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Abstract 

The ability of melatonin treatment of aged animals to partially restore the pattern of gene 

expression characterizing the younger animal has been frequently reported.  The current 

study examines the effect of melatonin upon age-related changes of some key proteins 

relevant to the aging process.  These include glial fibrillary acidic protein (GFAP), NF-B, 

and protein disulfide isomerase (PDI).  In addition, overall neuronal status was examined by 

Nissl staining and evidence of apoptosis was sought with TUNEL staining.  Some age-related 

changes were in an upward direction (GFAP, NF-B and the extent of apoptosis as judged by 

the TUNEL method), while others were depressed with age (PDI and intensity of Nissl 

staining).  However, in either case, melatonin treatment of aged mice invariably altered 

these parameters so that they came to more closely resemble the levels found in younger 

animals.  The extent of this reversal to a more youthful profile, ranged from complete (for 

NF-B) to very minor (for Nissl staining and PDI). Overall, these findings are in accord with 

prior data on the effect of melatonin on cortical gene expression and confirm the value of 

melatonin as a means of retarding events associated with senescence. 

 

Keywords:  Brain aging; melatonin; inflammation; apoptosis; protein folding 
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1.  Introduction 

Aging is characterized by a progressive deterioration of physiological functions and 

metabolic processes.  In the aging brain, increased neuroinflammation is evidenced by 

higher steady-state levels of inflammatory cytokines and decreases in anti-inflammatory 

molecules (Sparkman and Johnson, 2008).  Elevated inflammatory responses in the aged 

brain can lead to increased neuronal death (Finch and Morgan, 2007, Marchalant et al., 

2008) and this may form a platform enabling the progression of neurodegenerative disease 

(Teeling and Perry, 2009).   

Melatonin (N-acetyl-5-methoxytryptamine) was discovered as a hormone of the pineal 

gland, but it is meanwhile known to be also synthesized in various other organs, tissues, and 

cells (Pandi-Perumal et al., 2006, Hardeland, 2008).  Since melatonin levels decline sharply 

with age, it has been hypothesized that the reduction of melatonin levels with age 

contributes to the aging process (Hardeland, 2012). The decline in melatonin production in 

aged individuals has been suggested as one of the primary contributing factors for the 

development of age-associated neurodegenerative diseases (Bondy and Sharman, 2010, 

Pandi-Perumal, 2012).  Melatonin is a multifunctional signaling molecule that has a variety 

of important functions. Numerous studies have shown that melatonin is efficient in 

preventing cell damage under both acute and chronic states. These include sepsis, asphyxia 

in newborns, neurodegenerative diseases, cancer and inflammation (Sharman and Bondy, 

2010, Sharman et al., 2011, Hardeland et al., 2011, Boga et al., 2012). 

___________________________________________________________________________  

Abbreviations:  GFAP =glial fibrillary acidic protein, PDI = Protein disulfide isomerase 
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This suggests a potential therapeutic use for melatonin in different fields of medicine.  We 

have previously shown that during senescence, there is a selective increase in mRNA levels 

of many genes associated with immune function. Such genes include those for several 

inflammatory cytokines. These age-related increases can be attenuated or even reversed by 

extended treatment with dietary melatonin (Bondy and Sharman, 2007, Sharman et al., 

2008). 

The current study sought to extend this work by examination of some proteins of the 

signaling pathways associated with the inflammatory cascade.  It was found that age 

related changes in GFAP and NFkB activity, were attenuated by melatonin and that several 

morphological events associated with senescence were also attenuated by prior melatonin 

administration.  Protein disulfide isomerase (PDI), is thought to be for reconstructing 

misfolded protein in endoplasmic reticulum lumen and since PDI has been identified as a link 

between misfolded protein and neuron apoptosis, this role may be important in protection 

against several neurodegenerative diseases (Hoffstrom et al., 2010, Andreu et al., 2012).  

Levels of PDI and intensity of Nissl staining in aged mice were found to be enhanced by 

treatment with dietary melatonin.  

 

2. Results 

Treatment of mice with melatonin in the diet did not alter rates of food consumption or 

accretion of body weight in either young or old mice. In accordance with several prior 

reports, GFAP levels were increased with age. GFAP was expressed in cortex and the 

hippocampus area of brain of all groups of mice (Fig. 1a).  However, in the globus pallidus, 



 

5 

GFAP stain was reduced staining after melatonin treatment (Fig. 1b). The proportion of 

astrocytes expressing GFAP can be considered as a marker of astroglial activation. 

Quantitative analysis revealed that GFAP levels were markedly elevated with age and that 

this was significantly attenuated by melatonin treatment (Figs 1c).  NF-B levels were also 

elevated in aged mice and were completely restored to younger levels in older animals 

treated with melatonin (Figs. 2a,b) 

Protein disulfide isomerase (PDI) was visualized using immunohistochemical procedures (Fig. 

3a) and staining intensity was quantitated (Fig. 3b).  PDI was strongly reduced in cortex 

with aging and this was reversed to a minor extent by the melatonin treatment.  

Nissl staining was used to visualize the regional density of cortical neurons, and was reduced 

in the globus pallidus of older mice relative to young animals.  This reduction was partially 

but not completely restored by melatonin treatment (Figs. 4 a, b). 

The terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP end labeling 

(TUNEL) method, labels fragmented DNA, which is a characteristic of the apoptotic cells. 

Little evidence of apoptotic cells was seen in the YC and YM groups, but TUNEL-positive cells 

were found in the cortex and hippocampus in both groups of older mice (Fig. 5a). 

Quantitative analysis revealed that apoptotic cells were more prevalent in the OC group 

than in the OM group (Fig. 5b).  

 

3. Discussion 

Aging involves a series of multifaceted and complex degradation processes whose overall 

effect is to gradually impair cellular and ultimately organismic efficiency. In the nervous 



 

6 

system, these include behavioral, and neuroendocrine changes, leading to progressive loss 

of ability to adapt effectively to the environment, and increased susceptibility to disease. 

Melatonin is an indole neuroendocrine hormone secreted by the pineal gland.  It was first 

isolated from bovine pineal gland and characterized by Lerner and his colleagues (Lerner et 

al., 1958). The amphiphilic nature of melatonin allows it to pass readily through hall 

biological membranes (Bonnefont-Rousselot and Collin, 2010).  Levels of melaton in plasma 

and in brain decline markedly with senescence (Lahiri et al., 2004).  However, application of 

exogenous melatonin by way of the diet can increase cortical levels of free unconjugated 

melatonin (Lahiri et al., 2004).  This may extend life expectancy, postpone aging, reducing 

the incidence of age-related diseases (Bondy and Sharman 2010, Tan et al., 2010).  The 

beneficial effects of melatonin have been variously attributed to its properties as an 

antioxidant, a modulator of apoptosis and a positive regulator of immune functions (Bondy 

and Sharman 2010, Korkmaz et al., 2012).  Melatonin treatment can partially reverse many 

of the increases in expression of genes related to inflammation that take place with aging 

(Sharman et al.,2007). This leads to a more youthful response to an inflammatory challenge 

(Perreau et al., 2007).  This influence on gene expression may underlie the many reported 

attributes of melatonin.  

We observed an effect of melatonin treatment on reducing basal GFAP levels in medial 

globus pallidus. This is in accord with our prior finding that GFAP mRNA expression is also 

elevated with age (Sharman et al., 2008). Not only is GFAP elevated with age but also its 

increase in response to brain injury is accentuated and prolonged. This may contribute to 
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the worse cognitive outcome encountered following traumatic brain injury in the elderly  

(Sandhir et al., 2008).  

The age-related increase in NF-κB immunoreactivity that occurred despite the presence of 

an exogenous stimulus, was attenuated by melatonin treatment.  In nervous tissue, NF-κB 

is not merely a pro-inflammatory species but also has an important role in regulation of 

neurogenesis and short-term spatial memory (Mattson, 2005)) and in neuroprotection from 

stressors (Yang et al., 2007). Since neurogenesis and short-term spatial memory are not 

improved with aging, inhibition of an age-related elevation of NF-B is likely to be beneficial 

rather than detrimental.  

The mammalian PDI (protein disulfide-isomerase) family encompasses several highly 

divergent proteins that are involved in the processing and maturation of secretory proteins 

in the endoplasmic reticulum by catalyzing the rearrangement of disulfide bonds. Most 

secretory and membrane proteins contain disulfide bonds that are required for their 

functions (Vekitch et al., 2012). Protein disulfide bond formation in the endoplasmic 

reticulum (ER) is also critical for a formation of the correct tertiary structure of proteins, 

enabling normal protein folding  (Lipton et al., 2007, Uehara et al., 2006). Such chaperone 

activities can have important implications for neurodegenerative processes (Andreu et al., 

2012).  PDI may help protect the brain tissue by inhibition of pro-inflammatory events 

(Zhou et al., 2008).  The dramatic age-related decrease in PDI that we observed may be a 

factor underlying the excess inflammation and accretion of proteinaceous deposits found in 

the senescent brain.  Melatonin effect a limited but significant amelioration of this decline, 

and this may have therapeutic relevance.  

http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/Endoplasmic_reticulum
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Melatonin was able to dramatically reduce the extent of apoptosis in aged mice to levels 

characteristic of younger mice.  Apoptosis is one of the more critical processes implicated 

in aging and neurodegenerative pathologies, (Caballero and Coto-Montes, 2012). Melatonin 

can readily enter subcellular structures, cells and body fluids due to its lipophilic and 

hydrophilic dual-polarity molecular character. This penetrance capability may account for its 

ability to xxx Overall, these findings give further evidence of the potentially protective role of 

melatonin in retarding the progression of several adverse events associated with 

senescence. 

 

4. Experimental Procedures   

4.1 Animal Treatment 

Male B6C3F1 mice, a hybrid between C57BL/6 and C3H from Harlan Labs (Indianapolis, IN), 

aged 5.5 months (young group) and 23.4 months (old group), were housed two to four per 

cage and were maintained on a 12 h light/dark cycle in a temperature controlled (22 ± 1°C) 

room. The B6C3F1 hybrid was used in order to take advantage of both the genetic and 

phenotypic uniformity and the vigor (increased disease resistance, better survival under 

stress and greater natural longevity) typical of hybrids.  Food and water were provided ad 

libitum. Young (YC) and old (OC) control animals were fed a pelleted minimal basal diet 

(AIN-93 M, #100900, Dyets Inc., Bethlehem, PA) consisting of 10% sucrose and 14% casein 

(w/w) as well as a minimal salt and vitamin mix. The basal diet of two similarly aged cohorts 

(YM and OM, respectively) was supplemented with 40-ppm (w/w) melatonin (Sigma, St. 

Louis, MO) for 9.3 weeks. Twelve mice were used in each experimental group. All 
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experiments were approved by the Institutional Animal Care and Use Committee at the 

University of California, Irvine, and conformed to the National Institute of Health guide for 

the care and use of laboratory animals.  

4.2 Tissue preparation 

Mice were deeply anesthetized with an overdose of pentobarbital (150 mg/kg, i.p.) and then 

transcardially perfused with cold phosphate-buffered saline (PBS). After dissection, one half 

of the brain fixed overnight with 4% p-formaldehyde in PBS, pH 7.4. Thereafter, fixed tissue 

was stored in PBS/0.02% sodium azide (NaN3) at 4°C until use. Finally, the fixed brain tissue 

was further processed by dehydration in a series of graded ethanol solutions prior to 

paraffin embedding. The blocks were cut in serial 5um thick sections and mounted on 

adhered slides pretreated with Vectabond reagent (Vector Laboratories, Burlinghame, CA, 

USA) in a water bath at 45°C. Tissue slides were stored at 4°C before being stained. 

4.3 Immunohistochemistry  

Sections were heated for 25 m at 56°C and then deparaffinized in a xylene bath followed by 

rehydration using a graded series of ethanol concentrations. Immunohistochemistry was 

then carried out after incubation for 20 m at 80°C with antigen unmasking solution (Vector 

Laboratories, Burlinghame, CA, USA).  Endogenous peroxidase in tissue was blocked by 

treatment with 3% H2O2 in PBS, for 20 m at 25°C. Non-specific background staining was 

blocked by a 2-h incubation in 2% bovine serum albumin with 0.3% Triton X-100. Sections 

were then incubated with primary antibodies (GFAP 1:1000 Dako Inc., Carpentaria, CA, USA), 

NFkB 1:200, PDI 1:500 Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C, 

Sections were then rinsed in PBS with 0.1% Triton X-100, and incubated with biotinylated 

http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2008.05558.x/full#t1
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secondary antibody (Vector Laboratories) and streptavidin–horseradish peroxidase (Jackson 

ImmunoResearch, West Grove, PA, USA) for 1h at 25°C.  Finally, the sections were 

incubated for 2–5 min with diamino-benzidine (Vector Laboratories). Sections dehydrated in 

a series of graded ethanol, cleared with xylene, and then cover-slipped with DePeX (BHD; 

Biomedical Specialties, Santa Monica, CA, USA).  As controls, sections were incubated in 

parallel without primary antibody in order to ascertain that these sections failed to develop 

specific staining. 

Sections were cut with a microtome at a range of 8 um, and put on microscope slides and 

after a rapid rehydration were placed in 1% Methylene Blue for 30 minutes.  Then the 

slides were dehydrated, put in xylene for 5 minutes, covered with Entellan resinous 

embedding agent (Merck, Whitehouse Station, NJ), cover-slipped and then images were 

captured with a Nikon Eclipse 200 photomicroscope. 

4.4 Nissl Staining 

Nissl staining of formaldehyde-fixed section was used to highlight important structural 

features of neurons.  This was caried out with Nissl stain solution consisting of 20mg each 

of cresyl violet acetate, toluidine and thionine per 100 ml solution.  0.3 ml glacial acetic 

acid was added to each 100 ml Nissl stain solution immediately prior to use. The Nissl 

substance (rough endoplasmic reticulum) appeared dark blue due to the staining of 

ribosomal RNA, giving the cytoplasm a mottled appearance.  

4.5 TUNEL staining 

After deparaffinization, the sections were rinsed with 0.1 M PBS, pH 7.4, for 10 min at room 

temperature, treated with 0.3% Triton X-100 in 0.1 M PBS for 15 min at room temperature, 

http://en.wikipedia.org/wiki/Rough_endoplasmic_reticulum
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and rinsed in 0.1 M PBS. The sections were treated with proteinase K (Sigma) 2 µg/ml in 0.1 

M PBS for 15 min at room temperature. The sections were washed in 0.1 M for 5 min at 

room temperature, and then incubated in 0.25% acetic anhydride (Sigma) in water for 30 

min. After a wash in sterile dH2O for 5 min, the sections were incubated with 

prehybridization solution (0.14M Na cacodylate, 1mM cobalt chloride, 0.03Tris-HCl, pH 7.2) 

for 10 min at RT. The prehybridization solution was then replaced with hybridization solution 

(prehybridization solution plus reaction mixture: 40U/ml deoxynucleotidyl transferase 

enzyme, 0.2mg/ml BSA and 0.5nM/ml digoxigenin-11-dUTP) for 2 hours at 37°C. Sections 

were washed twice for 20 min in 2 x SSC, then washed two more times in 1 x SSC for 15 min 

and 0.5 x SSC for 15 min at room temperature.  Next, sections were washed in 0.1 M Tris 

for 15 min, pH 7.5, incubated in anti-digoxygenin (DIG)-11 (Roche, Nutley, NJ, USA) at 1:1000 

in Tris buffer with 2% BSA for 1.5h, then washed 3 times for 15 m in Tris at room 

temperature. The sections were next immersed in Tris buffer with 0.1M NaCl and 0.05M 

MgCl2, pH 9.5,for 15 min, and incubated in Tris 

-bromo-4-chloro-3-indolyl phosphate (BCIP) (Roche) for 

color development. Sections were rinsed several times in 0.01M Tris buffer with 1 mM EDTA 

and then mounted on glass slides with water-soluble mounting medium. 

4.6 Image Quantitation and Statistical analysis 

Immunostaining was observed under a Nikon Eclipse 80i microscope (Nikon, Japan) and 

images acquired with a Nikon DS high-resolution digital color camera (1280x1024 pixel) 

using NIS-Elements AR 3.0 software. Digital images were analyzed using Ver.3.00 analysis 

program (Nikon).  Percentage of immunostained area (field area of immunostaining/total 
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image area x100) was determined for all the markers studied by averaging several images 

per section that cover all or most of the region of study. All experiments were repeated at 

least twice, with n= 10 animals per group per marker.  All quantitative comparisons were 

performed on sections processed at the same time. 

Single ANOVA statistical analysis was used to assess the significance of the differences in 

anti-GFAP, NF-B, PDI and TUNEL staining reactivity among the animal groups.  A 

one-tailed value of p<0.05 was accepted as significant. 
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Figure legends 

Fig 1a.   Brain sections immunostained for GFAP.  YC = young controls, YM = young 

melatonin-treated, OC = old control, OM = old melatonin-treated. a) Magnification = X40, GP 

= medial globus pallidus., Magnification = X40  

Fig. 1b.   Enlarged aspect of globus pallidus.  Magnification = X200.   Arrows indicate 

activated astrocytes.  

Fig. 1c.   Quantitation of effect of melatonin treatment on GFAP and staining in globus 

pallidus of 4 and 24 month-old mice.  Bars indicate mean of 11-12 animals, ± S.E.M.  *: 

Value for mice treated with melatonin differs from value for corresponding untreated 

control of same age.  #: Old control value differs from that of the young control (p<0.05).  

 

Fig. 2a.   Immunostaining of the globus pallidus for NF-κB.  YC = young control, YM = 

young melatonin，OC = old control, OM = old melatonin.  Magnification = X200 

Fig. 2b.   Quantitation of effect of melatonin treatment on NFkB staining in globus pallidus 

of 4 and 24 month-old mice. Bars indicate mean of 11-12 animals, ± S.E.M. *: Value for mice 

treated with melatonin differs from value for corresponding untreated control of same age.  

#: Old control value differs from that of the young control (p<0.05). 

Fig. 3a.  Effect of melatonin treatment on protein disulfide isomerase (PDI) immunostaining 

of globus pallidus. Magnification = X200. 

 

Fig 3b.   Quantitation in globus pallidus of young and old animals. YC = young control, YM = 

young melatonin，OC = old control, OM = old melatonin. Bars indicate mean of 11-12 

animals, ± S.E.M. *: Value for mice treated with melatonin differs from value for 

corresponding untreated control of same age.  #: Old control value differs from that of the 

young control (p<0.05). 
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Fig. 4a.   Effect of melatonin treatment on Nissl staining of globus pallidus sections of 4 

and 24 month old mice. YC = young control, YM = young melatonin，OC = old control, OM = 

old melatonin.  Magnification = X200.   

Fig. 4b.  Quantitation of Nissl staining. Bars indicate mean of 11-12 animals, ± S.E.M.  *: 

Value for mice treated with melatonin differs from value for corresponding untreated 

control of same age.  #: Old control value differs from that of the young control (p<0.05).  

Fig 5a.   Effect of melatonin treatment on extent of apoptosis in cortex of 4 and 

24 month-old mice as determined by TUNEL staining.  Arrows indicate cells with positive 

TUNEL stain. YC = young control, YM = young melatonin，OC = old control, OM = old 

melatonin.  

Fig. 5b.   Quantitation of TUNEL staining.  Bars indicate mean of 11-12 animals, ± S.E.M.  

*: Value for mice treated with melatonin differs from value for corresponding untreated 

control of same age.  #: Old control value differs from that of the young control (p<0.05). 
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