct comparison to our use of the generalized expected

improvement earlier this section. All simulation parameters, v,Rmin, α, k, p,∆,

are kept the same. Figure 3.14 shows the probability of locating the maximum

of the anisotropic truth using the Matérn covariance, when using the P-algorithm

with varying δn. As a baseline with δn = 0, the P-algorithm is equivalent to

maximizing the probability of improvement, and performs worse than maximiz-

ing the expected improvement. For the smaller δn > 0 values, the P-algorithm
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and expected improvement perform similarly, suggesting that the exploration-

exploitation parameters in both are close to being optimally tuned. For higher

δn, the P-algorithm seems to be too aggressive in exploration, and performance

in locating the global maximum drops.

3.4.3 Time to run one simulation using Algorithm 2

Table 3.3 shows the number of minutes to run a simulation coded in C on an

1.3 GHz Intel Core i5 laptop, for both operational goals and covariance functions.

Additional simulation studies using OpenMP (results not shown here) to speed

up the two maximizations (lines 6 and 7 in Algorithm 2) show that run times for

optimal reconstruction simulations can be further reduced by a factor of four.

goal grid covariance length run time (minutes)
optimal reconstruction 31×31 exponential 332∆ 6.5
optimal reconstruction 31×31 Matérn 332∆ 13

find maximum exponential 800∆ 6
find maximum Matérn 800∆ 35

Table 3.3: Simulation run times.

Figure 3.15 shows the total run time (black lines) per iteration j, as well as

the breakdown of time spent estimating (σ2,ϕ,ψ) (red dashes) and segment opti-

mization (blue lines) corresponding to lines 6 and 7 in Algorithm 2. After iteration

j = 40, we stop updating the hyperparameter estimates every iteration and only

update every ten iterations, using the full data history. In every goal scenario,

the computation time increases polynomially, as expected when the computations

largely involve matrix multiplications and inversions. This is means that real-

time implementations of Algorithm 2 are not feasible unless the time between

measurement locations is sufficiently long. Methods to reduce computation time
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Figure 3.15: Computation time per iteration, compared across operational goals
and covariance functions.

for real-time implementation are discussed in the future work section of Chapter 6.

Figure 3.16 shows the computation times for each goal scenario on the same

plot, broken down by task. During the hyperparameter estimation task, the com-

putation time is unaffected by the exploration goal, demonstrated by the coincid-

ing values of the red dash and green line and those of the blue dash and black

line. The main takeaway from Figure 3.16a is that the time required to compute

hyperparameters of the Matérn covariance function (σ2, τ 2, ν, λ1, λ2, ϑ) is approx-

imately tenfold that of computing those of the exponential covariance function
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Figure 3.16: Comparison of computation time by task.

(σ2, τ 2, λ). This is primarily explained by the addition of three6 more parameters,

allowing for flexible smoothness and anisotropy in the Gaussian process model,

and a more complicated posterior density (2.10) for which we find the maximizer.

Figure 3.16b shows that for calculating the next optimal segment, the two covari-

ance functions result in similar times, where the difference is due to the covariance

matrix entries take slightly more time to evaluate when using the Matérn. An-

other observation from Figures 3.15 and 3.16 is that planning the next trajectory

segment is cheapest (by a large margin) for finding the maximum, planning the

next segment for optimal reconstruction takes more time, and hyperparameter es-

timation is the most expensive (and uses proportionately more time during finding

the maximum) computation.
6This number can be reduced two, if the ratio τ2/σ2 is estimated instead of separately

estimating σ2 and τ2, and is given an F -distribution prior.
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(a) (b)

Figure 3.17: (a) The hardware components of the demonstration platform, con-
sisting of two RF drivers, the rover, and onboard instruments. (b) The RF drivers
generating a “radio plume” and the rover in starting position.

3.5 Experimental validation

We report the results from trials of our trajectory planning algorithm on an

autonomous ground vehicle, demonstrating a proof-of-concept on the field beyond

software simulation. The demonstration platform consists of a mobile vehicle

and a network of static radio frequency (RF) driver modules broadcasting RF

signals. The vehicle, an iRobot Create skid-steered rover with tank turn disabled

to emulate a fixed speed Dubins vehicle, is equipped with a computer, autopilot,

GPS/magnetometer, and an RF sensing unit. The magnitudes of received RF

values from each static RF transmitter are summed to create a spatial “radio

plume,” which is the environmental process of interest, over a 15 meter by 15

meter region. The goal of the trials is to locate the maximum of the RF field.

Figure 3.17 shows the hardware components of our demonstration platform. A

thorough description of the demonstration platform as well as an earlier version

of the results in this section can be found in [35].

Once the hardware components are in their starting configuration as in Fig-

53



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●● ●

●

●

●

●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●
●●

●

● ●

●

●
●

●
●

●
● ●

●

●

●●
●

●

●

●

●●

●●

●

● ● ●

●
●

●

●

●
●

●
●

● ●
● ●

●

●

●●

●

●

●

●
●

●

●
● ●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●●●

●

●

●

●

●

●

●●

●●●●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●● ● ●

●●

●
●

●

●● ●

●●
●

●
●

● ●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●
●●

●●
●●

●

●
●
●

●
●

●●

●

●

●
●

●●
● ●

●

●
●
●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ● ● ●

●

●

●
●

●

●●●

●

●

●

●

●
●●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●●●●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●

● ●

●
●
●

●
●●●

●

●

●
●

●
●

●
●

●

● ●●

●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●●●

●●

●
●●

●

●
●

●●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●●
●

0.68

0.84

0.99

1.14

1.29

1.44

Figure 3.18: The resulting rover trajectories (black continuous curves) and sam-
ple locations (blue points) for locating the maximum of the “radio plume” for
three different placements of the RF drivers.

ure 3.17(b), the trials are automated by a central Python script that facilitates

all the communication among the software components: the trajectory planning

algorithm, Mission Planner waypoint software, the RF sensor port, and the rover

controls. The trajectory planning algorithm, which uses an exponential covari-

ance function for the Gaussian process prior because we expect the RF field to be

isotropic, calculates the next optimal trajectory segment q∗j+1 and passes the next

k sampling locations q∗j+1(∆), . . . ,q∗j+1(k∆) to Mission Planner as waypoints to

be visited. Mission planner, along with the autopilot, computes and passes the

rover control outputs to the motors, driving the rover to the instructed waypoints.

Mission planner also determines if the waypoints have been reached and passes the

coordinates of the locations that trigger as “waypoint hit” (which do not match

exactly the instructed waypoint coordinates), to the trajectory planning algorithm

to be processed as the actual locations where RF data is collected.

Figure 3.18 shows the trajectories of the rover overlaid on the estimate of the

RF field for three separate trials with different initial placements of the static RF

transceivers creating different plume shapes. There are a couple issues with the

resulting trajectories in our experiment: the sequential sample locations on the

trajectories are not equidistant, and the trajectories themselves are not as smooth
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as what is expected from circular arcs stitched together. The former is partially

due to Mission Planner’s registration of a “waypoint hit” to be true if the rover

is within one meter, the lowest possible setting, of the instructed waypoint’s lo-

cation. The extra windiness of the paths traveled by the rover is partially caused

by latency between the communication, registration, and execution of the motor

control values. Both issues are significantly exacerbated by GPS/magnetometer

sensing errors, especially at the small spatial scale of the experiments. While

these discrepancies from the theoretically-computed ideal trajectories are always

present, they would be mitigated in applications where the region is larger and the

vehicle is longer endurance. Figure 3.18 shows that, despite these known discrep-

ancies, the trajectories produced by our algorithm in a field test look similar to

those in the simulations of Section 3.4 and are able to locate the global maximum.

This similarity suggests some robustness of the trajectory planning algorithm to

disturbances inherent in real world vehicle behavior.
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Chapter 4

Multiple Sources of Information

The procedure discussed in Chapter 3 assumes that all data available about

the environmental process comes from measurements collected by the autonomous

vehicle. However, there are many situations in which supplementary information

that could improve the performance of the algorithm is readily available. For

example, data about the process might be available from fixed sensors located

within the region of interest S, or from other remote sensing technologies such

as satellite imagery. Alternatively, an educated guess about the structure of f

might be available from a computer model. While incorporating any of these

sources of information will increase the efficiency of the algorithm, particularly

in the early stages of the exploration process, doing so properly requires subtle,

situation-aware modifications of the model described in 2.1 in order to generate

data fusion algorithms that properly account for the uncertainties associated with

different types of supplementary sources. This chapter discusses and evaluates

such modifications.

The remainder of the chapter is organized as follows. Section 4.1 introduces

new notation and any notation modifications from the previous chapters. Sec-

tions 4.2, 4.3, and 4.4 detail three procedures to include supplementary informa-
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tion sources into the control algorithm. Section 4.5 illustrates the performance of

the algorithms in optimal reconstruction of different fields with different sources

of supplementary information. The chapter is concluded with a discussion in

Section 4.6.

4.1 Notation

From Chapters 2 and 3, we keep the notation of y1:n = (y1, . . . , yn) representing

the vector of n observations taken at the locations {sy1, . . . , syn} on the trajectory

Q so far. We modify the notation of the vectors and matrices associated with y1:n

by replacing the subscript 1 : n by a subscript y; so that c1:n(x) becomes cy(x),

m1:n becomes my, and C1:n becomes Cyy. For the supplementary information,

we introduce the vector z = (z1, . . . , zr) and the associated locations {sz1, . . . , szr}.

We assume that all of the supplementary information is contained in z and its

locations, and z is available to the vehicle before any trajectory planning occurs.

Thus r, the size of z is fixed while y1:n grows.

In this chapter, the objective function to be maximized in order to design the

next vehicle trajectory segment q∗j+1 for optimal reconstruction is based on

Ũj+1(qj+1) = −
∑

x∈Sg

{[
µz,y1:n(x)− µz,y1:n,ŷqj+1

(x)
]2

+ κ2
z,y1:n,ŷqj+1

(x)
}
, (4.1)

where

µz,y1:n(x) = E {f(x) | z,y1:n}

µz,y1:n,ŷqj+1
(x) = E

{
f(x) | z,y1:n, ŷqj+1

}
κ2

z,y1:n,ŷqj+1
(x) = Var

{
f(x) | z,y1:n, ŷqj+1

}
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are now also conditioned on z.

4.2 Incorporating information from point-

referenced data sources

The simplest form of supplementary data for trajectory planning comes in

the form of point-referenced measurements taken at a set of pre-specified loca-

tions within S. This type of data might arise, for example, from a network of

fixed monitoring stations. These networks are common for many weather related

environmental processes (e.g., temperature, ozone, and particulate matter concen-

tration), but are often sparse and provide only relatively low resolution estimates

of the field they are designed to monitor.

Extending our model to accommodate supplementary sources of point-reference

measurements is straightforward. In particular, let z = (z(sz1), . . . , z(szr)) de-

note the observations arising from r fixed monitoring stations located at positions

sz1, . . . , szr. Similar to before in Section 2.1, we take

zl = z(szl ) = f(szl ) + εzl , yi = y(syi ) = f(syi ) + εyi , l = 1, . . . , r, i = 1, . . . , n,

where εzl ∼ N(0, σ2
z) and εyi ∼ N(0, σ2

y) independently for every l and i. This

model implicitly assumes that the sensors on both the monitoring network and

the autonomous vehicle measure the same underlying field (although using po-

tentially different instruments, leading to potentially different levels of measure-

ment noise). When combined with our Gaussian process prior for f , f | ϕ,ψ ∼
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GP(m(· ;ϕ), C(· , · ;ψ)), this observational model implies that

z

y


∣∣∣∣∣∣ σ2

z , σ
2
y,ϕ,ψ ∼ N


mz

my

 ,
Czz Czy

CT
zy Cyy

+

σ2
zIr 0

0 σ2
yIn


 , (4.2)

where the mean vectors mz and my are given by

mz = (m(sz1;ϕ), . . . ,m(szr;ϕ)), my = (m(sy1;ϕ), . . . ,m(syn;ϕ)),

and the blocks Czz, Czy, and Cyy satisfy

[Czz]l,l′ = C(szl , szl′ ;ψ),

[Czy]l,i = C(szl , s
y
i ;ψ),

[Cyy]i,i′ = C(syi , s
y
i′ ;ψ),

for l, l′ = 1, . . . , r and i, i′ = 1, . . . , n. The rest of the results from Section 2.1.2

can be similarly extended. For example, the posterior distribution of the value of

f at any x ∈ S is f(x) | z,y1:n, σ
2
z , σ

2
y,ϕ,ψ ∼ N

(
µz,y1:n(x), κ2

z,y1:n(x)
)
, where

µz,y1:n(x) = m(x;ϕ) +
[
cT
z (x) cT

y (x)
] Czz + σ2

zIr Czy

CT
zy Cyy + σ2

yIn


−1 z−mz

y−my

 ,
(4.3)

and

κ2
z,y1:n(x) = τ 2 −

[
cT
z (x) cT

y (x)
] Czz + σ2

zIr Czy

CT
zy Cyy + σ2

yIn


−1 cz(x)

cy(x)

 . (4.4)
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In the previous expressions the vectors cz(x) and cy(x) are defined as

cz(x) = (C(sz1,x;ψ), . . . , C(szr,x;ψ)),

cy(x) = (C(sy1,x;ψ), . . . , C(syn,x;ψ)).

For hyperparameter estimation, we use the same empirical Bayes method de-

scribed in Section 2.1.2, modified to include σ2
z and the data z:

(
σ̂2
z,n, σ̂

2
y,n, ϕ̂n, ψ̂n

)
=

arg max
(σ2
z ,σ

2
y ,ϕ,ψ)

[
log p

(
z,y1:n | σ2

z , σ
2
y,ϕ,ψ

)
+ log p

(
σ2
z , σ

2
y,ϕ,ψ

) ]
, (4.5)

and ϕ can similarly be estimated separately if we take a constant mean function

m(.;ϕ) = ϕ (see the Appendix for details).

Implementation of the objective function for optimal reconstruction is the same

as in Section 3.1. To go from µy1:n,ŷqj+1
(x) to µz,y1:n,ŷqj+1

(x), and κ2
y1:n,ŷqj+1

(x) to

κ2
z,y1:n,ŷqj+1

(x) replace c1:n(x) and C1:n + σ2In by

cz(x)

cy(x)

 and

Czz + σ2
zIr Czy

CT
zy Cyy + σ2

yIn

 ,

respectively, wherever they occur in the expressions (A.30) and (A.31).

4.3 Incorporating information from aggregated

data sources

Not all remote sensors provide point-referenced measurements. For example,

in satellite imagery, the data collected for each pixel usually corresponds to an

60



average of the true underlying field over the area covered by the pixel. More

generally, when the resolution of the supplementary sensor is much lower than

the resolution of the sensor on the autonomous vehicle, it is often more accurate

to think about the supplementary sensor as measuring a (potentially weighted)

average of the underlying field over each pixel. While it would be tempting to

ignore this fact and use the model from Section 4.2 as if observations were point-

referenced to the center of each pixel, such an approach ignores the (potentially

important) effect of the averaging process. In this section we discuss an alternative

modeling approach that acknowledges the aggregate nature of the supplementary

data, and illustrate the theoretical differences with that in Section 4.2.

Assume the region S has been exhaustively partitioned into r non-overlapping

pixel regions S1, . . . Sr, and let zl be the measurement associated with pixel l

coming from a supplementary, low-resolution image sensor. As before, we assume

that observations collected by the autonomous vehicle satisfy y(syi ) = f(syi ) + εyi

with εyi ∼ N(0, σ2
y). However, for the observations generated by the image sensor,

we assume

zl = gl + εzl , εzl ∼ N(0, σ2
z)

where

gl = 1
|Sl|

∫
Sl

f(x) dx,

and |Sl| =
∫
Sl
dx is the area of Sl. If f is assigned a Gaussian process prior, then

the quantities g1, . . . , gr are inherently random variables in the same way that

f(sy1), . . . , f(syn) are random, and they are normally distributed. To construct our

predictive model and implement the control algorithm, we must obtain the joint

distribution of the vectors g = (g1, . . . , gr) and f = (f(sy1), . . . , f(syn)), which in
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this case is known to follow a multivariate normal distribution with

g

f


∣∣∣∣∣∣ ϕ,ψ ∼ N


mz

my

 ,
Czz Czy

CT
zy Cyy


 , (4.6)

where

mz =
(

1
|S1|

∫
S1
m(x;ϕ) dx, . . . ,

1
|Sr|

∫
Sr
m(x;ϕ) dx

)
,

my = (m(sy1;ϕ), . . . ,m(syn;ϕ)) ,

and the blocks Czz, Czy, and Cyy satisfy

[Czz]l,l′ = 1
|Sl||Sl′|

∫
Sl

∫
Sl′
C(x,x′;ψ) dx dx′, (4.7)

[Czy]l,i = 1
|Sl|

∫
Sl

C(x, syi ;ψ) dx, (4.8)

[Cyy]i,i′ = C(syi , s
y
i′ ;ψ)

for l, l′ = 1, . . . , r and i, i′ = 1, . . . , n. While computing (4.7) and (4.8) in closed

form for general covariance functions can be difficult, the calculation is possible for

some commonly used covariance functions. For example, for a rational quadratic

covariance function, the integrals are given explicitly in the Appendix. With

the modifications to the definitions of mz, Czz, and Czy above, the expressions

developed for the point-referenced case in Section 4.2 for the distribution in (4.2),

posterior mean in (4.3) and variance in (4.4), and hyperparameter estimation

in (4.5) all apply directly to the case of aggregated observations.

To illustrate the differences between the approach we just discussed and the

point-referenced model in Section 4.2, consider a concrete scenario in which S =
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[0, 1]2 and define a regular u× u grid of points located at

sz(l1−1)u+l2 =
(

1
2u + l1 − 1

u
,

1
2u + l2 − 1

u

)

for l1, l2 = 1, . . . , u, as well as a collection of subsets Aδ1, . . . , Aδu2 of S that corre-

spond to squares with edge length δ ≤ 1/u centered at each of sz1, . . . szu2 . Figure

4.1a presents a representation of this scenario. Then the covariance matrix Cδ
zz

of the joint distribution of

(
1
|Aδ1|

∫
Aδ1

f(x) dx, . . . ,
1
|Aδu2|

∫
Aδ
u2

f(x) dx
)

is equal to that of Czz described in Section 4.2 when δ → 0, and to the one

discussed in this section when δ = 1/u.

Figure 4.1b presents the value of the normalized nuclear norm of Cδ
zz, defined

as 1
u2 tr

{
Cδ
zz

}
, as a function of δ for various members of the rational quadratic

family of covariance functions in (2.4). Note that the normalized norm decreases

monotonically with δ. Hence, using the point-referenced model (which, as we

said before, corresponds to δ = 0) for observations that are actually collected

under the aggregated model (which corresponds to δ = 1/u) leads to a distribu-

tion that is overdispersed with respect to the truth. The larger variance of the

point-referenced model means that using it when the true nature of the data is

aggregated wastes information. While the impact of this waste depends on the

true structure of the field (and how influential the prior is), and the impact will

be lessened as the vehicle collects more data, its importance could potentially be

large in the early stages of the exploration process.

While the previous discussion suggests that using the prior discussed in this

section for aggregated data will lead to a more efficient path planning algorithm,
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there is a tradeoff. As we mentioned before, computation of the covariance func-

tion for spatially aggregated data in (4.7) can be computationally demanding

outside some standard families because the integrals required might not be avail-

able in closed form. Hence, if an intractable covariance function is chosen, the

application of the approach discussed in this section might be unfeasible in the

context of a real-time algorithm.
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Figure 4.1: A concrete example of the differences between the point-reference
and aggregate data approaches. Panel (a) shows the setup associated with this
illustration, which involves a regular u× u grid on S = [0, 1]2 that is used as the
center of a collection of square subregions {Aδ} of S with edge length δ. Panel
(b) shows the normalized nuclear norm of Cδ

zz , the covariance matrix associated
with the joint distribution of the average value of the field over each subregion,
for various members of the rational quadratic family of covariance functions.
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4.4 Incorporating supplementary information

through the mean function

Finally, we consider the situation in which we do not have direct observations

of the field f beyond those collected by the autonomous vehicle, but instead have

access to some other information about the shape of the field. For example,

we might have access to a “computer model” of the physical phenomenon being

monitored, i.e., a solver for a system of differential equations that describes (a

simplified version of) the underlying physics at each location x ∈ S. In this kind

of situation we do not necessarily expect the output of the computer model at a

location x to be exactly equal to (or noisy measurements of) f(x). However, we do

expect that the output of the computer model will be at least somewhat close to

the true field. Hence, the most appropriate way to incorporate this information is

by using the output of the computer model, denoted as h(x), as the mean function

of our Gaussian process prior for f , i.e., setting m(x;ϕ) = h(x).

The main challenge with this approach is the need to repeatedly evaluate h(x)

at each segment of the trajectory (and at other segments during the evaluations

of the objective function during segment optimization). In practice, this repeated

evaluation at any arbitrary location is infeasible because the evaluation of h often

requires the use of time-consuming numerical solvers that are simply too slow for

online applications such as ours. As an alternative we propose to approximate h(x)

with an emulator ĥ(x). More specifically, we propose to pre-evaluate the computer

model at a small number of locations sh1 , . . . , shr to obtain z = (h(sh1), . . . , h(shr )),

construct an emulator ĥ(x) of h by interpolating the values z = (h(sh1), . . . , h(shr )),

and then set m(x;ϕ) = ĥ(x). Although emulators can be constructed using

a variety of nonlinear regression tools, our preference is to use an interpolating
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Gaussian process [37, 68] with mean function mo(x;ϕo) and covariance function

Co(x,x′;ψo). This leads to an interpolator of the form

ĥ(x) = mo(x;ϕo) + coz(x) [Co
zz]
−1 [z−mo

z] ,

where coz(x) =
(
Co(x, sh1 ;ψo), . . . , Co(x, shr ;ψo)

)
, [Co

zz]ij = Co(shi , shj ;ψo), and

mo
z =

(
mo(sh1 ;ϕo), . . . ,mo(shr ;ϕo)

)
. The use of this emulator in the context of our

planning algorithm is feasible because the most expensive computation, which is

of the vector [Co
zz]
−1 [z−mo

z], required to obtain ĥ(x) at an arbitrary location

x can be done offline. To construct the interpolator, the covariance function Co

is chosen to ensure that realizations of the process have at least one continuous

derivative (in order to allow the resulting control algorithm to be consistent, recall

our discussion at the end of Section 3.3), and the mean function mo is typically

chosen to be a constant. Furthermore, the values of ϕo and ψo are set by using

the same empirical Bayes approach used to estimate ϕ and ψ in (2.10) using the

data z.

To better understand the difference between this approach and the one in Sec-

tion 4.2 for point-referenced supplementary data, we can compare the conditional

distributions of the the field f at the locations where the vehicle collects samples,

fy = (f(sy1), . . . , f(syn)), given the vector z, as implied by both models. These

conditional distributions summarize the information that the supplementary data

z provides about the field f , and roughly corresponds to the prior to be used by

the vehicle when estimating f . For the joint, point-referenced model from Section

4.2, this is

fy | z ∼ N
(
my + Cyz

[
Czz + σ2

zIr
]−1

[z−mz] ,Cyy −Cyz

[
Czz + σ2

zIr
]−1

Czy

)
,

(4.9)
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while for the two-step model in this section it is

fy | z ∼ N
(
mo

y + Co
yz [Co

zz]
−1 [z−mo

z] ,Cyy

)
, (4.10)

where mo
y =

(
mo(sy1;ϕo), . . . ,mo(syn;ϕo)

)
and

[
Co
yz

]
ij

= Co(syi , shj ;ψo). Note that

the variance in (4.10) is Cyy and not Co
yy.

The expressions in (4.9) and (4.10) are similar, but not identical. One subtle

but important difference is that mo(x;ϕo) and Co(x,x′;ψo) (which are associ-

ated with the emulator of the computer model h) are potentially different from

m(x;ϕo) and C(x,x′;ψo) (which are associated with the true underlying field we

are trying to reconstruct, f). Another difference is that we have chosen to use an

interpolating Gaussian process for our emulator, which implies that σ2
z = 0. If we

adjust for these two differences, then the mean vectors in (4.9) and (4.10) are iden-

tical and the two distributions are centered in the same place. However, even if

we use a smoothing Gaussian process for our emulator and assume that the priors

for both f and h share the same hyperparameters, it is clear that the variance-

covariance matrix associated with the two priors are very different. In particular,

it is straightforward to see that total variance of the prior in (4.9) (measured, for

example, by the nuclear norm, as we did in Section 4.3) is strictly smaller than

the variance in (4.10). This means that, while both priors are roughly centered

around the same values, the prior associated with the two-step approach we in-

troduced in this section is, by construction, less concentrated (and therefore, less

informative) about the underlying field f than the prior from Section 4.2. This

behavior is consistent with our original observation that the information provided

by a computer model of the physical process is less reliable than that provided by

point-referenced sensors measuring the real process.

With the two-step model, the marginal distribution of the observations taken
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by the vehicle has the distribution

y1:n | σ2
y ,ϕ

o,ψo,ψ ∼ N
(
mo

y + Co
yz [Co

zz]
−1 [z−mo

z] ,Cyy + σ2
yIn

)
, (4.11)

which has the same variance as that of (2.6) in Section 2.1.2, but the mean

vector is the interpolator ĥ at the locations sy1, . . . , syn rather than a constant

ϕ1n. For x ∈ S, the posterior distribution of f(x) given all the data is f(x) |

z,y1:n, σ
2
y,ϕ

o,ψo,ψ ∼ N
(
µz,y1:n(x), κ2

z,y1:n(x)
)
, where

µz,y1:n(x) = mo(x;ϕo) + coz(x) [Co
zz]
−1 [z−mo

z] (4.12)

+ cy(x)T
[
Cyy + σ2

yIn
]−1 [

y1:n −mo
y −Co

yz [Co
zz]
−1 [z−mo

z]
]
,

κ2
z,y1:n(x) = τ 2 − cy(x)T

[
Cyy + σ2

yIn
]
cy(x). (4.13)

Both z and y1:n contribute to µz,y1:n(x), but κ2
z,y1:n(x) does not depend on z and

is equal to the posterior variance when there is no supplementary information,

(2.8) in Section 2.1.2.

The expression for the expected utility for designing the next trajectory seg-

ment q∗j+1 is based off of (3.2) in Section 3.1 with occurrences of m(x;ϕ) replaced

by ĥ(x).

4.5 Illustrations

In this section we evaluate the data fusion algorithms described in Sections

4.2, 4.3, and 4.4 in the context of our trajectory planning algorithm. We consider

four scenarios for our evaluation. For each scenario we first define the true field

fT that will be used to randomly generate vehicle data during flight according to

(2.1), and then a set of observations z that serve as the supplementary data for
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that scenario. In each case we run a total of 200 simulations, all of them sharing

the same supplementary data and true field fT , but based on different realizations

y(sy1), y(sy2), . . . collected at locations determined by our path planning algorithm.

Our first three scenarios are conceived to provide concrete examples of situ-

ations in which each fusion algorithm is most appropriate, and to illustrate the

advantages of incorporating the different types of supplementary information in

the path planning algorithm (see Table 4.1 for a summary of the parameters used

for each scenario). In each of these three scenarios we compare four path planning

algorithms: the adaptive path planning algorithm that ignores supplementary

information that was discussed in Chapter 3 (AA for short), the appropriate ver-

sion of the adaptive path-planning algorithm that incorporates supplementary

information from Sections 4.2-4.4 (AA+S/P, AA+S/A and AA+S/T for short,

respectively), and non-adaptive raster-scan “lawnmower” trajectories that exhaus-

tively explore S that either ignore or incorporate the supplementary information

(denoted by LAW and LAW+S, respectively). The fourth scenario is meant to

illustrate the differences between the different data fusion algorithms by simulta-

neously applying them to the same problem. We focus on optimal reconstruction;

thus comparisons across planning algorithms are based on the mean squared pre-

diction error over flight time

MSE(n∆) = 1
|Sg|

∑
x∈Sg

[
fT (x)− f̂n(x)

]2
, (4.14)

where Sg is a dense regular grid that covers S, and |Sg| denotes the number

of gridpoints. Because the supplementary information is finite and fixed, the

consistency result f̂n → fT as n→∞ still holds.
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Point-referenced Aggregated Mean function
source weather stations satellite image computer model
f temperature aerosol optical depth carbon concentration

f range 290− 308 K 0− 1 10− 65%
covariance Matérn rational quadratic Matérn
true σ2

y 1 K 0.025 2.5%
S [−121,−115]× [35.5, 41.5] [26, 34]× [−22,−14] [−108,−98]× [17, 27]
r 36 16 63
v 0.1884 0.2512 0.314

Rmin 0.18 0.24 0.3
∆ 1 1 1
k 4 4 4
p 3 3 3

flight time 560∆ 560∆ 560∆

Table 4.1: Simulation information and parameters.

4.5.1 An example using point-referenced data sources:

monitoring temperature in the western USA

To illustrate the performance of our data fusion algorithm for point-referenced

data, we investigate the problem of estimating the temperature field over the re-

gion [−121,−115] longitude by [35.5, 41.5] latitude, which covers most of Nevada

and eastern California. The true temperature field used for generating vehicle

measurements during the simulation corresponds to the GEOS-FP meteorological

data product from NASA’s Global Modeling and Assimilation Office (GMAO) on

June 29, 2013 at 0900-UTC. This product provides temperatures over a regular

grid with 0.3125◦ longitudinal and 0.25◦ latitudinal resolution, and we use bilin-

ear interpolation to obtain temperature values at arbitrarily higher resolutions

(see Figure 4.2a). On the other hand, the supplementary information comes in

the form of temperature recordings at various fixed stations (located mostly at

airports), as provided by the DS3505 Surface Data Hourly Global dataset from

the National Climatic Data Center (NCDC) (see Figure 4.2b). For each station,
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we use the temperature recorded between 0900-UTC and 1000-UTC (if multiple

recordings exist in the hour, we use the one closest to 0900). Generally speaking,

the overall pattern of the measurement at the stations agrees with the true field.

However, there are some important differences. For example, the measurement at

EUREKA station, as well as those along a ridge running from MODESTO CITY

to PORTERVILLE, seem to be systematically lower that what would be expected

from the shape of the true field.
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Figure 4.2: True field and point-referenced supplementary information for our
first evaluation scenario.

Figure 4.3 shows the behavior over time of the log-MSE over 200 experiments

for the four trajectory planning methods discussed earlier in the introduction to

Section 4.5. The figure presents both the mean log-MSE as well as the interquartile

range computed over 200 trajectories. The variability across the 200 trajectories

is relatively low in all cases, but is larger for the adaptive algorithms. This is

to be expected. In the case of the LAW and LAW+S, the vehicle trajectory

is fixed in advance and the only source of variability across experiments in the

measurement noise associated with the vehicle sensor. On the other hand, in the
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Figure 4.3: Reconstruction error as a function of time over 200 simulations
for four trajectory planning algorithms for our first evaluation scenario. Lines
correspond to the mean reconstruction errors, while the shaded area indicates the
25th-75th percentile.

case of AA and AA+S/P, the trajectories themselves will change in response to

the measurements taken, introducing an additional source of variability across

experiments. In terms of the average behavior of the log-MSE, we note that AA

and AA+S/P tend to outperform LAW and LAW+S, in spite of the fact that

LAW+S incorporates the information from the fixed stations into the estimate of

the latent field f . Furthermore, we can see that, with the exception of brief periods

of time, AA+S/P and LAW+S tend to outperform their respective counterparts

AA and LAW. Finally, we also can see that, as the flight time increases, the MSE

values of all four methods tend to converge to a common value.
To better understand the behavior of the different algorithms, we present log-

MSE traces for a single experiment under each planning method (see Figure 4.4),

as well as snapshots of the trajectories Q, field estimates f̂ , and squared pre-

diction errors (fT − f̂)2 at four time points in those trajectories (see Figures 4.5

and 4.6). First, we note that the behavior of the log-MSE for the particular ex-

periment depicted in Figure 4.4 agrees with the average behavior we observed in
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Figure 4.4: Reconstruction error as a function of time for a single simulation for
each of the four methods in our first evaluation scenario. The times t1, t2, t3, t4
correspond to the snapshots of the trajectories, reconstructions, and errors shown
in Figures 4.5 and 4.6.

Figure 4.3. This is not surprising given the relatively narrow uncertainty bands we

had originally observed. Furthermore, we note that AA seems to provide a better

reconstruction of the temperature field than AA+S/P between t2 and t3, and ob-

serve some sharp drops in MSE at specific time points, particularly for LAW and

LAW+S. Focusing now on the snapshots, we see that AA and AA+S/P are able

to provide more accurate reconstructions of the field f because they explore the

lower-right corner of the sampling space early. Similarly, the more accurate recon-

struction provided by AA over AA+S/P between t2 and t3 seems to be due to the

fact that AA happens to visit the area around the high-temperature ridge running

from MODESTO CITY to PORTERVILLE during this period, while AA+S/P

does not visit it until later (preferring to explore an unsampled region first). As

was noted before, this is an area were the supplementary information seems to

systematically underestimate the temperature field. This bias leads AA+S/P to

similarly underestimate the temperature values in this regions, an issue that is

eventually corrected for once the vehicle visits the area (which happens around
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t3). At this point, AA+S/P starts to again outperform AA. Finally, Figures 4.5

and 4.6 also help explain the sudden drops in MSE values. For example, we note

that t3 is when both lawnmower trajectories first hit the high temperatures of the

southeastern region, which allows the algorithm to identify the local mode located

west of DESERT ROCK.
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Figure 4.5: Reconstruction of the truth using measurements from locations de-
termined by the four trajectory planning methods in our first evaluation scenario.
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Figure 4.6: Squared reconstruction error at the selected times in our first eval-
uation scenario.

4.5.2 An example using aggregated data sources: moni-

toring air quality in Zimbabwe

We proceed now to illustrate the performance of the version of our control

algorithm that incorporates aggregated supplementary information introduced in
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Section 4.3 (AA+S/A). The motivation in this case is the monitoring of the aerosol

optical depth (AOD) field over the region [26, 34] longitude by [−22,−14] latitude,

which covers most of Zimbabwe. AOD is an indicator of how much sunlight is

blocked by particles in the atmosphere, with higher values corresponding to hazier

conditions.

Both the true field used to generate vehicle observations and the supplementary

information correspond to images taken by the SeaWiFS sensor on the OrbView-2

satellite. We focus on the 550 nm light wavelength and September 22, 2010. For

the truth, we use an image of 0.5◦ longitudinal and 0.5◦ latitudinal resolution,

upsampled using a bilinear interpolator (see Figure 4.7a). For the supplementary

information, we use a satellite image is 2◦ × 2◦, downsampled from the standard

1◦×1◦ product (see Figure 4.7b). All data products are available through NASA’s

Giovanni web interface.
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Figure 4.7: True field and aggregated supplementary information for our second
evaluation scenario.
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Figure 4.8: Reconstruction error as a function of time over 200 simulations
for four trajectory planning algorithms for our second evaluation scenario. Lines
correspond to the mean reconstruction errors, while the shaded area indicates the
25th-75th percentile.

Figure 4.8 shows the behavior over time of the log-MSE over 200 experiments

for the four trajectory planning methods. Like the weather station scenario, the

two approaches that use satellite data outperform the methods that do not. Al-

though LAW+S seems to outperform AA+S during the very early stages of explo-

ration, the average log-MSE for both AA and AA+S/A decreases smoothly with

a steeper slope than the average log-MSE of LAW and LAW+S. This indicates a

faster learning rate for the adaptive algorithms. One key difference with our first

evaluation scenario is that AA+S/A consistently outperforms AA, on average.

It is also worth noticing in Figure 4.8 that, towards the end of the simulations,

the log-MSE for LAW and LAW+S falls sharply, and by the time the vehicle has

systematically explored the space, these methods clearly outperform the adaptive

ones.
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Figure 4.9: Reconstruction error as a function of time for a single simulation for
each of the four methods in our second evaluation scenario. The times t1, t2, t3, t4
correspond to the snapshots of the trajectories, reconstructions, and errors shown
in Figures 4.10 and 4.11.

Figure 4.9 presents log-MSE traces for a single experiment under each planning

method. These plots highlight some patterns that are not present in the averages

presented in Figure 4.8. For example, we can also identify a few short periods

of time, mostly between t1 and t2 and between t3 and t4, in which AA briefly

outperforms AA+S/A. The outperformance, however, is never as marked as what

we saw in Figure 4.4. In addition, we can see a sharp improvement of the MSE

for AA+S/A around t2 (and for AA slightly later) that does not appear in the

summary plot. Looking at Figures 4.10 and 4.11, which present snapshots of the

trajectories Q, field estimates f̂ , and squared prediction errors
(
fT − f̂

)2
at t1,

t2, t3 and t4, it is apparent that the sharp drop in MSE is due to a more accurate

reconstruction of the upper right corner of the field, where most of the error is

concentrated. Sampling the upper right corner at t4 also explains the sharp drop

in MSE for the LAW and LAW+S simulations.
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Figure 4.10: Reconstruction of the truth using measurements from locations
determined by the four trajectory planning methods.
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Figure 4.11: Squared reconstruction error at the selected times.

4.5.3 An example using external assessments: monitoring

organic carbon over central Mexico

Our third scenario illustrates the performance of the version of our algorithm

that incorporates supplementary information through the mean function of the
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(b) Computer model output

Figure 4.12: True field and computer model supplementary information for our
third evaluation scenario.

Gaussian process model for f . For this scenario, we investigate the percentage

of total aerosol mass that is made up by organic carbon (OC) over the region

[−108,−98] longitude by [17, 27] latitude, which covers central Mexico. Both

the true field used to generate the observations taken by the vehicle and the

supplementary information are provided by computer models. For the true OC

field, we use a regional GEOS-Chem model prediction with 0.3125◦ longitudinal

and 0.25◦ latitudinal resolution over North America, which is upsampled using a

bilinear interpolator (see Figure 4.12a). For the supplementary information, we

use a global GEOS-Chemmodel prediction at 2.5◦×2◦ resolution (see Figure 4.12b.

Both predictions are for August 2013. Generally speaking, the supplementary

information agrees with the true field. However, the field predicted by the low

resolution computer model is slightly shifted to the west, and the resulting prior

mean function is substantially smoother than the field we assume as the truth.

Figure 4.13 shows the behavior over time of the log-MSE over 200 experiments
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Figure 4.13: Reconstruction error as a function of time over 200 simulations
for four trajectory planning algorithms for our third evaluation scenario. Lines
correspond to the mean reconstruction errors, while the shaded area indicates the
25th-75th percentile.

for the four trajectory planning methods. For our adaptive algorithm, using the

computer model information results in lower log-MSE in the beginning of the sim-

ulations, which is also observed in the weather station and satellite scenarios. Like

the satellite scenario, AA+S/M outperforms AA on average, with the exception

of one brief period of time. However this improvement is not observed in LAW

and LAW+S. The average log-MSE is lower for LAW than for LAW+S for the

first half of the flight time. Incorporating the computer model into the lawnmower

method does not initially lower the log-MSE as quickly as the basic LAW does.

Like the two previous scenarios, the average log-MSE for both AA and AA+S/A

decreases smoothly with a steeper slope than the average log-MSE of LAW and

LAW+S for most of the time. And again, the log-MSE for LAW and LAW+S falls

sharply towards the end of the simulations when the vehicle has systematically

explored the space.

Figure 4.14 shows log-MSE traces for a single experiment under each planning

method. The behavior of the log-MSE for the single experiment agrees with the
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Figure 4.14: Reconstruction error as a function of time for a single simulation
for each of the four methods in our third evaluation scenario. The times t1, t2, t3, t4
correspond to the snapshots of the trajectories, reconstructions, and errors shown
in Figures 4.15 and 4.16.

average behavior observed in Figure 4.13. In particular, AA+S/M outperforms

AA until a point in time when the two log-MSE traces converge, and LAW+S has

higher MSE compared to LAW for the first half of the simulation. The snapshots

the trajectories, field estimates, and squared errors of Figures 4.15 and 4.16 are

taken at times t1, t2, t3, t4 evenly spaced between t = 0 and t = 560. Looking

at these snapshots, the slower learning by LAW+S compared to LAW until after

time t2 is explained by the large error contribution by inaccurately estimating

the region of high OC in the upper right corner. As this region has not yet been

visited by the vehicle, the error is due to the inaccuracy in the computer model.

At the first time t1, the reconstruction from the AA method is too flat due

to the trajectory having only sampled at locations with moderate/high concen-

tration. The other three methods do not experience this issue. AA+S/M has

the computer model information, and LAW samples across the region, gathering

high and low concentration measurements. Over time the AA trajectory covers

the region, and reconstruction is greatly improved. The trajectories of the 200

83



AA simulations typically start this way: from the initial locations, the vehicle

cuts more or less diagonally across the region and makes a right-angle turn three-

quarters of the way across, mostly sampling moderate to high concentrations, as

seen in Figure 4.12a.
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Figure 4.15: Reconstruction of the truth using measurements from locations
determined by the four trajectory planning methods.
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Figure 4.16: Squared reconstruction error at the selected times.

4.5.4 A comparison of data fusion approaches

In our final evaluation scenario, we compare the performance of the different

data fusion algorithms in the AOD setting introduced in Section 4.5.2. This

looks into the issue of using the wrong data fusion method, as the satellite image

will be treated as point-referenced in AA+S/P and as the prior mean function in
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AA+S/M. Similarly to previous evaluations, we present in Figure 4.17 a summary

of the evolution of the log-MSE values corresponding to 200 experiments for each of

AA+S/P, AA+S/A and AA+S/M, as well as for the basic adaptive path planning

algorithm (AA). Since the supplementary information has the most impact on the

early performance of the algorithms, we focus on their behavior during the first 100

time points. It is clear from this graph that including supplementary information

is preferable to not including it, no matter which of the three approaches is used to

incorporate it. We also see that, in this case, AA+S/M has the worst performance

among the three data fusion algorithms, and that the performance of AA+S/P

and AA+S/A is quite comparable.
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Figure 4.17: Reconstruction error as a function of time over 200 simulations.
Lines correspond to the mean reconstruction errors, while the shaded area indi-
cates the 25th-75th percentile.

4.6 Conclusions

We have developed methods to incorporate supplementary information in three

ways, depending on the nature of the supplementary source. Through simulations

evaluating each incorporation method, we have shown that including the supple-

86



mentary information into the planning algorithms improves the performance of

the algorithms, especially in the early stages of exploration.

The amount of improvement, and how long the improvement persists, vary

across the different data sources and incorporation methods. One factor is the

accuracy and spatial coverage of the supplementary data. In the point-referenced

scenario with the weather stations, the supplementary data is concentrated at

specific locations, and we mentioned earlier there are some systematically lower

temperatures in a subset of locations. In the other scenarios, the supplementary

information is evenly distributed over the entire region, and the supplementary

satellite data in the aggregated scenario is more accurate due to it likely being a

low resolution version of the assumed truth. Another factor is the incorporation

method itself; in particular, incorporating information through the mean function

of the Gaussian process prior is inherently different than treating the supplemen-

tary data as direct observations of the true field. A future project can be a more

formal analysis on the factors that influence the performance of our incorporation

methods.

The approximate times (in minutes, non-parallelized) to run a single simulation

are shown in Table 4.2.

Scenario 1 Scenario 2 Scenario 3
computation grid size |Sg| AA AA+S/P AA AA+S/A AA AA+S/M

21×21 30 40 13 14 31 25
31×31 47 58 27 29 47 41
41×41 72 87 48 52 74 68

Table 4.2: Simulation run times.
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Chapter 5

Multiple Vehicles

The procedure discussed in Chapter 3 gives a comprehensive method for one

vehicle to plan its optimal trajectory for optimal reconstruction or finding the

maximum. However, there are situations where there is limited time to accomplish

the goal, such as when data collection by one vehicle alone cannot resolve the

timescale of the environmental process. To this end, we extend the trajectory

planning algorithm to multiple vehicles and investigate the rate of performance

improvement from including additional vehicles.

This chapter is organized as follows. Sections 5.1 and 5.2 discuss concepts that

arise when dealing with multiple vehicles, such as communication, detection, and

avoiding collisions between vehicles. Section 5.3 extends the trajectory planning

algorithm from Chapter 3 to the multiple vehicle case, modifying the objective

functions in Section 3.1, with attention to collision avoidance. Section 5.4 illus-

trates the performance of the extended method, with focus on the “speedup” of

time in achieving the mission goal.
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Levels of centralization for a multi-vehicle system

Completely decentralizedCompletely centralized Partially decentralized

CC
CC

Cooperative Coordinated

Figure 5.1: The spectrum of centralization, cooperation, and coordination.

5.1 Centralization and communication

A multi-vehicle system can consist of only vehicles, or can involve a fixed

computer in addition to the vehicles. The vehicles can carry out the the heavy

computation, perhaps in some distributed way, or most of the computation can

be done by the fixed computer by communicating the data off the vehicles. The

following is a discussion of possible ways for task allocation among the components

of the multi-vehicle system, graphically represented in Figure 5.1, and applied to

our context of sampling, estimation, and trajectory planning.

In a fully centralized scheme, a central computer (CC) does all of the data

processing and decision making. In our context, in each iteration of the trajectory

planning algorithm, the CC receives measurement and location data from all vehi-

cles, then computes the hyperparameters to reconstruct the field, and then jointly

optimizes the combined next locations for the vehicles. There is no communication

regarding trajectory planning among vehicles.

In a partially centralized scheme, the CC receives measurement and loca-
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tion data from all vehicles and computes and broadcasts the hyperparameters.

However, the vehicles use the hyperparameters to optimize their next trajectory

segment individually. The vehicles can also broadcast their current location for

collision avoidance. (The CC can broadcast this too).

In a fully decentralized scheme, there is no CC. Location and measurement

history are kept within each vehicle. Each vehicle computes the hyperparameters

and optimizes its next trajectory segment individually. For collision avoidance,

the vehicles broadcast their current locations to other vehicles that are within

some distance based on communication capacity and collision avoidance needs.

Optionally, the vehicles broadcast their location history, measurements, or hyper-

parameters for better performance.

Another way to characterize the interactions between components of a multi-

vehicle system is to use the terms cooperation and coordination [62]. In a co-

ordinated system, the vehicles plan individually on their current knowledge and

only exchange knowledge (such as locations, measurements, or hyperparameters)

via some established network. In a cooperative system, the vehicles share future

intent in addition to the aforementioned information.

In developing our extension to multiple vehicles, we will use a partially cen-

tralized scheme that is considered more cooperative than coordinated.

5.2 Collision avoidance

Collision avoidance is important area of research. In particular, in the context

of multiple vehicles sharing the same spatial exploration goal, the vehicles are

naturally drawn to similar locations. However, getting too close spatially (to other

vehicles or other obstacles) results in collisions, of which consequences range from

the vehicles being thrown off course, to causing material damage, to catastrophic
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crash and mission failure. The latter is especially serious in aerial vehicles.

Generally, collision avoidance methods are of two main types: global (motion

planning methods) and local (reactive methods). Global methods search through

the vehicle’s possible trajectories for the best collision-free trajectory with respect

to some cost function, often with a graph-based planner, such as A∗ or rapidly-

exploring random tree (RRT) [1]. Replanning may be required in the case when

not all obstacles are known ahead of time [59]. On the other hand, local methods

do not find the optimal trajectory, but rather compute changes in the control input

(possibly obtained from a global method) using local, sensor information about the

obstacles and/or other vehicles. For collision avoidance between vehicles, these

reactive methods often develop control laws that guarantee separation between

vehicles in the presence of position uncertainties [67] and result in robot formations

[23].

The extension of our trajectory planning method to multiple vehicles is a global

one; we maintain optimal trajectory generation for each vehicle. However, these

trajectories need to be as collision-free as possible, and in the case of an impending

collision, the existence of an local, reactive controller is assumed.

Local methods is a rich topic of research in itself and has seen applications in

both ground and aerial vehicles, with the former having more developed systems.

For example ground collision avoidance systems in self-driving cars include the

use of radar, LIDAR, video cameras, and an automatic emergency brake system.

Commercially available autonomous robotic vacuums use infrared sensors for nav-

igating around walls and preventing from falling down stairs. These sensors are

also being used in developing obstacle/collision detection and avoidance methods

for aerial vehicles. In [6], LIDAR onboard a remotely-operated UAV provides

obstacle detection, and a control algorithm modifies the operator’s input to avoid
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collisions while attempting to maintain the operator’s intent. A testing platform

for the development of fully autonomous flight including collision avoidance in

[25] uses radar, video, and infrared video to generate and follow real-time escape

trajectories. In [53], quadrotor UAVs demonstrate coordinated flight while avoid-

ing dynamic obstacles by using a motion capture system with onboard navigation

sensors.

5.3 Global method for multiple vehicles

In Chapters 3 and 4, implementation of the trajectory planning method for a

single vehicle uses a reward function of the form

R(qj) = Ũ(qj)− αPleave(qj) (5.1)

This reward can be extended to incorporate multiple vehicles in our framework.

Let Nv denote the number of vehicles. One approach maximizes at each iteration

j a joint reward over all vehicles

Rjoint
(
q1
j , . . . ,qNvj

)
= Ũjoint

(
q1
j , . . . ,qNvj

)
−α1

Nv∑
`=1

Pleave
(
q`j
)
−

Nv∑
`=1

Pcollision
(
q`j,q−`j

)
(5.2)

where Ũjoint
(
q1
j , . . . ,q

Nv
j

)
is the expected utility from considering all segments{

q`j
}Nv
`=1

jointly, Pleave is the same penalty function as in (5.1) to discourage the

vehicles from leaving S, Pcollision is a penalty function that discourages each vehicle

from colliding with the other vehicles, and q−`j denotes the trajectory segments

associated with all other vehicles that are not the `th vehicle. The structure of (5.2)

makes the common assumption that the penalties can be assessed separately from

the joint expected utility.
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This approach requires a central control unit to solve an Nv-dimensional op-

timization problem that jointly selects the next trajectory segments of all Nv

vehicles simultaneously, which is not ideal in real-time systems due to the curse

of dimensionality characterized by Nv. To reduce computation time and reliance

on the central computer, and to allow vehicles to compute their own trajectories,

we compute

Rtotal
(
q1
j , . . . ,qNvj

)
= Ũtotal

(
q1
j , . . . ,qNvj

)
−α1

Nv∑
`=1

Pleave
(
q`j
)
−
Nv∑
`=1

Pcollision
(
q`j,q−`j

)
(5.3)

where

Ũtotal
(
q1
j , . . . ,qNvj

)
=

Nv∑
`=1

Ũ
(
q`j
)

(5.4)

is the sum of the expected utilities derived in 3.1 for a single vehicle. With this

definition, the total reward in (5.3) can be rewritten as

Rtotal(q1
j , . . . ,qNvj ) =

Nv∑
`=1

[
R
(
q`j
)
− Pcollision

(
q`j,q−`j

) ]
, (5.5)

which is a sum of individual rewards (5.1), modified to include a collision avoidance

term, discussed below.

5.3.1 Collision penalty function

The goal of collision avoidance means that, for each iteration j, we want to

ensure that the minimum distances between all vehicles do not go below a certain

distance. This gives rise to a collision penalty function of the form

Pcollision
(
q`j,q−`j

)
=
∑
r∈−`

α2K

(
min
t∈[0,pk]

∥∥∥q`j(t)− qrj (t)
∥∥∥) , (5.6)
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Figure 5.2: Three choices forK. Along withK, the penalty function is controlled
by α2 and d.

where K is a decreasing function, whose argument is the minimum distance be-

tween two trajectory segments over the planning horizon, and α2 > 0 is a tuning

parameter.

Common choices of K are step, ramp, and inverse functions, as shown in Fig-

ure 5.2. Each of these involves a threshold parameter d that turns off or attenuates

the collision penalty. In the case of the step function, a high α2 guarantees that

vehicle ` will always be at least a distance d from the other vehicles. Use of a step

function is equivalent to setting an additional constraint on q`j to be at least d dis-

tance from the other segments. The ramp function behaves similarly to the step,

but the penalty is scaled by the distance. The inverse function does not require

specifying the distance that turns off the penalty, and as the distance between

two vehicles goes to zero, a high collision penalty is automatic.

For faster computation, and to allow for each vehicle to plan its next segment

in parallel, the trajectory segments are discretized, and we modify (5.6) to obtain

Pcollision
(
q`j,q−`j

)
=
∑
r∈−`

α2K
(

min
i=1,...,pk

∥∥∥q`j(i∆)− qrj (0)
∥∥∥) . (5.7)

Because qrj (0) = q∗ rj−1(k∆), (5.7) only requires vehicle ` to know the last sam-
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pling location of the other vehicles (and not their plans for the current itera-

tion). Although the minimum distance guarantees are weakened, this difference

between (5.6) and (5.7) is key for realtime implementation.

With Pcollision specified by (5.7), the total reward to be maximized is the sum

Nv∑
`=1

[
Ũ
(
q`j
)
− α1Pleave

(
q`j
)
− α2

∑
r∈−`

K
(

min
i=1,...,pk

∥∥∥q`j(i∆)− qrj (0)
∥∥∥) ]. (5.8)

The parameters α1 and α2 tune the penalties for leaving and colliding, respectively.

Appropriate values for α1 and α2 may be difficult to know beforehand and depend

on the scales of f and S. To make α1 and α2 agnostic to these scales, and preclude

the need to tune them to different values for every specific application, we set it

them to be fractions of Ũ
(
q`j
)
. Then the reward for an individual vehicle is

Ũ
(
q`j
) 1− a1Pleave

(
q`j
)
− a2

∑
r∈−`

K
(

min
i=1,...,pk

∥∥∥q`j(i∆)− qrj (0)
∥∥∥)
 , (5.9)

where a1 and a2 satisfy α1 = a1 Ũ(q`j) and α2 = a2 Ũ(q`j). With K as the step

function, we can interpret a1 and a2 as the reductions in the utility of the segment

due to the possibility of leaving S or of colliding with another vehicle. For example,

with a2 = 0.05, the reward associated with the vehicle segment q`j is reduced by

5 percent if q`j comes too close to the last known location of another vehicle.

To illustrate the efficacy of setting α2 as a proportion of Ũ , consider the four

possible combinations of Ũ(q`j) and K
(
mini

∥∥∥q`j(i∆)− qrj (0)
∥∥∥):

1. low utility and high collision penalty −→ segment has low reward

2. high utility and low collision penalty −→ segment has high reward

3. high utility and high collision penalty −→ segment is less likely to be chosen

because it is unsafe
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Figure 5.3: Collision avoidance illustration.

4. low utility and low collision penalty −→ segment is relatively more likely to

be chosen because it is safe

The first two combinations are straightforward – the segment is not (is) likely

to be chosen because both utility and collision are unfavorable (favorable). The

last two combinations balance the reward by decreasing (increasing) it relative to

other segments.

Figure 5.3 shows an effective case of the collision avoidance policy. Both the

red and green vehicles are heading into a region of high utility (shown in purple).

Because the current location of the red vehicle is nearby, and heading into the high

utility region will decrease the already small distance between the two vehicles,

the green vehicle turns around rather than explore the high utility region to avoid

a collision. The resulting segment for the red vehicle is also affected; it reaches the

high utility region but at an angle that turns away from the green vehicle instead

of heading towards the center of the high utility region. Sometimes, both vehicles

will avoid the high utility region in order to avoid each other, as illustrated in the

beginning of the trajectories for the two vehicles.

Algorithm 4 summarizes the multiple vehicle planning algorithm, with par-

allelized vehicle tasks highlighted in blue and communication highlighted in red.
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This algorithm assumes a coordinated, partially decentralized structure, with com-

munication between a central computer and the vehicles.

Algorithm 4 Optimal trajectory algorithm (general, multiple vehicles)
Input: goal, S, number of vehicles Nv, vehicle kinematics, vehicles’ initial lo-

cations and heading angles, sampling period ∆, trajectory segment size k,
planning horizon parameter p, out-of-bounds penalty parameter α1, collision
penalty parameter α2, prior distributions for hyperparameters (σ2,ϕ, ψ), and
stopping rule

Output: Optimal trajectories Q1, . . . ,QNv

1: Set j = 1 and n = k.
2: For each vehicle `, initialize Q` with k locations by going straight along initial

heading angle from vehicle’s initial location
3: For each vehicle `, initialize y`1:n with the measurements taken at Q`

4: while stopping rule is not met do
5: Vehicles broadcast most recent k locations and observations
6: Estimate (σ2,ϕ,ψ) by maximizing (2.10) (done by CC)
7: CC broadcasts σ̂2, ϕ̂, ψ̂
8: For each vehicle `, obtain q∗`j+1 by maximizing individual reward in (5.9)

subject to (3.5)
9: For each vehicle `, append q∗`j+1(i∆), i = 1, . . . , k to Q`

10: For each vehicle `, sample at q∗`j+1(i∆), i = 1, . . . , k
11: For each vehicle `, add new measurements to y`1:n
12: Set j = j + 1 and n = n+ k
13: end while

5.4 Evaluations

In this section, we evaluate our multiple vehicle method described in Sec-

tion 5.3 for the goal of optimal reconstruction (and preliminarily, finding the

maximum of f) for several true fields. The simulations here aim to show that

using more vehicles achieves the goal faster, and we investigate the rate the im-

provement in performance. Furthermore we demonstrate the effectiveness of the

collision avoidance policy by comparing simulations that include collision avoid-

ance to simulations without collision avoidance.
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f Isotropic field Temperature Carbon concentration
f range 0− 1 290− 308 10− 65%

covariance Matérn Matérn Matérn
true σ2 0.04 1 K 2.5%
S [0, 1]2 [−121,−115]× [35.5, 41.5] [−108,−98]× [17, 27]
v 0.036 0.1884 0.314

Rmin 0.035 0.18 0.3
∆ 1 1 1
k 4 4 4
p 3 3 3

total observations 400 400 400
α1 0.02 Ũ 0.02 Ũ 0.02 Ũ
α2 0.02 Ũ 0.02 Ũ 0.02 Ũ
K(x) 1/(x/0.5)3 1/(x/3)3 1/(x/5)3

Table 5.1: Simulation parameters for evaluating the multiple vehicle method.

The environmental fields we use are the isotropic truth from Section 3.4, the

temperature data from Section 4.5.1, and the organic carbon concentration data

from Section 4.5.3. The simulation parameters are listed in Table 5.1. Two hun-

dred simulations are run for each Nv = 1, 2, 3, 4, 5 for each of the three true fields.

In all simulations, the number of sampling locations is constant. This means that

a simulation with two vehicles will generate trajectories of size 200 for each vehi-

cle, while a simulation with four vehicle will generate four trajectories of size 100,

halving the flight time. Depending on Nv, the simulations are run for 100, 50, 33,

25, and 20 iterations, equivalent to 400 total sampling locations. All simulations

start in the southwest corner of S with heading angles equally spaced between 0

and π/2.

Empirically, we find the inverse kernel to work well and do not need to set the

minimum allowable distance between vehicles, and use the following K function:

K(x) = 1(
x

0.5L

)3 , (5.10)
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where L is the side length of S, so that the length scale of S does not affect the

value of K. As previously mentioned, we set α1 and α2 to be proportional to the

expected utility obtained for the contending segment, and find empirically that a

value of 0.02 for the proportion factors a1 and a2 balances the utility and collision

penalty.

As before in Sections 3.4 and 4.5, we track the mean squared error over time for

the goal of optimal reconstruction, and the probability of identifying the maximum

over time for the goal of finding the maximum. A video for each simulation

scenario is included in the supplementary files to this thesis.

5.4.1 Optimal reconstruction results

Simulated isotropic truth

Our first scenario uses the simulated isotropic truth. Figure 5.4 shows the

behavior over time of the log-MSE over 200 experiments for each Nv. With the

exception of Nv = 5 the simulations all stop with similar log-MSE, on average.

This says that, if we cut the time by a factor but increase the number of vehicles

by the same factor, the final outcome with respect to the optimal reconstruction

goal is the same.

Figure 5.5 shows the median time required to reduce the starting mean squared

error by various percentages. In the case of the simulated isotropic field, a 99%

reduction in the MSE is achieved for all vehicle numbers. When increasing the

number of vehicles to two or three vehicles, the reduction time is linear. However,

the relatively flat segments between three and five vehicles indicate that further

increasing the number of vehicles highly diminishes reductions in MSE.

The next figures compare the previous results to the setting of no collision

avoidance, which is equivalent to α2 = 0 in the collision penalty. Not having a
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Figure 5.4: Reconstruction error as a function of time over 200 simulations with
the simulated isotropic truth. Lines correspond to the mean reconstruction errors,
while the shaded area indicates the 25th-75th percentile.
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Figure 5.5: Median time required to reduce the starting mean squared error by
various percentages for different Nv.
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Figure 5.6: Reconstruction error comparing the effect of the collision avoidance
policy in the scenario with the simulated isotropic truth.

collision avoidance policy results in an even less cooperative multi-vehicle system.

The vehicles all have the same goal but do not affect the actions of the other

vehicles. Some consequences of this independence are seen in Figure 5.6, which

shows the log-MSE behavior of the 200 experiments with and without the collision

avoidance policy (labelled as “with CA” and “no CA”, respectively) in the same

plot, for the same Nv. One would expect that including the collision avoidance

penalty would result in reduced performance due to selecting suboptimal trajec-

tory segments (with respect to Ũ) to avoid collisions. However, in the cases of

Nv = 3, 4, and 5, including collision avoidance results in better performance. With

the exception of the beginning time period, the average log-MSE of “with CA” is

remarkably lower, as is the variability across experiments. These results can be

explained by the setting of the simulations. Both the true field (shown in Fig-
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Figure 5.7: Distribution of the distance between vehicles, with or without the
collision avoidance policy, in the simulated scenario.

ure 3.4) and vehicles’ initial conditions are symmetric across the 45◦ diagonal of

S. Because each vehicle has the same goal of optimal reconstruction and the same

planning instructions (which ignore the other vehicles), the vehicles can end up

planning and following collocated trajectories (i.e., merged trajectories that visit

the same location at around the same time) for a period of time. This negates

the benefit of having additional vehicles.

Figure 5.7 compares the distributions of the pairwise distances between vehicles

at sampling locations

∥∥∥Q`(i∆)−Qr(i∆)
∥∥∥ , 1 ≤ ` < r ≤ Nv, i = 1, 2, . . . (5.11)

The cumulative distributions of distances resulting from “with CA” and “no CA”,

for all 200 simulations for each Nv = 2, 3, 4, 5, are shown in Figure 5.7a. We

can set a threshold distance of v∆, which is the distance between two consecutive
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Figure 5.8: Reconstruction error as a function of time over 200 simulations with
the temperature data. Lines correspond to the mean reconstruction errors, while
the shaded area indicates the 25th-75th percentile.

sampling locations, shown as the vertical line in magenta, to be at risk for collision.

Figure 5.7b lists the empirical probabilities of pairwise distances being less than

v∆. Without collision avoidance, the probability of distance being less than the

threshold v∆ is in the range 0.35 to 0.4 for two and three vehicles, and around 0.24

for four and five vehicles. With collision avoidance, the probabilities range from

0.00011 to 0.00522. Including a collision avoidance policy remarkably reduces the

probability of vehicles being too close and drives up the inter-vehicle distances in

general, which is desirable for exploring the region for optimal reconstruction.

Temperature truth

The true field is depicted in Figure 4.2a, which is different from the simu-

lated isotropic truth in spatial scale and lacks symmetry. Figure 5.8 shows the

average log-MSE for simulations using Algorithm 4. The average log-MSE for

Nv = 1, 2, 3, 4 follow a similar pattern as in the scenario with the simulated truth.

For these vehicle numbers, the end log-MSE levels are the same when we include

additional vehicles and cut the flight time by the same factor. For Nv = 5, the
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Figure 5.9: Median time required to reduce the starting mean squared error by
various percentages for different Nv.

log-MSE actually increases in the beginning of the simulations. This is because

the five vehicles’ starting positions are clustered in the same southwest corner of

the region, where the vehicles’ trajectories are dominated by collision avoidance,

and some time is required before the expected utility term draws the vehicles out

of “collision avoidance paralysis”. See the supplemental files for an example of

this situation. Figure 5.9 shows the time to reduce the starting MSE. With the

exception of Nv = 5, the majority of simulations were able to reduce the starting

MSE by 95%.

For comparison to experiments without collision avoidance, Figure 5.10 shows

the behavior of log-MSE from “with CA” side-by-side with “no CA”. As in the pre-

vious scenario, the variability across experiments is slightly higher for “no CA”. For

two and three vehicles, the log-MSE behavior is comparable between “with CA”

and “no CA”. At four vehicles, there is a small spike at t = 12 for “with CA” that

temporarily results in higher log-MSE compared to “no CA” for four iterations.
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Figure 5.10: Reconstruction error comparing the effect of the collision avoidance
policy in the scenario with the temperature data.

At five vehicles, this spike is very pronounced and the higher log-MSE persists

until about halfway through the simulation time. These spikes near the begin-

ning of the simulations, caused by the collision avoidance policy, are explained by

the vehicles not moving out of the starting corner (and generating increasingly

inaccurate estimates of the field due to the reinforcement from repeated sampling

near the same locations) until the exploration term in the utility takes over. This

behavior occurs more in the temperature scenario possibly because the southwest

corner is relatively flat in the temperature truth compared to the isotropic truth.

The CDFs for pairwise inter-vehicle distances for the vehicles in “with CA” and

“no CA”, shown in Figure 5.11a, are similarly grouped as in the isotropic scenario.

With collision avoidance, the probabilities of the distances being under v∆ are

similarly small, all less than 0.003. Without, the probabilities are similarly much
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Figure 5.11: Distribution of the distance between vehicles, with or without the
collision avoidance policy, in the temperature data scenario.

larger, with probabilities of between 0.30 and 0.36 for two and three vehicles, and

greater than 0.4 (which is an increase of more than 50% compared to the isotropic

case) for four and five vehicles.

Organic carbon truth

Our last evaluation scenario is with the organic carbon data, shown in Fig-

ure 4.12a. Figure 5.12 shows the log-MSE for 200 experiments for Nv = 1, 2, 3, 4, 5.

For the first twenty time points, the log-MSE from one vehicle is the least, on av-

erage with very little variability. After t = 20, the log-MSE corresponding to

more vehicles are lower and continue to decrease at a faster rate. This behavior

is different from both the isotropic and temperature data in Figures 5.4 and 5.8,

where the log-MSE from one vehicle starts off either higher or is the same as the

log-MSE from higher vehicle numbers. Similar to the other scenarios, Figure 5.12

shows that increasing the number of vehicles improves performance, by almost
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Figure 5.12: Reconstruction error as a function of time over 200 simulations
with the carbon concentration data. Lines correspond to the mean reconstruction
errors, while the shaded area indicates the 25th-75th percentile.

the same factor as the increase in the number of vehicles, up until Nv = 5.

Figure 5.13 shows the time required to reduce the starting MSE. Almost all

simulations for all vehicle numbers achieve a reduction of 98%, and reductions

of 99% are achieved by most simulations for Nv = 1, 2, and 3. The rate of the

reductions as Nv increases is the highest going from one vehicle to two, and is

slightly slower as more vehicles are introduced, particular for higher reduction

percentages.

Figure 5.14 compares the effect of the collision avoidance penalty. For all

Nv = 2, 3, 4, 5, “no CA” starts off with a large drop in log-MSE that is comparable

to that of the initial lower log-MSE for Nv = 1 in Figure 5.12. This highly

suggests that the initial higher log-MSE for Nv = 2, 3, 4, 5 is completely explained

by including collision avoidance. After a later large drop in the log-MSE of “with

CA” that surpasses “no CA” at around t = 20, the performance of “with CA”

continues to be better for the remaining of the simulation time. Coupled with a

higher variability across the 200 simulations for “no CA”, this suggests that there

may be some collocation in the trajectories without collision avoidance.
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Figure 5.13: Median time required to reduce the starting mean squared error
by various percentages for different Nv.
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Figure 5.14: Reconstruction error comparing the effect of the collision avoidance
policy in the scenario with the carbon concentration data.
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Figure 5.15: Distribution of the distance between vehicles, with or without the
collision avoidance policy, in the carbon data scenario.

Figure 5.15 contains information on the distributions of the pairwise inter-

vehicle distances for Nv = 2, 3, 4, 5 with and without collision avoidance. The

distributions are similar to the previous two scenarios, and the effectiveness of the

collision avoidance penalty to reduce the incidence of small inter-vehicle distances

is shown.

5.4.2 Finding the maximum results

We also have preliminary results for the goal of finding the maximum. Re-

sults using the isotropic truth for 200 simulations for Nv = 1, 2, 3, 4, 5 and c =

1, 1.05, 1.1 are shown in Figure 5.16. As in the optimal reconstruction experi-

ments, the simulations are run for lengths of time so that the total number of

observations collected by all the vehicles is the same. Within each panel of Fig-

ure 5.16, the probability curves shift up and to the left as we increase the number

of vehicles from Nv = 1 to Nv = 4. Similar to the optimal reconstruction simu-

109



0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c = 1

Time

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c = 1.05

Time

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c = 1.1

Time
1 vehicle   2 vehicles   3 vehicles   4 vehicles   5 vehicles

Probability of finding the maximum

Figure 5.16: Comparing the probability of locating the maximum using Nv =
1, 2, 3, 4, 5 vehicles for three values of the exploration-exploitation parameter c.

lations, increasing the number of vehicles to five no longer provides performance

improvement. Varying the exploration-exploitation parameter c affects Nv = 1

the most, so that almost all of the 200 simulations find the maximum by times

t = 300, 250, 200 for c = 1, 1.05, 1.1 respectively. However, tuning c does not

dramatically speed up finding the maximum for more vehicles; and in particular,

for c = 1.1 and Nv = 5, performance declines. As discussed in Section 2.2.2,

increasing c results in more exploration by reducing the time spent in local max-

ima. Being stuck in local maxima is more concerning for fewer vehicles because

there are fewer vehicles remaining to find other maxima. With more vehicles that

already follow dispersive trajectories from collision avoidance, increasing c is less

beneficial.

The distributions of pairwise distances are shown in Figure 5.17a, and the prob-

abilities of the distances being less than the threshold v∆ are provided. Across

Nv and c, the probabilities do not seem to follow any pattern and are all greater

by approximately one order of magnitude than those resulting from optimal re-

construction, shown in Figure 5.7b. This increase in the probabilities can be
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Figure 5.17: Distribution of the distance between vehicles, combined for three
values of the exploration-exploitation parameter c, with the simulated isotropic
truth.

explained by the different utility functions for finding the maximum and optimal

reconstruction. For finding the maximum, high utility is usually concentrated at

a few small regions that can attract multiple vehicles simultaneously. For optimal

reconstruction, utility is spread out and does not lead to converging trajectories

to the same degree.

Simulations without collision avoidance were not run. We expect that the

distribution of inter-vehicle distances when there is no collision avoidance to be

similar (or higher, due to the convergent nature of trajectories that seek the max-

imum) to those shown in Figure 5.7a for “no CA”.

5.5 Conclusions

We have developed an extension of our optimal trajectory algorithm for mul-

tiple vehicles that uses collective information to estimate the field and individual
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trajectory planning for each vehicle. As a result, computation time per vehicle

does not increase as more vehicles are added, and in theory, our framework can

include a large number of vehicles. However in practice, as shown in the simula-

tions, performance improvement scales (almost) linearly up to four vehicles, and

stops scaling at five vehicles. We think that another approach would be more

appropriate for a higher number of vehicles, such as one including swarm dynam-

ics. Nonetheless, for the goals being considered, and focusing on the speedup

of achieving the coals, we think that allowing the vehicles to go wherever and

independently (except for collision avoidance) makes sense.
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Chapter 6

Conclusion

6.1 Summary

This dissertation makes a contribution to the problem of automatic and adap-

tive trajectory generation for autonomous vehicles for environmental exploration.

It develops and demonstrates the advantages of using reward functions that nat-

urally trade off exploration and exploitation, in particular a new utility for the

optimal reconstruction goal that minimizes reconstruction error. With the devel-

opment of incorporation methods capable of handling different types of off-vehicle

sensor information types and additional vehicles in a partially centralized manner,

the efficacy of the new utility function persists throughout the multimodal and

multi-vehicle extensions in this work.

6.2 Directions for future work

The following describes several suggestions for future work directions that

address the limitations and areas of improvement of the current work.
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6.2.1 Reimplementation on a real system

Section 3.5 presents an implementation of the trajectory generation framework

to find the location of maximum radio signal by an autonomous ground vehicle. As

discussed earlier, location inaccuracy from GPS and Mission Planner caused the

largest discrepancies between the rover’s trajectories and those from simulation.

Another area of improvement is providing guarantees that computation costs do

not decrease performance1.

A reimplementation should have the exploration goal of optimal reconstruc-

tion, and we must be aware that optimal reconstruction takes more time per

iteration for selecting the next segment compared to finding the maximum. The

limitations of GPS and Mission Planner can be addressed by either (1) use a spe-

cialized localization system2 that does not rely on GPS, or (2) deploy in a larger

spatial region. Assuming the latter is chosen, a larger region allows for a longer

sampling period.

To reduce total computation time, we take advantage of the multiple core

architecture of the onboard computer. At least one core is dedicated to updat-

ing hyperparameters, and instead of updating hyperparameters every ten or so

iterations, the core(s) can continuously update. Another two cores (one for each

turning direction) then find the optimal trajectory segments using the most up-to-

date hyperparameter estimate available, leaving the cost of segment optimization

as the limiting factor. The following procedure suggests a reasonable sampling

period:
1At the time of the rover test, we did not know if there would be an issue with computation

time. Using the times in Section 3.4.3, the maximum time required for hyperparameter estima-
tion is approximately 0.74 seconds for 208 observations, while the rover’s sampling period was
approximately three minutes (2Hz subsampled by an approximate factor of six.)

2An example is a motion capture system, which is reasonable for validation but not for a real
field deployment.
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1. Set the maximum allowable distance between two consecutive sampling lo-

cations and calculate the travel time Tmax between them.

2. Compute the segment optimization cost curve shown in Figure 3.16, and

choose the number of observations that correspond to Tmax. Recall that each

iteration contains k observations, and the growth of the cost curve depends

on k. Denote this number of observations as nmax. When computing the

cost curve, be consistent with the number of cores (and threads, if also using

OpenMP) used.

3. Choose N < nmax either as a stopping rule or subsample size. With the

latter, the vehicle continues to explore the region, but only N (randomly

chosen, for simplicity) observations are used to compute the next optimal

segment. Randomization recurs before every optimization.

With this procedure, after the vehicle has visited the most recent k locations and

is computing the next optimal segment, the vehicle should follow a straight line so

as to be most ready to head to the first location in the resulting optimal segment.

An alternative procedure starts planning the next segment before all locations

on the current segment are visited, allowing for longer computation time and

more trajectory continuity. Because computation time increases without bound

per iteration, a similar procedure that selects a max (sub)sample size N is also

required.

6.2.2 Sampling at very high frequencies

Sampling at a very high frequency quickly amasses a large data history, and

computations using the entire data history take too long for real-time implemen-

tation. The procedure in the previous section is one method to resolve large data

histories, and it can be improved by efficient subsetting techniques [50]. Reduced

115



rank and other approximate representations [63] for Gaussian processes also re-

duce size. A faster O(n log2 n) method for matrix inversions [2] can directly reduce

computation time.
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Appendix A

A.1 Expected reconstruction error if including

observation at s

The expected utility function is (the negative of) the mean squared prediction

error, when including s, evaluated over all x ∈ S,

Ũ(s) = −
∫
S

∫ ∫ [
f(x)− µy1:n,y(s)(x)

]2
p (y(s), f | y1:n) dy(s) df dx. (A.1)

The inner two integrals are the sum of three terms:

∫ ∫
f(x)2 p(y(s) | f,y1:n) p(f | y1:n) dy(s) df, (A.2)

−2
∫ ∫

f(x)µy1:n,y(s)(x) p(y(s) | f,y1:n) p(f | y1:n) dy(s) df, (A.3)∫ ∫
µy1:n,y(s)(x)2 p(y(s) | f,y1:n) p(f | y1:n) dy(s) df. (A.4)
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Integral (A.2) evaluates to

∫ ∫
f(x)2 p(y(s) | f,y1:n) p(f | y1:n) dy(s) df

=
∫
f(x)2 p(f | y1:n)

∫
p(y(s) | f,y1:n) dy(s) df

=
∫
f(x)2 p(f | y1:n) df

= Var{f(x) | y1:n}+ E{f(x) | y1:n}2 = κ2
y1:n(x) + µ2

y1:n(x). (A.5)

For integral (A.3), consider the joint distribution of f(x), y1:n, and y(s)


f(x)

y1:n

y(s)

 ∼ N




m(x)

m1:n

m(s)

 ,


τ 2 c1:n(x)T C(x, s)

c1:n(x) C1:n + σ2In c1:n(s)

C(s,x) c1:n(s)T τ 2 + σ2



 , (A.6)

and denote C1:n + σ2In c1:n(s)

c1:n(s)T τ 2 + σ2


−1

=

Γ11 Γ12

Γ21 Γ22

 , (A.7)

with

Γ11 =
[
C1:n + σ2In − c1:n(s)

(
τ 2 + σ2

)−1
c1:n(s)T

]−1
or

=
[
C1:n + σ2In

]−1
+
[
C1:n + σ2In

]−1
c1:n(s)Γ22c1:n(s)T

[
C1:n + σ2In

]−1

Γ21 = −
[
τ 2 + σ2

]−1
c1:n(s)TΓ11 or − Γ22c1:n(s)T

[
C1:n + σ2In

]−1

Γ12 = −
[
C1:n + σ2In

]−1
c1:n(s)Γ22 or − Γ11c1:n(s)

[
τ 2 + σ2

]−1

Γ22 =
{
τ 2 + σ2 − c1:n(s)T

[
C1:n + σ2In

]−1
c1:n(s)

}−1
=
[
κ2

y1:n(s) + σ2
]−1
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from block matrix inversion. Then

µy1:n,y(s)(x) = E{f(x) | y1:n, y(s)}

= m(x) +
[
c1:n(x)T C(x, s)

] C1:n + σ2In c1:n(s)

c1:n(s)T τ 2 + σ2


−1 y1:n −m1:n

y(s)−m(s)


= m(x) +

[
c1:n(x)TΓ11 + C(x, s)Γ21

]
︸ ︷︷ ︸

a1(x,s)T

[y1:n −m1:n]

+
[
c1:n(x)TΓ12 + C(x, s)Γ22

]
︸ ︷︷ ︸

a2(x,s)

[y(s)−m(s)]. (A.8)

Substituting (A.8) into integral (A.3) gives

−2
∫ ∫

f(x)
{
m(x) + a1(x, s)T [y1:n −m1:n] + a2(x, s) [y(s)−m(s)]

}
×

p(y(s) | f,y1:n) p(f | y1:n) dy(s) df

= −2
∫
f(x)

{
m(x) + a1(x, s)T [y1:n −m1:n] + a2(x, s) [f(s)−m(s)]

}
×

p(f | y1:n) df.

To compute the term involving
∫
f(x) f(s) p(f | y1:n) df , consider

f(x)

f(s)


∣∣∣∣∣∣ y1:n ∼ N(mean, cov)

with mean

m(x)

m(s)

+

c1:n(x)T

c1:n(s)T

 [C1:n + σ2In
]−1

[y1:n −m1:n] =

µy1:n(x)

µy1:n(s)


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and covariance
 τ2 C(x, s)

C(s,x) τ2

−
c1:n(x)T

c1:n(s)T

 [C1:n + σ2In
]−1

[
c1:n(x) c1:n(s)

]
=

 κ2
y1:n(x) C(x, s)− c1:n(x)T [C1:n + σ2In

]−1 c1:n(s)

C(s,x)− c1:n(s)T [C1:n + σ2In
]−1 c1:n(x) κ2

y1:n(s)


So

∫
f(x) f(s) p(f | y1:n) df = Cov{f(x), f(s) | y1:n}+ E{f(x) | y1:n}E{f(s) | y1:n}

= C(x, s)− c1:n(x)T
[
C1:n + σ2In

]−1
c1:n(s) + µy1:n(x)µy1:n(s),

and integral (A.3) becomes

−2
[
µy1:n(x)

{
m(x) + a1(x, s)T [y1:n −m1:n]

}
(A.9)

+ a2(x, s)
{
C(x, s)− c1:n(x)T

[
C1:n + σ2In

]−1
c1:n(s) + µy1:n(x) [µy1:n(s)−m(s)]

}]
.
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Integral (A.4):

∫ ∫
µy1:n,y(s)(x)2 p(y(s) | f,y1:n) p(f | y1:n) dy(s) df

=
∫ ∫ {

m(x) + a1(x, s)T [y1:n −m1:n] + a2(x, s) [y(s)−m(s)]
}2

p(y(s) | f,y1:n) p(f | y1:n) dy(s) df

=
∫ ∫ [{

m(x) + a1(x, s)T [y1:n −m1:n]
}2

+ 2
{
m(x) + a1(x, s)T [y1:n −m1:n]

}{
a2(x, s) [y(s)−m(s)]

}
+
{
a2(x) [y(s)−m(s)]

}2
]
p(y(s) | f,y1:n) p(f | y1:n) dy(s) df

=
∫ [{

m(x) + a1(x, s)T [y1:n −m1:n]
}2

+ 2
{
m(x) + a1(x, s)T [y1:n −m1:n]

}{
a2(x, s) [f(s)−m(s)]

}
+ a2(x, s)2

{
σ2 + [f(s)−m(s)]2

}]
p(f | y1:n) df

=
{
m(x) + a1(x, s)T [y1:n −m1:n]

}2

+ 2
{
m(x) + a1(x, s)T [y1:n −m1:n]

}{
a2(x, s) [µy1:n(s)−m(s)]

}
+ a2(x, s)2

{
σ2 + κ2

y1:n(s) + [µy1:n(s)−m(s)]2
}
. (A.10)

Combining (A.5), (A.9), and (A.10) gives the inner two integrals of Ũ(s):

κ2
y1:n(x) + µ2

y1:n(x)− 2µy1:n(x)
{
m(x) + a1(x, s)T[y1:n −m1:n]

}
− 2a2(x, s)

{
C(x, s)− c1:n(x)T

[
C1:n + σ2In

]−1
c1:n(s) + µy1:n(x) [µy1:n(s)−m(s)]

}
+
{
m(x) + a1(x, s)T[y1:n −m1:n]

}2

+ 2
{
m(x) + a1(x, s)T[y1:n −m1:n]

} {
a2(x, s)[µy1:n(s)−m(s)]

}
+ a2(x, s)2{σ2 + κ2

y1:n(s) + [µy1:n(s)−m(s)]2
}
.
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With a little rearrangement, the previous quantity is

µ2
y1:n(x) +

{
m(x) + a1(x, s)T[y1:n −m1:n]

}2
+ a2(x, s)2 [µy1:n(s)−m(s)]2

− 2µy1:n(x)
{
m(x) + a1(x, s)T[y1:n −m1:n] + a2(x, s) [µy1:n(s)−m(s)]

}
+ 2

{
m(x) + a1(x, s)T[y1:n −m1:n]

}
a2(x, s) [µy1:n(s)−m(s)]

+ κ2
y1:n(x)− 2a2(x, s)

{
C(x, s)− c1:n(x)T

[
C + σ2In

]−1
c1:n(s)

}
+ a2(x, s)2

[
σ2 + κ2

y1:n(s)
]
,

which further rearranges and combines to

{
µy1:n(x)−m(x)− a1(x, s)T [y1:n −m1:n]− a2(x, s) [µy1:n(s)−m(s)]

}2

+ κ2
y1:n(x)− 2a2(x, s)

{
C(x, s)− c1:n(x)T

[
C + σ2In

]−1
c1:n(s)

}
+ a2(x, s)2

[
σ2 + κ2

y1:n(s)
]
. (A.11)

With

a2(x, s) = c1:n(x)TΓ12 + C(x, s)Γ22

=
{
C(x, s)− c1:n(x)T

[
C1:n + σ2In

]−1
c1:n(s)

} [
σ2 + κ2

y1:n(s)
]−1

,

the expression (A.11) for the inner integrals of Ũ(s) finally becomes

{
µy1:n(x)−m(x)− a1(x, s)T [y1:n −m1:n]− a2(x, s) [µy1:n(s)−m(s)]

}2
(A.12)

+ κ2
y1:n(x)−

{
C(s,x)− c1:n(x)T

[
C1:n + σ2In

]−1
c1:n(s)

}2 [
κ2

y1:n(s) + σ2
]−1

,
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which leaves the following to be shown:

µy1:n,ŷ(s)(x) = m(x) + a1(x, s)T [y1:n −m1:n] + a2(s,x) [µy1:n(s)−m(s)] , (A.13)

κ2
y1:n,ŷ(s)(x) = κ2

y1:n(x)−{
C(x, s)− c1:n(x)T

[
C1:n + σ2In

]−1
c1:n(s)

}2 [
κ2

y1:n(s) + σ2
]−1

.

(A.14)

µy1:n,ŷ(s)(x) is µy1:n,y(s)(x) evaluated with y(s) = ŷ(s) = E{y(s) | y1:n} = µy1:n(x),

so (A.13) holds. From(A.6), compute

κ2
y1:n,ŷ(s)(x) = Var{f(x) | y1:n, ŷ(s)} = Var{f(x) | y1:n, y(s)}

= τ2 −
[
c1:n(x)T C(x, s)

] C1:n + σ2In c1:n(s)

c1:n(s)T τ2 + σ2


−1 c1:n(x)

C(s,x)


= τ2 − c1:n(x)TΓ11c1:n(x)− c1:n(x)TΓ12C(s,x)

− C(x, s)Γ21c1:n(x)− C(x, s)Γ22C(s,x)

= τ2 − c1:n(x)T[C1:n + σ2In]−1c1:n(x)

− c1:n(x)T[C1:n + σ2In]−1c1:n(s)
[
κ2

y1:n(s) + σ2
]−1

c1:n(s)T[C1:n + σ2In]−1c1:n(x)

+ c1:n(x)T[C1:n + σ2In]−1c1:n(s)
[
κ2

y1:n(s) + σ2
]−1

C(x, s)

+ C(x, s)
[
κ2

y1:n(s) + σ2
]−1

c1:n(s)T[C1:n + σ2In]−1c1:n(x)

− C(x, s)
[
κ2

y1:n(s) + σ2
]−1

C(s,x)

= κ2
y1:n(x)−

{
c1:n(x)T[C1:n + σ2In]−1c1:n(s)− C(x, s)

}
×
[
κ2

y1:n(s) + σ2
]−1 {

c1:n(x)T[C1:n + σ2In]−1c1:n(s)− C(x, s)
}
,

which shows (A.14).
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A.2 Expected improvement

For a random variable X that follows a normal distribution with mean µ and

variance σ2, and for a fixed value c, the expected improvement of X over c is

E (max{X − c, 0}) =
∫

max{x− c, 0} p(x) dx

=
∫ ∞
c

[x− c] p(x) dx

=
∫ ∞
c

x− µ
σ

σ p(x) dx+
∫ ∞
c

[µ− c] p(x) dx

=
∫ ∞
c

x− µ
σ

1√
2π
e−

(x−µ)2

2σ2 dx+ [µ− c]
∫ ∞
c

p(x) dx

= σ
∫ ∞
c−µ
σ

z
1√
2π
e−

z2
2 dz + [µ− c]Pr(X > c)

= σ
1√
2π
e−

1
2( c−µσ )2

+ [µ− c]Pr
(
Z >

c− µ
σ

)
= σφ

(
c− µ
σ

)
+ [µ− c]

[
1− Φ

(
c− µ
σ

)]
= σφ

(
µ− c
σ

)
+ [µ− c]Φ

(
µ− c
σ

)
.

In the context of selecting the next vehicle location s that maximizes expected

improvement, let

X = f(s)

µ = µy1:n(s)

σ = κy1:n(s)

c = ymax
1:n .
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A.3 Entropy and mutual information

In information theory, entropy represents the amount of information hidden in a

random variable X and is defined as

H(X) = −E {log p(x)} = −
∫
p(x) log p(x) dx. (A.15)

If X is multivariate normal, X ∼ Nn(·,Σ),

H(X) = 1
2 log(|Σ|) + n

2 log(2πe).

Extending to two random variables X and Y , the joint entropy is

H(X, Y ) = −E {log p(x, y)} = −
∫ ∫

p(x, y) log p(x, y) dx dy. (A.16)

The conditional entropy is defined as

H(X | Y ) = −E {log p(x | y)} = −
∫ ∫

p(x, y) log p(x | y) dx dy, (A.17)

and the three definitions are related by

H(X, Y ) ≡ H(Y | X) +H(X)

≡ H(X | Y ) +H(Y ).

The mutual information of two random variables represents the amount of infor-

mation contained in one random variable about the other random variable,

I(X;Y ) =
∫ ∫

p(x, y) log p(x, y)
pX(x) pY (y) dx dy, (A.18)
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and is related to entropy by the following equivalences

I(X;Y ) ≡ H(X)−H(X | Y )

≡ H(Y )−H(Y | X)

≡ H(X) +H(Y )−H(X, Y ).

Both entropy and mutual information can be used as criteria for selecting sampling

locations.

The joint entropy is the information revealed by evaluating X and Y simulta-

neously or consecutively (by first evaluating the value of X, and then revealing the

value of Y given that the value of X is known). This means that the conditional

entropy H(Y | X) is a measure of what X does not say about Y , measuring the

amount of uncertainty remaining after X is known. Let G be a grid of locations

that covers S, where each grid point is a possible sampling location, and denote

fG = {f(s) : s ∈ G}. A possible strategy to select the next sampling location is

s∗ = arg min
s∈G

H(fGrs | f(s))

= arg min
s∈G

[H(fG)−H(f(s))]

= arg max
s∈G

H(f(s))

= arg max
s∈G

1
2
[
log κ2

y1:n(s) + log 2πe
]
,

which reduces to finding the location with the largest posterior variance. This is

known as the maximum entropy (D-optimal) solution and does not depend on the

observed values y1:n.

A solution based on mutual information I(X;Y ) = H(Y ) − H(Y |X), inter-
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preted as the amount of uncertainty in Y which is removed by knowing X, is

s∗ = arg max
s∈G

I(fGrs; f(s))

= arg max
s∈G

[H(fGrs) +H(f(s))−H(fG)]

= arg max
s∈G

[H(fGrs) +H(f(s))]

= arg max
s∈G

1
2
[
log |ΣGrs|+ [nG − 1] log(2πe) + log κ2

y1:n(s) + log 2πe
]

= arg max
s∈G

[
log |ΣGrs|+ log κ2

y1:n(s)
]
,

where ΣGrs is the posterior covariance matrix

ΣGrs = CGrs −CT
1:n,Grs

[
C1:n + σ2In

]−1
C1:n,Grs (A.19)

with

[CGrs]ij = C(xi,xj), xi,xj ∈ G r s,

[C1:n,Grs]ij = C(si,xj), si ∈ {s1, . . . , sn},xj ∈ G r s.

For selecting a fixed number of locations A ⊂ G at once, the entropy criterion

gives

A∗ = arg max
A⊂G

H(fA)

= arg max
A⊂G

log |ΣA|,
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and the mutual information criterion gives

A∗ = arg max
A⊂G

I(fGrA; fA)

= arg max
A⊂G

[
log |ΣGrA|+ log |ΣA|

]

with ΣGrA and ΣA defined analogously to (A.19). Note that these are NP-hard

problems, and approximate greedy or dynamic programming solutions are pre-

sented in [39] and [50].

A.4 P-algorithm

The P-algorithm [85] selects the location that maximizes the probability of an

increase of δn:

s∗ = arg max
s∈S

Pr (f(s) ≥ ymax
1:n + δn | data)

= arg max
s∈S

Pr
(
f(s)− µy1:n(s)

κy1:n(s) ≥ ymax
1:n + δn − µy1:n(s)

κy1:n(s)

)

= arg max
s∈S

Φ
(
ymax

1:n + δn − µy1:n(s)
κy1:n(s)

)
.

A.5 Circular arc parametrization details

For continuity of position and velocity, qj must satisfy

qj(0) = q∗j−1(k∆), (A.20)

q̇j(0) = q̇∗j−1(k∆). (A.21)
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In order for the jth segment to start where the {j − 1}th ends with the heading

angle θj−1 = atan2
(
q̇∗j−1,2(k∆)
q̇∗j−1,1(k∆)

)
,

qj(t) = qj−1(k∆) +

cos(θj−1 − π
2 ) − sin(θj−1 − π

2 )

sin(θj−1 − π
2 ) cos(θj−1 − π

2 )


ξj,1 cos(ξj,2t)− ξj,1

ξj,1 sin(ξj,2t)

 .

The perhaps unexpected terms above are explained in the following:ξj,1 cos(ξj,2t)

ξj,1 sin(ξj,2t)

 parametrizes a circle that begins at the point (ξj,1, 0) with heading

angle π
2 , so we need to shift the first component by −ξj,1 and rotate by an angle

of θj−1− π
2 to have the desired heading of θj−1. This gives, with the help of angle

sum identities for sine and cosine,

qj(t) =

q∗j−1,1(k∆) + ξj,1 cos(ξj,2t+ θj−1 − π
2 )− ξj,1 cos(θj−1 − π

2 )

q∗j−1,2(k∆) + ξj,1 sin(ξj,2t+ θj−1 − π
2 )− ξj,1 sin(θj−1 − π

2 )

 .

So ξj,1, . . . , ξj,5 in the parametrization (3.9) are constrained by:

|ξj,1| ≥ Rmin, (A.22)

ξj,2 = v

ξj,1
, (A.23)

ξj,3 = θj−1 −
π

2 , (A.24)

ξj,4 = q∗j−1,1(k∆)− ξj,1 sin θj−1, (A.25)

ξj,5 = q∗j−1,2(k∆) + ξj,1 cos θj−1, (A.26)

leaving one free parameter ξj,1, which corresponds to how much and in which

direction the vehicle will turn, for optimization.
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A.6 Expressions of µy1:n,ŷqj+1
(x) and κ2

y1:n,ŷqj+1
(x)

The evaluation of the objective function on a segment qj+1 for optimal reconstruc-

tion involves the terms

µy1:n,ŷqj+1
(x) = E

{
f(x) | y1:n, ŷqj+1

}
, (A.27)

κ2
y1:n,ŷqj+1

(x) = Var
{
f(x) | y1:n, ŷqj+1

}
. (A.28)

For their explicit expressions, consider the distribution of f(x), y1:n, and yqj+1 :


f(x)

y1:n

yqj+1

 ∼ N




m(x)

m1:n

mqj+1

 ,


τ 2 c1:n(x)T cqj+1(x)T

c1:n(x) C1:n + σ2In Cy1:n,yqj+1

cqj+1(x) CT
y1:n,yqj+1

Cqj+1,qj+1 + σ2Ipk



 , (A.29)

where

mqj+1 =
(
m(qj+1(∆)), . . . ,m(qj+1(pk∆))

)
,

cqj+1(x) =
(
C(x,qj+1(∆)), . . . , C(x,qj+1(pk∆)

)
,[

Cy1:n,yqj+1

]
il

= C
(
si,qj+1(l∆)

)
, i ∈ 1, . . . , n, l ∈ 1, . . . , pk∆,[

Cqj+1,qj+1

]
il

= C
(
qj+1(i∆), qj+1(l∆)

)
, i, l ∈ 1, . . . , pk∆.
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Then the conditional mean of f(x) on the other two is

µy1:n,yqj+1
(x) = E

{
f(x) | y1:n,yqj+1

}
= m(x) +

[
c1:n(x)T cqj+1(x)T

] C1:n + σ2In Cy1:n,yqj+1

CT
y1:n,yqj+1

Cqj+1,qj+1 + σ2Ipk


−1  y1:n −m1:n

yqj+1 −mqj+1


= m(x) +

[
c1:n(x)TΓ11 + cqj+1(x)TΓ21

]
[y1:n −m1:n]

+
[
c1:n(x)TΓ12 + cqj+1(x)TΓ22

] [
yqj+1 −mqj+1

]
, (A.30)

where

Γ11 =
{
C1:n + σ2In −Cy1:n,yqj+1

[
Cqj+1,qj+1 + σ2Ipk

]−1
CT

y1:n,yqj+1

}−1 or

=
[
C1:n + σ2In

]−1
+
[
C1:n + σ2In

]−1
Cy1:n,yqj+1

Γ22CT
y1:n,yqj+1

[
C1:n + σ2In

]−1

Γ21 = −
[
Cqj+1,qj+1 + σ2Ipk

]−1
CT

y1:n,yqj+1
Γ11 or − Γ22CT

y1:n,yqj+1

[
C1:n + σ2In

]−1

Γ12 = −
[
C1:n + σ2In

]−1
Cy1:n,yqj+1

Γ22 or − Γ11Cy1:n,yqj+1

[
Cqj+1,qj+1 + σ2Ipk

]−1

Γ22 =
{
Cqj+1,qj+1 + σ2Ipk −CT

y1:n,yqj+1

[
C1:n + σ2In

]−1
Cy1:n,yqj+1

}−1

≡
[
Ky1:n,qj+1 + σ2Ipk

]−1
,

with Ky1:n,qj+1 = Cqj+1,qj+1 −CT
y1:n,yqj+1

[C1:n + σ2In]−1 Cy1:n,yqj+1
.

If yqj+1 is fixed at ŷqj+1 , then µy1:n,ŷqj+1
(x) is equal to (A.30) with yqj+1

replaced by ŷqj+1 , where

ŷqj+1 = E
{
yqj+1 | y1:n

}
=
(
µy1:n(qj+1(∆)), . . . , µy1:n(qj+1(pk∆))

)
.
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And the conditional variance term is

κ2
y1:n,ŷqj+1

(x) = Var
{
f(x) | y1:n, ŷqj+1

}
= Var

{
f(x) | y1:n,yqj+1

}

= τ 2 −
[
c1:n(x)T cqj+1(x)T

] C1:n + σ2In Cy1:n,yqj+1

CT
y1:n,yqj+1

Cqj+1,qj+1 + σ2Ipk


−1  c1:n(x)

cqj+1(x)


= τ 2 − c1:n(x)TΓ11c1:n(x)− c1:n(x)TΓ12cqj+1(x)− cqj+1(x)TΓ21c1:n(x)

− cqj+1(x)TΓ22cqj+1(x)

= τ 2 − c1:n(x)T[C1:n + σ2In]−1c1:n(x)

− c1:n(x)T[C1:n + σ2In]−1Cy1:n,yqj+1

[
Ky1:n,qj+1 + σ2Ipk

]−1
×

CT
y1:n,yqj+1

[C1:n + σ2In]−1c1:n(x)

+ c1:n(x)T[C1:n + σ2In]−1Cy1:n,yqj+1

[
Ky1:n,qj+1 + σ2Ipk

]−1
cqj+1(x)

+ cqj+1(x)T
[
Ky1:n,qj+1 + σ2Ipk

]−1
CT

y1:n,yqj+1
[C1:n + σ2In]−1c1:n(x)

− cqj+1(x)T
[
Ky1:n,qj+1 + σ2Ipk

]−1
cqj+1(x)

= κ2
y1:n(x)−

{
c1:n(x)T[C1:n + σ2In]−1Cy1:n,yqj+1

− cqj+1(x)T
}
×[

Ky1:n,qj+1 + σ2Ipk
]−1

{
CT

y1:n,yqj+1
[C1:n + σ2In]−1c1:n(x)− cqj+1(x)

}
.

(A.31)

A.7 Estimating ϕ in m(· ;ϕ) = ϕ

The measurement noise variance σ2, along with the parameters ϕ,ψ of the mean

and covariance functions of the Gaussian process prior, are estimated using the

data. To do so, we use Bayes rule, which says the posterior distribution of the

parameters is proportional to the product of the data likelihood and the prior

distribution of the parameters:

p(parameters | data) ∝ p(data | parameters) p(parameters) (A.32)
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Using a flat prior for ϕ, i.e., p(ϕ) ∝ 1, and assuming independence among σ2, ϕ,

and ψ, then

p(σ2, ϕ,ψ | y) ∝ p(y | σ2, ϕ,ψ) p(σ2, ϕ,ψ)

∝ N
(
y | ϕ1n, C + σ2In

)
p
(
σ2
)
p(ψ)

∝
∣∣∣C + σ2In

∣∣∣− 1
2 exp

{
−1

2 [y− ϕ1n]T
[
C + σ2In

]−1
[y− ϕ1n]

}
p
(
σ2
)
p(ψ)

Taking the logarithm gives

log p(σ2, ϕ,ψ | y) = (A.33)

− 1
2 log

∣∣∣C + σ2In
∣∣∣− 1

2 [y− ϕ1n]T
[
C + σ2In

]−1
[y− ϕ1n] + log

(
σ2
)

+ log p(ψ).

ϕ only appears in the second term, so we can use the profile maximization method

and obtain the estimate of ϕ

ϕ̂ = 1T
n [C + σ2In]−1 y

1T
n [C + σ2In]−1 1n

. (A.34)

Then this estimate of ϕ is substituted back in eq (A.33) and we continue to

find numerically the values of σ2 and ψ that maximize the log-joint posterior

distribution.
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A.7.1 Estimating ϕ when there is additional information

z

With additional data z, there is the additional parameter σ2
z . Using a flat prior

for ϕ, i.e., p(ϕ) ∝ 1, and assuming independence among σ2
z , σ2

y, ϕ, ψ, then

p(σ2
z , σ

2
y, ϕ,ψ | data) ∝ p(data | σ2

z , σ
2
y, ϕ,ψ) p(σ2

z , σ
2
y, ϕ,ψ)

∝ N


z

y

 ∣∣∣∣∣
ϕ1r

ϕ1n

 ,
Czz + σ2

zIr Czy

CT
zy Cyy + σ2

yIn


︸ ︷︷ ︸

Γ

 p
(
σ2
z

)
p
(
σ2
y

)
p(ψ)

∝ |Γ|−
1
2 exp

−
1
2

z− ϕ1r

y− ϕ1n


T

Γ−1

z− ϕ1r

y− ϕ1n


 p

(
σ2
z

)
p
(
σ2
y

)
p(ψ).

Taking the logarithm:

log p(σ2
z , σ

2
y, ϕ,ψ | data) =

− 1
2 log |Γ| − 1

2

z− ϕ1r

y− ϕ1n


T

Γ−1

z− ϕ1r

y− ϕ1n

+ log p
(
σ2
z

)
+ log

(
σ2
y

)
+ log p(ψ).

ϕ only appears in the second term, so we can use the profile maximization method

and obtain the estimate of ϕ

ϕ̂ =

1T
r+nΓ−1

z

y


1T
r+nΓ−11r+n

=

1T
r+n

Czz + σ2
zIr Czy

CT
zy Cyy + σ2

yIn


−1 z

y



1T
r+n

Czz + σ2
zIr Czy

CT
zy Cyy + σ2

yIn


−1

1r+n

.
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A.8 Details of the rational quadratic covariance

In one dimension, the rational quadratic covariance for two points on the line is

C(x, x′;ψ) = τ 2

1 +
(
x−x′
λ

)2 , s ∈ R, ψ = (τ 2, λ). (A.35)

For two dimensions (as in the case of f over S), we assume separability. Let

x = (x1, x2), x′ = (x′1, x′2) ∈ R2. Then

C(x,x′;ψ) = τ 2[
1 +

(
x1−x′1
λ1

)2] [
1 +

(
x2−sx′2
λ2

)2] , ψ = (τ 2, λ1, λ2). (A.36)

Using this two dimenstional rational quadratic covariance function, and assuming

that S is partitioned into rectangular cells S1, . . . , Sr with Si = [ai, bi]× [ci, di], we

can derive the expressions for Czz,Czy, and cz(x). For more compact notation,

first define

`1 = ai − aj
λ1

`5 = ci − cj
λ2

`2 = ai − bj
λ1

`6 = ci − dj
λ2

`3 = bi − aj
λ1

`7 = di − cj
λ2

`4 = bi − bj
λ1

`8 = di − dj
λ2
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Then

[Czz]ij = 1
|Si||Sj |

∫
Si

∫
Sj

C(x,x′;ψ) dx dx′

= τ2

(bi − ai)(di − ci)(bj − aj)(dj − cj)

×
∫ dj

cj

∫ bj

aj

∫ di

ci

∫ bi

ai

1[
1 +

(
x1−x′1
λ1

)2] [
1 +

(
x2−x′2
λ2

)2] dx1 dx2 dx′1 dx′2

= τ2λ2
1λ

2
2

(bi − ai)(di − ci)(bj − aj)(dj − cj)

×
[
`2 atan(`2) + `3 atan(`3)− `1 atan(`1)− `4 atan(`4) + 1

2 log
([

1 + `21
] [

1 + `24
][

1 + `22
] [

1 + `23
])]

×
[
`6 atan(`6) + `7 atan(`7)− `5 atan(`5)− `8 atan(`8) + 1

2 log
([

1 + `25
] [

1 + `28
][

1 + `26
] [

1 + `27
])] ,

[Czy]ij = 1
|Si|

∫
Si
C(x, syj ;ψ) dx

= τ 2

(bi − ai)(di − ci)

∫ di

ci

∫ bi

ai

1[
1 +

(
x1−syj,1
λ1

)2
] [

1 +
(
x2−syj,2
λ2

)2
] dx1 dx2

= τ 2λ1λ2

(bi − ai)(di − ci)

[
atan

(
bi − syj,1
λ1

)
− atan

(
ai − syj,1
λ1

)]

×
[
atan

(
di − syj,2
λ2

)
− atan

(
ci − syj,2
λ2

)]
,

and

[cz(x)]i = τ 2λ1λ2

(bi − ai)(di − ci)

[
atan

(
bi − s1

λ1

)
− atan

(
ai − x1

λ1

)]

×
[
atan

(
di − x2

λ2

)
− atan

(
ci − x2

λ2

)]
.
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