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ABSTRACT OF THE DISSERTATION

Essay on Strategic Information Transmission in Trading Environments

by

Xuan Ding

Doctor of Philosophy in Economics

University of California, San Diego, 2017

Professor Simone Galperti, Co-Chair
Professor Joel Watson, Co-Chair

In my dissertation, I explore questions about strategic decision making and interactions

between market participants, with an emphasis on information transmission and information

design. I apply game-theoretic models to study how strategic information transmission influences

economic outcomes in trading environments.

In Chapter 1, I study the information provision role and the incentive provision role of

certification in a moral hazard setting in a seller-induced certification model versus a buyer-

induced certification model. My results explain empirical observations in the credit rating

market and provide policy implications regarding the “issuer-pays” rating mode versus the
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“investor-pays” rating mode in the financial market.

Chapter 2 examines the incentive of a long-run seller to disclose previous offers in a

dynamic market for lemons and identifies the impact of allowing voluntary disclosure on the

market information structure. Compared with the models of mandatory disclosure and mandatory

non-disclosure, the optional disclosure model generates a novel set of equilibria by allowing

flexibility in the disclosure option. My result also proves the efficiency of optional disclosure,

which explains a change in eBay’s disclosure scheme about previous transactions.

In Chapter 3, I consider a long-term contracting problem between a monopolistic seller

and a present-biased buyer with asymmetric information in a Markov environment. The buyer

and the seller are fully aware of the degree of inconsistent discounting. I characterize the optimal

contract and identify the novel impact of time inconsistency on the optimal allocations.
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Chapter 1

Strategic Certification under Information
Asymmetry

When there are severe moral hazard problems in the production of goods and services,

both sellers and buyers demand certification. In these markets, certification has two important

roles. One role is to reveal unobservable information about product quality to the market

participants, while the other is to incentivize the sellers in production investment. In addition,

the tradeoffs between these two roles depend on whether it is the buyer or the seller who initiates

certification; this in turn affects how the certifier designs the certification mechanism. I show

that the certifier can strategically inflate the equilibrium information structures in both models.

However, which model creates a more efficient economic outcome is indeterminate and depends

on the elasticity of the marginal cost of production. Although the certifier obtains a higher payoff

when serving the seller, policy regulation is necessary when the marginal cost of production is

very elastic.

1.1 Introduction

Producers make investments in R&D, capital, and other related resources to improve

their product quality; however, consumers often have inadequate information about either these

investments or the product quality. Such a moral hazard problem leads producers to shirk in

production, brings under-provision of quality, and raises severe problems in market transactions.
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One way to solve this inefficiency is to introduce a third party market intermediary —i.e., the

certifier —who fosters credible communications between these two sides by providing extra

information about product quality. Such intermediaries are widely seen in real marketplaces. For

example, credit rating agencies certify financial assets, automotive companies certify pre-owned

vehicles, and laboratories examine industrial products.

These information intermediaries alleviate the existing asymmetric information problem

by providing credential information to the market participants, which increases information

transparency. They also influence the seller’s incentive to invest in production by alternating the

extent to which they disclose information to the uninformed party. A noisy revelation makes it

hard to distinguish the low-quality product and the high-quality product, which has a negative

impact on the buyer’s willingness to pay for the good. Furthermore, the producer becomes less

willing to invest in product quality. For a profit-driven certifier, the design of the information

revelation scheme needs to take into consideration both aspects.

In reality, there is demand for certification from both sides of the market. Sellers hire

the certifier in order to differentiate themselves from their competitors, e.g., the organic food

certification; buyers use certification to alleviate information asymmetry, e.g., the auto inspection

for second-hand cars. These two payment structures can be observed as the two business modes

in the financial market. One is the “issuer-pays” mode in which the seller pays for certification.

The other is the “investor-pays” mode in which the buyer pays for certification. Currently, the

“issuer-pays” model is the primary business model. However, since the 2008 financial crisis,

the credit rating agencies (CRAs) have been heavily criticized for assigning inflated ratings

to financial products. For example, the United States Senate Permanent Subcommittee on

Investigations (2011, 6) concluded that inaccurate AAA credit rating was a key cause of the 2008

financial crisis. Moreover, it has been argued that the “issuer-pays” mode is a major cause of

rating inflation ([50]). As the CRAs are paid by the sellers of the underlying assets, they tend to

issue inflated ratings to attract more customers. This could lead to social loss since low-quality

assets are sold as high-quality ones. A frequently raised claim is that the CRAs should abandon

2



the current “issuer-pays” mode and return to the “investor-pays” mode([1]). 1

A natural approach for looking into this problem is to compare the two business models

of certification and examine how the business setting affects trading efficiency and economic

outcomes. In this paper, I study the role of a certifier in two different models: in one model the

seller certifies and in the other model the buyer certifies, namely the seller-certification model and

the buyer-certification model. This paper adopts an information design approach by allowing the

certifier to choose the signal structure as well as the certification fee, where there is asymmetric

information regarding the product quality. Formally, the game has one buyer, one seller, and a

certifier. The seller chooses to invest unobservable effort in production, which determines the

asset’s quality. This quality is privately known to the seller. Without the certifier, the seller faces

a moral hazard problem, thereby exerting no effort in production. With extra information from

the certifier, the asymmetric information problem can be alleviated. Within this setup, I fully

characterize the equilibria under two models which differ by the party that certifies.

In these two models, certification has two important roles. First, it alleviates the asym-

metric information problem by revealing more information to the buyer. Second, it incentivizes

the seller to invest in production. Altogether, these roles determine the information structure in

the seller-certification model and the buyer-certification model.

In the seller-certification game, there are two possible information schemes. One poten-

tial information scheme is to improve market transparency and enable the buyer to perfectly

distinguish different types of goods, thereby raising the high seller type’s valuation for certifica-

tion. This suggests that the signal scheme has to be extremely informative. As a consequence,

only the high type takes advantage of it. The certifier also wants to improve the chance that

the seller produces a high-quality product, which leads it to implement a more revealing signal

scheme. Here, the two roles of certification work in the same direction, resulting in an extremely

informative signal scheme. However, the fee that the certifier can charge entails some constraints.

1 Proposals from some regulation agencies explicitly state potential changes to the business mode of the credit
rating market. For instance, the European Commission of the European Union suggests consideration of an
international switch from the “issuer-pays” mode to the “investor pays” mode ([12]).
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The greater the fee, the less the seller earns from producing a high-quality product, and the

less the effort she exerts. In other words, there is a tradeoff between charging a higher fee and

incentivizing the seller in production.

The other possible information mechanism in the seller-certification game involves

manipulating the signal quality so that certification becomes valuable and affordable for both

seller types. In this situation, the signal scheme has to be less informative so that the low

type can take advantage of it. Nevertheless, the seller’s valuation of certification also depends

on the buyer’s willingness to pay upon receiving a signal. When a good signal arrives, the

buyer is willing to pay more for the good. Therefore, the certifier wants to improve the buyer’s

expectation of product quality conditional on the good signal. Accordingly, the signal mechanism

is implemented to be a more revealing one so as to encourage the seller to produce a high-quality

product. The two roles of certification work in different directions in this mechanism. The

resulting signal scheme becomes somewhat noisy. In the paper, I find that these two mechanisms

exist in equilibrium.

In the buyer-certification model, for a given prior of the product type, the buyer values

certification the most when it is fully revealing. This causes the mechanism to be more infor-

mative. However, among all possible priors, the buyer values certification the most when he is

very uncertain of the product quality. In addition, the certifier can charge more when the buyer

is willing to pay more for the signal. Thus, it wants to design the signal mechanism so that the

induced effort level leads to a very uncertain product type. This leads the mechanism in a way

that incentivizes more effort when the effort level is low and could cause less effort when the

effort level is high. Here, the two roles interact in a complicated fashion, and the resulting signal

scheme could be fully revealing or noisy to some extent.

In both models, the certifier could strategically produce noise in the equilibrium signal

structure, which exerts a negative impact on market transparency. In terms of social welfare,

it is directly related to the induced effort level in equilibrium. In the paper, I find that the

welfare comparison depends on the elasticity of the seller’s marginal cost of production. This is
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because the elasticity of the marginal cost of production determines how effectively the certifier

can influence the seller’s effort in production, thereby shaping the signal structure. When the

elasticity of the marginal cost of production is small, the seller-certification model generates a

higher effort level. In contrast, when the elasticity of the marginal cost of production is large, the

buyer-certification model results in a higher equilibrium effort level.

When the elasticity of the marginal cost of production is large, the induced equilibrium

effort level is very irresponsive to a change in either the fee or the signal structure. To illustrate,

take the seller-certification model first and consider the separating equilibrium with a very

informative signal scheme. In this setting, the certifier’s payoff depends on both the probability

of producing a high-quality asset and the fee. Under the assumption of a very elastic marginal cost

function, the gain from charging a higher fee outweighs the loss from lowering the probability

of producing a high-quality asset. Therefore, the certifier will charge an expensive fee, which

results in a low effort level in equilibrium. However, in the buyer-certification model, the buyer’s

valuation for certification is essentially the expected payment (to a low-type seller) that can be

avoided with certification. This amount depends both on the probability of a low quality good

and the payment (to a low-type seller) avoided with certification. Here, the gain from increasing

the likelihood of producing a low-quality good is less than the loss from reducing the payment

avoided with certification. The signal structure will be slightly noisy (or fully revealing), which

induces a high effort level in equilibrium. As a result, the buyer-certification model could lead

to a more efficient outcome than the seller-certification model. The opposite case can also be

shown using this intuition.

I also discover that the certifier’s equilibrium profit is higher under the seller-certification

model; thus, the certifier’s incentive to make profit and the policy maker’s interest in improving

social welfare are not always aligned. My theoretical results are consistent with the observation

that in the current financial market the “issuer-pays” mode is more widespread. However, it

is optimal to have active market interventions into the current business model under some

circumstances.

5



The remainder of the paper is presented as follows. Section 1.2 presents a discussion of

the related literature. Section 1.3 contains the detailed model setup. In Section 1.4 I show the

equilibrium result of the seller-certification model. In Section 1.5 I discuss the buyer-certification

model. Section 1.6 is devoted to a comparison of the two models. Section 1.7 extends the model

setting, and Section 1.8 concludes. The proofs are shown in Appendix A.

1.2 Literature Review

1.2.1 Theoretical Findings on Certification

Since the financial crisis in 2008, there has been an explosion of research papers studying

the causes of the financial crisis and the role of the credit rating agencies in the subprime crisis.

Within this literature, there are a few theoretical papers that explicitly compare these two models.

[46] discuss the provision of certification to the seller versus to the buyer in an adverse selection

model when the monopolistic certifier commits to truthful reporting. They conclude that seller-

certification leads to more transparency compared with buyer-certification. It also generates

higher profit for the certifier; thus, it is not necessary to regulate the current business model.

Another paper is [17]. They consider a model where the certifier can serve both the seller and

the buyers. The product quality becomes publicly known if the seller demands a rating; it is

the buyer’s private information if the buyer pays for it. Both of these assume that the certifier

truthfully communicates the quality of the product. [26] analyze a model where the investors

decide whether to finance a project with unknown quality based on the CRA’s rating. The rating

quality depends on unobservable effort exerted by the CRA. They find that the rating is obtained

less frequently and less accurately when the issuer pays for it.

The main difference in my paper is to approach the problem from an information design

perspective. Specifically, I allow the certifier to choose the signal structure freely. This not only

considers the certifier’s role of increasing market transparency but also takes into account the

impact of the rating criteria on production-related investment. The paper identifies the distinct
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tradeoffs between information provision and incentive provision in the two business models.

There is also a growing set of research papers that focus on the certifier’s incentive

to manipulate the signal structure. [31] and [2] examine the certifier’s strategic information

revelation in a setting where sellers pay for certification, and they find that partial disclosure

could be optimal for the certifier. Another strand of research (e.g. [45], [8]) investigates the

rating distortion due to rate shopping. Several research papers study the situation where the

certifier colludes with the seller and distorts the true rating (e.g. [47], [33], [41]). My paper also

falls into this category. What I find is that, even without the issue of capture and the certification

cost, the certifier could still strategically produce noise in signals.

1.2.2 Empirical Findings on Certification

In the earlier 1970s, the business mode of major credit rating agencies changed from

the “investor-pays” mode to the “issuer-pays” mode ([50]). Currently, the three major CRAs

(Moody’s, Standard and Poor and Fitch Ratings) serve only the issuer of the assets. There are

empirical findings that document the difference between the two payment modes in the financial

rating market; many of them point out that the “issuer-pays” mode leads to rating inflation.

[24] show that Standard and Poor’s assigned higher ratings to bonds after it converted to the

“issuer-pays” business mode. Also, researchers ([51] and [9]) compare the ratings provided

by CRAs using the “issuer-pays” business mode to the ratings assigned by those adopting the

“investor-pays” business mode. They state that the ratings from CRAs choosing the “issuer-pays”

business mode are systematically higher. Specifically, [32] document that most of the inaccurate

ratings happened in the structured product market were on the mortgage-backed securities (MBS)

and the collateralized debt obligations (CDO). [3] find evidence that there was a progressive

decline in rating standards of MBSs between early 2005 and mid-2007. [22] conclude that the

ratings for the MBS market were likely to be inflated during the boom period, especially for

large issuers.

My paper’s result is consistent with the market observation that the “issuer-pays” mode
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dominates the financial rating market. It also provides theoretical support to the empirical

findings. In the paper, I show that there exist strategic rating distortions in equilibrium in the

“issuer-pays” model. It is due to the reason that the certifier chooses to serve both the high-type

seller and the low-type seller. Nevertheless, from a social welfare perspective, the “issuer-pays”

mode could still generate more accurate ratings and more efficient economic outcomes than the

“investor-pays” model when the elasticity of the marginal cost of production is small.

1.2.3 Literature on Information Design in Moral Hazard Settings

This paper adopts an information design perspective in a moral hazard model, which

is related to the Bayesian persuasion literature. Since the pioneering work of [25], this strand

of research has been growing rapidly. There are a few papers that incorporate moral hazard

into the Bayesian persuasion model. [7] study a three-player game. In the game, the principal

first sends a signal to the decision maker, the agent exerts unobservable effort that determines

the underlying state, and finally the decision maker takes an action that determines all players’

payoff. Also, [43] and [44] study the interplay between information disclosure and incentives

in principal-agent relationships both in a career concern setting and a grading scheme design

setting.

My paper complements this strand of literature and explores how the principal’s objective

affects the signal structure. The equilibrium signal structures in both certification models can be

noisy, yet they are designed for different reasons. In the seller-certification model, the certifier

could inflate the signals to attract both seller types. In contrast, in the buyer-certification model,

the signal structure may be noisy in order to increase the uncertainty of the good’s quality.

1.2.4 Literature on Using Moral Hazard Models in the Financial Market

In my paper, the asymmetric information comes from the seller’s unobservable effort

in production. This fits well into the situation of MBSs. An MBS issuer needs to exert costly

effort to screen the candidate borrowers; moreover, she can securitize the loans and sell them in
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a secondary market. The effort she has exerted is usually unobservable by the other side of the

market.

My paper is also related to research papers that use hidden action models in the under-

writing practices of assets. One representative paper is [21]. They study the optimal design of

MBS in a dynamic setting with moral hazard. Moreover, some empirical studies also document

this moral hazard problem. [34] study the effect of shifts in the supply of mortgage credit, and

their result suggests that security writers’ moral hazard in screening was a main contributing

factor to the mortgage default crisis.

1.3 The Model Setup

The paper studies a game with three players: a seller (she), a buyer (he) and a certifier (it).

The seller’s investment in production is depicted by an effort level e ∈ [0,1], and she produces

one unit of good. The effort level is only observable to the seller. The quality of the good

is θ ∈ Θ = {θ ,θ}, which is stochastically determined by e according to f (θ |e) = e.2 For

simplicity, θ is normalized to 0. The cost of production is given by the function c(e). I assume

that c′ (e)≥ 0, c′′ (e)≥ 0 (c′′ (e)> 0 for e > 0), and c(0) = 0. The buyer’s willingness to pay

for a type-θ good is θ . The seller observes the good’s quality, but the buyer does not. This

asymmetric information would give the seller an incentive to shirk in production if the certifier

were not present.

In addition, I assume that the certifier can perfectly observe the good’s quality at no cost

if either the seller or the buyer pays for the service.3 The certifier chooses a fixed fee F and a

signal structure π . A signal structure π consists of a finite signal realization space S and a set of

distributions {π (·|θ)} over S. Both the seller and the buyer can observe this signal structure and

2Here, I normalize the probability of producing a high quality good to be e itself.
3In this paper, I focus on how the certifier designs the information structure. The certification cost can be seen as

a fixed cost to gain the techniques and expertise to conduct certification, and it is not the focus of this paper. This
assumption allows me to isolate the noise in signals arising from strategic manipulation from the noise caused by
the capability to certify. In fact, the assumption that the sender perfectly knows the underlying state is a common
assumption in the Bayesian persuasion literature.
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the fixed fee. If the good is certified, a signal realization s ∈ S becomes publicly observable. In

addition, Π is the set of all possible signal structures. The seller sets a price p in the market, and

the buyer decides whether to accept p based on the available information. The certifier’s payoff

is denoted by Uc.

My research question centers on the two certification business models, i.e., the seller-

certification model and the buyer-certification model. Therefore, I have two different games that

capture these two business patterns. The timelines of the games are presented below:

The seller-certification game:

Stage 1: The certifier commits publicly to a signal structure πs (·) and a fixed fee Fs.

Stage 2: Having observed πs and Fs, the seller chooses an effort level e.

Stage 3: After learning θ , the seller picks a price p.

Stage 4: The seller decides whether to certify.

Stage 5: The buyer decides whether to purchase the good.

The buyer-certification game:

Stage 1: The certifier commits publicly to a signal structure πb (·) and a fixed fee Fb.

Stage 2: Having observed πb and Fb, the seller chooses an effort level e.

Stage 3: After learning θ , the seller picks a price p.

Stage 4: The buyer decides whether to certify.

Stage 5: The buyer decides whether to purchase the good.

Notice that the models incorporate both a moral hazard problem and an adverse selection

problem. The moral hazard problem appears in the production stage; the adverse selection

problem appears in the price-quotation stage. The only difference between these two games is the

party that initiates and pays for certification. In the seller-certification game, I assume the seller

sets a price before the realization of the certification outcome. However, there are situations in
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real marketplace in which sellers charge prices contingent on the actual certification outcomes.

In Section 1.7, I consider a model capturing this model variation, and I find that the variation

does not change the effort level in equilibrium. Therefore, I will maintain this assumption here.

In both of these two games, the certifier’s signal structure and the fixed fee initiate a

proper subgame that involves the participation of only the seller and the buyer. The solution

concept I use is perfect Bayesian equilibrium (PBE). The certifier’s signal structure and fixed fee

maximize its payoff given the buyer’s and the seller’s strategies in the proper subgame.

Since the buyer has binary actions, i.e. buying or not buying, the signal realization space

essentially has binary elements. I denote S = {G,B}. Without loss of generality, G stands for the

good signal, while B stands for the bad signal. In other words, E (θ |G)≥ E (θ |B). For notation

purpose, I denote pG = E (θ |G) and pB = E (θ |B).

1.4 The Seller-Certification Game

I start with analyzing the equilibrium of the seller-certification game. The certifier picks

πs (·) and Fs at the beginning of the game. Observing the signal structure, the seller’s (pure)

strategy involves an effort choice e, a price choice p, and a choice cs of certifying (1) or not

(0). Observing the signal structure, the seller’s certification choice, possibly a signal from the

certifier, and the good’s price, the buyer forms a belief µs of the seller being a high-type and

decides whether to purchase the good. A (pure) strategy of the buyer is a choice b of buying the

good (1) or not (0).

1.4.1 The Baseline Model with a Fully Revealing Signal Structure

Before I present the result of the full model, let me consider a model where the certifier is

restricted to a fully revealing signal scheme (πs
(
G|θ

)
= 1, πs (G|θ) = 0). This restriction helps

us understand the dynamics in the model. The difference between the baseline model and the

full model also illustrates how information design works here.

In this restricted model, the seller only has an incentive to employ the certifier when
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she is the high type; certification itself becomes a signal of high quality. In equilibrium, only

the high type certifies, and she must do so. Accordingly, the buyer is willing to pay θ for a

good with the signal G. His valuation is θ when there is no certification or the signal is B. In

equilibrium, the seller’s payoff is θ −Fs if θ = θ , and 0 if θ = θ . Using these arguments, I can

derive the equilibrium effort choice e, which satisfies c′ (e) = θ −Fs. The certifier’s expected

revenue is eFs, where Fs satisfies the seller’s participation constraint that e
(
θ −Fs

)
− c(e)≥ 0.

The certifier could charge a larger fee, but it is able to collect that amount only when the realized

type is high. Its optimality condition is presented as follows.

dUc

dFs
= e+Fs

de
dFs

= 0 (1.1)

Equation (1.1) captures two effects of changing Fs on the certifier’s payoff. One is a

positive direct effect. For a fixed effort level, charging a higher fee directly leads to a higher

payoff. The other is a negative indirect effect, which indicates how Fs influences Uc through

changing the effort level. In equilibrium, the amount of effort is determined by c′ (e) = θ −Fs.

When the certifier raises Fs, it reduces the seller’s marginal revenue from exerting effort; thus, it

leads to a lower effort level and a lower chance to produce a high quality good. de
dFs

is quantified

as − 1
c′′(e) . When Fs is large, the indirect effect dominates in the two; when Fs is small, the direct

effect dominates. The two effects cancel out at the optimal Fs. This is summarized in Proposition

1.

Proposition 1 In every equilibrium of the baseline model, the seller certifies only if she is a

high type, and she trades at a price equal to θ . The effort level on the equilibrium path satisfies

c′ (e∗s ) = θ − e∗s c′′ (e∗s ). The certification fee is e∗s c′′ (e∗s ).

Nevertheless, this equilibrium outcome is not efficient as the induced effort level is

strictly below the first-best. This is because a high seller type has to pay a fee to establish her

credibility. Therefore, the marginal revenue is decreased from θ to θ −F∗s , and the seller’s
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optimality condition becomes c′ (e) = θ −F∗s . It is easy to check that the participation constraint

holds, which is done in the proof of Proposition 1.

1.4.2 The Full Model

After analyzing the restricted model, let me go back to the full model where the signal

structure is flexible. Here, the equilibrium must involve certification as well. Suppose not. The

certifier must have a payoff of zero. Because of the moral hazard problem, the buyer forms a

belief that the good has low quality, and his willingness to pay is θ . Clearly, the seller has no

incentive to put in any effort, and she ends up with a surplus of θ , which is essentially 0 from the

assumption made earlier. However, from the result in the baseline model, if the certifier adopts a

fully revealing signal structure (πs
(
G|θ

)
= 1, πs (G|θ) = 0) with a small fee ε , the seller can

receive a much higher expected surplus by investing in production and certifying. Therefore, I

conclude that certification must be obtained in equilibrium.

Naturally, there are two possible equilibrium types.4 One is separating. In this case,

the signal structure is so precise and informative that the seller benefits from certification only

when she is a high type. This essentially leads to the same equilibrium outcome as the one I

characterized in Proposition 1. The separating property can be preserved even under a flexible

signal structure.

The other equilibrium type is pooling so that the seller types are distinguishable by

neither the certification choices nor the asking prices. There is some noise in the signal structure

so that even the low seller type could benefit from certifying. The certifier charges a small fee

that both seller types find affordable. In the subgame, the seller certifies and charges the price

pG regardless of her type. The buyer accepts pG only when the signal is G. Here, the certifier’s

4Some readers may wonder if there exists a semi-pooling equilibrium. The answer is no. Suppose that the
low seller type hires the certifier with probability α < 1 in a semi-pooling equilibrium; as a result, the certifier
receives payment from the low seller type with probability α . However, the certifier could slightly modify the signal
structure and the certification fee to guarantee that certification is always obtained, which would raise its revenue.
Thus, there is no semi-pooling equilibrium. The complete proof of this statement can be found in the proof of
Proposition 2 in Appendix A.
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maximum possible fee is πs (G|θ) pG, which leaves the low type zero surplus. Moreover, there

is also the seller’s participation constraint, i.e., ∑θ∈{θ ,θ} pGπs (s|θ) f (θ |e)− c(e)− Fs ≥ 0,

and her effort incentivizing constraint, i.e., c′ (e) = pG
(
πs
(
G|θ

)
−πs (G|θ)

)
. The ideal signal

structure maximizes the certifier’s payoff under the seller’s participation constraint and the effort

incentivizing constraint. In Proposition 2, I characterize the equilibria of this model; these two

categories both exist.

Proposition 2 In the seller-certification game, the effort level on the equilibrium path satisfies

c′ (e∗s ) = θ − e∗s c′′ (e∗s ). There are two equilibrium types:

(1) One equilibrium involves separation of types. The certifier adopts a fixed fee F∗s and

a signal scheme such that only the high type certifies (π∗s
(
G|θ

)
= 1 and π∗s (G|θ)θ < F∗s ). The

high seller type trades at a price equal to θ .

(2) The other equilibrium involves pooling of types. The certifier adopts a fixed fee F∗s

and a signal scheme such that both types certify (π∗s
(
G|θ

)
= 1 and π∗s (G|θ) p∗G = F∗s ). The

good is traded only when the signal is G, and is traded at p∗G.

In the separating equilibrium, θπ∗s (G|θ)< F∗s guarantees that only the high seller type

certifies. The certification mechanism is so informative that the two types become naturally

distinguishable by their certification actions. Here, the certifier faces the same tradeoff as in the

baseline model. In equilibrium, the certifier charges F∗s , which balances the direct effect and the

indirect effect of changing Fs. Using equation (1.1), I still have F∗s = e∗s c′′ (e∗s ). Accordingly, the

effort level satisfies c′ (e∗s ) = θ − e∗s c′′ (e∗s ).

In the pooling equilibrium, the high seller type and the low seller type are not completely

distinguishable by their certification behaviors and the certification results. Here, even a low-

quality good has a chance to be assigned a positive signal. The fee is equal to the gain that the

low type can receive from certification; thus, Uc = πs (G|θ) pG. The optimality conditions are
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given as follows.

dUc

dπs
(
G|θ

) = (
θ − pG

)
eπs (G|θ)

eπs
(
G|θ

)
+(1− e)πs (G|θ)︸ ︷︷ ︸

the direct effect of πs
(
G|θ

)
on Uc

+ πs (G|θ)
d pG

de
de

dπs
(
G|θ

)︸ ︷︷ ︸
the indirect effect of πs

(
G|θ

)
on Uc

(1.2)

dUc

dπs (G|θ)
=

eπs
(
G|θ

)
pG

eπs
(
G|θ

)
+(1− e)πs (G|θ)︸ ︷︷ ︸

the direct effect of πs (G|θ) on Uc

+ πs (G|θ)
d pG

de
de

dπs (G|θ)︸ ︷︷ ︸
the indirect effect of πs (G|θ) on Uc

(1.3)

Equation (1.2) and (1.3) state the effects of changing πs
(
G|θ

)
and πs (G|θ) on Uc. On

the one hand, in equation (1.2) and (1.3), the first arguments show how the change in πs (G|θ)

and πs (G|θ) influence the certifier’s payoff directly, when e is fixed. If πs (G|θ) increases, the

low type can have a better chance to trade at pG, which overshadows the drop in pG. Therefore,

the direct effect of πs (G|θ) is positive. Similarly, if πs
(
G|θ

)
increases, the expected valuation

conditional on the signal G improves; the direct effect of πs
(
G|θ

)
is also positive.

On the other hand, the effort level is determined according to

c′ (e) = pG
(
πs
(
G|θ

)
−πs (G|θ)

)
(1.4)

A higher effort level increases the probability of producing a type-θ good, which improves

the buyer’s willingness to pay conditional on the good signal. Therefore d pG
de ≥ 0. The indirect

effects also depend on de
dπs(G|θ)

and de
dπs(G|θ) , which are presented as follows.

de
dπs
(
G|θ

) = H−1
eθ

(
πs
(
G|θ

)2− (1− e)
(
πs
(
G|θ

)
−πs (G|θ)

)2
)

(
eπs
(
G|θ

)
+(1− e)πs (G|θ)

)2 (1.5)
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de
dπs (G|θ)

=−H−1 eθπs
(
G|θ

)2(
eπs
(
G|θ

)
+(1− e)πs (G|θ)

)2 (1.6)

Here, H = c′′ (e)− θπs(G|θ)πs(G|θ)(πs(G|θ)−πs(G|θ))

(eπs(G|θ)+(1−e)πs(G|θ))
2 . A higher πs

(
G|θ

)
raises pG. It also

raises the marginal payoff of devoting effort. As a result, if πs
(
G|θ

)
increases, the seller will

devote more effort when H > 0, which gives rise to a positive indirect effect. On the contrary,

the indirect effect of πs (G|θ) is negative from equation (1.6) under the same condition. In

equilibrium, H > 0 must hold. Otherwise, I would have πs
(
G|θ

)
≤ πs (G|θ), which contradicts

the assumption made earlier. Since both the direct effect and the indirect effect of πs
(
G|θ

)
go in

the same way, πs
(
G|θ

)
= 1. As for πs (G|θ), the two effects work in different directions, and

they cancel out at the optimality condition, which results in 0 < πs (G|θ)< 1.

The certifier strategically produces inflated ratings in equilibrium. This noisy signal

scheme discourages the seller from exerting effort in the production stage; the marginal payoff

of effort decreases to p∗G (1−π∗s (G|θ)). The resulting effort level is below the first-best. The

next corollary summarizes the welfare result in the seller-certification game.

Corollary 1 In any equilibrium of the seller-certification game, the effort level is strictly below

the first-best.

1.5 The Buyer-Certification Game

In this section, I characterize the equilibrium in the buyer-certification game. The certifier

chooses πb (·) and Fb upfront. Observing the signal structure, the seller picks an effort level and a

price. Her (pure) strategy involves an effort choice e, and a price choice p. Observing the signal

structure and the asking price, the buyer forms a belief µb of the good being a high-type and

decides whether to certify and purchase the good. A pure strategy for the buyer involves a choice

cb of certifying the good (1) or not (0), and a choice b of purchasing the good (1) or not (0).
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1.5.1 The Baseline Model with a Fully Revealing Signal Structure

Similar to the previous section, I start my analysis with the baseline model where the

signal scheme is restricted to be fully revealing. The equilibrium can be solved backwards.

The buyer believes that the good is of high quality with probability µb, before he certifies.

Let Ub (p|cb = 0) denote the buyer’s payoff when there is no certification, and Ub (p|cb = 1)

denote his payoff when there is certification. Without certification, he purchases the good

only when his expected valuation is greater than the asking price, i.e., Ub (p|cb = 0) = µbθ +

(1−µb)θ − p ≥ 0. With certification, the buyer acquires extra information. He purchases

the good only when a positive signal is sent, and Ub (p|cb = 1) ≥ 0. Conditional on the good

signal, let µG
b denote the updated belief; specifically, µG

b =
µbπb(G|θ)

µbπb(G|θ)+(1−µb)πb(G|θ)
. In addition,

pG = µG
b θ +

(
1−µG

b

)
θ . Given πb (·), Fb, and the asking price p, the buyer’s expected surplus

conditional on certifying is Ub (p|cb = 1) = (pG− p)
(
µbπb

(
G|θ

)
+(1−µb)πb (G|θ)

)
− Fb.

He certifies only when Ub (p|cb = 1)≥Ub (p|cb = 0).

Whether certification is obtained depends on the belief µb. Accordingly, there are two

possible equilibrium types. In one type of equilibrium, the buyer’s belief is so pessimistic

(µb = 0) that he believes he cannot get extra information from certifying. This occurs when

he believes the asset is bad for sure. Certification is not obtained in equilibrium; therefore, the

seller shirks and devotes no effort to production. This equilibrium outcome coincides with the

market outcome without a certifier. Due to the buyer’s negative belief, the certifier is not actively

involved in the market. This equilibrium arises here since there is no uncertainty of the good’s

quality when e = 0. However, if there is a slight change to the probability transition function

of effort such that there is still uncertainty at the lowest effort level, this inefficient equilibrium

will not exist. This is because even at the lowest effort level, the buyer still values the extra

information provided by the certifier, and he is willing to acquire its service at an appropriate fee.

The seller will be incentivized to invest positive effort level in production, which points to the

equilibrium in which certification is obtained.
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In the other type of equilibrium, the buyer pays for certification with positive probability.

Here, the low seller type mimics the high type’s price. Let pH denote the high type’s asking

price. One possible situation is that the buyer certifies with probability β (β < 1) conditional on

the price being pH . Accordingly, the low type always wants to mimic the high type’s price. The

high type will definitely receive a good rating if the good is subject to inspection. Therefore, she

wants to charge the maximum possible price that makes the buyer willing to purchase the good.

This suggests that max{Ub (pH |cb = 1) ,Ub (pH |cb = 0)}= 0; moreover, the asking price pH is

max{µbθ +(1−µb)θ , pG− Fb
µbπb(G|θ)+(1−µb)πb(G|θ)

}. As for the certifier, it wants to guarantee

the purchase of certification so that Ub (pH |cb = 1) ≥Ub (pH |cb = 0) and Ub (pH |cb = 1) ≥ 0.

In equilibrium, it must be that Ub (pH |cb = 1) =Ub (pH |cb = 0) = 0. Otherwise, there is space

for the certifier or the seller to charge more. This indicates that pH = µbθ on the equilibrium

path. Since the seller’s payoff is epH +(1− e)(1−β ) pH − c(e), I further derive the optimal

effort choice e by using c′ (e) = β pH . From the consistency of beliefs, µb = e. The equilibrium

effort level satisfies c′ (e) = βeθ .

The other possible situation is that the buyer certifies with probability 1 conditional on

the price being pH . Here, the low seller type is indifferent between mimicking the high type’s

price pH or picking a lower price pL. pL is accepted only when pL = θ . Suppose that the low

type chooses pH with probability α (α ≤ 1). Let µbH denote the buyer’s belief of a high type

when the asking price is pH . Using the same argument as in the previous paragraph, pH = µbH θ

on the equilibrium path. Since the seller’s payoff is epH−c(e), I further characterize the optimal

choice e by using c′ (e) = pH . From the consistency of beliefs, µbH = e
e+α(1−e) ; the equilibrium

effort level satisfies c′ (e) = e
e+α(1−e)θ . The following proposition summarizes the equilibria in

the baseline model.

Proposition 3 In the baseline model, there are two equilibrium types:

(1) In the type-1 equilibrium, the high type charges p∗H , and the buyer certifies with
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probability β conditional on the price being p∗H .

(i) If β < 1, the low type charges p∗H with probability 1. The buyer accepts p∗H if the

signal is G when certifying. With probability 1−β , he accepts p∗H directly. The effort level on

the equilibrium path satisfies c′
(
e∗b
)
= βe∗bθ ; in addition, p∗H = e∗bθ .

(ii) If β = 1, the low type randomizes between p∗H and a lowr offer p∗L with probability

(α,1−α). The buyer accepts p∗H or p∗L only when the signal is G or p∗L = 0, respectively. The ef-

fort level on the equilibrium path satisfies c′
(
e∗b
)
=

e∗b
e∗b+α(1−e∗b)

θ . In addition, p∗H =
e∗b

e∗b+α(1−e∗b)
θ ,

and p∗L can be any non-negative value.

(2) In the type-2 equilibrium, the seller exerts no effort and asks for p∗ ≥ 0. The buyer

does not certify, and he purchases the good only when p∗ = 0. The certification fee can be any

non-negative value.

1.5.2 The Full Model

Now consider the full model where the signal structure is flexible. Some properties in

the baseline model carry to the full model. In any equilibrium, the buyer certifies only when

Ub (p|cb = 1)≥Ub (p|cb = 0). After certifying, he only accepts the good when the signal is G.

Similar to what I just presented in the baseline model, there are still two equilibrium types. In

one type of equilibrium, the buyer’s belief is so pessimistic (µb = 0) that he thinks the good

certainly has bad quality. In this type of equilibrium, certification is not acquired.

In the other type of equilibrium, the buyer must certify with probability 1. This is different

from the baseline model because the certifier can use the signal structure to incentivize the seller

in production and affect the outcome of the game. In the baseline model, the certifier can only

pick the fee. It cannot influence the equilibrium effort level; therefore, its revenue is fixed in

some sense. However, if the certifier is able to design the information structure, the effort level

is endogenous and is determined by the actual signal scheme. The certifier can pick a signal

scheme that maximizes its revenue. As a result, certification is always acquired in equilibrium.
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If not, the certifier could adjust the signaling scheme and the fee so that the buyer strictly prefers

acquiring the signal. The details of the construction can be found in the proof of Proposition 4 in

Appendix A.

I also find that the seller charges the same price regardless of her type. This suggests that

the asking price does not serve as a signal. It generates uncertainty regarding the quality of the

asset and creates a demand for certification since the buyer cannot identify the seller type purely

from the asking price. Otherwise, suppose the high type and the low type ask for different prices.

One possible case is a fully separating equilibrium where the seller types set completely different

prices. This requires the signal scheme to be fully separating (πb
(
G|θ

)
= 1, πb (G|θ) = 0).

However, this situation is not possible because the certifier would have no revenue. The certifier

could distort the signal scheme so that πb (G|θ) > 0. Here, the low seller type would always

mimic the high type’s price as she could have a chance to receive the better price; the buyer

would therefore have a demand for certification. Another possible situation is a semi-pooling

equilibrium where the low type randomizes between a high price and a low price. This still

suggests πb
(
G|θ

)
= 1 and πb (G|θ) = 0. In this situation, the buyer demands certification only

when the low type picks a high price. However, the certifier is not always hired. Similar to the

previous case, the certifier could slightly change πb (G|θ) to be a small positive number to reach

a better payoff.

Let me go one step back and study the pricing strategies of the seller and the certifier.

Denote p = pG− Fb
µbπb(G|θ)+(1−µb)πb(G|θ)

. At price p, Ub (p|cb = 1) = 0. If Ub (p|cb = 1) <

Ub (p|cb = 0), the seller would charge p = µbθ to achieve her maximum payoff, and the

buyer would not certify. If Ub (p|cb = 1) ≥ Ub (p|cb = 0), the high type’s expected payoff

would be πb
(
G|θ

)
p when she asked for p, conditional on being certified. In addition, if

Ub
(
πb
(
G|θ

)
p|cb = 1

)
< Ub

(
πb
(
G|θ

)
p|cb = 0

)
, the high seller type could charge a price p

higher than πb
(
G|θ

)
p that makes Ub (p|cb = 1)<Ub (p|cb = 0). At this price, the seller would

obtain a better payoff than πb
(
G|θ

)
p; the buyer would not certify. If Ub

(
πb
(
G|θ

)
p|cb = 1

)
≥

Ub
(
πb
(
G|θ

)
p|cb = 0

)
, the seller would charge p, which could induce the buyer to certify. As
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for the certifier, it wants to guarantee that certification is demanded. Therefore, I establish

the condition that Ub
(
πb
(
G|θ

)
p|cb = 1

)
=Ub

(
πb
(
G|θ

)
p|cb = 0

)
. The fee has to satisfy the

following expression.

Fb = µbπb
(
G|θ

)
θ −

µbπb
(
G|θ

)
+(1−µb)πb (G|θ)

πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
µbπb

(
G|θ

)
+(1−µb)πb (G|θ)

)µbθ (1.7)

In addition, the seller’s asking price is p. The optimality condition of the seller’s effort

choice is characterized by the following equation.

c′ (e) = p
(
πb
(
G|θ

)
−πb (G|θ)

)
(1.8)

Given the consistency of beliefs, µb = e and pG =
eθπb(G|θ)+(1−e)θπb(G|θ)

eπb(G|θ)+(1−e)πb(G|θ)
. The seller’s

effort choice can be derived using equation (1.8) for a given fee and a signal scheme. Moreover,

Uc = Fb. There are two optimality conditions.

dUc

dπb
(
G|θ

) = eθ

(
1−

(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

)2− (1− e)πb (G|θ)(
πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

))2

)
︸ ︷︷ ︸

the direct effect of πb
(
G|θ

)
on Uc

+
dUc

de
de

dπb
(
G|θ

)︸ ︷︷ ︸
the indirect effect of

πb
(
G|θ

)
on Uc

(1.9)

dUc

dπb (G|θ)
=−

(1− e)πb
(
G|θ

)
eθ(

πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

))2︸ ︷︷ ︸
the direct effect of πb (G|θ) on Uc

+
dUc

de
de

dπb (G|θ)︸ ︷︷ ︸
the indirect effect of

πb (G|θ) on Uc

(1.10)

These two equations characterize the overall effects of πb
(
G|θ

)
and πb (G|θ) on the

certifier’s payoff. Given a fixed effort level, for a higher πb
(
G|θ

)
or a lower πb (G|θ), the signal

structure becomes more informative; as a result, the buyer values certification more. In summary,

21



the direct effect is positive for πb
(
G|θ

)
while it is negative for πb (G|θ).

The indirect effects depend on dUc
de . If the effort level is pretty low, the seller is highly

likely to produce θ ; the buyer does not value certification much. Similarly, he does not value

certification much when the effort level is pretty high. He values certification the most when

he is very uncertain of the asset’s quality; thus, the certifier’s payoff is maximized when e is of

moderate value. This can be shown mathematically as dUc
de = θ (1−2e)

(
πb
(
G|θ

)
−πb (G|θ)

)
.

dUc
de is positive when e≥ 1

2 and is negative otherwise. The indirect effects also depend on de
dπb(G|θ)

and de
dπb(G|θ)

, which are derived in Appendix A.

Whether the buyer-certification game has an interior solution or a corner solution depends

on the cost function. Let ẽ denote the effort level at the corner solution (πb
(
G|θ

)
= 1 and

πb (G|θ) = 0), i.e., c′ (ẽ) = ẽθ . The specific equilibrium characterization can be found in the

following proposition.

Proposition 4 In the buyer-certification, there are two equilibrium types:

(1) In the type-1 equilibrium, the certifier adopts a fixed fee F∗b and signal scheme such

that π∗b
(
G|θ

)
= 1 and π∗b (G|θ)< 1. The seller sets p∗ = e∗bθ . The buyer always certifies; he

accepts the asking price only if the signal is G.

(i) If εc′(e)<min{ e
1−e ,1} or εc′(e)>max{ e

1−e ,1} for all e, π∗b (G|θ)= 0. The equilibrium

effort level satisfies c′
(
e∗b
)
= e∗bθ .

(ii) If εc′(ẽ) ∈
( ẽ

1−ẽ ,1
)

(or εc′(ẽ) ∈
(
1, ẽ

1−ẽ

)
), π∗b (G|θ) = 1− c′′(e∗b)(1−e∗b)

e∗bθ
. The equilibrium

effort level satisfies c′
(
e∗b
)
=
(
1− e∗b

)
c′′
(
e∗b
)
.

(2) In the type-2 equilibrium, the seller exerts no effort. The buyer does not certify, and

he purchases the good only when the asking price is θ . The certifier’s signal scheme and fee can

be any non-negative values.

These two equilibrium types generate very different equilibrium outcomes. The type-1
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equilibrium induces a market failure;5 the type-1 equilibrium does not. However, the outcome

of the type-1 equilibrium is also not efficient. This is because the seller cannot set a price that

extracts the entire payoff of producing θ . The buyer receives an information rent, which is

extracted by the certifier. As a result, the induced effort level is strictly below the first-best.

Corollary 2 summarizes the welfare result in the buyer-certification game.

Corollary 2 In any equilibrium of the buyer-certification game, the effort level is strictly below

the first-best.

1.6 Comparison of the Two Business Models

This section presents a comparison of the equilibrium results in the seller-certification

model versus the buyer-certification model. In the seller-certification model, the effort level e∗s

satisfies equation (1.11) derived from Proposition 2.

εc′(e∗s ) =
θ

c′ (e∗s )
−1 (1.11)

The certifier’s equilibrium payoff satisfies U∗c = e∗s
(
θ − c′ (e∗s )

)
. In the buyer-certification

model, I will focus on the type-1 equilibrium as the type-2 equilibrium is not robust to a slight

variation in the probability transition function of effort. If εc′(e) < min{ e
1−e ,1} or εc′(e) >

max{ e
1−e ,1} for all e, the type-1 equilibrium has a corner solution; the effort level e∗b satisfies

c′
(
e∗b
)
= e∗bθ , and U∗c =

(
1− e∗b

)
c′
(
e∗b
)
. If εc′(ẽ) ∈

( ẽ
1−ẽ ,1

)
(or εc′(ẽ) ∈

(
1, ẽ

1−ẽ

)
), this equilibrium

has an interior solution; the effort level e∗b satisfies equation (1.12) derived from Proposition 4.

εc′(e∗b)
=

e∗b
1− e∗b

(1.12)

In this case, U∗c =
(
1− e∗b

)
c′
(
e∗b
)
. In these two models, the social welfare is eθ − c(e). Since

both e∗s and e∗b are lower than the first best effort level, the larger one of these two leads to

5For the same reason as in the baseline model, the type-2 equilibrium does not exist if there is a slight variation
in the probability transition function of effort.
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the model with a higher social welfare in equilibrium. Theorem 1 summarizes the welfare

comparison.

Theorem 1 Considering the equilibria where the certifier is employed, there exist A > A′ > 0

such that:

(1) If εc′(e) ≤ A′ for all e, the seller-certification model yields a higher social welfare

than the buyer-certification model.

(2) If εc′(e) ≥ A for all e, the buyer-certification model yields a higher social welfare than

the seller-certification model.

(3) The certifier always earns a higher profit in the seller-certification model.

Regarding the intuition behind Theorem 1, let me explain it in the seller-certification

game first. In the separating equilibrium, the certification fee F∗s and the fully revealing signal

structure induce a subgame where the effort level is generated by c′ (e) = θ −Fs. Since it only

collects payment from the high seller type, the certifier’s expected payoff is eFs, where e and

Fs satisfy c′ (e) = θ −Fs. The first component, e, is the probability of receiving the payment,

which is essentially the probability of producing a high-quality asset. The second component

represents the amount of the certification fee that induces e. The certifier’s goal is to induce an

effort level that maximizes e
(
θ − c′ (e)

)
. A larger e induced in the game has two impacts. On

the one hand, the seller is more likely to be a high type and therefore certify, which could raise

the certifier’s payoff. On the other hand, to generate a larger e, the certifier has to charge a lower

fee. The tradeoff between these two impacts can be seen from the following condition.

dUc

de
=
(
θ − c′ (e)

)
− c′ (e)εc′(e) (1.13)

Whether to charge an expensive fee and generate a low e or charge a cheap fee and

generate a high e depends on εc′(e). This is reasonable because the elasticity of c′ (e) reflects how

effectively the effort level can be incentivized through changing the signal scheme or the fee. If
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εc′(e) is small, c′ (e) is not very responsive to a change in e. Only a slight change in Fs is needed

to change the effort level by one percent; thus, the second effect is small, and the first effect is

dominant between the two. This leads the certifier to charge a cheap fee in order to induce a high

effort level. However, it is the opposite if εc′(e) is large. In this scenario, the effort level is not

responsive to a change in Fs, and the second effect is large. The certifier will charge an expensive

fee, which generates a low effort level.

In the pooling equilibrium of the seller-certification model, the certifier is able to serve

both seller types with an inflated signal scheme (πs
(
G|θ

)
= 1 and 0 < πs (G|θ) < 1). Here,

Uc = πs (G|θ) pG, which is equal to the gain of the low type from obtaining certification. The

first-best effort level satisfies c′ (e) = θ . However, here the noisy signal structure distorts the

marginal benefit of exerting effort. The amount of distortion can be decomposed into two parts.

One part is the additional gain of the low seller type, which is πs (G|θ) pG. This reduces the

seller’s incentive to invest in production and is equal to eπs(G|θ)θ
e+(1−e)πs(G|θ) . The other part is θ − pG,

which is the reduction in the gain of the high seller type. This further reduces the seller’s

production incentive and is equal to (1−e)πs(G|θ)θ
e+(1−e)πs(G|θ) . Combining all these together, a fraction, e,

of the total distortion goes to the first part, and the remaining goes to the second part. The total

distortion is θ −c′ (e); thus, the gain of the low type is e
(
θ − c′ (e)

)
. From here, it is clear to see

that the certifier has the same expected payoff as in the separating equilibrium. The intuition of

how the induced effort level depends on εc′(e) can be explained in a similar way.

In the buyer-certification model, the information design problem is very different. I will

focus on the interior solution (πb
(
G|θ

)
= 1 and 0 < πb (G|θ) < 1) of the type-1 equilibrium.

Here, the certification fee is essentially equal to the buyer’s valuation of certification. This is the

expected amount of payment to a low-type seller that can be avoided with certification. In this

equilibrium, both the high type and the low type charge p = eθ . Nevertheless, the low type is

only able to receive the asking price with probability πb (G|θ); as a result, the amount of money

avoided paying to the low type is (1−πb (G|θ))eθ . The high type seller always trades at a price

eθ . In other words, the amount of money which is not collected by the low type is essentially
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the additional gain of the high type. (1−πb (G|θ))eθ is also the marginal benefit of exerting

effort, which should be equal to the marginal cost c′ (e) in equilibrium. Moreover, the low-type

good is produced with probability 1− e. Altogether, the expected amount of loss averted is

(1− e)(1−πb (G|θ))eθ = (1− e)c′ (e). This is also the information rent left to the buyer. The

certifier will induce an effort level that maximizes (1− e)c′ (e). Here, there are two effects of

changing e. On the one hand, a higher e reduces the chance of producing a low quality good,

which could reduce the buyer’s valuation for certification. On the other hand, a higher e suggests

a higher marginal cost of production in equilibrium. This indicates that the additional gain of the

high type would be improved in the subgame; the low type would obtain a lower payoff, and

the buyer could save more from obtaining certification. Equation (1.14) summarizes these two

effects.

dUc

de
=−c′ (e)+

1− e
e

c′ (e)εc′(e) (1.14)

If εc′(e) is small, the second effect changes very slowly, and it is small in magnitude for a

large e. This suggests that there is not much change in the buyer’s saving with certification, even

if there is a large change in the effort level. The first effect is the dominant one between the two.

Therefore, it is desirable for the certifier to inflate the rating scheme further, which results in a

low e∗b. However, it is the opposite if εc′(e) is large. In this scenario, the second effect changes

very rapidly, and it is large even at a high effort level. Here, the change to the buyer’s saving

with certification drops so drastically (as e decreases) that it is more desirable for the certifier to

incentivize a high e∗b. Consequently, when εc′(e) is small, the equilibrium effort is less distorted.

In Figure 1.1, I present the equilibrium effort levels in both the seller-certification model

and the buyer-certification model (interior solution) when the elasticity of c′ (e) is small. Here, I

use c(e) = 2
3e

3
2 and θ = 1. The elasticity of the marginal cost function is 1

2 . The intersection of

the blue dotted line and the red line depicts the equilibrium effort level in the buyer-certification

model. Moreover, the intersection of the green dashed line and the red line depicts the equilibrium
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effort level in the seller-certification model.

0.0 0.2 0.4 0.6 0.8 1.0
The effort level

0

1

2

3

4

5

6

y
buyer-certification
seller-certification
elasticity

Figure 1.1. Comparison of the equilibrium effort levels when the elasticity of c′ (e) is small

Here, the seller-certification model generates a higher equilibrium effort level. When

εc′(e) is small, the seller-certification model leads to a higher social welfare level than the

buyer-certification model.

On the contrary, in Figure 1.2, I show an example of an elastic c′ (e). Here, I use

c(e) = 1
3e3 and θ = 1. The elasticity of the marginal cost function is 2. As in the previous graph,

the intersection of the blue dotted line and the red line depicts the equilibrium effort level in the

buyer-certification model. Also, the intersection of the green dashed line and the red line depicts

the equilibrium effort level in the seller-certification model.

In Figure 1.2, we can see that the buyer-certification model creates a higher effort level.

The buyer-certification model generates a better social surplus when εc′(e) is large.

I can also compare the certifier’s payoff in these two business models. In the type-

1 equilibrium of the buyer-certification model, the certification fee is equal to the expected

amount of payment (to the low seller type) avoided with certification. Specifically, F∗b =(
1− e∗b

)
c′
(
e∗b
)
< e∗b

(
θ − c′

(
e∗b
))

. Nevertheless, in the seller-certification model, the certifier
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Figure 1.2. Comparison of the equilibrium effort levels when the elasticity of c′ (e) is large

ends up with payoff e∗s
(
θ − c′ (e∗s )

)
where e∗s c′′ (e∗s ) = θ − c′ (e∗s ). As e∗s maximizes the value

of the function e
(
θ − c′ (e)

)
, the certifier is always better off in the seller-certification game.

This result is established because of information asymmetry. In the seller-certification model,

the seller’s certification choice is made conditional on the exact type, whereas in the buyer-

certification model, the buyer’s certification choice is based on the expectation of the seller

type. As the buyer certifies to avoid purchasing the low quality good, the valuation he places on

certification is less than the seller’s valuation of certification.

In terms of other market participants, the buyer obtains a payoff of zero in both certifica-

tion models. The seller is the residual claimant. In the seller-certification model, this amount

is e∗s c′ (e∗s )− c(e∗s ); in the buyer-certification model, it is e∗bθ − c
(
e∗b
)
−
(
1− e∗b

)
c′
(
e∗b
)
. When

e∗b ≥ e∗s , it is clear that the seller is better off in the buyer-certification game. However, this

comparison becomes ambiguous when e∗b < e∗s . If e∗s − e∗b is relatively small, the seller could still

be better off when the buyer initiates certification.
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1.7 Extensions

In this section, I discuss some possible variations in the model setting and how they

potentially influence the current results.

1.7.1 Variation in the Timeline

One possible variation is the timing of certification. In the seller-certification model, the

seller may certify first, and then set the price contingent on the signal realization. This setting

is practical in the real marketplace as the seller can adjust the asking price based on the actual

rating outcome. Even after I incorporate this change in the model, my results remain robust.

There are still two possible equilibria, a separating one where only the high type certifies, and a

pooling one where both types certify. I summarize the results in the next proposition.

Proposition 5 Suppose the seller can set the asking price conditional on the certification out-

come. There are two equilibrium types, and both of them yield the same equilibrium outcome as

the two equilibria characterized in Proposition 2.

1.7.2 Choice of the Business Model

Another possible variation is that the certifier is able to choose the party to work with.

To incorporate this issue, I allow the certifier to commit to work with the party it prefers at

the beginning of the game. If it chooses to work with the seller, the game extends as the

seller-certification game. If it chooses to work with the buyer, the game extends as the buyer-

certification game. Here, the certifier compares its payoff in the two models and chooses the

one with a better payoff. Therefore, I can directly apply the results from the previous sections.

Specifically, the certifier always has a higher payoff in the seller-certification game; thus, it

will commit to work with the seller. This is also consistent with the current financial market

observation that the majority of business is done in the “issuer-pays” mode.

However, from Theorem 1, we know that the social welfare comparison between the
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seller-certification model and the buyer-certification model depends on εc′(e). When εc′(e) is

small, the seller-certification model generates a higher social surplus. Here, the policy maker’s

interest of improving social welfare and the certifier’s incentive of making profit are aligned.

When εc′(e) is large, the buyer-certification model induces a higher social surplus. However, the

policy maker’s interest and the certifier’s incentive work in opposite directions. This suggests that

it is not always optimal to let the certifier pick the business mode itself. Under some conditions,

the policy maker’s interest and the certifier’s incentive are not aligned. The policy maker could

improve social welfare by changing the current business mode to the “investor-pays” mode when

the marginal cost of production is very elastic.

1.7.3 A Two-Part Tariff Contract

In the seller-certification game, another possibility is that the certifier uses a two-part

tariff contract. Suppose that the certifier can charge an entry fee before the seller exerts any effort.

After the seller knows the good’s quality, there is an additional fee to have the good certified.

The research question here is how the certifier designs the certification mechanism if a two-part

tariff contract is allowed.

To answer this question, I can utilize the results in Section 1.4. Since the certifier can

use the two-part tariff to extract all the surplus in the game, it will induce the mechanism that

maximizes the total payoff, which is eθ − c(e). Therefore, the certifier has the incentive to

generate the first-best effort level e∗, which satisfies c′ (e∗) = θ . This shows that the marginal

benefit of exerting effort is θ . Accordingly, the signal mechanism must be fully revealing, and

the additional fee to certify is set to be zero. The certifier uses the entry fee to extract all the

surplus generated in the game, which is e∗θ − c(e∗) . Here, the seller and the buyer both have

zero payoffs.

Surprisingly, allowing a two-part tariff contract can restore the effort level to the first-best.

The intuition is that the certifier fully internalizes the gain and the cost of production so that the

certifier’s incentive is perfectly aligned with the general interest of improving social welfare.
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However, this requires a two-part tariff to be implemented before the seller produces the good.

If the fixed fee is not forced to be collected before the production process, the seller has an

incentive to deviate. Suppose the fixed fee and the additional fees are F and 0 respectively. The

seller’s payoff is eθ −F−c(e) for an effort level e. However, eθ −F−c(e)≤ e
(
θ −F

)
−c(e).

The seller has a strong incentive to produce the good first before she pays the fixed fee, as such

deviation generates a strictly better payoff when e < 1. She pays the fixed fee only when the

good is a high quality one. The corresponding effort level satisfies c′ (e∗) = θ −F , which is the

same as in the separating equilibrium of the seller-certification model.

The seller-certification model leads to a better social outcome if a two-part tariff contract

is feasible. However, this kind of contract is very difficult to enforce since the production

process is hard to monitor in reality. The two-part tariff contract itself cannot guarantee that the

seller takes the initiative to pay the fixed fee before she produces the good. If the seller has the

flexibility to choose the time to certify, the two-part tariff contract will not work in the way it is

designed to be. The induced effort level will still be below the first-best.

1.8 Conclusion

In markets with severe moral hazard problems in the production of goods or services,

both market participants demand certification. In this paper, I study the roles of certification

—revealing information and incentivizing the seller —in two models: the seller-certification

model and the buyer-certification model. The tradeoffs between these two roles are different in

the two models, thereby leading to different market transparency levels and economic outcomes.

The question of who pays for certification is crucial to the market outcome.

Specifically, the paper adopts an information design approach to capture the two roles of

certification by allowing the certifier to choose the signal structure freely. In particular, I show

that the certifier may strategically produce noise when serving the seller, which is consistent with

the empirical observation that the “issuer-pays” business model tends to release inflated ratings.
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However, which business model creates a more efficient outcome depends on the induced effort

level, which is determined by the elasticity of the marginal cost of production. This function

determines the effectiveness of incentivizing the seller to exert effort through altering the signal

scheme. If the marginal cost of production is very inelastic, the seller-certification model creates

a more efficient outcome, whereas the buyer-certification model does better when the marginal

cost of production is very elastic.

Moreover, I also find that the certifier always earns a higher profit in the seller-certification

model. This prediction is consistent with the observation that the “issuer-pays” model dominates

the current financial rating market. The welfare analysis in this paper provides a novel policy

implication concerning the business mode of certification. When the marginal cost of production

appears to be very elastic, the buyer-certification mode does a better job of incentivizing effort.

In this situation, policy interventions could be beneficial to society. These results complement

the current discussion of which business mode should be employed in the certification market.

The models of the seller-certification and the buyer-certification are two representative

examples of the certification mechanisms. It is a subclass of a more general class of mechanisms

where the certifier can freely charge both sides of the market. The optimal certification mechanism

design remains a significant and open future research question.
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Chapter 2

Information Disclosure in the Dynamic
Market for Lemons

This paper studies the incentive of a long-run seller to disclose previous offers in a

dynamic market for lemons and identifies the impact of voluntary disclosure on the market

information structure. Comparing the optional disclosure model with the models of mandatory

disclosure and mandatory non-disclosure, I find that there is a novel set of equilibria generated

by allowing flexibility in the disclosure option. In this new class of equilibria, the seller adopts a

threshold rule and only discloses rejected price offers above the threshold to future buyers. In

the two-period model, I show that the optional disclosure model could induce a strictly higher

social surplus than models with mandatory restrictions on the disclosure policy. Policy makers

may not necessarily enforce mandatory disclosure or concealment of every past offer in the real

marketplace. Moreover, they can adopt a non-disclosure policy for lower prices and a voluntary

(or mandatory) disclosure policy for higher prices to enhance trading efficiency.

2.1 Introduction

In real life trading, buyers submit offers based on how much they know about sellers’

willingness to sell. One important source of such information is previous offers that were not

accepted. When a seller has the option to disclose past buyers’ offers, whether to disclose or

not becomes a practical question to consider. In the real estate market, for instance, the listing
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agent has the option to disclose past offers that were rejected while conducting business with

the current selling agent. In the labor market, an employee’s past salary is always of great

concern. Potential employees must choose carefully whether to disclose this piece of information

during wage rate bargaining.1 Moreover, even in the trading of professional soccer players,

soccer club managers face the problem of what information they should reveal regarding rejected

transactions. For example, they could simply reveal the final result, or they could discuss the

exact terms of the contract they had rejected.2 All of these practical examples have a common,

central question: should a seller disclose past prices to current buyers when they have a chance

to do so?

The above question is complicated but also meaningful to answer. The answer not only

helps us to understand a seller’s incentive to make the disclosure decision, but also has great

significance for designing or regulating market structure regarding to what extent the observability

of past offers is at the discretion of the seller. In the economics literature, much attention has

been paid to games in which the observability of past offers is exogenously determined in the

model. For example, [23] and [18] have studied the bargaining problem in a dynamic market

for lemons, where past offers were either always observable or always unobservable to buyers.

This model setting is appropriate when the observability of past prices is a natural element in

the market structure. However, there are many situations, such as those described earlier, where

the observability of past offers is up to the seller. A strategic seller can choose whether or not

to disclose past offers to her buyers. On the one hand, disclosure may act as a good signal

and reduce the amount of asymmetric information, which would facilitate trade. On the other

1In New York City, a new salary history law became effective on Oct. 31st, 2017. It is now illegal for public
and private employers of any size to require information about job applicants’ salary histories. Disclosure of salary
history is not mandatory in wage bargaining. (https://www1.nyc.gov/site/cchr/media/salary-history.page)

2Transactions of soccer players are often released by Britain’s free press. Here, sometimes soccer club man-
agers choose only to reveal the failure of a particular transaction, as when Manchester United rejected a Wayne
Rooney bid from Chelsea (See: http://www.telegraph.co.uk/sport/football/teams/manchester-united/10184651/
Wayne-Rooney-bid-from-Chelsea-rejected-by-Premier-League-champions-Manchester-United.html). At other
times, the details of the rejected offers are disclosed, as when Napoli rejected the offer for Gonzalo Higuain from
Atletico Madrid (http://soccerlens.com/arsenal-news-atletico-madrid-see-e60m-higuain-bid-rejected-by-napoli/
196937/).
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hand, withholding information could preclude players from speculating in trades or from taking

opportunistic actions.

This paper studies the seller’s optional disclosure question by considering the interaction

between a strategic long-run seller (she) and two short-run buyers (he) for a single item in a

two-period game. In each period, a single buyer has the chance to trade with the seller, and

there is asymmetric information about the quality of the item. The key feature of my paper is

the seller’s ability to decide whether or not to disclose a past offer to the current buyer. In the

model, if there is no trade in period 1, the seller has the freedom to decide whether to reveal

information about the unsuccessful offer in period 1 before the buyer in period 2 submits an offer.

The observability of the previous offer is endogenous in the model, and it is a decision made by

the seller.

In the paper, I characterize the equilibria in a two-period model and then extend the

results to an infinite-horizon game. Buyers form beliefs about the quality of the good based on

the available information and submit offers according to those beliefs. The available information

to the buyers includes the disclosed offers and the total number of rejected offers. With the

disclosure option, the seller has more flexibility in sending out information to the buyers; as a

result, she is able to influence the buyers’ beliefs through disclosing or withholding past offers.

Therefore, the equilibrium beliefs in the optional disclosure game are quite different from both

the mandatory disclosure model and the mandatory non-disclosure model in the literature, as

are the equilibrium dynamics and social welfare. Comparing my model with the models of

mandatory disclosure and mandatory non-disclosure ([23], [18]), I find that there is a new set of

equilibria generated by allowing optional disclosure. In this new class of equilibria, the seller

implements a threshold rule for disclosing past offers. Disclosing a high past offer can be seen

as sending a positive signal to the current buyer while disclosing a low past offer can be seen

as sending a negative signal. In the two-period game, the seller selects a disclosure threshold

in period 2 and only discloses the rejected price offer if it is above this threshold. She adopts

this threshold rule as the criterion to evaluate whether or not to disclose the previous offer and
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sends a positive signal to the current buyer when this criterion is fulfilled. Only an offer above

the threshold is considered to be adequate for sending a positive signal. On the equilibrium path,

there is no disclosure, and no signal is sent from the seller’s side.

In the two-period model, I further show that the welfare-maximizing equilibrium of the

optional disclosure model could generate a strictly higher social surplus than any equilibrium

of the model where the mandatory non-disclosure restriction is imposed. In addition, any

equilibrium of the optional disclosure model yields a higher social surplus than the equilibrium

of the mandatory disclosure model. Policy makers may not necessarily enforce mandatory

disclosure or concealment of every past offer in the real marketplace. In the mandatory disclosure

or mandatory concealment model, past offers are naturally observable or unobservable; the seller

mechanically reveals everything or nothing to the buyers. However, providing the seller the

disclosure option gives her the freedom to take different disclosure actions for different price

offers. The seller has perfect control over what messages are transmitted to the buyers in the

optional disclosure model. In equilibrium, she only conveys positive messages to the buyers, and

by doing so potentially improves the buyers’ beliefs. Therefore, optional disclosure could lead to

a higher trading price and a better economic outcome. In the optional disclosure model, finer

information could be transmitted in the market, and trading efficiency could be improved.

The results presented in this paper are related to many observed behaviors in the real

marketplace. For example, listing agents often do not disclose rejected offers when conducting

business with current buyers. This is consistent with the model’s predictions. Sometimes listing

agents may selectively hint that they have rejected prices above a certain level, which is also

relevant to the seller’s strategy of only disclosing offers above a certain threshold in my model.

According to some headhunters, it is not advisable to disclose one’s salary history during wage

bargaining.3 My results indicate that the headhunter’s advice is sometimes reasonable. Reporting

one’s previous salaries is definitely not a wise action to take if they are below potential employers’

3See http://www.vault.com/blog/salary-and-benefits/should-you-disclose-your-salary-in-an-interview and http:
//www.salary.com/disclosing-salary-history/
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expectations.

When designing the information structure in a market, policy makers should contemplate

the disclosure rule of past offers. The paper suggests that providing the disclosure option to the

seller could potentially generate higher social welfare in the market. More importantly, policy

makers can apply selective restrictions on the disclosure rule to achieve the welfare level in

which they are interested. Adopting a non-disclosure policy for lower prices and voluntary (or

mandatory) disclosure policy for higher prices could potentially enhance trading efficiency.

The rest of the paper is organized as follows. Section 2.2 briefly reviews the related

literature. Section 2.3 introduces the model setting. Section 2.4 discusses a two-period game.

Section 2.5 discusses generalizations of the model and related policy implications. Section 2.6

explores extensions of the model. Finally, in Section 2.7, I present my concluding remarks. The

formal proofs are in Appendix B.

2.2 Literature Review

Starting in the 1980s, a great number of researchers have studied questions about informa-

tion disclosure. Under costless revelation, [19] and [35] argue that an informed seller will always

deliberately reveal her private information to buyers if the information is ex-post verifiable;

therefore, the problem of asymmetric information is eventually solved. The main difference

between my paper and the previous literature on this topic is the disclosure content. In the

literature, the content usually refers to signals or evidence of a seller’s type, which is exogenously

determined, whereas the content I consider is the buyers’ behaviors in past transactions, which are

endogenous in the model. As historical prices are the same for every seller type, the disclosure

content is not type-dependent. Disclosure itself is not a perfect signal of the seller’s type, and

disclosure is not a dominant strategy for the highest seller type. Therefore, it is not necessary to

have the unraveling result in my model. Another difference is that I consider a dynamic model

with a long-run seller and multiple short-run buyers. In this setting, the information regarding
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past offers becomes critical to the current buyer. The information disclosure literature considers

only static or dynamic models with long-run players, where buyers are aware of previous offers.

There is a strand of the bargaining literature related to information transparency. Both

[23] and [18] study the bargaining problem in a dynamic market for lemons, where past offers are

either always observable or always unobservable to buyers. Their results suggest that observable

offers tend to induce a market breakdown or a bargaining impasse, whereas trade is eventually

reached with private offers. [28] compares three information structures under which sellers and

buyers randomly and bilaterally match. He finds that market efficiency is not monotonic in the

amount of information available to buyers. [27] consider a Coasian bargaining environment and

show that the unobservability of past negotiations leads to lower prices and faster trading. For

this strand of literature, the intuition is that the seller has a stronger incentive to reject high offers

to signal a high-quality commodity when past offers are observable. This contributes to delay in

trade and gives rises to trading inefficiency.

Similar to the settings of [23] and [18], my model also incorporates a dynamic market

structure. However, in my work, the seller has the option to disclose past rejected prices.

The disclosure option is endogenous, as opposed to exogenous, as found in the literature; this

completely changes the information structure of the model. In the optional disclosure model, the

seller has more flexibility in signaling her type, and she is able to influence the outcome of the

game through the signaling effect on buyers’ beliefs. Moreover, the questions I discuss in my

paper are fundamentally different from the prior work in this area. The literature focuses more

on comparing the two market structures, i.e., full information versus no information. In my work,

I concentrate on the seller’s choice of whether to disclose previous offers. However, my paper

does relate to this strand of research in terms of its welfare analysis and policy implications. I

find that the optional disclosure model can generate a higher social welfare level under some

circumstances.

Besides the information disclosure literature, this paper also relates itself to the dynamic

signaling literature in which the adverse selection problem appears ([37], [49], [29], [11]).
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Rejecting and disclosing high offers can be seen as a behavior of signaling a high type.

2.3 The Model and Preliminaries

The model features a two-period bargaining game between a long-run seller (she) and a

sequence of short-run buyers (he). Time is discrete and indexed by t = 1,2. There is a single

trading item, and the quality of the item, q, is the seller’s private information. Assume that q

is distributed uniformly on the interval
[
q,q
]
, and let G1 (q) denote this distribution. G1 (q) is

common knowledge. Given q, the seller’s reservation value of the good is αq with 1
2 < α < 1. 4

The buyers are homogeneous in the sense that they share a common valuation the good, which is

equal to q. I label buyer t as the buyer who trades in period t.

In period t, buyer t interacts with the seller and proposes an offer pt for the good. The

buyer can only make one offer in a period, and he is only able to trade in that period. If the offer

is accepted by the seller in period 1, the game ends; otherwise, the game continues to period

2. In period 2, the seller can choose to disclose p1 that she has rejected to buyer 2 before he

submits his offer. The disclosure content can be any subset of the offer history. Disclosure is

costless and verifiable, which is to say, “the talk is not cheap”. If she discloses nothing, the only

thing that the current buyer is aware of is that all past offers were rejected.

If there is no trade after the two periods, a type-q seller will receive the continuation

value Aq (α ≤ A ≤ 1) in period 2.5 In period 2, a trade will occur if and only if p2 ≥ Aq. I

maintain the assumption that Aq is no less than αq. Let ∆q denote q−q. For the two-period

model, I assume that ∆q is large enough so that the highest type is not traded in these two periods.

A general analysis of trading the highest type is discussed in the infinite-period model. The seller

discounts the payoff across all periods according to a discount factor δ , and all players are risk

4In a one-period game, the marginal increase in average quality if trading with an extra high-type seller is 1
2

while the cost is α . If α ≤ 1
2 , the marginal benefit outweighs the cost for any q, and I have

q+q
2 ≥ αq. Here, buyer 1

will simply offer αq. As this result is relatively trivial, I exclude it in my model.
5In [18], they work with a two-period model under a similar setting when there is no trade. The authors discuss

the value of A, which represents the efficiency loss at the trading deadline. Here, the value of A does not change the
equilibrium characterization. A discussion of A is not a focus of this paper.
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neutral. The model’s timeline is presented below.

S declines
Period 1

B1 offers p1N selects S’s type S declines

S accepts

Period 2

S discloses p1 or not B2 offers p2 S declines

S accepts

Figure 2.1. The timeline of the two-period game

Additionally, buyer 2 has a belief about the seller’s type, and this is described by a

cumulative distribution function G2 (q). Suppose the seller’s type is q, and trade happens in

period t. The seller’s payoff is δ t−1 (pt−αq), buyer t’s payoff is q− pt , and the other buyer

ends up with a payoff of zero. Let p1 be the price history in period 2, and P1 be the set of all

possible price histories in period 2.

The seller’s strategy is
{

a1 (q, p1) ,d2 (q, p1) ,a2 (q,d2, p1, p2
)}

. a1 (q, p1) captures the

probability that the type-q seller accepts p1; the disclosure rule, d2 (q, p1), maps the seller’s

type q and the price history p1 into a subset of p1; a2 (q,d2, p1, p2
)

maps the seller’s type q,

the disclosure content d2, and the offers p1 and p2 into the probability that the seller accepts

p2. d2 (q, p1)= /0 means that the seller discloses nothing. Buyer 1’s strategy σ1 is a probability

distribution over R+. Buyer 2’s strategy σ2 is a mapping from the disclosure content d2 (q, p1)
to a probability distribution of prices over R+.

The solution concept I use is perfect Bayesian equilibrium (PBE), which requires the

strategies of the players to be optimal both on- and off-path. Specifically, in this context, a PBE

includes the seller’s acceptance rules and disclosure rule, every buyer’s pricing strategy and

belief. It satisfies the following conditions: (1) The seller’s strategy
{

a1,d2,a2} maximizes her

payoff given the buyers’ pricing strategies and belief updating process. (2) Buyer t’s pricing

strategy σ t maximizes his payoff conditional on his own belief, the seller’s acceptance and

disclosure rules, and the other buyer’s pricing strategy. (3) Buyer t’s belief is updated (whenever

possible) according to the Bayes’ rule based on the seller’s and all other buyers’ strategy. From

now on, I will refer to PBE as the “equilibrium”.

I present a preliminary result first. As in other dynamic games in continuous-type settings,
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the seller’s acceptance rule follows a cutoff rule. In every equilibrium, for a price offer pt , there

is a cutoff type qt , such that the seller with a type below the threshold qt accepts pt , while the

seller with a type above the threshold rejects it. This is the skimming property in the bargaining

literature, and it is summarized in Lemma 1.

Lemma 1 In every equilibrium, the seller’s acceptance rule follows a cutoff rule. If a type-q

seller accepts offer pt with positive probability, then any lower seller types accepts offer pt with

probability 1.

Lemma 1 is one of the standard results for bargaining games in continuous-type space

settings. The supremum over all types accepting an offer is called the cutoff type. To make

the statement concretely, I follow the convention that the cutoff type accepts the offer with

probability 1. From Lemma 1, the equilibrium can be described by a triple (dt , p∗t , q̂t) where

t = 1,2. Here dt is the seller’s disclosure rule at the beginning of period t, and I let d1 = /0 to

make notation consistent. p∗t is the equilibrium price made by buyer t, and q̂t is the cutoff type

accepting offer p∗t . A type-q seller trades in period t where q̂t ≥ q > q̂t−1.

2.4 Equilibrium Construction and Welfare Analysis

In this section, I present my main result. The analysis is focused on the case where

discounting is small. When the seller is patient enough, she is less willing to accept a high

offer today. She would rather reject the offer and disclose it as a good signal in the next period,

which could change the seller’s incentive of accepting an offer. This is different from the models

of mandatory disclosure or mandatory non-disclosure, in which the seller does not have the

disclosure option. I also briefly characterize the equilibrium when discounting is large in the

two-period model.
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2.4.1 Equilibrium Construction

I present the characterization of equilibrium via a series of lemmas and propositions.

Lemma 2 presents a general statement about the type of equilibrium in the optional disclosure

model.

Lemma 2 In every equilibrium, buyer 1 and buyer 2 must play pure strategies.

Lemma 2 highlights that in every equilibrium the buyers cannot play mixed strategies.

Suppose this is not true, and buyer 1 is now randomizing among a set of offers. Among these

offers, higher ones induce higher cutoff types in period 1. If all of buyer 1’s offers are not

disclosed on the equilibrium path, buyer 2 will have a non-degenerate belief of the cutoff type in

period 1. For buyer 2, it is possible to trade with a high seller type or a lower one. Taking these

possibilities into account, buyer 2 submits his offer. For a high seller type, given the disclosure

option, she would have the incentive to justify her type by disclosing the highest offer she could

receive in period 1. By doing so, she could signal an extra positive message to buyer 2 about

her type. This suggests that the seller rejected the offer not because the offer was too low, but

because her type is too high. Moreover, instead of having a non-degenerate belief of all possible

cutoff types, buyer 2 would update his belief towards a higher cutoff type and submit a better

price. Applying the same intuition, I conclude that there would be unraveling for buyer 1’s offers.

Buyer 2 would update his belief conditional on the disclosed offer, and best respond to it. In this

situation, given buyer 2’s strategy and the seller’s disclosure rule, there is no reason for buyer 1

to randomize. Buyer 2 will also play a pure strategy if buyer 1 is not randomizing.

Applying the result in Lemma 2, I am able to derive other equilibrium characteristics.

Lemma 3 indicates that there can be common actions in disclosure.

Lemma 3 In every equilibrium, if a type-q seller prefers disclosing offer p1 when p1 is rejected,

every seller type rejecting p1 prefers disclosing p1. In addition, if the type-q seller strictly prefers

disclosing p1, and p1 is the equilibrium offer, then p1 ∈ d2 (q,{p1}) for any type q rejecting p1.
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Lemma 2 allows me to focus on the case where buyers are only playing pure strategies.

If a particular seller type prefers to disclose p1 rather than conceal it, her continuation value of

disclosing p1 is higher than concealing p1. This suggests that buyer 2 would submit a higher

price when p1 is revealed. Every type must have the same incentive to disclose this offer if she

rejects it. Moreover, there is pooling in disclosure actions for the equilibrium offer. Otherwise,

if a low type and a high type took diverging disclosure actions when rejecting the equilibrium

offer, a future buyer could distinguish them according to their actions, and thus serve them

differently. This creates an incentive for a low seller type to take the same action as a high

seller type. Lemma 3 states that different seller types share the same preference of disclosing

or concealing p1 when p1 is rejected. Correspondingly, if p1 is disclosed, buyer 2 will form a

belief of the cutoff type that discloses p1.

There are two extreme disclosure rules, i.e., always disclose and always conceal. Lemma

4 states that always concealing past offers is not an equilibrium disclosure rule.

Lemma 4 In every equilibrium, d2 (q, p1)= /0 for any p1 ∈ P1 and any q is not an equilibrium

disclosure rule.

This result is not surprising. For any offer p1 higher than the equilibrium offer, the seller

is inclined to reveal this offer if she rejects it. This can enhance buyer 2’s belief about her type,

thereby improving the price in period 2. In conclusion, always concealing any previous offer

cannot be the disclosure rule in equilibrium.

In contrast, always disclosing past offers can be the disclosure rule in equilibrium. It

can be sustained when buyer 2 has a negative belief of the seller’s type under non-disclosure.

Specifically, if non-disclosure happens, buyer 2 believes that the seller is of the lowest type. In

this case, the seller always has the incentive to disclose the price offer made in period 1; this

scenario is formally stated in Proposition 6. For notation purpose, I denote δ ∗ = 1− 1
2α

, and

qL = δA2+(2A−1)(1−δ )α
2δA2+(2A−1)(2(1−δ )α−1)q.6

6I assume that qL ≥ q under the parameter values.
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Proposition 6 In the optional disclosure model, d2 (q, p1)= p1 for any p1 ∈ P1 and any q can

be the disclosure rule in equilibrium if buyer 2 has the belief that G2
(
q
)
= 1 when d2 (q, p1)= /0.

The cutoff types are q̂2 =
A

2A−1 q̂1 and q̂1 = qL, respectively.

There are other equilibria in which buyer 2 has a more optimistic belief when non-

disclosure happens besides the equilibrium with full disclosure. From Lemma 2, we know that

in any equilibrium, both buyers must play pure strategies; thus, there is no randomization of

prices in equilibrium. To make the equilibrium characterization concrete, I assume that every

seller type either discloses the equilibrium offer or conceals it, i.e., there is no randomization in

disclosing the equilibrium offer.7 From Lemma 3, we know that all seller types share the same

incentive of whether or not to disclose a rejected offer. Accordingly, buyer 2 will form a belief

that the seller type is above a certain cutoff type based on what he knows about buyer 1’s price.

Applying the results derived previously in the lemmas, I can characterize a novel set of equilibria

in the optional disclosure model.

In the new set of equilibria, the common feature is that all seller types have a common

target price in every period. This price is the disclosure threshold. When an offer below or equal

to this target price is made, the offer will not be disclosed after it is rejected. However, when an

offer above this price is made, the seller has the incentive to disclose it after she rejects it. The

seller takes different actions for different offers. She discretely discloses the information that is

positive in some sense. Buyer 1’s equilibrium price offer p∗1 matches the value of the seller’s

disclosure threshold. The seller of type below the cutoff q̂1 is willing to accept p∗1 in period 1. As

for buyer 2, he has a consistent belief of the seller’s type in equilibrium; he chooses p∗2, which

7I make this assumption to simplify the equilibrium characterization. Drawn from Lemma 2, I conclude that
there are only equilibria in which buyer 1 and 2 play pure strategies. The equilibrium offer is perfectly predicted by
buyer 2. If on the equilibrium path a seller type randomizes between disclosing and withholding p∗1 with probability
α and 1−α , it must be the situation in which buyer 2 will offer the same price whether p∗1 is revealed or not. I
can construct an equilibrium for any arbitrary α ∈ (0,1), since the exact probability that the seller mixes between
disclosing and concealing the equilibrium offer does not affect the equilibrium construction. In the last part of the
proof of Proposition 7, I show that if this assumption is removed, for any equilibrium in which some seller types
randomize between disclosing and concealing p∗1, there is an equilibrium generating the same equilibrium prices
and cutoff types. In that equilibrium, all seller types conceal p∗1 on the equilibrium path, and other parts of the
strategy profile remain unchanged. Therefore I make this assumption.
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results in a cutoff type q̂2 that maximizes his payoff. Moreover, there are multiple equilibria.

Proposition 7 summarizes the details.

Proposition 7 There is another class of equilibria.

(1) Buyer 1 submits p∗1 and trades with the seller type below q̂1. The seller’s disclosure

rule is d2 (q,{p1}) = /0 if p1 ≤ p̂1 for any q. Here, p∗1 matches the value of p̂1 in equilibrium.

For any p1 > p̂1, any seller type has the incentive to disclose p1 if she rejects it. Buyer 2 offers

p∗2 and trades with the type below q̂2 where q̂2 =
A

2A−1 q̂1.

(2) There is δ ∗ = 1− 1
2α

such that:

(i) For all δ ≤ δ ∗, the cutoff type in period 1 satisfies q̂1 ∈
[
qL,

(2A−1)(1−δ )α
δA2+(2A−1)(2α(1−δ )−1)q

]
.

(ii) For all δ > δ ∗, the cutoff type in period 1 satisfies q̂1 ∈
[
qL,

(2A−1)
2δA2+(2A−1)(2α(1−δ )−1)q

]
.

Part (i) of Proposition 7 captures the other class of equilibria. The intuition for Part (i)

follows directly from Lemmas 1-4. This two-period game only has equilibria in pure strategies.

On the equilibrium path, buyer 2 has a degenerate belief of the cutoff type. For any offer higher

than the equilibrium price, the seller has the incentive to disclose the offer to buyer 2 after she

rejects it. This disclosure incentive is shared by all types who reject the offer. Disclosure sends

a signal to buyer 2 and causes him to update his belief towards a higher cutoff type. However,

when offers lower than the equilibrium price are made, the seller does not want to disclose this

information; she wants to pretend that the game is still on the equilibrium path.

In Figure 2.2, I illustrate the seller’s decision rule in one equilibrium with α = 0.8,

A = 0.92, δ = 0.6, q = 10, q = 20. There is a kink point on the line that represents the cutoff

type accepting the price offer. This kink point is at the disclosure threshold. This is because

the seller has different disclosure actions depending on whether the offer is above or below

the disclosure threshold. Below the disclosure threshold, as the price offered in period 1 is

concealed, buyer 2’s price offer will remain unchanged. The seller is more willing to accept
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a higher price in period 1, and the cutoff type is more sensitive to changes in p1. Therefore,

the line representing the cutoff type has a steeper slope below the disclosure threshold. Above

the disclosure threshold, the seller has the incentive to report high prices to buyer 2, and p2

is contingent on the reported p1. In this case, a higher p1 serves relatively fewer types, and

the slope of the line representing the cutoff type becomes flatter. Here, notice that there is no

disclosure for the equilibrium offer. This is because buyer 2 maintains a consistent belief of the

seller’s type in a pure strategy equilibrium. There is no need to convey an extra message, and

buyer 2 will not change his belief, even if the seller reveals p∗1. Furthermore, there is no reason

to reveal offers below the equilibrium price, as this would result in buyer 2 updating his belief

downwards.
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Figure 2.2. The seller’s disclosure and acceptance rules

As for buyer 1, the equilibrium price maximizes his payoff given the seller’s and buyer

2’s strategy. To analyze buyer 1’s pricing strategy, I characterize his payoff function, which is

π1 (q1) =
q1−q

∆q

(
q1+q

2 − p1

)
. p1 satisfies the equation below:

p1−αq1 = δ (p2−αq1) , where p2 =

 p∗2, when p1 ≤ p∗1
A2

2A−1q1, when p1 > p∗1
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In Figure 2.3, I present buyer 1’s payoff function when the disclosure threshold is equal to

10.067, for the same parameters as before (α = 0.8, δ = 0.6, A = 0.92, q = 10, q = 20). Note

that δ > δ ∗ holds.
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Figure 2.3. Buyer 1’s payoff when the disclosure threshold is p11

When p1 < p∗1, buyer 1 has a strong incentive to raise p1. According to the seller’s

strategy, the price in period 1 will not be disclosed, if it is made below the disclosure threshold.

Therefore, a small increase in p1 will not be reported to buyer 2, and buyer 2’s price will not be

affected. Conditional on trade, buyer 1’s marginal gain in average quality is 1
2 when trading with

extra high types, while his cost is (1−δ )α . When δ > δ ∗, conditional on trade, the marginal

gain from trading more high types outweighs the marginal cost of doing so. Moreover, a higher

p1 improves the chance of trade. Therefore, buyer 1 will set a price no lower than the disclosure

threshold. This follows from the first part of buyer 1’s payoff function where p1 ≤ p∗1, which is

also captured by the increasing part of buyer 1’s payoff function in Figure 2.3. However, buyer 1

does not want to submit a price strictly above the disclosure threshold, as a future buyer will be

informed and adjust his price upward accordingly. A higher p1 now appears less attractive to the

seller. In period 2, buyer 2 will propose p2 =
A2

2A−1q1, given his belief that the cutoff type is q1.

Conditional on trade, the marginal cost of trading extra high types becomes to (1−δ )α +δ
A2

2A−1 ,

while the marginal gain in average quality is still 1
2 . Buyer 1 has no incentive to offer a price
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higher than the disclosure threshold, as (1−δ )α +δ
A2

2A−1 > 1
2 . This follows from the second

part of buyer 1’s payoff function where p1 > p∗1. In Figure 2.3, it is captured by the decreasing

part of buyer 1’s payoff function, which is to the right of the disclosure threshold.

I find that there are multiple equilibria, as the seller can pick different prices as the

disclosure thresholds. In fact, there is a range of prices that can be sustained as the equilibrium

disclosure thresholds, and they constitute the set of equilibrium prices in period 1.

When δ > δ ∗, I have two constraints to construct the class of equilibria described in

Proposition 7. One constraint is that buyer 1 has a non-negative payoff. This pins down the upper

bound of the equilibrium cutoff type in period 1, which exists in the situation where buyer 1’s

surplus is zero. The other constraint is that buyer 1’s payoff decreases when p1 > p∗1. This pins

down the lower bound of the cutoff type in period 1, which is equal to qL. In Figure 2.4 below, I

present buyer 1’s payoff function under different price disclosure thresholds for the same set of

parameters as in Figure 2.3. Note that δ > δ ∗. As is shown in Figure 2.4, in any equilibrium,

buyer 1’s payoff reaches its maximum when p1 matches the value of the seller’s disclosure

threshold. Any price in the interval [p11, p15] can be supported as the equilibrium disclosure

threshold. Moreover, as δ decreases, the range of the equilibrium disclosure thresholds shrinks.

This is because the seller becomes less willing to trade in period 1 when she is more patient.

Buyer 1 needs to pay more in order to trade with the seller, and the seller will pick a higher

disclosure threshold.

When δ ≤ δ ∗ and p1 is below the disclosure threshold, the marginal benefit of raising p1

is not always greater than the cost. In this situation, there is a price level and a corresponding

cutoff type that maximize buyer 1’s payoff when p1 is not disclosed; this cutoff type is the upper

bound of the equilibrium cutoff type in period 1. The lower bound of the cutoff type in period 1

is still qL.

I can also characterize the situation off-path when p1 > p∗1. Here, p1 will be disclosed.

Buyer 2 will form a certain belief of the cutoff type in period 1; in this scenario, suppose this
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Figure 2.4. Buyer 1’s payoff under different disclosure thresholds

belief is q1. Given q1, buyer 2 best responds by targeting the cutoff type q2 where q2 =
A

2A−1q1;

p2 is equal to Aq2. The belief of the cutoff type q1 must satisfy the condition that q1 is indifferent

between accepting p1 and waiting for p2. This shows that

p1−αq1 = δ

(
A2

2A−1
q1−αq1

)
(2.1)

Equation (2.1) uniquely determines that q1 =
p1

δ
A2

2A−1+α(1−δ )
. Given buyer 2’s strategy,

the actual cutoff type accepting p1 is indeed q1. Note that in this construction, buyer 2’s strategy

maximizes his payoff conditional on the belief q1. As p1 > p∗1, buyer 2 is aware of this deviation.

In Figure 2.5, I illustrate the welfare split between the seller and the buyers for the

equilibria when δ > δ ∗. I can also rank the equilibria according to the overall welfare level, and

this result is summarized in Proposition 8.

Proposition 8 All the equilibria can be ranked by their welfare levels.

(1) When δ ≤ δ ∗, the equilibrium with the highest welfare level is the one where q̂1 =

(2A−1)(1−δ )α
δA2+(2A−1)(2α(1−δ )−1)q. The equilibrium with the lowest welfare level is the one where q̂1 = qL.

(2) When δ > δ ∗, the equilibrium with the highest welfare level is the one where q̂1 =

(2A−1)
2δA2+(2A−1)(2α(1−δ )−1)q. In this equilibrium, buyer 1 has a payoff of zero. The equilibrium with

49



0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065

Surplus of the buyers

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

S
u
rp

lu
s 

o
f 
th

e
 s

e
lle

r

The split of welfare in all equilibria

The
welfare-maximizing
equilibrium

The
welfare-minimizing
equilibrium

Figure 2.5. Welfare split between the seller and buyers

the lowest welfare level is the one where q̂1 = qL.

The total welfare level in the game is monotonic in q̂1; therefore, the equilibrium with

the highest q̂1 corresponds to the one that has the highest trading efficiency. When δ ≤ δ ∗, in

any equilibrium, buyer 1 and buyer 2 both end up with non-zero surpluses. When δ > δ ∗, the

equilibrium cutoff in period 1 reaches the maximum when buyer 1 has an expected payoff of

zero, which corresponds to the upper-left point in Figure 2.5. This is also when the overall

welfare is maximized. Here, the seller’s expected welfare reaches its maximum level, so does

buyer 2’s.

2.4.2 Welfare Analysis and Implications

In this section, I compare the equilibrium welfare levels in the optional disclosure model

with the ones in two benchmark models where the observability of previous offers is exogenously

determined. [23] and [18] present the results under two extreme information structures. One

is a transparent market, where past offers are always observable to future buyers. The other

is an opaque market, where previous offers are always unobservable. In these two benchmark

models, the information structure is exogenous, and buyer 2 updates his belief in a relatively

mechanical way. Before I present the welfare comparison, I first review the researchers’ results
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under these two information structures in the current context. The equilibrium characteristics are

summarized in Proposition 9 and 10, found below. For notation purpose, I refer to the benchmark

model where the previous offers are observable as the BMO model and the benchmark model

where the previous offers are unobservable as the BMU model.

Proposition 9 In the BMO model, there is a unique equilibrium. The cutoff types are q∗2 =

A
2A−1q∗1 and q∗1 = qL, respectively.

When the past offers are observable, there is a unique equilibrium, and it is in pure

strategies. This is because the current buyer’s price offer can perfectly affect the future buyer’s

pricing strategy. Buyer 2’s belief of the seller’s type depends on p1. Specifically, the belief

about the remaining type at period 2 is above a single cutoff q1. The construction of this unique

equilibrium follows from backward induction.

However, if the past offers are never observable, I find that the equilibrium result is

completely different. Here buyer 2’s belief of the seller’s type is independent of buyer 1’s actual

offer. I use K1 (·) to represent the cumulative distribution function of the cutoff type induced by

the equilibrium price in period 1 and K2 (·) to represent the cumulative distribution function of

the cutoff type induced by the equilibrium price in period 2.

Proposition 10 In the BMU model,

(1) When δ ≤ δ ∗, there is a unique pure strategy equilibrium; the cutoff types in the two

periods are q∗∗2 = A
2A−1q∗∗1 and q∗∗1 = (2A−1)(1−δ )α

δA2+(2A−1)(2(1−δ )α−1)q.

(2) When δ > δ ∗, there is no pure strategy equilibrium. Buyer 1 mixes between the

prices that induce a cutoff q and cutoffs in interval
[
q2,q2

]
, where q2 = A

2A−1q and q2 =

1
2δA+2α(1−δ )−1q. Buyer 2 mixes between the prices that induce cutoffs q2 and q2 with probability

K2

(
q2

)
= 1−2α(1−δ )

2δA .

The type of equilibrium of the BMU model depends on the discount factor. Conditional

on trade, the marginal gain of increasing p1 is 1
2 while the marginal cost is α (1−δ ). A pure
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strategy equilibrium exists when δ is small. However, when δ is large, there cannot be any pure

strategy equilibrium, as buyer 1 could increase his surplus by deviating from the original p1 and

offering a higher price. This deviation would be unknown to buyer 2. However, in my model

with the disclosure option, the seller adopts different disclosure actions above and below the

disclosure threshold. Any deviation above the disclosure threshold will be known to buyer 2.

The market operates quite differently under these two regimes. In period 2, the continu-

ation of the equilibrium of the BMU model does not depend on the offer history, while in the

BMO model it does. Therefore, given δ > δ ∗, when offers are observable to the future buyer,

the seller is more willing to reject a high offer today, which gives her the opportunity to receive

a better offer in the next period. That’s why the two benchmark models have very different

equilibria.

When δ ≤ δ ∗, the welfare-maximizing equilibrium of the optional disclosure model has

the same cutoff as the unique equilibrium of the BMU model, while the welfare-minimizing

equilibrium has the same cutoff as the unique equilibrium of the BMO model. Proposition 11

compares the welfare-maximizing equilibrium with the equilibria in the two benchmark models

when δ > δ ∗.

Proposition 11 Given δ > δ ∗,

(1) There exists A∗ such that, for A > A∗, the (expected) trading price in period 2 is

strictly higher in the welfare-maximizing equilibrium of the optional disclosure model than in

any equilibrium of the BMU model.

(2) There is A∗∗ and q∗ such that, for A > A∗∗ and q≤ q∗, the (expected) trading price in

period 1 is also strictly higher in the welfare-maximizing equilibrium than in any equilibrium of

the BMU model. In addition, if A > A∗ holds, the welfare-maximizing equilibrium ex-ante Pareto

dominates any equilibrium of the BMU model.

(3) Any equilibrium of the optional disclosure model yields a (weakly) higher social

surplus than the equilibrium of the BMO model.
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In the welfare-maximizing equilibrium of the optional disclosure model, as well as any

equilibrium of the BMU model, buyer 1 receives a payoff of zero. As for the seller, since the

price is higher for both periods in the welfare-maximizing equilibrium of the optional disclosure

model under some conditions, every seller type is ex-ante better off in the model with optional

disclosure. Specifically, these sets of conditions require that A is large enough8; moreover, the

variation in the quality of the good cannot be too large. As for buyer 2, he ends up with a strictly

better payoff in the optional disclosure model. Consequently, these conditions altogether point

toward part (2) in Proposition 11. Part (3) is fairly straightforward to see.

In the two-period model, I start to see the difference that emerges when the disclosure

option is allowed. Here, I discover that the seller has more flexibility when she sends signals

the prospective buyer. From buyer 2’s perspective, the optional disclosure model can generate

new beliefs, compared with both the BMU model and the BMO model.9 Among those beliefs,

some are more “optimistic” than others. If the belief is optimistic, buyer 2 believes the seller

sets a pretty high price as her disclosure threshold. Buyer 1 would make an offer exactly equal

to the disclosure threshold, and a low seller type would accept this offer. It indicates that the

seller rejecting buyer 1’s offer must have an item of considerable quality. This generates those

optimistic beliefs and makes buyer 2 willing to offer a good price. Meanwhile, the welfare-

maximizing equilibrium corresponds to the condition where buyer 2 is the most optimistic. In

this equilibrium, the belief of the cutoff type in period 1 is so optimistic that buyer 2 will offer

a sufficiently good price which could be even higher than the second period expected trading

price in the BMU model. Conditional on a sufficiently high price in period 2, the trading price

in period 1 could be higher in the optional disclosure model as well. As a result, more types

have the chance to trade in the optional disclosure model. Allowing flexibility in the disclosure

option can generate more optimistic beliefs, which potentially leads to Pareto improvement in

8In the proof of Proposition 11, I also discuss other possible conditions. Actually, when A≥ δ +α (1−δ ), part
(1) holds naturally for any α > 1

2 and δ > δ ∗.
9Note that in the BMU model, when δ > δ ∗, buyer 1 mixes between different prices in equilibrium. Buyer 2 has

a non-degenerate belief of the cutoff type seller. For buyer 2, the cutoff type in period 1 may be a low type or a
relatively high type. Taking all these into account, buyer 2 offers his price.
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the trading outcome.

Here, I also obtain new insights from the seller’s perspective. In this model, the buyer

is the party who makes the offer, and he has all the bargaining power. However, allowing the

disclosure option also gives the seller the ability to influence the outcome of the game. The

disclosure option essentially gives the seller the power to control the amount of information

released to the future buyer, which influences the future buyer’s belief and his interpretation

of what has happened in the past. By choosing her favorite disclosure threshold, the seller

affects buyer 2’s response to buyer 1’s price and buyer 1’s incentive of making an offer. This

disclosure option benefits the seller in terms of the trading prices, which are strictly higher in

some equilibria in my model than in any equilibrium in the BMO model and the BMU model.

Even though non-disclosure happens on the equilibrium path, the possibility of disclosure

enables the seller to convey positive messages to the future buyer, which plays a crucial role in

the equilibrium construction and the welfare results. Although in some real marketplace, we

often do not observe disclosure behaviors of past offers. It may not be a good idea to disallow

the disclosure option completely. Creating such a non-transparent market impedes not only the

transmission of negative signals between the seller and the buyer but also positive ones. This

could exert a negative impact on the total welfare level as it is shown in Proposition 11.

Compared with the results in the disclosure literature, the optional disclosure model

has a set of equilibria where the equilibrium offer is not disclosed on the equilibrium path.

The reason is that the disclosure content here is type-independent. All seller types have the

same disclosure content, i.e., the price history, which is not a perfect signal of the seller’s type.

Therefore, disclosure is not a dominant strategy for the highest seller type; thus, I can construct

an equilibrium where the equilibrium offer is not disclosed on the equilibrium path. However,

the price history does influence a future buyer’s belief of the seller’s type. The seller has the

incentive to disclose a high offer that will lead a future buyer to improve his belief of the seller’s

type.
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2.5 Discussions

In this paper, I assume that the seller type follows a uniform distribution for the purpose

of welfare analysis. The equilibrium construction is very similar when I have a more generalized

distribution of types. In this case, the seller still maintains the cutoff-type acceptance rule in

equilibrium. When δ is large enough, there is still one equilibrium with full disclosure. In

addition, there can be multiple equilibria where the equilibrium offers are not disclosed. In those

equilibria, disclosure happens only for the higher-than-equilibrium offers.

Another aspect that is worth of attention is the disclosure rule. In this paper, the seller

has the flexibility to decide the equilibrium disclosure threshold, which brings the multiplicity of

equilibria here. However, among these equilibria, some are more desirable than others. From

a mechanism design perspective, policy makers can apply restrictions to the disclosure rule to

select the equilibrium in which they are mostly interested. Specifically, instead of letting the seller

choose the disclosure price, policy makers may select the disclosure threshold. For example, in

the two-period model, when the seller is patient, policy makers can impose non-disclosure for a

price under a threshold p̂1 and voluntary disclosure (or mandatory disclosure) for all other prices

to select out the welfare-maximizing equilibrium. Here, p̂1 is equal to the equilibrium price

p∗1 in the welfare-maximizing equilibrium. In this case, the cutoff type in period 1 is uniquely

determined as (2A−1)
2δA2+(2A−1)(2α(1−δ )−1)q, and the welfare-maximizing equilibrium can be reached.

Adopting a non-disclosure policy for lower prices and a voluntary (or mandatory) disclosure

policy for higher prices could encourage the transmission of positive messages in the market

while suppress negative ones, which potentially enhances trading efficiency.

A similar argument can be extended to the situation where there are possibly multiple

trading units. For example, eBay in 2013 changed its disclosure policy regarding previous

purchases. Instead of displaying the exact accepted prices for recent purchases, only those

purchases that met the seller’s asking price are displayed with the accepted amount. For those

transactions that are processed in “Best offer” or “Special offer” (below the asking price), the
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selling prices are hidden, and only the existence of those offers is disclosed. Ebay also withholds

the amount of a previously rejected “Best offer” bid and only reveals that the bid was rejected.

This change in eBay’s disclosure policy ensures the transmission of positive information about

the trading item and promotes trading efficiency.

2.6 Extensions

This section discusses several extensions of the model. My current results are robust

under some modeling variations. In Section 2.6.1, I extend the model to an infinite-period setting

and discuss the equilibrium properties. In Section 2.6.2, I consider the situation of allowing

buyers to inspect historical offers at some cost. In Section 2.6.3, I consider a variation when the

offers may be leaked in adjacent periods with a small probability by nature. In Section 2.6.4, I

discuss the situation where there are multiple buyers in every period.

2.6.1 The Infinite-Period Model

In this subsection, I present the equilibrium result under an infinite-period setting when

δ > δ ∗ and q≤ (2α−1)q. Here, the seller is patient, and there is a large variation in the asset’s

quality.10 There is no final period, and the seller always has a chance to meet another buyer.

In this setting, I define pt−1 = {p1, . . . , pt−1} as the history of offers at period t. Pt−1 denotes

the set of all possible price histories at period t, and P0 = /0. Buyer t has a belief about the

seller’s type, and the cumulative distribution function of the belief is Gt (q). In the equilibrium

construction, applying a similar argument as in Lemma 2 in the two-period model, a mixed

strategy cannot be supported in equilibrium for any buyer unless one of the buyer’s offers is

accepted by all seller types. This property is formally restated as Lemma 8 in Appendix B.

Specifically, I focus my analysis on a tractable equilibrium called the Simple Threshold

(ST) equilibrium in which the seller adopts a threshold rule and only discloses offers strictly

10When there is a small variation in the quality of the good, every buyer’s optimal strategy is to serve all seller
types. The analysis for this circumstance can be found in Appendix B.
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above the disclosure threshold. Equilibrium offers are not disclosed on the equilibrium path.

This is similar to the equilibria constructed in the two-period model. I formally show that for any

other equilibrium, there exists an ST equilibrium that has the same cutoff type and trading price

in every period. Hence, it is reasonable to focus only on the ST equilibrium. I formally define

the Simple Threshold (ST) equilibrium as follows.

Definition 1 The seller’s disclosure rule dt is called a threshold rule if there exists threshold

functions: p̂m,t (·) :
[
q,q
]
×Pt−1 −→ R+ for any m≤ t−1, such that pm ∈ dt (q, pt−1) if pm >

p̂m,t
(
q, pt−1). Otherwise pm /∈ dt (q, pt−1). If a strategy profile (dt , p∗t , q̂t) in which dt is a

threshold rule constitutes an equilibrium, and every equilibrium offer is not disclosed on the

equilibrium path, it is said to be an ST equilibrium.

In an ST equilibrium, the seller has a threshold function p̂m,t (·) in period t, which is a

mapping from the seller’s type and the price history to R+. She discloses offer pm made in period

m to buyer t if and only if pm > p̂m,t
(
q, pt−1). No equilibrium offer is disclosed. Due to a similar

argument explained in Lemma 4, any seller type has the incentive to disclose a price higher than

the equilibrium price when rejecting it. Therefore, the value of the disclosure threshold p̂m,t (q, ·)

on the equilibrium path matches the equilibrium price p∗t . From Lemma 5, I also know that the

threshold p̂m,t is invariant in every period t > m.

Lemma 5 When δ > δ ∗, in any ST equilibrium, if pm ∈ dm+1 (q, pm), then pm ∈ dt (q, pt−1) for

any t > m+1. Additionally if pm /∈ dm+1 (q, pm), then pm /∈ dt (q, pt−1) for any t > m+1.

Lemma 5 characterizes the invariance of the disclosure threshold across time. On the

equilibrium path, if the seller discloses offer pm to buyer m+ 1, then the seller must also

disclose pm to any buyer t (t > m+1). If the disclosure threshold p̂m,t
(
q, pt−1) is higher than

p̂m,m+1 (q, pt) for some t > m+1, it creates room for buyer m to make a small deviation that will

not be reported to some upcoming buyers. Some future prices will remain unchanged. Therefore,

the benefit of raising pm could outweigh the cost. Lemma 5 allows me to simplify the notation of

57



p̂m,t
(
q, pt−1), as it is invariant for all t > m in any ST equilibrium. Thus, I denote the disclosure

threshold for pm by p̂m
(
q, pt−1). In Theorem 2, I claim that for any equilibrium of the game,

there exists an ST equilibrium that is payoff-equivalent to the participants. This allows me to

focus on characterizing the ST equilibrium.

Theorem 2 When δ > δ ∗ and q < (2α−1)q, for any equilibrium of the infinite-horizon game,

there is an ST equilibrium that induces the same cutoff type and price in every period.

The proof of Theorem 2 is constructive and is deferred to Appendix B, but I will sketch

the main idea here. In the payoff-equivalent ST equilibrium, the seller’s disclosure strategy is

constructed as pm ∈ dt (q, pt−1) only if pm > p̂m
(
q, pt−1), for m≤ t−1. The seller selects the

disclosure thresholds such that p̂1 = p∗1 and p̂t = p∗t if pm ≤ p̂m for all m ≤ t− 1. Moreover,

whenever there is a period m ≤ t−1 such that pm > p̂m, the seller reports pm to buyer t. The

disclosure threshold for offers in period t is now raised to p̂t = p∗t + ε where ε = pm− p̂m. In

this construction, it is straightforward to check that the equilibrium offer is not disclosed; in

addition, the equilibrium offer matches the value of the disclosure threshold, in every period.

There is no deviation from either the seller or buyers, and it is an ST equilibrium. Here, the

equilibrium cutoff types are the same as those in the original equilibrium.

Proposition 12 describes the ST equilibria.

Proposition 12 When δ > δ ∗ and q < (2α−1)q, there are two types of ST equilibria.

(1) In a type-1 ST equilibrium, there exists n? such that the equilibrium cutoff types

remain constant after period n?, i.e., q̂1 ≤ ·· · ≤ q̂n?−1 ≤ q̂n? = q̂n?+1 = · · · . Buyer n? offers α q̂n?

and any future buyer t will make an offer no more than α q̂n? .

(2) In a type-2 ST equilibrium, there are two phases. There is a smallest period n??

such that q is served with positive probability. In phase 1, q̂1 ≤ q̂2 ≤ ·· · ≤ q̂n??−1 and q̂n??−1 =

(2α−1)q. In phase 2, buyer t (t ≥ n??) randomizes between αq and pL
t where pL

t ≤ p∗n??−1. The

58



probability of offering αq is λ such that the following condition holds.

p∗n??−1−α q̂n??−1 = δ
(
λαq+(1−λ ) p∗n??−1−α q̂n??−1

)
In a type-1 ST equilibrium, the seller sets her disclosure threshold as α q̂n? for some

q̂n? < q in all following periods after period n?. Future buyers will observe any offer higher

than α q̂n? . Under this circumstance, from some intermediate period onward, every offer that

potentially results in trade will be revealed to all buyers in the future. This situation is quite

similar to the BMO model. According to the intuition found in [23], all future buyers will not

offer prices higher than α q̂n? because offering higher prices will trigger more aggressive prices

in the future. The seller can gain more reputation to reject a current high offer and disclose it to

the next buyer. She will wait for good offers in the future, which leads to an impasse in trading

after some period. If the seller sets her disclosure threshold as αq in every period, any serious

offer will eventually be revealed to all buyers, and I will have the same equilibrium result as in

[23].

In a type-2 ST equilibrium, every seller type trades eventually. The seller sets a non-

decreasing sequence of prices as the disclosure thresholds, and all types trade across time. In

period n??−1, the cutoff type is (2α−1)q. After period n??−1, the seller sets the disclosure

threshold at p∗n??−1, which is the trading price in period n??−1. All future buyers randomize

between αq and pL
t , where pL

t ≤ p∗n??−1. αq is accepted by all seller types, while pL
t is rejected

by all remaining types. These two offers both give the buyer a payoff of zero. The disclosure

threshold has the property that p̂t = p∗t when t ≤ n??− 1, and p̂t = pn??−1 when t > n??− 1.

Here, every buyer has no incentive to deviate, as a higher offer would be reported to buyers in

the future, which could result in more aggressive offers. Additionally, a lower offer would be

concealed, which would lead to a loss of trades and therefore impair his surplus.
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2.6.2 Costly Inquiry

Another variation is to allow buyers to inspect the price history at some cost. In this case,

it is evident that a buyer will never pay any price to inspect the historical offers in equilibrium.

This is because offers are made in pure strategies unless the highest type is served. The possible

randomization occurs only when the highest seller type is served. In the infinite-horizon game, I

show that in equilibrium a buyer only randomizes between exactly two offers if he plays a mixed

strategy, one of which is αq. Therefore, the offer history is entirely predictable from the buyer’s

perspective, and he refuses to pay anything to inquire about past offers. Every equilibrium of the

original model also exists under this modified setting.

2.6.3 Leakage of Past Offers

Another possible extension is that the offers may be leaked in adjacent periods with a

small probability ε by nature. This is actually a practical modification of the original model,

as the past transaction prices may be leaked by some anonymous information sources in real-

world trading. Here, the original model in the paper becomes a special case with ε = 0. The

equilibrium result when δ > 1− 1
2α

is robust with a sufficiently small perturbation ε . As long as

ε is sufficiently small, the current buyer would have relatively little chance to learn the actual

offer made in the previous period. In the two-period model, if buyer 1 lowered his price today,

there is a very large chance that this reduced amount would not be caught by buyer 2, and

therefore the next period offer would remain unchanged. There is a range of high seller types

who accept the original offer now would reject this reduced offer and switch to buyer 2. In this

case, the probability of trade is reduced. For a small enough ε , the range of these switching

seller types is so great that the drop in average quality of the good outweighs the reduction in

price. In this case, reducing the price below the disclosure threshold would not benefit buyer 1.

In summary, buyer 1 still has the incentive to raise his price to match the value of the seller’s

disclosure threshold. Any equilibrium of the original model also exists under this variation.
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2.6.4 Multiple Buyers

The model can also be extended to have competition on the buyer’s side. Instead of

having a single buyer in each period, I can allow multiple buyers into the market and have

them make simultaneous offers to the seller. In this scenario, when δ > δ ∗, the equilibrium

construction is very similar. The only difference is that every buyer ends up with a payoff of zero,

due to a Bertrand competition setup. As a result, the equilibrium is unique in the two-period

model.

2.7 Conclusion

In my modeling exercise with optional disclosure, I discuss the equilibrium construction

in both the two-period model and the infinite-period model. Compared with the BMO model and

the BMU model, the optional disclosure model has a new set of equilibria generated by allowing

for flexibility in disclosure. This is due to the fact that buyers have a new class of equilibrium

beliefs. These new beliefs originate from the seller’s threshold rule in disclosing previous offers.

Such beliefs do not exist in either the BMO model or the BMU model. As for the seller, she also

utilizes this flexibility in disclosure, taking different actions for different prices to promote trade.

Furthermore, I do welfare analysis and compare the generated social welfare in these

three models when there are two trading periods. Here I find that it is in policy makers’

interest to utilize the disclosure option, especially when the item’s quality does not vary broadly.

With optional disclosure, information is filtered through a threshold rule and transmitted more

efficiently, which enhances trading efficiency in the market under some conditions. Policy makers

may not necessarily impose mandatory disclosure or concealment on every past offer. More

importantly, although there is a multiplicity of equilibria, policy makers can apply restrictions

to the disclosure rules in order to select the equilibrium in which they are interested. Adopting

a non-disclosure policy for lower prices and a voluntary (or mandatory) disclosure policy for

higher prices could potentially enhance trading efficiency. This idea is also reflected in eBay’s

61



display of previous offers.

Information about past transactions is a very crucial part of the market information

structure. This paper focuses on the seller’s incentive to voluntarily disclose past rejected prices

and provides policy implications for designing or regulating the market information structure.

More generally, there are other aspects of transactional information. How to design the optimal

disclosure policy for general transactional information is still an interesting and open question to

study.
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Chapter 3

Long-Term Contracting with a Present-
biased Agent

People’s time preferences affect their tradeoffs between payoffs in a long-run contracting

environment. In this paper, I consider a long-term contracting problem between a monopolistic

seller and a present-biased buyer with asymmetric information in a Markov environment. The

analysis is focused on the situation in which the buyer and the seller are fully aware of the degree

of inconsistent discounting. I find that time inconsistency affects the optimal allocations through

a novel unconditional effect, which is essentially the cross-period marginal effect of the current

type on future types in the Markov environment. The optimal contract still possesses the no

distortion at the top feature, and the allocations for the low type are always distorted for any

realization of types in the history. However, the principal’s expected surplus from contracting

with the present-biased agent could be strictly worse than contracting with the time consistent

agent.

3.1 Introduction

People’s time preferences influence their inter-temporal decision making. Standard

theories in the long-term contracting environment are based on the discounted-utility (DU)

model. This model assumes that consumers evaluate payoffs at a consistent discount rate,

and it is represented by an exponential discount function. However, growing evidence from
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field studies and experiments has documented that people’s time preferences do not follow the

standard exponential discounting assumption. Moreover, they exhibit a fairly inconsistent pattern;

people tend to be more patient in the long run than in the short run. Such preferences have been

called present-biased preferences or time-inconsistent preferences, which are often captured by

quasi-hyperbolic discount functions in the literature ([48]; [42]; [30]; [38]).

With present-biased preferences, the discount rate between two consecutive periods falls

across time. People are inclined to underestimate the trade-off between payoffs at future periods

when making decisions beforehand, and this leads them to give in to current temptations and

procrastinate on difficult tasks. A consequence of present-biased preferences is that people are

often behind schedule. What is considered as optimal today may not turn out to be optimal when

the future comes. This issue becomes a real problem in a unilateral commitment situation where

the consumer can leave the contract anytime while the seller fully commits.1 The consumer tends

to withdraw from the contract at an earlier stage than what he has planned as he underestimates

the tradeoffs at later periods. The following example illustrates this situation.

Example 1 A cellular phone company provides service to a present-biased consumer con-

tinuously for three periods. The consumer can walk away from this relationship at any

t ≥ 1. The service itself gives the consumer 6 utils each period, and the company charges

p = (p1, p2, p3) = (6,7,5). The consumer has the present-bias parameter β = 0.9 and his

per-period payoff satisfies ut = 6− pt if the contract is accepted. I assume δ = 1 for simplicity.

The consumer plans to finish the three-period contract when contracting in period 1. However,

in fact, he exits after period 1.

A natural question to ask is how should a profit-maximizing firm modify the contract if it

is aware that the consumers are present-biased. How does time inconsistency affect the firm’s

optimal selling strategies? To answer these questions, I study a dynamic monopolistic screening

1The unilateral commitment setting seems to be the most appropriate for many marketplaces including the
insurance market and the internet plan market.
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problem with a present-biased agent. The model incorporates the framework of [5], and it is a

multi-period model with the participation of a buyer (agent, he) and a seller (principal, she). The

buyer repeatedly purchases some nondurable good from the seller. In every period, the buyer has

private information about his type, which follows a Markovian evolution process. I extend the

existing literature in dynamic mechanism design by allowing the agent’s time preference to be

present-biased.

The agent’s time inconsistency is modeled by a quasi-hyperbolic discount function. The

discount rate is βδ between the current period and the next period, and it is δ for any other

subsequent pair of consecutive periods. In the model, I assume that the agent is sophisticated,

and the degree parameter β is known both to the buyer and the seller. This directly relates to

the previous literature studying contracting problems between a principal and an agent where

the degree of inconsistency is known to the principal. [39] consider a moral hazard problem

with a time-inconsistent agent. In their model, the agent has private information about his

cost of accomplishing a task, and waiting is optimal when the private cost of the agent is too

high. However, as the principal cannot distinguish between inefficient procrastination and an

efficient delay, he cannot implement the first-best contract. In [13], a monopolistic firm designs

a contract with a two-part tariff for the present-biased agents. When the goods have immediate

costs and delayed benefits (e.g., health clubs), the monopoly charges a price below the marginal

cost and a high entry fee. When the agent is fully sophisticated, the firm can still achieve the

first-best profit level. However, the result in [13] heavily relies on the assumption that there

is no asymmetric information between the principal and the agent. In [16] and [15], they use

the same utility function as [20]. In a static setting, the firm designs the choice menu that the

agent can choose from, which screens the agent’s willingness to pay. The firm can extract all

the surplus when the agent wants to buy a larger quantity or a higher quality good. Another

approach is provided by [14]: they consider the situation where the principal provides contracts

to agents with different abilities to forecast changes in their future tastes. In this context, the

principal knows the agent’s degree of inconsistency but does not know if the agent is aware of his
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inconsistency. The authors find that the optimal menu of contracts serves as a commitment device

for the relatively sophisticated agents but exploits the naive agents. My paper distinguishes

itself from the previous literature through its dynamic features. In my model, I assume that

the degree of inconsistency is known to both the seller and the buyer. The seller designs the

long-term contract in order to screen the buyer’s valuation of the good. Since the buyer’s current

valuation has an impact on his future valuation, the seller needs to take account of this impact

when designing the optimal long-run contract for the present-biased buyer.

Specifically, I characterize the profit-maximizing contract for a monopolistic seller who

interacts with a present-biased agent. This contract is very different from the contract for a time

consistent agent. In [5], where the buyer is time consistent, the contract becomes efficient once

the buyer reports himself to be a high type. Only a persistent low type continues to receive

an inefficient allocation. The distortion in the contract is due to the marginal effect of the

current type on future types, which is the per period marginal effect in the Markov environment

captured by the “impulse response” function in [40]. However, the optimal contract for a

present-biased agent lacks this feature, and the degree of the distortion depends on the degree of

time inconsistency. Regarding time preferences, the monopolist is more patient than the buyer.

This brings an additional residual effect which captures the distortions in allocations due to

the non-transferable utilities between the buyer and the seller. The seller can take advantage

of the difference in discounting by imposing payments at later periods. However, the seller’s

hands are tied, as he also needs to provide the buyer an incentive to stay in the contract until

the end. Accordingly, the characterization of the optimal contract offers insights that help us

better understand present-biased preferences. Time inconsistency affects the optimal allocations

through a novel unconditional effect, which is essentially the cross-period marginal effect of

the current type on future types in the Markov environment. The optimal scheme combines the

“impulse response” (also referred to as the conditional effect in my paper), the novel unconditional

effect and the residual effect.

This paper is also related to the research papers on dynamic mechanism design. In the
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standard mechanism design problem, the Revelation Principle allows us to simplify the problem

and only focus on designing the direct mechanism. This paper also concentrates on the direct

mechanism. In the model, I incorporate the conventional setup from [36] and [5] with one

principal and one agent. Regarding the methodology, I follow the standard dynamic mechanism

design approach ([4]; [10]; [6]; [40]) to solve the multi-period model.

The rest of the paper is organized as follows. Section 3.2 describes the model. In Section

3.3, I characterize the optimal contract for a three-period model where there are binary types.

I also discuss the properties of the contract and compare it to the benchmark model where the

buyer is time consistent. Section 3.4 studies a three-period model with continuous types. Section

3.5 presents the optimal contract for a T-period model where there are binary types. Section 3.6

concludes.

3.2 The Model

I consider a three-period model. In each period, the buyer (agent) purchases a non-durable

good from the seller (principal), and the contract on quantities and transfers (xs, ts) is signed in

the first period. The buyer has the option to exit the contract at the beginning of the second or the

third period if his expected continuation payoff of staying in the contract falls below his value of

the outside option, i.e., 0.2 This suggests that I will impose the ex-post participation constraints

in all three periods. The buyer’s private valuations of the good in period 1, 2 and 3 are denoted by

θ1, θ2 and θ3, respectively. He receives a payoff of θsxs− ts per period when consuming xs. θ1 is

known only to the buyer at the time of contracting, and θ2 and θ3 are realized at the end of period

1 and period 2, respectively. The common knowledge is the distribution of the buyer’s type, i.e.

F1 (θ1), F2 (θ2|θ1) and F3 (θ3|θ2). Here, I assume the evolution of the buyer’s type follows a

2There are two reasons to provide the exit option to the buyer. One reason is that if the exit option is not provided,
the seller can make an infinitely large profit by making transfers to the buyer in the first two periods and charge
a tremendous amount in the last period. The other reason is that this assumption is appropriate in many practical
contracting environments. Usually, the seller fully commits to the terms of the contract while the buyer can leave
and take other better deals. Sometimes, exiting the contract costs the buyer a fixed penalty c. Here I normalize c,
and consider the simplest case where c = 0.
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Markov process. In all three periods, the support of the type space is
[
θ ,θ

]
, and I assume that

all the PDF and CDF functions are continuous differentiable. The inverse hazard rates 1−F1(·)
f1(·) ,

1−F2(·|θ1)
f2(·|θ1)

and 1−F3(·|θ2)
f3(·|θ2)

are non-decreasing in the corresponding variables. In period s, the seller

incurs a loss of 1
2x2

s when she produces xs units. Under this specification, notice that the efficient

allocation in period s is exactly θs.

Period 1

S offers(xs, ts)
B accepts

B declines

Period 2
B continues

B exits

Period 3
B continues

B exits

End

Figure 3.1. The timeline of the three-period game

In my model, the buyer is present-biased with a β −δ discounting function while the

seller is time consistent with a discount factor δ . I further assume the degree of time inconsistency

is known to the buyer and the seller. The inter-temporal utility functions are given below.

Buyer’s utility : θ1x1− t1 +βδ (θ2x2− t2)+βδ
2 (θ3x3− t3)

Seller’s utility : t1−
1
2

x2
1 +δ

(
t2−

1
2

x2
2

)
+δ

2
(

t3−
1
2

x2
3

)

Following [36], I focus on the direct mechanism of reporting types. Let x1 (θ1), x2 (θ2|θ1)

and x3 (θ3|θ1,θ2) denote the trading quantities in the three periods, respectively, and t1 (θ1),

t2 (θ2|θ1) and t3 (θ3|θ1,θ2) the corresponding payments. The seller’s problem can be expressed

as:

max
x1,x2,x3,t1,t2,t3

Eθ1

[
t1−

1
2

x2
1

]
+δEθ1,θ2

[
t2−

1
2

x2
2

]
+δ

2Eθ1,θ2,θ3

[
t3−

1
2

x2
3

]

subject to the incentive compatibility (IC) constraints and the individual participation (IR)

constraints.
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IC1 : V1 (θ1)≥V1
(
θ
′
1,θ1

)
for all θ1 and θ

′
1

IC2 : V2 (θ2|θ1)≥V2
(
θ
′
2,θ2|θ1

)
for all θ1 and all θ2, θ

′
2

IC3 : V3 (θ3|θ1,θ2)≥V3
(
θ
′
3,θ3|θ1,θ2

)
for all θ1, θ2 and all θ3, θ

′
3

IRs : V1 (θ1)≥ 0, V2 (θ2|θ1)≥ 0 and V3 (θ3|θ1,θ2)≥ 0 for all θ1, θ2, θ3

where V1 (θ
′
1,θ1) represents the buyer’s expected payoff at the contracting stage when he reports

his type to be θ ′1 conditional on his true type θ1. The other V2 (·) and V3 (·) have similar meanings.

Specifically,

V3
(
θ
′
3,θ3|θ1,θ2

)
= θ3x3

(
θ
′
3|θ1,θ2

)
− t3

(
θ
′
3|θ1,θ2

)
V2
(
θ
′
2,θ2|θ1

)
= θ2x2

(
θ
′
2|θ1

)
− t2

(
θ
′
2|θ1

)
+βδEθ3

[
θ3x3

(
θ3|θ1,θ

′
2
)
− t3

(
θ3|θ1,θ

′
2
)
|θ1,θ2

]
V1
(
θ
′
1,θ1

)
= θ1x1

(
θ
′
1
)
− t1

(
θ
′
1
)
+βδEθ2

[
θ2x2

(
θ2|θ ′1

)
− t2

(
θ2|θ ′1

)
|θ1
]

+βδ
2Eθ2,θ3

[
θ3x3

(
θ3|θ ′1,θ2

)
− t3

(
θ3|θ ′1,θ2

)
|θ1
]

Under the IR and IC constraints, the buyer truthfully reports his type on the equilibrium

path. The seller’s mechanism induces a dynamic Bayesian game, and I use perfect Bayesian

equilibrium (PBE) as the solution concept for this paper.

3.3 A Binary-Type Model

In this section, I will focus on the situation in which the type space is binary, and the

analysis for a more general model is provided in the subsequent section. Each period, there

are two possible types, θ and θ . I let ∆θ = θ − θ . The buyer’s type evolves according to a

discrete Markov chain. The probability of a high type conditional on a high type is α while

the probability of a low type conditional on a low type is γ . I further assume that types are
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positively correlated, i.e., Pr
(
θ |θ
)
−Pr

(
θ |θ
)
= α + γ − 1 ≥ 0. In period 1, the seller has a

prior
(
µ

θ
,µθ

)
= (µ,1−µ) on the buyer’s type in period 1. As before, the efficient allocation in

period s is exactly θs. For now, I assume that β (α + γ−1)− (1−β )(1− γ) = αβ + γ−1≥ 0.

This corresponds to the assumption that the overall effect of θ1 on θ3 is positive in Section 3.4.

The setup of the binary-type model is very similar to the model in [5] except that the

agent is present-biased, and the periods are finite. In the study of the dynamic model in [5],

it is assumed that every type is served with a positive quantity, which is guaranteed by the

assumption that ∆θ cannot be too large. I continue to maintain this assumption here, and the

specific condition can be easily derived from the optimal allocations. Before presenting my

results, I will introduce the optimal contract for the time consistent agent first, which follows

from [5].

Let hs represent the history of reported types at period s. hs is defined as h1 = ∅ and

hs =
{

hs−1,θ
′
s−1
}

where θ ′s−1 is the reported type in period s−1. Hs refers to the set of possible

histories at time s. Let hL
s = {θ ,θ , . . . ,θ} denote the history of type where the agent reports θ in

the previous s−1 periods. I also refer to hL
s as the lower branch. Under the optimal contract, the

seller’s surplus is maximized subject to the IR and the IC constraints.

Proposition 13 When β = 1, the allocation rule in the optimal contract is characterized by the

following supply function, given the reported type is θ .

x∗s (θ |hs) =


θ , if θ = θ

θ , if θ = θ and hs ∈ Hs\hL
s

θ −∆θ
µ

1−µ

[
α+γ−1

γ

]s−1
, if θ = θ and hs = hL

s

From the allocation rule, we can see that the allocation becomes efficient once the agent

reports himself to be a high type. However, this property fails when the agent is present-biased.

Before I present the allocation rule for the present-biased agent, let me introduce a preliminary
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result. The IR and IC constraints can be simplified.

Lemma 6 In the binary-type model,

(1) The IR constraints for the high type θ in the last two periods are redundant.

(2) The IR constraints for the low type θ always hold with equality in the last two periods.

(3) The IC constraints for the high type θ always hold with equality in the last two

periods.

The results in Lemma 6 follows from the single crossing property in the signaling game.

I solve the model under the IC constraints for the high type and the IR constraints for the low

type primarily. This corresponds to the first-order contract in [6]. I still need to check the IC

constraints for the low type in all periods and the IR constraint for the high type in period 1. I

will come to that part later.

Definition 2 A contract is called first-order optimal if it maximizes the seller’s profit under the

IR constraints for the low type and the IC constraints for the high type in all periods.

Proposition 14 The allocation rule in the first-order optimal contract is as follows. For any

discount factor δ , the allocation for the high type is always at the efficient level θ . However, the

allocation for the low type θ is always distorted downwards. The payment scheme is pinned
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done by the IR constraints for the low type and the IC constraints for the high type.

x1
(
θ
)

= x2
(
θ |θ1

)
= x3

(
θ |θ1,θ2

)
= θ

x1 (θ) = θ − µ

1−µ
∆θ

x2
(
θ |θ
)

= θ − α

1−α
(1−β )∆θ

x2 (θ |θ) = θ −β
µ (α + γ−1)
(1−µ)γ

∆θ − (1−β )
1− γ

γ
∆θ

x3
(
θ |θ ,θ

)
= θ − (1−β )2 α

1−α
∆θ

x3
(
θ |θ ,θ

)
= θ −β (1−β )

α (α + γ−1)
(1−α)γ

∆θ − (1−β )2 1− γ

γ
∆θ

x3
(
θ |θ ,θ

)
= θ −β (1−β )

µα (α + γ−1)
(1−µ)(1− γ)(1−α)

∆θ − (1−β )2 α

1−α
∆θ

x3 (θ |θ ,θ) = θ −β
2 µ (α + γ−1)2

(1−µ)γ2 ∆θ +β (1−β )
µ (1− γ)(α + γ−1)

(1−µ)γ2 ∆θ

−β (1−β )
(α + γ−1)(1− γ)

γ2 ∆θ − (1−β )2 1− γ

γ
∆θ

It is useful to compare the allocations for the present-biased agent with the ones for the

time consistent agent. Remember that when the agent is time consistent, the contract becomes

efficient in all following periods as soon as the agent reports a high type. The allocation is

inefficient only when the agent reports the low type repeatedly in the history. Distortions are

introduced only to extract more surplus from the high types; in addition, the information rent

paid to the high type depends on the allocations in the following periods. Since the IC constraint

for the high type is binding, the high type would end up with the same surplus if he falsely

reported a low type. Thus, only the allocations for persistent low types in the lower branch are

distorted downwards. The quantities are chosen efficiently conditional on a high type report.

However, this result only holds partially when the agent is present-biased. The agent still

receives an efficient allocation when he reports a high type. This is not surprising as the principal

distorts the allocations in order to induce truthful revelation of the high types. There is no need

to distort the allocations for the high types. The allocations for the low types will always be
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inefficient even there exists a high type report in the history. This is different from the results in

[5]. When β → 1, the allocations for the present-biased agent converge to the allocations for the

time consistent agent.

In a Markovian environment, types are correlated across all periods. The distortion

to the allocation in the current period depends on the incentive for truth-telling in the current

and previous periods. When β = 1, utilities are transferable between the buyer and the seller;

therefore, the seller can extract the total information rents from the high type in the future periods

ex-ante. Moreover, since the type in the current period has an impact on the types in the future

periods, there is a causation chain that links the information (type) in each period together, which

is the one step chain going from period 1 to period 3 via period 2. This chain is referred to as

the “impulse response” in [40] and the “informativeness measure” in [10]. It describes how

responsive the buyer’s current type is to his previous type through the type evolution process. In

my paper, I also refer to this effect as the conditional effect.

When β < 1, there is a wedge between the discount factors of the buyer and seller. Here,

utilities are not perfectly transferable, and the ex-post participation constraints bind. The seller

cannot extract the total information rents in later periods ex-ante. For example, in period 1, he

can only extract a proportion, β , of the rent in period 2. For any future period, there is always a

residual amount of the information rent at that period left to the buyer; I call this phenomenon

the residual effect. Notice that the residual effect happens in all periods except in period 1.

In the game, the buyer discounts period 2 by βδ in period 1 and discounts period 3

by βδ in period 2. This is as if the buyer discounts period 3 by β 2δ 2 in period 1 through the

conditional effect. However, the buyer discounts period 3 only by βδ 2 from the perspective of

period 1, and time inconsistency adds another layer to my model. The allocation in period 3 is

further distorted to account for the inconsistency, which is through the unconditional effect. The

unconditional effect of θ1 on θ3 captures how θ3 is affected by θ1 without knowing θ2, and it is

the cross-period causation chain going from θ1 to θ3. Here, β of θ3 is responsive to θ1 through

the conditional effect, and 1−β of it goes through the unconditional effect. A weighted mix of
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the conditional effect and the unconditional effect captures the informativeness of θ3 given θ1 in

period 1.

The information chain for the time consistent agent

θ1
Period 1

θ2

Period 2
θ3

Period 3

β Conditional effect β

The information chain for the present-biased agent

θ1
Period 1

θ2

Period 2
θ3

Period 3

β βConditional effect

β

Unconditional effect

In the binary-type model, only the allocations for the low types are distorted. Through

the conditional effect, the unconditional effect and the residual effect, the allocations in the future

periods will be affected if the buyer reports a low type in the current period. It is obvious that

there is no distortion to the supply in period 3 when the buyer reports θ . When the buyer reports

θ initially, the allocation in period 1 is not distorted. Here, there is no subsequent distortion to

the allocation in period 3 through the conditional effect or the unconditional effect. When the

buyer reports θ in period 2, the supply in period 2 is not distorted; in addition, the distortion

to the allocation in period 3 through the conditional effect also vanishes. This suggests that

the conditional effect on the allocation in period 3 persists only when θ is reported in all three

periods. Specifically in x3 (θ |θ ,θ) , the conditional effect is captured by µ(α+γ−1)2

(1−µ)γ2 ∆θ . However,

the unconditional effect persists regardless of the intermediate type θ2. It is described by the term
µα(α+γ−1)

(1−µ)(1−γ)(1−α)∆θ in x3
(
θ |θ ,θ

)
and the term µ(1−γ)(α+γ−1)

(1−µ)γ2 ∆θ in x3 (θ |θ ,θ). In summary, the

information causation chains going through θ are all inactive. The residual effect persists in

period 2 or 3 if θ is reported. Notice that in [5], there is only the conditional effect in the model.

The first-order optimal contract satisfies the other constraints when β is large enough.

Here, all other constraints can be transformed into functions of β . In the extreme case where
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β = 1, given any parameters α , γ and µ ∈ (0,1), all the other IC and IR constraints hold with

strict inequalities under the first-order contract. As the other constraints are continuous in β ,

when β is sufficiently large, these additional IC and IR constraints are satisfied as well; therefore,

the first-order contract maximizes the seller’s payoff subject to all the IC and IR constraints. This

is formally stated in Proposition 15.

Proposition 15 For any parameters α , γ and µ ∈ (0,1), there exists a β such that when β ≥ β ,

the IC constraints for type θ hold, and the IR constraints for type θ also hold. As a result, the

first-order contract is indeed optimal.

Given β sufficiently large, I can also analyze the seller’s expected profit in my model.

It turns out that this profit is increasing in β when β sufficiently large. The next proposition

summarizes this result.

Proposition 16 There exists a β ′ such that the seller’s expected profit is an increasing function of

β when β ≥ β ′. Consequently, the seller’s expected profit from contracting with a present-biased

buyer is strictly less than her expected profit from contracting with a time consistent agent.

The seller’s expected profit is the difference between the expected social surplus and the

high-type buyer’s information rent. However, without further assumptions on the distribution

parameters —i.e., α , γ and µ —it is hard to compare the magnitude of the social surplus and

the information rent in my model with those in the model where the agent is time consistent.

Moreover, if we take a closer look at the allocations for θ in period 2 and period 3, the allocations

are still below the efficient level even when the buyer has previously reported a high type. Given

β large enough, the inefficiency in these allocations decreases when β increases. This impact

dominates the other indeterminacy in the seller’s profit function when β is sufficiently large,

which eventually leads to the result in Proposition 16.
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3.4 Extensions

3.4.1 A Continuous-Type Model

In this section, I study the model under a continuous type space. The result gives a general

description of the optimal contract and provides quantitative measures of the unconditional effect.

The standard approach of dynamic mechanism design includes solving a relaxed problem under

the local constraints first and finding conditions such that the local constraints are sufficient for

implementation. I follow this convention and characterize the three local incentive compatibility

constraints in Lemma 9, 10 and 11 in Appendix B. I further transform the original problem using

the three local constraints. Lemma 7 shows the tranformed principal’s problem.

Lemma 7 For any direct mechanism that satisfies Lemma 9, Lemma 10 and Lemma 11, the

seller’s objective function can be written as

Eπ =
∫

θ

θ

J1 (θ1) f1 (θ1)dθ1 +δ

∫
θ

θ

∫
θ

θ

J2 (θ1,θ2) f2 (θ2|θ1) f1 (θ1)dθ2dθ1

+δ
2
∫

θ

θ

∫
θ

θ

∫
θ

θ

J3 (θ1,θ2,θ3) f3 (θ3|θ2) f2 (θ2|θ1) f1 (θ1)dθ3dθ2dθ1−R(θ)

where

J1 (θ1) = θ1x1−
1
2

x2
1−

1−F1 (θ1)

f1 (θ1)
x1

J2 (θ1,θ2) = θ2x2−
1
2

x2
2 +β

(
−∂F2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

)
1−F1 (θ1)

f1 (θ1)
x2− (1−β )

1−F2 (θ2|θ1)

f2 (θ2|θ1)
x2

J3 (θ1,θ2,θ3) = θ3x3−
1
2

x2
3−β

2 ∂F3 (θ3|θ2)/∂θ2

f3 (θ3|θ2)

∂F2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

1−F1 (θ1)

f1 (θ1)
x3

−
(
β −β

2) ∂ f2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

1−F3 (θ3|θ2)

f3 (θ3|θ2)

1−F1 (θ1)

f1 (θ1)
x3

−
(
β −β

2)(−∂F3 (θ3|θ2)/∂θ2

f3 (θ3|θ2)

)
1−F2 (θ2|θ1)

f2 (θ2|θ1)
x3− (1−β )2 1−F3 (θ3|θ2)

f3 (θ3|θ2)
x3

Before I solve the problem, let me take a look at the components in the seller’s surplus.

The virtual surplus J1 (θ1) in period 1 is equal to the social surplus minus the distortion. The

distortion is the familiar inverse hazard rate, and it measures the amount of the information rent

conceded to the higher types above θ1. Through the stochastic dependence of types, θ1 has a
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cascade effect on the information rent in all future periods.

For J2 (θ1,θ2), the term ∂F2(θ2|θ1)/∂θ1
f2(θ2|θ1)

is the “ impulse response” in [40]), which captures

the marginal effect of θ1 on θ2. Moreover, as the buyer discounts his payoff in period 2 further

by β , ∂F2(θ2|θ1)/∂θ1
f2(θ2|θ1)

is multiplied by β . The whole term β

(
−∂F2(θ2|θ1)/∂θ1

f2(θ2|θ1)

)
1−F1(θ1)

f1(θ1)
x1 shows the

rent conceded in period 2 in order to induce truth-telling in period 1. With greater informativeness,

this amount becomes larger. The presence of the other term is due to the residual effect. The

information rent for higher types in the second period is 1−F2(θ2|θ1)
f2(θ2|θ1)

x2. To leave the agent at

least his reservation value 0, the seller can extract up to β
1−F2(θ2|θ1)

f2(θ2|θ1)
x2 ex-ante, in period 1. The

remaining term in the second period virtual surplus is (1−β ) 1−F2(θ2|θ1)
f2(θ2|θ1)

x2. In these two periods,

the distortions in the virtual surplus compared to those in the time consistent model ([40]) are

due to the disagreement in time preferences of the buyer and the seller. The nature of time

inconsistency begins to show itself in the virtual surplus function in period 3.

In period 3, there are three sources of distortions that affect the virtual surplus. The first

one is from the conditional effect. In my model, the term ∂F3(θ3|θ2)/∂θ2
f3(θ2|θ1)

∂F2(θ2|θ1)/∂θ1
f2(θ2|θ1)

represents

the conditional effect of θ1 on θ3. For a present-biased agent, he discounts the payoff in period

2 further by β from the perspective of period 1, and the payoff in period 3 further by β from

the perspective of period 2. The whole term β 2 ∂F3(θ3|θ2)/∂θ2
f3(θ2|θ1)

∂F2(θ2|θ1)/∂θ1
f2(θ2|θ1)

1−F1(θ1)
f1(θ1)

x3 shows the

rent conceded in period 3 to induce truth-telling in period 1, through the conditional effect. The

second source is the residual effect. There is the rent (1−β ) 1−F2(θ2|θ1)
f2(θ2|θ1)

x2 left in J2 (θ1,θ2).

Through the impact of θ2 on θ3, β (1−β )
(
−∂F3(θ3|θ2)/∂θ2

f3(θ3|θ2)

)
1−F2(θ2|θ1)

f2(θ2|θ1)
x3 is conceded to the

buyer, in period 3. Moreover, there is also a pure residual effect in period 3, which is captured by

the term (1−β )2 1−F3(θ3|θ2)
f3(θ3|θ2)

x3. The last source of distortion is the unconditional effect. From the

perspective of period 1, the buyer discounts his payoff in period 3 only by β . As for the total effect

of θ1 on θ3, β 2 ∂F3(θ3|θ2)/∂θ2
f3(θ2|θ1)

∂F2(θ2|θ1)/∂θ1
f2(θ2|θ1)

captures the marginal response of θ3 to θ1 through the

conditional effect. However, due to the inconsistent time preference, a proportion, β −β 2, of

the total effect still exists in period 1. This amount is captured by the unconditional effect of

θ1 on θ3 without knowing θ2. It is described by
∂F3|1(θ3|θ1)

∂θ1
, and ∂ f2(θ2|θ1)∂θ1

∂θ1
(1−F3 (θ3|θ2)) is
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the corresponding density function.3
(
β −β 2) ∂ f2(θ2|θ1)/∂θ1

f2(θ2|θ1)
1−F3(θ3|θ2)

f3(θ3|θ2)
1−F1(θ1)

f1(θ1)
x3 is the distortion

from the unconditional effect of θ1 on θ3.

θ1
Period 1

θ2

Period 2
θ3

Period 3

β
∂F2(θ2|θ1)

∂θ1
β

∂F3(θ3 |θ2)
∂θ2

β
∂F3|1(θ3 |θ1)

∂θ1

The seller’s surplus also depends on the surplus of the lowest types, which is captured

by the function R(θ). The specific expression of R(θ) can be found in the proof of Lemma 7,

and it is an increasing function of V1 (θ), V2 (θ |θ1) and V3 (θ |θ1,θ2). Therefore, I set V1 (θ) = 0,

V2 (θ |θ1) = 0 for any θ1, and V3 (θ |θ1,θ2) = 0 for any θ1, θ2. Thus, the IR constraints for the

low type always hold.

I further adopt the convention in [10] and assume that the type space
[
θ ,θ

]
of θs is

ordered by first-order stochastic dominance (FSD).4 When θ1 > θ ′1, it implies that F2 (θ2|θ1)≤

F2 (θ2|θ ′1) for all θ2, and with strict inequality for some θ2. When θ2 > θ ′2, I have that

F3 (θ3|θ2) ≤ F3 (θ3|θ ′2) for all θ3, and with strict inequality for some θ3. In addition, I fur-

ther assume that the overall effect of θ1 on θ3 is positive, i.e., β
∂F3(θ3|θ2)/∂θ2

f3(θ3|θ2)
∂F2(θ2|θ1)/∂θ1

f2(θ2|θ1)
+

3Notice that the unconditional effect of θ1 on θ3 without knowing θ2 has the property:

1−F3|1 (θ3|θ1) =
∫ +∞

θ3

f3 (s|θ1)ds =
∫ +∞

θ3

f1,3 (θ1,s)
f1 (θ1)

ds

=
∫ +∞

θ3

∫ +∞

−∞
f3 (s|θ2) f2 (θ2|θ1) f1 (θ1)dθ2

f1 (θ1)
ds

=
∫ +∞

θ3

∫ +∞

−∞

f3 (s|θ2) f2 (θ2|θ1)dθ2ds

=
∫ +∞

−∞

f2 (θ2|θ1)(1−F (θ3|θ2))dθ2

Under the differentiability assumptions of the density functions, I have:

∂F3|1 (θ3|θ1)

∂θ1
=−

∫ +∞

−∞

∂ f2 (θ2|θ1)

∂θ1
(1−F (θ3|θ2))dθ2

4Here, the assumption that types are positively correlated in the binary-type model is essentially the discrete
version of this FSD assumption.
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(1−β ) ∂ f2(θ2|θ1)/∂θ1
f2(θ2|θ1)

1−F3(θ3|θ2)
f3(θ3|θ2)

≥ 0. I maximize the seller’s expected profit point-wise. One

condition to make the local constraints sufficient for implementation is the strong monotonicity

of x∗2 (θ2|θ1) and x∗3 (θ3|θ1,θ2) in all θ1, θ2 and θ3. The optimal mechanism is summarized in

the following proposition.

Proposition 17 Under the assumptions made in this subsection,

x∗1 (θ1) = max
{

0,θ1−
1−F1 (θ1)

f1 (θ1)

}
x∗2 (θ2|θ1) = max

{
0,θ2−β

(
−∂F2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

)
1−F1 (θ1)

f1 (θ1)
− (1−β )

1−F2 (θ2)

f2 (θ2)

}
x∗3 (θ3|θ1,θ2) = max{0,θ1−β

2 ∂F3 (θ3|θ2)/∂θ2

f3 (θ3|θ2)

∂F2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

1−F1 (θ1)

f1 (θ1)

−
(
β −β

2)(−∂F3 (θ3|θ2)/∂θ2

f3 (θ3|θ2)

)
1−F2 (θ2|θ1)

f2 (θ2|θ1)
− (1−β )2 1−F3 (θ3)

f3 (θ3)

−
(
β −β

2) ∂ f2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

1−F3 (θ3|θ2)

f3 (θ3|θ2)

1−F1 (θ1)

f1 (θ1)
}

t∗1 (θ1), t∗2 (θ2|θ1) and t∗3 (θ3|θ1,θ2) are constructed from the envelope conditions. If

x∗2 (θ2|θ1) is non-decreasing in both θ1 and θ2, and x∗3 (θ3|θ1,θ2) is non-decreasing in all θ1, θ2

and θ3, then the above allocations and payments consist the optimal mechanism.

I provide the proof of Proposition 17 in Appendix C under the strong monotonicity of

x∗2 (θ2|θ1) and x∗3 (θ3|θ1,θ2) in θ1, θ2 and θ3. There can be weaker assumptions, and I will try to

figure them out in my future research.

It is not hard to connect the optimal allocations in the binary-type model with the

allocations derived in the general model. If I define the discrete inverse hazard rate function

as 1−F(θs|θs−1)
P(θs|θs−1)

∆θ , the discrete version of ∂Fs(θs|θs−1)/∂θs−1
fs(θs|θs−1)

as [Fs(θs|θs−1)−Fs(θs|θ ′s−1)]
Ps(θs|θs−1)[θs−1−θ ′s−1]

∆θ , and the

discrete version of ∂ fs(θs|θs−1)/∂θs−1
fs(θs|θs−1)

as
Ps(θs|θs−1)−Ps(θs|θ ′s−1)
Ps(θs|θs−1)[θs−1−θ ′s−1]

∆θ , it is straightforward to see that

the optimal allocations in the binary-type model are consistent with those in the continuous-type
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model. 5

3.4.2 A T-Period Model

In this subsection, I present the optimal contract in a T-period binary-type model. Here

I still maintain the assumptions that every type is served with a positive quantity, and β is

sufficiently large to guarantee that the local constraints are sufficient for implementation. Before

I present my result, let me first talk about the notations. xs (θs|hs) and ts (θs|hs) are the corre-

sponding allocation and transfer in period s, conditional on the history of reported types hs. For

any hs, let N be the total number of θ reported in the history before period s. I use n to represent

the nth θ in the history, and mn labels the exact period when the nth θ was reported. For example,

if the reported types are
{

θ ,θ ,θ ,θ ,θ ,θ ,θ
}

by period 7, there are two θ in the history. For the

first θ , m1 = 3; for the second θ , m2 = 6.

θ θ

θ

θ θ

θ θ

Furthermore, let kn denote the inverse hazard rate in period mn when the nth θ is reported.

Let pn,n+i denote the general informativeness measure of θmn+i given θmn . When period mn

and period mn+i are adjacent periods, pn,n+i measures the conditional effect of θmn on θmn+i . If

5Notice that the re-defined discrete counterparts take the following forms.

1−F (θs|θs−1)

P(θs|θs−1)
=


0, if θs = θ
µ

1−µ
, if θs = θ ,s = 1

α

1−α
, if θs = θ ,θs−1 = θ

1−γ

γ
, if θs = θ ,θs−1 = θ

[
Fs (θs|θs−1)−Fs

(
θs|θ ′s−1

)]
∆θ

Ps (θs|θs−1)
[
θs−1−θ ′s−1

] =


0, if θs = θ

−α+γ−1
1−α

, if θs = θ ,θs−1 = θ

−α+γ−1
γ

, if θs = θ ,θs−1 = θ

Ps (θs|θs−1)−Ps
(
θs|θ ′s−1

)
Ps (θs|θs−1)

[
θs−1−θ ′s−1

] =


α+γ−1

α∆θ
, if θs = θ ,θs−1 = θ

α+γ−1
(1−γ)∆θ

, if θs = θ ,θs−1 = θ

− α+γ−1
(1−α)∆θ

, if θs = θ ,θs−1 = θ

−α+γ−1
γ∆θ

, if θs = θ ,θs−1 = θ
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there are intermediate periods between period mn and period mn+i, pn,n+i corresponds to the

unconditional effect. pn,n+i can also be viewed as the generalized “impulse response”.

Proposition 18 There exists β
T

such that for β ≥ β
T

, the allocation rule listed below maximizes

the seller’s expected profit under all the IR and IC constraints. The allocation for the high type

is always at the efficient level θ . However, the allocation for the low type is always distorted.

xs
(
θ |hs

)
= θ

xs (θ |hs) = θ −
N

∑
n=1

knAn− kN+1 (1−β )s−1

where N is the total number of θ in the history up to period s, and

An =
N−n

∑
j=0

β
j+1 (1−β )s− j−2

∑
σ1,...σ j∈{n+1,...,N}

σ1<σ2<···<σ j

pn,σ1 pσ1,σ2 · · · pσ j−1,σ j pσ j,N+1

k1 =


α

1−α
, if θ1 = θ

µ

1−µ
, if θ1 = θ

kn =


α

1−α
, if θmn−1 = θ

1−γ

γ
, , if θmn−1 = θ

pn,n+i =



(α+γ−1)α
(1−γ)(1−α) , if θmn+1 = θ , i = 1

α+γ−1
γ

, if θmn+1 = θ , i = 1

α+γ−1
1−γ

kn+i, if θmn+1 = θ , i > 1

−α+γ−1
γ

kn+i, if θmn+1 = θ , i > 1

In the binary-type model, the Markov chain has stationary transition probabilities; thus,

the informativeness measure of θmn+i given θmn can be summarized as pn,n+i, which is charac-

terized in Proposition 18. Similar to the three-period model, the distortions in the allocations

are a weighted sum of the conditional effect, the unconditional effect, and the residual effect.

knAn represents the overall distortion in xs (θ |hs) due to inducing truth-telling in period mn. An
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is essentially an exhaustive summation of all the information causation chains from θmn to θs

through the conditional and the unconditional effects. The gross amount of the distortion in

xs (θ |hs) is the summation of all knAn plus the term representing the pure residual effect in period

s. The graph below illustrates the existing information causation chains for the former 7-period

example.

θ θ

θ

θ θ

θ θ

In the T-period model, the no distortion at the top principle still holds. When θs = θ ,

the allocation in period s is distorted. Similar to the argument in the three-period model, the

information causation chains going through θ are all inactive, and the distortion only depends on

the period when the buyer reports a low type.

3.5 Conclusion

This paper extends the existing behavioral literature and studies a model of the long-term

contractual relationship between a monopolistic seller and a present-biased buyer. Specifically,

the buyer has private information of his type, and the type evolves according to a Markov process.

The optimal contract still possesses the no distortion at the top property. However, the allocations

provided to the low type are never Pareto efficient. When the degree of inconsistency is not

severe, the expected profit of the seller from contracting with a present-biased agent is strictly

less than from contracting with a time consistent agent.

Another contribution of the paper is the interpretation and characterization of how

time inconsistency influences the optimal contract in a long-term contracting environment.

Time inconsistency affects the optimal contract through a novel unconditional effect, which is

essentially the cross-period marginal effect of the current type on future types in the Markov

environment. As the utilities are not perfectly transferable between the two parties, there is also
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the residual effect capturing the remaining information rent left to the buyer due to the difference

in the discount factors.

In the future research, it would be interesting to study the long-term contracting problem

with present-biased agents under other market structures, such as a perfect competitive market or

an oligopoly market. We may further see how the adverse effect of time inconsistency relates

to the degree of competition in the market. Additionally, it would be worthwhile to find more

evidence of time inconsistency in real life long-term contracts.
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Appendix A

Proofs for Chapter 1

In Appendix A, I provide detailed proofs for most of the propositions, lemmas and

theorems in Chapter 1.

Proof of Proposition 1. In the baseline model, the buyer’s valuation of the good is θ , if the

good receives a positive signal from the certifier. As long as 0 < Fs ≤ θ , only the high seller type

has an incentive to certify. In the equilibrium, the profit-maximizing certifier picks Fs ∈ (0,θ ].

Firstly, I will show that the high seller type certifies with probability 1. Suppose the

high type certifies with probability γ ∈ (0,1) in equilibrium, for a fixed fee Fs ≤ θ . She can

always receive the G signal if she certifies; thus, she charges θ and receives θ −Fs when she

certifies. To make the high type willing to randomize, her payoff must be θ −Fs without

certification. Let p′ = θ −Fs. When not certifying, the high type sets a price equal to p′. The

low type would mimic the high type and charge p′. Since the buyer cannot differentiate the types

without certification, both seller types would end up with the same payoff, which is equal to p′.

Accordingly, the seller would have no incentive to exert effort in production. In the subgame

initiated by Fs, e = 0. From the consistency of beliefs, the buyer would be willing to pay 0 for

the good. This indicates θ −Fs = 0. Since the seller would not certify, the certifier would have a

surplus of 0. Nevertheless, the certifier could slightly lower Fs so that θ −Fs > p′. The high type

would certify with probability 1 in this situation, and the seller would exert positive effort. The

certifier’s payoff would be positive. I construct a deviation here. In conclusion, the high type
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must certify with probability 1, and the equilibrium is fully separating.

Furthermore, the buyer believes that the good is of low type if there is no certification.

For a given Fs, the seller’s payoff satisfies Us = e
(
θ −Fs

)
+(1− e)0− c(e), for any effort level

e ∈ [0,1]. The seller’s first order condition is

c′ (e) = θ −Fs

Given c′′ (e) ≥ 0, the second order condition is also satisfied. From the first order

condition, I derive de
dFs

=− 1
c′′(e) . As for the certifier, Uc = eFs for 0≤ Fs ≤ θ − c(e)

e . The upper

bound of Fs is derived from the seller’s participation constraint, i.e., Us ≥ 0. The certifier’s first

order condition is

e− Fs

c′′ (e)
= 0

From the first order condition, I conclude that e∗s satisfies c′ (e∗s ) = θ − e∗s c′′ (e∗s ). The

optimal certification fee satisfies F∗s = e∗s c′′ (e∗s ). I also need to check the participation constraint

is satisfied. Here Us = e∗s
(
θ −F∗s

)
− c(e∗s ) = e∗s c′ (e∗s )− c(e∗s ). It is an increasing function of e∗s

given c′′ (e∗s )≥ 0. Therefore, Us ≥ 0× c′ (0)− c(0) = 0. The participation constraint holds.

Proof of Proposition 2. In the full model, the certifier picks the signal scheme besides

the certification fee. I solve the game backwards. The buyer purchases the good only when

E (θ |s) ≥ p. Following the discussion in Section 1.4.2, I find that there are two possible

equilibrium types. I will show later that the semi-pooling equilibrium does not exist.

One possible equilibrium is a separating equilibrium. In this equilibrium, only the high

type opts for certification. The seller types are fully separated. This suggests that πs (G|θ) pG +

(1−πs (G|θ)) pB < Fs and pG = θ . For a similar analysis established in the proof of Proposition

1, the high type certifies with probability 1. Moreover, πs
(
G|θ

)
= 1. Otherwise, E (θ |B) = θ .

The low type seller would deviate to certify, which is inconsistent with the assumption.
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In this case, the buyer believes the good is low quality without certification. The rest of

the construction is the same as in the proof of Proposition 1, and the detail is omitted here. In

summary, the seller’s equilibrium effort level e∗s satisfies the condition that c′ (e∗s ) = θ−e∗s c′′ (e∗s ).

The buyer accepts the asking price if the price is θ , or if the price is θ and the signal is G. In

addition, the certifier charges e∗s c′′ (e∗s ) and implements the signal scheme that π∗s
(
G|θ

)
= 1 and

θπ∗s (G|θ)< F∗s .

Another possible equilibrium is a pooling equilibrium. Both the high type and the low

type certify. Suppose the high type charges a price p. The low type seller must charge the same

price with positive probability. Suppose the buyer has a belief (µsG,1−µsG) when the signal is G,

and a belief (µs,1−µs) when there is no signal. Here, µsG > µs must hold; otherwise, the signal

is useless. If the asking price is equal to pG, the buyer will purchase the good only when the signal

is G. Without certification, the buyer will accept the price only when it is below µsθ +(1−µs)θ .

The high-type seller will charge p = pG if she plans to certify. The low-type seller is willing

to certify as long as πs (G|θ) pG−Fs ≥ µsθ +(1−µs)θ . Furthermore, πs
(
G|θ

)
> πs (G|θ).

Therefore, the certifier picks Fs = πs (G|θ) pG−µsθ − (1−µs)θ . Here, the low-type seller is

indifferent between certifying or not while the high type strictly prefers certification. Therefore

µs = 0 and Fs = πs (G|θ) pG. For now, suppose the low type certifies with probability 1. Under

this construction, the seller’s payoff satisfies Us = pG
(
eπs
(
G|θ

)
+(1− e)πs (G|θ)

)
−Fs−c(e).

The first order condition shows that

c′ (e) = pG
(
πs
(
G|θ

)
−πs (G|θ)

)
From the consistency of beliefs, µsG =

eπs(G|θ)
eπs(G|θ)+(1−e)πs(G|θ)

. The certifier’s payoff

satisfies UC = Fs = πs (G|θ) pG, where Fs satisfies the participation constraint that Us ≥ 0. The

optimality conditions are given as follows.

dUc

dπs
(
G|θ

) = (
θ − pG

)
eπs (G|θ)

eπs
(
G|θ

)
+(1− e)πs (G|θ)

+πs (G|θ)
d pG

de
de

dπs
(
G|θ

) (A.1)
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dUc

dπs (G|θ)
=

eπs
(
G|θ

)
pG

eπs
(
G|θ

)
+(1− e)πs (G|θ)

+πs (G|θ)
d pG

de
de

dπs (G|θ)
(A.2)

where d pG
de =

(θ−pG)πs(G|θ)+pGπs(G|θ)
eπs(G|θ)+(1−e)πs(G|θ)

≥ 0. I also derive de
dπs(G|θ)

and de
dπs(G|θ) .

de
dπs
(
G|θ

) =

(
c′′ (e)−

θπs
(
G|θ

)
πs (G|θ)

(
πs
(
G|θ

)
−πs (G|θ)

)(
eπs
(
G|θ

)
+(1− e)πs (G|θ)

)2

)−1

×
eθ

(
πs
(
G|θ

)2− (1− e)
(
πs
(
G|θ

)
−πs (G|θ)

)2
)

(
eπs
(
G|θ

)
+(1− e)πs (G|θ)

)2

de
dπs (G|θ)

=−

(
c′′ (e)−

θπs
(
G|θ

)
πs (G|θ)

(
πs
(
G|θ

)
−πs (G|θ)

)(
eπs
(
G|θ

)
+(1− e)πs (G|θ)

)2

)−1
eθπs

(
G|θ

)2(
eπs
(
G|θ

)
+(1− e)πs (G|θ)

)2

If c′′ (e)≥ θπs(G|θ)πs(G|θ)(πs(G|θ)−πs(G|θ))

(eπs(G|θ)+(1−e)πs(G|θ))
2 , I get π∗s

(
G|θ

)
= 1. Otherwise, I have

dUc

dπs
(
G|θ

) + dUc

dπs (G|θ)
=

(
θ − pG

)
eπs (G|θ)+ eπs

(
G|θ

)
pG

eπs
(
G|θ

)
+(1− e)πs (G|θ)

−πs (G|θ)
d pG

de

eθ
(1−e)(πs(G|θ)−πs(G|θ))

2

(eπs(G|θ)+(1−e)πs(G|θ))
2

c′′ (e)− θπs(G|θ)πs(G|θ)(πs(G|θ)−πs(G|θ))

(eπs(G|θ)+(1−e)πs(G|θ))
2

(A.3)

which is still positive. Therefore, π∗s
(
G|θ

)
= 1. In equilibrium, I must have π∗s (G|θ) =

e∗s θ−e∗s c′(e∗s )
e∗s θ+(1−e∗s )c′(e∗s )

and F∗s = π∗s (G|θ) pG = e∗s
(
θ − c′ (e∗s )

)
. The effort level satisfies the condition

that c′ (e∗s ) = θ − e∗s c′′ (e∗s ). I need to check the participation constraint.

Us = p∗G
(
e∗s π
∗
s
(
G|θ

)
+(1− e∗s )π

∗
s (G|θ)

)
−π

∗
s (G|θ) p∗G− c(e∗s )

= p∗Ge∗s
(
π
∗
s
(
G|θ

)
−π

∗
s (G|θ)

)
− c(e∗s )

= e∗s c′ (e∗s )− c(e∗s )
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This is positive from the proof of Proposition 1. The participation constraint is also satisfied.

The last step is to show that the low type must certify with probability 1. Notice that the

low type opts for certification only when she charges pG. Suppose she certifies with probability

γ < 1. This indicates that she trades at pG with probability γπs (G|θ). The certifier’s payoff is

Uc = (e+(1− e)γ)πs (G|θ) pG where pG =
θeπs(G|θ)

eπs(G|θ)+γ(1−e)πs(G|θ)
. The seller’s payoff is

Us = pG
(
eπs
(
G|θ

)
+(1− e)γπs (G|θ)

)
−Fs− c(e)

The seller’s first order condition is c′ (e) = pG
(
πs
(
G|θ

)
− γπs (G|θ)

)
. Similar to the

case where the low type certifies with probability 1, I can solve the optimal signal scheme

π∗s
(
G|θ

)
(γ) and π∗s (G|θ)(γ), which are functions of γ . The certifier’s payoff, Uc, is also a

continuous function of γ for γ ∈ [0,1]. Using the Envelope theorem, I have

dUc

dγ
= (1− e)π

∗
s (G|θ)(γ) pG

e
(
π∗s
(
G|θ

)
(γ)−π∗s (G|θ)(γ)

)
eπ∗s

(
G|θ

)
(γ)+(1− e)γπ∗s (G|θ)(γ)

For any e > 1, dUc
dγ

is strictly positive. Therefore, the certifier could implement the signal

scheme π∗s
(
G|θ

)
and π∗s (G|θ), and a fee F∗s −ε , which are derived under γ = 1. Certification is

always obtained under this mechanism. For a small enough ε , this mechanism generates a higher

surplus for the certifier than the current mechanism does. Therefore, this type of equilibrium

must be a completely pooling one.

The two equilibrium types generate the same equilibrium effort level, so do the certifier’s

surplus. Therefore, they both exist.

Proof of Corollary 1. This result is directed obtained from c′ (e∗s ) = θ − e∗s c′′ (e∗s ).

Proof of Proposition 3. The proof is done in the analysis of Section 1.5.1, and it is omitted

here.
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Proof of Proposition 4. In any equilibrium of the full model, the buyer certifies only when

Ub (p|cb = 1) ≥Ub (p|cb = 0). If the buyer certifies, he will accept the good only when the

signal is good. There are still two equilibrium types. In one type of equilibrium, the buyer’s

belief is so pessimistic that he believes the good definitely has bad quality (µb = 0). In this type

of equilibrium, certification is not acquired, which is similar to the baseline model.

In the other equilibrium type, the certifier is hired. For now, let me consider the situation

in which the certifier is hired with probability 1. I will show the uniqueness of this equilibrium

later. Let the high type’s asking price be p. The low-type seller wants to mimic the high type’s

asking price. If π (θ |G)> 0, the low type must do it with probability 1. If π (θ |G) = 0, the low

type is indifferent between p and 0. For now, let me construct the equilibrium where the low

type always charges p. I will prove that it is the only equilibrium later.

Following the argument about the pricing strategies of the seller and the certifier in

Section 1.5.2, I have Ub
(
πb
(
θ |G

)
p|cb = 1

)
= Ub

(
πb
(
θ |G

)
p|cb = 0

)
. The fee has to satisfy

the following expression.

Fb = µbπb
(
G|θ

)
θ−

µbπb
(
G|θ

)
+(1−µb)πb (G|θ)

πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
µbπb

(
G|θ

)
+(1−µb)πb (G|θ)

)µbθ (A.4)

This indicates that p = p on the equilibrium path. The optimality condition of the seller can be

characterized as follows.

c′ (e) = p
(
πb
(
G|θ

)
−πb (G|θ)

)
(A.5)

From the consistency of beliefs, I have µb = e and pG =
eθπ(G|θ)+(1−e)θπ(G|θ)

eπ(θ |G)+(1−e)π(G|θ) . I derive

the seller’s effort choice using equation (A.5). The certifier’s payoff is Uc = Fb. There are two

optimality conditions presented as follows.

dUc

dπb
(
G|θ

) = eθ

(
1−

(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

)2− (1− e)πb (G|θ)(
πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

))2

)
+

dUc

de
de

dπb
(
G|θ

) (A.6)
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dUc

dπb (G|θ)
=−

(1− e)πb
(
G|θ

)
eθ(

πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

))2 +
dUc

de
de

dπb (G|θ)
(A.7)

In addition, dUc
de = θ (1−2e)

(
πb
(
G|θ

)
−πb (G|θ)

)
. de

dπb(G|θ)
and de

dπb(G|θ)
are derived

as follows.

de
dπb

(
G|θ

) = M−1 e
(
πb
(
G|θ

)
−πb (G|θ)

)2
+πb (G|θ)(2−πb (G|θ))(

πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

))2 eθ (A.8)

de
dπb (G|θ)

=−M−1 πb
(
G|θ

)(
2−πb

(
G|θ

))(
πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

))2 eθ (A.9)

Here, M = c′′ (e)− (πb(G|θ)+(1−πb(G|θ))πb(G|θ))(πb(G|θ)−πb(G|θ))

(πb(G|θ)+(1−πb(G|θ))(eπb(G|θ)+(1−e)πb(G|θ)))
2 θ . Therefore, dUc

de M−1 deter-

mines the sign of the indirect effect. If it is positive, π
(
G|θ

)
= 1 and π (G|θ) = 0. If it is

negative, I get equation (A.10) by summing up equation (A.6) and equation (A.7).

dUc

dπb
(
G|θ

) + dUc

dπb (G|θ)
= eθ

(
1−

(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

)2
+(1− e)

(
πb
(
G|θ

)
−πb (G|θ)

)(
πb
(
G|θ

)
+
(
1−πb

(
G|θ

))(
eπb
(
G|θ

)
+(1− e)πb (G|θ)

))2

)

−dUc

de
M−1K (A.10)

where K =
(πb(G|θ)−πb(G|θ))(2−(eπb(G|θ)+(1−e)πb(G|θ))−πb(G|θ))

(πb(G|θ)+(1−πb(G|θ))(eπb(G|θ)+(1−e)πb(G|θ)))
eθ . When dUc

de M−1 ≤ 0, since

(eπb(G|θ)+(1−e)πb(G|θ))
2
+(1−e)(πb(G|θ)−πb(G|θ))

(πb(G|θ)+(1−πb(G|θ))(eπb(G|θ)+(1−e)πb(G|θ)))
2 ≤ 1, equation (A.10) is positive. This indicates

that dUc
dπb(G|θ)

> 0 and dUc
dπb(G|θ)

≤ 0. Therefore, I still have πb
(
G|θ

)
= 1. I can simplify equation

(A.7) further.

dUc

dπb (G|θ)
=−(1− e)eθ − θ (1−2e)(1−πb (G|θ))

c′′ (e)− (1−πb (G|θ))θ
eθ (A.11)

In addition, Ub (p|cb = 1) = Ub (p|cb = 0) = 0 shows that p = eθ . Whether there is
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an interior solution or a corner solution depends on c(e). Note that ẽ denotes the effort level

at the corner solution where c′ (ẽ) = ẽθ . If dUc
dπb(G|θ)

> 0 when πb (G|θ) = 0, I only have the

interior solution. This essentially requires εc′(e) ∈
( ẽ

1−ẽ ,1
)

(or εc′(e) ∈
(
1, ẽ

1−ẽ

)
). The derived

signal scheme satisfies π∗b (G|θ) = 1− c′′(e∗b)(1−e∗b)
e∗bθ

, and the equilibrium effort level satisfies

c′
(
e∗b
)
=
(
1− e∗b

)
c′′
(
e∗b
)
. I also have U∗c =

(
1− e∗b

)
c′
(
e∗b
)
. In other situations, there may exist

a corner solution where πb (G|θ) = 0. Since c′ (e) = eθ (1−πb (G|θ)), equation (A.11) can be

further simplified.

dUc

dπb (G|θ)
=−eθ

εc′(e)− e
1−e

εc′(e)−1

If dUc
dπb(G|θ)

≤ 0 for all e, I only have the corner solution that π∗b (G|θ) = 0. This essentially

requires εc′(e) < min{ e
1−e ,1} or εc′(e) > max{ e

1−e ,1} for all e. For all other cost functions, I

need to compare the certifier’s payoff at the interior solution and at the corner solution.

From now on, I will prove the uniqueness of this equilibrium. Firstly, suppose the low

type mimics the high type’s asking price p with probability α < 1. In this case, the buyer

must certify with probability 1. Otherwise, the low type would charge p with probability

1. Let
(
µ̃b,1− µ̃b

)
denote the buyer’s belief when the asking price is p. Let (µb,1−µb) be

the buyer’s prior belief after the production process. Using the Bayes’s rule, I get that µ̃b =

µb
µb+(1−µb)α

. Using the same argument derived under α = 1, I can show that πb
(
G|θ

)
= 1 and

Uc = (e+α (1− e))Fb = e
(

1− e
e+α(1−e)

)
θ (1−πb (G|θ)(α)), where πb (G|θ)(α) depends

on α . Uc is a continuous and differentiable function of α . Using the Envelop theorem, I have

dUc

dα
= θ (1− e)

(
e

e+α (1− e)

)2

(1−πb (G|θ)(α))≥ 0

The certifier’s payoff is maximized when α = 1. Therefore, the certifier could slightly

modify the optimal mechanism π∗b
(
G|θ

)
(1) and π∗b (G|θ)(1) derived under α = 1. Because

Uc is continuous in γ , there exists a mechanism consisting a signal scheme πb
(
G|θ

)
(1) and
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πb (G|θ)(1)+ ε , and a fee Fb such that, for a small enough ε , the generated Uc is arbitrarily

close to the U∗c derived under α = 1. This mechanism could lead to a higher surplus for the

certifier than the current mechanism where α < 1. In conclusion, both seller types must always

charge the same price.

Moreover, another possible case is when the buyer certifies with probability β < 1. In this

situation, the low type always charges the same price as the high type does. Using the same argu-

ment derived under β = 1, I can show that πb
(
G|θ

)
= 1 and Uc = βθe(1− e)(1−πb (G|θ)(β ))

where πb (G|θ)(β ) depends on β . Uc is a continuous and differentiable function of β for

β ∈ [0,1]. Using the Envelop theorem, I have

dUc

dβ
= θe(1− e)(1−πb (G|θ)(β ))2 ≥ 0

The certifier’s payoff is maximized at β = 1. Therefore, the certifier could slightly

modify the certification scheme to be π∗b
(
G|θ

)
(1) and π∗b (G|θ)(1), and a fee F∗b − ε . Under

this mechanism, the buyer always certifies. For a small enough ε , this mechanism could generate

a higher surplus for the certifier than the current mechanism. Therefore the buyer must certify

the good with probability 1. This concludes the proof of the uniqueness.

Proof of Corollary 2. In the proof of Proposition 4, I derive the condition of the induced

effort level, which is c′
(
e∗b
)
= e∗bθ

(
1−π∗b (G|θ)

)
≤ θ . Therefore, the effort level is below the

first-best.

Proof of Theorem 1. The welfare comparison depends on the magnitude of e∗s and e∗b. The

larger one of these two leads to the model with a higher social welfare in equilibrium. From

Proposition 1 and 2, I can calculate the equilibrium effort levels in these two models. Specifically,

εc′(e∗s ) =
θ

c′(e∗s )
−1 holds in equilibrium in the seller-certification model, and εc′(e∗b)

=
e∗b

1−e∗b
holds

at the interior solution in the buyer-certification model. θ

c′(e) −1 is decreasing in e, while e
1−e
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is increasing in e. Therefore, θ

c′(e) −1 and e
1−e have only one intersection. At the intersection,

the effort level satisfies c(e) = (1− e)θ . I denote this effort level by e1, and B = e1
1−e1

. For any

e > e1, e
1−e has a higher value than θ

c′(e)−1. For any e < e1, θ

c′(e)−1 has a higher value than e
1−e .

Therefore, if εc′(e) > B, e∗b is larger than e∗s ; if εc′(e) < B, e∗b is smaller than e∗s . Moreover, in the

buyer-certification game, the equilibrium effort level at the corner solution satisfies c′ (ẽ) = ẽθ .

Here, there exists B′ = 1
ẽ −1 such that if εc′(e) > B′ for all e, c′ (e∗s )<

θ

1+B′ = ẽθ = c′ (ẽ); thus,

e∗s < ẽ. If εc′(e) < B′, e∗s > ẽ. Let A = max{B,B′} and A′ = min{B,B′}. In summary, if εc′(e) ≤ A′

for all e, the seller-certification model yields a higher social surplus. If εc′(e) ≥ A for all e, the

buyer-certification model yields a higher social surplus.

Regarding the certifier’s payoff, using the results derived in the proof of Proposition

4, I find F∗b =
(
1− e∗b

)
c′
(
e∗b
)
. Since c′

(
e∗b
)
≤ e∗bθ in the buyer-certification model, F∗b <

e∗b
(
θ − c′

(
e∗b
))

. Nevertheless, in the seller-certification model, the certifier ends up with the

payoff e∗s
(
θ − c′ (e∗s )

)
where e∗s c′′ (e∗s ) = θ − c′ (e∗s ). As e∗s maximizes the value of the function

e
(
θ − c′ (e)

)
, the certifier is always better off in the seller-certification game.

Proof of Proposition 5. Here, the seller’s asking price is based on the actual signal she

receives. There are still two possible equilibrium types. The construction of the separating

equilibrium is the same as in Proposition 2. I will not repeat it here. The construction of

the pooling equilibrium has different optimality conditions. The buyer’s prior belief of the

good’s quality is (µs,1−µs). Conditional on the signal G, the price the seller can charge is

pG =
µsπs(G|θ)θ

µsπs(G|θ)+(1−µs)πs(G|θ)
; conditional on the signal B, the price the seller can charge is

pB =
µsπs(B|θ)θ

µsπs(B|θ)+(1−µs)πs(B|θ)
. Conditional on certifying, the seller’s payoff satisfies

Us = pG
(
eπs
(
G|θ

)
+(1− e)πs (G|θ)

)
+ pB

(
eπs
(
B|θ
)
+(1− e)πs (B|θ)

)
− c(e)−Fs
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The optimality condition satisfies

c′ (e) = (pG− pB)
(
πs
(
G|θ

)
−πs (G|θ)

)
In the subgame that is initiated by the certification scheme, µs = e from the consistency

of beliefs. The maximum fee the certifier can charge leaves the low-type seller a payoff of

zero. Therefore Uc = Fs = ∑s∈{G,B} psπs (s|θ). The low-type seller must certify with probability

1. Otherwise, the certifier can lower the fee slightly so that certification is guaranteed. The

Lagrangian of the certifier’s maximization problem is

L = ∑
s∈{G,B}

psπs (s|θ)+λ
(
(pG− pB)

(
πs
(
G|θ

)
−πs (G|θ)

)
− c′ (e)

)

Moreover, ∑s∈{G,B}πs (s|θ) = 1 for any θ ∈
{

θ ,θ
}

. I derive the following first order

conditions:

dL
dπs
(
G|θ

) =

(
θ − pG

)
eπs (G|θ)

eπs
(
G|θ

)
+(1− e)πs (G|θ)

+λ

[
pG +

(
θ − pG

)
e
(
πs
(
G|θ

)
−πs (G|θ)

)
eπs
(
G|θ

)
+(1− e)πs (G|θ)

]

−
(
θ − pB

)
eπs (B|θ)

eπs
(
B|θ
)
+(1− e)πs (B|θ)

−λ

[
pB +

(
θ − pB

)
e
(
πs
(
B|θ
)
−πs (B|θ)

)
eπs
(
B|θ
)
+(1− e)πs (B|θ)

]

dL
dπs (G|θ)

=
pGeπs

(
G|θ

)
eπs
(
G|θ

)
+(1− e)πs (G|θ)

−
λ pGπs

(
G|θ

)
eπs
(
G|θ

)
+(1− e)πs (G|θ)

−
pBeπs

(
B|θ
)

eπs
(
B|θ
)
+(1− e)πs (B|θ)

+
λ pBπs

(
B|θ
)

eπs
(
B|θ
)
+(1− e)πs (B|θ)

If λ ≤ 0 at the solution, I have dL
dπs(G|θ)

< 0. This suggests πs
(
G|θ

)
= 0, which con-

tradicts the assumption of the signals. Therefore I must have λ ≥ 0. Moreover, I derive the

following condition by summing up dL
dπs(G|θ)

and dL
dπs(G|θ) .
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dL
dπs
(
G|θ

) + dL
dπs (G|θ)

=

(
pG− eθ

eπs
(
G|θ

)
+(1− e)πs (G|θ)

− eθ − pB

eπs
(
B|θ
)
+(1− e)πs (B|θ)

)
×(e−λ )

(
πs
(
G|θ

)
−πs (G|θ)

)
Here I must have e = λ at the optimal condition. Otherwise if e < λ , dL

dπs(G|θ) > 0. This

suggests πs (G|θ) = 1, which makes the signal useless. If e > λ , in contrast, dL
dπs(G|θ) < 0. I

have πs (G|θ) = 0. However, dL
dπs(G|θ)

< e
(
θ − pB

)
− (θ−pB)e(1−eπs(G|θ))

1−eπs(G|θ)
= 0. This suggests

πs
(
G|θ

)
= 0. Here, the signal structure is completely noisy, and the induced effort is zero. This

cannot be the solution to the maximization problem. Therefore, I must have e = λ . In addition,

there is a simplified optimality condition.

dL
de

= θ − (pG− pB)
(
πs
(
G|θ

)
−πs (G|θ)

)
− ec′′ (e) = 0

which is derived under e = λ . Since c′ (e) = (pG− pB)
(
πs
(
G|θ

)
−πs (G|θ)

)
, the equilibrium

effort level e∗s must satisfy c′ (e∗s ) = θ − e∗s c′′ (e∗s ), which is the same as the one characterized in

Proposition 2. Moreover, the fee satisfies F∗s = ∑s∈{G,B} p∗s π∗s (s|θ).

F∗s = p∗Gπ
∗
s (G|θ)+ p∗Bπ

∗
s (B|θ)

= e∗s θ
e∗s π∗s

(
G|θ

)(
1−π∗s

(
G|θ

))
+(1− e∗s )π∗s (G|θ)(1−π∗s (G|θ))(

e∗s π∗s
(
G|θ

)
+(1− e∗s )πs (G|θ)

)(
e∗s πs

(
B|θ
)
+(1− e∗s )π∗s (B|θ)

)
= e∗s θ

(
1−

e∗s (1− e∗s )
(
π∗s
(
G|θ

)
−π∗s (G|θ)

)2(
e∗s π∗s

(
G|θ

)
+(1− e∗s )π∗s (G|θ)

)(
e∗s π∗s

(
B|θ
)
+(1− e∗s )π∗s (B|θ)

))
= e∗s

(
θ − c′ (e∗s )

)
since c′ (e∗s ) = e∗s θ

e∗s (1−e∗s )(π∗s (G|θ)−π∗s (G|θ))
2

(e∗s π∗s (G|θ)+(1−e∗s )π∗s (G|θ))(e∗s π∗s (B|θ)+(1−e∗s )π∗s (B|θ))
. Therefore, the certifier’s

payoff is also the same as in Proposition 2. I still need to check the participation constraint of the

95



seller.

Us = p∗G
(
e∗s π
∗
s
(
G|θ

)
+(1− e∗s )π

∗
s (G|θ)

)
+ p∗B

(
e∗s π
∗
s
(
B|θ
)
+(1− e∗s )π

∗
s (B|θ)

)
−π
∗
s (G|θ) p∗G−π

∗
s (B|θ) p∗B− c(e∗s )

= (p∗G− p∗B)e∗s
(
π
∗
s
(
G|θ

)
−π

∗
s (G|θ)

)
− c(e∗s )

= e∗s c′ (e∗s )− c(e∗s )

Using the argument in the proof of Proposition 1, I conclude that Us≥ 0. The participation

constraint is also satisfied.
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Appendix B

Proofs for Chapter 2

B.1 Proofs for Chapter 2.4

In Appendix B, I provide detailed proofs for the propositions, lemmas and theorems in

Chapter 2.

Proof of Lemma 1. Consider an arbitrary equilibrium. In period 2, if a type-q seller accepts

the offer p2 with positive probability, I must have

p2−αq≥ δ (Aq−αq)⇒ p2 ≥ δAq+(1−δ )αq

Therefore, for any seller type q′ < q, p2 > δAq′+(1−δ )αq′. Any lower type seller must accept

p2 with probability 1.

In period 1, if a type-q seller accepts p1 with positive probability, she must receive a higher

surplus from accepting the offer than from rejecting and concealing it. Let E (max{p2,Aq}) be

her expected payoff in period 2 when p1 is concealed. I must have

p1−αq≥ δ (E (max{p2,Aq})−αq)⇒ p1 ≥ δE (max{p2,Aq})+(1−δ )αq

For any seller type q′ < q, E (max{p2,Aq})≥ E (max{p2,Aq′}). The seller’s payoff in period 2

is monotonically increasing in q. Therefore, for any seller type q′ < q, p1 > E (max{p2,Aq′})+

(1−δ )αq′. Any lower seller type receives a strictly higher payoff from accepting offer p1 than
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from rejecting and concealing it.

Moreover, a seller of type q also receives a higher surplus from accepting p1 than from

rejecting and disclosing it. Similarly, I can show that any lower seller type receives a strictly

higher payoff from accepting p1 than from rejecting and disclosing it. Therefore, any lower type

must accept p1 with probability 1.

The same reasoning also applies to the infinite-horizon game.

Proof of Lemma 2. Lemma 2 is proved by contradiction. In this two-period model, I assume that

q is large enough so the cutoffs in both periods are strictly less than q. Consider an equilibrium in

which buyer 1 plays a mixed strategy. Buyer 2 must also randomize. When buyer 1 randomizes

in a set of offers, different offers correspond to different cutoff types. As all offers must yield

the same expected payoff, higher offers must be accepted by higher cutoff types. Let S1 be the

set of equilibrium offers buyer 1 randomizes in, and SC
1 =

{
p1|p1 ∈ S1,d2 (q, p1)= /0,∀q

}
. Let

pH
1 = supSC

1 and pL
1 = infSC

1 . Let q̂1
H be the cutoff type induced by offer pH

1 , and q̂1
L be the

cutoff type induced by offer pL
1 . For any offer p1 ∈ SC

1 and the corresponding cutoff type q̂1, pH
1

and p1 give the seller the same payoff. I have
q̂1+q

2 − p1 =
q̂1

H+q
2 − pH

1 . Thus, I must have q̂1
H

be the supremum of the cutoff types induced by buyer 1’s offer in SC
1 , and q̂1

L be the infimum of

these cutoffs. Ψ1 represents the cdf of the equilibrium cutoffs in period 1 induced by offers in SC
1 .

In period 2, let S2 be the set of offers buyer 2 randomizes in if nothing is disclosed; pH
2 = supS1,

and pL
1 = infS1. For any p2 ∈ S2, the corresponding cutoff type q̂2 satisfies the condition that

Aq̂2 = p2. Let q̂2
H = 1

A pH
2 and q̂2

L = 1
A pL

2 . Ψ2 represents the cdf of the equilibrium cutoffs in

period 2 induced by offers in S2.

Suppose SC
1 has more than 1 element. Buyer 2 randomizes in S2. For the type-q seller,

her expected payoff in period 2 if she discloses nothing is denoted by VC
2 (q), where

VC
2 (q) =

∫ q̂2
H

q
Aq̃dΨ2 (q̃)+AqΨ2 (q) (B.1)
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The cutoff q̂1
H must satisfy the following condition

pH
1 = δ

[∫ q̂2
H

q̂1
H

Aq̃dΨ2 (q̃)+Aq̂1
H

Ψ2

(
q̂1

H
)]

+α (1−δ ) q̂1
H (B.2)

As dVC
2 (q)
dq = AΨ2 (q)≥ 0, VC

2 (q) is a non-decreasing function in q and strictly increasing in q

when q̂2
L < q. I establish my argument with a few steps.

Step 1: In this step, I will show SC
1 has at most three elements.

Picking any pM
1 ∈ SC

1 , I use q̂M
1 to denote the corresponding cutoff type that is induced by

pM
1 . Since pH

1 and pM
1 give buyer 1 the same payoff, I have

q̂1
M+q
2 − pM

1 =
q̂1

H+q
2 − pH

1 . As pM
1 is

concealed, I have

pM
1 = δ

[∫ q̂2
H

q̂1
M

Aq̃dΨ2 (q̃)+Aq̂1
M

Ψ2

(
q̂1

M
)]

+α (1−δ ) q̂1
M (B.3)

This suggests

pH
1 −

1
2

q̂1
H = δ

[∫ q̂2
H

q̂1
M

Aq̃dΨ2 (q̃)+Aq̂1
M

Ψ2

(
q̂1

M
)]

+

[
α (1−δ )− 1

2

]
q̂1

M (B.4)

The right hand side of the equation (B.4) is a convex function, and the first order derivative with

respect to q̂1
M is increasing in q̂1

M. Therefore, there are at most three elements in SC
1 .

Step 2: In this step I will show that if there is more than 1 element in SC
1 , pH

1 /∈ SC
1 , and

pH
1 = δA2

2A−1 q̂1
H +α (1−δ ) q̂1

H . As a result, SC
1 has at most 1 element.

When pH
1 is disclosed, buyer 2 has a degenerate belief of the cutoff type. Suppose his

belief of the cutoff type is q̂1
′, and offers price p′2, when pH

1 is disclosed. Given buyer 2’s strategy,

the seller discloses offer pH
1 if

p′2 ≥
∫ q̂2

H

q
Aq̃dΨ2 (q̃)+AqΨ2 (q) (B.5)

Case 1: Suppose VC
2
(
qL

2
)
< p′2 < VC

2
(
qH

2
)
. There exists a threshold type q̂′ such that
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type q̂′ is indifferent between disclosing pH
1 or concealing pH

1 , and q̂2
L < q̂′ < q̂2

H holds. Here

all seller types below q̂′ prefers disclosing pH
1 and all seller types above q̂′ prefers concealing pH

1 .

From the consistency of beliefs, if pH
1 is disclosed, buyer 2’s belief of the seller’s type would be

uniformly distributed in interval
[
q̂1
′, q̂′
]
.

Case 1.1: q̂′ ≥ A
2A−1 q̂1

′ holds. In this case, buyer 2’s payoff is a function of the cutoff

type q̂2 in period 2.

π2 (q̂2) =

(
q̂2 + q̂1

′

2
−Aq̂2

)
q̂2− q̂1

′

q̂′− q̂1
′

π2 (q̂2) is maximized when q̂2 =
A

2A−1 q̂1
′. Moreover, given q̂1

′, buyer 2’s price offer is p′2 =

A2

2A−1 q̂1
′. From the consistency of beliefs,

pH
1 = δ p′2 +α (1−δ ) q̂1

′ (B.6)

I get q̂1
′=

pH
1

δ
A2

2A−1+α(1−δ )
. Using equation (B.2), I can compare the price p′2 and VC

2

(
q̂1

H
)

.

p′2−VC
2

(
q̂1

H
)

=
A2

δA2 +α (1−δ )(2A−1)

[
δVC

2

(
q̂1

H
)
+α (1−δ ) q̂1

H
]
−VC

2

(
q̂1

H
)

=
α (1−δ )(2A−1)

δA2 +α (1−δ )(2A−1)

[
A2

(2A−1)
q̂1

H −VC
2

(
q̂1

H
)]

=
Aα (1−δ )(2A−1)

δA2 +α (1−δ )(2A−1)

[
A

(2A−1)
q̂1

H −
∫ q̂2

H

q̂1
H

q̃dΨ2 (q̃)− q̂1
H

Ψ2

(
q̂1

H
)]

If q̂1
H ≥ q̂2

H , p′2 > VC
2

(
q̂1

H
)

holds naturally. Type q̂1
H will deviate to disclose pH

1 . If

q̂1
H < q̂2

H , I will show that A
2A−1 q̂1

H ≥ q̂2
H . When the cutoff type in period 2 is q2, buyer 2’s

payoff function is

π2 (q2) =
∫ q2

(q)

∫ q

q

q−Aq2

1− q̃−q
q−q

dΨ1 (q̃)dq

Since q̂2
H is the cutoff in equilibrium, it must satisfy the following first order condition.

qH
2

∫ q̂1
H

q

1

1− q̃−q
q−q

dΨ1 (q1) =
A

2A−1

∫ q̂1
H

q

q1

1− q̃−q
q−q

dΨ1 (q1) (B.7)
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From (B.7), I conclude A
2A−1 q̂1

H ≥ q̂2
H . Therefore A

(2A−1) q̂1
H >

∫ q̂2
H

q̂1
H q̃dΨ2 (q̃)+ q̂1

H
Ψ2

(
q̂1

H
)

.

This suggest that p′2−VC
2

(
q̂1

H
)
> 0. Therefore, type q̂1

H will deviate and disclose pH
1 when it

is offered. Moreover, I still need to check that q̂′ ≥ A
2A−1 q̂1

′. Since p′2 >VC
2 (q̂1) for any q̂1 ∈(

q̂1
H , A

2A−1 q̂1
H
)

, any seller type in
(

q̂1
H , A

2A−1 q̂1
H
)

would disclose offer pH
1 . The assumption

that q̂′ ≥ A
2A−1 q̂1

′ holds since q̂′ ≥ A
2A−1 q̂1

H ≥ A
2A−1 q̂1

′.

Case 1.2: q̂′ < A
2A−1 q̂1

′ holds. In this case, Buyer 2’s offer is p′2 = Aq̂′. Moreover, since

q̂2
L < q̂′ < q̂2

H , I have VC
2 (q̂′) > Aq̂′. However, type q̂′ is indifferent between disclosing or

concealing pH
1 , and VC

2 (q̂′) = p′2 = Aq̂′, which contradicts the former argument.

From Case 1.1 and 1.2, I conclude pH
1 /∈ SC

1 . Buyer 2’s price is A2

2A−1 q̂1
H when pH

1 is

disclosed and pH
1 = δA2

2A−1 q̂1
H +α (1−δ ) q̂1

H .

Case 2: Suppose p′2 ≤ VC
2
(
qL

2
)
. Buyer 2 belief of q̂1

′ cannot exceed qL
2 . His offer cannot

exceed AqL
2 . However, applying equation (B.5) and (B.2) together, I find that p′2 >VC

2
(
qL

2
)
. I

find a contradiction.

Case 3: If p′2 ≥VC
2
(
qH

2
)
= AqH

2 , any seller type in
(
qH

1 ,q
H
2
)

strictly prefers disclosing

offer pH
1 , and any type q≥ qH

2 weakly prefers disclosing offer pH
1 . Therefore pH

1 /∈ SC
1 .

From the analysis in these three cases, I conclude that pH
1 /∈ SC

1 . There is at most 1

elements in SC
1 . I will prove pH

1 = δA2

2A−1 q̂1
H +α (1−δ ) q̂1

H .

If d2 (q,{pH
1 }
)
= {pH

1 } for all q in equilibrium, buyer 2 believes that the cutoff seller

type rejecting pH
1 is q̂1

H . Any type higher than q̂1
H must also reject and disclose pH

1 . Therefore,

buyer 2 will offer A2

2A−1 q̂1
H . pH

1 satisfies the following indifference condition

pH
1 −α q̂1

H = δ

[
A2

2A−1
q̂1

H−α q̂1
H
]

This suggests that pH
1 = δA2

2A−1 q̂1
H +α (1−δ ) q̂1

H .

If d2 (q,{pH
1 }
)
= /0 with probability β (q)< 1 for some q, buyer 2 must offer the same

price whether pH
1 is disclosed or not. In this equilibrium, suppose that type q discloses the

equilibrium offer pH
1 with probability P(q,D). In period 2, when pH

1 is disclosed, buyer 2 forms
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a posterior belief of the seller’s type with the density function φ1 (q) =
1

q−q̂1
H P(q,D)∫ q

q̂1
H

1
q−q̂1

H P(q,D)dq
, and

Φ1 denotes the distribution function. When pH
1 is concealed, buyer 2 forms a posterior belief

of the seller’s type with the density function φ2 (q) =
1

q−q̂1
H (1−P(q,D))∫ q

q̂1
H

1
q−q̂1

H (1−P(q,D))dq
, and Φ2 denotes the

distribution function. When pH
1 is disclosed, buyer 2’s maximization problem depends on the

cutoff type q2 in period 2, which can be written as

max
∫ q2

q̂1
H
(q−Aq2)φ1 (q)dq (B.8)

The solution q̂2 satisfies the condition that (1−A) q̂2φ1 (q̂2) = AΦ1 (q̂2). In other words, it is

(1−A) q̂2P(D, q̂2) = A
∫ q̂2

q̂1
H P(D,q)dq. Buyer 2’s price is Aq̂2. When pH

1 is concealed, buyer

2’s maximization problem is max
∫ q2

q̂1
H (q−Aq2)φ2 (q)dq. Since q̂2 is also the solution, I have

(1−A) q̂2φ2 (q̂2) = AΦ2 (q̂2). In addition, (1−A) q̂2 (1−P(D, q̂2)) = A
∫ q̂2

q̂1
H (1−P(D,q))dq.

Altogether, I have q̂2 =
A

2A−1 q̂1
H . Therefore, pH

1 = δA2

2A−1 q̂1
H +α (1−δ ) q̂1

H .

Let pS
1 = supS1, and q̂1

S be the corresponding cutoff type. Using the arguments in

Step 2, I get that pS
1 /∈ SC

1 . Applying the same techniques in proving Step 2, I can show that

pS
1 =

δA2

2A−1 q̂1
S +α (1−δ ) q̂1

S.

Step 3: Lastly, I will show that buyer 1 is not randomizing in equilibrium.

Case 1: I first consider the situation in which SC
1 = /0. For any pM

1 ∈ S1 and pM
1 < pS

1,

pM
1 ∈ d2 (q,{pM

1 }
)

for some q. When pM
1 is disclosed, buyer 2 has a degenerate belief of the

cutoff type; let pM
2 be his offer. Let q̂1

M be the cutoff type accepting offer pM
1 . Here,

pM
1 = δ pM

2 +α (1−δ ) q̂1
M (B.9)

Using the same techniques as in Step 2, I derive that buyer 2’s offer pM
2 satisfies pM

2 = A2

2A−1 q̂1
M.

Since
q̂1

M+q
2 − pM

1 =
q̂1

S+q
2 − pS

1, I get the following equation.

q̂1
M

2
−α (1−δ ) q̂1

M−δ pM
2 =

[
1
2
− δA2

2A−1
−α (1−δ )

]
q̂1

S (B.10)
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The left hand side of (B.10) is actually
[

1
2 −

δA2

2A−1 −α (1−δ )
]

q̂1
M. The right hand side of the

equation is clearly smaller than the left hand side. Buyer 1 cannot randomize between pM
1 and

pH
1 .

Case 2: If there exists pM
1 ∈ SC

1 , I have pM
1 < pS

1. Since pM
1 is the only equilibrium offer

not disclosed on path, buyer 2 has a degenerate belief of the cutoff type; let pM
2 be his offer. Let

q̂1
M be the cutoff type accepting offer pM

1 . Here,

pM
1 = δ pM

2 +α (1−δ ) q̂1
M (B.11)

Using the technique in proving Case 1, I can show that buyer 1 cannot randomize between pM
1

and pH
1 .

Thus, I conclude that buyer 1 must play a pure strategy in equilibrium. In this case, buyer

2 has degenerate belief of the cutoff type, and he must also play a pure strategy.

Proof of Lemma 3. Lemma 2 allows me to only focus on the equilibrium where the two buyers

play pure strategies. For a fixed p1, let pD
2 denote buyer 2’s price when p1 is disclosed, and the

corresponding cutoff type be q̂2
D (pD

2 = Aq̂2
D). Buyer 2’s price when p1 is concealed is denoted

by pC
2 . Type-q seller’s payoff in period 2 is max{p2,Aq}. If a type-q seller prefers disclosing p1,

I must have:

max
{

pD
2 ,Aq

}
≥max

{
pC

2 ,Aq
}

(B.12)

(B.12) indicates that pD
2 ≥ pC

2 . Therefore max
{

pD
2 ,Aq′

}
≥max

{
pC

2 ,Aq′
}

holds for all

types rejecting p1.

For the second part of Lemma 3, I have max
{

pD
2 ,Aq

}
> max

{
pC

2 ,Aq
}

. This suggests

that max
{

pD
2 ,Aq′

}
> max

{
pC

2 ,Aq′
}

for any q′ < q; in addition, pD
2 > pC

2 must hold. If p1 is the

equilibrium offer, suppose there exists a type qM such that her disclosure rule in equilibrium

satisfies d2 (qM,{p1}
)
= /0 with positive probability. I must have qM ≥ q̂2

D. When p1 is not
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disclosed, buyer 2 believes that the seller’s type must be greater than q̂2
D. His offer pC

2 will be at

least Aq̂2
D = pD

2 . However, this contradicts pD
2 > pC

2 .

Proof of Lemma 4. When the seller’s strategy is d2 (q, p1) = /0 for any p1 ∈ P1 and q, any

offer becomes unobservable to buyer 2. Following from Lemma 2, I only need to discuss the

pure strategy equilibrium. In Proposition 10, I show that the BMU model does not have a pure

strategy equilibrium when δ > 1− 1
2α

. This intuitively shows that d2 (q, p1)= /0 for any p1 ∈ P1

and q cannot be sustained as the equilibrium disclosure rule when δ > 1− 1
2α

. A general proof

is presented below.

Consider an equilibrium in which all possible offers including the equilibrium offer p∗1

are concealed by all seller types. Let the corresponding cutoff accepting p∗1 be q̂1. Buyer 2’s

offer must be A2

2A−1 q̂1. However, for any p1 > p∗1, I will prove that buyer 2 would offer a price

higher than A2

2A−1 q̂1 if p1 is known. Therefore, the seller would have the incentive to disclose

it. Let me pick an arbitrary p′1 > p∗1. Suppose that buyer 2’s belief of the cutoff type is q̂1
′, and

his offer is p′2 when p′1 is revealed. If p′2 ≤
A2

2A−1 q̂1, the price that buyer 2 offers when p′1 is

concealed is higher than the price when p′1 is revealed. Therefore, any type prefers concealing

p′1. Suppose buyer 2’s belief q̂1
′ of the cutoff type accepting p′1 is below q̂1. Since

p′1 = δ p′2 +α (1−δ ) q̂1
′ (B.13)

I find p′1 ≤ δ
A2

2A−1 q̂1 +α (1−δ ) q̂1, which contradicts p′1 > p∗1. Therefore, q̂1
′ must be above

q̂1. Buyer 2 would offer a price greater than A2

2A−1 q̂1, and p′1 would be disclosed by some seller

types. Moreover, The proof also shows that buyer 2 would offer a higher price when a p1 that is

higher than the equilibrium price is disclosed. In conclusion, d2 (q, p1)= /0 for any p1 ∈ P1 and

any q is not an equilibrium disclosure rule.

Proof of Proposition 6. When d2 (q, p1) = p1 for any p1 ∈ P1 and any q, any offer becomes

observable to buyer 2. I first solve the equilibrium under this disclosure rule and check whether
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the players want to deviate.

In period 2, the cutoff type q̂2 is indifferent between accepting the offer p2 or rejecting

and receiving the payoff Aq̂2. For buyer 2, p2 = Aq̂2, and his payoff maximizing problem can be

expressed as:

max
q̂2

q̂2− q̂1

q− q̂1

(
q̂2 + q̂1

2
− p2

)
The first order condition shows that q̂2 =

A
2A−1 q̂1. At optimal, q̂2 (q̂1) =

A
2A−1 q̂1 is satisfied. From

the consistency of beliefs, the cutoff type q̂1 satisfies the condition below.

p1−α q̂1 = δ (p2−α q̂1)⇒ p1 = δ p2 +(1−δ )α q̂1 =

(
δ

A2

2A−1
+(1−δ )α

)
q̂1

Buyer 1’s payoff maximizing problem is:

max
q̂1

q̂1−q
q−q

(
q̂1 +q

2
− p1

)

Solving the first order condition, I get q̂1 =
δA2+(2A−1)(1−δ )α

2δA2+(2A−1)(2(1−δ )α−1)q = qL and q̂2 =
A

2A−1 q̂1.

I need to check whether the seller wants to deviate and conceal p1. Given buyer 2’s

belief that non-disclosure suggests the seller being the lowest type, p2 would be q̂2 =
A2

2A−1q,

conditional on non-disclosure. This price is strictly worse than the offer in equilibrium. Every

seller type has no incentive to deviate.

Proof of Proposition 7. From Lemma 2, I only need to focus on the situation in which the two

buyers play pure strategies.

Let the equilibrium price be p∗t and the corresponding cutoff be q̂t in period t. Buyer 2’s

belief of the remaining type is above q̂1, due to a pure strategy construction and the consistency

of beliefs. When a price p′1 is disclosed, I denote buyer 2’s belief of the cutoff in period 1 by q̂1
′

and his offer by p′2. Moreover, I denote the cutoff type accepting p′2 by q̂2
′.

In Proposition 6, I discuss the equilibrium where any offer is disclosed by all seller
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types. This equilibrium is sustained if buyer 2 has the belief that the seller is of type q when no

information is disclosed. There can be other equilibria in which buyer 2 has different beliefs of

the seller’s type when there is non-disclosure.

Case 1: I first consider the case in which d2 (q,{p∗1}) = /0 for some q. Using the

argument in Lemma 3, I find that concealing p∗1 generates a higher payoff for every type

that rejects p∗1. Thus, I must have d2 (q,{p∗1}) = /0 if p1 = p∗1 for all q.1 Buyer 2 maximizes

his payoff by choosing p∗2 = Aq̂2 and q̂2 =
A

2A−1 q̂1, where q̂2 is the cutoff type accepting p∗2.

There is also the indifference condition, i.e., p∗1−α q̂1 = δ
(
A A

2A−1 q̂1−α q̂1
)
. This shows that

p∗1 = δ
A2

2A−1 q̂1 +(1−δ )α q̂1.

If p′1 > p∗1, the seller has the incentive to disclose p′1 when she rejects it. This is because

buyer 2 will update his belief towards a higher cutoff type and provide p′2 > p∗2, from the proof of

Lemma 4. Thus, a price p′1 higher than the equilibrium offer will be disclosed eventually. In fact,

all seller types have the incentive to do so, from Lemma 3. Buyer 2 maximizes his surplus when

the cutoff type in period 2 is A
2A−1 q̂1

′, and his price is A2

2A−1 q̂1
′. Given buyer 2’s strategy, any

seller type below A
2A−1 q̂1

′ strictly prefers disclosing p′1. All seller types weakly prefer disclosing

offer p′1. From the consistency of beliefs, q̂1
′ is pinned down by

p′1−α q̂1
′ = δ

[
A2

2A−1
q̂1
′−α q̂1

′
]

This shows that q̂1
′ = 2A−1

δA2+α(1−δ )(2A−1) p′1. Moreover, if an offer p′1 < p∗1 is disclosed,

buyer 2 must set p′2 < p∗2. Suppose not. If buyer 2 makes his price p′2 ≥ p∗2, his belief of the

cutoff type in period 1 must be q̂1
′ ≥ q̂1. This is inconsistent with p′1 < p∗1. Therefore, any

1If in equilibrium some seller types disclose p∗1 while some seller types do not, buyer 2 must offer the same
price whether p∗1 is disclosed or not. From the assumption made earlier, a seller type either discloses or conceals
the equilibrium offer p∗1 with probability 1. Therefore, the support of buyer 2’s belief when p∗1 is disclosed has
no intersection with the support of buyer 2’s belief when p∗1 is concealed. Suppose that buyer 2’s belief of the
seller’s type is distributed according to G2 (q|D) if p∗1 is disclosed, and G2 (q|C) if p∗1 is concealed; in addition,
g2 (q|D) and g2 (q|C) are the density functions, respectively. Let q′2 and q′′2 be the corresponding cutoffs in period
2 when p∗1 is disclosed or concealed. Buyer 2’s optimal conditions are (1−A)q′2g2 (q′2|D) = AG2 (q′2|D) and
(1−A)q′′2g2 (q′′2 |C) = AG2 (q′′2 |C). Since q′2 6= q′′2 , buyer 2’s price offer will be different whether p∗1 is disclosed or
not. This is a contradiction, and I conclude that d2 (q,{p∗1}) = /0 for all q.
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seller type q < q̂2 would not disclose p′1 to buyer 2 because buyer 2 would respond with a lower

price if he is informed. For any seller type q ≥ q̂2, her payoff would be Aq, and she would

be indifferent between disclosing or concealing p′1. However, her equilibrium strategy does

not include disclosing p′1. Otherwise, suppose there exists a seller of type q (q≥ q̂2) such that

her equilibrium strategy includes disclosing p′1. Buyer 2 would believe that the seller’s type is

above q̂2 if p′1 were disclosed, and he would set p2 ≥ Aq̂2, which is inconsistent with p2 < p∗2.

Therefore, I conclude that any p′1 < p∗1 is concealed by all seller types according to the seller’s

equilibrium strategy.

Given the seller’s strategy and buyer 2’s strategy, I must guarantee that buyer 1’s payoff

is maximized when making the equilibrium offer p∗1. Any offer below p∗1 would be concealed

while any offer above p∗1 would be disclosed. Buyer 1’s payoff is a function of the cutoff type q1

and is given below.

π1 (q1) =


q1−q

∆q

(
q1+q

2 − (1−δ )αq1−δAq̂2

)
, when p1 ≤ p∗1

q1−q
∆q

(
q1+q

2 − (1−δ )αq1−δA A
2A−1q1

)
, when p1 > p∗1

dπ1 (q1)

dq1
=


1

∆q

(
q1+q

2 − (1−δ )αq1−δAq̂2

)
+

q1−q
q−q

[1
2 − (1−δ )α

]
, when p1 ≤ p∗1

1
∆q

((
1−2(1−δ )α− 2δA2

2A−1

)
q1 +

(
δA2

2A−1 +(1−δ )α

)
q
)
, when p1 > p∗1

In this construction, I need dπ1(q1)
dq1

≥ 0 for p1 ≤ p∗1, and dπ1(q1)
dq1

≤ 0 for p1 > p∗1 to guar-

antee that p∗1 is the best response. The second condition dπ1(q1)
dq1

≤ 0 for p1 > p∗1 suggests

q̂1≥ δA2+(2A−1)(1−δ )α
2δA2+(2A−1)(2(1−δ )α−1)q= qL. When 1

2−(1−δ )α ≤ 0, q̂1 =
(2A−1)(1−δ )α

δA2+(2A−1)(2α(1−δ )−1)q max-

imizes buyer 1’s payoff if p1 ≤ p∗1. Therefore, the upper bound of q̂1 is (2A−1)(1−δ )α
δA2+(2A−1)(2α(1−δ )−1)q,

and q̂1 ∈
[
qL,

(2A−1)(1−δ )α
δA2+(2A−1)(2α(1−δ )−1)q

]
.

Moreover, when 1
2 − (1−δ )α > 0, since buyer 1 has a non-negative payoff, dπ1(q1)

dq1
≥ 0

for p1 ≤ p∗1. The maximum price is reached when
q1+q

2 = p∗1. Consequently, the upper bound

of q̂1 is (2A−1)
2δA2+(2A−1)(2α(1−δ )−1)q, and q̂1 ∈

[
qL,

(2A−1)
2δA2+(2A−1)(2α(1−δ )−1)q

]
. Here, the equilibrium
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price p∗1 matches the value of the seller’s disclosure threshold for p1.

Case 2: The other case is d2 (q,{p∗1}) = {p∗1} for some q. From Lemma 3, I have

d2 (q,{p∗1}) = {p∗1} for all q. Here, buyer 2 picks p∗2 = Aq̂2 where q̂2 = A
2A−1 q̂1, if p∗1 is

disclosed to him. In this case, buyer 1’s equilibrium offer satisfies p∗1 = δ
A2

2A−1 q̂1 +(1−δ )α q̂1.

For any p′1 > p∗1, the seller still has an incentive to disclose it when she rejects it, for the

same reason as discussed in Case 1. When non-disclosure happens, buyer 2 believes that p′1 must

be lower than p∗1, and his belief of the cutoff type q̂1
′ must also be lower than the equilibrium

cutoff type q̂1.

If q̂1
′ = q̂1, buyer 2 maintains the same belief of the cutoff in period 1 when non-

disclosure happens; in addition, he would offer the same price p∗2. This is essentially the same as

in Case 1 in which the equilibrium offer is not disclosed, and I will skip the detailed construction

here. Note that in this situation, the seller would conceal offers made lower than the equilibrium

offer. Here, when non-disclosure happens, buyer 2 could predict that the offer in period 1 were

lower than the equilibrium offer p∗1. It would not be optimal for him to offer a price equal to p∗2.

If q̂1
′ < q̂1, I claim that q̂1 = qL. Suppose there exists q̂1 > qL. Essentially, every offer

greater than δ
A2

2A−1 q̂1
′+(1−δ )α q̂1

′ would be disclosed. When p1 ≥ δ
A2

2A−1 q̂1
′+(1−δ )α q̂1

′,

π1 (q1) =
q1−q

∆q

(
q1 +q

2
− (1−δ )αq1−δA

A
2A−1

q1

)

Note that π1 (q1) is a quadratic function which is maximized at qL. When q̂1
′ ≥ qL, the seller

has the incentive to deviate to offer p1 = δ
A2

2A−1 q̂1
′+(1−δ )α q̂1

′. Here the cutoff in period 1

would be q̂1
′. As dπ1(q1)

dq1
≤ 0 for q1 > qL, buyer 1 would achieve a higher payoff from deviation.

When q̂1
′ < qL, buyer 1 has the incentive to deviate to p1 = δ

A2

2A−1qL +(1−δ )αqL. Therefore,

the only supported cutoff is q̂1 = qL.

In terms of the off-path belief q̂1
′ in the situation where p′1 is concealed, the only possible

belief is q̂1
′ = q. As an offer will be concealed only when it is lower than p∗1, the cutoff type

q̂1
′ when there is non-disclosure is less than q̂1. I have q̂1

′ = E (q1|q < q̂1) < q̂1. However,
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the seller has the incentive to reveal any offer that induces a cutoff type higher than q̂1
′. Only

the offers inducing a cutoff type below q̂1
′ are concealed. Conditional on this, I still have

E
(
q1|q < q̂1

′)< q̂1
′. Thus, any offer inducing a cutoff type higher than E

(
q1|q < q̂1

′) will be

revealed. I go over this reasoning process repeatedly, and eventually the only possible belief

when there is non-disclosure is q. This suggests that the seller essentially discloses every offer in

this equilibrium, which is formally stated in Proposition 6.

Note: In the paper, I make the assumption about no randomization in disclosing the

equilibrium offer for the purpose of equilibrium characterization. Removing this assumption

does not salvage my result. Consider an equilibrium in which d2 (q, p1)= /0 with probability

β (q)< 1 if p1 = p∗1 for some q. In this case, buyer 2 must offer the same price whether p∗1 is

disclosed or not. In this equilibrium, let a type-q seller disclose p∗1 with probability P(q,D). In

period 2, when p∗1 is disclosed, buyer 2 forms a posterior belief of the seller’s type with a density

function φ1 (q) =
1

q−q̂1
P(q,D)∫ q

q̂1
1

q−q̂1
P(q,D)dq

and a distribution function φ1. When p∗1 is concealed, buyer 2

forms a posterior belief of the seller’s type with a density function φ2 (q) =
1

q−q̂1
(1−P(q,D))∫ q

q̂1
1

q−q̂1
(1−P(q,D))dq

and a distribution function Φ2. When p∗1 is disclosed, buyer 2’s maximization problem depends

on the cutoff type q2 in period 2, which can be written as max
∫ q2

q̂1
(q−Aq2)φ1 (q)dq. The

solution q̂2 satisfies the condition that (1−A) q̂2φ1 (q̂2) = AΦ1 (q̂2). In other words, it is

(1−A) q̂2P(D, q̂2) = A
∫ q̂2

q̂1

P(D,q)dq (B.14)

Buyer 2’s price is Aq̂2. When p∗1 is concealed, buyer 2’s maximization problem can be written

as max
∫ q2

q̂1
(q−Aq2)φ2 (q)dq. Since q̂2 is also the solution, I have (1−A) q̂2φ2 (q̂2) = AΦ2 (q̂2).

In other words,

(1−A) q̂2 (1−P(D, q̂2)) = A
∫ q̂2

q̂1

(1−P(D,q))dq (B.15)

Combining equations (B.14) and (B.15) together, I derive q̂2 =
A

2A−1 q̂1, which is the same as

in Case 1. Using the same arguments as in Case 1, I find that the seller’s equilibrium strategy
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includes disclosing any offer greater than p∗1 while concealing any offer less than p∗1. In addition,

any equilibrium, where d2 (q,{p∗1}) = /0 with probability β (q) < 1 for some q, can also be

sustained as an equilibrium where d2 (q,{p∗1})= /0 with probability 1 for all q, while other parts of

the strategy profile remain unchanged. Thus the exact probabilities that the seller mixes between

disclosing and concealing the equilibrium offer does not affect the equilibrium construction.

In conclusion, for any equilibrium where some seller types randomize between disclosing and

concealing p∗1, there is an equilibrium generating the same equilibrium outcome in which all

seller types conceal p∗1. For simplicity and definiteness of the equilibrium characterization, I

make the assumption that there is no randomization in disclosing the equilibrium offer.

Proof of Proposition 8. The expected welfare generated in trade is

W = (1−α)

[
q̂1−q

∆q
·

q̂1 +q
2

+δ
q̂2− q̂1

∆q
· q̂2 + q̂1

2

]
=

1−α

2

[
q̂1

2−q2

∆q
+δ

( A
2A−1

)2
q̂1

2− q̂1
2

∆q

]

W is an increasing function of q̂1. Therefore, the maximum welfare level is reached at the upper

bound of q̂1, and the minimum welfare level is reached at the lower bound of q̂1. I can easily

calculated the buyers’ surplus WB and the seller’s surplus WS.

WB =
1
2

[
q̂1

2−q2

∆q
− p∗1

q̂1−q
∆q

]
+δ

[( A
2A−1

)2
q̂1

2− q̂1
2

∆q
− p∗2

q̂2− q̂1

∆q

]

WS =
1
2

[
p∗1

q̂1−q
∆q

−α
q̂1

2−q2

∆q

]
+δ

[
p∗2

q̂2− q̂1

∆q
−α

( A
2A−1

)2
q̂1

2− q̂1
2

∆q

]

Proof of Proposition 9. See the proof of Proposition 6.

Proof of Proposition 10. 2 When the offers are unobservable, buyer 2’s belief of the cutoff type
2The proof is very similar to the proof of Proposition 3 in [18]. Please refer to their proof for further information.
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in period 1 is independent of the price history. In period 2, I have p2 = Aq2, where q2 is the

cutoff type accepting p2. Let K2 (·) represent the cdf of the cutoff induced by the equilibrium

price in period 2. Type q’s expected payoff in period 2 is

VC
2 (q) = AqK2 (q)+

∫ q

q
Aq̃dK2 (q̃)

Since the cutoff type q1 satisfies the condition that p1−αq1 = δ
(
VC

2 (q1)−αq
)
,

p1 = δ

[∫ q

q1

Aq̃dK2 (q̃)+K2 (q1)Aq1

]
+(1−δ )aq1 (B.16)

Let K1 (·) represent the cdf of the cutoff induced by the equilibrium price in period 1. Buyer 2’s

payoff is a function of the cutoff type q2 and K1 (·). Specifically,

π2 (q2;K1) =
∫ q2

q

∫ c

q
(c−Aq2)

1

1− q̃−q
q−q

dK1 (q̃)dc

The first order condition shows that

(q2−Aq2)
∫ q2

q

1
q− q̃

dK1 (q̃) = A
∫ q2

q

q2− q̃
q− q̃

dK1 (q̃) = A
∫ q2

q

(
1+

q2−q
q− q̃

)
dK1 (q̃)⇒∫ q2

q

1
q− q̃

dK1 (q̃) =
A

(1−A)q2 +A(q−q2)

Moreover, buyer 1’s payoff is a function of the cutoff type q1. Here,

π1 (q1;K2) =
q1−q
q−q

(
q1 +q

2
− p1

)
The first order condition is

dπ1 (q1;K2)

dq1
=

1
q−q

(
q1 +q

2
− p1

)
+

q1−q
q−q

[
1
2
−α (1−δ )−δAK2 (q1)

]
= 0
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Considering a pure strategy equilibrium, I have K2 (q1) = 0 and p1 = δ p2 +(1−δ )aq1.

If 1
2 −α (1−δ ) > 0, the first order derivative satisfies dπ1(q1;K2)

dq1
> 0, as buyer 1’s payoff is

non-negative in equilibrium. Therefore, for any p∗1, buyer 1 wants to deviate to a price higher

than p∗1. In this case, there is no pure strategy equilibrium. In addition, if 1
2 −α (1−δ ) ≤ 0,

there exists a price that maximizes buyer 1’s profit. After I solve the maximization problem, I

derive the cutoffs that q∗∗1 = (2A−1)(1−δ )α
δA2+(2A−1)(2α(1−δ )−1)q and q∗∗2 = A

2A−1q∗∗1 .

In the next step, I will characterize the equilibrium when 1
2 −α (1−δ )≥ 0, i.e., δ > δ ∗.

I make the following claims.

Claim 1: When 1
2 −α (1−δ ) ≥ 0, if buyer 1 mixes continuously between prices that

result in continuous cutoffs as an interval (a,b), buyer 1 must have a payoff of zero, and (a,b) is

not in the support of K2 (·) in equilibrium.

If in equilibrium, buyer 1 mixes continuously between prices that result in cutoffs as

an interval (a,b), then for any q1 ∈ (a,b), I have
q1+q

2 − p∗∗1 = B
q1−q , for some non-negative

constant B and some equilibrium price p∗∗1 . The cutoff type accepting p∗∗1 satisfies equation

(B.16). Taking derivatives of both sides, I have

1
2
−α (1−δ )−AδK2 (q1) = − B(

q1−q
)2 ⇒

1
2
−α (1−δ )+

B(
q1−q

)2 = AδK2 (q1)

The left hand side of the equation is non-increasing in q1. However, the right hand side is

non-decreasing in q1. Thus the only possible case is B = 0 and 1
2 −α (1−δ ) = AδK2 (q1),

which suggests that K2 (q1) is constant in interval (a,b). Therefore,
q1+q

2 = p∗∗1 holds. Also,

(a,b) is not in the support of K2 (·), and K2 (q1) =
1
2−α(1−δ )

Aδ
for any q1 ∈ (a,b).

Claim 2: When 1
2 −α (1−δ ) ≥ 0, buyer 2 mixes between at most countably many

prices.

Suppose that buyer 2 mixes continuously between prices that result in continuous cutoffs
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as an interval (a,b). For any q2 ∈ (a,b), I have dπ2(q2;K1)
dq2

= 0. This suggests
∫ q2

q
1

q−q̃dK1 (q̃) =

A
(1−A)q2+A(q−q2)

. However, the right hand side of the equation is increasing in q2, which indicates

that the left hand side of the equation is also increasing in q2; thus, (a,b) is in the support of

K1 (·). Nevertheless, this contradicts Claim 1. In conclusion, buyer 2 cannot mix between prices

that result in cutoffs as an interval.

Suppose that q′1 is the smallest cutoff in the support of K1 (·). For a small enough ε ,

dπ2 (q2;K1)

dq2
|q2=q′1+ε =

∫ q2

q′1

1
q− q̃

dK1 (q̃)
(
(1−A)q′1− (2A−1)ε

)
> 0

Buyer 2 does not choose any price that results in a cutoff equal to or below q′1. From the

claims established earlier, the support of K2 (·) is discrete, and p1 (·) is piece-wise linear and

continuous. At any cutoff that is induced with positive probability in period 2, π1 (q1;K2) has a

kink. Similarly, at every cutoff that is induced with positive probability in period 1, π2 (q2;K1)

has a kink. Due to similar arguments found in the proof of Proposition 3 in [18], π1 is a parabola

open to the left, and q is in the support of K1 (·). Since π1
(
q;K2

)
= 0, I have K2 (q) = 0 for q

close enough to q.

Suppose that there exists an interval
[
q2,q2

]
such that the induced cutoffs in period

1 are in this interval. From Claim 1, I know that
(

q2,q2

)
is not in the support of K2 (·).

Also, π2 (q2;K1) has kinks at q2 and q2; thus, q2 and q2 must be in the support of K2 (·).

Buyer 2’s payoff π2 is a piecewise quadratic parabola opening from below. Moreover, buyer

1 can only mix between
{

q
}
∪
[
q2,q2

]
. There is no other disjoint interval in the support of

K1 (·) due to the quadratic property, as in the proof of Proposition 3 in [18]. In this case,

buyer 2 randomizes between q2 and q2; in addition, K2

(
q2

)
= 1−2α(1−δ )

2δA from previous

analysis. Moreover, as π1

(
q2;K2

)
= π1 (q2;K2) = 0, I can solve q2 = 1

2δA+2α(1−δ )−1q. As
dπ2(q2;K1)

dq2
|q2=q2

= 0, I solve q2 =
A

2A−1q. In addition, dπ2(q2;K1)
dq2

|q2=q2 = 0. I get
∫ q2

q
1

q−q̃dK1 (q̃) =

A
(1−A)q2+A(q−q2)

. As
∫ q2

q
1

q−q̃dK1 (q̃)≤ K1
(
q
) 1

q−q +
(
1−K1

(
q
)) 1

q−q2
, I further derive

K1(q)
∆q ≤

(1−A)q2
[(1−A)q2+A(q−q2)](q2−q)

.
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Moreover, I also know that π2

(
q2;K1

)
= π2 (q2;K1). Here,

π2

(
q2;K1

)
=

∫ q2

q

∫ c

q

(
c−Aq2

) 1
q− q̃

dK1 (q̃)dc

=
K1
(
q
)

2∆q

[
q2

2−q2−2Aq2

(
q2−q

)]
=

K1
(
q
)

2(2A−1)∆q
(1−A)2 q2

I can further simplify π2 (q2;K1) as

π2 (q2;K1) =
∫ q2

q

∫ c

q
(c−Aq2)

1
q− q̃

dK1 (q̃)dc

=
∫ q2

q

(
1
2

q2
2−

1
2

q̃2−Aq2 (q2− q̃)
)

1
q− q̃

dcdK1 (q̃)

=
1
2

q+
1
2

∫ q2

q
q̃dK1 (q̃)−

q2−q2
2

2

∫ q2

q

1
q− q̃

dK1 (q̃)−Aq2

+Aq2 (q−q2)
∫ q2

q

1
q− q̃

dK1 (q̃)

This gives me another expression about the expected trading type in period 1.

∫ q2

q
q̃dK1 (q̃) =

K1
(
q
)

(2A−1)∆q
(1−A)2 q2 +2Aq2−q+A(q−q2)

q− (2A−1)q2
(1−A)q2 +A(q−q2)

(B.17)

Proof of Proposition 11. I will prove (1) and (2) together first. In equation (B.17) in the proof

of Proposition 10, I find the expected trading type in period 1 in the BMU model, which is

∫ q2

q
q̃dK1 (q̃) =

K1
(
q
)

(2A−1)∆q
(1−A)2 q2 +2Aq2−q+A(q−q2)

q− (2A−1)q2
(1−A)q2 +A(q−q2)

Here I have
K1(q)

∆q ≤
(1−A)q2

[(1−A)q2+A(q−q2)](q2−q)
. Furthermore, I compare the expected trading type

in the BMU model with the trading type in the welfare-maximizing equilibrium in my model. In

114



period 1, the comparison is given below, where q̂1 =
(2A−1)

2δA2+(2A−1)(2α(1−δ )−1)q. For simplicity, I

will refer to the welfare-maximizing equilibrium of my model as the WM equilibrium from now

on.

∫ q2

q
q̃dK1 (q̃)− q̂1 =

K1
(
q
)

(2A−1)∆q
(1−A)2 q2 +2Aq2−q+A(q−q2)

q− (2A−1)q2

(1−A)q2 +A(q−q2)

− (2A−1)
2δA2 +(2A−1)(2α (1−δ )−1)

q

= (2A−1)(1−A)q2

(
(q−q2)

(1−A)q2 +A(q−q2)
− 2(δA+2α (1−δ )−1)

2δA2 +(2A−1)(2α (1−δ )−1)

)
+

K1
(
q
)

(2A−1)∆q
(1−A)2 q2

≤ (2A−1)(1−A)q2

(
(q−q2)

(1−A)q2 +A(q−q2)
− 2(δA+2α (1−δ )−1)

2δA2 +(2A−1)(2α (1−δ )−1)

)
+

(1−A)3 q2

[(1−A)q2 +A(q−q2)] (2A−1)
(
q2−q

)q2 (B.18)

The sign of the right hand side of inequality (B.18) depends on the parameters. Under

some assumptions, I can show that
∫ q2

q q̃dK1 (q̃) < q̂1. One possible assumption needs q to

be relatively small. I suppose (q−q2)
(1−A)q2+A(q−q2)

≤ 3
2

δA+2α(1−δ )−1
2δA2+(2A−1)(2α(1−δ )−1) for now. The above

inequality can be further simplified to

∫ q2

q
q̃dK1 (q̃)− q̂1 ≤

1−A
2A−1

[
(1−A)(
q2−q

)q2− (2A−1)2

2
q2

δA+2α (1−δ )−1
2δA2 +(2A−1)(2α (1−δ )−1)

]
(B.19)

The right hand side of the inequality eventually becomes strictly negative as A gradually

approaches 1. For any set of parameters α and δ , there exists a A∗∗ (δ ,α) such that for

A > A∗∗,
∫ q2

q q̃dK1 (q̃) < q̂1. Let me denote M = (q−q2)
(1−A)q2+A(q−q2)

− 3
2

δA+2α(1−δ )−1
2δA2+(2A−1)(2α(1−δ )−1) .

I have dM
dq ≥ 0. For any set of parameters δ , α , A, and q, there exists a q∗

(
δ ,α,A,q

)
such

that when q ≤ q∗, the condition that (q−q2)
(1−A)q2+A(q−q2)

≤ 3
2

δA+2α(1−δ )−1
2δA2+(2A−1)(2α(1−δ )−1) is guaranteed.

Another possible assumption is α (1−δ ) being sufficiently large. As α (1−δ )→ 1
2 , I have∫ q2

q q̃dK1 (q̃)− q̂1→ (1−A)2

(2A−1)2

[
K1(q)

∆q q2− (2A−1)2 q2
2

1
A(Aq−(2A−1)q2)

]
. Since (2A−1)q2 ≥ q, the
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sign of
∫ q2

q q̃dK1 (q̃)− q̂1 can be determined. Here,

K1
(
q
)

∆q
q2− (2A−1)2 q2

2
1

A(Aq− (2A−1)q2)
≤ q2

(
K1
(
q
)

∆q
− 1

A
(
Aq−q

))< 0

In this case, I also have
∫ q2

q q̃dK1 (q̃)< q̂1.

Moreover, in the proof of Proposition 10, I show that buyer 1 in the BMU model makes a

profit of zero. This suggest that buyer 1’s price is equal to the average value, i.e., p∗∗1 =
q+q∗1

2 ,

for any equilibrium cutoff q∗1 ∈
[
q2,q2

]
. When the cutoff type is the lowest type, buyer 1’s offer

will not exceed q. This suggests that buyer 1’s expected payoff satisfies

∫ q2

q
p1 (q̃)dK1 (q̃)≤

∫ q2

q

q̃+q
2

=
q
2
+

1
2

∫ q2

q
q̃dK1 (q̃)

In the WM equilibrium of the optional disclosure model, buyer 1 also makes a payoff of

zero, i.e., p∗1 =
q+q̂1

2 . Thus I derive the inequality below.

∫ q2

q
p1 (q̃)dK1 (q̃)≤

q
2
+

1
2

∫ q2

q
q̃dK1 (q̃)≤

q
2
+

q̂1

2

The trading price in period 1 in the WM equilibrium is strictly higher than the expected price

in period 1 in any equilibrium of the BMU model. Next, I compare the expected trading

type in period 2. In the BMU model, buyer 2 mixes between the prices that induce q2 and

q2 with probabilities K2

(
q2

)
= 1−2α(1−δ )

2δA and K2 (q2) = 1−K2

(
q2

)
, where q2 =

A
2A−1q and

q2 =
1

2δA+2α(1−δ )−1q.

∫ q2

q2

q̃dK2 (q̃)− q̂2 = K2

(
q

2

)
q

2
+
(

1−K2

(
q

2

))
q2−

A
2A−1

q̂1

=
(1−2α (1−δ ))

[
2δA(1−A)2 +(2A−1)(1−A−2A(1−δ )(1−α))

]
2δA(2A−1)(2δA2 +(2A−1)(2α (1−δ )−1))

The above expression becomes negative as A goes to 1. There exists a threshold A∗ (δ ,α) such

that, for A > A∗,
∫ q2

q2
q̃dK2 (q̃)− q̂2 < 0. Actually, when A > δ +α (1−δ ),

∫ q2
q2

q̃dK2 (q̃)− q̂2 < 0
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holds naturally for any α > 1
2 and δ > δ ∗.

In terms of the equilibrium price in period 2, I know that p∗∗2 = Aq∗2. This indicates that∫ q2
q2

p2 (q̃)dK2 (q̃)< p2 (q̂2). In summary, I establish the result that the trading prices in the WM

equilibrium of my model are strictly higher than those in any equilibrium of the BMU model.

This indicates that all seller types are exante better off with the disclosure option. Moreover,

buyer 1 ends up with a payoff of zero in the WM equilibrium of my model, as well as in any

equilibrium of the BMU model. For buyer 2, the surplus is q̂2−q̂1
q−q̂1

(
q̂2+q̂1

2 −Aq̂2

)
= (1−A)2q̂1

2

2(2A−1)(q−q̂1)

in the WM equilibrium, while it is
(1−A)2q2

2(2A−1)(q−q)
in any equilibrium of the BMU model. Buyer 2

is better off in the WM equilibrium of my model as well. Therefore, the WM equilibrium ex-ante

Pareto dominates any equilibrium of the BMU model.

The third statement is straightforward to see. Since the welfare-minimizing equilibrium of

the optional disclosure model has exactly the same two-period cutoffs as the unique equilibrium

of the BMO model. Any equilibrium of the optional disclosure model yields a weakly higher

social surplus than the equilibrium of the BMO model.

B.2 Proofs and Supplementary Materials for Chapter 2.6.1

In this subsection, I provide supplementary materials for Section 2.6.1. Proposition 19

describes the situation in which there is a small variation in the item’s quality. In this case, all

buyers will simply offer αq, which is accepted by all seller types.

Proposition 19 When δ > δ ∗ and q ≥ (2α−1)q, every buyer submits the offer αq, and all

seller types accept the offer αq in equilibrium.

Proof of Proposition 19. Suppose that buyer 1 offers p′1 ≤ αq, which serves types up to q′1.

Here, p′1 ≥ αq′1. Buyer 1’s payoff satisfies

π1 =
(
q′1−q

)(q′1 +q
2
− p′1

)
≤
(
q′1−q

)(q′1 +q
2
−αq′1

)
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Here,
(
q′1−q

)(q′1+q
2 −αq′1

)
is the upper bound of π1. The derivative of

(
q′1−q

)(q′1+q
2 −αq′1

)
with respect to q′1 is (1−2α)q′1 +αq, which is positive when q is large enough, i.e., q≥ 2α−1

α
q.

The upper bound reaches the maximum when q′1 = q. When p′1 = αq, all seller types accept the

offer p′1, and q′1 = q. In this case, the maximum of π1 is also reached. Every buyer will offer αq

in equilibrium.

Moreover, if q < 2α−1
α

q, suppose that q′1 >
2α−1

α
q for now. Then buyer 2 will make the

offer αq. Since p′1−αq′1 = δ (αq−q′1), buyer 1’s payoff is

π1 =
(
q′1−q

)(q′1 +q
2
−δαq− (1−δ )q′1

)

This is increasing in q′1, and buyer 1 still offers the price αq. The other possible case is

q′1 ≤
2α−1

α
q. The derivative of

(
q′1−q

)(q′1+q
2 −αq′1

)
with respect to q′1 is still positive, as

(1−2α)q′1 +αq≥ (2α−1)
(
αq−q′1

)
≥ 0

The upper bound reaches the maximum when q′1 =
2α−1

α
q, and buyer 1’s payoff satisfies

π1 ≤
(

2α−1
α

q−q
)( 2α−1

α
q+q

2
−α

2α−1
α

q

)

However,

(
2α−1

α
q−q

)( 2α−1
α

q+q
2

−α
2α−1

α
q

)
<
(
q−q

)(q+q
2
−αq

)
(B.20)

When q′1 ≤
2α−1

α
q, inequality (B.20) shows that choosing p1 = αq yields a strictly higher payoff

for buyer 1. Buyer 1 is better off by picking αq. A similar proof applies to all future buyers; thus,

all of them will offer αq. If the variation of the product quality is small, every buyer will serve

all seller types by offering αq. Here, having the disclosure option will not affect the equilibrium

outcome.
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Lemma 8 In any equilibrium, when δ > δ ∗ and q < (2α−1)q, a buyer plays a pure strategy

when the cutoff type accepting his offer is strictly lower than q. The buyer plays a mixed strategy

when he serves the type-q seller with positive probability. In this case, the buyer randomizes

between two offers, one of which is αq.

Proof of Lemma 8. In the infinite-horizon game, similar to the two-period model, the seller’s

continuation value is non-decreasing in her type. The proof of the first part is very similar to the

proof of Lemma 2, and I will skip it here. The only possible situation that a buyer randomizes is

when he trades with type q with positive probability. In this case, the buyer randomizes between

only two offers; the higher one is αq. Otherwise, there are at least two offers resulting in different

cutoff types strictly below q, which would create the disclosure incentive for the seller. Similar

to the proof of Lemma 2, the higher offer of the two would be disclosed; thus, this buyer would

have no incentive to randomize.

Lemma 8 states that a buyer’s equilibrium strategy does not include randomizing unless

the highest type accepts his offer with positive probability.

Proof of Lemma 5. This is essentially proving p̂t,t+1
(
q, pt−1) = p̂t,t+k

(
q, pt+k−1) for any

k > 1. I will prove it by contradiction. Consider an arbitrary ST equilibrium. In that ST

equilibrium, if the seller rejects pt , she discloses the offer pt to buyer t+1 when pt > p̂t,t+1 (q, pt),

and she discloses pt to buyer t +2 when pt > p̂t,t+2
(
q, pt+1).

Suppose p̂t,t+1 (q, pt)< p̂t,t+2
(
q, pt+1) holds in the equilibrium of some subgame. The

equilibrium offer p∗t in the subgame must match the value of p̂t,t+1 (q, pt) on the equilibrium

path. I consider a situation in which buyer t raises his price slightly higher to p∗t + ε , and

p∗t + ε < p̂t,t+2
(
q, pt+1) holds. In this case, the offer p∗t + ε will be disclosed to buyer t +1, but

not to buyer t +2. Note that the equilibrium offer p∗t+1 in the subgame must match the value of

p̂t+1,t+2
(
q, pt+1) on the equilibrium path. Here, buyer t +1 would not want to raise his price.

For any belief of the cutoff type accepting p∗t + ε that buyer t +1 has, if buyer t +1 raised his

price, he would be worse off as buyer t +2 would perceive this situation as an deviation from
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buyer t + 1 rather than from buyer t. Buyer t + 2 would pick a more aggressive price. Here,

buyer t +2 would not observe the deviation from buyer t. He would only observe buyer t +1’s

deviation and act aggressively. From the equilibrium definition, buyer t +1 must be worse off if

he deviates to a higher price. Thus, he would still offer the original price p∗t+1. Nevertheless,

buyer t would achieve a higher payoff by deviating to p∗t +ε , which cannot happen in equilibrium.

Therefore, p̂t,t+1 ≥ p̂t,t+2 must hold in the equilibrium of every subgame. If p̂t,t+1 > p̂t,t+2 holds

in equilibrium , this suggests that the equilibrium offer p∗t matches the value of p̂t,t+1 on the

equilibrium path. The offer p∗t will be disclosed to buyer t +2, which violates the definition of

the ST equilibrium. Moreover, if for some price history, p̂t,t+1 > p̂t,t+2 holds. There is an offer

p̂t,t+1− ε that will be disclosed to buyer t +2 but not to buyer t +1. This offer must be lower

than the equilibrium offer. Otherwise, it would be disclosed to buyer t +1. However, it will not

not rational for the seller to disclose a price that is lower than the equilibrium price to future

buyers as shown in the two-period model. Hence, I prove that p̂t,t+1 = p̂t,t+2. By induction, I

can show that p̂t,t+1 = p̂t,t+k for k > 1.

Proof of Theorem 2. I claim that for any other equilibrium (dt , p∗t , q̂t), if p∗t ∈ dt+k (q, pt+k−1),
pt ∈ dt+k (q, pt+k−1) for any pt > p∗t . Similar to the proof of Proposition 7, here, concealing

an offer will induce a lower belief of the cutoff type than the corresponding equilibrium belief.

If an offer higher than the equilibrium price is revealed, it will lead the next buyer to form a

higher belief of the cutoff type than the corresponding equilibrium belief. This can be shown by

contradiction. Suppose buyer t +1 would form a belief of the cutoff type in period t lower than

the corresponding equilibrium belief, when some offer pt higher than p∗t were revealed. Here,

I can construct a deviation of buyer t. If buyer t were to make the offer pt , regardless of the

seller’s disclosure rule, it would lead buyer t +1 to form a belief of the cutoff type lower than

the equilibrium belief. Given a lower belief, buyer t +1 must offer a price pt+1 weakly lower
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than his equilibrium price p∗t+1. Let ∆q̂t denote the change in the cutoff type q̂t , and ε = pt− p∗t .

pt = δ pt+1 +α (1−δ )(q̂t +∆q̂t)

In this case, buyer t would receive a higher payoff than his equilibrium payoff, as the higher

seller types would accept pt . The gain is more than ε

2α(1−δ ) while the cost is ε . Given δ > δ ∗,

buyer t is better off when he deviates to pt . Here, I show a deviation. Thus the seller’s strategy

must include revealing pt to buyer t +1 when pt > p∗t . Using similar arguments established in

proving Lemma 5, I find that pt will be revealed to all future buyers given pt > p∗t .

From now on, I will construct the ST equilibrium. I modify the seller’s strategy as pm ∈

dt (q, pt−1) if pm > p̂m
(
q, pt−1) for m≤ t−1, and pm /∈ dt (q, pt−1) otherwise. The disclosure

thresholds satisfy the conditions that p̂1
(
q, p0)= p∗1, and p̂t

(
q, pt−1)= p∗t if pm ≤ p̂m

(
q, pm−1)

for all m≤ t−1. If there exists m≤ t−1 such that pm > p̂m, the seller reports pm to buyer t; in

addition, the disclosure threshold for the offer in period t will be raised to p̂t
(
q, pt−1)= p∗t + ε

where ε = pm− p̂m.

In addition to this modification, I let the buyers’ strategies and the seller’s acceptance rule

remain the same as in the original equilibrium. Buyers’ beliefs are derived from the Bayes’ rule.

Under this modification, every buyer still maintains the same equilibrium belief of the cutoff

type, since the seller’s acceptance rule is unchanged. In equilibrium, the value of the seller’s

disclosure threshold p̂t matches the equilibrium price p∗t , and no equilibrium offer is disclosed

on the equilibrium path.

I can show that it is still an equilibrium. Conditional on the seller’s strategy, buyer t has

no incentive to reduce his price. Moreover, he also has no incentive to increase his price. If

buyer t increases his price to p∗t + ε ′, this will be reported to buyers in the future, which is the

same as in the original equilibrium. If p∗t + ε ′ gives buyer t a higher surplus in the modified

equilibrium, it should also give buyer t a higher surplus in the original equilibrium. Therefore,

buyer t must have no incentive to deviate. Moreover, as buyers’ offers are unchanged, the seller
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must have no incentive to deviate from the current acceptance rule. In conclusion, it is indeed an

ST equilibrium, and the equilibrium prices and cutoff types remain unchanged.

Proof of Proposition 12. Consider an ST equilibrium with a strategy profile (dt , pt , q̂t):

(1) Suppose that there exists a period s and some n (n > 1) such that the seller picks a

disclosure threshold α (2α−1)n q, and will reveal any offer above the threshold in all future

periods. This indicates that every offer above α (2α−1)n q will be observable to all future

buyers after period s. The equilibrium cutoff type in period s is denoted by q̂s. For now, I suppose

q̂s ≥ (2α−1)n+1 q. I first discuss the case where q̂s > (2α−1)n q. Any offer above α q̂s will be

observable from period s onwards. I make the following statement.

Claim: If q̂s ∈ ((2α−1)k q,(2α−1)k−1 q], buyer s+1 offers α (2α−1)k−1 q in equi-

librium. The seller type up to (2α−1)k−1 q accepts the offer. Every future buyer will make an

offer no larger than α (2α−1)k−1 q.

I will prove this claim by induction.

Step 1: Suppose q̂s ∈ ((2α−1)q,q]. Buyer s+ 1 offers αq in equilibrium. All seller

types accept this offer. Every future buyer will make an offer no larger than αq.

Similar to the proof of Proposition 19, I can show that offering αq maximizes buyer

s+1’s surplus. Every future buyer will make an offer equal to αq. The first step is complete.

Suppose that the statement is true for k−1. Now I will prove it for k.

Step 2: Suppose q̂s ∈ ((2α−1)k q,(2α−1)k−1 q], and buyer s+1 offers α (2α−1)k−1 q

in equilibrium. The seller type up to (2α−1)k−1 q accepts the offer. Every future buyer will

make an offer no larger than α (2α−1)k−1 q.

This argument is proved by contradiction. Suppose this is not true, and there exists a type-

q seller (q > (2α−1)k−1 q) accepting buyer s+1’s offer ps+1. I also have q ≤ (2α−1)k−2 q,

as buyer s+1 must make a non-negative payoff. The price offer will be α (2α−1)k−2 q in the
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next period. This suggests that the price ps+1 satisfies the following condition.

ps+1−αq≥ δ

(
α (2α−1)k−2 q−αq

)
⇒ ps+1 ≥ δα (2α−1)k−2 q+(1−δ )αq

However,

δα (2α−1)k−2 q+(1−δ )αq− q̂s +q
2

≥ δα (2α−1)k−2 q+(1−δ )αq− (2α−1)k−1 q+q
2

=
1
2

(
(2α−1)k−2 q−q

)
(1−2α (1−δ ))> 0

In this case, ps+1 >
q̂s+q

2 , and buyer s+1 would make a negative surplus, which cannot happen

in equilibrium.

Moreover, I will prove that none of the future offers will exceed α (2α−1)k−1 q. Suppose

there is an equilibrium in which buyers in the future will make offers greater than α (2α−1)k−1 q.

I let pM be the upper bound of these offers. There is a p such that p−α (2α−1)k−1 q =

δ

(
pM− (2α−1)k−1 q

)
. This indicates that any offer greater than p will be accepted by the

seller type up to α (2α−1)k−1 q. No equilibrium offer will exceed p, which contradicts the

definition of pM. All future offers will not exceed α (2α−1)k−1 q. This complete the proof the

claim.

This shows one possible equilibrium construction of the infinite-horizon game. Notice

that I assume q̂s > (2α−1)n q, and the disclosure threshold is α (2α−1)n q. In this case, the

equilibrium offers will be disclosed after period s. Although this construction does not fall into

the category of the ST equilibrium, it is crucial for my analysis.

When the cutoff type q̂s ≤ (2α−1)n q, from the previous discussion, I know that any

future price will not exceed α (2α−1)n q. Under the condition that q̂s ≥ (2α−1)n+1 q, buyer

s+1 will offer ps+1 = α (2α−1)n q which will induce the cutoff type (2α−1)n q. All future

offers will not exceed α (2α−1)n q. When q̂s < (2α−1)n+1 q, offering α (2α−1)n q will give

buyer s+1 a negative surplus. However, offering any other price below α (2α−1)n q will create

an incentive for buyer s+1 to deviate. This cannot happen in equilibrium.
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I can construct one type of the ST equilibrium in the following way. There exists a n?

such that, for some q̂n? = (2α−1)n q, the seller will disclose any offer above α q̂n? in every

t ≥ n?. All future prices will not exceed α q̂n? . The cutoff type will remain unchanged in every

t ≥ n?, i.e., q̂n? = q̂n?+1 = · · · . The value of the disclosure threshold p̂t
(
q, pt−1) coincides with

the equilibrium price p∗t when t ≤ n?.

The same technique can be applied to construct the equilibrium in which there is a

threshold p̂ and n (n ≤ 1) so that α (2α−1)n+1 q < p̂ < α (2α−1)n q. In this equilibrium,

every seller type will disclose any offer above p̂ in all future periods after some period s. This

type of equilibrium is similar to the type of equilibrium I have discussed previously. The

construction is almost the same. Similarly, to construct the ST equilibrium, I need the cutoff type

q̂s ≥ (2α−1)n+1 q. In period t > s, the equilibrium offer will be α (2α−1)n q, which will be

above the disclosure threshold. In this case, some equilibrium offers will be disclosed, and this

equilibrium does not fall into the category of the ST equilibrium.

(2) Suppose that there is no such threshold p̂ < α (2α−1)q that every seller type will

disclose any offer above p̂ in all future periods after some period s. In this case, the value of

the equilibrium disclosure thresholds must be weakly increasing across periods, and so do the

cutoff types. Otherwise, suppose that there exists p̂k
(
q, pk−1)> p̂k+1

(
q, pk). For some small ε ,

this suggests that the offer p̂k− ε made in period k will be concealed to buyer k+2, but p̂k−2ε

made in period k+1 will be disclosed. However, disclosing p̂k− ε made by buyer k will lead

buyer k+2 to update his belief to a much higher cutoff type than disclosing p̂k−2ε made by

buyer k+1. From sequential rationality, the value of the disclosure thresholds must be weakly

increasing, i.e., p̂k
(
q, pk−1)≤ p̂k+1

(
q, pk).

In this category of equilibrium, type q is eventually served. Let n?? denote the first

period that type q is served with positive probability. I claim that when serving type q, a buyer

randomizes between 2 offers, one of which is αq. Suppose there is an equilibrium in which αq

is offered with probability 1 in period n??. The cutoff type in period n??−1 is denoted by q̂n??−1,

and q̂n??−1 < q. The cutoff type satisfies pn??−α q̂n??−1 = δ
(
αq−α q̂n??−1

)
. Buyer n??−1’s
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surplus function is

q̂n??−1− q̂n??−2

q− q̂n??−2

(
q̂n??−1 + q̂n??−2

2
−δαq−α (1−δ ) q̂n??−1

)

This function is increasing in q̂n??−1. For any q̂n??−1 < q, buyer n??− 1 would have

an incentive to raise his price and serve the higher types. Therefore, in equilibrium, αq must

be offered with probability strictly less than 1. From Lemma 8, I know that buyer n?? must

randomize between two offers, i.e., pH = αq and pL
n?? .

In addition, I will prove that q̂n??−1 = (2α−1)q. If q̂n??−1 < (2α−1)q, buyer n?? will

have a negative payoff when offering αq, which cannot be possible. However, if q̂n??−1 >

(2α−1)q, offering αq will yield a positive payoff. To make buyer n?? willing to randomize, of-

fering pL
n?? must also yield a positive payoff. I use q′n?? (q′n?? > q̂n??−1) to denote the cutoff type ac-

cepting pL
n?? . Also, I have

(
q′n??− q̂n??−1

)(q′n??+q̂n??−1
2 − pL

n??

)
=
(
q− q̂n??−1

)(q+q̂n??−1
2 −αq

)
.

The payoff of offering pL
n?? satisfies

πn?? =
(
q′n??− q̂n??−1

)(q′n?? + q̂n??−1

2
− pL

n??

)
≤
(
q′n??− q̂n??−1

)(q′n?? + q̂n??−1

2
−αq′n??

)

Similar to what I have done in proving Proposition 19, when q̂n??−1 ≥ 2α−1
α

q is satisfied,(
q′n??− q̂n??−1

)(q′n??+q̂n??−1
2 −αq′n??

)
is increasing in q′n?? , and the maximum is reached at q′n?? =

q. In this case, buyer n?? cannot randomize between the two offers pH = αq and pL
n?? . If

q̂n??−1 <
2α−1

α
q and q̂n?? ≥ 2α−1

α
q, for buyer n??+1, there is no offer that gives him the same

payoff as the offer αq. Therefore, there will be no randomization in period n??+ 1, which

presents a contradiction. The last possible case is q̂n?? <
2α−1

α
q. However, as I have done in

proving Proposition 19, αq generates a strictly higher payoff than any lower pL
n??; thus, buyer

n?? cannot randomize. This shows another contradiction.

In conclusion, q̂n??−1 = (2α−1)q. In this case, buyer n?? ends up with a payoff of

zero, and the offer pL
n?? is rejected by any type q ≥ (2α−1)q. This also suggests that I must
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have stationary cutoff types in all future periods. For any t ≥ n??, buyer t’s lower offer cannot

exceed the disclosure threshold p̂t , and the seller’s continuation value is also weakly higher

than p̂t . As p̂t is non-decreasing, I have stationarity in the continuation value. In period n??,

the continuation value of the cutoff type (2α−1)q is equal to the equilibrium offer in period

n?∗−1, which is pn??−1. Any buyer t (t ≥ n??) will randomize between the two offers αq and pL
t

where pL
t ≤ pn??−1 ≤

q̂n??−1+q̂n??−2
2 . The probability of offering αq is λ such that the following

condition holds.

pn??−1−α q̂n??−1 = δ
(
λαq+(1−λ ) pn??−1−α q̂n??−1

)
When t ≤ n??− 1, the value of the disclosure threshold p̂t

(
q, pt−1) matches the equilibrium

price p∗t on the equilibrium path. Moreover, p̂t
(
q, pt−1) matches pn??−1 when t > n??−1.
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Appendix C

Proofs for Chapter 3

In Appendix C, I provide detailed proofs for most of the propositions and lemmas in

Chapter 3.

C.1 Proofs for Chapter 3.3

When contracting with a present-biased agent, the seller’s profit maximization problem is

max
{ts,xs}

{
µ

[
t1
(
θ
)
− 1

2
x2

1
(
θ
)
+δE

(
π2
(
θ |θ
))]

+(1−µ)

(
t1 (θ)−

1
2

x2
1 (θ)+δE (π2 (θ |θ))

)}
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subject to the IC and IR constraints for all θ1 and θ ′1, θ2 and θ ′2, θ3 and θ ′3, where

IC1 : θ1x1 (θ1)− t1 (θ1)+βδEθ2 (θ2x2 (θ2|θ1)− t2 (θ2|θ1) |θ1)

+βδ
2Eθ2,θ3 (θ3x3 (θ3|θ1,θ2)− t3 (θ3|θ1,θ2) |θ1)

≥ θ1x1
(
θ
′
1
)
− t1

(
θ
′
1
)
+βδEθ2

(
θ2x2

(
θ2|θ ′1

)
− t2

(
θ2|θ ′1

)
|θ1
)

+βδ
2Eθ2,θ3

(
θ3x3

(
θ3|θ ′1,θ2

)
− t3

(
θ3|θ ′1,θ2

)
|θ1
)

IC2 : θ2x2 (θ2|θ1)− t2 (θ2|θ1)+βδEθ3 (θ3x3 (θ3|θ1,θ2)− t3 (θ3|θ1,θ2) |θ2)

≥ θ2x2
(
θ
′
2|θ1

)
− t2

(
θ
′
2|θ1

)
+βδEθ3

(
θ3x3

(
θ3|θ1,θ

′
2
)
− t3

(
θ3|θ1,θ

′
2
)
|θ2
)

IC3 : θ3x3 (θ3|θ1,θ2)− t3 (θ3|θ1,θ2)≥ θ3x3
(
θ
′
3|θ1,θ2

)
− t3

(
θ
′
3|θ1,θ2

)
IR1 : 0≤ θ1x1 (θ1)− t1 (θ1)+βδEθ2 (θ2x2 (θ2|θ1)− t2 (θ2|θ1) |θ1)

+βδ
2Eθ2,θ3 (θ3x3 (θ3|θ1,θ2)− t3 (θ3|θ1,θ2) |θ1)

IR2 : θ2x2 (θ2|θ1)− t2 (θ2|θ1)+βδEθ3 (θ3x3 (θ3|θ1,θ2)− t3 (θ3|θ1,θ2) |θ2)≥ 0

IR3 : θ3x3 (θ3|θ1,θ2)− t3 (θ3|θ1,θ2)≥ 0

Proof of Proposition 13. The proof can be found in [5], and it is omitted here.

Proof of Lemma 6. Lemma 6 can be easily proved using the IR and the IC constraints

characterized above. The proof is standard in the mechanism design literature, and it is omitted

here.

Proof of Proposition 14. Applying the results in Lemma 6, I can characterize the optimal

payment scheme, which satisfies
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t3 (θ |θ1,θ2) = θx3 (θ |θ1,θ2)

t3
(
θ |θ1,θ2

)
= θx3

(
θ |θ1,θ2

)
−∆θx3 (θ |θ1,θ2)

t2 (θ |θ1) = θx2 (θ |θ1)+βδ (1− r)∆θx3 (θ |θ1,θ)

t2
(
θ |θ1

)
= θx2

(
θ |θ1

)
−∆θx2 (θ |θ1)+βδ (1− r)∆θx3 (θ |θ1,θ)+αβδ∆θ

(
x3
(
θ |θ1,θ

)
− x3 (θ |θ1,θ)

)
t1 (θ) = θx1 (θ)+(1− γ)βδ∆θx2 (θ |θ)+(1− γ)β

2
δ

2 (α + γ−1)∆θx3 (θ |θ ,θ)

+(1− γ)β (1−β )αδ
2
∆θx3

(
θ |θ ,θ

)
+(1− γ)β (1−β )γδ

2
∆θx3 (θ |θ ,θ)

t1
(
θ
)

= θx1
(
θ
)
−∆θx1 (θ)+(1− γ)βδ∆θx2 (θ |θ)+(1− γ)β

2
δ

2 (α + γ−1)∆θx3 (θ |θ ,θ)

+(1− γ)β (1−β )αδ
2
∆θx3

(
θ |θ ,θ

)
+(1− γ)β (1−β )γδ

2
∆θx3 (θ |θ ,θ)

+αβδ∆θ
(
x2
(
θ |θ
)
− x2 (θ |θ)

)
+αβ

2
δ

2 (α + γ−1)∆θ
(
x3
(
θ |θ ,θ

)
− x3 (θ |θ ,θ)

)
+βδ

2 (1−β )α
2
∆θ
(
x3
(
θ |θ ,θ

)
− x3

(
θ |θ ,θ

))
+βδ

2 (1−β )(1−α)(1− γ)∆θ
(
x3
(
θ |θ ,θ

)
− x3 (θ |θ ,θ)

)
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The principal’s profit function can be transformed into

Eπ = µ

(
θ − 1

2
x1
(
θ
))

x1
(
θ
)
+

[
(1−µ)

(
θ − 1

2
x1 (θ)

)
−µ∆θ

]
x1 (θ)

+µαδ

(
θ − 1

2
x2
(
θ |θ
))

x2
(
θ |θ
)
+(1−µ)(1− γ)δ

(
θ − 1

2
x2
(
θ |θ
))

x2
(
θ |θ
)

+µδ

[
(1−α)

(
θ − 1

2
x2
(
θ |θ
))
−α (1−β )∆θ

]
x2
(
θ |θ
)

+δ

[
(1−µ)γ

(
θ − 1

2
x2 (θ |θ)

)
−µ (α + γ−1)β∆θ − (1−µ)(1− γ)(1−β )∆θ

]
x2 (θ |θ)

+µα
2
δ

2
(

θ − 1
2

x3
(
θ |θ ,θ

))
x3
(
θ |θ ,θ

)
+µ (1−α)(1− γ)δ

2
(

θ − 1
2

x3
(
θ |θ ,θ

))
x3
(
θ |θ ,θ

)
+(1−µ)(1− γ)αδ

2
(

θ − 1
2

x3
(
θ |θ ,θ

))
x3
(
θ |θ ,θ

)
+(1−µ)γ (1− γ)δ

2
(

θ − 1
2

x3
(
θ |θ ,θ

))
x3
(
θ |θ ,θ

)
+µαδ

2
[
(1−α)

(
θ − 1

2
x3
(
θ |θ ,θ

))
−α (1−β )2

∆θ

]
x3
(
θ |θ ,θ

)
+µδ

2
[
(1−α)γ

(
θ − 1

2
x3
(
θ |θ ,θ

))
− (1−β )

(
α

2
β +(1− γ)(1−β −α)

)
∆θ

]
x3
(
θ |θ ,θ

)
+δ

2
[
(1−µ)(1− γ)(1−α)

(
θ − 1

2
x3
(
θ |θ ,θ

))
−µα (α + γ−1)β (1−β )∆θ

]
x3
(
θ |θ ,θ

)
−αδ

2 (1−µ)(1− γ)(1−β )2
∆θx3

(
θ |θ ,θ

)
+δ

2
[
(1−µ)γ

2
(

θ − 1
2

x3 (θ |θ ,θ)
)
−µβ (α + γ−1)(αβ + γ−1)∆θ

]
x3 (θ |θ ,θ)

−δ
2
[
(1−µ)(1− γ)(α + γ−1)β (1−β )∆θ +(1−µ)γ (1− γ)(1−β )2

∆θ

]
x3 (θ |θ ,θ)
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So the optimal allocations are

x1
(
θ
)

= x2
(
θ |θ1

)
= x3

(
θ |θ1,θ2

)
= θ ,

x1 (θ) = θ − µ

1−µ
∆θ

x2
(
θ |θ
)

= θ − α

1−α
(1−β )∆θ

x2 (θ |θ) = θ −β
µ (α + γ−1)
(1−µ)γ

∆θ − (1−β )
1− γ

γ
∆θ

x3
(
θ |θ ,θ

)
= θ − (1−β )2 α

1−α
∆θ

x3
(
θ |θ ,θ

)
= θ −β (1−β )

α (α + γ−1)
(1−α)γ

∆θ − (1−β )2 1− γ

γ
∆θ

x3
(
θ |θ ,θ

)
= θ −β (1−β )

µα (α + γ−1)
(1−µ)(1− γ)(1−α)

∆θ − (1−β )2 α

1−α
∆θ

x3 (θ |θ ,θ) = θ −β
2 µ (α + γ−1)2

(1−µ)γ2 ∆θ +β (1−β )
µ (1− γ)(α + γ−1)

(1−µ)γ2 ∆θ

−β (1−β )
(α + γ−1)(1− γ)

γ2 ∆θ − (1−β )2 1− γ

γ
∆θ

Proof of Proposition 15. Using the results in Lemma 6, I only need to focus on the IR constraint

for the high type in period 1 and the three IC constraints for the low type. All the constraints can

be transformed into functions of β . I first prove that these constraints hold as strict inequalities

under β = 1. For the constraints in period 1, when β = 1,

IR1
(
θ
)

: θx1
(
θ
)
− t1

(
θ
)
+δE

(
Û2
(
θ2|θ

)
|θ
)

= ∆θ

2

∑
j=0

δ
j (α + γ−1) j x1+ j (θ |θ , . . . ,θ)> 0

IC1 (θ) : θx1 (θ)− t1 (θ)+δE
(

Û2 (θ2|θ) |θ
)
−
[
θx1

(
θ
)
− t1

(
θ
)
+δE

(
Û2
(
θ2|θ

)
|θ
)]

= ∆θ
2
(

1
1−µ

)
+∆θ

2
δ
(α + γ−1)2

γ

(
µ

1−µ

)
+∆θ

2
δ

2 (α + γ−1)4

γ2

(
µ

1−µ

)
> 0

where

Ûs+1 (θs+1|hs,θs) = θs+1xs+1 (θs+1|hs,θs)− ts+1 (θs+1|hs,θs)+δE
(

Ûs+1 (θs+2|hs+1,θs+1) |θs+1

)
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Similarly, the IC constraints in period 2 and period 3 satisfy the following conditions.

IC2 (θ |θ1) : θx2 (θ |θ1)− t2 (θ |θ1)+δE
(

Û3 (θ3|θ1,θ)
)
−
[
θx2

(
θ |θ1

)
− t2

(
θ |θ1

)
+δE

(
Û3
(
θ3|θ1,θ

))]
= ∆θ

(
x2
(
θ |θ1

)
− x2 (θ |θ1)

)
+∆θδ (α + γ−1)

(
x3
(
θ |θ1,θ

)
− x3 (θ |θ1,θ)

)
> 0

IC3 (θ |θ1,θ2) : θx3 (θ |θ1,θ2)− t3 (θ |θ1,θ2)−
[
θx3

(
θ |θ1,θ2

)
− t3

(
θ |θ1,θ2

)]
= ∆θ

(
x3
(
θ |θ1,θ2

)
− x3 (θ |θ1,θ2)

)
> 0

As the constraints are continuous functions of β , there exists a threshold β such that for β ≥ β ,

the allocations listed before are indeed optimal.

Proof of Proposition 16. The seller’s profit function is continuous and differentiable in β .

Using the Envelop theorem, I have the following expression.

dEπ

dβ
= µαδ∆θx2

(
θ |θ
)
+[(1−µ)(1− γ)−µ (α + γ−1)]δ∆θx2 (θ |θ)

+2µα
2
δ

2 (1−β )∆θx3
(
θ |θ ,θ

)
−µα (α + γ−1)δ

2 (1−2β )∆θx3
(
θ |θ ,θ

)
+µδ

2 (
α

2
β +(1− γ)(1−β −α)− (1−β )

(
α

2 + γ−1
))

∆θx3
(
θ |θ ,θ

)
−δ

2 (µ (α + γ−1)(2αβ + γ−1)−2(1−µ)γ (1− γ)(1−β ))∆θx3 (θ |θ ,θ)

−δ
2 (1−µ)(1− γ)(α + γ−1)(1−2β )∆θx3 (θ |θ ,θ)

When β = 1, I have

dEπ

dβ
|β=1 = µαδ∆θθ +[(1−µ)(1− γ)−µ (α + γ−1)]δ∆θx2 (θ |θ)

+2µα (α + γ−1)δ
2
∆θθ −µ (α + γ−1)(2α + γ−1)δ

2
∆θx3 (θ |θ ,θ)

+δ
2 (1−µ)(1− γ)(α + γ−1)∆θx3 (θ |θ ,θ)

Since x2 (θ |θ)< θ and x3 (θ |θ ,θ)< θ , dEπ

dβ
> 0 at β = 1. As dEπ

dβ
is a continuous function of

β , when β is close to 1, dEπ

dβ
is positive. Therefore, there exists a β ′ such that the seller’s profit
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function is increasing in β when β ≥ β ′.

C.2 Proofs and Supplementary Materials for Chapter 3.4

Lemma 9 The incentive compatibility constraint in period 3 is satisfied if and only if (i)

x3 (θ3|θ1,θ2) is non-decreasing in θ3; (ii) V3 (θ3|θ1,θ2) =V3 (θ |θ1,θ2)+
∫ θ3

θ
x3 (s|θ1,θ2)ds.

Proof of Lemma 9. This lemma results directly from the single crossing condition and the

envelope condition. The proof is fairly standard, and it is omitted here.

Lemma 10 The incentive compatibility constraint in period 2 is satisfied only if the following

conditions hold.

0≤
(
θ2−θ

′
2
)(

x2 (θ2|θ1)− x2
(
θ
′
2|θ1

))
−βδ

∫
θ

θ

[
x3 (θ3|θ1,θ2)− x3

(
θ3|θ1,θ

′
2
)][

F3 (θ3|θ2)−F3
(
θ3|θ ′2

)]
dθ3

V ′2 (θ2|θ1) = x2 (θ2|θ1)−βδ

∫
θ

θ

x3 (θ3|θ1,θ2)
∂F3 (θ3|θ2)

∂θ2
dθ3

Proof of Lemma 10. Taking any θ1 and θ ′1, I have that

V2 (θ2|θ1) ≥ V2
(
θ
′
2,θ2|θ1

)
=V2

(
θ
′
2|θ1

)
+
(
θ2−θ

′
2
)

x2
(
θ
′
2|θ1

)
+βδ

∫
θ

θ

V3
(
θ3|θ1,θ

′
2
)
( f3 (θ3|θ2)− f3

(
θ3|θ ′2

)
)dθ3

V2 (θ2|θ1)−V2
(
θ
′
2|θ1

)
≥

(
θ2−θ

′
2
)

x2
(
θ
′
2|θ1

)
+βδ

∫
θ

θ

V3
(
θ3|θ1,θ

′
2
)
( f3 (θ3|θ2)− f3

(
θ3|θ ′2

)
)dθ3

Similarly, I also have

V2 (θ2|θ1)−V2
(
θ
′
2|θ1

)
≤
(
θ2−θ

′
2
)

x2 (θ2|θ1)+βδ

∫
θ

θ

V3 (θ3|θ1,θ2)( f3 (θ3|θ2)− f3
(
θ3|θ ′2

)
)dθ3

Furthermore,

∫
θ

θ

V3 (θ3|θ1,θ2) f3 (θ3|θ2)dθ3 =V3
(
θ |θ1,θ

′
2
)
−
∫

θ

θ

x3 (θ3|θ1,θ2)F3 (θ3|θ2)dθ3
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⇒ V2 (θ2|θ1)−V2
(
θ
′
2|θ1

)
≤
(
θ2−θ

′
2
)

x2 (θ2|θ1)−βδ

[∫
θ

θ

x3 (θ3|θ1,θ2)(F3 (θ3|θ2)−F3
(
θ3|θ ′2

)
)dθ2

]

⇒ V2 (θ2|θ1)−V2
(
θ
′
2|θ1

)
≥
(
θ2−θ

′
2
)

x2
(
θ
′
2|θ1

)
−βδ

[∫
θ

θ

x3
(
θ3|θ1,θ

′
2
)
(F3 (θ3|θ2)−F3

(
θ3|θ ′2

)
)dθ2

]

Dividing both sides of the above inequalities by θ2−θ ′2 and taking limits, I get

V ′2 (θ2|θ1) = x2 (θ2|θ1)−βδ

∫
θ

θ

x3 (θ3|θ1,θ2)
∂F3 (θ3|θ2)

∂θ2
dθ3

Rearranging terms, I get

0 ≤
(
θ2−θ

′
2
)(

x2 (θ2|θ1)− x2
(
θ
′
2|θ1

))
−βδ

∫
θ

θ

[
x3 (θ3|θ1,θ2)− x3

(
θ3|θ1,θ

′
2
)][

F3 (θ3|θ2)−F3
(
θ3|θ ′2

)]
dθ3

Lemma 11 The incentive compatibility constraint in period 1 is satisfied only if the following

monotonicity condition is satisfied

0 ≤
(
θ1−θ

′
1
)(

x1 (θ1)− x1
(
θ
′
1
))
−βδ

∫
θ

θ

[
x2 (θ2|θ1)− x2

(
θ2|θ ′1

)][
F2 (θ2|θ1)−F2

(
θ2|θ ′1

)]
dθ2

+β
2
δ

2
∫

θ

θ

∫
θ

θ

[
x3 (θ3|θ1,θ2)− x3

(
θ3|θ ′1,θ2

)][
F2 (θ2|θ1)−F2

(
θ2|θ ′1

)] ∂F3 (θ3|θ2)

∂θ2
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

[
V3 (θ |θ1,θ2)−V3

(
θ |θ ′1,θ2

)](
f2 (θ2|θ1)− f2

(
θ2|θ ′1

))
dθ2

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

[
x3 (θ3|θ1,θ2)− x3

(
θ3|θ ′1,θ2

)]
[1−F3 (θ3|θ2)]

(
f2 (θ2|θ1)− f2

(
θ2|θ ′1

))
dθ2dθ3

and the envelope condition is satisfied.

V ′1 (θ1) = x1 (θ1)−βδ

∫
θ

θ

x2 (θ2|θ1)
∂F2 (θ2|θ1)

∂θ1
dθ2

+β
2
δ

2
∫

θ

θ

∫
θ

θ

x3 (θ3|θ1,θ2)
∂F3 (θ3|θ2)

∂θ2

∂F2 (θ2|θ1)

∂θ1
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

x3 (θ3|θ1,θ2) [1−F3 (θ3|θ2)]
∂ f2 (θ2|θ1)

∂θ1
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

V3 (θ |θ1,θ2)
∂ f2 (θ2|θ1)

∂θ1
dθ2
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Proof of Lemma 11. Take any θ1 and θ ′1, the IC constraint in period 1 shows that

V (θ1) ≥ V
(
θ
′
1,θ1

)
=V

(
θ
′
1
)
+
(
θ1−θ

′
1
)

x1
(
θ
′
1
)
+βδ

∫
θ

θ

V2
(
θ2|θ ′1

)
( f2 (θ2|θ1)− f2

(
θ2|θ ′1

)
)dθ2

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

V3
(
θ3|θ ′1,θ2

)(
f2 (θ2|θ1)− f2

(
θ2|θ ′1

))
f3 (θ3|θ2)dθ2dθ3

V (θ1)−V
(
θ
′
1
)
≥

(
θ1−θ

′
1
)

x1
(
θ
′
1
)
+βδ

∫
θ

θ

V2
(
θ2|θ ′1

)
( f2 (θ2|θ1)− f2

(
θ2|θ ′1

)
)dθ2

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

V3
(
θ3|θ ′1,θ2

)(
f2 (θ2|θ1)− f2

(
θ2|θ ′1

))
f3 (θ3|θ2)dθ2dθ3

Similarly, I also have

V (θ1)−V
(
θ
′
1
)
≤

(
θ1−θ

′
1
)

x1 (θ1)+βδ

∫
θ

θ

V2 (θ2|θ1)
(

f2 (θ2|θ1)− f2
(
θ2|θ ′1

))
dθ2

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

V3 (θ3|θ1,θ2)
(

f2 (θ2|θ1)− f2
(
θ2|θ ′1

))
f3 (θ3|θ2)dθ2dθ3

Furthermore,

∫
θ

θ

V2
(
θ2|θ ′1

)
f2 (θ2|θ1)dθ2 = V2

(
θ |θ ′1

)
−
∫

θ

θ

x2
(
θ2|θ ′1

)
F2 (θ2|θ1)dθ2

+βδ

∫
θ

θ

∫
θ

θ

x3
(
θ3|θ ′1,θ2

) ∂F3 (θ3|θ2)

∂θ2
F2 (θ2|θ1)dθ2dθ3

∫
θ

θ

∫
θ

θ

V3
(
θ3|θ ′1,θ2

)
f2 (θ2|θ1) f3 (θ3|θ2)dθ2dθ3 =

∫
θ

θ

V3
(
θ |θ ′1,θ2

)
f2 (θ2|θ1)dθ2

−
∫

θ

θ

∫
θ

θ

x3
(
θ3|θ ′1,θ2

)
f2 (θ2|θ1)F3 (θ3|θ2)dθ2dθ3

V
(
θ
′
1,θ1

)
= V

(
θ
′
1
)
+
(
θ1−θ

′
1
)

x1
(
θ
′
1
)
−βδ

∫
θ

θ

x2
(
θ2|θ ′1

)(
F2 (θ2|θ1)−F2

(
θ2|θ ′1

))
dθ2

+β
2
δ

2
∫

θ

θ

∫
θ

θ

x3
(
θ3|θ ′1,θ2

) ∂F3 (θ3|θ2)

∂θ2

(
F2 (θ2|θ1)−F2

(
θ2|θ ′1

))
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

V3
(
θ |θ ′1,θ2

)(
f2 (θ2|θ1)− f2

(
θ2|θ ′1

))
dθ2

−
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

x3
(
θ3|θ ′1,θ2

)(
f2 (θ2|θ1)− f2

(
θ2|θ ′1

))
F3 (θ3|θ2)dθ2dθ3
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Following a similar technique established in proving Lemma 10, I can derive the envelope

condition that

V ′1 (θ1) = x1 (θ1)−βδ

∫
θ

θ

x2 (θ2|θ1)
∂F2 (θ2|θ1)

∂θ1
dθ2

+β
2
δ

2
∫

θ

θ

∫
θ

θ

x3 (θ3|θ1,θ2)
∂F3 (θ3|θ2)

∂θ2

∂F2 (θ2|θ1)

∂θ1
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

x3 (θ3|θ1,θ2) [1−F3 (θ3|θ2)]
∂ f2 (θ2|θ1)

∂θ1
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

V3 (θ |θ1,θ2)
∂ f2 (θ2|θ1)

∂θ1
dθ2

and the monotonicity condition.

0 ≤
(
θ1−θ

′
1
)(

x1 (θ1)− x1
(
θ
′
1
))
−βδ

∫
θ

θ

[
x2 (θ2|θ1)− x2

(
θ2|θ ′1

)][
F2 (θ2|θ1)−F2

(
θ2|θ ′1

)]
dθ2

+β
2
δ

2
∫

θ

θ

∫
θ

θ

[
x3 (θ3|θ1,θ2)− x3

(
θ3|θ ′1,θ2

)][
F2 (θ2|θ1)−F2

(
θ2|θ ′1

)] ∂F3 (θ3|θ2)

∂θ2
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

[
V3 (θ |θ1,θ2)−V3

(
θ |θ ′1,θ2

)](
f2 (θ2|θ1)− f2

(
θ2|θ ′1

))
dθ2

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

[
x3 (θ3|θ1,θ2)− x3

(
θ3|θ ′1,θ2

)]
[1−F3 (θ3|θ2)]

(
f2 (θ2|θ1)− f2

(
θ2|θ ′1

))
dθ2dθ3
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Proof of Lemma 7. I substitute the envelope conditions for all three periods from Lemma 9, 10

and 11 into the seller’s payoff function, and the seller’s surplus can be written as

Eπ = W (x1,x2,x3,V1 (θ) ,V2 (θ |θ1) ,V3 (θ |θ1,θ2))

= Eθ1

[
t1−

1
2

x2
1

]
+δEθ1,θ2

[
t2−

1
2

x2
2

]
+δ

2Eθ1,θ2,θ3

[
t3−

1
2

x2
3

]
=

∫
θ

θ

[
θ1x1−

1
2

x2
1−V1 (θ1)

]
f1 (θ1)dθ1 +δ

∫
θ

θ

∫
θ

θ

[
βθ2x2−

1
2

x2
2 +(1−β ) t2

]
f2 (θ2|θ1) f1 (θ1)dθ2dθ1

+δ
2
∫

θ

θ

∫
θ

θ

∫
θ

θ

[
βθ3x3−

1
2

x2
3 +(1−β ) t3

]
f3 (θ3|θ2) f2 (θ2|θ1) f1 (θ1)dθ3dθ2dθ1

=
∫

θ

θ

[
θ1x1−

1
2

x2
1−V1 (θ1)

]
f1 (θ1)dθ1 +δ

∫
θ

θ

∫
θ

θ

[
θ2x2−

1
2

x2
2− (1−β )V2 (θ2|θ1)

]
f2 (θ2|θ1) f1 (θ1)dθ2dθ1

+δ
2
∫

θ

θ

∫
θ

θ

∫
θ

θ

[
θ3x3−

1
2

x2
3− (1−β )2 V3 (θ3|θ1,θ2)

]
f3 (θ3|θ2) f2 (θ2|θ1) f1 (θ1)dθ3dθ2dθ1

=
∫

θ

θ

J1 (θ1) f1 (θ1)dθ1 +δ

∫
θ

θ

∫
θ

θ

J2 (θ1,θ2) f2 (θ2|θ1) f1 (θ1)dθ2dθ1

+δ
2
∫

θ

θ

∫
θ

θ

∫
θ

θ

J3 (θ1,θ2,θ3) f3 (θ3|θ2) f2 (θ2|θ1) f1 (θ1)dθ3dθ2dθ1−R(θ)

where

J1 (θ1) = θ1x1−
1
2

x2
1−

1−F1 (θ1)

f1 (θ1)
x1

J2 (θ1,θ2) = θ2x2−
1
2

x2
2−β

(
−∂F2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

)
1−F1 (θ1)

f1 (θ1)
x2− (1−β )

1−F2 (θ2|θ1)

f2 (θ2|θ1)
x2

J3 (θ1,θ2,θ3) = θ3x3−
1
2

x2
3−β

2 ∂F3 (θ3|θ2)/∂θ2

f3 (θ3|θ2)

∂F2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

1−F1 (θ1)

f1 (θ1)
x3

−
(
β −β

2) ∂ f2 (θ2|θ1)/∂θ1

f2 (θ2|θ1)

1−F3 (θ3|θ2)

f3 (θ3|θ2)

1−F1 (θ1)

f1 (θ1)
x3

−
(
β −β

2)(−∂F3 (θ3|θ2)/∂θ2

f3 (θ3|θ2)

)
1−F2 (θ2|θ1)

f2 (θ2|θ1)
x3− (1−β )2 1−F3 (θ3|θ2)

f3 (θ3|θ2)
x3

R(θ) = β (1−β )δ
2
∫

θ

θ

∫
θ

θ

V3 (θ |θ1,θ2)
∂ f2 (θ2|θ1)

∂θ1
(1−F1 (θ1))dθ2dθ1 +V1 (θ)

+(1−β )δ

∫
θ

θ

V2 (θ |θ1) f1 (θ1)dθ1

+(1−β )2
δ

2
∫

θ

θ

∫
θ

θ

V3 (θ |θ1,θ2) f2 (θ2|θ1) f1 (θ1)dθ2dθ1
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Proof of Proposition 17. In period 2,

V2
(
θ
′
2,θ2|θ1

)
= θ2x2

(
θ
′
2|θ1

)
− t2

(
θ
′
2|θ1

)
+βδ

∫
θ

θ

[θ3x3
(
θ3|θ1,θ

′
2
)
− t3

(
θ3|θ1,θ

′
2
)
] f3 (θ3|θ2)dθ3

∂V2 (θ
′
2,θ2|θ1)

∂θ2
= x2

(
θ
′
2|θ1

)
−βδ

∫
θ

θ

x3
(
θ3|θ1,θ

′
2
) ∂F3 (θ3|θ2)

∂θ2
dθ3

V ′2 (θ2|θ1) = x2 (θ2|θ1)−βδ

∫
θ

θ

x3 (θ3|θ1,θ2)
∂F3 (θ3|θ2)

∂θ2
dθ3

I further derive that

∂V2 (θ
′
2,θ2|θ1)

∂θ2
−V ′2 (θ2|θ1) = x2

(
θ
′
2|θ1

)
− x2 (θ2|θ1)−βδ

∫
θ

θ

(x3
(
θ3|θ1,θ

′
2
)
− x3 (θ3|θ1,θ2))

∂F3 (θ3|θ2)

∂θ2
dθ3

The FSD condition indicates that ∂F3(θ3|θ2)
∂θ2

≤ 0. Given any θ2 ≥ θ ′2, as both x∗2 (θ1,θ2)

and x∗3 (θ1,θ2,θ3) are non-decreasing in θ2, I have
∂V2(θ ′2,θ2|θ1)

∂θ2
−V ′2 (θ2|θ1) ≤ 0 for any θ1. I

can write

V ∗2
(
θ
′
2,θ2|θ1

)
= V ∗2

(
θ
′
2|θ1

)
+
∫

θ2

θ ′2

∂V2 (θ
′
2,s|θ1)

∂θ2
ds

V ∗2 (θ2|θ1) = V ∗2
(
θ
′
2|θ1

)
+
∫

θ2

θ ′2

V ′2 (s|θ1)ds≥V ∗2
(
θ
′
2,θ2|θ1

)

If θ2 < θ ′2, I have
∂V2(θ ′2,θ2|θ1)

∂θ2
−V ′2 (θ2|θ1)≥ 0. By integration, I also have V ∗2 (θ2|θ1)≥

V ∗2 (θ ′2,θ2|θ1). In addition,

V ′1 (θ1) = x1 (θ1)−βδ

∫
θ

θ

x2 (θ2|θ1)
∂F2 (θ2|θ1)

∂θ1
dθ2

+β
2
δ

2
∫

θ

θ

∫
θ

θ

x3 (θ3|θ1,θ2)
∂F3 (θ3|θ2)

∂θ2

∂F2 (θ2|θ1)

∂θ1
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

x3 (θ3|θ1,θ2) [1−F3 (θ3|θ2)]
∂ f2 (θ2|θ1)

∂θ1
dθ2dθ3

∂V (θ ′1,θ1)

∂θ1
= x1

(
θ
′
1
)
−βδ

∫
θ

θ

x2
(
θ2|θ ′1

) ∂F2 (θ2|θ1)

∂θ1
dθ2

+β
2
δ

2
∫

θ

θ

∫
θ

θ

x3
(
θ3|θ ′1,θ2

) ∂F3 (θ3|θ2)

∂θ2

∂F2 (θ2|θ1)

∂θ1
dθ2dθ3

+
(
β −β

2)
δ

2
∫

θ

θ

∫
θ

θ

x3
(
θ3|θ ′1,θ2

)
[1−F3 (θ3 | θ2)]

∂ f2 (θ2|θ1)

∂θ1
dθ2dθ3
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Given any θ1 ≥ θ ′1, I have x1 (θ
′
1)≤ x1 (θ1) , x2 (θ2|θ ′1)≤ x2 (θ2|θ1) and x3 (θ3|θ ′1,θ2)≤

x3 (θ3|θ1,θ2). Under the assumptions made in Section 3.4.1, I have β
∂F3(θ3|θ2)/∂θ2

f3(θ3|θ2)
∂F2(θ2|θ1)/∂θ1

f2(θ2|θ1)
+

(1−β ) ∂ f2(θ2|θ1)/∂θ1
f2(θ2|θ1)

1−F3(θ3|θ2)
f3(θ3|θ2)

≥ 0, ∂F2(θ2|θ1)
∂θ1

≤ 0 and ∂F3(θ3|θ2)
∂θ2

≤ 0.

V ′1 (θ1)−
∂V (θ ′1,θ1)

∂θ1
= x1 (θ1)− x1

(
θ
′
1
)
−βδ

∫
θ

θ

(x2 (θ2|θ1)− x2
(
θ2|θ ′1

)
)

∂F2 (θ2|θ1)

∂θ1
dθ2

+β
2
δ

2
∫

θ

θ

∫
θ

θ

(x3 (θ3|θ1,θ2)− x3
(
θ3|θ ′1,θ2

)
)

∂F3 (θ3|θ2)

∂θ2

∂F2 (θ2|θ1)

∂θ1
dθ2dθ3

+βδ
2
∫

θ

θ

∫
θ

θ

(x3 (θ3|θ1,θ2)− x3
(
θ3|θ ′1,θ2

)
) [1−F3 (θ3|θ2)]

∂ f2 (θ2|θ1)

∂θ1
dθ2dθ3

−β
2
δ

2
∫

θ

θ

∫
θ

θ

(x3 (θ3|θ1,θ2)− x3
(
θ3|θ ′1,θ2

)
) [1−F3 (θ3|θ2)]

∂ f2 (θ2|θ1)

∂θ1
dθ2dθ3

≥ 0

I further concludes that V1 (θ1) ≥ V (θ ′1,θ1). If θ1 < θ ′1, then V ′1 (θ1) ≤
∂V(θ ′1,θ1)

∂θ1
and

V1 (θ1)≥V (θ ′1,θ1). As V ′1 (θ1)≥ 0 and V ′2 (θ2|θ1)≥ 0, the IR constraints in the first two periods

are satisfied as well. According to the conditions in Proposition 17, the buyer has an incentive to

report his true type in all periods; the above mechanism is indeed optimal.

Proof of Proposition 18. The seller’s profit maximization problem is essentially:

max
{ts,xs}

µ

[
t1
(
θ |h1

)
− 1

2
x2

1
(
θ |h1

)
+δE

(
π2
(
θ2|h1,θ

))]
+(1−µ)

(
t1 (θ |h1)−

1
2

x2
1 (θ |h1)+δE (π2 (θ2|h1,θ))

)

subject to the IC and IR constraints for all θs and θ ′s, where

ICs : θsxs (θs|hs)− ts (θs|hs)+βδE
(

Ûs+1 (θs+1|hs,θs) |θs

)
≥ θsxs

(
θ
′
s|hs
)
− ts

(
θ
′
s|hs
)
+βδE

(
Ûs+1

(
θs+1|hs,θ

′
s
)
|θs

)
IRs : θsxs (θs|hs)− ts (θs|hs)+βδE

(
Ûs+1 (θs+1|hs,θs) |θs

)
≥ 0
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and

π2 (θ2|h1,θ1) = t2 (θ2|h1,θ1)−
1
2

x2
2 (θ2|h1,θ1)+δE (π3 (θ3|h2,θ2) |θ2)

Ûs+1 (θs+1|hs,θs) = θs+1xs+1 (θs+1|hs,θs)− ts+1 (θs+1|hs,θs)+δE
(

Ûs+1 (θs+2|hs+1,θs+1) |θs+1

)

Using the IRs (θ) and ICs
(
θ
)
, I characterize the utility of type θ in period s.

Us(θ |hs) = θxs
(
θ |hs

)
− ts

(
θ |hs

)
+βδE

(
Ûs+1

(
θs+1|hs,θ

)
|θ
)

= θxs (θ |hs)− t1 (θ |hs)+βδE
(

Ûs+1 (θs+1|hs,θ) |θ
)

= ∆θ

T−s

∑
j=0

β
j
δ

j (α + γ−1) j xt+ j (θ |hs,θ , . . . ,θ)

+β (1−β )δ
2 (α + γ−1)

[
E
(

Ûs+2
(
θs+2|hs,θ ,θ

)
|θ
)
−E

(
Ûs+2 (θs+2|hs,θ ,θ) |θ

)]
+ . . .

+β
T−2 (1−β )δ

T−1 (α + γ−1)T−2 E
(

ÛT
(
θT |hs,θ , . . . ,θ ,θ

)
|θ
)

−β
T−2 (1−β )δ

T−1 (α + γ−1)T−2 E
(

ÛT (θT |hs,θ , . . . ,θ ,θ) |θ
)
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From IRs (θ), the low type receives a payoff of zero at any time, and the expected profit

of the seller can be transformed into

Eπ1 (θ1|h1) = µ

[
t1
(
θ
)
− 1

2
x2

1
(
θ
)]

+(1−µ)

(
t1 (θ)−

1
2

x2
1 (θ)

)
−µ∆θ

T−1

∑
j=0

β
j
δ

j (α + γ−1) j x1+ j (θ |θ , . . . ,θ)

−µα (1−β )δ∆θ

T−2

∑
j=0

β
j
δ

j (α + γ−1) j x2+ j
(
θ |θ ,θ , . . . ,θ

)
−(1−µ)(1− γ)(1−β )δ∆θ

T−2

∑
j=0

β
j
δ

j (α + γ−1) j x2+ j (θ |θ ,θ , . . . ,θ)− . . .

−µα
T−1 (1−β )T−1

δ
T−1

∆θxT
(
θ |θ , . . . ,θ ,θ

)
− . . .

−(1−µ)(1− γ)γ
T−2

δ
T−1

∆θxT (θ |θ , . . . ,θ ,θ)

−µα (α + γ−1)β (1−β )δ
2
∆θ

T−3

∑
j=0

β
j
δ

j (α + γ−1) j x3+ j
(
θ |θ ,θ ,θ , . . . ,θ

)
+µ (1− γ)(α + γ−1)β (1−β )δ

2
∆θ

T−3

∑
j=0

β
j
δ

j (α + γ−1) j x3+ j (θ |θ ,θ ,θ , . . . ,θ)− . . .

−µα (α + γ−1)β (1−β )δ
T−1 (β (α + γ−1)− (1− γ)(1−β ))T−3

∆θxT
(
θ |θ , . . . ,θ ,θ ,θ

)
+µ (1− γ)(α + γ−1)β (1−β )δ

T−1 (β (α + γ−1)+ γ (1−β ))T−3
∆θxT (θ |θ , . . . ,θ ,θ ,θ)

The first-order optimal allocations can be summarized as,

xs
(
θ |hs

)
= θ

xs (θ |hs) = θ − k1∆θ

N−1

∑
j=0

β
j+1 (1−β )s− j−2

∑
σ1,...σ j∈{2,...,N}

σ1<σ2<···<σ j

p1,σ1 pσ1,σ2 · · · pσ j−1,σ j pσ j ,N+1

−k2∆θ

N−2

∑
j=0

β
j+1 (1−β )s− j−2

∑
σ1,...σ j∈{3,...,N}

σ1<σ2<···<σ j

p2,σ1 pσ1,σ2 · · · pσ j−1,σ j pσ j ,N+1

−·· ·− kN∆θβ (1−β )s−2 pN,N+1− kN+1 (1−β )s−1

= θ −∆θ

N

∑
n=1

kn

N−n

∑
j=0

β
j+1 (1−β )s− j−2

∑
σ1,...σ j∈{n+1,...,N}

σ1<σ2<···<σ j

pn,σ1 pσ1,σ2 · · · pσ j−1,σ j pσ j ,N+1

−kN+1∆θ (1−β )s−1

= θ −
N

∑
n=1

knAn− kN+1 (1−β )s−1
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where

An =
N−n

∑
j=0

β
j+1 (1−β )s− j−2

∑
σ1,...σ j∈{n+1,...,N}

σ1<σ2<···<σ j

pn,σ1 pσ1,σ2 · · · pσ j−1,σ j pσ j ,N+1

k1 =


α

1−α
, if θ1 = θ

µ

1−µ
, if θ1 = θ

kn =


α

1−α
, if θmn−1 = θ

1−γ

γ
, , if θmn−1 = θ

pn,n+i =



(α+γ−1)α
(1−γ)(1−α) , if θmn+1 = θ , i = 1

α+γ−1
γ

, if θmn+1 = θ , i = 1

α+γ−1
1−γ

kn+i, if θmn+1 = θ , i > 1

−α+γ−1
γ

kn+i, if θmn+1 = θ , i > 1

Similar to the sufficiency conditions in the three-period model, all the additional con-

straints can be transformed into functions of β . I can show that when β = 1, the IRs
(
θ
)

and

ICs (θ) hold with strict inequalities under the first-order optimal allocations.

IRs
(
θ
)

: θxs
(
θ |hs

)
− ts

(
θ |hs

)
+δE

(
Ûs+1

(
θs+1|hs,θ

))
= ∆θ

T−s

∑
j=0

δ
j (α + γ−1) j xs+ j (θ |hs,θ , . . . ,θ)> 0

ICs (θ) : θxs (θ |hs)− ts (θ |hs)+δE
(

Ûs+1 (θs+1|hs,θ)
)
−
[
θxs
(
θ |hs

)
− ts

(
θ |hs

)
+δE

(
Ûs+1

(
θs+1|hs,θ

))]
= ∆θ

(
xs
(
θ |hs

)
− xs (θ |hs)

)
+∆θδ (α + γ−1)

(
xs+1

(
θ |hs,θ

)
− xs+1 (θ |hs,θ)

)
+ . . .+∆θδ

T−s (α + γ−1)T−s (xT
(
θ |hs,θ ,θ , . . . ,θ

)
− xT (θ |hs,θ ,θ , . . . ,θ)

)
> 0

At β = 1, IRs
(
θ
)

and ICs (θ) are strictly positive. Furthermore, the allocations for the present-

biased agent converge to the allocations for the time consistent agent, as β approaches 1. Since

IRs
(
θ
)

and ICs (θ) are continuous functions of β , there exists a β
T

such that if β ≥ β
T

, the

allocations presented in Proposition 18 are indeed optimal.
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