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ABSTRACT OF THE DISSERTATION

On Simplified Bayesian Modeling for Massive Geostatistical Datasets:

Conjugacy and Beyond

by

Lu Zhang

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2020

Professor Sudipto Banerjee, Chair

With continued advances in Geographic Information Systems and related computational

technologies, researchers in diverse fields like forestry, environmental health, climate sciences

etc. have growing interests in analyzing large scale data sets measured at a substantial

number of geographic locations. Geostatistical models used to capture the space varying

relationships in such data are often accompanied by onerous computations which prohibit

the analysis of large scale spatial data sets. Less burdensome alternatives proposed recently

for analyzing massive spatial datasets often lead to inaccurate inference or require slow sam-

pling process. Bayesian inference, while attractive for accommodating uncertainties through

their hierarchical structures, can become computationally onerous for modeling massive spa-

tial data sets because of their reliance on iterative estimation algorithms. My dissertation

research aims at developing computationally scalable Bayesian geostatistical models that

provide valid inference through highly accelerated sampling process. We also study the

asymptotic properties of estimators in spatial analysis.

In Chapter 2 and 3, we develop conjugate Bayesian frameworks for analyzing univariate

and multivariate spatial data. We propose a conjugate latent Nearest-Neighbor Gaussian

Process (NNGP) model in Chapter 2, which uses analytically tractable posterior distri-

butions to obtain posterior inferences, including the large dimensional latent process. In
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Chapter 3, we focus on building conjugate Bayesian frameworks for analyzing multivariate

spatial data. We utilize Matrix-Normal Inverse-Wishart(MNIW) prior to propose conju-

gate Bayesian frameworks and algorithms that can incorporate a family of scalable spatial

modeling methodologies.

In Chapter 4, we pursue general Bayesian modeling methodologies beyond a conjugate

Bayesian hierarchical modeling. We build scalable versions of a hierarchical linear model of

coregionalization (LMC) and spatial factor models, and propose a highly accelerated block

update MCMC algorithm. Using the proposed Bayesian LMC model, we extend scalable

modeling strategies for a single process into multivariate process cases.

All proposed frameworks are tested on simulated data and fit to real data sets with ob-

served locations numbering in the millions. Our contribution is to offer practicing scientists

and spatial analysts practical and flexible scalable hierarchical models for analyzing massive

spatial data sets.

In Chapter 5, we investigate the asymptotic properties of the estimators in spatial analysis.

We formally establish results on the identifiability and consistency of the nugget in spatial

models based upon the Gaussian process within the framework of in-fill asymptotics, i.e.

the sample size increases within a sampling domain that is bounded. We establish the

identifiability of parameters in the Matérn covariance function and the consistency of their

maximum likelihood estimators in the presence of discontinuities due to the nugget.
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CHAPTER 1

Introduction

Technical advances in sensing, transferring and storing have enabled the collection of massive-

scale data in this era. Human beings create data in explosively growing scale across diverse

disciplines. The information explosion has invoked growing interests in analyzing very large

data sets. In fields like forestry, environmental health and climate sciences, variables are

measured at a large number of locations. Statistical models used to capture the space

varying relationships in such data are often accompanied by onerous computations that is

prohibitive for analyzing large-scale data sets. This has generated substantial interest over

the last decade in scalable methodologies for analyzing large spatial datasets. Scalable spa-

tial process models using the Bayesian paradigm have been found especially attractive due to

their richness and flexibility in hierarchical model settings. However, inference in Bayesian

hierarchical modeling usually relies on iterative methods like MCMC algorithms. These

algorithms can become computationally expensive and have a prohibitively slow sampling

process. Moreover, when the full Bayesian inference in a spatial regression model includes

latent processes, which depict spatially-varying randomness over the study domain, the di-

mension of the parameter space becomes linear in the number of observed locations. This

high-dimensional parameter space usually results in a very slow convergence rate of MCMC

algorithms. The vast majority of research articles [see, e.g., Banerjee, 2017, Heaton et al.,

2017, and references therein] present scalable spatial modeling and have been geared to-

ward innovative theory or more complex model development, yet very limited attention has

been accorded to approaches for easily implementable scalable hierarchical models for the

practicing scientist or spatial analyst.
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This dissertation research aims at developing computationally scalable Bayesian geosta-

tistical models that provide valid inference with highly accelerated sampling process. Our

methodologies can be incorporated with a family of existing scalable spatial models. Mean-

while, the proposed models feature efficient posterior sampling over a high-dimensional pa-

rameter space including latent processes. In general, we make Bayesian inference more fea-

sible through two strategies, constructing conjugate Bayesian framework to avoid slow itera-

tive sampling algorithm or accelerating the MCMC algorithm. We also study the asymptotic

properties of estimators in spatial analysis.

The remainder of this chapter is organized as follows. Section 1.1 provides a brief back-

ground introduction to hierarchical spatial modeling and Gaussian process. Section 1.2 gives

a road-map of this dissertation and a brief summary of the contribution to the field.

1.1 Background to Hierarchical Spatial Modeling

Much of spatial modeling is carried out within the familiar hierarchical modeling paradigm,

[data | process]× [process | parameters]× [parameters] . (1.1.1)

For point-referenced data sets, where spatial locations are indexed by coordinates on a map,

the “process” is modeled as a spatial random field over the domain of interest and the

observations are treated as a finite realization of this random field. The Gaussian process

(GP) is, perhaps, the most prominent of process specifications and offers flexibility and

richness in modeling. It is denoted as {w(s) ∼ GP(mθ(·), Cθ(·, ·)), s ∈ D}, where {w(s), s ∈

D} is the random field defined on domain D, θ is a set of unknown parameters, mθ(·) is a

mean function defining the trend, and Cθ(·, ·) is a positive definite covariance function. The

GP’s popularity as a modeling tool is enhanced due to their extensibility to multivariate and

spatial-temporal geostatistical settings, although we do not pursue such generalizations in

this Chapter. They also provide comparatively greater theoretical tractability among spatial

processes [Stein, 1999].

Fitting GPs incur onerous computational costs that severely hinders their implementation

2



for large datasets [see, e.g., Gelfand et al., 2010, Cressie and Wikle, 2011, Banerjee et al.,

2014]. The key bottleneck stems from the massive spatial covariance matrix present in the

multivariate normal density for the finite realizations of the GP. For irregularly situated

spatial locations, as is common in geostatistics, these matrices are typically dense and carry

no exploitable structure to facilitate computations. To be precise, if w(S) is the n×1 vector

of w(si)’s over a set S = {s1, s2, . . . , sn} of n locations. Then w(S) ∼ N(mθ(S),Cθ(S,S)),

where mθ(S) is the corresponding n × 1 mean vector and Cθ(S,S) is an n × n covariance

matrix whose entries are given by the covariance function Cθ(si, sj). Computing this density

requires the Cholesky decomposition for Cθ(S,S) involving storage in the order of ∼ n2 and

floating point operations in the order of ∼ n3, usually performed in each iteration of the

fitting algorithm. Even for a modestly large number of points (≈ 50, 000 or greater), the

computational demands become prohibitive for a modern computer and preclude inference

from GP models.

1.2 Dissertation Outline and Contributions

In the next two chapters, we develop conjugate Bayesian frameworks for analyzing univariate

and multivariate spatial data. In Chapter 2, we propose a conjugate latent Nearest-Neighbor

Gaussian Process (NNGP) model, which uses analytically tractable posterior distributions to

obtain posterior inferences, including the large dimensional latent process. NNGP is a well-

defined spatial process providing finite-dimensional densities with sparse precision matrices.

We implement a conjugate gradient algorithm to accelerate the process of posterior sampling

in a constructed conjugate NNGP based model. Our algorithm has an unparalleled speed

in the implementation for large-scale spatial data. A key emphasis is on implementation

within very standard (modest) computing environments (e.g., a standard desktop or laptop)

using easily available statistical software packages. We provide the detailed algorithm and

illustrate the model with a data analysis of sea surface temperature collected over 2.5 million

observed locations on a standard laptop.

3



Joint modeling of spatially-oriented dependent variables are commonplace in the environ-

mental sciences,where scientists seek to estimate the relationships among a set of environmen-

tal outcomes accounting for dependence among these outcomes and the spatial dependence

for each outcome. In Chapter 3, we extend the work in Chapter 2 from univariate model-

ing to multivariate modeling. We utilize Matrix-Normal Inverse-Wishart(MNIW) prior to

construct conjugate Bayesian framework for modeling large-scale multivariate spatial data

sets. We develop algorithms for obtaining posterior inference from the proposed Bayesian

framework, and show that the proposed model can be incorporated with a family of scal-

able spatial modeling methodologies. Moreover, we discuss differences between modeling the

multivariate response itself as a spatial process and that of modeling a latent process. We

illustrate the computational and inferential benefits of these models using simulation studies

and real data analyses for a vegetation indices dataset with observed locations numbering

over three million.

There is, by now, a burgeoning literature on scalable models for an individual process,

but methods for scalable multivariate spatial process are limited in comparison. In Chap-

ter 4, we propose frameworks to extend scalable modeling strategies for a single process

into multivariate process cases. We pursue modeling methodologies that are more flexible

and versatile than a conjugate Bayesian framework as established in Chapter 2 and 3. We

propose a Bayesian linear model of coregionalization (BLMC) and a block update MCMC

algorithm. The modeling approach we develop in Chapter 4 enriches the popular linear mod-

els of coregionalization [Bourgault and Marcotte, 1991, Wackernagel, 2003, Gelfand et al.,

2004, Chiles and Delfiner, 2009, Genton and Kleiber, 2015] using a Matrix-Normal prior to

model the linear transformation on latent spatial processes. A key contribution here is that

we provide a fully model-based enhancement for misaligned data, where not all responses

are recorded over the same set of locations. We further expand this contribution by using

the Matrix-Normal family to model the loading matrix in spatial factor models. In the latter

context, our current contribution can be seen as enhancements to earlier contributions by

Lopes et al. [2008], Ren and Banerjee [2013] and Taylor-Rodriguez et al. [2019]. We illustrate

4



the computational and inferential benefits of our algorithms over competing methods using

simulation studies and real data analyses for a vegetation index dataset observed in over a

million locations.

The MCMC chains for Bayesian spatial models are often observed to be unstable for some

of the hyper-parameters in Bayesian spatial model fitting. This invokes the research interests

in the theoretical studies on the asymptotic properties of the parameter estimators in spatial

modeling. Chapter 5 is devoted to investigating the asymptotic properties of the estimators

in spatial analysis. We formally establish results on the identifiability and consistency of the

nugget in spatial models based upon the Gaussian process within the framework of in-fill

asymptotics, i.e. the sample size increases within a sampling domain that is bounded. Our

main contribution in this chapter is that we extend results in fixed domain asymptotics for

spatial models without the nugget effect, the presence of noise process, into the scenario

with the nugget effect. More specifically, we establish the identifiability of parameters in

the Matérn covariance function and the consistency of their maximum likelihood estima-

tors in the presence of discontinuities due to the nugget. We present simulation studies to

demonstrate the role of the identifiable quantities in spatial interpolation.
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CHAPTER 2

Massive Spatial Data Analysis On Modest Computing

Environments

2.1 Introduction

Rapidly increasing usage and growing capabilities of Geographic Information Systems (GIS)

have spawned considerable research in modeling and analyzing spatial datasets in diverse

disciplines including, but not limited to, environmental sciences, economics, biometry and

so on [see, e.g., Gelfand et al., 2010, Cressie and Wikle, 2011, Banerjee et al., 2014]. A

substantial literature exists on methodologies for massive spatial datasets [see, e.g., Banerjee,

2017, Heaton et al., 2017, and references therein]. Some are more amenable than others to

the hierarchical setup in (1.1.1). Even within the hierarchical paradigm, there is already a

burgeoning literature on massively scalable spatial process models. There are two pressing

issues facing the practicing spatial analyst. The first is to analyze massive amounts of spatial

data on “modest” computing environments such as standard desktop or laptop architectures.

The second pressing issue is that of full inference that subsumes parameter estimation, spatial

prediction of the outcome, and estimation of the underlying latent process. Yet the size of

the datasets easily exceed the CPU memory available for computing, which means that we

need to rely upon statistical models that will enable analysis with the available memory.

Some scalable processes such as the multi-resolution predictive process models proposed

by Katzfuss [2017] or the nearest-neighbor Gaussian process (NNGP) models by Datta et al.

[2016a] can be programmed in modest computing environments to estimate parameters and

predict outcomes, but not necessarily infer on the latent process efficiently. Katzfuss [2017]
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does not address this, while Datta et al. [2016a] and Datta et al. [2016b] implement high-

dimensional Gibbs sampling algorithms that had to be run for several iterations on a high-

performance computing environment to yield adequate convergence due to high autocorre-

lations. Other approaches such as Gaussian Markov random field (GMRF) approximations

to spatial processes [Rue et al., 2009, Lindgren et al., 2011] use Integrated Nested Laplace

Approximations (INLA) for computing the marginal distribution of the process at given loca-

tions. These approximations can be implemented on standard environments for a variety of

spatial models using the R-INLA software (www.r-inla.org). This is computationally more

promising than MCMC, but is still an iterative procedure requiring convergence assessment.

Its performance is yet to be demonstrated for analyzing massive spatial data with millions

of spatial locations on modest computing environments.

This Chapter outlines strategies for achieving fully model-based Bayesian inference in-

cluding parameter estimation, response surface predictions and interpolation of the latent

spatial process for massive spatial datasets on modest computing environments. To achieve

this goal, we need a massively scalable spatial process that will be able to estimate (1.1.1) by

obviating the memory obstacles. Here, there are a few choices that are well-suited for (1.1.1)

all of whom seem to be competitive based upon the recent “contest” paper by Heaton et al.

[2017], but we opt for the sparsity-inducing Nearest-neighbor Gaussian process (NNGP) pri-

marily because of its ease of use and also because of its easier accessibility through the spNNGP

package available from cran.r-project.org/web/packages/spNNGP (see Section 2.2).

In fact, Finley et al. [2019] outlines several strategies for estimating NNGP models, in-

cluding a conjugate response NNGP model and a collapsed NNGP model. The conjugate

response NNGP model can provide exact inference without requiring MCMC and has been

demonstrated to effectively fit a dataset with approximately 5 million locations in a matter

of seconds on a Linux workstation. However, the response model does not accommodate the

latent process and, hence, is restrictive in its inferential capabilities compared to (1.1.1). The

collapsed NNGP model, on the other hand, is embedded within MCMC algorithms and is

able to provide the posterior inference of the latent process. It can exploit permutation-based
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sparse Cholesky methods, but the approach requires specialized libraries and can still be too

expensive for massive datasets in the order of 106 locations for standard computing environ-

ments. We briefly introduce the conjugate response NNGP model in section 2.3.2, and the

discussion of the collapsed NNGP model can be found in section 2.2.2. Our contribution

lies in casting the latent process models of Datta et al. [2016a] within a conjugate Bayesian

framework for exact inference so as to avoid MCMC while being able to achieve full Bayesian

inference including estimation of the latent process. We propose a conjugate latent NNGP

model that exploits conjugacy in conjunction with cross-validatory estimation of a small set

of process parameters, and the model formulation and computations will not require loading

large data objects into memory at any point, allowing fitting for massive datasets in the

order of 106 on computer environments like standard desktop or laptop architecture. The

details of this Bayesian formulation and the algorithms for their effective implementation

constitute the novelty of this Chapter.

The remainder of the Chapter evolves as follows. Section 2.2 provides a brief review

of nearest-neighbor Gaussian process and NNGP based models. Section 2.3 develops the

conjugate NNGP based models, emphasizing the conjugate latent NNGP model, and devises

algorithms for practical implementation. A simulation study is presented in Section 2.4

for discussing the performance of the proposed models, while an analysis on sea surface

temperature with over 2.5 million locations is conducted in Section 2.5. Finally, we conclude

with some discussion in Section 2.6.

2.2 The nearest-neighbor Gaussian process

The computational burden in GP models arises from the n× n covariance matrix Cθ(S,S),

where S = {s1, s2, . . . , sn} is the set of observed locations. The (i, j)-th element of Cθ(S,S)

is the value of a spatial covariance function evaluated at locations si and sj. Spatial co-

variance functions in general do not produce exploitable structures in the resulting matrix.

One effective approach to achieve efficient computations is to replace Cθ(S,S) with an ap-
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proximate C̃θ(S,S) such that the inverse of C̃θ(S,S) is sparse. There are multiple options,

but notable among them are approximations based upon Gaussian Markov random fields or

GMRFs [see, e.g., Rue and Held, 2005, Rue et al., 2009] that yield computationally efficient

sparse representations. An alternative approach exploits an idea familiar in graphical models

or Bayesian networks [see, e.g., Lauritzen, 1996, Bishop, 2006, Murphy, 2012] that has also

been exploited by Vecchia [1988], Stein et al. [2004] and Stroud et al. [2017] to construct

composite likelihoods for inference. Datta et al. [2016a,b] extended this idea to construct

a Nearest Neighbor Gaussian Process (NNGP) for modeling large spatial data. NNGP is a

well defined Gaussian Process that yields finite dimensional Gaussian densities with sparse

precision matrices. It delivers massive scalability both in terms of parameter estimation and

spatial prediction or “kriging”.

2.2.1 Response NNGP model

Consider modeling a point-referenced outcome as a partial realization of a Gaussian process,

{y(s) : s ∈ D} ∼ GP(mθ(s), Cθ(·, ·)) on a spatial domain D ∈ Rd. The mean and covariance

functions are assumed to be determined by one or more parameters in a set θ. The finite-

dimensional distribution for the n×1 vector y(S) with elements y(si) is multivariate normal

with mean mθ(S) and covariance matrix Cθ(S,S). As a directed acyclic graph (DAG)

[Bishop, 2006], the joint density is p(y(S)) =
n∏
i=1

p(y(si) |y(Pa[si]), where Pa[s1] is the empty

set and Pa[si] = {s1, s2, . . . , si−1} for i = 2, 3, . . . , n−1 is the set of parent nodes with directed

edges to si. Vecchia [1988] suggested approximating the multivariate normal likelihood by

shrinking Pa[si] from the set of all nodes preceding si to a much smaller subset of locations

preceding si that are among the m (a fixed small number) nearest neighbors of si based upon

their Euclidean distance. Datta et al. [2016a] extended that notion to arbitrary points in
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the domain by defining

Pa[s] =



empty set if s = s1 ,

{s1, s2, . . . , si−1} if s ∈ S and i = 1, 2, . . . ,m ,

m closest points to s among {s1, s2, . . . , si−1} if s ∈ S and i > m ,

m closest points to s among S if s /∈ S .

for any arbitrary point s in the domain, where m is the fixed number of nearest neighbors.

This results in another multivariate Gaussian density

p(y(S)) = N(y(S) |mθ(S),Cθ(S,S)) ≈ N(y(S) |mθ(S), C̃θ(S,S)) , (2.2.1)

where C̃θ(S,S)−1 = (I−A(S))>D(S)−1(I−A(S)) is sparse, A(S) is sparse and strictly lower

triangular with A(S)(i, i) = 0 for i = 1, 2, . . . , n and at most m non-zero entries in each row,

and D(S) is diagonal whose elements are the conditional variances var{y(si) |y(Pa[si])}

based upon the full GP model, i.e., D(S)(1, 1) = Cθ(s1, s1) and D(S)(i, i) = Cθ(si, si) −

Cθ(si,Pa[si])Cθ(Pa[si],Pa[si])
−1Cθ(Pa[si], si) for i = 2, . . . , n. Turning to the structure of

A(S), all its elements are completely determined from Cθ(S,S). Its first row, i.e., A(S)(1, )

has all zeroes. For the i + 1-th row, the nonzero entries appear in the positions indexed by

Pa[si+1] and are obtained as row vectors,

A(S)(i+ 1,Pa[si+1]) = Cθ(si+1,Pa[si+1])Cθ(Pa[si+1],Pa[si+1])−1 .

The nonzero entries in each row of A(S) are precisely the “kriging” weights of y(si) based

upon the values of y(s) at neighboring locations, i.e., Pa[si] [Chiles and Delfiner, 2009]. The

C̃θ(S,S), constructed as above, is called an NNGP approximation to Cθ(S,S).

With the above definition of Pa[s], we can express the partial realizations of an NNGP

as a linear model. Let S be the set of the n observed locations as defined earlier (and n is

assumed to be large) and let U = {u1,u2, . . . ,un′} be a set of n′ arbitrary locations where

we wish to predict y(s). Then, y(S)

y(U)


︸ ︷︷ ︸

y

=

 mθ(S)

mθ(U)


︸ ︷︷ ︸

mθ

+

 A(S)

A(U)


︸ ︷︷ ︸

A

(y(S)−mθ(S)) + η , (2.2.2)
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where η ∼ N

 0

0

 ,
 D(S) 0

0 D(U)

, D(U) is n′ × n′ diagonal and A(U) is sparse

n′ × n formed by extending the definitions of D(S) and A(S) as

D(U)(i, i) = Cθ(ui,ui)−Cθ(ui,Pa[ui])Cθ(Pa[ui],Pa[ui])
−1Cθ(Pa[ui],ui) ,

A(U)(i,Pa[ui]) = Cθ(ui,Pa[ui])Cθ(Pa[ui],Pa[ui])
−1 .

(2.2.3)

Each row of A(U) has exactly m nonzero entries corresponding to the column indices in

Pa[ui]. The above structure implies that y(s) and y(s′) are conditionally independent for

any two points s and s′ outside of S, given y(S). The parameters θ will be estimated from the

data y(S) and predictions will be carried out using the conditional distribution of y(U) given

y(S). In a Bayesian setting, θ will be sampled from its posterior distribution p(θ |y(S)),

p(θ)×

(
n∏
i=1

1√
D(S)(i, i)

)
× exp

{
−1

2
zθ(S)>(I−A(S)>)D(S)−1(I−A(S))zθ(S)

}
,

(2.2.4)

where zθ(S) = y(S)−mθ(S) and p(θ) is the prior distribution for θ.

Consider a specific example with the covariance function Cθ(s, s
′) = σ2 exp(−φ‖s− s′‖) +

τ 2δs=s′ , where δs=s′ is equal to one if s = s′ and 0 otherwise, and mθ(s) = x(s)>β is

a linear regression with spatial predictors x(s) and corresponding slope vector β. Then

θ = {β, σ2, φ, τ 2} and one choice of priors could be

p(θ) ∝ U(φ | aφ, bφ)× IG(σ2 | aσ, bσ)× IG(τ 2 | aτ , bτ )× N(β |µβ,Vβ) ,

where we are using standard notations for the above distributions as, e.g., in Gelman et al.

[2013]. The parameter space for this model is not high-dimensional and MCMC algorithms

such as Gibbs sampling in conjunction with random-walk Metropolis (RWM) or Hamiltonian

Monte Carlo (HMC) can be easily implemented. Other approximate algorithms such as

Variational Bayes or INLA can also be used.

Once the parameter estimates (i.e., posterior samples) are obtained from (2.2.4) we can
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carry out predictive inference for y(U) from the posterior predictive distribution

p(y(U) |y(S)) =

∫
p(y(U) |y(S),θ)p(θ |y(S))dθ = Eθ |y(S) [N(y(U) |µθ(U|·),DU)] ,

(2.2.5)

where p(y(U) |y(S),θ) is an n′-dimensional multivariate normal distribution with mean

µθ(U | ·) = mθ(U) + A(U)(y(S) − mθ(S)) and conditional covariance matrix DU . Since

D(U) is diagonal, it is easy to sample from p(y(U) |y(S),θ). For each θ sampled from

(2.2.4), we sample an n′-dimensional vector y(U) from p(y(U) |y(S),θ). The resulting y(U)’s

are samples from (2.2.5). The NNGP exploits the conditional independence between the

elements of y(U), given y(S) and θ, to achieve efficient posterior predictive sampling for

y(U). This assumption of conditional independence is not restrictive as the samples from

(2.2.5) are not independent. In fact, the marginal covariance matrix of y(U), given θ only,

is A(U)C̃θ(S,S)A(U)> + D(U), which is clearly not diagonal.

2.2.2 Latent NNGP model

Rather than model the outcome as an NNGP, as was done for the response model in the

preceding subsection, one could use the NNGP as a prior for the latent process [Datta et al.,

2016a]. In fact, as discussed in Section 4 of [Datta et al., 2016a], the response model does not

strictly follow the paradigm in (1.1.1) and it is not necessarily possible to carry out inference

on a latent or residual spatial process after accounting for the mean.

A more general setting envisions a spatial regression model at any location s

y(s) = mθ(s) + w(s) + ε(s) , ε(s)
iid∼ N(0, τ 2) , (2.2.6)

where, usually, mθ(s) = x(s)>β and w(s) is a latent spatial process capturing spatial de-

pendence. Using definitions analogous to Section 2.2.1, we assume {w(s) : s ∈ D} ∼

NNGP(0, C̃θ(·, ·)), which means that for any S and U , as constructed in (2.2.2), w ≡ w(S∪U)

will have a zero-centered multivariate normal law with covariance matrix (I − A)−1D(I −
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A)−>. The posterior distribution to be sampled from is now given by

p(θ)× N(w |0, C̃θ(S,S))×
n∏
i=1

N(y(si) |mθ(si) + w(si), τ
2) . (2.2.7)

It is easier to sample from (2.2.4) than from (2.2.7) since the parameter space in the latter

includes the high-dimensional random vector w in addition to θ. One option is to integrate

out w from (2.2.7) which yields the posterior

p(θ)× (det(C̃θ(S,S) + τ 2In))−
1
2 × exp

{
−1

2

n∑
i=1

zθ(S)>
(
C̃θ(S,S) + τ 2In

)−1

zθ(S)

}
,

(2.2.8)

where det(A) is the determinant of matrix A, p(θ) and zθ(S) are as defined for (2.2.4). The

parameter space has collapsed from {θ,w} to θ, so (2.2.8) is called the collapsed version of

(2.2.7). Efficient computations for obtaining (2.2.8) requires a sparse-Cholesky decomposi-

tion for the large matrix
(
C̃θ(S,S)−1 + τ−2I

)
. This step can be complicated and expensive.

To exacerbate the matter further, full Bayesian inference requires calculating the likelihood

(2.2.8) in each MCMC iteration as described in the algorithm of the “collapsed” model in

Section 2.1 of Finley et al. [2019]. To avoid such expenses, we turn to conjugate models in

the next section.

2.3 Conjugate Bayesian model

The response NNGP and latent NNGP models outlined in Sections 2.1 and 2.2, respectively,

will still require iterative simulation methods such as MCMC for full Bayesian inference.

Conjugate models, i.e., using conjugate priors, can provide exact Bayesian inference by

exploiting analytic forms for the posterior distributions. While some specific assumptions

are needed, these models are much faster to implement even for massive datasets. Here we

develop conjugate NNGP models using the tractable Normal Inverse-Gamma (NIG) family of

conjugate priors. We formulate a conjugate response model (also formulated in Finley et al.

[2019] and is available in the spNNGP package from cran.r-project.org/web/packages/

spNNGP) and a new conjugate latent NNGP model. These are conjugate versions of the
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models described in Sections 2.1 and 2.2. We especially focus on the conjugate latent NNGP

model and show how it can exploit sparsity by sampling from latent spatial processes over

massive numbers of locations efficiently using a conjugate gradient algorithm for solving large

sparse systems.

2.3.1 The NIG conjugate prior family

Let the spatial linear regression model be specified as

y(S) = Xβ + w(S) + ε(S) (2.3.1)

where y(S), w(S) and ε(S) are the realization of the corresponding processes defined in

(2.2.6) over the n observed locations S = {s1, . . . , sn}, X is the n × p matrix of regressors

with i-th row being a 1 × p vector of regressors, x(si)
> at location si ∈ S. Henceforth, we

suppress the dependence of y, w, ε and their covariance matrix on S when this will not

lead to confusion. Assume that w ∼ N(0, σ2C), ε ∼ N(0, δ2σ2In), where C and δ2 = τ2

σ2

are known. Let γ> = [β>,w>], µ>γ = [µ>β ,O] and Vγ =

 Vβ O

O C

. The Normal-Inverse-

Gamma (NIG) density yields a convenient conjugate prior,

p(γ, σ2) = NIG(γ, σ2 |µγ ,Vγ , a, b) = N(γ |µγ , σ2Vγ)× IG(σ2 | a, b) . (2.3.2)

The posterior distribution of the parameters, up to proportionality, is

p(γ, σ2 |y) ∝ NIG(γ,σ2 |µγ ,Vγ , aσ, bσ)× N(y | [X : In]γ, δ2σ2In) . (2.3.3)

The joint posterior distribution is of the form NIG(µ∗,V∗, a∗, b∗), where

y∗ = 1
δ
y , X∗ =

[
1
δ
X, 1

δ
In
]
,

µ∗ = [V−1
γ + X∗>X∗]−1(V−1

γ µγ + X∗>y∗) ,

V∗ = [V−1
γ + X∗>X∗]−1 ,

a∗ = aσ + n
2
,

b∗ = bσ + 1
2
[µ>γVγµγ + y∗>y∗ − µ∗>V∗−1µ∗] .

(2.3.4)
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The prior of the regression coefficients β is formulated as N(µβ,Vβ). The above model,

however, also allows improper priors for β. When assigning improper priors for β, the

precision matrix of the prior of γ in (2.3.4) becomes V−1
γ =

 O O

O C−1

, showing that

no information from β‘s prior contributes to the posterior distribution, and we can assume

µ>γ = [O,O] in (2.3.4). The marginal posterior distribution of σ2 follows an IG(a∗, b∗) and

the marginal posterior distribution of γ can be identified as a multivariate t-distribution

with mean µ∗, variance b∗

a∗
V∗ and degree of freedom 2a∗(i.e. MVS-t2a∗(µ

∗, b
∗

a∗
V∗)). Exact

Bayesian inference is carried out by sampling directly from the joint posterior density: we

sample σ2 from IG(a∗, b∗) and then, for each sampled σ2, we draw γ from its conditional

posterior density N(µ∗, σ2V∗). This yields posterior samples from (2.3.3). Furthermore, note

that once the posterior samples of σ2 are obtained, we can obtain samples from p(τ 2 |y) by

simply multiplying the sampled σ2s with δ2. Thus, posterior samples are obtained without

recourse to MCMC or other iterative algorithms.

2.3.2 Conjugate response NNGP model

Finley et al. [2019] formulated a conjugate NNGP model for the response model described

in Section 2.1. This is formed by integrating out w(S) from (2.3.1) and applying an NNGP

approximation to the marginal covariance matrix of y(S). The model can be cast as a

conjugate Bayesian linear regression model

p(β, σ2 |y) ∝ NIG(β, σ2 |µβ,Vβ, aσ, bσ)× N(y |Xβ, σ2K̃) , (2.3.5)

where K̃ is the NNGP approximation of K = C + δ2I, C and δ2 are as described in Sec-

tion 2.3.1. Also, K̃−1 = σ2(I−A(S)>)D(S)−1(I−A(S)) with A(S) and D(S) as described

in Section 2.2.1. We will refer to (2.3.5) as the conjugate response NNGP model. Note

that this model can estimate {β, σ2} and also impute the outcome at unknown locations,

but does not permit inference on the latent process w(·). The reason why a conjugate re-

sponse NNGP model cannot provide inference on the latent process is that the construction

of the response NNGP will not guarantee the existence of a well-defined latent process. It is
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pointed out in Section 4 of [Datta et al., 2016a] that the eigenvalue of K̃ may be less than δ2,

consequently the covariance matrix of the posterior distribution of w need not be positive

definite for every proper δ2, µβ and Vβ. We address this shortcoming with a new conjugate

latent NNGP model in the next section.

2.3.3 Conjugate latent NNGP model

The conjugate models in Section 2.3.1 works for any covariance matrix C. Here, we derive a

conjugate latent NNGP model that will subsume inference on w(·). We rewrite the covariance

matrix C̃θ(S,S) in section 2.2.2 for w(S) as σ2M̃φ with fixed parameter φ. Note that

M̃φ is the NNGP approximation of the dense matrix M, where C = σ2M. Specifically,

M̃−1
φ = (I−AM)>D−1

M (I−AM), where AM and DM depend only on φ. We recast the model

as 
1
δ
y

L−1
β µβ

0


︸ ︷︷ ︸

y∗

=


1
δ
X 1

δ
In

L−1
β O

O D
− 1

2
M (I−AM)


︸ ︷︷ ︸

X∗

 β

w


︸ ︷︷ ︸

γ

+


η1

η2

η3


︸ ︷︷ ︸

η

(2.3.6)

where Lβ is the Cholesky decomposition of the p × p matrix Vβ, and η ∼ N(0, σ2I2n+p).

The joint posterior distribution of γ and σ2 follows an NIG distribution

p(γ, σ2 |y) = NIG(γ, σ2 | γ̂, (X>∗X∗)
−1, a∗, b∗) (2.3.7)

where γ̂ = (X>∗X∗)
−1X>∗ y∗, a∗ = aσ+

n

2
and b∗ = bσ+

1

2
(y∗−X∗γ̂)>(y∗−X∗γ̂). Evaluating

the posterior mean of γ involves solving X>∗X∗γ̂ = X>∗ y∗, which requires O(1
3
(n+p)3) flops.

However, when p� n, the structure of X∗ ensures low storage complexity. Also, X>∗X∗ = 1
δ2 X>X + L−>β L−1

β
1
δ2 X>

1
δ2 X 1

δ2 In + (In −AM)>D−1
M (In −AM)

 (2.3.8)

Since (In −AM) has less than n(m + 1) nonzero elements and each of its row has at most

m + 1 nonzero elements, the storage of the n × n matrix (In −AM)>D−1
M (In −AM) is less

than n(m+ 1)2, and the computational complexity is less than nm+ n(m+ 1)2.
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This sparsity in X>∗X∗ can be exploited by a conjugate gradient (CG) method [see, e.g.,

Golub and Van Loan, 2012]. CG is an iterative method for solving Ax = b when A is a

symmetric positive definite matrix. The underlying idea is to recognize that a solution of

the linear system Ax = b minimizes the quadratic function φ(x) = 1
2
x>Ax − x>b. CG is

an iterative procedure that generates a sequence of approximate solutions {xk}k=1,2,... that

converges to x = A−1b in at most n iterations. Briefly, the procedure starts with an initial

value x0 and setting r0 = b−Ax0 and q0 = r0. Then, at the k+ 1-th iteration we compute

the following three quantities for each k = 0, 1, 2, . . .: (i) xk+1 = xk + ‖rk‖2
q>k+1Aqk+1

qk+1; (ii)

rk+1 = b −Axk+1; and (iii) qk+1 = rk+1 +
(
‖rk+1‖
‖rk‖

)2

qk . The matrix A is involved only in

matrix-vector multiplications. Due to the sparsity of A, the computational cost per iteration

is O(n) flops. The sparsity in A also implies that CG is more memory efficient than direct

methods such as the Cholesky decomposition. A sufficiently good approximation is often

obtained in iterations much less than n [Banerjee and Roy, 2014], hence the performance of

the conjugate gradient algorithm will be competitive when n is large. This enables posterior

sampling of the latent process w(S) in high-dimensional settings. The algorithm for sampling

{γ, σ2} from (2.3.7) using the conjugate gradient method is given below.

Algorithm 2.1: Sample {γ, σ2} from conjugate latent NNGP model

1. Fixing φ and δ2, obtain L−1
β µβ and L−1

β :

• Compute a Cholesky decomposition of Vβ to get Lβ O(p3)

• Compute L−1
β and L−1

β µβ O(p2)

2. Obtain the posterior mean for γ:

• Construct AM and DM as described, for example, in Finley et al. [2019] O(nm3)

• Construct X∗ and Y∗ from (2.3.6) O(nm)

• Calculate X>∗ X∗ and X>∗ y∗ O(n(m+ 1)2)

• Use conjugate gradient to solve X>∗ X∗γ̂ = X>∗ y∗

3. Obtain posterior samples of σ2

• Calculate a∗ and b∗ as given below (2.3.7) O(n(m+ 4 + p))

• Sample σ2 from IG(a∗, b∗)

4. Obtain posterior samples of γ
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• Generate u ∼ N(0, σ2I2n+p)

• Calculate v by solving X>∗ X∗v = X>∗ u using conjugate gradient

• Obtain γ = γ̂ + v O(n)

It is readily seen that the v in step 4 follows a Gaussian distribution with variance

σ2(X>∗X∗)
−1. Note that Algorithm 2.1 implements the conjugate gradient method for an

n + p-dimensional linear system in steps 2 and 4. Since X∗ and y∗ depend only on {φ, δ2},

the linear equation in step 2 only need to be solved once for each choice of {φ, δ2}.

The main contribution of the conjugate gradient method lies in obtaining the posterior esti-

mator γ̂ (step 2) and generating samples from a high dimensional Gaussian distribution (step

4). It is worth pointing out that the conjugate gradient method does not easily produce the

determinant of a large matrix. Hence, a sparse Cholesky decomposition is still unavoidable

for the collapsed NNGP model formulated in equation (2.2.8), where det
(
C̃θ(S,S) + τ 2I

)
changes with the hyper-parameters θ.

2.3.4 Posterior predictive inference for conjugate latent NNGP

We extend the predictive inference for the response NNGP model in Section 2.1 to the

conjugate latent NNGP model. Assume w(U) and y(U) are the realization of the latent

process and the response process over the n′ locations U = {u1, . . . ,un′} where we wish to

predict. let Cθ(·, ·) be the covariance function for the latent process w(s) in (2.2.6), Pa[ui]

be the nearest neighbors of ith location in U as defined in section 2.1. Define AU = A(U)

and DU = 1
σ2 D(U) where A(U) and D(U) are constructed by (2.2.3). Here, σ2 refers to the

variance of the latent process w(s), and AU and DU are defined in the way that they only

depend on fixed parameter φ. According to the definition of NNGP process over the whole

domain given in section 2, the joint distribution of w(U) and γ, σ2 given y(S) follows:

p(w(U),γ, σ2 |y(S)) = N(w(U) | [O : AU ]γ, σ2DU)× NIG(γ, σ2 | γ̂, (X>∗X∗)
−1, a∗, b∗)

(2.3.9)

18



Marginalizing the joint distribution (2.3.9) over γ and σ2, the posterior distribution of w(U)

can be identified as a multivariate t-distribution:

w(U) |y(S) ∼ MVS-t2a∗

(
µwu,

b∗
a∗

Vwu

)
(2.3.10)

where

µwu = [O : AU ]γ̂ , Vwu = [O : AU ](X>∗X∗)
−1

 O

A>U

+ DU .

It is straightforward to see that the joint posterior distribution of {y(U),w(U),γ, σ2} is

p(y(U),w(U),γ, σ2 |y(S)) = N(y(U) |X(U)β + w(U), σ2δ2In′)× p(w(U),γ, σ2 |y(S)) ,

(2.3.11)

which is the product of the conditional distribution of y(U) from the spatial linear regression

model (2.2.6) and the posterior distribution (2.3.9). It can be shown that the posterior

distribution of the predictive process y(U) and σ2 follows an NIG after marginalizing out γ

and w(U), and the posterior distribution of y(U) follows a multivariate t-distribution:

y(U) |y(S) ∼ MVS-t2a∗

(
µyu,

b∗
a∗

Vyu

)
(2.3.12)

where

µyu = [X(U) : AU ]γ̂ and Vyu = [X(U) : AU ](X>∗X∗)
−1

X(U)>

A>U

+ δ2In′ + DU .

Sampling w(U) y(U) from their posterior distribution requires taking Cholesky decompo-

sition of matrix Vwu and Vyu. Since the matrix (X>∗X∗)
−1 is involved in the calculation, the

required computation power is expensive and the calculation quickly become forbidden when

the number of locations to predict is large. Rather than direct sampling, we recommend us-

ing a two stage sampling method based on the joint distribution (2.3.9) and (2.3.11) in this

subsection. First, obtain the posterior samples {γ(l), σ2(l)}Ll=1. Then generate the posterior

samples of w(U) through w(U)(l) ∼ N([O : AU ]γ(l), σ2(l)DU) for l = 1, . . . , L. Finally use

y(U)(l) ∼ N(X(U)β(l) + w(U)(l), δ2σ2(l)) to generate the posterior samples of y(U).
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2.3.5 Inference of hyper-parameters

Algorithm 2.1 provides the exact posterior sampling of the process parameters after speci-

fying φ and δ2. This motivates us to estimate all the process parameters by first obtaining

the inference of a small set of parameters φ and δ2, then implementing Algorithm 2.1 to

sample {γ, σ2}. When we fix φ and δ2 at a point estimator (i.e. arg max {p(φ, δ2 |y)}), the

conjugate latent NNGP model becomes a special case of fitting latent NNGP model with

Empirical Bayes method.

Here we propose a K-folder cross-validation algorithm for picking a point estimate of

{φ, δ2} of the conjugate Latent NNGP. We first split the data randomly into K folds and

denote the k-th folder of the observed locations S[k], whereas S[−k] denotes the observed

locations without S[k]. Then we fit the predictive mean E[y(S[k]) |y(S[−k])] by the pos-

terior distribution given in (2.3.12). We use the Root Mean Square Predictive Error (RM-

SPE)(Yeniay and Goktas [2002]) to select φ and δ2 from a gird of candidate values. The

initial candidates for {φ, δ2} comes from a coarse grid. The range of the grid is decided

based on interpretation of the hyper-parameters. Specifically, the spatial decay φ describes

how the spatial correlation decreases as the distance between two locations increases. Define

maxdist(S) := maxs,t∈S{d(s, t)} where d(s, t) is the distance between location s and t. The

lower bound of the candidate value of φ is set at 3/maxdist(S), which indicates that the spa-

tial correlation drops below 0.05 when the distance reaches maxdist(S). The upper bound

can be initially set as 100 times of the lower bound 300/maxdist(S). For δ2, we need to

use reasonable assumptions on the variance components. A suggested wide range for δ2 can

be [0.001, 1000], which accommodates one variance component substantially dominating the

other in either direction. The prior information from the related studies of the data as well

as the estimators from the variogram also provide the candidate value of {φ, δ2}. Functions

like variofit in the R package geoR [Ribeiro Jr and Diggle, 2012] can provide empirical

estimates for {φ, δ2} from an empirical variogram. After initial fitting, we can shrink the

range and refine the grid of the candidate values for more precise estimators. Algorithm 2.2

describes K-fold cross-validation for choosing φ, δ2 in the conjugate latent NNGP model.
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Algorithm 2.2: Cross-validation of tuning φ, δ2 for conjugate latent NNGP model

1. Split the data into K folds, and build neighbor index.

• Build nearest neighbors for S[−k]

• Find the collection of nearest neighbor set for S[k] among S[−k].

2. Fix φ and δ2, Obtain the posterior mean for γk = {β,w(S[−k])} after removing the kth fold of the data:

• Use step 1-2 in Algorithm 2.1 to obtain γ̂k

3. Predicting posterior means of y(S[k])

• Construct matrix AU for S[k]

• According to (2.3.12), the predicted posterior mean follows

ŷ(S[k]) = E[y(S[k]) |y(S[−k])] = [X(U) : AU ]γ̂

4. Root Mean Square Predictive Error (RMSPE) over K folds

• Initialize e = 0

for (k in 1 : K)

for (si in S[k])

e = e+ (y(si)− ŷ(si))
2

5. Cross validation for choosing φ and δ2

• Repeat steps (2) - (4) for all candidate values of φ and δ2

• Choose φ0 and δ0 as the value that minimizes the average RMSPE

The main computational burden lies in step 1 in Algorithm 2.2. However, step 1 serves as

a pre-calculation for the whole cross-validation since it only need to be calculated for once.

We recommend using a KD-tree algorithm provided in R package spNNGP [Finley et al., 2017]

to build the nearest neighbor matrics. Step 2 dominates the computational requirement in

Algorithm 2.2 after the pre-calculation, which calls Algorithm 1 for k times for each choice

of {φ, δ2}.

An alternative approach for choosing point estimates of {φ, δ2} is to carry out the cross-

validation with the conjugate response NNGP model in (2.3.5). The practical advantage

here is that the function spConjNNGP within the spNNGP package in R can be used to carry

out the cross-validation. The algorithm behind spConjNNGP is exactly linear in n and highly
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efficient in its implementation. Empirical studies reveal that the response NNGP model and

the latent NNGP model provide similar optimal choices for {φ, δ2} when using the K- folder

cross-validation.

2.4 Simulation Study

We use a simulation study in this section to discuss the performance of the aforementioned

models in Sections 2.2 and 2.3. Algorithm 2.1 were programmed in R which calls the Rstan

environment [Stan Development Team, 2016] for building matrix AM and DM. The conju-

gate gradient solver for sparse linear systems was implemented through RcppEigen [Bates

and Eddelbuettel, 2013], which calls a Jacobi preconditioner [see, e.g., page 653 in Golub and

Van Loan, 2012] by default. We provide a brief discussion on preconditioned conjugate gra-

dient algorithms in Section 2.6. The nearest-neighbor sets were built using the spConjNNGP

function in the spNNGP package. All simulations were conducted on a OS High sierra system

(version 10.13.4) with 16GB RAM and one 3.1 GHz Intel-Core i7 processors.

2.4.1 Univariate simulation study

We generated data using the spatial regression model in (2.2.6) over a set of n = 1200 spatial

locations within a unit square. The true values of the parameters generating the data are

supplied in Table 2.1. The size of the data set was kept moderate to permit comparisons

with the expensive full GP models. The model had an intercept and a single predictor x(s)

generated from a standard normal distribution. An exponential covariance function was used

to generate the data.

Candidate models for fitting the data included full Gaussian process based model (labeled

as full GP in Table 2.1), a latent NNGP model with m = 10 neighbors and a conjugate

latent NNGP model with m = 10 neighbors. These models were trained using n = 1000

of the 1200 observed locations. And the remaining 200 observations were withheld to as-

sess predictive performance. The full Gaussian process based model was implemented with
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Table 2.1: Simulation study summary table: posterior mean (2.5%, 97.5%) percentiles

True Full GP NNGP Conj LNNGP

β0 1 1.07(0.72, 1.42) 1.10 (0.74, 1.43) 1.06 (0.76, 1.46)

β1 -5 -4.97 (-5.02, -4.91) -4.97 (-5.02, -4.91) -4.97 (-5.02, -4.91)

σ2 2 1.94 (1.63, 2.42) 1.95 (1.63, 2.41) 1.94 (1.77, 2.12)

τ 2 0.2 0.14 (0.07, 0.23) 0.15 (0.06, 0.24) 0.17 (0.16, 0.19)

φ 16 19.00 (13.92, 23.66) 18.53 (14.12, 24.17) 17.65

KL-D – 4.45(1.16, 9.95) 5.13(1.66, 11.39) 3.58(1.27, 8.56)

MSE(w) – 297.45(231.62, 444.79 ) 303.38(228.18, 429.54) 313.28 (258.96, 483.75)

RMSPE – 0.94 0.94 0.94

time(s) – 2499 + 23147 109.5 12 + 0.6

function spLM in R package spBayes [Finley et al., 2007]. The latent NNGP model was

conducted with function spNNGP in R package spNNGP. The fixed parameters{φ, δ2} for

the conjugate latent NNGP model were picked through the k-th folder cross-validation algo-

rithm (Algorithm 2.2). And the choice from spConjNNGP coincide with the cross-validation

for the conjugate latent NNGP model.

The intercept and slope parameters β were assigned improper flat priors. The spatial

decay φ was modeled using a fairly wide uniform prior U(2.2, 220). We use Inverse-Gamma

priors IG(2, b) (mean b) for the nugget (τ 2) and the partial sill (σ2) in order to compare

the conjugate Bayesian models with other models. The shape parameter was fixed at 2 and

the scale parameter was set from the empirical estimate provided by the variogram using

the geoR package [Ribeiro Jr and Diggle, 2012]. The parameter estimates and performance

metrics are provided in Table 2.1.

The summaries for the full Gaussian process based model and the latent NNGP model

were based on 1 MCMC chain with 20, 000 iterations. The number of iterations was taken to

be large enough to guarantee the convergence of the MCMC chains. We took the first half

of the MCMC chains as burn-in. The inference from the conjugate latent NNGP model were
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based on 300 samples. 300 samples is sufficient for the conjugate latent NNGP model since

the conjugate model provides independent samples from the exact posterior distribution. We

don’t need extra memory for burn-in, and the samples from the conjugate model are more

efficient than that from MCMC algorithms.

All models were assessed by the Kullback-Leibler divergence (labeled KL-D; Gneiting and

Raftery [2007]) and the out-of-sample root mean squared prediction error (RMSPE) (Yeniay

and Goktas [2002]). The KL-D between true distribution Q and fitted distribution Pθ is

measured by:

d(Pθ, Q) =
1

2
{tr(Σ−1

P ΣQ)− log det(Σ−1
P ΣQ) + (µP − µQ)′Σ−1

P (µP − µQ)− n} (2.4.1)

where Pθ and Q define Gaussian distributions on Rn with mean vectors µP and µQ, respec-

tively, and covariance matrices ΣP and ΣQ, respectively. The KL-D in Table 2.1 are on the

collapsed space θ = {β, σ2, τ 2, φ}. We estimated the KL-D by the empirical estimator:

Eθ |y(S)(d(Pθ, Q)) ≈ 1

L

L∑
i=1

d(Pθ(i)
, Q) , (2.4.2)

where θ(i), i = 1, . . . , L are L samples from the posterior distribution of θ. We also present

the 95% credible intervals for d(Pθ, Q) in Table 2.1. The predicted outcome at any withheld

location s0 was estimated as

ŷ(s0) = E[ỹ(s0) |y(S)] ≈ 1

L

L∑
i=1

ỹθ(i)
(s0) , (2.4.3)

where ỹθ(i)
(s0) ∼ p(y(s0) |y(S),θ(i)) and p(· |y(S),θ(i)) is the likelihood for the respective

model. These were used to calculate the RMSPE using the 200 hold-out values. We randomly

picked 300 out of the 10000 samples from the post burn-in MCMC chains for calculating

the KL-D and RMSPE. The y(s0) for full Gaussian process based and the latent NNGP

model are sampled by function spPredict. For the purpose of assessing the performance of

recovering spatial latent process, we also report the Mean Squared Error (MSE) with respect

to the true values of the spatial latent process (MSE(w)) over the observed locations in the

simulation. The KL-D, MSE(w) and RMSPE metrics reveal that the NNGP provides a

highly competitive alternative to the full Gaussian process based model.
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Table 2.1 lists the parameter estimates and performance metrics for the candidate models.

The posterior inference of the regression coefficients β are close for all three models. While

the posterior estimates of {σ2.τ 2, φ} are similar for full Gaussian process based model and

latent NNGP model but, somewhat expectedly, different from the conjugate latent NNGP

model. The 95% confidence interval for σ2 and τ 2 are narrower since we fix the parameter

φ, δ2. The KL-Ds on the parameter space {w,β, τ 2} show that the conjugate latent NNGP

provides reliable inference for the latent process and the regression coefficients. The same

RMSPE across all three models also support that conjugate latent NNGP is comparable

with full Gaussian process based model in prediction. The latent NNGP model is 200 times

faster than the full Gaussian process based model, while the conjugate latent NNGP model

use one tenth of the time required for the latent NNGP model to obtain similar inference

on the regression coefficients and latent process. Notice that the time for the sampling of

the 300 samples after fixing the parameter φ and δ2 in the conjugate latent NNGP model is

less than one second. And the conjugate latent NNGP spare the effect of testing the tuning

parameters in MCMC algorithm. Based on KL-D and RMSPE, the conjugate latent NNGP

models emerge as highly competitive alternatives to latent NNGP models for prediction and

inference on the latent process.

Figure 2.1 shows interpolated surfaces from the simulation example: 2.1(a) shows an

interpolated map of the “true” spatial latent process w, 2.1(b)–(d) are maps of the posterior

means of the latent process using a full GP model, a latent NNGP model and a conjugate

latent NNGP model, respectively. Figure 2.1(e)–(f) present the 95% confidence intervals

for bw from a full GP model and a conjugate latent NNGP model. The recovered spatial

residual surfaces are almost indistinguishable, and are comparable to the true interpolated

surface of w(s). Notice that the posterior mean of w of the conjugate latent NNGP model

can be theoretically calculated by the γ̂ in (2.3.7). Thus the posterior samples of the latent

process w is only required for measuring uncertainty. Figure 2.1f provides the 95% confidence

interval for all latent process w from the conjugate latent NNGP model. There are 955 out

of 1000 95% confidence intervals successfully include the true value. This is comparable to
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(d) Conjugate Latent NNGP
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Figure 2.1: Interpolated maps of (a) the true generated surface, the posterior means of the

spatial latent process w(s) for (b) the full Gaussian Process (Full GP), (c) the latent NNGP

and (d) the conjugate latent NNGP. The 95% confidence intervals for w from (e) the full GP

and (f) the conjugate latent NNGP. The models in (c), and (d) were all fit using m = 10

nearest neighbors.
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the full Gaussian process based model (fig 2.1e) which has 946 out of 1000 95% confidence

intervals covering the true value.

2.5 Sea surface temperature analysis

Global warming continues to be an ongoing concern among scientists. In order to develop

conceptual and predictive global models, NASA monitors temperature and other atmospheric

properties of the Earth regularly by two Moderate Resolution Imaging Spectroradiometer

(MODIS) instruments in Aqua and Terra platforms. There is an extensive global satellite-

based database processed and maintained by NASA. Details of the data can be found in

http://modis-atmos.gsfc.nasa.gov/index.html. In particular, inferring on processes

generating sea surface temperatures (SST) are of interest to atmospheric scientists studying

exchange of heat, momentum, and water vapor between the atmosphere and ocean. Our

aforementioned development will enable scientists to analyze large spatially-indexed datasets

using a Bayesian geostatistical model easily implementable on modest computing platforms.

Model-based inference is obtained rapidly using the conjugate latent NNGP model and,

based on simulation studies, will be practically indistinguishable from MCMC-based output

from more general NNGP specification. The dataset we analyze here consists of 2,827,252

spatially indexed observations of sea surface temperature (SST) collected between June 18-

26, 2017, the data covers the ocean from longitude -140◦ to ◦0 and from latitude 0◦ to 60◦.

Among the 2,827,252 observations, n = 2, 544, 527 (90%) were used for model fitting and

the rest were withheld to assess predictive performance of the candidate models. Figure 2.3a

depicts an interpolated map of the observed SST records over training locations. The tem-

peratures are color-coded from shades of blue indicating lower temperatures, primarily seen

in the higher latitudes, to shades of red indicating high temperatures. The missing data are

colored by yellow and the gray part refers to land. To understand trends across the coor-

dinates, we used sinusoidally projected coordinates (scaled to 1000km units) as explanatory

variables. The sinusoidal projection is a popular equal-area projection [see, e.g., Banerjee
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Figure 2.2: The Q-Q plot of the euclidean distance v.s. the spherical distance of 4000 pairs

of observed locations over the study domain of the SST analysis. The red line is the 45

degree line

[2005] or page 10 in Banerjee et al. [2014]]. We compare the Euclidean distances computed

from a sinusoidal projection and the spherical or geodesic distance over the study domain by

checking the two distances for 4000 pairs of locations randomly selected from the observed

location set. The Q-Q plot (figure 2.2) shows that the Euclidean distance based on sinusoidal

projects serves as a good measure of distance over the study domain. An exponential spatial

covariance function with sinusoidally projected distance was used for the model. Further

model specifications included non-informative flat priors for the intercept and regression co-

efficients, inverse-gamma priors for τ 2 and σ2 with shape parameter 2 and scale parameter

equaling the respective estimates from an empirical variogram.

We fit the conjugate Bayesian model with fixed φ and δ2 using the algorithm 2.1 in

Section 2.3.3 with m = 10 nearest neighbors. We implement Algorithm 2.2 to choose the

values of {φ, δ2} at φ = 7, δ2 = 0.001. Figures 2.3b shows the posterior means for

the latent process of the conjugate latent NNGP model. The temperatures are color-coded

from light green indicating high temperatures to dark of green indicating low temperatures.

The map of the latent process w indicates lower temperature on the east coast and higher
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(a) Observed SST over locations for training (b) Posterior mean of w over locations for train-

ing by Conjugate latent NNGP

(c) Observed SST over locations for testing (d) Posterior mean of SST over locations for test-

ing

Figure 2.3: Notes: (a) Observed SST over locations for training (b) Posterior mean of w over

locations for training by Conjugate latent NNGP (c) Posterior mean of SST over locations

for testing (d) Posterior mean of SST over locations for testing The land is colored by gray,

locations in the ocean without observations are colored by yellow.
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Table 2.2: Real data analysis summary table. Parameter Posterior summary mean (2.5,

97.5) percentiles

Non-spatial Conjugate latent NNGP a

Intercept 31.92(31.91, 31.92) 31.43 (31.28, 31.59)

x-coordinate (103km) 0.12 (0.12, 0.12) 0.07 (0.05, 0.09)

y-coordinate (103km) -3.07 (-3.07, -3.07) -3.03 (-3.08, -2.99)

σ2 – 3.95 (3.94, 3.95)

φ – 7.00

τ 2 11.44 (11.43, 11.46) 3.95e−3 (3.94e−3, 3.95e−3)

RMSPE 3.39 0.31

temperature on the west coast. At the same time, we observed high temperture at center of

the map. These features coincide with the ocean current, suggesting that the ocean current

plays an important role in the sea surface temperature.

Parameter estimates along with their estimated 95% credible intervals and performance

metrics for candidate models are shown in Table 2.2.

The RMSPE for a non-spatial linear regression model, conjugate latent NNGP model

were 1.13, 0.31, respectively. Compared to the spatial models, the non-spatial models have

substantially higher values of RMSPE, which suggest that coordinates alone does not ade-

quately capture the spatial structure of SST. The fitted SST map over the withheld locations

(Fig 2.3d) using conjugate latent NNGP model is almost indistinguishable from the real SST

map (Fig 2.3c). All the inference from the conjugate latent NNGP model are based on 300

samples. The sampling process took 2367 seconds. In average, the posterior mean of the

latent process w can be obtained within 20 seconds.
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2.6 Discussion

This Chapter has attempted to address some practical issues encountered by scientists and

statisticians in the hierarchical modeling and analysis for very large geospatial datasets.

Building upon some recent work on nearest-neighbor Gaussian processes for massive spa-

tial data, we build conjugate Bayesian spatial regression models and propose strategies for

rapidly deliverable inference on modest computing environments equipped with user-friendly

and readily available software packages. In particular, we have demonstrated how judicious

use of a conjugate latent NNGP model can be effective for estimation and uncertainty quan-

tification of latent (underlying) spatial processes. This provides an easily implementable

practical alternative to computationally onerous Bayesian computing approaches. All the

computations done in this Chapter were implemented on a standard desktop using R and

Stan. This Chapter intends to contribute toward innovations in statistical practice rather

than novel methodologies.

The subsequent research of speeding up Algorithm 2.1 will include the following two as-

pects. Firstly, the speed of convergence of the regular CG algorithm to the solution of a

symmetric positive definite linear system Ax = b depends on the condition number of the

matrix A. In practice, a preconditioned CG is much more beneficial. Preconditioning of the

CG method in Algorithm 2.1 is achieved by using a symmetric positive definite precondi-

tioner matrix, say M = LL>, to solve Ãx̃ = b̃, where Ã = L−1AL−> and b̃ = L−1b. The

solution for Ax = b is then obtained as x = L−>x̃. The preconditioner should be chosen

carefully. It should enjoy high memory efficiency and also ensure that κ(Ã) is close to 1,

where κ(·) denotes the condition number of a matrix. Without these conditions, the benefits

of preconditioning will not be evident and further investigations are needed to specify effi-

cient preconditioners for modifying Algorithm 2.1. The second aspect is parallel computing.

The posterior samples generated by Algorithm 2.1 are independent, allowing the possibility

of generating them simultaneously. One could explore the use of different parallel program-

ming paradigms such as message parsing interfaces and GPUs to dramatically reduce the
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sampling times in Algorithm 1.

It is important to recognize that the conjugate Bayesian models outlined here are not

restricted to the NNGP. Any spatial covariance structure that leads to efficient computations

can, in principle, be used. There are a number of recently proposed approaches that can be

adopted here. These include, but are not limited to, multi-resolution approaches [e.g., Nychka

et al., 2002, 2015, Katzfuss, 2017], covariance tapering and its use in full-scale approximations

[e.g., Furrer et al., 2006, Sang and Huang, 2012, Katzfuss, 2013], and stochastic partial

differential equation approximations [Lindgren et al., 2011], among several others [see, e.g.,

Banerjee, 2017, and references therein].

With regard to the NNGP specifically, our choice was partially dictated by its easy im-

plementation in R using the spNNGP package and in Stan as described in http://mc-stan.

org/users/documentation/case-studies/nngp.html. The NNGP is built upon a very

effective likelihood approximation [Vecchia, 1988, Stein et al., 2004], which has also been

explored recently by several authors in a variety of contexts [Stroud et al., 2017, Guinness,

2016]. Guinness [2016] provides empirical evidence about Vecchia’s approximation outper-

forming other alternate methods, but also points out some optimal methods for permuting

the order of the spatial locations before constructing the model. His methods for choosing

the order of the locations can certainly be executed prior to implementing the models pro-

posed in this Chapter. Finally, an even more recent article by Katzfuss and Guinness [2017]

proposes further extensions of the Vecchia approximation, but its practicability for massive

datasets on modest computing environments with easily available software packages is yet

to be ascertained.

Supplementary Material

All computer programs implementing the examples in this Chapter can be found in the

public domain and downloaded from https://github.com/LuZhangstat/ConjugateNNGP.
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CHAPTER 3

High-dimensional Multivariate Geostatistics: A

Conjugate Bayesian Matrix-Normal Approach

3.1 Introduction

Analysis for environmental data sets often require joint modeling of multiple spatially depen-

dent variables accounting for dependence among the variables and the spatial association for

each variable. For point-referenced variables, multivariate Gaussian processes (GPs) serve

as versatile tools for joint modeling of spatial variables [see, e.g., Schabenberger and Gotway,

2004, Cressie and Wikle, 2011, Banerjee et al., 2014, and references therein]. However, for a

dataset with n observed locations, fitting a GP based spatial model typically requires floating

point operations (flops) and memory requirements of the order ∼ n3 and ∼ n2, respectively.

This is challenging when n is large. This “Big Data” problem has received much attention

in the literature and a comprehensive review is beyond the scope of this Chapter; see, e.g.,

Banerjee [2017], Heaton et al. [2019], Sun et al. [2011] for a review and comparison of scalable

modeling methods. Much of the aforementioned literature for scalable models focused on

univariate spatial processes, i.e., assuming only one response for each location.

Multivariate processes [see, e.g., Genton and Kleiber, 2015, Salvaña and Genton, 2020,

Le and Zidek, 2006, and references therein], has received relatively limited developments in

the context of massive data. Bayesian models are attractive for inference on multivariate

spatial processes because they can accommodate uncertainties in the process parameters

more flexibly through their hierarchical structure. Multivariate spatial interpolation using

conjugate Bayesian modeling can be found in Brown et al. [1994], Le et al. [1997], Sun
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et al. [1998], Le et al. [2001], Gamerman and Moreira [2004], but these methods do not

address the challenges encountered in massive data sets. More flexible methods for joint

modeling, including spatial factor models, have been investigated in Bayesian contexts [see,

e.g. Schmidt and Gelfand, 2003, Ren and Banerjee, 2013, Taylor-Rodriguez et al., 2019],

but these methods have focused upon delivering full Bayesian inference through iterative

algorithms such as Markov chain Monte Carlo (MCMC).

In this Chapter, we extend the work in Chapter 2 to address the “Big Data” problem in

multivariate spatial data modeling. we propose an augmented Bayesian multivariate linear

model framework that accommodates conjugate distribution theory, similar to Gamerman

and Moreira [2004], but that can scale up to massive data sets with locations numbering in

the millions. More specifically, we embed the Nearest-Neighbor Gaussian process (NNGP)

[Datta et al., 2016a] within our conjugate Bayesian framework. We will consider two classes

of models. The first is obtained by modeling the spatially dependent variables jointly as a

multivariate spatial process, while the second models a latent multivariate spatial process in

a hierarchical setup. We refer to the former as the “response” model and the latter as the

“latent” model and we explore some properties of these models.

The remainder of this Chapter is arranged as follows. Section 3.2 develops a conju-

gate Bayesian multivariate spatial regression framework using Matrix-Normal and Inverse-

Wishart prior distributions. We first develop two classes of models, response models and la-

tent models using Gaussian spatial processes, in Section 3.2.1. Subsequently, in Section 3.2.2

we develop scalable versions of these models using the Nearest Neighbor Gaussian process

(NNGP). We develop NNGP response models and NNGP latent models in this conjugate

Bayesian framework. A cross-validation algorithm to fix certain hyperparameters in these

models is presented in Section 3.2.3 and some theoretical attributes of these models are pre-

sented in Section 3.2.4. Section 3.3 present some simulation experiments, while Section 3.4

analyzes a massive Normalized Difference Vegetation Index data with a few million locations.

Finally, Section 3.5 concludes the Chapter with some discussion.
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3.2 Bayesian Multivariate Geostatistical Modeling

3.2.1 Conjugate Multivariate Spatial Models

Conjugate Multivariate Response Model Let y(s) = (y1(s), . . . , yq(s))> ∈ Rq be a

q × 1 vector of outcomes at location s ∈ D ⊂ Rd and x(s) = (x1(s), . . . , xp(s))> ∈ Rp be

a corresponding p × 1 vector of explanatory variables. Conditional on these explanatory

variables, the response is assumed to follow a multivariate Gaussian process,

y(s) ∼ GP(β>x(s),C(·, ·)) ; C(s, s′) = [ρψ(s, s′) + (α−1 − 1)δs=s′ ]Σ , (3.2.1)

where the mean of y(s) is β>x(s), β is a p×q matrix of regression coefficients and C(s, s′) =

{cov{yi(s), yj(s
′)}} is a q × q cross-covariance matrix [Genton and Kleiber, 2015] whose

(i, j)-th element is the covariance between yi(s) and yj(s
′). The cross-covariance matrix

is defined for each pair of locations and is further specified as a multiple of a nonspatial

positive definite matrix Σ. The multiplication factor is a function of the two locations and

is composed of two components: a spatial correlation function, ρψ(s, s′), which introduces

spatial dependence between the outcomes through hyperparameters ψ, and a micro-scale

adjustment (1/α − 1)δs=s′ , where δs=s′ = 1 if s = s′ and is 0 if s 6= s′, and α ∈ (0, 1] is a

scalar parameter representing the overall strength of the spatial variability as a proportion

of the total variation.

The covariance among the elements of y(s) within a location s is given by the elements

of C(s, s) = (1/α)Σ suggesting the interpretation of Σ as the within-location (nonspatial)

dependence among the outcomes adjusted by a scale of 1/α to accommodate additional

variation at local scales. The interpretation of α is equivalent to the ratio of the “partial

sill” to the “sill” in classical geostatistics. For example, in the special case that Σ = σ2Iq,

cov{yi(s), yj(s
′)} = σ2ρ(s, s′) + σ2(1/α − 1)δs=s′ , which shows that σ2(1/α − 1) = τ 2 is the

variance of micro-scale processes (or the “nugget”), so that α = σ2/(σ2 + τ 2) is the ratio of

the spatial variance (partial sill) to the total variance (sill). A similar interpretation for α

results in the univariate setting with q = 1.
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Let S = {s1, . . . , sn} ⊂ D be a set of n locations yielding observations on y(s). Then

Y = y(S) = [y(s1) : · · · : y(sn)]> is n × q and X = x(S) = [x(s1) : · · · : x(sn)]> is the

corresponding n × p matrix of explanatory variables observed over S. We will assume that

X has full column rank (= p < n). The likelihood emerging from (3.2.1) is Y |β,Σ ∼

MNn,q(Xβ,K,Σ), where MN denotes the Matrix-Normal distribution defined in Ding and

Cook [2014], i.e.,

MNn,q(Y |Xβ,K,Σ) =
exp

(
−1

2
tr
[
Σ−1(Y −Xβ)>K−1(Y −Xβ)

])
(2π)np/2|Σ|n/2|K|p/2 , (3.2.2)

where tr denotes trace, K = ρψ + (α−1 − 1)In and ρψ = {ρψ(si, sj)} is the n × n spatial

correlation matrix. A conjugate Bayesian model is obtained by a Matrix-Normal-Inverse-

Wishart (MNIW) prior on {β,Σ}, which we denote as

MNIW(β,Σ |µβ,Vr,Ψ, ν) = IW(Σ |Ψ, ν)×MNp,q(β |µβ,Vr,Σ) , (3.2.3)

where IW(Σ |Ψ, ν) is the Inverse-Wishart distribution with parameters ν and Ψ describing

the degrees of freedom and the scale matrix [see section 3.6 in Gelman et al., 2013]. The

MNIW family is a conjugate prior with respect to the likelihood (3.2.2) and, for any fixed

values of α, ψ and the hyperparameters in the prior density, we obtain the posterior density

p(β,Σ |Y) ∝ MNIW(β,Σ |µβ,Vr,Ψ, ν)×MNn,q(Y |Xβ,K,Σ)

∝ MNIW(µ∗,V∗,Ψ∗, ν∗) ,
(3.2.4)

where

V∗ = (X>K−1X + V−1
r )−1 ,

µ∗ = V∗(X>K−1Y + V−1
r µβ) ,

Ψ∗ = Ψ + Y>K−1Y + µ>βV−1
r µβ − µ∗>V∗−1µ∗ and

ν∗ = ν + n .

(3.2.5)

Direct sampling from the MNIW posterior distribution in (3.2.4) is achieved by first sampling

Σ ∼ IW(Ψ∗, ν∗) and then sampling one draw of β ∼ MNp,q(µ
∗,V∗,Σ) for each draw of Σ.

The resulting pairs {β,Σ} will be samples from (3.2.4). Since this scheme draws directly from

the posterior distribution, the sample is exact and does not require burn-in or convergence.
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Turning to predictions, let U = {u1, . . . ,un′} be a finite set of locations where we intend

to predict or impute the value of y(s) based upon an observed n′ × p design matrix XU =

[x(u1) : · · · : x(un′)]
> for U . If YU = [y(u1) : · · · : y(un′)]

> is the n′ × q matrix of predictive

random variables, then the conditional predictive distribution is

p(YU |Y,β,Σ) =MNn′,q(YU |XUβ + ρψ(U ,S)K−1[Y −Xβ],

ρψ(U ,U) + (α−1 − 1)In′ − ρψ(U ,S)K−1ρψ(S,U), Σ) ,
(3.2.6)

where ρψ(U ,S) = {ρψ(ui, sj)} is n′ × n and ρψ(S,U) = {ρψ(si,uj)} = ρψ(U ,S)>. Pre-

dictions can also be directly carried out in posterior predictive fashion, where we sample

from

p(YU |Y) =

∫
MNn′,q(XUβ + ρψ(U ,S)K−1[Y −Xβ],

ρψ(U ,U) + (α−1 − 1)In′ − ρψ(U ,S)K−1ρψ(S,U), Σ)

×MNIW(µ∗,V∗,Ψ∗, ν∗) dβ dΣ .

(3.2.7)

Sampling from (3.2.7) is achieved by drawing one YU from (3.2.6) for each posterior draw

of {β,Σ}.

Conjugate Multivariate Latent Model We now discuss a conjugate Bayesian model

for a latent process. Consider the spatial regression model

y(s) = β>x(s) + ω(s) + ε(s) , s ∈ D , (3.2.8)

where ω(s) ∼ GP(0q×1, ρψ(·, ·)Σ) is a q× 1 multivariate latent process with cross-covariance

matrix ρψ(s, s′)Σ and ε(s)
iid∼ N(0q×1, (α

−1− 1)Σ) captures micro-scale variation. The “pro-

portionality” assumption for the variance of ε(s) will allow us to derive analytic posterior

distributions using conjugate priors.

The latent process ω(s) captures the underlying spatial pattern and holds specific interest

in many applications. Let ω = ω(S) = [ω(s1) : · · · : ω(sn)]> be n× q. The parameter space

with the latent process is {β,ω,Σ}. Letting γ> = [β>,ω>] be q × (p+ n), we assume that
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{γ,Σ} ∼ MNIW(µγ ,Vγ ,Ψ, ν), where µ>γ = [µ>β ,0q×n] and Vγ = blockdiag{Vr,ρψ(S,S)}.

The posterior density is

p(γ,Σ |Y) ∝ MNIW(γ,Σ |µγ ,Vγ ,Ψ, ν)×MNn,q(Yn×q | [X : In]γ, (α−1 − 1)In,Σ)

∝ MNIW(γ,Σ |µ∗γ ,V∗,Ψ∗, ν∗) ,
(3.2.9)

where

V∗ =

 α
1−αX>X + V−1

r
α

1−αX>

α
1−αX ρ−1

ψ (S,S) + α
1−αIn

−1

, µ∗γ = V∗

 α
1−αX>Y + V−1

r µβ
α

1−αY

 ,
Ψ∗ = Ψ +

α

1− α
Y>Y + µ>βV−1

r µβ − µ∗>γ V∗−1µ∗γ and ν∗ = ν + n .

(3.2.10)

For prediction on a set of location U , we can estimate the unobserved latent process ωU =

ω(U) = [ω(u1) : · · · : ω(un′)]
> and the response YU through

p(YU ,ωU |Y) =

∫
MNn′,q(YU |XUβ + ωU , (α−1 − 1)In′ , Σ)

×MNn′,q(ωU |MUω,VωU ,Σ)×MNIW(γ,Σ |µ∗γ ,V∗,Ψ∗, ν∗) dγdΣ ,

(3.2.11)

where MU = ρψ(U ,S)ρ−1
ψ (S,S) and VωU = ρψ(U ,U)− ρψ(U ,S)ρ−1

ψ (S,S)ρψ(S,U). Poste-

rior predictive inference proceeds by sampling one draw of ωU ∼ MNn′,q(ωU |MUω,VωU ,Σ)

for each posterior draw of {γ,Σ} and then one draw of YU ∼ MN(XUβ+ωU , (α
−1−1)In′ , Σ)

for each drawn {ωU ,γ,Σ}.

3.2.2 Scalable Conjugate Bayesian Multivariate Models

Conjugate multivariate response NNGP model A conjugate Bayesian modeling frame-

work is appealing for massive spatial data sets because the posterior distribution of the pa-

rameters are available in closed form circumventing the need for MCMC algorithms. The

key computational bottleneck for Bayesian estimation of spatial process models concerns

the computation and storage involving K−1 in (3.2.5). The required matrix computations

require O(n3) flops and O(n2) storage when K is n× n and dense. While conjugate models

reduce computational expenses by enabling direct sampling from closed-form posterior and
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posterior predictive distributions, the computation and storage of K is still substantial for

massive datasets.

One approach to obviate the overwhelming computations is to develop a sparse alternative

for K−1 in (3.2.5). One such approximation that has generated substantial recent attention

in the spatial literature is an approximation due to Vecchia [Vecchia, 1988]. Consider the

spatial covariance matrix K = ρψ + δs=s′In in (3.2.2). This is a dense n× n matrix with no

apparent exploitable structure. Instead, we specify a sparse Cholesky representation

K−1 = (I−AK)>D−1
K (I−AK) , (3.2.12)

where DK is a diagonal matrix and AK is a sparse lower-triangular matrix with 0 along

the diagonal and with no more than a fixed small number m of nonzero entries in each

row of AK. The diagonal entries of D−1
K and the nonzero entries of AK are obtained from

the conditional variance and conditional expectations for a Gaussian process with covariance

function ρψ(s, s′). To be precise, we consider a fixed order of locations in S and define Nm(si)

to be the set comprising at most m neighbors of si among locations sj ∈ S such that j < i.

The (i, j)-th entry of AK is 0 whenever sj /∈ Nm(si). If j1 < j2 < · · · < jm are the m column

indices indicating the nonzero entries in the i-th row of AK, then the (i, jk)-th element of AK

is set equal to the k-th element of the 1×m vector a>i = ρψ(si, Nm(si))ρψ(Nm(si), Nm(si))
−1.

The (i, i)-th diagonal element of DK is given by ρψ(si, si) − a>i ρψ(Nm(si), si). Repeating

these calculations for each row completes the construction of AK and Dκ and yields a sparse

K−1 in (3.2.12). This construction can be performed in parallel and requires storage or

computation of at most m × m matrices, where m << n, costing O(n) flops and storage.

Further algorithmic details about this construction can be found in Finley et al. [2019].

Based on Section 3.2.1, the posterior distribution β,Σ |Y follows MNIW(µ∗,V∗,Ψ∗, ν∗)

where {µ∗,V∗,Ψ∗, ν∗} are given in (3.2.5). With the sparse representation of K−1 in (3.2.12),

the process of obtaining posterior inference for {β,Σ} only involves steps with storage and

computational requirement in O(n).

The predictions on the unobserved locations U = {u1, . . . ,un′} is also simplified as follows.
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We extend the definition of Nm(si)’s to arbitrary locations by defining Nm(ui) to be the set

of m nearest neighbors of ui from S. Furthermore, we assume that y(u) and y(u′) are

conditionally independent of each other given Y = y(S) and the other model parameters.

Thus, for any ui ∈ U , we have

y(ui) |Y,β,Σ ∼ N(β>x(ui) + [Y −Xβ]>ãi, d̃iΣ), i = 1, . . . , n′ , (3.2.13)

where ãi is an n× 1 vector with m non-zero elements. If Nm(ui) = {sjk}mk=1, then

({ãi}j1 , . . . , {ãi}jm) = ρψ(ui, Nm(ui)){ρψ(Nm(ui), Nm(ui)) + (α−1 − 1)Im}−1 ,

d̃i = α−1 − ρψ(ui, Nm(ui))[ρψ(Nm(ui), Nm(ui)) + (α−1 − 1)Im]−1ρψ(Nm(ui),ui) .

(3.2.14)

If Ã = [ã1 : · · · : ãn′ ]
> and D̃ = diag({d̃i}ni=1, then the conditional predictive density for YU

is

YU |Y,β,Σ ∼ MN(XUβ + Ã[Y −Xβ], D̃,Σ) . (3.2.15)

Since the posterior distribution of {β,Σ} and the conditional predictive distribution of YU

are both available in closed form, direct sampling from the posterior predictive distribution

is straightforward. A detailed algorithm for obtaining the posterior inference on parameter

set {β,Σ} and the posterior prediction over a new set of location U is given as below.

Algorithm 3.1: Obtaining posterior inference of {β,Σ} and predictions on U for conjugate multivariate response NNGP

1. Construct V∗, µ∗, Ψ∗ and ν∗:

(a) Compute Lr the Cholesky decomposition of Vr

(b) Compute DIAX = D
− 1

2
k (I−Ak)X and DIAY = D

− 1
2

k (I−Ak)Y

• Construct AK and DK as described, for example, in Finley et al. [2019] O(nm3)

• Compute DIAX = D
− 1

2
k (I−Ak)X and DIAY = D

− 1
2

k (I−Ak)Y O(n(m+ 1)(p+ q + 2))

(c) Obtain V∗, µ∗ and Ψ∗

• Compute V∗ = (DIAX>DIAX + V−1
r )−1 and its Cholesky decomposition Lv∗ O(np2)

• Compute µ∗ = V∗(DIAX>DIAY + V−1
r µβ) O(npq)

• Compute Ψ∗ = Ψ + DIAY>DIAY + (L−1
r µβ)>(L−1

r µβ)− (L−1
v∗ µ

∗)>(L−1
v∗ µ

∗) O(nq2)

• Compute ν∗ = ν + n
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2. Generate posterior samples {Y(l)
U }

L
l=1 on a new set U given XU

(a) Construct Ã and D̃ as described in (3.2.14) O(n′m3)

(b) For l in 1 : L

i. Sample Σ(l) ∼ IW(Ψ∗, ν∗)

ii. Sample β(l) ∼ MN(µ∗,V∗,Σ(l))

• Calculate Cholesky decomposition of Σ(l), Σ(l) = LΣ(l)L>
Σ(l)

• Sample u ∼ MN(0, Ip, Iq) (i.e. vec(u) ∼ MVN(0, Ipq))

• Generate β(l) = µ∗ + Lv∗uL>
Σ(l)

iii. Sample Y
(l)
U ∼ MN(XUβ

(l) + Ã[Y −Xβ(l)], D̃,Σ(l))

• Sample u ∼ MN(0, In′ , Iq).

• Generate Y
(l)
U = XUβ

(l) + Ã[Y −Xβ(l)] + D̃
1
2 uL>

Σ(l) O((n′ + n)pq + n′(q2 +mq))

Conjugate multivariate latent NNGP model Bayesian estimation for the conjugate

multivariate latent model is more challenging because inference is usually sought on the (high-

dimensional) latent process itself. In particular, the calculations involved in V∗ in (3.2.9) are

often too expensive for large data sets even when the precision matrix ρ−1
ψ (S,S) is sparse.

Here, the latent process ω(s) in (3.2.8) follows a multivariate Gaussian process so that its

realizations over S follows ω ∼ MN(On×q, ρ̃,Σ), where ρ̃ is the Vecchia approximation of

ρψ(S,S). Hence, ρ̃−1 = (I−Aρ)
>D−1

ρ (I−Aρ), where Aρ and Dρ are constructed analogous

to AK and DK in (3.2.12) with K replaced by ρψ(S,S). This corresponds to modeling ω(s)

with a Nearest-Neighbor Gaussian Process (NNGP) [see, e.g., Datta et al., 2016a,b, Banerjee,

2017, for details].

The posterior distribution of {γ,Σ} follows a Matrix-Normal distribution similar to (3.2.9),

but with ρψ(S,S)−1 in (3.2.10) replaced by its Vecchia approximation ρ̃ψ(S,S). We will

solve the linear system X∗>X∗µ∗ = X∗>Y∗ for µ∗, compute {Ψ∗, ν∗} and generate pos-

terior samples of Σ from IW(Ψ∗, ν∗). Posterior samples of γ are obtained by generating

η ∼ MN(O, I2n+p,Σ), solving X∗>X∗v = X∗>η for v and then obtaining posterior samples

of γ from γ = µ∗ + v.
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However, sampling {γ,Σ} is still challenging for massive data sets, where we seek to

minimize storage and operations with large matrices. Here we introduce a useful represen-

tation. Let Vρ be a non-singular square matrix such that ρ−1
ψ (S,S) = V>ρVρ where we

write Vρ = D
−1/2
ρ (I−Aρ). We treat the prior of γ as additional “observations” and recast

p(Y,γ |Σ) = p(Y |γ,Σ)× p(γ |Σ) into an augmented linear model
√

α
1−αY

L−1
r µβ

0


︸ ︷︷ ︸

Y∗

=


√

α
1−αX

√
α

1−αIn

L−1
r 0

0 Vρ


︸ ︷︷ ︸

X∗

 β
ω


︸ ︷︷ ︸

γ

+


η1

η2

η3


︸ ︷︷ ︸

η

, (3.2.16)

where Lr is the Cholesky decomposition of Vr, and η ∼ MN(0, I2n+p,Σ). With a flat prior

for β, L−1
r degenerates to O and does not contribute to the linear system. The expression

in (3.2.10) can now be simplified as follows

V∗ = (X∗>X∗)−1 , µ∗ = (X∗>X∗)−1X∗>Y∗ ,

Ψ∗ = Ψ + (Y∗ −X∗µ∗)>(Y∗ −X∗µ∗) , ν∗ = ν + n .
(3.2.17)

Following developments in Zhang et al. [2019] for the univariate case, one can efficiently

generate posterior samples through a conjugate gradient algorithm exploiting the sparsity

of Vρ. The sampling process for γ will be scalable when there is a sparse precision matrix

ρ−1
ψ (S,S). It is also possible to construct V∗ and µ∗ in (3.2.17) using ρ−1

ψ (S,S) instead of Vρ.

We refer to Zhang et al. [2019] for further details of this construction. We provide a detailed

algorithm of the conjugate multivariate latent NNGP model below, where we implement a

“Sparse Equations and Least Squares” (LSMR) algorithm [Fong and Saunders, 2011] to solve

the linear system X∗>X∗µ∗ = X∗>Y∗ and X∗>X∗v = X∗>η needed to generate γ. LSMR

is a conjugate-gradient type algorithm for solving sparse linear equations Ax = b where the

matrix A may be square or rectangular. The matrix A := X∗ is a sparse tall matrix. LSMR

only requires storing X∗, Y∗ and η∗ and, unlike the conjugate gradient algorithm, avoids

X∗>X∗, X∗>Y and X∗>η. LSMR also tends to produce more stable estimates than conjugate

gradient. We have also tested a variety of conjugate gradient methods and preconditioning

methods, where we have observed that their performances varied across different data sets.

42



The LSMR without conditioning showed a relatively good performance for the latent models.

Therefore, we choose LSMR without preconditioning for our current illustrations.

Posterior predictive inference will adapt from (3.2.11) for scalable models. After sampling

{γ,Σ}, we sample one draw of ωU ∼ ωU |γ,Σ ∼ MN([On′×p, Ã]γ, D̃,Σ) for each sampled

{γ,Σ}, where Ã = [ã1 : · · · : ãn]>, D̃ = diag({d̃i}ni=1) with

({ãi}j1 , . . . , {ãi}jm) = ρψ(ui, Nm(ui))ρ
−1
ψ (Nm(ui), Nm(ui)) ,

d̃i = 1− ρψ(ui, Nm(ui))ρ
−1
ψ (Nm(ui), Nm(ui))ρψ(Nm(ui),ui) .

(3.2.18)

Finally, for each sampled {β,ωU ,Σ} we make one draw of YU ∼ MN(XUβ+ωU , (α
−1 − 1)In′ ,Σ).

The following provides details of the algorithm for predictive inference.

Algorithm 3.2: Obtaining posterior inference of {γ,Σ} and predictions on set U for conjugate multivariate latent NNGP

1. Construct X∗ and Y∗ in (3.2.16)

(a) L−1
r and L−1

r µβ

• Compute the Cholesky decomposition of Vr, Lr

• Compute L−1
r and L−1

r µβ

(b) Vρ

• Construct Aρ and Dρ as described, for example, in Finley et al. [2019] O(nm3)

• Compute Vρ = D
− 1

2
ρ (I−Aρ) O(n(m+ 1))

(c) Construct X∗ and Y∗

2. Obtain µ∗, Ψ∗ and ν∗.

(a) Obtain µ∗ = [µ∗1 : · · · : µ∗q ]

• Solve µ∗i from X∗µ∗i = Y∗i by LSMR for i = 1, . . . , q.

(b) Obtain Ψ∗ and ν∗

• Generate u = Y∗ −X∗µ∗ O(n(1 + (p+m+ 1)q))

• Compute Ψ∗ = Ψ + u>u O(nq2)

• Compute ν∗ = ν + n

3. Generate posterior samples of {γ(l),Σ(l)}Ll=1. For l in 1 : L

(a) Sample Σ(l) ∼ IW(Ψ∗, ν∗)

(b) Sample γ(l) ∼ MN(µ∗,V∗,Σ(l))

• Sample u ∼ MN(0, I2n+p, Iq) O(2nq)

• Calculate Cholesky decomposition of Σ(l), Σ(l) = LΣ(l)L>
Σ(l)

• Generate η = uL(l)> = [η1 : · · · : ηq ] O(2nq2)

• Solve vi from X∗vi = ηi by LSMR for i = 1, . . . , q.
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• Generate γ(l) = µ∗ + v with v = [v1 : · · · : vq ] O(nq)

4. Generate posterior samples of {Y(l)
U } on a new set U given XU .

(a) Construct Ã and D̃ using (3.2.18) O(n′m3)

(b) For l in 1 : L

i. Sample ω
(l)
U ∼ MN([0n′×p, Ã]γ(l), D̃,Σ(l))

• Sample u ∼ MN(0, In′ , Iq) O(n′q)

• Generate ω
(l)
U = [0n′×p, Ã]γ(l) + D̃

1
2 uL>

Σ(l) O(n′mq + n′q2)

ii. Sample Y
(l)
U |ω

(l)
U ,γ

(l),Σ(l) ∼ MN(XUβ + ωU , (α
−1 − 1)In′ ,Σ)

• Sample u ∼ MN(0, In′ , Iq) O(n′q)

• Generate Y
(l)
U = XUβ + ω

(l)
U + (α−1 − 1)uL>

Σ(l) O(n′pq + n′q2)

3.2.3 Cross-validation for Conjugate Multivariate NNGP Models

Conjugate Bayesian multivariate regression models will depend upon fixing hyperparameters
in the model. Here, we apply aK-fold cross-validation algorithm for choosing {ψ, α}. This al-
gorithm is a straightforward generalization of the univariate algorithm in [Finley et al., 2019].
We run the conjugate models for each point {ψ, α} on a grid and choose the value that pro-
duces the least magnitude of root mean square prediction error. The inference on that point
is then presented. This is appealing for scalable Gaussian process models that, for any fixed
{ψ, α}, can deliver posterior inference at new locations requiring storage and flops in O(n).

Algorithm 3.3: Cross-validation of tuning ψ, α for conjugate multivariate response or latent NNGP model

1. Split S into K folds, and build neighbor index.

• Split S into K folds {Sk}Kk=1. We use S−k to denote S without the locations in Sk.

• Build nearest neighbors for {S−k}Kk=1

• Find the collection of nearest neighbor set for Sk among S−k for k = 1, . . . ,K.

2. (For response NNGP) Fix ψ and α, obtain posterior mean of β after removing the kth fold of the data:

• Use step 1 in Algorithm 3.1 to obtain β̂k by taking S to be S−k and µ∗ to be β̂k.

(For latent NNGP) Fix ψ and α, obtain posterior mean of γk = {β,ω(S−k)} after removing the kth fold of the data:

• Use step 1-2 in Algorithm 3.2 to obtain γ̂k by taking S to be S−k and µ∗ to be γ̂k.

3. (For response NNGP) Predict posterior means of y(Sk)

• Construct matrix Ã through (3.2.14) by taking S to be S−k and U to be Sk.

• According to (3.2.15), the predicted posterior mean of y(Sk) follows

ŷ(Sk) = E[y(Sk) |y(S−k)] = x(Sk)β̂k + Ã[y(S−k)− x(S−k)β̂k]
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(For latent NNGP) Predict posterior means of y(Sk)

• Construct matrix Ã by taking S to be S−k and U to be Sk.

• The predicted posterior mean of y(Sk) follows

ŷ(Sk) = E[y(Sk) |y(S−k)] = Eω [Ey[y(Sk) |ω(S−k),y(S−k)]] = [x(Sk), Ã]γ̂k

4. Root Mean Square Predictive Error (RMSPE) over K folds

• Initialize e = 0

for (k in 1 : K)

for (si in Sk)

e = e+ ‖y(si)− ŷ(si)‖2

5. Cross validation for choosing ψ and α

• Repeat steps (2) - (4) for all candidate values of ψ and α

• Choose ψ0 and α0 as the value that minimizes the average RMSPE

3.2.4 Comparison of Response and Latent Models

Modeling the response as an NNGP produces a different model from modeling the latent

process as an NNGP. In the former, Vecchia’s approximation to the joint density of the

response yields a sparse precision matrix for the response. In the latter, it is the precision

matrix of the realizations of the latent process that is sparse. This has been discussed in

Datta et al. [2016a] and also explored in greater generality by Katzfuss and Guinness [2017].

Comparisons based on the Kullback-Leibler divergence (KL-D) between the NNGP based

models and their parent full GP models reveal that the latent NNGP model tends to be closer

to the full GP than the response NNGP. A proof of such a result is provided by Katzfuss and

Guinness [2017], but this result holds only in the context of an augmented directed acyclical

graphical model with nodes comprising the response and the latent variables. However, if we

compute the KL-D between the NNGP models and their full GP counterparts in terms of

the collapsed or marginal distribution for Y, then it is theoretically possible for the response

model to be closer to the full GP.
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Here we provide a simple example where a response NNGP model outperforms a latent

NNGP model on a collapsed space. Assume the observed location set is S = {s1, s2, s3},

ω(S) has covariance matrix σ2R with correlation matrix

R =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 . (3.2.19)

Let us suppress the connection between knots s1 and s3 in the directed acyclic graph corre-

sponding to the finite realization of the NNGP on S. Then the covariance matrix of of the

response NNGP model ΣR and that of the latent NNGP model Σl have the following forms:

ΣR = σ2


1 + δ2 ρ12

ρ12ρ23

1+δ2

ρ12 1 + δ2 ρ23

ρ12ρ23

1+δ2 ρ23 1 + δ2

 , Σl = σ2


1 + δ2 ρ12 ρ12ρ23

ρ12 1 + δ2 ρ23

ρ12ρ23 ρ23 1 + δ2

 , (3.2.20)

where δ2 = τ2

σ2 is the noise-to-signal ratio with τ 2 as the variance of the noise process ε(s).

Since R is positive-definite, we must have

1− (ρ2
12 + ρ2

13 + ρ2
23) + 2ρ12ρ13ρ23 > 0 , 1− ρ2

12 > 0 . (3.2.21)

It is easy to show that ΣR and Σl are also positive-definite. If ρ13 = ρ12ρ23

1+δ2 , then the KL-D

from the response NNGP model to the true model always equals zero, which is no more than

the KL-D from the latent NNGP model to the true model. If ρ13 = ρ12ρ23, then the KL-D of

the latent NNGP model to the true model always equals zero, which reverses the relationship.

Numerical examples can be found in https://luzhangstat.github.io/notes/KL-D_com.

html

Still, our simulations indicate that the latent NNGP model tends to outperform the re-

sponse NNGP model in approximating their parent GP based models. This is consistent

with the theoretical result of [Katzfuss and Guinness, 2017] and also with our intuition: the

presence of the latent process should certainly improve the goodness of fit of the model.

Without loss of generality, our discussion here considers the univariate case, but the argu-

ment applies to the multivariate setting as well. Let {y(s) : s ∈ D} be the process of interest
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over D ⊂ Rd, d ∈ N+, and let y(s) = ω(s) + ε(s) for some latent spatial GP ω(s) and white

noise process ε(s). A response NNGP model specifies the NNGP on y(s), while a latent

NNGP model assumes that ω(s) follows the NNGP.

Let the covariance matrix of y = y(S) of the parent GP based models be C + τ 2I, where

C is the covariance matrix of the latent process ω(S). Consider the Vecchia approximation

of the precision matrices C−1 and K−1 = {C + τ 2I}−1:

Vecchia(C−1) = C̃−1 , Vecchia(K−1) = K̃−1 . (3.2.22)

The covariance matrix of y(S) from the latent NNGP model is C̃ + τ 2I, while the precision

matrix of y(S) from the response NNGP model is K̃−1. We denote the error matrix of the

Vecchia approximation of C−1 by E. We assume that E is small so that C̃−1 approximates

C−1 well. With the same observed location S and the fixed number of nearest neighbors,

the error matrix of the Vecchia approximation of K−1 is believed to be close to E, i.e.,

C−1 = C̃−1 + E ; K−1 = K̃−1 +O(E). (3.2.23)

Representing the precision matrices of y(S) of the parent GP based model and the latent

NNGP model by

(C + τ 2I)−1 = C−1 −C−1M−1C−1 ,M = C−1 + τ−2I ,

(C̃ + τ 2I)−1 = C̃−1 − C̃−1M∗−1C̃−1 ,M∗ = C̃−1 + τ−2I ,
(3.2.24)

we find that the difference between the precision metrics over the collapsed space for the

parent NNGP and for the latent NNGP model is

(C + τ 2I)−1 − (C̃ + τ 2I)−1 = C−1 −C−1M−1C−1 − C̃−1 + C̃−1M∗−1C̃−1

= E− EM−1C̃−1 − C̃−1M−1E− C̃−1(M−1 −M∗−1)C̃−1︸ ︷︷ ︸
B

−EM−1E︸ ︷︷ ︸
O(E2)

Representing B in terms of C̃−1, M∗ and E, where E is assumed to be nonsingular, we find

B = E− EM∗−1C̃−1 + EM∗−1(E−1 + M∗−1)−1M∗−1C̃−1 − C̃−1M∗−1E

+ C̃−1M∗−1(E−1 + M∗−1)−1M∗−1E + C̃−1M∗−1(E−1 + M∗−1)−1M∗−1C̃−1 .
(3.2.25)
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Using the familiar Woodbury matrix identity and the expansion (I + X)−1 =
∑∞

n=0{−X}n,

we find

(E−1 + M∗−1)−1M∗−1 = {M∗(E−1 + M∗−1)}−1 = {M∗E−1 + I}−1

= I− {I + EM∗−1}−1 = I− {I− EM∗−1 +O(E2)}

= EM∗−1 +O(E2) .

Using the above equations and excluding the terms of order O(E2) in the expression of B,

the leading term in the difference is

B = (I− C̃−1M∗−1)E(I −M∗−1C̃−1) = (I + τ 2C̃−1)−1E(I + τ 2C̃−1)−1 . (3.2.26)

Using the spectral decomposition (I + τ 2C̃−1) = P>(I + τ 2D)P, where P is orthogonal and

D is diagonal with positive elements on the diagonal, we obtain

‖B‖F = ‖P>(I + τ 2D)−1PEP>(I + τ 2D)−1P‖F = ‖(I + τ 2D)−1PEP>(I + τ 2D)−1‖F

≤ ‖PEP>‖F = ‖E‖F ,
(3.2.27)

where ‖ · ‖F denotes the Frobenius matrix norm. The inequality also holds for the absolute

value of the determinant and p norms. And the equality holds if and only if τ 2 = 0 when

the difference is the same as the error matrix for response NNGP model. Thus, the latent

model tends to shrink the error from the Vecchia approximation, which explains the expected

superior performance of the latent NNGP model over the response NNGP model based on

KL-Ds.

3.3 Simulation

Our proposed models were implemented in Julia 1.2.0 [Bezanson et al., 2017]. All models

were run on a Linux environment (Ubuntu 18.04.2 LTS), with 32 Gbytes of random-access

memory and 1 Intel Core i7-7700K CPU @ 4.20GHz processor with 4 cores each and 2

threads per core - totaling 8 possible threads for use in parallel. Model diagnostics and other
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posterior summaries were implemented within the Julia statistical environment and R 3.6.1.

Each model was compared in terms of the posterior inference of parameters (posterior mean

and 95% confidence interval), root mean squared predict error (RMSPE= n−1
∑n

i=1((yj(si)−

ŷj(si))
2)

1
2 , j = 1, . . . , q ), mean squared error of intercept-centered latent processes (MSEL =

n−1
∑n

i=1((ωj(si)+β1j−ω̂j(si)−β̂1j)
2)

1
2 , j = 1, . . . , q), prediction interval coverage (CVG; the

percent of intervals containing the true value), interval coverage for intercept-centered latent

process of observed response (CVGL), mean continuous rank probability score (MCRPS

= n′−1∑n′

i=1 CRPSj(ui), j = 1, . . . , q, where CPRSj(ui) is the CRPS of j-th response on

held location ui see Gneiting and Raftery [2007]), and run time. To calculate CRPSj(ui),

we assumed the associated predictive distribution was well approximated by a Gaussian

distribution with mean centered at the predicted value ŷj(ui) and standard deviation equal

to the predictive standard error σ̂j(ui), CPRSj(ui) = σ̂j(ui)[1/
√
π−2ϕ(zij)−zij(2Φ(zij)−1)]

with zij = (yj(ui) − ŷj(ui))/σ̂j(ui), ϕ and Φ denoting the probability density function and

the cumulative distribution function of a standard Gaussian variable. All NNGP models in

this section specified at most m = 10 nearest neighbors.

We simulated y(s) using model (3.2.8) with q = 2, p = 2 over 1200 randomly gener-

ated locations inside a unit square. The design matrix X consisted of a column of 1’s

and a single predictor generated from a standard normal distribution. An exponential

covariance function with decay φ was used to model ρψ(·, ·) in (3.2.8), i.e., ρψ(s′, s′′) =

exp (−φ‖s′ − s′′‖), for s′, s′′ ∈ D , with ‖s′ − s′′‖ be the L2 norm of s′ − s′′ and ψ = φ. The

value of parameters are listed in table 3.1. We withheld 200 locations to assess predictive

performance for conjugate models and benchmark models. NNGP based BSLMC model was

also tested here for a comparison.

We assigned a flat prior for β, the prior of Σ was set to follow IW(Ψ, ν) with Ψ =

diag([1.0, 1.0]) and ν = 3. The candidate values for {φ, α} used in cross-validation algorithm

were a 25 by 25 grid over [2.12, 26.52] × [0.8, 0.99]. The posterior inference of conjugate

response and latent NNGP models were based on 500 samples. The run times for conju-

gate models include the time for choosing hyper-parameters through cross-validation and
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the time for the sampling process. We summarize posterior inference for regression coef-

ficients β = {βij}
p,q
i=1,j=1, covariance of measurement error (labeled as cov(ε) in summary

table), covariance across different latent processes (labeled as cov(ω) in summary table) and

hyperparameters {φ, α} in Table 3.1.

Table 3.1 lists the parameter estimates and performance metrics of the candidate models.

The posterior inference of regression slopes {β21,β22} are close among two models. The 95%

confidence intervals of the intercepts {β11,β12} all include the actual value.

The interpolated map of the recovered posterior mean of latent processes (figure 3.1)

capture the patterns of the underlying latent processes. The conjugate NNGP models all

yielded close RMSPEs and MCRPSs. The CVG and CVGL are close to 0.95, supporting

reliable inference from conjugate NNGP models. The two models finished within a minute.

The simulation example shows that fitting a conjugate model is a pragmatic method for

quick inference in multivariate spatial data analysis.

3.4 Vegetation Indices Data Analysis

We implement all proposed models on a real dataset to test their performances in a realistic

analysis scenario. Our dataset comprises Vegetation Indices data and landcover data [see

Ramon Solano et al., 2010, Sulla-Menashe and Friedl, 2018, for further details]. The Veg-

etation Indices data records the standard Normalized Difference Vegetation Index (NDVI)

and Enhanced Vegetation Index (EVI). These two indices are robust, empirical measures of

vegetation activity at the land surface, that are studied for an understanding of the global

distribution of vegetation types as well as their biophysical and structural properties and

spatial/temporal variations [Ramon Solano et al., 2010]. Provided along with the two vegeta-

tion indexes are red reflectance, near-infrared (NIR) reflectance, blue reflectance mid-infrared

(MIR) reflectance, view zenith angle, sun zenith angle and relative azimuth angle. All data

were mapped to Euclidean coordinates using the Sinusoidal (SIN) grid projection. We chose

zone h08v05 which covers 11,119,505 to 10,007,555 meters south of the prime meridian and
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Table 3.1: Simulation 1 study summary table: posterior mean (2.5%, 97.5%) percentiles

True Conj resp Conj latent

β11 1.0 1.391 (0.814, 1.902) 1.459 (0.865, 2.057)

β12 -1.0 0.813 (0.344, 1.286) 0.734(0.201, 1.276)

β21 -2.0 -1.978 (-2.114, -1.841) -1.979 (-2.121, -1.842)

β22 2.0 2.076 (1.952, 2.21) 2.082 (1.961, 2.208)

cov(ε)11 0.222 0.226 (0.205, 0.248) 0.231 (0.212, 0.252)

cov(ε)12 -0.111 -0.113(-0.129, -0.099) -0.115( -0.128, -0.103)

cov(ε)22 0.167 0.172 (0.158, 0.188) 0.175 (0.16, 0.189)

cov(ω)11 1.234 – 1.208 (1.148, 1.268)

cov(ω)12 -0.701 – -0.705( -0.75, -0.658)

cov(ω)22 1.077 – 1.077 (1.023, 1.131)

φ 6.0 8.220 7.204

α 0.9 0.863 0.871

RMSPEa – [0.727, 0.602, 0.668] [0.723, 0.6, 0.664]

MSEL – – [0.112, 0.112, 0.103]

CVGa – [0.935, 0.955, 0.945] [0.925, 0.95, 0.9375]

CVGLa – – [0.957, 0.945, 0.951]

MCRPSa – [-0.408, -0.336, -0.372] [-0.405, -0.334, -0.37]

time(s) – [12, 1]b [17, 1]b

a[response 1, response 2, all responses]
b[time for cross-validation, time for sampling]
c[time for MCMC sampling, time for recovering β and predictions]

3,335,852 to 4,447,802 meters north of the equator. The land region in zone h08v05 is the

western United States. We generated a dummy variable for no vegetation or urban area

through the 2016 landcover data, and took it along with the intercept as the explanatory

variables in the analysis. All other data were measured through MODIS satellite over a 16-

days period from 2016.04.06 to 2016.04.21. Some variables were rescaled and transformed
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(a) ω1 + β11 true (b) ω1 + β11 latent NNGP

(c) ω2 + β12 true (d) ω2 + β12 latent NNGP

Figure 3.1: Interpolated maps of (a) & (c) the true generated latent processes and the

posterior means of the spatial latent process ω from the (b) & (d) conjugate latent NNGP

model. The NNGP based models were all fit using m = 10 nearest neighbors.

in exploratory data analysis for the sake of better model fitting. The datasets were down-

loaded using the R package MODIS, and the code for exploratory data analysis is provided

on https://github.com/LuZhangstat/Conj_Multi_NNGP.
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There are 3,115,934 observed locations. We chose transformed NDVI (log(NDVI + 1) la-

beled as NDVI) and red reflectance (red refl) as responses. Bayesian linear models were

fitted for comparison. All NNGP based models specified at most m = 10 nearest neighbors.

We randomly held out 1% of observed locations and then held all responses over region

10,400,000 to 10,300,000 meters south of the prime meridian and 3,800,000 to 3,900,000

meters north of the equator to examine the predictive performance of models on randomly

missing locations and a missing region. There were in total 67,132 locations held for pre-

diction. Figure 3.2a illustrates the map of the transformed NDVI data. The white square

region within the Continent is the region held out for prediction.

Posterior inference from our conjugate models were based on 500 independent samples from

the posterior distribution. Recall that the samples are directly drawn from the conjugate

posterior distribution and, hence, there is no need to monitor convergence of these samples.

The priors for all parameters, except the decay, follow those in the simulation section. We

recursively shrink the domain and grid of candidate values {φ, α} through repeatedly using

cross-validation algorithms for fixing parameters. The recorded run time for running the

cross-validation algorithms, therefore, varied a lot across different models. The number of

threads used in the cross-validation algorithm for conjugate models and response NNGP

models with misalignment were equal to the number of folders. The remaining part of all

the code were run with single thread.

The results for the conjugate models are listed in Table 3.2. Consistent with the related

background, the regression coefficients of the index of no vegetation or urban area show

relatively low biomass (low NDVI) and high red reflectance over no vegetation or urban area.

The inference of the covariance of the noise and non-spatial covariance of the latent process

shows a negative association between the residuals and latent processes of transformed NDVI

and red reflectance, which satisfies the underlying relationship between two responses. The

maps of the latent processes recovered by conjugate latent NNGP shown in Figure 3.2 also

support this relationship.

Model performances were compared in terms of RMSPE, CVG, MCRPS and run time. The
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spatial models, unsurprisingly, greatly improved predictive accuracy. Conjugate Bayesian

spatial models effected 35% shrinkage over the (non-spatial) Bayesian linear model in the

magnitude of RMSPE. The performance in terms of the CVG is similar among all the models,

but all the spatial models provided more accurate predictions than the Bayesian linear models

based on MCRPS. Visual inspections of the predictive surfaces based on conjugate response

NNGP model are shown in Figure 3.2. Notably, the proposed methods smooth out the

predictions in the held-out region.

Posterior sampling for the conjugate response and latent models cost 1.8 and 18.88 minutes,

respectively, which is impressive given our sample sizes of around 3 million locations. The run

time for both the cross-validation algorithm and sampling for conjugate models is appealing

for such massive datasets.

Table 3.2: Real data analysis summary table 1: posterior mean (2.5%, 97.5%) percentiles

Bayesian linear model conj response conj latent

intercept1 0.25144 (0.25131, 0.25158) 0.1023(0.0822, 0.1223) 0.240729 (0.240723, 0.240736)

intercept2 0.13951 (0.13944, 0.13958) 0.2218(0.2094, 0.2338) 0.144277 (0.144273, 0.144281)

no vege or urban area1 -0.13375(-0.13425, -0.13329) -8.010e-3( -8.233e-3, -7.796e-3) -8.025e-3 (-8.050e-3, -8.001e-3)

no vege or urban area2 6.026e-2(6.002e-2, 6.052e-2) 4.381e-3 (4.261e-3, 4.514e-3) 4.390e-3 (4.376e-3, 4.402e-3)

cov(ε)11 1.599e-2 (1.596e-2, 1.602e-2) 3.493e-5 (3.487e-5, 3.499e-5) 3.125e-5 (3.120e-5, 3.130e-5)

cov(ε)12 -6.494e-3 (-6.505e-3, -6.483e-3) -1.214e-5 (-1.217e-5, -1.212e-5) -1.086e-5 (-1.089e-5, -1.085e-5)

cov(ε)22 3.656e-3 (3.651e-3, 3.662e-3) 1.090e-5(1.089e-5, 1.092e-5) 9.760e-6 (9.745e-6, 9.776e-6)

cov(ω)11 – 7.776e-2 (7.764e-2, 7.789e-2) 1.7192e-2 ( 1.7190e-2, 1.7193e-2)

cov(ω)12 – -2.703e-2 (-2.709e-2, -2.697e-2) -7.0307e-3( -7.0314e-3, -7.03e-3)

cov(ω)22 – 2.428e-2( 2.424e-2, 2.432e-2) 3.8897e-3 (3.8893e-3, 3.8901e-3)

φ – 17.919 (α = 0.999551) 20.1755 (α = 0.999551)

RMSPEa [0.09899 0.04932 0.07821] [0.05707 0.03187 0.04622] [0.0503 0.02572 0.03995]

MCRPSa [-0.05588 -0.02818 -0.04203] [-0.03301 -0.0188 -0.02591] [-0.0314 -0.01748 -0.02444]

CVGa [0.9664 0.9847 0.9755] [0.9756 0.9707 0.9732] [0.9764 0.9715 0.974]

time(mins)b – [1012.18, 1.8] [270.28, 18.88]

a[1st response transformed NDVI, 2nd response red reflectance, all responses]
b[time for cross-validation, time for generating 500 samples]
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Colored NDVI and red reflectance images (first and second row respectively) of

western United States (zone h08v05). Maps of raw data (a) & (e), raw data with predictions

fitted by NNGP based conjugate response model (b) & (f), raw data with predictions fitted

by NNGP based conjugate latent model (c) & (g) and the posterior mean of the intercep-

t-centered latent process recovered from NNGP based conjugate latent model (d) & (h).

3.5 Discussion

We have presented a conjugate Bayesian multivariate spatial regression model using Matrix-

Normal and Inverse-Wishart distributions in this Chapter. A specific contribution is to

embed the latent spatial process within an augmented Bayesian multivariate regression to

obtain posterior inference for the high-dimensional latent process with stochastic uncertainty

quantification. For scalability to massive spatial datasets—our examples here comprise loca-

tions in the millions—we adopt the increasingly popular Vecchia approximation and, more

specifically, the NNGP models that render savings in terms of storage and floating point op-

erations. We present elaborate simulation experiments to test the performance of different

models using datasets exhibiting different behaviors. Our conjugate modeling framework

fixes hyperparameters using a K-fold cross-validation approach. While our analysis is based
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upon fixing these hyperparameters, the subsequent inference obtained is seen to be effective

in capturing the features of the generating latent process (in our simulation experiments)

and is orders of magnitude faster than iterative alternatives at such massive scales as ours.

We also applied our models, and compared them, in our analysis of an NDVI dataset.

The scalability of our approach is guaranteed when univariate scalable model can exploit a

tractable precision or covariance matrix. Our approach can, thereofore, incorporate other

methods such as multiresolution approximation (MRA) and more general Vecchia-type of

approximations [see, e.g. Katzfuss and Guinness, 2017].

Future work can extend and adapt this framework to univariate and multivariate spa-

tiotemporal modeling. A modification is to use a dynamic nearest-neighbor Gaussian pro-

cess (DNNGP) [Datta et al., 2016b] instead of the NNGP in our models, which dynamically

learns about space-time neighbors rather than fixing them. We can also develop conjugate

Bayesian modeling frameworks for spatially-varying coefficient models, where the regres-

sion coefficients β are themselves random fields capturing the spatially-varying impact of

predictors on the vector of outcomes. While conceptually straighforward, their actual im-

plementation at massive scales will require substantial development.

Developments in scalable statistical models must be accompanied by explorations in high

performance computing. While the algorithms presented here are efficient in terms of storage

and flops, they have been implemented on modest hardware. Implementations exploiting

Graphical Processing Units (GPUs) and parallel CPUs can be further explored. For the

latent NNGP models, the algorithms relied upon sparse solvers such as conjugate gradients

and LSMR matrix algorithms. Adapting such libraries to GPUs and other high performance

computing hardware will need to be explored and tested further in the context of our spatial

Gaussian process models.
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Supplementary Material

All computer programs implementing the examples in this Chapter can be found in the public

domain and downloaded from https://github.com/LuZhangstat/Conj_Multi_NNGP.
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CHAPTER 4

Spatial Factor Modeling: A Bayesian Matrix-Normal

Approach for Misaligned data

4.1 Introduction

This Chapter develops and investigates a new class of hierarchical models for analyzing

multiple spatially oriented variables in high-dimensional settings. We address multivariate

spatial modeling in high-dimensional settings, where we have measured a potentially large

number of dependent variables over a massive number of locations. While statistical methods

for analyzing massive spatial and spatial-temporal databases have received much attention

[see, e.g., Sun et al., 2011, Banerjee, 2017, Heaton et al., 2019, and references therein for an

account of the expanding literature in this domain], the bulk of these methods have focused

on one or very few (two or three) spatially dependent variables. For even moderately large

number of dependent variables (e.g. in tens or hundreds), modeling the cross-covariance

matrix becomes challenging as it needs to capture the associations among all of the dependent

variables over each pair of locations. Even for stationary cross-covariance functions, where

we assume that the associations among the variables do not change over space and the spatial

association for each variable depends only on the translation vector connecting two locations,

matters become computationally challenging.

In this Chapter we devise scalable modeling strategies for multivariate spatial models.

The modeling approach we develop in this Chapter enriches the popular linear models of

coregionalization [Bourgault and Marcotte, 1991, Wackernagel, 2003, Gelfand et al., 2004,

Chiles and Delfiner, 2009, Genton and Kleiber, 2015] using a Matrix-Normal prior to model
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the linear transformation on latent spatial processes. A key contribution here is that we

provide a fully model-based enhancements for misaligned data, where not all responses are

recorded over the same set of locations. We further expand this contribution by using the

Matrix-Normal family to model the loading matrix in spatial factor models. In the latter

context, our current contribution can be seen as enhancements to earlier contributions by

Lopes et al. [2008], Ren and Banerjee [2013] and Taylor-Rodriguez et al. [2019]. Lopes et al.

[2008] extend earlier work by Lopes et al. [2008] to formulate spatial dynamic factor models

for large number of outcomes, but they did not explore dimension reduction in the number

of locations. Ren and Banerjee [2013] proposed low-rank specifications for spatially-varying

factors to achieve dimension reduction in number of locations and number of variables, but it

has since been demonstrated that such low-rank specifications will likely over-smooth when

estimating the latent process from massive data sets containing millions of locations. More

recently, Taylor-Rodriguez et al. [2019] consider Nearest-Neighbor Gaussian process [Datta

et al., 2016a] for spatial factors with the usual constrained loading matrices in non-spatial

factor models, which are less general than are strictly required for spatially correlated factors

[see, e.g. Ren and Banerjee, 2013].

This Chapter develops as follows. In the next section, we collect some important definitions

and results in multivariate geostatistical modeling. We propose our models in Section 4.2. A

detailed algorithms for implementing models in Section 4.2 with Nearest Neighbor Gaussian

Process (NNGP) [Datta et al., 2016a] are given in Section 4.2.3. In Section 4.3, we state

some theoretical results about posterior consistency for the proposed models. Simulation

studies for exploring the performance of proposed models are summarized in Section 4.4. An

analysis illustrating our methods is presented in Section 4.5.

4.2 Multivariate spatial processes

Let z(s) = (z1(s), . . . , zq(s))> be a q× 1 stochastic process, where each zi(s) is a real-valued

random variable at location s ∈ D ⊆ <d. The process is specified by its mean E[zi(s)] = µi(s)
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and, customarily, second-order stationary covariances Cij(h) = Cov{zi(s), zj(s + h)} for

i, j = 1, 2, . . . , q. These covariances define the matrix-valued q × q cross-covariance function

C(h) = {Cij(h)} with (i, j)-th entry Cij(h).

While there is no loss of generality in assuming the process mean to be zero by absorbing

the mean into a separate regression component in the model, as we will do here, modeling the

cross-covariance function requires care. From its definition, C(h) need not be symmetric,

but must satisfy C(h)> = C(−h). Also, since var{
∑n

i a>i z(si)} ≥ 0 for any set of finite

locations s1, s2, . . . , sn ∈ D and any set of constant vectors a1, a2, . . . , an ∈ <q, we have∑n
i,j=1 a>i C(si − sj)ai ≥ 0. An excellent review of cross-covariance functions, including

several theoretical characterizations, can be found in Genton and Kleiber [2015] and other

references on multivariate spatial statistics provided in Section 4.1.

While theoretical characterizations rely upon spectral theory and are useful in under-

standing the local behavior of random fields, perhaps the most widely used approach for

constructing multivariate random fields is the linear model of coregionalization (LMC). The

underlying idea is that invertible linear maps of independent spatial processes will yield valid

spatial processes. If f(s) = (f1(s), f2(s), . . . , fK(s))> is a K × 1 vector of spatial processes,

independent of each other so that cov{fi(s), fj(s
′)} = 0 for all i 6= j and any two locations

s and s′ (same or distinct), then the any new process z(s) = Λ>f(s), where Λ is K × q will

have q × q cross-covariance matrix Cz(h) = Λ>Cf (h)Λ. This cross-covariance will yield

non-degenerate process-realizations whenever K = q and Λ is nonsingular. The key ques-

tion, then, becomes how to model Λ, whose rows determine the subspace where the set of

independent factors is mapped.

We follow the developments in Bourgault and Marcotte [1991], which we call the sim-

plified LMC (or SLMC). The multivariate random field z(s) is a linear combination of K

independent univariate random fields

z(s) =
K∑
k=1

λkfk(s) = Λ>f(s) , (4.2.1)

where λk is the k-th row of Λ and each fk(s) is an independent Gaussian process with co-
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variance function ρψk(·, ·). The corresponding cross-covariance function for z(s) is C(s, s′) =∑K
k=1 ρψk(s, s

′)λkλ
>
k . We call model (4.2.1) a simplified linear model of coregionalization

(SLMC). Other versions include Schmidt and Gelfand [2003], who model the multivariate

spatial process through a hierarchical spatial conditional modeling approach, whereupon Λ>

in (4.2.1) is a q × q lower triangular matrix. The SLMC (4.2.1) connects univariate spatial

models to multivariate spatial models using linear transformations of univariate processes.

The flexibility offered in modeling the linear transformation is appealing and, in particular,

can be used to accrue computational benefits in high-dimensional settings. Other approaches

for building cross-covariance functions such as convolutions, latent dimensions, Matérn cross-

covariances and other methods reviewed in Genton and Kleiber [2015] do not always provide

the flexibility and scalability we seek. Hence, in the remainder of this Chapter we focus on

the SLMC model and some its special cases.

4.2.1 A Bayesian SLMC factor model

Let y(s) = (y1(s), . . . , yq(s))> ∈ Rq denote the q×1 vector of dependent outcomes in location

s ∈ D ⊂ Rd, x(s) = (x1(s), . . . , xp(s))> ∈ Rp be the corresponding explanatory variables,

and β be a p × q regression coefficient matrix that are related as below in a multivariate

spatial model

y(s) = β>x(s) + Λ>f(s) + ε(s) , s ∈ D , (4.2.2)

where the latent process Λ>f(s) is an SLMC as described above. Elements in f(s) are as

described in (4.2.1), while the noise process ε(s)
iid∼ N(0,Σ) with covariance matrix Σ. We

model {β,Λ,Σ} using a Matrix-Normal-Inverse-Wishart family. To be precise,

β |Σ ∼ MN(µβ,Vβ,Σ) ; Λ |Σ ∼ MN(µΛ,VΛ,Σ) ; Σ ∼ IW(Ψ, ν) , (4.2.3)

where µΛ a q × K matrix and VΛ a K × K positive definite matrix. A random matrix

Zn×p ∼ MNn,p(M,U,V) has the probability density function

p(Z |M,U,V) =
exp

(
−1

2
tr
[
V−1(Z−M)TU−1(Z−M)

])
(2π)np/2|V|n/2|U|p/2

, (4.2.4)

61



where tr denotes trace, M is the mean matrix, U is the first scale matrix with dimen-

sion n × n and V is the second scale matrix with dimension p × p. This distribution

is equivalent to vec(Z) ∼ Nnp(vec(M),V ⊗ U) , where ⊗ is the Kronecker product and

vec(Z) =
[
z>1 , . . . , z

>
p

]>
is the vectorization of the n× p random matrix Z = [z1, . . . , zp].

The assigned priors in (4.2.3) yield conditional posterior distributions in a closed form

for all the parameters, except {ψk}Kk=1. This supports a block update MCMC algorithm for

posterior sampling. Assume S = {s1, . . . , sn} is the set of locations with at least one observed

response, {Si} is the observed location set for i-th response, ∪qi=1Si = S. Mi = S \ Si is

the set of locations where at least one response, but not the ith response, is observed,

∪qi=1Mi =M. Without misalignment, the observation model can be cast as

Yn×q = Xn×pβp×q + Fn×KΛK×q + εn×q , (4.2.5)

where Y = y(S) = [y(s1) : · · · : y(sn)]> is the n × q response matrix, X = x(S) = [x(s1) :

· · · : x(sn)]> is the corresponding design matrix with full rank (n > p), and F is the n×K

matrix with j-th column being the n× 1 vector comprising fj(si)’s for i = 1, 2, . . . , n.

We derive the posterior distribution of F and the unobserved response {yi(Mi)}qi=1 condi-

tional on {β,Λ,Σ, {ψk}Kk=1}. Let P be the nq×nq permutation matrix such that Pvec(Y) =

{y(si)osi}ni=1, where we use the suffix os to denote the index of the observed responses for

s ∈ S. Therefore, P reorders the observed responses from vec(Y) in locations {s1, . . . , sn}.

Then, the joint distribution of vec(F) and {y(si)osi}ni=1, given {β,Λ,Σ, {ψk}Kk=1}, can be

represented through the augmented linear system, {(y(si)− x(si)
>β)osi}ni=1

0

 =

 P(Λ> ⊗ In)

IK ⊗ In

 vec(F) +

 ε1

ε2

 , (4.2.6)

where ε1 ∼ N(0, ⊕ni=1{Σosi}), ε2 ∼ N(0, ⊕Kk=1{ρψk(S,S)}), ρψk(S,S) is the n × n spatial

correlation matrix corresponding to fk = (fk(s1), fk(s2), . . . , fk(sn))>, and ⊕ni=1 represents

the block diagonal operator stacking matrices along the diagonal. Letting D
− 1

2
Σo

= ⊕ni=1{Σ
− 1

2
osi }
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and VF = ⊕Kk=1{Vk}, where ρ−1
ψk

(S,S) = V>k Vk, we obtain D
− 1

2
Σo
{(y(si)− x(si)

>β)osi}ni=1

0


︸ ︷︷ ︸

Ỹ

=

 D
− 1

2
Σo

PΛ> ⊗ In

VF


︸ ︷︷ ︸

X̃

vec(F) +

 η1

η2


︸ ︷︷ ︸

η̃

. (4.2.7)

The elements of η̃ are independent error terms, each with unit variance. The full con-

ditional distribution vec(F) | {y(si)osi}ni=1,β,Λ,Σ, {ψk}Kk=1 for the SLMC model in (4.2.2)

then follows

vec(F) | {y(si)osi}ni=1,β,Λ,Σ, {ψk}Kk=1 ∼ N((X̃>X̃)−1X̃>Ỹ, (X̃>X̃)−1). (4.2.8)

Turning to the unobserved variables, let ms be the suffix for s ∈M. Then, the conditional

distribution of y(s)ms given the parameters {F, {y(si)osi}ni=1,β,Λ,Σ} is

N([µs]ms + Σ[ms,os]Σ
−1
[os,os](y(s)os − [µs]os),Σ[ms,ms] −Σ[ms,os]Σ

−1
[os,os]Σ[os,ms]) , (4.2.9)

where µs = β>x(s) + Λf(s), Σ[ms,os] is a sub-matrix of Σ extracted with row index ms

and column index os, and Σ−1
[os,os] is the inverse of matrix Σ[os,os]. With the priors given in

(4.2.3), we let VΛ = LΛL>Λ and define γ = [β>,Λ>]>. The conditional posterior distribution

γ |Σ,F,Y can be found through the augmented linear system,
Y

L−1
β µβ

L−1
Λ µΛ


︸ ︷︷ ︸

Y∗

=


X F

L−1
β 0

0 L−1
Λ


︸ ︷︷ ︸

X∗

 β
Λ


︸ ︷︷ ︸

γ

+


η1

η2

η3


︸ ︷︷ ︸

η∗

,
(4.2.10)

where η∗ ∼ MN(0(n+p+K)×q, In+p+K ,Σ). Using standard distribution theory, we can show

that γ,Σ |F,Y follows MNIW(µ∗,V∗,Ψ∗, ν∗), where

V∗ = [X∗>X∗]−1 , µ∗ = V∗[X∗>Y∗] ,

Ψ∗ = Ψ + (Y∗ −X∗µ∗)>(Y∗ −X∗µ∗) , ν∗ = ν .
(4.2.11)

In particular, if Σ = ⊕qi=1{σ2
i }, then we specify σ2

i ∼ IG(ai, bi) for i = 1, . . . q where a1 =

a2 = . . . = aq = a. We can show that the marginal posterior distribution of σ2
i given Y,F
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follows IG(a∗, b∗i ) with

a∗ = a+
n

2
, b∗i = bi +

1

2
(Y∗ −X∗µ∗)>i (Y∗ −X∗µ∗)i , i = 1, . . . , q. (4.2.12)

Here (Y∗ −X∗µ∗)i is the i-th column of Y∗ −X∗µ∗. Through the linear system (4.2.10),

the conditional distribution γ |Σ,F,Y follows MN(µ∗,V∗,Σ).

The full conditional distributions for {ψk}Kk=1 are not available in closed form. However,

since {ψk}Kk=1 and Y are conditionally independent given {F,γ,Σ}, and fk are independent

for k = 1, 2, . . . , K, we obtain p(ψk |F,Y,γ,Σ, {ψj}j 6=k) up to a proportionality constant as

p(Y |F,γ,Σ)× p(γ,Σ)×
K∏
k=1

p(fk |ψk)× p(ψk) ∝ p(fk |ψk)× p(ψk) , (4.2.13)

for each k = 1, . . . , K, where p(ψk) is the prior for ψk. Often, the right hand side of (4.2.13)

is much easier to calculate than a direct formulation of the posterior distribution of ψk,

especially when fk’s are modeled using scalable spatial models.

Next, consider the posterior predictive distribution on a new set of locations U = {u1, . . . ,un′}.

Through the definition of SLMC (4.2.2), the prediction YU on U is conditionally independent

to {y(si)osi}ni=1 given {β,Λ,Σ} and f(s) over U . We denote fk(U) as the realization of the

kth element in f(s) on U , then

fk(U) | fk(S), ψk ∼ N(ρψk(U ,S)ρ−1
ψk

(S,S)fk(S), ρψk(U ,S)ρ−1
ψk

(S,S)ρψk(S,U)) . (4.2.14)

Since FU = [f1(U) : · · · : fk(U)]> is conditionally independent to {y(si)osi}ni=1 given F and

{ψk}Kk=1, we have p(YU ,FU | {y(si)oi}ni=1) ∝

p(YU |FU ,β,Λ,Σ)× p(FU |F, {ψk}Kk=1)× p(β,Λ,Σ,F, {ψk}Kk=1 | {y(si)osi}ni=1) . (4.2.15)

There is no closed form of the posterior predictive distribution, but we can use Monte Carlo

methods and equation (4.2.15) and (4.2.14) to obtain the posterior predictive samples over

new locations after obtaining posterior samples of β,Λ,Σ,F, {ψk}Kk=1.
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4.2.2 The block update MCMC algorithm

We formulate an efficient MCMC algorithm for obtaining full Bayesian inference as follows.

From l th iteration with {β(l),Λ(l),Σ(l), {ψ(l)
k }Kk=1}, we first generate F(l+1) from its full

conditional distribution (4.2.8). Next, we impute the missing response {y(si)
(l+1)
mi }si∈M on

M through (4.2.9) and then update {β(l+1),Λ(l+1),Σ(l+1)} using (4.2.11). We complete the

iteration by drawing {ψ(l+1)
k }Kk=1 using a Metropolis-Hasting (M-H) random walk step using

(4.2.13). Repeating these iterations will eventually, after a suitably diagnosed burn-in period,

will generate samples from the desired joint posterior distribution.

For each iteration after burn-in, we sample FU from (4.2.14), given the posterior samples

of F and {ψk}Kk=1, then generate posterior predictions of YU given posterior samples of

{β,Λ,Σ,FU}. Applying the SCAM algorithm introduced in Haario et al. [2005], one can

avoid tuning parameters in M-H algorithm by warming up each MCMC chain of {ψk}Kk=1 with

an adaptive proposal distribution. In our implementation, we use the proposal distribution

defined by equation (2.1) in Roberts and Rosenthal [2009] with an empirical estimate of the

covariance of the target distribution based on half of the chain’s history. We ran the adaptive

algorithm for the first quarter of the MCMC chains and then fixed the proposal distribution

for the rest of the MCMC chains in the simulation studies and Vegetation Indices data

analysis in Section 4.4 & 4.5.

The parameters Λ and F are not jointly identified, but we can transform back to ω = FΛ

and obtain inference for the latent process. This parametrization has the advantage of

conditional conjugacy, which brings more efficient computation in posterior sampling. Since

all elements in F are sampled simultaneously from a Gaussian distribution, the sample of

F can be generated through a linear transformation of n × K independent parameters as

shown in (4.2.7). The sampling of {β,Λ} follows the same trick. Hence, we can dramatically

improve the convergence of the Markov chain by reducing the posterior dependence among

the parameter in this Gibbs with M-H algorithm [Gelman et al., 2013]. Since F is sensitive

to the value of the intercept, we recommend using an intercept-centered latent process to

65



obtain inference for the latent spatial pattern and the non-spatial covariance of the latent

process. The initial value of Λ should never be a zero matrix. Otherwise, F may get an

extreme initial value, slowing down the convergence of the MCMC chains.

4.2.3 Scalable Modeling for Block-update MCMC

Analogous to the conjugate multivariate latent model, we use a conjugate gradient method

to facilitate the sampling of F when there exists a sparse precision matrix ρ−1
ψk

(S,S) for

k = 1, . . . , K. The idea of accelerating MCMC sampling through a conjugate gradient

method has an excellent implementation in Nishimura and Suchard [2018]. We develop a

Bayesian framework to implement this sampling scheme in massive multivariate spatial data

modeling. Here, we illustrate a detailed algorithm for a BSLMC model, where each element

of the factor process f(s) is modeled as a Nearest-Neighbor Gaussian Process (NNGP).

Let each fk(s), s ∈ D be an NNGP(0, ρψk(·, ·)), which implies that fk ∼ N(0, ρ̃k) for each

k = 1, 2, . . . , K, where ρ̃k = (I − Aρk)
−1Dρk(I − Aρk)

−>, Aρk is a sparse-lower triangular

matrix with no more than a specified small number, m, of nonzero entries and Dρk is a

diagonal matrix. The diagonal entries of Dρk and the nonzero entries of Aρk are obtained

from the conditional variance and conditional expectations for a Gaussian process with

covariance function ρψk(s, s
′). To be precise, we consider a fixed order of locations in S and

define Nm(si) to be the set comprising at most m neighbors of si among locations sj ∈ S such

that j < i. The (i, j)-th entry of Aρk is 0 whenever sj /∈ Nm(si). If j1 < j2 < · · · < jm are the

m column indices for the nonzero entries in the i-th row of Aρk , then the (i, jk)-th element of

Aρk is the k-th element of the 1×m vector a>i = ρψk(si, Nm(si))ρψ(Nm(si), Nm(si))
−1. The

(i, i)-th diagonal element of Dρk is given by ρψk(si, si)− a>i ρψk(Nm(si), si). Repeating these

calculations for each row completes the construction of Aρk and Dρk and yields a sparse ρ̃−1
k .

This construction can be performed in parallel and requires storage or computation of at

most m×m matrices, where m << n, costing O(n) flops and storage.

For posterior predictions, we use Nm(ui) to denote the m neighbors of ui ∈ U among S.
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The posterior prediction for fk(U) given in (4.2.14) follows

fk(U) | fk(S), ψk ∼ N(Ãfk(S), D̃) , (4.2.16)

where the (i, j)-th entry of Ã is 0 when sj /∈ Nm(ui), and, similar to Aρk , the m nonzero

entries in the i-th row of Ã corresponds to the elements of the 1×m vector

ã>i = ρψk(ui, Nm(ui))ρψk(Nm(ui), Nm(ui))
−1. The (i, i)-th diagonal element of D̃ equals

ρψk(ui,ui) − ã>i ρψk(Nm(ui),ui). And the posterior sample of YU after giving posterior

sample of β,Λ,Σ and FU can be sampled through

MN(XUβ + FUΛ, In′ ,Σ) (4.2.17)

A detailed algorithm is presented below.

Algorithm 4.1: Obtaining posterior inference of {γ,Σ,ω} and predictions on a new set U for NNGP based BSLMC model

1. Precalculation and preallocation for the MCMC algorithm

(a) Find location sets S, M and the index of the observed and missing response {osi}ni=1 and {msi}ni=1.

(b) Build the nearest neighbor for S

(c) Calculate Cholesky decompositions VΛ = LΛL>Λ and Vβ = LβL>β

(d) Preallocate MCMC samples and initalize MCMC chain with β(0), Λ(0), Σ(0) and {ψ(0)
k }

K
k=1

2. Block update MCMC alogrithm. For l = 1 : L

(a) Update F(l) and impute missing response {y(si)
(l)
mi}si∈M

• Construct X̃ and Ỹ in (4.2.7)

– Build the matrix D
1
2
Σo

= diag({Σ−
1
2

osi }ni=1}) in (4.2.7) O(n)

– Construct {Aρk}Kk=1 and {Dρk}Kk=1 as described, for example, in Finley et al. [2019] O(Knm3)

– Construct X̃ and Ỹ in (4.2.7) with Vk = D
− 1

2
ρk (I−Aρk ) O(nK(m+ 1 + q) + npq)

• Use LSMR to generate sample of F(l)

– Sample u ∼ N(0, IKn) O(nK)

– Solve vec(F)(l) from X̃vec(F)(l) = Ỹ + u by LSMR

• Impute missing response {y(si)
(l)
msi}si∈M over M through (4.2.9)

– Calculate µs = β(l)>x(s) + Λ(l−1)f(s) for s ∈M

– Sample y(s)
(l)
ms by (4.2.9) for s ∈M

(b) Use MNIW to update {β(l),Λ(l),Σ(l)}

• Construct X∗ and Y∗ in (4.2.10)

• Generate Σ(l)
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– (When Σ is a positive symmetric matrix)

∗ Calculate µ∗, V∗−1, Ψ∗ and ν∗ by (4.2.11) O(n(p+K)(p+K + q))

∗ Sample Σ(l) from IW(Ψ, ν∗)

– (When Σ is diagonal)

∗ Calculate µ∗ by (4.2.11) O(n(p+K)(p+K + q))

∗ Sample elements of Σ(l) from Inverse-Gamma with parameters provided in (4.2.12)

• Sample γ(l) = [β(l)>,Λ(l)> ]> from MN(µ∗,V∗,Σ(l))

i. Sample u ∼ MN(0, Ip+K , Iq)

ii. Calculate Cholesky decomposition V∗−1 = LVL>V and Σ(l) = LΣ(l)L>
Σ(l)

iii. Generate γ(l) = µ∗ + L−>V uL>
Σ(l)

(c) (Optional) Use Metropolis-Hasting to update {Ψ(l)
k }

K
k=1

i. Propose new {Ψ∗k}
K
k=1 based on {Ψ(l−1)

k }Kk=1

ii. Calculate the likelihood of the new proposed {Ψ∗k}
K
k=1 and {Ψ(l−1)

k }Kk=1 given F(l) using (4.2.13) O(Knm3)

iii. Accept the new {Ψ∗k}
K
k=1 as {Ψ(l)

k }
K
k=1 with the probability of the ratio of the likelihood of {Ψ∗k}

K
k=1 and

{Ψ(l−1)
k }Kk=1. Let {Ψ(l)

k }
K
k=1 = {Ψ(l−1)

k }Kk=1 when the new proposal is rejected.

3. Generate posterior samples of {F(l)
U ,Y

(l)
U } on a new set U

(a) Construct Ã and D̃ in (4.2.16) O(n′m3K)

(b) Generate fk(U)(l) ∼ N(Ãfk(S), D̃) for k = 1, . . . ,K O(n′Km)

(c) Sample Y
(l)
U |ω

(l)
U ,γ

(l),Σ(l),F
(l)
U ∼ MN(XUβ + FUΛ, In′ ,Σ(l))

• Sample u ∼ MN(0, In′ , Iq) O(n′q)

• Generate Y
(l)
U = XUβ + FUΛ + uLΣ>

(l)
with F

(l)
U = [f1(U)(l) : · · · : fK(U)(l)] O(n′(pq +Kq + q2)

We conclude this section with a remark on the BSLMC model with diagonal Σ. This

specification is desirable for data sets with a massive number of responses q. Compared

to BSLMC, BSLMC with diagonal Σ can avoid the quadratic growth of the number of

parameters in Σ as q increases. When K < q, it becomes a factor model that can fit the

latent process with a low-rank structure. We provide an example in next section to illustrate

an NNGP based factor BSLMC with diagonal Σ.

4.3 On posterior consistency

We present some theoretical results on the Matrix-Normal models constructed in the previous

section. Specifically, we investigate the behavior of the posterior distribution as the sample
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size increases. Here, for establishing the results, we will assume conjugate MNIW models

with no misalignment.

First consider modeling y(s) as a spatial process without explicitly introducing a latent

process. Let

y(s) ∼ GP(β>x(s),C(·, ·)) , C(s, s′) = [ρψ(s, s′) + (α−1 − 1)δs=s′ ]Σ , (4.3.1)

where ρψ(·, ·) is a spatial correlation function defined through hyperparameter ψ, δ denotes

Dirac’s delta function, and α−1Σ is the non-spatial covariance matrix of y(s). The scalar α is

assumed fixed represents the proportion of total variability allocated to the spatial process.

This implies that Y |β,Σ ∼ MNn,q(Xβ,K,Σ), where K = ρψ(S,S) + (α−1 − 1)In. We

model {β,Σ} using the conjugate MNIW prior

β |Σ ∼ MNp,q(µβ,Vr,Σ) , Σ ∼ IW(Ψ, ν) , (4.3.2)

with prefixed {µβ,Vr,Ψ, ν}. Closely following the developments in Gamerman and Moreira

[2004], we obtain the posterior distribution of {β,Σ} as MNIW(µ∗,V∗,Ψ∗, ν∗), where

V∗ = (X>K−1X + V−1
r )−1 , µ∗ = V∗(X>K−1Y + V−1

r µβ) ,

Ψ∗ = Ψ + Y>K−1Y + µ>βV−1
r µβ − µ∗>V∗−1µ∗ , and ν∗ = ν + n .

(4.3.3)

Consider the spatial regression model

y(s) = β>x(s) + ω(s) + ε(s) , s ∈ D (4.3.4)

where ω(s) ∼ GP(0q×1, ρψ(·, ·)Σ) is a latent process and ε(s) ∼ N(0q×1, (α
−1− 1)Σ) is mea-

surement error. Define ω = ω(S) = [ω(s1) : · · · : ω(sn)]>. For theoretical tractability, we

restrict posterior inference on {β,ω,Σ}, assuming that the scalar α is fixed. Assuming that

the joint distribution of β and Σ are given in (4.2.3) and that ω |Σ ∼ MNn×q(0,ρψ(S,S),Σ),
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the posterior distribution of γ> = [β>,ω>] is p(γ,Σ |Y) = MNIW(µ∗γ ,V
∗,Ψ∗, ν∗), where

V∗ =

 α
1−αX>X + V−1

r
α

1−αX>

α
1−αX ρ−1

ψ (S,S) + α
1−αIn

−1

,

µ∗γ = V∗

 α
1−αX>Y + V−1

r µβ
α

1−αY

 ,
Ψ∗ = Ψ +

α

1− α
Y>Y + µ>βV−1

r µβ − µ∗>γ V∗−1µ∗γ , and

ν∗ = ν + n ,

(4.3.5)

Let Vρ be a non-singular square matrix such that ρ−1
ψ (S,S) = V>ρVρ. Treat the prior of γ

as additional observations and recast p(Y,γ |Σ) = p(Y |γ,Σ)×p(γ |Σ) into an augmented

linear model 
√

α
1−αY

L−1
r µβ

0


︸ ︷︷ ︸

Y∗

=


√

α
1−αX

√
α

1−αIn

L−1
r 0

0 Vρ


︸ ︷︷ ︸

X∗

 β
ω


︸ ︷︷ ︸

γ

+


η1

η2

η3


︸ ︷︷ ︸

η

, (4.3.6)

where Lr is the Cholesky decomposition of Vr, and η ∼ MN(0, I2n+p,Σ). When having a

flat prior for β, L−1
r degenerates to a zero matrix, showing no information from β’s prior

contributes to the linear system. The expression in (4.3.5) can be simplified as

V∗ = (X∗>X∗)−1 , µ∗ = (X∗>X∗)−1X∗>Y∗ ,

Ψ∗ = Ψ + (Y∗ −X∗µ∗)>(Y∗ −X∗µ∗) , ν∗ = ν + n .
(4.3.7)

We explore the behavior of the above posterior density as the number of observations

becomes large under a true data generating distribution. Assume that the true distribution

of the dependent variables is included in the parametric family f(Y) = p(Y |β0,Σ0) for

some Σ0 and β0. For distinguishing the variables based on the number of observations, we

make the dependence upon n explicit. Denote X(n)n×p = [x(s1) : · · · : x(sn)]>, Y(n)n×q =

[y(s1) : · · · : y(sn)]>, S(n) = {s1, . . . , sn}, K(n) = C(S(n),S(n)) + (α−1 − 1)In. X∗(n) and

Y∗(n) are X∗ and Y∗ in (4.3.6) using X(n) and Y(n) instead of X and Y.
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We will establish the posterior consistency of {β,Σ} for the model in (4.3.1) and for

{γ,Σ} for (4.3.4). In the following results, we denote P(n) = X(n)>K(n)−1X(n), A ≥ B to

mean that A−B is a positive semi-definite matrix, and Aij to be the (i, j)-th element of A.

Since the marginal distribution of Σ |Y and β |Σ,Y are essentially the same for conjugate

response model and conjugate latent model, proof of one model can be adapted for the other.

Lemma 4.3.1. The matrix Σ in the conjugate multivariate models is posterior consistent if

and only if Ψ∗(n)ij/n→ {Σ0}ij a.s. for 1 ≤ i, j ≤ q with Ψ∗(n) defined by (4.3.3) & (4.3.5)

Proof. Conjugate multivariate response model yields Σ |Y(n) ∼ IW(Ψ∗(n), ν∗(n)) with

Mij = E(Σij |Y(n)) =
Ψ∗(n)ij
c− 1

, Var(Σij |Y(n)) =
(c+ 1)Ψ∗(n)2

ij + (c− 1)Ψ∗(n)iiΨ
∗(n)jj

c(c− 1)2(c− 3)
,

where c = ν∗(n)− p, Ψ∗(n) and ν∗(n) are defined in (4.3.3).

(1)Necessity: If Σ is posterior consistent, i.e., for any ε > 0

limn→∞Pr(|Σij −Σ0ij| > ε |Y(n)) = 0 for 1 ≤ i, j ≤ q .

Then limn→∞E(Σij − Σ0ij |Y(n)) ≤ limn→∞E(|Σij − Σ0ij| |Y(n)) < ε for any ε > 0, i.e,

limn→∞E(Σij |Y(n)) = Σ0ij a.s. Therefore we have Ψ∗(n)ij/n→ Σ0ij a.s. for 1 ≤ i, j ≤ q.

(2)Sufficiency: When Ψ∗(n)ij/n→ Σ0ij a.s. for 1 ≤ i, j ≤ q, by the posterior distribution

of Σ we have limn→∞E(Σij |Y(n)) = Σ0ij and the variance of each element converges to 0

at the rate of 1/n. Use triangle inequality and Chebyshev’s inequality, we have for any ε > 0

Pr(|Σij −Σ0ij| > ε |Y(n)) ≤ Pr(|Σij −Mij| > ε/2 |Y(n)) + Pr(|Mij −Σ0ij| > ε/2 |Y(n))

≤ 4Var(Σij |Y(n))/ε2 + Pr(|Mij −Σ0ij| > ε/2 |Y(n))→ 0 a.s.

Since lemma 4.3.1 holds for conjugate multivariate response model, it also holds for conjugate

multivariate latent model with Ψ∗(n) defined by (4.3.5).

Theorem 4.3.2. The matrix Σ in conjugate multivariate models is posterior consistent.
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Proof. Consider the augmented linear model (4.3.6) built upon conjugate multivariate latent

model. Let u(n) = Y∗(n)−X∗(n)γ, u(n) |Σ0 ∼ MN(2n+p)×q(0, I2n+p,Σ0) = [u1, . . . ,u2n+p]
>,

Ψ∗(n)/n = Ψ/n+
1

n
u(n)>u(n)− 1

n
u(n)>X∗(n)(X∗(n)>X∗(n))−1X∗(n)>u(n) (4.3.8)

Since X∗(n)(X∗(n)>X∗(n))−1X∗(n)> is idempotent with rank p + n, there exist an or-

thogonal matrix Q(n) such that X∗(n)(X∗(n)>X∗(n))−1X∗(n)> = Q(n)>

Ip+n 0

0 0

Q(n).

Let v(n) = Q(n)u = [v1, . . . ,v2n+p]
>, then v(n) ∼ MN(2n+p)×q(0, I2n+p,Σ0) then by

Khimchine-Kolmogorov strong law of large number, we have limn→∞
2

2n
{u(n)>u(n)}ij =

2Σ0ij a.s. for 1 ≤ i, j,≤ q and

limn→∞
1

n
{u(n)>X∗(n)(X∗(n)>X∗(n))−1X∗(n)>u(n)}ij = limn→∞

1

n

p∑
l=1

{v>l vl}ij = Σ0ij a.s.

where {A}ij is the (i, j)-th element of matrix A. Hence, limn→∞Ψ∗(n)ij/n = Σ0ij a.s. By

lemma 4.3.1, we prove the posterior consistency of Σ

Theorem 4.3.3. β is posterior consistent for both conjugate models if and only if

limn→∞λmin(P(n)) =∞, where λmin(P(n)) is the smallest eigenvalue of matrix P(n).

Proof. Through the augmented linear system (4.3.6) we can see that the marginal posterior

mean of β based on β |Σ,Y(n) is an unbiased estimator of β0. When β is posterior consis-

tent, i.e. limn→∞ Pr(|βij − β0ij| > ε |Y(n)) = 0 for any ε > 0 for 1 ≤ i ≤ p, 1 ≤ j ≤ q then

limn→∞Var(βij |Y(n)) = 0 a.s. Moreover, we can show that limn→∞Var(βij |Y(n)) = 0 a.s.

is a sufficient condition for the posterior consistency of β through Chebyshev’s inequality.

Consider the posterior marginal distribution of β of conjugate multivariate response model,

which follows a matrix-t distribution β |Y(n) ∼ Tp,q(ν
∗(n) − q + 1,µ∗(n),V∗(n),Ψ∗(n))

with parameters given in (4.3.3). As proved in Theorem 4.3.2, limn→∞Ψ∗(n)ij/n = Σ0ij

a.s. for 1 ≤ i, j,≤ q, therefore we have limn→∞Var(βij |Y(n)) = 0 a.s. if and only if

limn→∞{V∗(n)}ii = 0 for all i = 1, . . . , q, Then follows Eicker [1963]’s proof of Theorem 1,

the sufficient and necessary condition is limn→∞ λmin(V∗−1(n)) =∞. Since

λmin(P(n)) + λmax(Vr
−1) ≥ λmin(V∗−1(n)) = λmin(P(n) + Vr

−1) ≥ λmin(P(n)) , (4.3.9)
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the condition can be simplified into limn→∞ λmin(P(n)) =∞.

Remark 4.3.4. λmin(P(n)) is non-decreasing, and when β is posterior consistent, limn→∞P(n)ii =

∞ since P(n)ii ≥ λmin(P(n))

Proof. Let X(n+ 1) = [X(n)>, x>n+1]>, K(n+ 1) =

 K(n) K(n),n+1

Kn+1,(n) α−1

. Then

P(n+ 1) = [X(n)>, x>n+1]

 K(n) K(n),n+1

Kn+1,(n) α−1

−1 X(n)

xn+1


= P(n) + (X(n)>K(n)>K(n),n+1 − x>n+1)d(Kn+1,(n)K(n)X(n)− xn+1)

= P(n) + A(n)

(4.3.10)

where d = (α−1−Kn+1,(n)K(n)−1K(n),n+1) > 0 and A(n) is positive semi-definite symmetric

matrix. Thus

λmin(P(n+ 1)) = λmin(P(n) + A(n)) ≥ λmin(P(n))

Remark 4.3.5. When X(n) ∼ MN(0,K(n),Σ∗) for some Σ∗, β is posterior consistent.

Proof. Let K(n)−
1
2 be the square root of K(n)−1. Then we have K(n)−

1
2 X(n) ∼ MN(0, In,Σ

∗).

By Khimchine-Kolmogorov strong law of large number, we have

lim
n→∞
{ 1

n
P(n)}ij = lim

n→∞
{ 1

n
X>(n)K(n)−

1
2K(n)−

1
2 X(n)}ij = Σ∗ij a.s. for 1 ≤ i, j ≤ p .

Hence λmin(P(n))→∞.

This Remark shows that when the explanatory variables shares the same spatial correlation

with the responses, the sufficient and necessary condition in Theorem 4.3.3 holds.

Remark 4.3.6. When X(n) ∼ MN(0, In,Σ
∗) for some Σ∗, β is posterior consistent
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Proof. For any n, there exist an orthogonal matrix Q(n) and a diagonal matrix D(n) =

diag({di}ni=1) such that C(S(n),S(n)) = Q(n)>D(n)Q(n)

P(n) = X(n)>Q(n)>(D(n) + (α−1 − 1)In)−1Q(n)X(n)

= Z(n)>diag({ 1

di + (α−1 − 1)
}ni=1)Z(n) =

n∑
i=1

1

di + (α−1 − 1)
ziz
>
i

(4.3.11)

where Z(n) = [zi : · · · : zn]> ∼ MN(0, In,Σ
∗) and

∑n
i=1 di = n, di ≥ 0, i = 1, . . . , n.

Define Vi = ziz
>
i , i = 1, . . . , n, by matrix version of Cauchy-Schwarz inequality [Marshall

and Olkin, 1990, equation 4]

n∑
i=1

(di + (α−1 − 1))
n∑
i=1

1

di + (α−1 − 1)
Vi ≥

{
n∑
i=1

√
di + (α−1 − 1)

V
1
2
i√

di + (α−1 − 1)

}2

,

where V
1
2
i V

1
2
i = Vi, we have

P(n) ≥ α

{∑n
i=1 V

1
2
i√

n

}2

(4.3.12)

Let Vi = ziz
>
i = λiuiu

>
i where λi = z>i zi = ‖zi‖2 and ui = zi

‖zi‖ . Then we have

V
1
2
i =

√
λiuiu

>
i . Now change n into np and rewrite

∑n
i=1 V

1
2
i into

∑n
i=1

∑p
k=1 V

1
2
ik, where

{
∑p

k=1 V
1
2
ik} for each i is a full rank p× p matrix with probability 1, we recast (4.3.12) into

P(np) ≥ α

p

{∑n
i=1

∑p
k=1

√
λikuiku

>
ik√

n

}2

(4.3.13)

And we are going to show that the smallest eigenvalue of the matrix on the right side

goes to infinity as n → ∞, which implies that λmin(P(np)) → ∞. Since
∑p

k=1 V
1
2
ik =∑p

k=1

√
λikuiku

>
ik ∼Wp(Σ

∗ 1
2 , p), where Wp is Wishart distribution, {ui1, . . . ,uip} compose

the bases of the space Rp with probability 1. For any u ∈ Rp, ‖u‖ = 1, we have

u>
p∑

k=1

(√
λikuiku

>
ik

)
u ≥ min

k=1,...,p
{
√
λik}

Hence, λmin(
∑n

i=1

∑p
k=1

√
λikuiku

>
ik) ≥

∑n
i=1 min

k=1,...,p
{
√
λik}. Since λik = ‖zik‖2 where zik ∼

N(0,Σ∗), min
k=1,...,p

{
√
λik} are independent and identically distributed with a positive mean

E( min
k=1,...,p

{
√
λik}) = c∗ > 0 and a finite variance σ2∗. By law of large number, we have
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limn→∞
∑n

i=1 min
k=1,...,p

{
√
λik}/n = c∗ a.s.. Therefore,

λmin

({∑n
i=1

∑p
k=1

√
λikuiku

>
ik√

n

}2
)
≥ 1

n

{
n∑
i=1

min
k=1,...,p

{
√
λik}

}2

→∞

By (4.3.13), limn→∞ λmin(P(n)) =∞.

This Remark shows that when the explanatory variables can be viewed as independent

observations, the sufficient and necessary condition in Theorem 4.3.3 holds. Remark 2.2 and

2.3 discuss two common situations for the design matrix, which support that the condition

in Theorem 2 is a general condition.

Now let us consider spatial regression model

y(s) = β>x(s) + ω(s) + ε(s) with ω(s) ∼ GP(0q×1, ρψ(·, ·)Σω) , ε(s) ∼ N(0q×1,Σε) ,

(4.3.14)

where the covariance matrix of ε(s) is Σε and non-spatial covariance matrix of ω(s) is Σω.

Corollary 4.3.7. With any covariance matrix of noise process ε(s), β |Σ,Y(n) given in

form of matrix normal with parameters defined in (4.3.3) & (4.3.5) are consistent if and

only if limn→∞ λmin(P(n)) =∞.

Proof. Without loss of generalization, assign a flat prior for β. Reformulate the augmented

linear system (4.3.6) as √ α
1−αY(n)

0


︸ ︷︷ ︸

Y∗(n)

=

 √ α
1−αX(n)

√
α

1−αIn

0 Vρ


︸ ︷︷ ︸

X∗(n)

 β

ω(
√

α
1−αΣ

− 1
2

ω Σ
1
2
ε )


︸ ︷︷ ︸

γ̃(n)

+

 η̃1

η̃2


︸ ︷︷ ︸
η̃(n)

,

then η̃(n) ∼ MN(0, I2n,
α

1−αΣε), γ̃(n) |Σω,Σε,Y(n) ∼ MN(µ∗(n),V∗(n), α
1−αΣε) where

µ∗(n) and V∗(n) are in form of (4.3.7). Through the above linear system, we can see than

the first p rows of µ∗(n) provides an unbiased estimator of β with any α ∈ (0, 1). If elements

in limn→∞Ψ∗(n)/n are bounded, then we can finish the proof by following the proof of

Theorem 4.3.3.
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Next, check elements in limn→∞Ψ∗(n)/n. Let u(n) = Y∗(n) − X∗(n)γ = [u1 : · · · :

un : un+1 · · ·u2n]>, follow the definition of model (4.3.14) we have ui ∼ N(0, α
1−αΣε) for

i = 1, . . . , n and ui ∼ N(0,Σω) for i = n+ 1, . . . , 2n, Through (4.3.8) we have

Ψ∗(n)/n ≤ Ψ/n+
1

n
u(n)>u(n) =

1

n

n∑
i=1

uiu
>
i +

1

n

2n∑
i=n+1

uiu
>
i

Since
∑n

i=1 uiu
>
i ∼Wq(

α
1−αΣε, n) and

∑2n
i=n+1 uiu

>
i ∼Wq(Σω, n) we can see that

lim
n→∞

{
1

n

n∑
i=1

uiu
>
i +

1

n

2n∑
i=n+1

uiu
>
i

}
ij

=

{
α

1− α
Σε

}
ij

+ Σωij a.s. 1 ≤ i, j ≤ q

So elements in limn→∞Ψ∗(n)/n are bounded.

4.4 Simulation

We present two simulation examples here. The first compares our proposed BSLMC model

with other multivariate Bayesian spatial models. The second assesses our factor BSLMC

model when K is not excessively large. Our proposed models were implemented in Julia

1.2.0 [Bezanson et al., 2017]. We modeled the univariate processes in the proposed BSLMC

by NNGP. We took the Bayesian LMC model proposed by Schmidt and Gelfand [2003] as

a benchmark in the first simulation example. The benchmark model was implemented in R

3.4.4 through function spMisalignLM in the R package spBayes [Finley et al., 2007]. We also

fitted a response NNGP model with misalignment in Julia 1.2.0 in the first example. The

detailed algorithms for the response NNGP model with misalignment is in the Section A.1

in Appendix. The most demanding model took approximately 21 hours to deliver its entire

inferential output involving 20,000 MCMC iterations on a single 8 Intel Core i7-7700K CPU

@ 4.20GHz processor with 32 Gbytes of random-access memory running Ubuntu 18.04.2

LTS. Convergence diagnostics and other posterior summaries were implemented within the

Julia statistical environment. Each model was compared in terms of the posterior inference

of parameters (posterior mean and 95% confidence interval), root mean squared predict er-

ror (RMSPE), mean squared error of intercept-centered latent processes (MSEL), prediction
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interval coverage (CVG; the percent of intervals containing the true value), interval coverage

for intercept-centered latent process of observed response (CVGL), average continuous rank

probability score (CRPS; see Gneiting and Raftery [2007]) for responses, and the average

interval score (INT; see Gneiting and Raftery [2007]) for responses and run time. To cal-

culate the CRPS and INT, we assumed that the associated predictive distribution was well

approximated by a Gaussian distribution with mean centered at the predicted value and

standard deviation equal to the predictive standard error. All NNGP models were specified

with at most m = 10 nearest neighbors.

4.4.1 Simulation Example 1

We simulated the response y(s) from the SLMC model in (4.2.2) with q = 2, p = 2, K = 2

over 1200 randomly generated locations over a unit square. The size of the data set was

kept moderate to enable comparisons with the expensive full GP based LMC models for

experiments conducted on the computing setup described earlier. The explanatory vari-

able x(s) consists of an intercept and a single predictor generated from a standard nor-

mal distribution. An exponential correlation function was used to model {ρψk(·, ·)}Kk=1, i.e.,

ρψk(s, s
′) = exp (−φk‖s− s′‖), for s, s′ ∈ D , where ‖s − s′‖ is the Euclidean distance be-

tween s and s′, and ψk = φk is the decay for each k. We took Σ = diag([0.3, 0.2]) and let Λ in

(4.2.2) be an upper triangular matrix. We randomly picked 200 locations for predicting each

response to examine the predictive performance. Since the data set has misalignment, we

present inference from a response NNGP model with misalignment (resp NNGP), BSLMC,

and Benchmark LMC model. The values of covariance of measurement error (labeled as

cov(ε)) and non-spatial covariance of latent process (labeled as cov(ω)) as well as other

parameters are listed in table 4.1.

We assigned flat priors for {β,Λ} for response NNGP model with misalignment and

BSLMC, respectively. The prior for Σ for two models was set to follow IW(Ψ, ν) with

Ψ = diag([1.0, 1.0]) and ν = 3. For the benchmark LMC, we assigned a flat prior for β,

IW(Ψ, ν) with Ψ = diag([1.0, 1.0]) and ν = 3 for the cross-covariance matrix Λ>Λ, and
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IG(2, 0.5) for each diagonal element of Σ. The candidate values for {φ, α} used in cross-

validation algorithm for response NNGP model with misalignment over a 25 by 25 grid over

[2.12, 26.52]× [0.8, 0.99]. We gave unif(2.12, 212) as priors of decays for BSLMC and bench-

mark LMC model. The posterior inference from the response NNGP with misalignment,

BSLMC as well as the benchmark LMC model were based on an MCMC chain with 20,000

iterations, and we took the first 15, 000 samples as burn-in. The number of iterations of all

MCMC chains was taken to be large enough to guarantee their convergence.

All three models provided close posterior inferences for {β21,β21}. The 95% confidence

intervals of the intercepts {β11,β12} all include the true value used to generate the data.

With a mismatch of data generating schemes and model assumptions, the response NNGP

model with misalignment provided incorrect inference for cov(ε) when compared to the

other two candidate models. The RMSPEs and CVGs, however, are close to BSLMC and

benchmark LMC. Compared to benchmark LMC which cost around 21 hours, the response

NNGP model spent less that 0.5 minute, suggesting that fitting the response NNGP model

with misalignment is a pragmatic way to have reliable interpolation and predictions. The

NNGP based BSLMC model costs 4.5 minutes, while the Benchmark LMC model costs

around 21 hours. Yet, despite the shorter running time, we observed superior performance

of the NNGP based BSLMC models than the benchmark LMC for inferring on the latent

process using CVGL. Moreover, the interpolated map of the recovered intercept-centered

latent processes (figure 4.1) by BSLMC and benchmark LMC are almost indistinguishable

from each other. BSLMC and benchmark LMC produce very similar MSELs, RMSPEs,

CRPS and INT. Benchmark LMC yields better estimates for the spatial decays but poorer

inference for cov(ω). The differences in estimates between the two models is likely emerging

from the different prior settings and sampling schemes. Benchmark LMC restricts the loading

matrix Λ to be upper triangular, while BSLMC does not, resulting in greater flexibility in

fitting latent process. On the other hand, the unidentifiable parameter setting of BSLMC

may cause less somewhat less stable inference for the hyperparameters {φ1, φ2}.
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Table 4.1: Simulation study summary table: posterior mean (2.5%, 97.5%) percentiles

True resp NNGP BSLMC benchmark LMC

β11 1.0 0.761(0.13, 1.376) 0.877(0.399, 1.378) 0.79 (0.344, 1.229)

β12 -1.0 -1.048(-1.971, -0.09) -1.605(-2.078, -0.977) -0.795(-2.069, 0.74)

β21 -5.0 -4.958(-5.068, -4.847) -4.968(-5.113, -4.819) -4.968(-5.115, -4.822)

β22 2.0 1.925(1.763, 2.087) 1.93(1.719, 2.124) 1.933 (1.731, 2.134)

cov(ε)11 0.3 0.17 (0.156, 0.185) 0.277 (0.231, 0.324) 0.275 (0.233, 0.326)

cov(ε)12 0.0 -0.052(-0.071, -0.036) 0.023 (-0.031, 0.073) 0.0

cov(ε)22 0.2 0.376(0.344, 0.411) 0.221 (0.145, 0.307) 0.244 (0.165, 0.322)

cov(ω)11 0.683 1.58(1.451, 1.719) 0.707 (0.636, 0.778) 0.706 (0.639, 0.773)

cov(ω)12 -0.616 -0.488 (-0.656, -0.33) -0.596(-0.685, -0.504) -0.07(-0.115, -0.024)

cov(ω)22 4.517 3.5(3.203, 3.826) 4.372 (4.2, 4.536) 4.311(4.15, 4.455)

φ1 6.0 7.204(α = 0.903) 2.926(2.213, 3.941) 8.63 ( 5.251, 12.711)

φ2 6.0 7.204(α = 0.903) 7.771(3.963, 12.226) 6.045(3.731, 8.526)

RMSPEa – [0.643, 0.948, 0.81] [0.633, 0.917, 0.788] [0.633, 0.918, 0.788]

MSEL b – – [0.111, 0.139, 0.125] [0.111, 0.14, 0.126]

CRPSa – [-0.366, -0.535, -0.45] [-0.359, -0.515, -0.437] [-0.359, -0.515, -0.437]

CRPSLb – – [-0.031, -0.036, -0.033] [-0.189, -0.212, -0.2]

CVGa – [0.945, 0.955, 0.95] [0.965, 0.945, 0.955] [0.965, 0.945, 0.955]

CVGL b – – [0.941, 0.971, 0.956] [0.791, 0.816, 0.803]

INTa – [3.031, 4.324, 3.678] [2.929, 4.327, 3.628] [2.927, 4.315, 3.621]

INTLb – – [0.253, 0.278, 0.265] [1.535, 1.728, 1.631]

time(s) – [14, 2, 12]c 270 [51456, 23973]d

a[response 1, response 2, all responses]
bintercept + latent process on 1000 observed locations for [response 1, response 2, all responses]
c[time for cross-validation, time for MCMC sampling, time for recovering β and predictions]
d[time for MCMC sampling, time for recovering predictions]

4.4.2 Simulation Example 2

We generated the second dataset by SLMC model (4.2.2) with a diagonal Σ and q = 10, p =

3, K = 50 over 1200 randomly generated locations over a unit square. The explanatory

variable x(s) was composed of an intercept and two predictors generated independently
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(a) ω1 + β11 true (b) ω1 + β11 BSLMC (c) ω1 + β11 benchmark LMC

(d) ω2 + β12 true (e) ω2 + β12 BSLMC (f) ω2 + β12 benchmark LMC

Figure 4.1: Interpolated maps of (a) & (d) the true generated intercept-centered latent

processes, the posterior means of the intercept-centered latent process ω from the (b) & (e)

NNGP based BSLMC model and the (c) & (f) benchmark LMC model.

from a standard normal distribution. We used an exponential covariance function to model

{ρψk(·, ·)}Kk=1, where ψk = φk denotes the decay for k = 1, . . . , K. This data set features a

relatively large number of responses (q = 10) and a complicated pattern in latent processes

(K = 50). We randomly selected 200 locations for prediction for each response.

We fitted a factor BSLMC model with diagonal Σ with K from 1 to 10. The goal of

this simulation example is to check the performance of a factor BSLMC model, especially in

recovering latent processes, when K is not sufficiently large. We assigned a Γ(2, 11.67) prior

for all {φk}Kk=1 and we set flat priors for β and Λ. All diagonal elements of Σ were assigned

an IG(2, 1.0) prior. The setting for the MCMC sampling scheme follows that of BSLMC in
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(a) fitted correlation with K = 2 (b) fitted correlation with K = 4 (c) fitted correlation with K = 6

(d) fitted correlation with K = 8 (e) fitted correlation K = 10 (f) correlation of the raw data

Figure 4.2: Heat-maps of the (l) actual and (g)-(k) fitted non-spatial correlation of ω(s)

the first example.

The running time for executing the models along with CVGL, CVG, and RMSPE are

listed in table 4.2. We also added CVG-slope in table 4.2, which counts the number of

95% CIs of regression slopes that include the true value. Inference for the regression slopes

was found to be robust to the choice of K. The CVG for each K was close to 0.95, while

RMSPE decreased rapidly as K increased. We also found that factor BSLMC would fit the

latent processes better for some of the responses that the others when K was small. The

performance metrics quickly improved as K increased from 1 to 10, RMSPE decreased by

45.7% and CVGL hit 75% for K ≥ 7.
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Table 4.2: Simulation study summary table 2:

K = 1 2 3 4 5 6 7 8 9 10

CVG-slope 19/20 18/20 18/20 18/20 19/20 19/20 19/20 20/20 20/20 20/20

CVGL 0.3068 0.4175 0.5103 0.5999 0.6642 0.7236 0.7864 0.7934 0.8462 0.8681

CVG 0.9445 0.942 0.9375 0.943 0.9435 0.9435 0.941 0.938 0.9385 0.94

RMSPE 4.6531 4.3852 4.0105 3.7076 3.5578 3.2946 3.0944 2.9314 2.716 2.527

time(s) 235 422 836 1268 1891 2417 3214 3635 4880 5248

We compare the correlation across different latent processes (referred as non-spatial cor-

relation) to check the performance of different models in estimating the latent processes.

Figures 4.2a through 4.2f illustrate the heat-maps of the non-spatial correlation of the fitted

and the true latent processes. As K increases from 2 to 10, the estimated heat-maps ap-

proach the true correlation matrix. It can be seen that the heat-map for the fitted correlation

with K = 10 shared a similar pattern with that of the actual correlation. Given that our

data set follows an SLMC model with K = 50, we can conclude that the factor BSLMC is

efficient in obtaining inference for the latent processes even when K is not adequately large.

The test also shows that the choice of K is important for obtaining reliable inference when

using BSLMC with a diagonal Σ as a factor model. We recommend choosing K based on

scientific considerations for the problem at hand and exploratory data analyses. One can

also check the RMSPE value for different K and use an elbow rule [Thorndike, 1953] to

choose K .

4.5 Real Data Analysis

We apply our proposed models to analyze Normalized Difference Vegetation Indices (NDVI)

and Enhanced Vegetation Indices (EVI) measuring vegetation activity on the land surface,

which can help us understand the global distribution of vegetation types as well as their bio-

physical and structural properties and spatial variations. Apart from the NDVI, we consider

Gross Primary Productivity data, Global Terrestrial Evapotranspiration (ET) Product, and
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landcover data [see Ramon Solano et al., 2010, Mu et al., 2013, Sulla-Menashe and Friedl,

2018, for further details]. The geographic coordinates of our variables were mapped on a Si-

nusoidal (SIN) projection grid. We chose zone h08v05, which covers 11,119,505 to 10,007,555

meters south of the prime meridian and 3,335,852 to 4,447,802 meters north of the equator.

The land region in zone h08v05 is situated in the western United States. Our explana-

tory variables included an intercept and a binary indicator for no vegetation or urban area

through the 2016 landcover data. All other variables were measured through MODIS satel-

lite over a 16-days period from 2016.04.06 to 2016.04.21. Some variables were rescaled and

transformed in exploratory data analysis for the sake of better model fitting. The data sets

were downloaded using the R package MODIS and the code for the exploratory data analysis

is provided as supplementary material to this paper.

Our data set comprises 1,020,000 randomly selected observed locations to illustrate BSLMC,

response NNGP with misalignment and a factor BSLMC model with diagonal Σ. Our spa-

tially dependent outcomes were the transformed NDVI (log(NDVI + 1) labeled as NDVI)

and red reflectance (red refl). A Bayesian linear model on the two data sets were also fit-

ted for comparison. All NNGP based models specified at most m = 10 nearest neighbors.

We randomly held 10% of each response and then held all responses over region 10,400,000

to 10,300,000 meters south of the prime meridian and 3,800,000 to 3,900,000 meters north

of the equator to examine the predictive performance of models over a missing region and

randomly missing locations. Figure 4.3a illustrates the map of the transformed NDVI data.

The white square region within the Continent is the region held out for prediction.

The posterior inference for BSLMC and response NNGP with misalignment were based on

an MCMC chain with 10,000 iterations. The priors for all parameters except decays follow

those in the simulation section. We assigned Γ(200, 0.02) and Γ(200, 0.04) for φ1 and φ2 for

BSLMC based on variograms fitted in exploratory data analysis. We recursively shrink the

domain and the grid of candidate values {φ, α} through repeatedly using cross-validation

algorithms for fixing parameters for the response NNGP model with misalignment. The

number of threads used in the cross-validation algorithms for response NNGP models with
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misalignment were equal to the number of folders. The remaining part of all the code were

run with single thread.

Table 4.3 gives the results of BSLMC and response NNGP with misalignment. Consistent

with the related background, the regression coefficients of the index of no vegetation or urban

area show relatively low biomass (low NDVI) and high red reflectance over no vegetation

or urban area. The inference of the covariance of the noise and non-spatial covariance of

the latent process shows a negative association between the residuals and latent processes of

transformed NDVI and red reflectance, which satisfies the underlying relationship between

two responses. BSLMC captured a high negative correlation (≈ −0.87) between the latent

processes of two responses, indicating that the spatial pattern of the latent processes of NDVI

and red-reflectance are almost the reverse of each other. The maps of the latent processes

recovered by BSLMC, presented in Figure 3.2, also support this relationship.

Each model was compared in terms of RMSPE, CVG, CRPS, INT and run time. It is

clear that the spatial models greatly improved predictive accuracy. BSLMC and the response

NNGP with misalignment reduced at least 50% RMSPE compared to the Bayesian linear

model. CVG is similar among all models, while all spatial models provided a more accurate

prediction than the Bayesian linear models based on INT and CRPS. Visual inspections

of the recovered latent processes based on BSLMC are shown in figure 3.2. Notably, the

proposed methods smooth out the predictions in the held-out region. The BSLMC model

took around 44.7 hours. Regarding the scale of the multivariate spatial data set, the run

time for BSLMC model is still appealing.

We also fitted a factor BSLMC with diagonal Σ to explore the underlying latent processes

of ten (transformed) responses: (i) NDVI, (ii) EVI, (iii) Gross Primary Productivity (GPP),

(iv) Net Photosynthesis (PsnNet), (v) red reflectance (red refl), (vi) blue reflectance (blue

refl), (vii) average daily global evapotranspiration (ET), (viii) latent heat flux (LE), (ix)

potential ET (PET) and (x) potential LE (PLE). We held all responses over the region

picked in the previous example and randomly held 10% of each response to examine the

predictive performance. There are in total 12, 057 locations with no responses and 656, 366
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observed locations with misaligned data (at least one but not all responses), which covers

65.12% of observed locations. We provide a heat-map ( figure 4.4k) to present the status of

misalignment over the study domain.

Based on the exploratory analysis, we observed two groups of responses that have high

within-group correlations but relatively low between-group correlations (see figure 4.3g).

Hence we picked K = 2 for the factor BSLMC with diagonal Σ. The results of the factor

BSLMC model is presented in table 4.4. As shown in the summary table, no vegetation

or urban area tend to have lower vegetation indexes (lower NDVI and EVI) and lower

production of chemical energy in organic compounds by living organisms (lower GPP and

PsnNet). We observe a trend of higher blue reflectance, red reflectance, evapotranspiration

(higher ET LE) and lower potential evapotranspiration (lower PET PLE) in urban area and

area with no vegetation. We present maps of the posterior prediction for all 10 variables in

figure 4.4

The latent processes corresponding to transformed NDVI and red reflectance fitted through

BSLMC and the factor BSLMC with diagonal Σ in figure 4.3 share a similar pattern. Finally,

the heat map of the nonspatial correlation of the latent processes fitted by the factor BSLMC

with diagonal Σ, presented in figure 4.3h, reveals a high underlying correlation among NDVI,

EVI, GPP, PsnNet, red and blue reflectance, and that LE and ET are slightly more correlated

with NDVI and EVI than PLE and PET. The total run time for factor BSLMC with diagonal

Σ was around 75 hours (4518.67 minutes).

4.6 Discussion

This Chapter aims at extending existing methodologies of scalable univariate spatial mod-

eling to the multivariate cases. In this Chapter, we developed a variety of models that can

implement scalable modeling methodologies for univariate spatial data in Bayesian multivari-

ate spatial data analyses. One of the features of our models is that we can obtain a posterior

inference of the high-dimensional latent process when it is well defined. The other main
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Table 4.3: Real data analysis summary table 1: posterior mean (2.5%, 97.5%) percentiles

Bayesian linear model Response NNGP with misalign BSLMC

intercept1 0.25146(0.25117, 0.25176) 0.1662(0.1579, 0.1742) –

intercept2 0.13951(0.13937, 0.13965) 0.178(0.1733 , 0.1827) –

no vege or urban area1 -0.1338( -0.1349, -0.1327) -1.066e-2 (-1.085e-2, -1.047e-2) -1.385e-2 (-1.430e-2, -1.342e-2)

no vege or urban area2 6.039e-2 (5.989e-2, 6.09e-2) 5.4625e-3 (5.3478e-3, 5.5733e-3) 7.831e-3 (7.584e-3, 8.097e-3)

cov(ε)11 1.599e-2 (1.595e-2, 1.604e-2) 2.4628e-4 (2.4566e-4, 2.4702e-4) 3.51e-4 (3.48e-4, 3.55e-4)

cov(ε)12 -6.494e-3(-6.515e-3, -6.474e-3) -8.617e-5 (-8.649e-5, -8.585e-5) -1.08e-4 (-1.10e-4, -1.07e-4)

cov(ε)22 3.657e-3(3.647e-3, 3.668e-3) 7.672e-5 (7.652e-5, 7.692e-5) 1.07e-4 (1.06e-4, 1.08e-4)

cov(ω)11 – 3.334e-2(3.325e-2, 3.344e-2) 1.675e-2(1.674e-2, 1.676e-2)

cov(ω)12 – -1.166e-2(-1.171e-2, -1.162e-2) -6.873e-3(-6.879e-3, -6.867e-3)

cov(ω)22 – 1.039e-2 (1.036e-2, 1.041e-2) 3.764e-3 (3.760e-3, 3.768e-3)

φ1 – 26.414 (α = 0.99267) 3.942 (3.857, 4.013)

φ2 – 26.414(α = 0.99267) 12.358 (11.601, 13.162)

RMSPEa [0.074, 0.0359, 0.0582] [0.03172, 0.01743, 0.02559] [0.0326, 0.0171, 0.0260]

CRPSa [-0.0414, -0.01052, -0.02596] [-0.01523, -0.00875, -0.01199] [-0.01561, -0.00879, -0.0122]

CVGa [0.9526, 0.9547, 0.9537] [0.9515, 0.9427, 0.9471] [0.954, 0.947, 0.950]

INTa [0.34868, 0.17283, 0.26077] [0.1909, 0.10172, 0.14631] [0.1965, 0.09952, 0.14802]

time(mins) – [169.19, 65.52, 51.13]b 2684.75

a[response 1, response 2, all responses]
b[time for cross-validation, time for MCMC sampling, time for recovering β and predictions]

feature of the proposed models is the introduction of conjugacy and conditional conjugacy

through MNIW that facilitates the posterior sampling process. We devoted a significant part

of this Chapter to formulate and illustrate our models in conjunction with NNGP. Mean-

while, we took an elaborate design in our simulation studies to test the performance of all

models using datasets with different behaviors. We also showed our models are capable of

conducting various analyses for massive multivariate spatial data through implementations

on a real dataset with observed locations in millions.

Here, we emphasizes the modeling for purely spatial datasets, whereas the topics on spatio-

temporal modeling and spatially-varying coefficient modeling are essential in Multivariate

Geostatistics. We omitted these topics in the main body of the Chapter for the sake of con-

ciseness, and we briefly discuss here as a supplement. For spatio-temporal modeling, it can
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Table 4.4: Real data analysis summary table 2: posterior mean (2.5%, 97.5%)

response intercept slope nugget (Σii)

NDVI -0.176(-0.179, -0.172) -0.0121 (-0.0125, -0.0116) 7.45e-4 ( 7.43e-4, 7.48e-4)

EVI -0.076(-0.077, -0.074) -4.4e-3(-4.7e-3, -4.1e-3) 8.68e-4(8.65e-4, 8.7e-4)

GPP -6.939(-6.957, -6.919) -0.197(-0.199, -0.194) 0.0244(0.0243, 0.0245)

PsnNet -4.282 (-4.289, -4.275) -4.5e-3(-5.5e-3, -3.6e-3) 5.34e-3(5.32e-3, 5.36e-3)

red refl 0.358 ( 0.356, 0.359) 4.5e-3 (4.2e-3, 4.8e-3) 9.84e-4( 9.81e-4, 9.87e-4)

blue refl 0.186(0.185, 0.187) 0.0123 (0.0121, 0.0124) 2e-4(2.59e-4, 2.61e-4)

LE 4.601(4.586 , 4.616) 0.091(0.088, 0.093) 0.0531 (0.0529, 0.0533)

ET 1.154(1.139, 1.169) 0.092 (0.089, 0.094) 0.0531(0.053, 0.0533)

PLE 0.7126 (0.7118, 0.7132) -3.6e-3 ( -3.8e-3, -3.3e-3) 2.1e-5 (2.09e-5, 2.11e-5)

PET 2.255 (2.252, 2.257) -4.6e-3(-5.5e-3, -3.8e-3) 6.4e-5 ( 6.3e-5, 6.4e-5)

be seen that the models proposed in this Chapter can readily be modified for modeling mul-

tivariate spatio-temporal random fields. A modification is to use a dynamic nearest-neighbor

Gaussian process (DNNGP) [Datta et al., 2016] instead of the NNGP in our models. When

considering spatially-varying coefficient modeling, i.e., we model the regression coefficients β

by a random field to allow the analysis of the spatial pattern of the regression coefficients. We

can assign the prior of the regression coefficients β by a multivariate Gaussian random field

with a proportional cross-covariance function. Then the prior of β over observed locations

follows a Matrix-Normal distribution, which is the prior we designed for β in all proposed

models in this Chapter. While the modification seems to be easy, the actual implementation

requires a more detailed exploration, and we leave these topics for further studies.

The scalability of proposed algorithms is guaranteed when the utilized univariate scalable

modeling method can yield a sparse precision matrix. Hence our approach can adapt to

other methods such as multiresolution approximation (MRA), NNGP, spatial partitioning,

etc. [see, e.g. Katzfuss and Guinness, 2017]. For brevity, we elaborated on the algorithms

for NNGP based models in the supplementary material, but provided a limited discussion on
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alternative models. Further exploration with various univariate scalable modeling methods

still require careful discussions. Also, scalable modeling methods that introduce sparsity in

covariance matrics such as covariance tapering are beyond the scope of our discussion.

An important future research topic is to explore high-performance programming. The pro-

grams provided in this Chapter are for illustration and have limited usage in GPU computing

and parallel CPU computing. Since the algorithms of Conjugate models are parallelizable,

GPU parallel computing can dramatically reduce the run time. A parallel CPU computing

for the BSLMC model can simultaneously sample multiple MCMC chains, improving the

performance of the actual implementations. Implementations with modeling methods such

as MRA [Katzfuss, 2017] also requires dedicated programming with GPU. Hence, efficient

programming for developing related packages is demanded in the follow-up researches.

Supplementary Material

All computer programs implementing the examples in this Chapter can be found in the

public domain and downloaded from https://github.com/LuZhangstat/Multi_NNGP.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.3: Colored NDVI and red reflectance images of western United States (zone h08v05).

Maps of raw data (a) & (d) and the posterior mean of the intercept-centered latent process

recovered from (b) & (e) BSLMC and (c) & (f) factor BSLMC with diagonal Σ. Correlation

of responses (g) and nonspatial correlation of latent process fitted by the factor BSLMC

model with diagonal Σ (h).
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(a) NDVI (b) EVI (c) GPP

(d) PsnNet (e) red refl (f) blue refl

(g) LE (h) ET (i) PLE

(j) PET (k) Misalignment

Figure 4.4: Maps (a)-(j) of predicted value on 1, 020, 000 observed locations for 10 variables

in Section 3.4. The deeper the color, the higher the value. Some variables are transformed for

better model fitting. Each map has its own color scale. Heat-map (k) of counts of observed

response, the greener the color, the higher the value.
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CHAPTER 5

On identifiability and consistency of the nugget in

Gaussian spatial process models

5.1 Introduction

In the process of obtaining posterior inferences for Bayesian spatial models as shown in

Chapter 2 3 and 4, MCMC chains or posterior samples of some hyper-parameters are often

observed to be unstable even with a large sample size. This phenomenon invokes the research

interests in the theoretical studies on the asymptotic properties of the parameter estimators

in spatial modeling. The analysis of point-referenced spatial data relies heavily on stationary

Gaussian processes for modeling spatial dependence. Let y(s) be the outcome measured at

a location s ∈ S ⊂ Rd, where S is a bounded region within Rd. The outcome is customarily

modeled as

y(s) = µ(s) + w(s) + ε(s), s ∈ S ⊂ Rd , (5.1.1)

where µ(s) models the trend, w(s) is a Gaussian process capturing spatial dependence, and

ε(s) is a white noise process modeling measurement error or micro-scale variation. Matérn

[1986] introduced a flexible class of covariance functions for modeling w(s) that has been

widely used in spatial modeling ever since it was recommended in Stein [1999]. The finite

dimensional realizations of ε(s) are modeled independently and identically as N(0, τ 2) over

any finite collection of locations. The variance parameter τ 2 is called the “nugget”.

Our intended contribution in this Chapter is to formally establish the identifiability and

consistency of the process parameters in (5.1.1) in the presence of an unknown nugget under

infill or fixed domain asymptotics, where the sample size increases with increasing numbers
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of locations within a domain that is fixed and does not expand. This distinguishes the

Chapter from existing results on inference for process parameters in Matérn models that

have, almost exclusively, been studied without the presence of an unknown nugget. Zhang

and Zimmerman [2005] compared infill and expanding domain asymptotic paradigms and

elucidate a preference for the former for analyzing the limiting distributions of parameters in

the Matérn family. Zhang [2004] showed that not all parameters in the Matérn family can be

consistently estimated under infill asymptotics, but certain microergodic parameters, which

play a crucial role in the identifiability of Gaussian processes with the Matérn covariogram

(see Section 5.2.1 for further details), are consistently estimable. Du et al. [2009] derived the

asymptotic normality of the maximum likelihood estimator for such microergodic parameters.

Kaufman and Shaby [2013] extended these asymptotic results to the case of jointly estimating

the spatial range and the variance parameters in the Matérn family, and explore the effect

of a prefixed range verses a joint estimated range on inference when having relatively small

sample size.

These studies have focused upon settings without the presence of a nugget. In practice,

modeling the measurement error, or nugget effect, in (5.1.1) is prevalent in geostatistical

modeling. Zhang and Zimmerman [2005] offered some heuristic arguments for the consistency

and asymptotic normality of the maximum likelihood estimators of microergodic parameters

in (5.1.1). Chen et al. [2000] demonstrated that the presence of measurement error can have

a big impact on the parameter estimates for Ornstein-Uhlenbeck processes over bounded

intervals. Their proof exploits the Markovian property as well as the explicit formula of the

maximum likelihood estimator of the one-dimensional Ornstein-Uhlenbeck process that are

not available in the case of Matérn model over Rd with d ≥ 2.

Returning to (5.1.1), it will be sufficient for our subsequent development to assume that

µ(s) = 0, i.e., the data have been de-trended. We specify {w(s) : s ∈ S ⊂ Rd} as a

zero-centered stationary Gaussian process with isotropic Matérn covariogram,

Kw(x; σ2, φ, ν) :=
σ2(φ‖x‖)ν

Γ(ν)2ν−1
Kν(φ‖x‖), ‖x‖ ≥ 0 , (5.1.2)

92



where σ2 > 0 is called the partial sill or spatial variance, φ > 0 is the scale or decay

parameter, ν > 0 is a smoothness parameter, Γ(·) is the Gamma function, and Kν(·) is

the modified Bessel function of order ν [Abramowitz and Stegun, 1965, Section 10]. The

corresponding spectral density is

f(u) = C
σ2φ2ν

(φ2 + u2)ν+d/2
for some C > 0. (5.1.3)

When ν = 1/2, the covariogram (5.1.2) simplifies to the exponential (Ornstein-Uhlenbeck

in one-dimension) kernel Kw(x; σ2, φ) := σ2 exp(−φ‖x‖). For the measurement error, we

assume {ε(s) : s ∈ S ⊂ Rd} is Gaussian white noise with covariogram Kε(y; τ 2) := τ 2δ0,

where δ0 is the Dirac mass at 0 and τ 2 is the nugget. The processes {w(s), s ∈ D ⊂ Rd} and

{ε(s), s ∈ D ⊂ Rd} are independent. Hence, a Matérn model with measurement error is a

stationary Gaussian process with covariogram

K(x; τ 2, σ2, φ, ν) := Kw(x; σ2, φ, ν) +Kε(x; τ 2). (5.1.4)

Our approach will depend upon identifying microergodic parameters in the above model.

The remainder of the Chapter evolves as follows. We review the discussion in Zhang [2004] for

the Matérn model with measurement error, claiming that only θ = {σ2φ2ν , τ 2} can have infill

consistent estimators when d ≤ 3. Subsequently, we establish that the maximum likelihood

estimates for θ are consistent and are asymptotically normal. This extends the main results

in Chen et al. [2000] to the case with dimension d ≤ 3. The asymptotic properties of

interpolation are explored mainly through simulations, and we demonstrate the role of θ in

interpolation. We conclude with some insights and directions for future work.

5.2 Asymptotic theory for estimation and prediction

5.2.1 Identifiability

Zhang [2004] showed that for the Matérn model without measurement error, when fixing the

smoothness parameter ν > 0 and d ≤ 3, there are no (weakly) infill consistent estimators for
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either the partial sill σ2 or the scale parameter φ. Such results rely upon the equivalence and

orthogonality of Gaussian measures. Two probability measures P1 and P2 on a measurable

space (Ω,F) are said to be equivalent, denoted P1 ≡ P2, if they are absolutely continuous

with respect to each other. Thus, P1 ≡ P2 implies that for all A ∈ F , P1(A) = 0 if and only

if P2(A) = 0. On the other hand, P1 and P2 are orthogonal, denoted P1 ⊥ P2, if there exists

A ∈ F for which P1(A) = 1 and P2(A) = 0. While measures may be neither equivalent nor

orthogonal, Gaussian measures are in general one or the other. For a Gaussian probability

measure Pθ indexed by a set of parameters θ, we say that θ is microergodic if Pθ1 ≡ Pθ2

if and only if θ1 = θ2. For further background, see Chapter 6 in Stein [1999] and Zhang

[2012]. Furthermore, two Gaussian probability measures defined by Matérn covariograms

Kw(·; σ2
1, φ1, ν) and Kw(·; σ2

2, φ2, ν) are equivalent if and only if σ2
1φ

2ν
1 = σ2

2φ
2ν
2 [Theorem 2

in Zhang, 2004] and, consequently, one cannot consistently estimate σ2 or φ in the Matérn

model (5.1.2) [Corollary 1 in Zhang, 2004].

We first characterize identifiability for the Matérn model with measurement error, i.e.,

with covariogram given by (5.1.4). Over a closed set S ⊂ Rd, let GS(m,K) denote the

Gaussian measure of the random field on S with mean function m and covariance function

K. Consider two different specifications for w(s) in (5.1.1) corresponding to mean mi and

covariogram Ki for i = 1, 2. The respective measures on the realizations of w(s) over S will

be denoted by GS(mi, Ki) for i = 1, 2. If χ = {s1, s2, . . .} is a sequence of points in S, then

the probability measure for the sequence of outcomes over χ, i.e., {y(sj) : sj ∈ χ}, is denoted

Gχ(mi, Ki, τ
2
i ) under model i. The following lemma is familiar.

Lemma 5.2.1. Let S be a closed set, w(s) be a mean square continuous process on S un-

der GS(m1, K1), and χ be a dense sequence of points in S. Then, (i) if τ 2
1 6= τ 2

2 , then

Gχ(m1, K1, τ
2
1 ) ⊥ Gχ(m2, K2, τ

2
2 ); and (ii) if τ 2

1 = τ 2
2 , then Gχ(m1, K1, τ

2
1 ) ≡ Gχ(m2, K2, τ

2
2 )

if and only if GS(m1, K1) ≡ GS(m2, K2).

Proof. See Theorem 6 in Chapter 4 of Stein [1999].

We adapt Lemma 5.2.1 to the Matérn model with measurement error. The following result
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summarizes the identifiability issue for Matérn model with measurement error.

Theorem 5.2.2. Let S ⊂ Rd be a compact set. For i = 1, 2, let Pi be the probability measure

of the Gaussian process on S with mean zero and covariance K(·; τ 2
i , σ

2
i , φi, ν) defined by

(5.1.4). Then, (i) if τ 2
1 6= τ 2

2 , then P1 ⊥ P2; and (ii) if τ 2
1 = τ 2

2 , then for d ≤ 3, P1 ≡ P2 if

and only if σ2
1φ

2ν
1 = σ2

2φ
2ν
2 , and for d ≥ 5, P1 ≡ P2 if and only if (σ2

1, φ1) = (σ2
2, φ2).

Proof. Denote Ki for Kw(·; σ2
i , φi, ν). It is easy to see that w(s) is mean square continuous

on S under GS(0, Ki). From Lemma 5.2.1, we know that if τ 2
1 6= τ 2

2 , for any dense sequence

χ, Gχ(0, K1, τ
2
1 ) ⊥ Gχ(0, K2, τ

2
2 ). Therefore, P1 ⊥ P2. This proves (i).

Next, suppose τ 2
1 = τ 2

2 . From Theorem 2 in Zhang [2004], we know that for d ≤ 3

GS(0, K1) ≡ GS(0, K2) if and only if σ2
1φ

2ν
1 = σ2

2φ
2ν
2 . Corollary 3 in Anderes [2010] shows

that, for d ≥ 5, GS(0, K1) ⊥ GS(0, K2) if {σ2
1, φ1} 6= {σ2

2, φ2}. A straightforward application

of Lemma 5.2.1 proves (ii).

Combining Theorem 5.2.2 with the argument in Corollary 1 given in Zhang [2004], we

obtain that σ2 and φ are not consistently estimable in the following sense.

Corollary 5.2.3. Let y(s), s ∈ S ⊂ Rd, d ≤ 3 be a Gaussian process with covariogram as

in (5.1.4), and Sn, n ≥ 1 be an increasing sequence of subsets of S. Given observations of

y(s), s ∈ Sn, there do not exist estimates σ̂2
n and φ̂n that are consistent.

Theorem 5.2.2 characterizes equivalence and orthogonality of Matérn based Gaussian mea-

sures according to the values of their parameters. The results in Zhang [2004] emerge as

special cases when τ 2
1 = τ 2

2 = 0 and σ2
1φ

2ν
1 = σ2

2φ
2ν
2 for d ≤ 3. The characterization of

equivalence and orthogonality of P1 and P2 remains open when d = 4. In the rest of this

Chapter, we focus on the asymptotic properties of parameter estimates and predictions for

the case with d ≤ 3.
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5.2.2 Parameter estimation

Theorem 5.2.2 implies that if ν is fixed in the specification of w(s) in (5.1.1), then σ2φ2ν

and the nugget τ 2 will be identifiable. In view of this, we consider the estimation of the

microergodic parameter κ := σ2φ2ν and the nugget τ 2 with fixed decay φ. Our main results

concern the consistency and the asymptotic normality of the maximum likelihood estimators

of κ and τ 2 when the observations are taken from y(·) modeled by (5.1.1).

To proceed further, we need some notations. Let χn = {s1, . . . , sn} be the sampled

points in S, yi := y(si), i = 1, . . . , n be the corresponding observations, and let Kn :={
Kw(si − sj; σ

2, φ, ν)
}

1≤i,j≤n denote the n× n Matérn covariance matrix over locations χn.

Let {λ(n)
i , i = 1, . . . , n} be the eigenvalues of Kn in decreasing order. The covariance ma-

trix of the observations y = (y1, . . . , yn)> is Vn = τ 2In + Kn, and the (rescaled) negative

log-likelihood is

`(τ 2, σ2, φ) := log det Vn + y>V−1
n y . (5.2.1)

Let {σ2
0, φ0, τ

2
0 } be the true generating values of {σ2, φ, τ 2}, κ0 = σ2

0φ
2ν
0 . Assume that the

smoothness parameter ν > 0 is known. For any fixed φ1 > 0, let (τ̂ 2
n(φ1), σ̂2

n(φ1)) be the

maximum likelihood estimators of L(τ 2, σ2, φ1). That is,

(τ̂ 2
n(φ1), σ̂2

n(φ1)) : = arg max
(τ2,σ2)∈D

L(τ 2, σ2, φ1) = argmin
(τ2,σ2)∈D

`(τ 2, σ2, φ1) (5.2.2)

where D = [a, b] × [c, d] with 0 < a < b < ∞ and 0 < c < d < ∞. To simplify notations,

write τ̂ 2
n, σ̂2

n for τ̂ 2
n(φ1), σ̂2

n(φ1). Unlike the Matérn model (5.1.2), there is no explicit formula

for τ̂ 2
n and σ̂2

n in the Matérn model with measurement error. Another difficulty of the analysis

is that L is not concave, so the (rescaled) negative log-likelihood `(τ 2, σ2, φ1) may have local

minima and stationary points. Nevertheless, we are able to establish the theorems regarding

the consistency and asymptotic normality at these stationary points under some assumptions

of the eigenvalue asymptotics.

We first give an upper bound for the eigenvalues λ
(n)
i , which is of independent interest.

The argument we provide below works for a large class of covariograms, including the Matérn

model. In the sequel, the symbol � indicates asymptotically bounded from below and above.
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We follow closely the presentation of Belkin [2018]. Let Ω be a domain of Rd, and K(·) be a

positive definite radial basis kernel on Rd. Denote H to be the Reproducing Kernel Hilbert

Space corresponding to the kernel K, which is also the native space associated to Kernel K.

Given a probability measure µ on Ω, define the integral operator Kµ : L2
µ → L2

µ by

Kµf(x) :=

∫
Ω

K(x− z)f(z)µ(dz).

In particular, if µ = 1
n

∑n
i=1 δsi , Kµ corresponds to the kernel matrix { 1

n
K(si− sj)}1≤i,j≤n. It

is well known that Kµf ∈ H for f ∈ L2
µ [see Belkin, 2018, Section 2], and any function in H

induces a function in L2
µ by restricting it to the support of µ. CallRµ : H → L2

µ the restriction

operator. The key idea of Belkin [2018] is to get a measure-independent upper bound for

the eigenvalues of Kµ for infinitely smooth kernels. While the argument can carry over to

kernels with limited smoothness; that is, the spectral density of K satisfies f(u) � u−β−d

(β-smooth). By (5.1.3), the Matérn covariogram is 2ν-smooth. Given χ = {s1, . . . , sn} ⊂ Ω,

let Sχ : H → H be the interpolation operator defined by

Sχf(x) =
n∑
i=1

αiK(xi − x),

where (α1, . . . , αn)> = K−1
n (f(x1), . . . , f(xn))> with Kn = {K(si − sj)}1≤i,j≤n. By letting

h = maxs∈S min1≤i≤n ‖s − si‖, Santin and Schaback [2016, p985] proved that there exists

C > 0 (independent of n) such that

‖Rµ − Sχ‖H→L2
µ
≤ Ch(β+d)/2. (5.2.3)

Here ‖ · ‖H→L2
µ

denotes the operator norm. So (5.2.3) is a limited smoothness version of

Belkin [2018, Theorem A p5]. The following result is adapted from Theorem 1 in Belkin

[2018] to the β-smooth kernel.

Theorem 5.2.4. Suppose T : V → H is a map from a Banach space V to a Reproducing

Kernel Hilbert Space of functions on Rd, H corresponding to a β-smooth radial basis kernel.

Then there exists a map Tn from V to an n-dimensional linear subspace Hn ⊂ H, such that

‖T − Tn‖V→L2
µ
≤ C‖T ‖V→Hn−

β+d
d
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for C > 0 indepedent of T and µ. Moreover, (1) the subspace Hn is independent of T ; (2)

if T is linear operator, Tn is also a linear operator.

Proof. The proof is exactly as in Theorem 1 in Belkin [2018].

The following Theorem is adapted from Theorem 2 in Belkin [2018] for β-smooth kernels.

Theorem 5.2.5. Let K be a β-smooth radial basis kernel, and λi(Kµ) be the ith largest

eigenvalue of Kµ. Then there exists C > 0 such that

λi(Kµ) ≤ Ci−
β+d
d .

Proof. The proof follows by combining Theorem 5.2.4 above with Lemma 1 in Belkin [2018].

Corollary 5.2.6. Assume that maxs∈S min1≤i≤n ‖s− si‖ � n−1/d. There exists C > 0 such

that

λ
(n)
i ≤ Cni−2ν/d−1 for all i = 1, . . . , n. (5.2.4)

Proof. This follows by applying Theorem 5.2.5 with µ = 1
n

∑n
i=1 δsi and β = 2ν.

It is natural to expect a matching lower bound for the eigenvalues λ
(n)
i under a suitable

condition on the sampled point locations.

Assumption 5.2.7. Assume that min1≤i 6=j≤n ‖si−sj‖ � n−1/d. There exists c > 0 such that

λ
(n)
i ≥ cni−2ν/d−1 for all i = 1, . . . , n. (5.2.5)

The lower bound (5.2.5) holds for the largest eigenvalues. A lesser known result of Schaback

[1995] shows that (5.2.5) also holds for i � n. Particularly interesting cases are i � nα for

0 < α < 1, which leave the lower bound (5.2.5) open. Furthermore, for the regular grid

χn = [0, 1)d ∩ n−1/dZd, the scaled covariance matrix 1
n
Kn is viewed as the discretization of

the integral operator

Kf(x) :=

∫
[0,1]d

Kw(s− t;σ2, φ, ν)f(t)dt,
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where f is a test function. The integral operator K has eigenvalues λ1 ≥ λ2 ≥ · · · > 0.

Intuitively, λ
(n)
i /n ≈ λi which is at least true for fixed i. Santin and Schaback [2016]

observed that λi = d2
i−1, with di the i-width of the unit Sobolev ball in the L2 space. Using

a differential operator approach, Jerome [1972] showed that limi→∞ i
2ν+d

2d di = C ′. The above

two results imply that limi→∞ i
2ν/d+1λi = C ′2. Though the error |λ(n)

i /n− λi| is not easy to

estimate, the following asymptotics is expected.

Assumption 5.2.8. Let χn = [0, 1)d ∩ n−1/dZd. There exists A > 0 such that

λ
(n)
i /(ni−2ν/d−1)→ A as n, i→∞ (5.2.6)

To proceed further, we need the following lemma which is proved by elementary calculus.

Lemma 5.2.9. Assume that maxs∈S min1≤i≤n ‖s − si‖ � n−1/d and min1≤i 6=j≤n ‖si − sj‖ �

n−1/d. Let ani = 1/(τ̂ 2
n + σ̂2

nλ
(n)
i ), bni = λ

(n)
i /(τ 2

0 + σ̂2
nλ

(n)
i ), a0

ni = 1/(τ 2
0 + σ2λ

(n)
i ), and

b0
ni = λ

(n)
i a0

ni.

(1) There exists C > 0 such that

n∑
i=1

a2
ni � n ,

n∑
i=1

λ
(n)
i a2

ni ≤ Cn
1

2ν/d+1 ,
n∑
i=1

bni ≤ Cn
1

2ν/d+1 ,
n∑
i=1

b2
ni ≤ Cn

1
2ν/d+1 .

(2) Under Assumption 5.2.7,

n∑
i=1

a2
ni � n ,

n∑
i=1

λ
(n)
i a2

ni � n
1

2ν/d+1 ,
n∑
i=1

bni � n
1

2ν/d+1 ,
n∑
i=1

b2
ni � n

1
2ν/d+1 .

(3) Under Assumption 5.2.8, there exist c1(σ), c2(σ), c3(σ) > 0 such that as n→∞,

1

n

n∑
i=1

(a0
ni)

2 → c1(σ),
1

n

n∑
i=1

(a0
ni)

4 → c2(σ),
1

n1/(1+2ν/d)

n∑
i=1

(b0
ni)

2 → c3(σ).

Theorem 5.2.10. Assume that (τ 2
0 , σ

2
0) ∈ D, χn := {s1, . . . , sn} satisfy

max
s∈S

min
1≤i≤n

‖s− si‖ � n−1/d and min
1≤i 6=j≤n

‖si − sj‖ � n−1/d ,

and the conditions in Assumption 5.2.7 hold. Then τ̂ 2
n → τ 2

0 almost surely and σ̂2
nφ

2ν
1 → κ0

almost surely under the Matérn model with covariogram K(·; τ 2
0 , σ

2
0, φ0, ν).
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Proof. Let P0 be the probability measure for y corresponding to the Matérn covariogram

K(·; τ 2
0 , σ

2
0, φ0, ν), and P1 be that for K(·; τ 2

0 , σ
2
1, φ1, ν) where σ2

1 := κ0/φ
2ν
1 . We first prove

that τ̂ 2
n → τ 2

0 almost surely under P0. By Theorem 5.2.2, P0 ≡ P1. Thus, it suffices to prove

that τ̂ 2
n → τ 2

0 almost surely under P1. Under P1, we can rewrite (5.2.1) as

`(τ 2, σ̂2
n, φ1) =

n∑
i=1

τ 2
0 + σ2

1λ
(n)
i

τ 2 + σ̂2
nλ

(n)
i

W 2
i +

n∑
i=1

log(τ 2 + σ̂2
nλ

(n)
i ), (5.2.7)

where Wi
iid∼ N (0, 1). The maximum likelihood estimator τ̂ 2

n of τ 2 satisfies

(τ 2
0 − τ̂ 2

n) ·
n∑
i=1

W 2
i a

2
ni =

n∑
i=1

τ̂ 2
n(1−W 2

i )a2
ni +

n∑
i=1

(σ̂2
n − σ2

1W
2
i )λ

(n)
i a2

ni. (5.2.8)

where ani = 1/(τ̂ 2
n + σ̂2

nλ
(n)
i ). By Lemma 5.2.9 (1), we have

∑n
i=1 a

2
ni � n and

∑n
i=1 λ

(n)
i a2

ni ≤

Cn1/(2ν/d+1) for some C > 0. Using Etemadi [2006, Theorem 1], we obtain∑n
i=1W

2
i a

2
ni∑n

i=1 a
2
ni

→ 1,

∑n
i=1 τ̂

2
n(1−W 2

i )a2
ni∑n

i=1 a
2
ni

→ 0 and

∑n
i=1(σ̂2

n − σ2
1W

2
i )λ

(n)
i a2

ni∑n
i=1 a

2
ni

→ 0.

Combining the above with (5.2.8), we have τ̂ 2
n → τ 2

0 almost surely under P1.

Next, we prove that σ̂2
nφ

2ν
1 → κ0 almost surely under P0. Since τ̂ 2

n → τ 2
0 almost surely

under P0 and σ2
1 = κ0/φ

2ν
1 , it suffices to prove that σ̂

′2
n := argminσ2∈[c,d] `(τ

2
0 , σ

2, φ1) converges

almost surely to σ2
1 under P0. Again, since P0 ≡ P1, it suffices to prove that σ̂

′2
n → σ2

1 almost

surely under P1. Under P1,

`(τ 2
0 , σ

2, φ1) =
n∑
i=1

τ 2
0 + σ2

1λ
(n)
i

τ 2
0 + σ2λ

(n)
i

W 2
i +

n∑
i=1

log(τ 2
0 + σ2λ

(n)
i ). (5.2.9)

Taking the derivative of (5.2.9) with respect to σ2 and equating to zero, we obtain

n∑
i=1

bni(W
2
i − 1) = (σ̂

′2
n − σ2

1)
n∑
i=1

b2
niW

2
i . (5.2.10)

with bni = λ
(n)
i /(τ 2

0 + σ̂
′2
n λ

(n)
i ). It suffices to prove that

∑n
i=1 bni(W

2
i − 1)/

∑n
i=1 b

2
niW

2
i con-

verges almost surely to 0. Since∑n
i=1 bni(W

2
i − 1)∑n

i=1 b
2
niW

2
i

=

∑n
i=1 bni(W

2
i − 1)∑n

i=1 bni
·
∑n

i=1 bni∑n
i=1 b

2
ni

·
∑n

i=1 b
2
ni∑n

i=1 b
2
niW

2
i

,
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and
∑n

i=1 bni � n1/(2ν/d+1),
∑n

i=1 b
2
ni � n1/(2ν/d+1) by Lemma 5.2.9 (2), we get∑n

i=1 bni(W
2
i − 1)∑n

i=1 bni
−→ 0 and

∑n
i=1 b

2
ni∑n

i=1 b
2
niW

2
i

−→ 1 a.s.

Combining the above estimates with (5.2.10), we have σ̂
′2
n → σ2

1 almost surely under P1.

Remark 5.2.11. From the proof of the consistency of τ̂ 2
n provided above, (1) τ̂ 2

n → τ 2
0 is

true without Assumption 5.2.7 on the lower bound for eigenvalues; (2) τ̂ 2
n remains consistent

even when σ2 and φ are misspecified.

It is difficult to establish the consistency of the joint maximum likelihood estimates of

{κ, τ 2, φ} (i.e., φ is not fixed). A related result can be found in Theorem 2 of Kaufman and

Shaby [2013] without a nugget effect. In the presence of a nugget effect, constructing such

a proof becomes difficult due to the analytic intractability of the maximum likelihood esti-

mators for {κ, τ 2, φ}. Nevertheless, our simulation studies in Section 5.3.3 seem to support

consistent estimation of {κ, τ 2} even when φ is not fixed.

Given the consistency of the maximum likelihood estimators, we turn to their asymptotic

distributions. For simplicity of presentation, we let S = [0, 1]d in the following theorem. The

asymptotic normality described below holds for any compact set S ⊂ Rd.

Theorem 5.2.12. Assume that n is the dth power of some positive integer, χn = [0, 1)d ∩

n−1/dZd, and the conditions in Assumption 5.2.8 hold. Let

a0
ni := 1/(τ 2

0 + σ2
1λ

(n)
i ) and b0

ni := λ
(n)
i a0

ni for 1 ≤ i ≤ n.

There exist constants c1, c2, c3 > 0 such that as n→∞,

1

n

n∑
i=1

(a0
ni)

2 → c1,
1

n

n∑
i=1

(a0
ni)

4 → c2,
1

n1/(1+2ν/d)

n∑
i=1

(b0
ni)

2 → c3. (5.2.11)

We have
√
n(τ̂ 2

n − τ 2
0 )

(d)−→ N (0, 2τ 4
0 c2/c

2
1), (5.2.12)

and

n1/(2+4ν/d)(σ̂2
nφ

2ν
1 − κ0)

(d)−→ N (0, 2φ4ν
1 /c3), (5.2.13)
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Proof. With Assumption 5.2.8, the limits (5.2.11) follows from Lemma 5.2.9 (3). By (5.2.8)

and Theorem 5.2.10, we have

√
n(τ 2

0 − τ̂ 2
n) =

( 1 + o(1))
τ 2

0

√
n
∑n

i=1(1−W 2
i )(a0

ni)
2 + σ2

1

√
n
∑n

i=1(1−W 2
i )λni (a0

ni)
2∑n

i=1 W
2
i (a0

ni)
2

.(5.2.14)

We know that
∑n

i=1 W
2
i (a0

ni)
2/
∑n

i=1(a0
ni)

2 −→ 1. In addition,

τ 2
0

√
n
∑n

i=1(1−W 2
i )(a0

ni)
2∑n

i=1(a0
ni)

2
=

∑n
i=1(1−W 2

i )(a0
ni)

2√
2
∑n

i=1(a0
ni)

4
·
τ 2

0

√
2n
∑n

i=1(a0
ni)

4∑n
i=1(a0

ni)
2

(d)−→ N (0, 2τ 4
0 c2/c

2
1), (5.2.15)

where the first term on the right hand side converges to N (0, 1) by Lindeberg’s central limit

theorem, and the second term converges to τ 2
0

√
2c2/c1. Similarly,

σ2
1

√
n
∑n

i=1(1−W 2
i )λni (a0

ni)
2∑n

i=1(a0
ni)

2
=

∑n
i=1(1−W 2

i )λni (a0
ni)

2√
2
∑n

i=1(λni )2(a0
ni)

4
·
σ2

1

√
2n
∑n

i=1(λni )2(a0
ni)

4∑n
i=1(a0

ni)
2

−→ 0,

(5.2.16)

where the first term on the right hand side converges to N (0, 1), and the second term

converges to 0 since
∑n

i=1(λni )2(a0
ni)

4 � n1/(1+2ν/d). Combining (5.2.14), (5.2.15) and (5.2.16)

leads to (5.2.12).

By (5.2.10) and Theorem 5.2.10, we get

n1/(2+4ν/d)(σ̂2
n − σ2

1) = (1 + o(1))
n1/(2+4ν/d)

∑n
i=1 b

0
ni(W

2
i − 1)∑n

i=1(b0
ni)

2W 2
i

. (5.2.17)

Moreover,

n1/(2+4ν/d)
∑n

i=1 b
0
ni(W

2
i − 1)∑n

i=1(b0
ni)

2W 2
i

=

∑n
i=1 b

0
ni(W

2
i − 1)√

2
∑n

i=1(b0
ni)

2
·
√

2n1/(2+4ν/d)√∑n
i=1(b0

ni)
2
·
∑n

i=1(b0
ni)

2∑n
i=1(b0

ni)
2W 2

i

(d)−→ N (0, 2/c3), (5.2.18)

where the first term on the right hand side converges to N (0, 1), the second term converges

to
√

2/c3, and the third term converges to 1. Combining (5.2.17) and (5.2.18) yields (5.2.13).
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Du et al. [2009] showed that for the Matérn model without measurement error, the maxi-

mum likelihood estimator σ̂2
n converges to σ2

1 at a
√
n-rate. Theorem 5.2.12 shows that in the

presence of measurement error, the maximum likelihood estimator τ̂ 2
n has a

√
n-rate while

σ̂2
n has a slower n1/(2+4ν/d)-rate. By taking ν = 1

2
and d = 1, we recover the results of Ying

[1991], Chen et al. [2000] for the Ornstein-Uhlenbeck process, where the maximum likelihood

estimator σ̂2
n converges at a

√
n-rate without measurement error, but at a 4

√
n-rate in the

presence of measurement error.

5.2.3 Interpolation at new locations

We now turn to predicting the value of the process at unobserved locations. Without the

nugget (i.e., τ = 0 in (5.1.1)), Stein [1988, 1993, 1999] establish that predictions under

different measures tend to agree as sample size n → ∞. However, in the presence of a

nugget effect, the predictive variance of y(s) at an unobserved location may not decrease to

zero with increasing sample size. In fact, the squared prediction error for any linear predictor

is expected to be at least τ 2. For example, let ŷ0 = v>y be a linear predictor of y0 = y(s0)

at the unobserved location s0, s0 6∈ χn. Let w = {w(s1), . . . , w(sn)}, ε = {ε(s1), . . . , ε(sn)},

w0 = w(s0) and ε0 = ε(s0). The expected squared prediction error satisfies

E[(ŷ0 − y0)2] = E[{(v>w − w0) + (v>ε− ε0)}2] = E[(v>w − w0)2] + E[(v>ε− ε0)2] ≥ τ 2.

To see whether there can be a consistent linear (unbiased) estimate of the underlying process

w(·) at unobserved locations, consider the universal kriging estimator at an unobserved

location s0 given by

Ẑn(τ 2, σ2, φ) := γn(σ2, φ)>Γn(τ 2, σ2, φ)−1y , (5.2.19)

where {γn(σ2, φ)}i := Kw(s0 − si; σ
2, φ, ν), and {Γn(τ 2, σ2, φ)}ij := Kw(si − sj; σ

2, φ, ν) +

τ 2δ0(i − j) for i, j = 1, . . . , n. The interpolant Ẑn(τ 2, σ2, φ) provides a best linear unbi-

ased estimate of w0 under the Matérn model with measurement error (5.1.4). By letting

{Kn(φ)}ij := Kw(s0 − si; 1, φ, ν), we have the mean squared error of the estimator (5.2.19)
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follows

Varτ2
0 ,σ

2
0 ,φ0
{Ẑn( τ 2, σ2, φ)− w0} = σ2

0{1− 2γn(σ2, φ)>Γn(τ 2, σ2, φ)−1γn(σ2
0, φ0)

+γn(σ2, φ)>Γn(τ 2, σ2, φ)−1Kn(φ0)Γn(τ 2, σ2, φ)−1γn(σ2, φ)} (5.2.20)

+τ 2
0γn(σ2, φ)>Γn(τ 2, σ2, φ)−2γn(σ2, φ) ,

where {τ 2
0 , σ

2
0, φ0} are the true generating values of {σ2, φ, τ 2}. Setting (τ 2, σ2, φ) = (τ 2

0 , σ
2
0, φ0)

in (5.2.20) yields

Varτ2
0 ,σ

2
0 ,φ0
{Ẑn( τ 2

0 , σ2
0, φ0)− w0} =

σ2
0{ 1 −γn(σ2

0, φ0)>Γn(τ 2
0 , σ

2
0, φ0)−1γn(σ2

0, φ0)} (5.2.21)

Theorem 8 in Chapter 3 of Stein [1999] characterizes the mean squared error of the best

linear unbiased estimate at location 0 as
(2πc)1/α

α sin (π/α)

(
δτ 2
)1−1/α

with observations at δj for

j 6= 0. Here α := 2ν + 1 and c := Cσ2φ2ν with C defined in (5.1.3). Following the

same argument, it is not hard to see that the mean squared error of the best linear unbiased

estimate (based on data in Rd) is of order δ2ν/(2ν+d). Stein [1999] proved this for observations

on the whole line (with a typo in the expression (44) of Stein [1999]). He also conjectured

that the above expression for the mean-square error holds for data on any finite interval. We

conduct simulations in Section 5.3.4 with the nugget effect to corroborate this.

5.3 Simulations

5.3.1 Set-up

The preceding results help explain the behavior of the inference from (5.1.1) as the sample size

increases within a fixed domain. Here, we present some simulation experiments to illustrate

statistical inference for finite samples. We simulate data sets based on (5.1.1) in a unit square

setting ν = 1/2 and σ2 = 1. We pick three different values of the nugget, τ 2 ∈ {0, 0.2, 0.8},

and choose the decay parameter φ so that the effective spatial range is 0.15, 0.4 or 1, i.e., the

correlation decays to 0.05 at a distance of 0.15, 0.4 or 1 units. Therefore, we consider 3×3 = 9
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different parameter settings. For each parameter setting, we simulate 1000 realizations of the

Gaussian process over n = 1600 observed locations. The observed locations are chosen from

a perturbed grid. We construct a 67× 67 regular grid with coordinates from 0.005 to 0.995

in increments of 0.015 in each dimension. We add a uniform [−0.005, 0.005]2 perturbation

to each grid point to ensure at least 0.005 units separation from its nearest neighbor. We

then choose n = 1600 locations out of the perturbed grid. Codes for studies in this Section

are available on https://github.com/LuZhangstat/nugget_consistency.

5.3.2 Likelihood comparisons

Theorem 5.2.2 suggests that it is difficult to distinguish between the two Matérn models with

measurement error when their microergodic parameters {κ, τ 2} are close to each other. This

property should be reflected in the behavior of the likelihood function for a large finite sample.

To see this, we plot interpolated maps of the log-likelihood among different grids of parameter

values. We consider the three values of τ 2
0 in Section 5.3.1 and φ0 = 7.49, which implies an

effective spatial range of approximately 0.4 units, and pick n = 900 observations from the

first realization generated from (5.1.1). This yields three different data sets corresponding

to the three values of τ 2
0 . We map the negative one-half of the log-likelihood in (5.2.1).

The interpolated maps of the log-likelihood are provided in Fig. 5.1 as a function of (τ 2, φ)

in the first two rows and of (σ2, φ) in the third row. The first column presents cases with

τ0 = 0, while the second and the third columns are for τ0 = 0.2 and 0.8, respectively. The

grid for φ ranges from 2.5 to 30 so that the effective spatial ranges between 0.1 and 1.2. We

specify the range of τ 2 and σ2 to be (0.0, 1.0) and (0.2, 4.2), respectively, so that the pattern

of the log-likelihood map around the true generating values of parameters can be captured.

All the interpolated maps, including the contour lines, are drawn to the same scale.

The first row of Fig. 5.1 corresponds to σ2 = σ2
0 = 1, the second row corresponds to

κ = κ0 and the third row corresponds to τ 2 = τ 2
0 . In the first row, we observe that similar

log-likelihoods are located along parallel lines φ + τ 2 = Const. This suggests that one can
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identify the maximum with either a fixed φ or τ 2 when σ2 = σ2
0. In the second row, we find

that contours for high log-likelihood values are situated around the actual generating value

of nugget, supporting the identifiability of the nugget, as provided in Theorem 5.2.2. The

log-likelihood along the φ-axis has a flat tail as φ decreases when fixing the nugget, which

indicates having the same value of the microergodic parameter κ = σ2φ2ν can result in equiv-

alent probability measures (Theorem 5.2.2). The third row reveals that the log-likelihood

now has close values along the curve σ2φ = Const, thereby corroborating Theorem 5.2.2.

5.3.3 Parameter estimation

We use maximum likelihood estimators to illustrate the asymptotic properties of the param-

eter estimates. To find the maximum likelihood estimators of {σ2, τ 2, φ, κ}, we use the log

of the profile likelihood for φ and η = τ 2/σ2, given by

log{PL(φ, η)} ∝ − 1

2
log[det{ρ(φ) + ηIn}]−

n

2

− n

2
log

[
1

n
y>{ρ(φ) + ηIn}−1y

]
(5.3.1)

where log{PL(φ, η)} = log[sup
σ2

{L(σ2, φ, η)}], ρ(φ) is the correlation matrix of the un-

derlying process w(·) over observed locations χn. We optimize (5.3.1) to obtain maxi-

mum likelihood estimators φ̂ and η̂. The maximum likelihood estimator for σ2 is σ̂2
n =

y>{ρ(φ̂) + η̂In}−1y/n. Calculations were executed using the R function optimx using the

Broyden-Fletcher-Goldfarb-Shanno algorithm [Fletcher, 2013] with φ > 0 and η > 0, and

η = 0 for models without a nugget.

We calculate estimators for {τ 2, φ, σ2, κ} for each realization with sample sizes 400, 900 and

1600. For each parameter setting and sample size, there are 1000 estimators for {τ 2, φ, σ2}

and κ. Figure 5.2 depicts the histograms for the maximum likelihood estimators for τ 2, φ, σ2

and κ obtained from simulations with the parameter setting {φ0, τ
2
0 } = {7.49, 0.2}. There is

an obvious shrinkage of the variance of estimators for τ 2 and κ as we increase the sample size

from 400 to 1600. We also observe that their distribution becomes more symmetric with an

increasing sample size. In contrast, the variance of the estimators for σ2 and φ do not have
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Figure 5.1: Interpolated maps of log-likelihoods. Darker shades indicate higher values. Pan-

els (a)–(c) correspond to σ2 = σ2
0 = 1, (d)–(f) correspond to σ2φ = φ0 = 7.49, and (g)–(i)

correspond to τ0 = τ 2
0 . The columns correspond to τ0 = 0.0, τ0 = 0.2, and τ0 = 0.8.
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Figure 5.2: Histograms of τ 2 (a)–(c), σ2 (d)–(f), φ (g)–(i) and κ = σ2φ2ν (j)–(l) for simulation

with φ0 = 7.49, τ 2
0 = 0.2.
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a significant decrease as sample size increases. This is supported by the infill asymptotic

results. The maximum likelihood estimators for τ 2 and κ are consistent and asymptotically

normal. The maximum likelihood estimators for φ and σ2 are not consistent and, hence,

their variances do not decrease to zero with increasing sample size.

Table 5.1–5.4 list percentiles, biases, and sample standard deviations for the estimates of

τ 2, φ, σ2 and κ for each of the 9 parameter settings and offer further insights about the finite

sample inference. When the spatial correlation is strong (φ is small), τ̂ 2 tends to be more

precise, while σ̂2 tends to have more variability. Unsurprisingly, the measurement error is

easily distinguished from a less variable latent process w(·). Highly correlated realizations

of w(·) results in less precise inference for σ2. If the nugget is larger, then the estimators for

φ, σ2 and κ are less precise; the presence of measurement error weakens the precision of the

estimates.

5.3.4 Interpolation

We use the kriging estimator in (5.2.19) and its mean squared prediction error (MSPE) in

(5.2.20) to explore spatial interpolation in the presence of the nugget. We use (5.2.19) to

predict the underlying process w(·) over unobserved locations. From Theorem 8 in Chapter 3

of Stein [1999], we expect a clear trend of convergence for d = 1. Let ν = 1/2, τ 2
0 = 0.2,

σ2
0 = 1.0 and φ0 = 7.49. We use (5.1.1) to generate observations over 12, 000 randomly picked

locations in [0, 1]. We compute the MSPE using 3 hold-out points {0.25, 0.5, 0.75} ∈ [0, 1]

for different subsets of the data with sample sizes ranging from 500 to 12, 000. Figure 5.3(a)

shows that the MSPE tends to approach 0 as sample size increases. This corroborates Stein’s

conjecture that the underlying process w(·) in (5.1.1) can be consistently estimated on a finite

interval.

Next, we use the simulated data set with n = 1600 locations over the unit square used

in Section 5.3.3. We calculate the MSPE using (5.2.20) and (5.2.21) over a 50× 50 regular

grid of locations over [0, 1]2. This is repeated for different data sets with sample sizes
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Table 5.1: Estimates of τ 2: percentiles, bias, and sample standard deviation(SD)

τ 2
0 φ0 n 5% 25% 50% 75% 95% BIAS SD

0.200 19.972 400 0.000 0.111 0.189 0.269 0.382 -0.007 0.112

900 0.102 0.159 0.197 0.235 0.289 -0.004 0.056

1600 0.141 0.175 0.199 0.221 0.252 -0.002 0.035

7.489 400 0.110 0.162 0.197 0.232 0.281 -0.003 0.053

900 0.157 0.181 0.198 0.216 0.238 -0.002 0.025

1600 0.170 0.187 0.199 0.211 0.227 -0.001 0.017

2.996 400 0.152 0.177 0.196 0.217 0.248 -0.003 0.029

900 0.173 0.188 0.199 0.212 0.227 0.000 0.017

1600 0.182 0.191 0.200 0.208 0.219 0.000 0.012

0.800 19.972 400 0.321 0.619 0.777 0.903 1.090 -0.047 0.229

900 0.615 0.725 0.792 0.861 0.974 -0.009 0.110

1600 0.682 0.746 0.795 0.841 0.910 -0.006 0.069

7.489 400 0.582 0.714 0.789 0.859 0.974 -0.015 0.114

900 0.689 0.752 0.794 0.835 0.897 -0.006 0.065

1600 0.725 0.768 0.799 0.826 0.869 -0.003 0.044

2.996 400 0.662 0.738 0.789 0.845 0.931 -0.007 0.081

900 0.720 0.766 0.797 0.828 0.871 -0.004 0.047

1600 0.737 0.775 0.799 0.823 0.856 -0.002 0.036
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Table 5.2: Estimates of φ: percentiles, bias, and sample standard deviation(SD)

τ 2
0 φ0 n 5% 25% 50% 75% 95% BIAS SD

0.000 19.972 400 16.151 18.355 19.992 21.798 25.003 0.223 2.708

900 16.706 18.642 20.072 21.548 23.928 0.182 2.185

1600 17.077 18.800 20.041 21.403 23.557 0.144 1.968

7.489 400 5.237 6.680 7.643 8.830 10.792 0.324 1.672

900 5.430 6.722 7.659 8.655 10.382 0.280 1.511

1600 5.520 6.730 7.664 8.687 10.245 0.255 1.450

2.996 400 1.584 2.489 3.297 4.315 5.859 0.479 1.339

900 1.605 2.468 3.316 4.298 5.792 0.463 1.299

1600 1.624 2.490 3.259 4.279 5.613 0.448 1.281

0.200 19.972 400 13.626 17.185 20.058 23.260 28.138 0.358 4.427

900 15.117 17.938 20.059 22.188 26.097 0.221 3.321

1600 15.749 18.328 19.972 21.728 25.02 0.158 2.779

7.489 400 4.596 6.271 7.757 9.377 12.430 0.535 2.364

900 5.081 6.521 7.820 9.179 11.572 0.480 1.998

1600 5.195 6.557 7.774 9.079 11.391 0.410 1.838

2.996 400 1.436 2.291 3.244 4.415 6.725 0.563 1.707

900 1.534 2.383 3.243 4.269 6.405 0.48 1.518

1600 1.570 2.420 3.217 4.208 6.130 0.453 1.424

0.800 19.972 400 11.804 16.533 20.359 24.806 33.859 1.315 6.932

900 14.650 17.405 20.077 23.065 27.831 0.490 4.175

1600 15.340 17.911 20.197 22.544 26.195 0.396 3.352

7.489 400 3.878 6.029 7.754 9.866 14.034 0.670 3.038

900 4.468 6.266 7.745 9.317 12.249 0.475 2.402

1600 4.691 6.430 7.735 9.142 11.663 0.405 2.157

2.996 400 1.259 2.281 3.279 4.723 7.385 0.681 1.975

900 1.443 2.364 3.249 4.38 7.199 0.603 1.771

1600 1.479 2.382 3.216 4.263 6.591 0.509 1.602
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Table 5.3: Estimates of σ2: percentiles, bias, and sample standard deviation(SD)

τ 2
0 φ0 n 5% 25% 50% 75% 95% BIAS SD

0.000 19.972 400 0.835 0.928 0.992 1.063 1.172 -0.004 0.103

900 0.859 0.938 0.997 1.063 1.155 0.001 0.091

1600 0.865 0.942 0.998 1.057 1.151 0.002 0.087

7.489 400 0.721 0.860 0.976 1.109 1.374 0.000 0.198

900 0.724 0.872 0.980 1.104 1.344 0.001 0.192

1600 0.733 0.871 0.978 1.111 1.356 0.002 0.189

2.996 400 0.527 0.700 0.905 1.217 1.856 0.014 0.446

900 0.532 0.708 0.900 1.216 1.843 0.010 0.427

1600 0.537 0.705 0.914 1.204 1.845 0.011 0.423

0.200 19.972 400 0.735 0.890 1.012 1.127 1.280 0.009 0.167

900 0.830 0.928 1.001 1.085 1.203 0.008 0.114

1600 0.860 0.941 1.000 1.071 1.170 0.008 0.097

7.489 400 0.706 0.848 0.978 1.129 1.435 0.006 0.22

900 0.732 0.855 0.972 1.128 1.373 0.002 0.203

1600 0.731 0.857 0.970 1.116 1.374 0.000 0.195

2.996 400 0.527 0.700 0.905 1.217 1.856 0.014 0.446

900 0.532 0.708 0.900 1.216 1.843 0.010 0.427

1600 0.537 0.705 0.914 1.204 1.845 0.011 0.423

0.800 400 19.972 0.653 0.874 1.025 1.208 1.531 0.050 0.265

900 0.761 0.911 1.014 1.110 1.257 0.011 0.149

1600 0.826 0.931 1.009 1.085 1.197 0.009 0.113

7.489 400 0.640 0.848 1.004 1.174 1.487 0.027 0.263

900 0.701 0.862 0.990 1.146 1.421 0.016 0.225

1600 0.710 0.860 0.985 1.129 1.413 0.012 0.215

2.996 400 0.482 0.715 0.955 1.254 1.916 0.047 0.482

900 0.517 0.720 0.950 1.240 1.874 0.044 0.462

1600 0.524 0.735 0.968 1.250 1.839 0.045 0.449
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Table 5.4: Estimates of κ: percentiles, bias, and sample standard deviation(SD)

τ 2
0 φ0 n 5% 25% 50% 75% 95% BIAS SD

0.000 19.972 400 17.200 18.596 19.752 21.117 23.197 -0.045 1.881

900 18.098 19.221 19.957 20.798 21.974 0.035 1.177

1600 18.764 19.457 19.973 20.531 21.399 0.039 0.805

7.489 400 6.538 7.092 7.499 7.943 8.568 0.032 0.619

900 6.903 7.236 7.500 7.784 8.146 0.018 0.387

1600 7.061 7.317 7.491 7.680 7.979 0.013 0.280

2.996 400 2.666 2.869 3.004 3.158 3.369 0.018 0.213

900 2.780 2.915 3.001 3.103 3.254 0.012 0.142

1600 2.841 2.935 3.000 3.077 3.191 0.011 0.106

0.200 19.972 400 11.760 16.227 20.111 24.691 31.242 0.677 6.052

900 14.827 17.806 19.879 22.566 26.735 0.313 3.693

1600 16.421 18.434 19.943 21.624 24.404 0.186 2.528

7.489 400 5.116 6.546 7.552 8.825 11.045 0.268 1.802

900 5.999 6.843 7.605 8.404 9.645 0.177 1.110

1600 6.197 7.033 7.585 8.141 9.085 0.105 0.850

2.996 400 2.010 2.546 3.040 3.533 4.322 0.092 0.716

900 2.282 2.706 3.028 3.343 3.900 0.055 0.493

1600 2.434 2.779 3.012 3.292 3.724 0.040 0.384

0.800 19.972 400 8.846 15.161 20.858 28.202 47.108 3.314 12.319

900 12.700 16.839 20.077 24.320 31.399 0.830 5.715

1600 14.846 17.751 20.215 22.941 26.997 0.530 3.888

7.489 400 4.080 5.980 7.677 9.679 13.537 0.591 2.929

900 5.084 6.394 7.626 8.923 10.918 0.269 1.808

1600 5.598 6.675 7.622 8.546 10.030 0.169 1.361

2.996 400 1.708 2.444 3.093 3.849 5.432 0.259 1.175

900 1.999 2.626 3.114 3.666 4.534 0.185 0.789

1600 2.210 2.712 3.086 3.478 4.210 0.129 0.618
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varying between 400 and 1600. Figure 5.3(b) shows that the MSPE decreases as sample size

increases. This trend still holds when the predictor is formed under misspecified models,

a finding similar to those in Kaufman and Shaby [2013] without the nugget. If ν is fixed

at the true generating value, then predictions under any parameter setting are consistent

and asymptotically efficient with no nugget effect. The proof in Kaufman and Shaby [2013]

is based on Stein [1993], hence their results do not carry over to our setting due to the

discontinuity in our covariogram at 0. (This technical difficulty was also pointed out by

Yakowitz and Szidarovszky [1985, p.38]). However, their results suggest empirical studies to

explore the asymptotic properties of interpolation.

To compare with results in Kaufman and Shaby [2013, Section 2.3], we examine two ratios

i)
Varτ2

0 ,σ
2
0 ,φ0
{ẑn(τ 2

1 , σ
2
1, φ1)− w0}

Varτ2
0 ,σ

2
0 ,φ0
{ẑn(τ 2

0 , σ
2
0, φ0)− w0}

, and ii)
Varτ2

1 ,σ
2
1 ,φ1
{ẑn(τ 2

0 , σ
2
1, φ1)− w0}

Varτ2
0 ,σ

2
0 ,φ0
{ẑn(τ 2

0 , σ
2
1, φ1)− w0}

.

Figure 5.3(c) compares the ratio defined by i). This ratio tends to approach 1 only when τ 2
1 =

τ 2
0 and κ = κ0. Unlike the case with no nugget, asymptotic efficiency is only observed when

the estimator is fitted under models with Gaussian measures equivalent to the generating

Gaussian measure. Figure 5.3(d) plots the ratio defined by ii). As in Fig. 5.3(c), this ratio

also tends to approach 1 only when τ 2
1 = τ 2

0 , κ = κ0. Based on our simulation study, we

posit that the asymptotic efficiency and asymptotically correct estimation of MSPE hold

only when τ 2
1 = τ 2

0 , κ = κ0.

5.4 Discussion

We have developed insights into inference under infill asymptotics of Gaussian process pa-

rameters in the context of spatial or geostatistical analysis in the presence of the nugget

effect. Our work in this Chapter can be regarded as an extension of similar investigations

without the nugget effect.

We have discussed the complications in establishing consistency and asymptotic efficiency

in parameter estimation and spatial prediction due to the discontinuity introduced by the
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Figure 5.3: The MSPE for w(·) at (a) unobserved locations with study domain [0, 1] (b) a

50×50 grid over [0, 1]2. The ratio of mean square predict error (ratio) for testing asymptotic

efficiency (c) and asymptotically correct estimation of MSPE (d)
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nugget. Tools in standard spectral analysis no longer work in this scenario. Understanding

the behavior of such processes will enhance our understanding of identifiability of process

parameters. For example, the failure to consistently estimate certain (non-microergodic)

parameters can also be useful for Bayesian inference where we can conclude that the effect

of the likelihood will never overwhelm the prior when calculating the posterior distribution

of non-microergodic parameters.

We anticipate the current manuscript to generate further research in variants of geosta-

tistical models with the nugget. For example, it is conceivable that these results will lead

to asymptotic investigations of covariance-tapered models that too have been investigated

without the nugget by Wang et al. [2011]. One can also explore whether some results, such

as Theorem 2 in Kaufman and Shaby [2013] where φ is estimated, will hold for the Matérn

model with the nugget. Our simulations also suggest further research in asymptotic effi-

ciency provided in Theorem 3 of Kaufman and Shaby [2013] in the presence of the nugget.

With recent interest in scaleable Gaussian process models, we can investigate asymptotic

properties of approximations indicated on the lines of Vecchia [1988] and Section 10.5.3 in

Zhang [2012]. Finally, we point out that the conditions in Assumptions 5.2.7 and 5.2.8 about

the eigenvalues estimates are quite expected and their rigorous proofs will constitute future

research. In particular, a rigorous proof of Assumption 5.2.8 is challenging and will be of

interest in general kernel methods and bandit problems.
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APPENDIX A

Appendix

A.1 Multivariate Response NNGP Model with Misalignment

The conjugacy in conjugate multivariate response model is violated with misalignment.

Therefore, for datasets with misalignment, we need to drop data on the location with mis-

alignment and use the “cleaned up” data to obtain quick inference through the conjugate

model. However, for NNGP based response model, we can provide a modified algorithm

that can utilize the “dropped” data to improve the inference of the conjugate multivariate

response NNGP model.

Assume S is the set of observed locations, where at least one response is recorded,Mi ⊂ S

is the set of locations where the ith response has not been observed. Let M = ∪{Mi}qi=1

and assume M has nm locations, then R = S \ M is the observed nr locations with no

misalignment. We label YR and XR as the responses and design matrix over R. The

posterior distributions p(Σ |YR) and p(β |Σ,YR) are given in (3.2.5) using R instead of S.

For s ∈ M, we use footnote os to denote the index of observed responses on s, the vector

of observed responses on location s is y(s)os and the corresponding coefficient matrix is βos.

Then, the posterior distribution of Σ given all observed data is

p(Σ |YR, {y(s)os}s∈M) ∝ {
∫
p({y(s)os}s∈M |Σ,β,YR)p(β |Σ,YR)dβ}p(Σ |YR)

∝ p({y(s)os}s∈M |Σ,YR)p(Σ |YR) .

(A.1.1)

Now consider the formulation of p({y(s)os}s∈M |Σ,YR). Let R be the reference set for the

response processes. Define the m nearest neighbor of s in R as Nm(s) and nR as the number
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of locations in R, we have

p({y(s)os}s∈M |Σ,β,YR) =
∏
s∈M

N(y(s)os | vec[x(s)>β + L>s {YR −XRβ}]os,Ds) ,

where Ls is a nR × 1 vector whose i-th element is zero if si /∈ Nm(s). Define the index of

nonzero elements in Ls as Pa[s], then we have

Ls[Pa[s]] = [C(s, Nm(s))C(Nm(s), Nm(s))−1]> ,

Ds = [C(s, s)−C(s, Nm(s))C(Nm(s), Nm(s))−1C(Nm(s), s)]Σ[os,os]

(A.1.2)

where C is defined as ρψ(s, s′)+(α−1−1)δs=s′ with δ denoting a Dirac’s delta function, Σ[os,os]

denotes the sub-matrix extracted from Σ with row and column index os. Let β |Σ,YR ∼

MN(µ∗,V∗,Σ) and define Vpr = Σ⊗V∗, by intergrating out β we have

{y(s)os}s∈M |Σ,YR ∼ N(H1vec(µ∗) + H2vec(YR), diag({Ds}s∈M) + H1VprH
>
1 ) , (A.1.3)

where

H1 = {Iq[os,:] ⊗ x(s)>}s∈M −H2[Iq ⊗XR] ,

H2 = {Iq[os,:] ⊗ L>s }s∈M .
(A.1.4)

Here, Iq[os,:] is the osth row of a q×q identity matrix, thus H2 provides the index of observed

response and weights of neighbors for s ∈M. Once q and p are relatively small, we can use

matrix determinant lemma and Sherman-Morrison-Woodbury formulas

det(diag({Ds}s∈M) + H1VprH
>
1 ) = det(Vupdate)det(Vpr)

∏
s∈M

det(Ds) ;

(diag({Ds}s∈M) + H1VprH
>
1 )−1 = diag({D−1

s }s∈M)−

diag({D−1
s }s∈M)H1V

−1
updateH

>
1 diag({D−1

s }s∈M) ,

(A.1.5)

with Vupdate = V−1
pr +H>1 diag({D−1

s }s∈M)H1 to facilitate the calculation of p({y(s)os}s∈M |Σ,YR).

Plugging the above two equations into the log-likelihood of {y(s)os}s∈M |Σ,YR

log{p({y(s)os}s∈M |Σ,YR)} = −1

2
log{det(diag({Ds}s∈M) + H1(Σ⊗V∗)H>1 )}−

1

2
{µ>M(diag({Ds}s∈M) + H1(Σ⊗V∗)H>1 )−1µM ,

µM = H1vec(µ∗) + H2vec(YR) ,

(A.1.6)
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then we can use the likelihood and (A.1.1) to conduct MCMC algorithm for Σ.

Since Σ is positive-definite, we represent Σ through LL> and update L in the MCMC chain

instead. The MCMC update requires transforming the prior by the Jacobian 2q
∏q

i=1 Lq−i+1
ii

to account for the map between L and Σ. Benefit from an informative prior Σ |YR, we

can estimate the covariance matrix of the posterior distribution of elements in L through

Σ |Y, and design a Gaussian distribution with a covariance matrix equals 2.382 times the

estimated covariance matrix as the proposal distribution. The Cholesky decomposition of

E(Σ |YR) = Ψ/(ν∗ − q − 1) also serves as a good initial value for L.

The posterior inference of β is more straightforward after obtaining the samples of Σ |YR, {y(s)os}s∈M.

We formulate β |Σ, YR |β,Σ and {y(s)os}s∈M |β,Σ as the following augmented linear sys-

tem, 
vec(D

− 1
2
R (I−AR)YR)

{y(s)os}s∈M −H2vec(YR)

vec(L−1
r µβ)


︸ ︷︷ ︸

Y∗

=


Iq ⊗D

− 1
2
R (I−AR)XR

H1

Iq ⊗ L−1
r


︸ ︷︷ ︸

X∗


β1

...

βq


︸ ︷︷ ︸
vec(β)

+


η1

η2

η3


︸ ︷︷ ︸

η

,

(A.1.7)

where AR and DR are the AK and DK defined in (3.2.12) with reference set being R, and

η follows a zero-centered Gaussian distribution with covariance matrix

Vη =


Σ⊗ IR 0 0

0 diag({Σ[os,os]}s∈M) 0

0 0 Σ⊗ Ip

 . (A.1.8)

The posterior distribution of vec(β) |Σ,YR, {y(s)os}s∈M follows MVN(µ∗β,V
∗
β) with

V∗β = (X∗>V−1
η X∗)−1 , µ∗β = V∗β(X∗>V−1

η Y∗) . (A.1.9)

The posterior prediction over unobserved and misaligned locations Taking R as

the reference set, the full conditional posterior distribution of a new location u is

y(u) |YR,Σ,β ∼ MVN(x(u)>β + Ã>u [YR −XRβ], D̃uΣ) , (A.1.10)
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where Ãu is a nR × 1 vector whose i-th element is zero if si /∈ Nm(u). Define the index of

nonzero elements in Ãu as Pa[s], then

Ãu[Pa[u]] = {C(u, Nm(u))[C(Nm(u), Nm(u)) + (α−1 − 1)Im]−1}> ,

D̃u = α−1 − Ãu[Pa[u]]>C(Nm(u),u) .
(A.1.11)

For s ∈M, label the index of unobserved responses at s by us, by the definition of NNGP,

y(s)us |YR, {y(s)os}s∈M,Σ,β = y(s)us |YR,y(s)os,Σ,β (A.1.12)

follows a Gaussian distribution with mean E{y(s) |YR}us−Σ[us,os]Σ
−1
[os,os]{y(s)os−E(y(s) |YR)os}

and covariance matrix D̃s(Σ[us,us] − Σ[us,os]Σ
−1
[os,os]Σ[os,us]) where E{y(s) |YR} = x(s)>β +

Ã>s [YR −XRβ]. The following gives the detailed algorithm:

Algorithm A.1: Obtaining inference of {β,Σ} and predictions for conjugate multivariate response NNGP with misalignment.

1. Obtain µ∗, V∗, Ψ∗ and ν∗ in Σ |YR ∼ IW(Ψ∗, ν∗) through step 1 in Algorithm 3.1.

2. Generate posterior samples of Σ |YR, {y(s)os}s∈M through MCMC algorithm.

(a) Take the Cholesky decomposition of E(Σ |YR) as the starting point L(0) of the MCMC chains

(b) Design proposal distribution for elements of L(l) as a multivariate Gaussian with 2.382 times the covariance

estimated from IW(Ψ∗, ν∗)

(c) Construct Ls and Ds for s ∈M as described in (A.1.2) O(nmm3)

(d) Construct H1, H2 in (A.1.4) and calculate µM in (A.1.6) O(nmm2)

(e) For l in 1 : L

i. Propose new Σ∗ = L∗L∗> based on Σ(l−1) = L(l)L(l)>

ii. Calculate the likelihood of the new proposed Σ∗ and Σ(l) given F(l)

• Obtain the Cholesky decomposition Lupdate of Vupdate in (A.1.5) O(p2q2nm)

• Generate u = L−1
updateH1diag({D−1

s }s∈M)µM O(pq2nm)

• Calculate log-likelihood l(Σ |YR, {y(s)os}s∈M) through O(nm)

l(Σ |YR)−
1

2
(logdet(Vupdate) + logdet(Vpr)−

∑
s∈M

logdet(Ds) + µ>Mdiag({D−1
s }s∈M)µM − u>u)

• Add the log of the Jacobian 2q
∏q
i=1 Lii to the log-likelihood from last step with Σ = LL>

iii. Accept the new Σ∗ as Σ(l) with the probability of the ratio of the likelihood of Σ∗ and Σ(l). Let Σ(l) =

Σ(l−1) when the new proposal is rejected.

3. Generate posterior samples of β

(a) Construct AR and DR in (A.1.7) O(nrm3)

(b) Construct X∗ and Y∗ in (A.1.7) O(nr(m+ 1)(p+ q))

(c) For each Σ(l) after burn-in
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i. Construct Vη in (A.1.8) and V∗β, µ∗β in (A.1.9) O((p+ q)q2n)

ii. Generate vec(β(l)) from MVN(µ∗β,V
∗
β)

4. Generate posterior predictive samples of unobserved responses on U and M.

(a) Obtain Ãu,D̃u in (A.1.11) for all u ∈ U . O(n′m3)

(b) For each pair of β(l),Σ(l)

i. Generate y(u) |β(l),Σ(l),YR for u ∈ U through (A.1.10) O(q2n′)

ii. Generate y(s)us |β(l),Σ(l),y(s)os for s ∈M through (A.1.12) O(q2nm)

We estimate the hyper-parameter set {ψ, α} through Algorithm 3.3, where in step 1 we use

S−k to denote the location of R without Sk.
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