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Abstract

Computations and Moduli Spaces for Non-archimedean Varieties

by

Qingchun Ren

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Tropical geometry and non-archimedean analytic geometry study algebraic varieties over
a field K with a non-archimedean valuation. One of the major goals is to classify varietiess
over K by intrinsic tropical properties. This thesis will contain my work at UC Berkeley
and my joint work with others towards the goal.

Chapter 2 discusses some moduli spaces and their tropicalizations. The image of the
complement of a hyperplane arrangement under a monomial map can be tropicalized combi-
natorially using matroid theory. We apply this to classical moduli spaces that are associated
with complex reflection arrangements. Starting from modular curves, we visit the Segre
cubic, the Igusa quartic, and moduli of marked del Pezzo surfaces of degrees 2 and 3. Our
primary example is the Burkhardt quartic, whose tropicalization is a 3-dimensional fan in
39-dimensional space. This effectuates a synthesis of concrete and abstract approaches to
tropical moduli of genus 2 curves.

Chapter 3 develops numerical algorithms for Mumford curves over the field of p-adic
numbers. Mumford curves are foundational to subjects dealing with non-archimedean vari-
eties, and it has various applications in number theory. We implement algorithms for tasks
such as: approximating the period matrices of the Jacobians of Mumford curves; comput-
ing the Berkovich skeleta of their analytifications; and approximating points in canonical
embeddings.

Chapter 4 discusses how to tropicalize del Pezzo surfaces of degree 5, 4 and 3. A generic
cubic surface in P3 is a Del Pezzo surface of degree 3, which is obtained by blowing up the
plane at 6 points. We study its tropicalization by taking the intrinsic embedding of the
surface surface minus its 27 lines. Our techniques range from controlled modifications to
running gfan on the universal Cox ideal over the relevant moduli space. We classify cubic
surfaces by combinatorial properties of the arrangement of 27 trees obtained from the image
of the 27 lines under this tropicalization.

Chapter 5 discusses the classical Cayley–Bacharach theorem, which states that if two
cubic curves on the plane intersect at 9 points, then the 9th point is uniquely determined if
8 of the points are given. The chapter derives a formula for the coordinates of the 9th point
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in terms of the coordinates of the 8 given points. Furthermore, I will discuss the geometric
meaning of the formula, and how it is related to del Pezzo surfaces of degree 3.
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Chapter 1

Introduction

This chapter gives an overview of this thesis. Section 1.1 discusses the goals of my work and
introduces the motivations of the problems studied in the following chapters. Section 1.2
introduces some background in tropical and non-archimedean geometry.

1.1 Goals

Let K be a non-archimedean valued field, such as C{{t}}, the field of Puiseux series. Let X
be a very affine algebraic variety over K, with an embedding X ↪→ (K∗)n. This thesis studies
the tropicalization of X, a polyhedral complex lying in Rn obtained by taking coordinate-wise
valuations of points in X (see Definition 1.2.1). One drawback of tropicalizations is that they
depend on the embeddings. As a result, in order to reveal the intrinsic and combinatorial
properties of the variety, one usually needs to reembed the variety X into a space with higher
dimension. One goal of tropical and non-archimedean analytic geometry is:

Question 1.1.1. Classify varieties by their intrinsic tropical properties.

For smooth curves over K, the answer to this question is well studied in the literature.
Since the 1970’s, the theory of semistable reductions and Berkovich analytic spaces has been
well developed [3, 9, 43, 67]. The theory associates to each smooth curve X its Berkovich
skeleton, an abstract metric graph with non-negative integer weights on each vertex. The
combinatorial types of the Berkovich skeleton gives a classification of smooth curves. For
surfaces and higher dimensional varieties, the notion of intrinsic tropicalization is still vague.
One needs to find out nice intrinsic properties before defining the classification.

This thesis focuses on the algorithmic and computational aspect of the problem. Given
a variety X expressed explicitly in terms of its defining equations, this thesis attempts to
develop an algorithm which tells what class X belongs to. It is beyond the scope of this
thesis to give a general algorithm that works for all X. Instead, for some specific types of
varieties, the classification algorithm can be achieved. This computational problem is also
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studied by number theorists. For example, finding the Berkovich skeleton of a curve over a
p-adic field is the central step in studying a curve defined over a number field [17].

For elliptic curves, it is widely known that the Berkovich skeleton depends on the j-
invariant: if val(j) < 0, it is a cycle of length −val(j). Otherwise, it consists of a single point
with weight 1. In the former case, the recent work [29] develops an algorithm that outputs
a nice embedding X ↪→ P2 so that the tropical curve is in honeycomb form, which contains
a cycle whose lattice length equals −val(j).

This thesis focuses on two further cases: curves of genus 2 and 3, and del Pezzo surfaces
of degree 3 and 4.

Genus 2 and 3 curves

Chapter 2 studies covering spaces of the moduli space of genus 2 curves. ConsiderM0,6, the
moduli space of 6 marked points on the line. Each point in M0,6 corresponds to 6 distinct
points x1, x2, x3, x4, x5, x6 on P1, thus determines a genus 2 curve

y2 = (x− x1)(x− x2)(x− x3)(x− x4)(x− x5)(x− x6).

In this way, M0,6 becomes a covering space of M2, the moduli space of genus 2 curves.
The group S6 acts on M0,6 by permuting the 6 points. Therefore, the induced action on
M2 is trivial. We study a natural embedding M0,6 ↪→ P14, where S6 acts by permuting
coordinates. The image of this embedding is known as the Segre cubic threefold. We compute
the tropicalization of this threefold. It is a 3-dimensional fan, with 7 orbits of faces under
the action of S6. Our result states that the classification of genus 2 curves by the 7 possible
combinatorial types of the Berkovich skeleta can be seen from the 7 orbits.

Theorem 2.5.3. Let K be a complete non-archimedean field.
(a) There is a commutative square

M0,6(K) -Mtr
0,6

M2(K)
?

-Mtr
2

?

The left vertical map sends 6 points in P1 to the genus 2 hyperelliptic curve with these
ramification points. The horizontal maps send a curve (with or without marked points)
to its tropical curve (with or without leaves at infinity). The right vertical map is
a morphism of generalized cone complexes relating the second and fourth columns of
Table 2.5.

(b) The top horizontal map can be described in an alternative way: under the embedding of
M0,6 into P14 given by (2.5), take the valuations of the 15 coordinates m0,m1, . . . ,m14.
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Therefore, the 15 coordinates m0,m1, . . . ,m14 play the same role as the j-invariant in
the genus 1 case. Note that Mtr

0,6 is the space of phylogenetic trees with 6 taxa, and Mtr
2

is the space of metric graphs with genus 2 of “dumbbell” and “theta” shapes and their
degenerations.

We also study the Burkhardt quartic threefold, another covering space of M2. It has a
natural embedding into P39 and its symmetric group is the complex reflection group G32.
Again, we compute the tropicalization of the Burkhardt quartic, which is also a 3-dimensional
fan with 7 orbits of faces. We conjecture that an analog of Theorem 2.5.3 holds.

Chapter 3 takes an analytic approach to the problem. Instead of tropicalizing the curve,
we start with generators of a Schottky group Γ, a subgroup of PGL(2, K) that satisfies
certain conditions. A smooth curve is analytically isomorphic to (P1\Σ)/Γ, where Σ is a
discontinuous subset of P1. We implemented algorithms that takes g free generators of a
Schottky group and

• Finds a period matrix for the abelian variety Jac(C);

• Finds the Berkovich skeleton of the curve;

• Finds points in a canonical embedding of the curve C into Pg−1.

We succeeded in recovering the quartic equation of a genus 3 curve from its Schottky group
with our implementation.

Del Pezzo surfaces

Let X be a smooth surface in P3 defined by a cubic equation f(x0, x1, x2, x3) = 0. The surface
can be obtained by blowing up the plane at 6 points in general position. It is classically
known that there exist 27 straight lines lying in the surface. Among these lines, 15 comes
from lines passing through each pair of the 6 points, 6 comes from conics passing through 5
of the 6 points, and the other 6 are exceptional divisors of the blowing up.

Chapter 4 describes our result on tropicalizations of these surfaces. One method we
use is to reembed X into a 19-dimensional space whose coordinate ring is the Cox ring,
whose definition is independent of the choice of coordinates. It is generated by 27 elements
E·, F·, G· corresponding to the 27 lines. This reembedding respects the symmetry by W (E6),
the automorphism group of the configuration of the 27 lines. In addition, this embedding
gives the intrinsic torus of the very affine variety obtained by removing the 27 lines from X.

Another method involves a family of cubic surfaces, which is a map G ′ → Y ′ whose fibers
are cubic surfaces. All isomorphism classes of smooth cubic surfaces appear as fibers in the
family. With appropriate embeddings chosen, tropical cubic surfaces appear as subsets of
the fibers of the tropicalization of this map, following the theory developed in [50]. If we
exclude some special cubic surfaces (the ones with Eckhart points) from the family, then the
fibers of the tropicalized map are exactly the tropical cubic surfaces.
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The third method we use is tropical modifications. The process is the tropical analog of
blowing up the plane at 6 points. We start with a tropical plane with 3 marked points on it
(without loss of generality, we may assume that the other 3 points lie at infinity). In each
step, we “blow up” the surface at a tropical line. We continue this procedure until we see all
of the 27 tropical lines at infinity. Each of these is a metric tree with 10 leaves at infinity.

Using our methods, we derived the following result:

Theorem 4.1.1. There are two generic types of tropical cubic surfaces. They are contractible
and characterized at infinity by 27 metric trees, each having 10 leaves. The first type has
73 bounded cells, 150 edges, 78 vertices, 135 cones, 189 flaps, 216 rays, and all 27 trees are
trivalent. The second type has 72 bounded cells, 148 edges, 77 vertices, 135 cones, 186 flaps,
213 rays, and three of the 27 trees have a 4-valent node. (For more data see Table 4.1.)

A simpler case is the blowing-up of the plane at 5 points in general position. This surface
can be embedded as the intersection of two quadratic hypersurfaces in P3. There is only one
generic combinatorial type for the tropical surface, and we computed its face numbers.

Chapter 5 describes an independent result based on the classical Cayley–Bacharach the-
orem. If two cubic curves in the plane intersect at 9 points, then the 9th point is uniquely
determined if 8 of the points are given. The chapter derives a formula for the coordinates of
the 9th point in terms of the coordinates of the 8 given points. There is a geometric relation
between the Cayley–Bacharach theorem and cubic surfaces: fix 6 of the 8 given points, and
let S be the cubic surface obtained by blowing up the plane at these 6 points. Then, the
factors in the formula reveals the combinatorial information: the 9th point lies on one of the
27 lines if and only if the corresponding factor vanishes. Finally, the chapter gives a formula
of the coordinate of the preimage of the 9th point in S with respect to the Cox embedding.

1.2 Background

There are several ways to characterize a tropical variety. One may define a tropical variety as
the set of non-smooth points of a polynomial in the min-plus algebra. Another approach is to
define a tropical variety as the limit of the amoeba, the set obtained by taking coordinate-wise
logarithm of points in a complex variety. In some occasions, tropical varieties are regarded as
combinatorial objects in its own right. This thesis takes a fourth approach: a tropical variety
is the tropicalization of an algebraic variety over a valued field with a fixed embedding into
a torus. A thorough introduction to tropical geometry can be found in [62] and [64].

Let K be a field with a non-archimedean valuation val : K → R ∪ {∞}. One example
of such a field is Qp, the field of p-adic numbers, with the valuation val

(
pk a

b

)
= k for

gcd(a, p) = gcd(b, p) = 1. Another example is C{{t}}, the field of Puiseux series, with the

valuation val
(
tk a+o(1)
b+o(1)

)
= k for a, b ∈ C\{0}. For such a field K, let R = {x ∈ K|val(x) ≥ 0}

be its valuation ring. It is a local ring with maximal ideal m = {x ∈ K|val(x) ≥ 0}. Let
k = R/m be its residue field. The absolute value is given by |x| = exp(−val(x)). This
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absolute value induces a topology on K with metric d(x, y) = |x− y|. In the case K = Qp,
the absolute value is usually replaced by |x|p = p−val(x) for convenience without affecting the
induced topology.

The absolute value is exotic compared with the usual absolute values of R and C. For
example,

|x+ y| ≤ min(|x|, |y|), for x, y ∈ K (1.1)

This property will play a fundamental role in Chapter 3.

Definition 1.2.1. Let X be a very affine variety over K with an embedding X ↪→ (K∗)n.
The tropicalization map of X with respect to this embedding is

trop: X → val(K∗)n,

(x1, x2, . . . , xn) 7→ (val(x1), val(x2), . . . , val(xn)).

The tropicalization of X, denoted trop(X), is the image of the tropicalization map.

The field K is usually assumed to be algebraically closed. In this case, the group val(K∗)
is a dense subset of R. For simplicity, the tropicalization trop(X) is usually defined as
the closure of the image of the tropicalization map in Rn. This definition will be used
throughout this thesis, unless specified otherwise. There are two variants of this definition:
if X is an affine variety with an embedding X ↪→ Kn, then trop(X) can be defined as a
subset of (R ∪ {∞})n. On the other hand, if X is a projective variety with an embedding
X ↪→ Pn, then trop(X) can be defined as the image of the map (x0 : x1 : . . . : xn) 7→
(val(x0), val(x1), . . . , val(xn)) in TPn = ((R ∪ {∞})n+1\{(∞,∞, . . . ,∞)}/(1, 1, . . . , 1).

Berkovich skeleta

Tropicalization is not an intrinsic way to study algebraic varieties because it depends on a
specific embedding. The Berkovich analytic space overcomes this difficulty by taking the
inverse limit of all tropicalizations, as shown by Payne in [72]:

Theorem 1.2.2. Let X be an affine variety over K. Then, the Berkovich analytification
Xan is homeomorphic to the inverse limit lim←− trop(X), where the limit is taken with re-
spect to morphisms between affine embeddings of X in the form of permuting and dropping
coordinates.

In general, Xan is defined as the set of multiplicative seminorms on the coordinate ring
of X that are compatible with the absolute value of K [9]. For the purpose of this thesis, it
is sufficient to take the above theorem as a working definition. The Berkovich analytification
of a projective variety is obtained by gluing the analytifications of its affine charts.

The analytic projective line (P1)an is of great significance in the following chapters. As
detailed in [8], (P1)an consists of four types of points:

• Type 1 points are just the usual points of P1.
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Figure 1.1: The Berkovich projective line over Q3
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• Type 2 points correspond to closed balls B(a, r)+ = {x ∈ K : |x − a| ≤ r} where
r ∈ |K×|.

• Type 3 points correspond to closed balls B(a, r)+ where r /∈ |K×|.

• Type 4 points correspond to equivalence classes of sequences of nested closed balls
B+

1 ⊃ B+
2 ⊃ · · · such that their intersection is empty.

There is a metric on the set of Type 2 and Type 3 points, defined as follows: let P1 and
P2 be two such points and let B(a1, r1)+ and B(a2, r2)+ be the corresponding closed balls.

(1) If one of them is contained in the other, say B(a1, r1)+ is contained in B(a2, r2)+, then
the distance d(P1, P2) is logp(r2/r1).

(2) In general, there is a unique smallest closed ball B(a3, r3)+ containing both of them.
Let P3 be the corresponding point. Then, d(P1, P2) is defined to be d(P1, P3)+d(P3, P2).

The metric can be extended to Type 4 points.
This metric makes (P1)an a tree with infinite branching, as we now describe. There is

a unique path connecting any two points P1 and P2. In case (1) above, the path is defined
by the isometry t 7→ B(a1, p

t)+, t ∈ [log (r1), log (r2)]. It is straightforward to check that
B(a1, r2)+ = B(a2, r2)+. In case (2) above, the path is the concatenation of the paths from
P1 to P3 and from P3 to P2. Then, Type 1 points become limits of Type 2 and Type 3 points
with respect to this metric. More precisely, if x 6= ∞, then it lies at the limit of the path
t 7→ B(x, p−t)+, t ∈ [0,+∞). Type 1 points behave like leaves of the tree at infinity. For any
two Type 1 points x, y, there is a unique path in (P1)an connecting them, which has infinite
length. A picture for the Berkovich projective line over Q3 is shown in Figure 1.1.
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Another example studied in this thesis is the minimal skeleton of the analytification of
complete smooth genus g curves. The following definitions are taken from Baker, Payne and
Rabinoff [9], with appropriate simplification.

Definition 1.2.3. (1) The skeleton of an open annulus B\B′ = {x ∈ K : r < |x−a| < R},
where r, R ∈ |K∗|, is the straight path between the Type 2 points corresponding to
B(a, r)+ and B(a,R)+.

(2) Let C be a complete smooth curve over K. A semistable vertex set V is a finite set
of Type 2 points in Can such that Can\V is the disjoint union of open balls and open
annuli. The skeleton corresponding to V is the union of V with all skeleta of these
open annuli.

(3) If genus(C) ≥ 2, then Can has a unique minimal skeleton. The minimal skeleton is
the intersection of all skeleta, and it is a finite metric graph. We sometimes call this
minimal skeleton the abstract tropical curve of C.

Definition 1.2.4. An algebraic semistable model of a smooth curve C over K is a flat and
proper scheme X over R whose generic fiber XK is isomorphic to C and whose special fiber
Xk satisfies

• Xk is a connected and reduced curve, and

• all singularities of Xk are ordinary double points.

Semistable models are related to skeleta in the following way: take a semistable model X
of C. Associate a vertex for each irreducible component of Xk. For each ordinary intersec-
tion of two irreducible components in Xk, connect an edge between the two corresponding
vertices. The resulting graph is combinatorially a skeleton of Can. Algorithmic computation
of semistable models is a hard problem in general. Some recent results are discussed in [6,
§1.2] and [17, §3.1].

Moduli spaces of tropical varieties

A family of algebraic varieties with Property P is a morphism F → M such that the fiber
over each point in M is a variety with Property P. In order to study properties of such
varieties, it is desirable to consider the universal family, which is, imprecisely speaking,
a family such that there is exactly one fiber for each isomorphism class of varieties with
Property P. If so, the object M is called the moduli space of varieties with Property P.
Usually, the moduli is described as an algebraic stack, as in the extensive treatment ofMg,n,
the moduli of genus g curves with n marked points, in [51].

Suppose that there is a uniform way of tropicalizing algebraic varieties with Property P.
The fiber over each point in M gives a tropical variety. The set of isomorphism classes of
these tropical varieties forms a moduli space Mtr. Thus, we define the tropicalization map
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M → Mtr. For example, if M = Mg,n, then Mtr can be taken as the moduli space of
abstract tropical curves of genus g, and the tropicalization map M → Mtr takes a point
in M representing a curve X to the point in Mtr representing the Berkovich skeleton of
X. The following fundamental result by Abramovich, Caporaso and Payne [3] roughly says
“moduli of tropical curves is isomorphic to tropicalization of moduli of curves”:

Theorem 1.2.5. The moduli space of abstract tropical curves Mtr
g,n is isomorphic to the

skeleton of Mg,n, and the map Mg,n →Mtr
g,n is a retraction.

From the perspective of moduli space, the classification of varieties can be viewed as a
partition in the moduli space M. This partition is the pull back of the partition of Mtr

along the mapM→Mtr. One could evaluate the mapM→Mtr at the point representing
X in order to find the intrinsic tropicalization of X. This can be done much more efficiently
if M is an algebraic variety and the map M→Mtr is the same as the tropicalization map
M→ trop(M) with an appropriate choice of embedding, as in Chapters 2 and 4.

Example 1.2.6. Consider M = M0,n, the moduli space of n distinct marked points on a
line. Let Mtr

0,n be the space of unrooted metric trees with n leaves at infinity. We define a
mapM0,n →Mtr

0,n as follows: given n marked points on P1, we take the union of the paths
in (P1)an between each pair of marked points.

Suppose n ≥ 4. Up to a projective transformation, three of the marked points can be
sent to 0, 1 and ∞. Let p4, . . . , pn be the other points. Then, M0,n

∼= {(p4, . . . , pn)|pi 6=
0, pi 6= 1, pi 6= pj} ⊂ Kn−3. The tropicalization with respect to this embedding is an open
subset in Rn−3, which does not reflect the combinatorial structure of Mtr

0,n.
A better way to tropicalizeM0,g can be seen via the Grassmannian Gr(2, n), the space of

2×n matrices of rank 2 over K modulo elementary row operations. It has a natural Plücker

embedding into P(n
2) by the 2× 2 minors. Let Gr(2, n)0 be the open subset where all Plücker

coordinates are nonzero. The columns of a 2×n matrix can be regarded as the homogeneous
coordinates of n points in P1. Different 2× n matrices may give the same n points, for the
homogeneous coordinates are defined up to a constant factor. In fact, M0,n is isomorphic
to the toric quotient Gr(2, n)0/(K∗)n−1, where the torus (K∗)n−1 acts by multiplying each
of the first n − 1 columns of the matrix by a constant. On the tropical side, this action

becomes translation along a linear subspace in R(n
2) of dimension n− 1. It is shown that the

tropicalization of Gr(2, n)0 with respect to the Plücker embedding modulo the translation is
exactly Mtr

0,n.
A discussion on the role of M0,n in phylogenetics can be found in [61].

Moreover, suppose that the moduli spaceM is an algebraic variety, and that embeddings
of F andM are chosen so that the morphism F →M is a coordinate projection. It induces
a map of tropical varieties trop(F)→ trop(M) which is also a coordinate projection. Let X
be the fiber over a point p ∈M. Then, the tropicalization trop(X) is a subset of the fiber of
the tropical map over trop(p). Therefore, by tropicalizing F and examining the fibers, one
obtains information about tropicalizations of varieties with Property P in general. With a
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suitable choice of an embedding of F , one sees the tropcal varieties exactly in the fibers of
the tropical map.

Figure 1.2: The universal family of tropical elliptic normal curves of degree 5.

Example 1.2.7. The family A(5)→ P1, defined in Section 2.1, is a family of elliptic curves
with 5 marked points. Figure 1.2 illustrates the tropicalized family trop(A(5))→ TP1. The
fiber of each point in the base TP1 is a tropicalization of an elliptic curve over K. The fibers
come in two classes: the fiber over the origin contains a distinguished point with 5 rays,
while each of the other fibers contains a cycle. The pull back of this partition is exactly
the classification of the fibers of A(5)→ P1 by the two types of Berkovich skeleta of elliptic
curves.
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Chapter 2

Tropicalization of Classical Moduli
Spaces

This chapter is joint work with Steven Sam and Bernd Sturmfels. It is published with the
same title, to appear in Mathematics in Computer Science, Special Issue on Computational
Algebraic Geometry [75].

2.1 Introduction

Algebraic geometry is the study of solutions sets to polynomial equations. Solutions that de-
pend on an infinitesimal parameter can be analyzed combinatorially using min-plus algebra.
This insight led to the development of tropical algebraic geometry [62]. While all algebraic
varieties and their tropicalizations may be explored at various level of granularity, varieties
that serve as moduli spaces are usually studied at the highest level of abstraction. This
chapter does exactly the opposite: we investigate and tropicalize certain concrete moduli
spaces, mostly from the 19th century repertoire [56], by means of their defining polynomials.

A first example, familiar to all algebraic geometers, is the moduli spaceM0,n of n distinct
points on the projective line P1. We here regardM0,n as a subvariety in a suitable torus. Its
tropicalization trop(M0,n) is a simplicial fan of dimension n − 3 whose points parametrize
all metric trees with n labeled leaves. The cones distinguish different combinatorial types of
metric trees. The defining polynomials of this (tropical) variety are the

(
n
4

)
Plücker quadrics

pijpk`− pikpj` + pi`pjk. These quadrics are the 4× 4-subpfaffians of a skew-symmetric n×n-
matrix, and they form a tropical basis forM0,n. The tropical compactification defined by this
fan is the moduli space M0,n of n-pointed stable rational curves. The picture for n = 5 is
delightful: the tropical surface trop(M0,5) is the cone over the Petersen graph, with vertices
labeled by the 10 Plücker coordinates pij as in Figure 2.1.

A related example is the universal familyA(5) over the modular curve X(5). The relevant
combinatorics goes back to Felix Klein and his famous 1884 lectures on the icosahedron [60].
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Figure 2.1: The Petersen graph represents the tropicalization of M0,5.

Following Fisher [39], the surface A(5) sits in P1 × P4 and has the Pfaffian representation

rank


0 −a1x1 −a2x2 a2x3 a1x4

a1x1 0 −a1x3 −a2x4 a2x0

a2x2 a1x3 0 −a1x0 −a2x1

−a2x3 a2x4 a1x0 0 −a1x2

−a1x4 −a2x0 a2x1 a1x2 0

 ≤ 2. (2.1)

The base of this family is P1 with coordinates (a1 : a2). The tropical surface trop(A(5))
is a fan in TP1 × TP4, which is combinatorially the Petersen graph in Figure 2.1. The
central fiber, over the vertex of TP1 given by val(a1) = val(a2), is the 1-dimensional fan
with rays e0, e1, e2, e3, e4. These correspond to the edges 34-25, 12-35, 45-13, 23-14, 15-24.
For val(a1)<val(a2), the fiber is given by the pentagon 12-34-15-23-45-12 with these rays
attached. For val(a1)>val(a2), it is the pentagram 35-14-25-13-24-35 with the five rays.
Each of the edges has multiplicity 5. The map from trop(A(5)) onto TP1 is visualized in
Figure 1.2.

The discriminant of our family A(5)→ P1 is the binary form

a11
1 a2 − 11a6

1a
6
2 − a1a

11
2 , (2.2)

whose 12 zeros represent Klein’s icosahedron. The modular curve X(5) is P1 minus these 12
points. For each (a1 : a2) ∈ X(5), the condition (2.1) defines an elliptic normal curve in P4.

Throughout this chapter we work over an algebraically closed field K of characteristic 0.
Our notation and conventions regarding tropical geometry follow [62]. For simplicity of ex-
position, we identify the tropical projective space TPn with its open part Rn+1/R(1, 1, . . . , 1).

The adjective “classical” in our title has two meanings. Classical as opposed to tropical
refers to moduli spaces that are defined over fields, the usual setting of algebraic geometry.
The foundations for tropicalizing such schemes and stacks are currently being developed,
notably in the work of Abramovich et al. [3] and Baker et al. [9] (see [2] for a survey).
These rest on the connection to non-archimedean geometry. Classical as opposed to modern
refers to moduli spaces that were known in the 19th century. We focus here on the varieties
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featured in Hunt’s book [56], notably the Segre cubic, the Igusa quartic, the Burkhardt
quartic, and their universal families. We shall also revisit the work on tropical del Pezzo
surfaces by Hacking et al. in [50] and explain how this relates to the tropical Göpel variety
of [74, §9].

Each of our moduli spaces admits a high-dimensional symmetric embedding of the form

Pd linear
↪→ Pm monomial

99K Pn. (2.3)

The coordinates of the first map are the linear forms defining the m+1 hyperplanes in a com-
plex reflection arrangement H in Pd, while the coordinates of the second map are monomials
that encode the symplectic geometry of a finite vector space. The relevant combinatorics
rests on the representation theory developed in [46, 47]. Each of our moduli spaces is written
as the image of a map (2.3) whose coordinates are monomials in linear forms, and hence the
formula in [33, Theorem 3.1] expresses its tropicalization using the matroid structure of H.

Our warm-up example, the modular curve X(5), fits the pattern (2.3) for d = 1,m = 11
and n = 5. Its arrangement H ⊂ P1 is the set of 12 zeros of (2.2), but now identified with
the complex reflection arrangement G16 as in [46, §2.2]. If we factor (2.2) into six quadrics,

(
a1a2

)
·

5∏
i=1

(
(γ5−ia1 + (γ+γ4)a2)(γia1 + (γ2+γ3)a2

)
,

where γ is a primitive fifth root of unity, then these define the coordinates of P11 monomial
99K P5.

The image is a quadric in a plane in P5, and X(5) is now its intersection with the torus
G5
m. The symmetry group G16 acts on P5 by permuting the six homogeneous coordinates.

The tropical modular curve trop(X(5)) is the standard one-dimensional fan in TP5, with
multiplicity five and pentagonal fibers as above. But now the full symmetry group acts on
the surface A(5) ⊂ P5×P4 and the corresponding tropical surface by permuting coordinates.

We next discuss the organization of this chapter. In Section 2.2 we study the Segre
cubic and the Igusa quartic, in their symmetric embeddings into P14 and P9, respectively.
We show that the corresponding tropical variety is the space of phylogenetic trees on six
taxa, and we determine the universal family of tropical Kummer surfaces over that base.
In Section 2.3 we study the Burkhardt quartic in its symmetric embedding in P39, and,
over that base, we compute the universal family of abelian surfaces in P8 along with their
associated tricanonical curves of genus 2. In Section 2.4 we compute the Bergman fan of the
complex reflection arrangement G32 and from this we derive the tropical Burkhardt quartic
in TP39. The corresponding tropical compactification is shown to coincide with the Igusa
desingularization of the Baily–Borel–Satake compactification of A2(3). In Section 2.5 we
relate our findings to the abstract tropical moduli spaces of [18, 26]. Figure 2.5 depicts the
resulting correspondence between trees on six taxa, metric graphs of genus 2, and cones
in the tropical Burkhardt quartic. In Section 2.6 we study the reflection arrangements of
types E6 and E7, and we show how they lead to the tropical moduli spaces of marked del
Pezzo surfaces constructed by Hacking, Keel and Tevelev [50]. For E7 we recover the tropical
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Göpel variety of [74, §9]. This is a six-dimensional fan which serves as the universal family
of tropical cubic surfaces.

2.2 Segre Cubic, Igusa Quartic, and Kummer

Surfaces

The moduli spaces in this section are based on the hyperplane arrangement in P4 associated
with the reflection representation of the symmetric group Σ6. It consists of the 15 hyperplanes

xi − xj = 0 (1 ≤ i < j ≤ 6). (2.4)

Here P4 is the projectivization of the 5-dimensional vector space K6/K(1, 1, 1, 1, 1, 1). The 15

linear forms in (2.4) define the map P4 linear
↪→ P14 whose image is the 4-dimensional subspace

Cyc4 of P14 that is defined by the linear equations zij − zik + zjk = 0 for 1 ≤ i < j < k ≤ 6.
The corresponding tropical linear space trop(Cyc4), with the coarsest fan structure, is

isomorphic to both the moduli space of equidistant (rooted) phylogenetic trees with 6 leaves
and the moduli space of (unrooted) phylogenetic trees with 7 leaves. The former was studied
by Ardila and Klivans in [4, §4]. They develop the correspondence between ultrametrics
and equidistant phylogenetic trees in [4, Theorem 3]. The latter is a tropicalization of the
Grassmannian Gr(2, 7) as described in [84, §4]. From the combinatorial description given
there one derives the face numbers below:

Lemma 2.2.1. The tropical linear space trop(Cyc4) is the space of ultrametrics on 6 ele-
ments, or, equivalently, the space of equidistant phylogenetic trees on 6 taxa. It is a fan over
a three-dimensional simplicial complex with 56 vertices, 490 edges, 1260 triangles and 945
tetrahedra.

We now define our two modular threefolds by way of a monomial map from P14 to another
space Pn. The homogeneous coordinates on that Pn will be denoted m0,m1, . . . ,mn, so as to
highlight that they can be identified with certain modular forms, known as theta constants.

The Segre cubic S is the cubic threefold defined in P5 by the equations
∑

i zi =
∑

i z
3
i = 0.

Now consider the closure of the image of Cyc4 under P14 monomial
99K P14 given by

(z12z34z56 : z12z35z46 : z12z36z45 : z13z24z56 : z13z25z46 : z13z26z45 : z14z23z56 :
z14z25z36 : z14z26z35 : z15z23z46 : z15z24z36 : z15z26z34 : z16z23z45 : z16z24z35 : z16z25z34).

(2.5)

It is isomorphic to the Segre cubic, so we also call it S; for a proof, the reader can jump
ahead to (2.11) and (2.12). The prime ideal of S is generated by 10 linear trinomials, like
m0−m1 +m2, that come from Plücker relations among the xi− xj, and one cubic binomial
such as m0m7m12−m2m6m14. For a graphical representation of this ideal we refer to Howard
et al. [55, (1.2)]: for the connection, note that the monomials in (2.5) naturally correspond
to perfect matchings of a set of size 6, which are the colored graphs in [55].
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The Igusa quartic I is the closure of the image of Cyc4 under P14 monomial
99K P9 given by

(z12z13z23z45z46z56 :z12z14z24z35z36z56 :z12z15z25z34z36z46 :z12z16z26z34z35z45 :z13z14z34z25z26z56 :
z13z15z35z24z26z46 :z13z16z36z24z25z45 :z14z15z45z23z26z36 :z14z16z46z23z25z35 :z15z16z56z23z24z34)

The prime ideal of I is generated by the five linear forms in the column vector
0 m0 m1 m2 m3

m0 0 m4 m5 m6

m1 m4 0 m7 m8

m2 m5 m7 0 m9

m3 m6 m8 m9 0

 ·


1
−1

1
−1

1

 (2.6)

together with any of the 4 × 4-minors of the symmetric 5 × 5-matrix in (2.6). The linear
forms (2.6) come from Plücker relations of degree (1, 1, 1, 1, 1, 1) on Gr(3, 6). We note that
m0, . . . ,m9 can be written in terms of theta functions by Thomae’s theorem [35, §VIII.5].

To see that this is the usual Igusa quartic, one can calculate the projective dual of the
quartic hypersurface we have just described and verify that it is a cubic hypersurface whose
singular locus consists of 10 nodes. The Segre cubic is the unique cubic in P4 with 10 nodes.

A key ingredient in the study of modular varieties is the symplectic combinatorics of
finite vector spaces. Here we consider the binary space F4

2 with the symplectic form

〈x, y〉 = x1y3 + x2y4 − x3y1 − x4y2. (2.7)

We fix the following bijection between the 15 hyperplanes (2.4) and the vectors in F4
2\{0}:

z12 z13 z14 z15 z16 z23 z24 z25 z26 z34 z35 z36 z45 z46 z56
u0001 u1100 u1110 u0101 u0110 u1101 u1111 u0100 u0111 u0010 u1001 u1010 u1011 u1000 u0011

(2.8)

This bijection has the property that two vectors in F4
2\{0} are perpendicular with respect

to (2.7) if and only if the corresponding elements of the root system A5 are perpendicular.
Combinatorially, this means that the two pairs of indices are disjoint. There are precisely
35 two-dimensional subspaces L in F4

2. Of these planes L, precisely 15 are isotropic, which
means that L = L⊥. The other 20 planes naturally come in pairs {L,L⊥}. Each plane is
a triple in F4

2\{0} and we write it as a cubic monomial zijzk`zmn. Under this identification,
the parametrization (2.5) of the Segre cubic S is given by the 15 isotropic planes L, while
that of the Igusa quartic I is given by the 10 pairs L · L⊥ of non-isotropic planes in F4

2.
The symplectic group Sp4(F2) consists of all linear automorphisms of F4

2 that preserve
the symplectic form (2.7). As an abstract group, this is the symmetric group on six letters:

Sp4(F2) ∼= Σ6. (2.9)

This group isomorphism is made explicit by the bijection (2.8).
LetM2(2) denote the moduli space of smooth curves of genus 2 with a level 2 structure.

In light of the isomorphism (2.9), a level 2 structure on a genus 2 curve C is an ordering
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of its six Weierstrass points, and this corresponds to the choice of six labeled points on
the projective line P1. The latter choices are parametrized by the moduli space M0,6. In
what follows, we consider the open Segre cubic S◦ = S\{m0m1 · · ·m14 = 0} inside the torus
G14
m ⊂ P14 and the open Igusa quartic I◦ = I\{m0m1 · · ·m9 = 0} inside the torus G9

m ⊂ P9.

Proposition 2.2.2. We have the following identification of three-dimensional moduli spaces:

S◦ = I◦ = M2(2) =M0,6. (2.10)

Proof. We already argued the last equation. The first equation is the isomorphism between
the open sets D and D′ in the proof of [56, Theorem 3.3.11]. A nice way to see this isomor-
phism is that the kernels of our two monomial maps coincide (Lemma 2.2.3). The middle
equation follows from the last part of [56, Theorem 3.3.8], which concerns the Kummer func-
tor K2. For more information on the modular interpretations of S and I see [35, §VIII].

The Kummer surface associated to a point in I◦ is the intersection of the Igusa quartic I
with the tangent space at that point, by [56, Theorem 3.3.8]. We find it convenient to express
that Kummer surface in terms of the corresponding point in S◦. Following Dolgachev and
Ortland [35, §IX.5, Proposition 6], we write the defining equation of the Segre cubic S as

16r3 − 4r(s2
01 + s2

10 + s2
11) + 4s01s10s11 + rt2 = 0. (2.11)

This differs by normalization constants from [35, §IX.5]. See [35, §IX.5] for the transforma-
tion of this equation into the classical one, which is

∑
i zi =

∑
i z

3
i = 0. The embedding of

the P4 with coordinates (r :s01 :s10 :s11 : t) into our P14 can be written as

r = m0, s01 = 2m0 − 4m1, s10 = 2m0 − 4m3,
s11 = 4m4 − 2m0 − 4m7, t = 8(m1 +m3 −m0 −m4 −m7).

(2.12)

This does not pick out an Σ6-equivariant embedding of the space spanned by the r, sij in the
permutation representation of the mi, but it has the advantage of giving short expressions.
Fixing Schrödinger coordinates (x00 :x01: x10 :x11) on P3, the Kummer surface is now given by

r(x4
00 + x4

01 + x4
10 + x4

11) + s01(x2
00x

2
01 + x2

10x
2
11) + s10(x2

00x
2
10 + x2

01x
2
11)

+s11(x2
00x

2
11 + x2

01x
2
10) + t(x00x01x10x11) = 0.

(2.13)

This equation is the determinant of the 5 × 5-matrix in [74, Example 1.1]. Its lower 4 × 4-
minors satisfy (2.11). Our notation is consistent with that for the Coble quartic in [74,
(2.13)].

We now come to the tropicalization of our three-dimensional moduli spaces. We write
e12, e13, . . . , e56 for the unit vectors in TP14 = R15/R(1, 1, . . . , 1). These correspond to our
coordinates z12, z13, . . . , z56 on the P14 which contains Cyc4 ' P4. The 56 rays of the Bergman
fan trop(Cyc4) are indexed by proper subsets σ $ {1, 2, 3, 4, 5, 6} with |σ| ≥ 2. They are

Eσ =
∑
{i,j}⊆σ

eij.
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Cones in trop(Cyc4) are spanned by collections of Eσ whose indices σ are nested or disjoint.
Let Asegre denote the 15 × 15-matrix with entries in {0, 1} that represents the tropical-

ization of the monomial map (2.5). The columns of Asegre are indexed by (2.8). The rows
of Asegre are indexed by tripartitions of {1, 2, . . . , 6}, or by isotropic planes in F4

2. An entry
is 1 if the pair that indexes the column appears in the tripartition that indexes the row, or,
equivalently, if the line of F4

2 that indexes the column is contained in the plane that indexes
the row. Note that each row and each column of Asegre has precisely three nonzero entries.

We similarly define the 10 × 15-matrix Aigusa with entries in {0, 1} that represents the
monomial map for the Igusa quartic. Its rows have six nonzero entries and its columns have
four nonzero entries. The column labels of Aigusa are the same as those of Asegre. The rows
are now labeled by bipartitions of {1, 2, . . . , 6}, or by pairs of non-isotropic planes in F4

2.

Lemma 2.2.3. The matrices Asegre and Aigusa have the same kernel. This kernel is the 5-
dimensional subspace spanned by the vectors Eσ−Eσc where σ runs over triples in {1, 2, . . . , 6}.

This lemma can be proved by a direct computation. The multiplicative version of this
fact implies the identity S◦ = I◦ as seen in Proposition 2.2.2. We have the following result.

Theorem 2.2.4. The tropical Segre cubic trop(S) in TP14 is the image of trop(Cyc4) under
the linear map Asegre. The tropical Igusa quartic trop(I) in TP9 is the image of trop(Cyc4)
under the linear map Aigusa. These two 3-dimensional fans are affinely isomorphic to each
other, but all maximal cones of trop(I) come with multiplicity two. The underlying simplicial
complex has 25 vertices, 105 edges and 105 triangles. This is the tree space trop(M0,6).

Proof. The fact that we can compute the tropicalization of the image of a linear space under
a monomial map by just applying the tropicalized monomial map A• to the Bergman fan is
[33, Theorem 3.1]. The fact that the two tropical threefolds are affinely isomorphic follows
immediately from Lemma 2.2.3. To analyze the combinatorics of this common image fan,
we set Eσ to be the zero vector when σ = {i} is a singleton. With this convention, we have

AsegreEσ = AsegreEσc and AigusaEσ = AigusaEσc

for all proper subsets σ of {1, 2, . . . , 6}. We conclude that the 56 = 15 + 20 + 15 + 6 rays of
the Bergman fan trop(Cyc4) get mapped to 25 = 15 + 10 distinct rays in the image fan.

The cones in trop(Cyc4) correspond to equidistant trees, that is, rooted metric trees on
six taxa. Combinatorially, our map corresponds to removing the root from the tree, so the
cones in the image fan correspond to unrooted metric trees on six taxa. Specifically, each
of the 945 maximal cones of trop(Cyc4) either has one ray E{i,j,k,`,m} that gets mapped to
zero, or it has two rays Eσ and Eσc that become identified. Therefore its image is three-
dimensional. Our map takes the 945 simplicial cones of dimension 4 in trop(Cyc4) onto the
105 simplicial cones of dimension 3, one for each unrooted tree. The fibers involve precisely
nine cones because each trivalent tree on six taxa has nine edges, each a potential root
location. Combinatorially, nine rooted trivalent trees map to the same unrooted tree.
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It remains to analyze the multiplicity of each maximal cone in the image. The 105
maximal cones in trop(S) all have multiplicity one, while the corresponding cones in trop(I)
have multiplicity two. We first found this by a direct calculation using the software gfan

[57], starting from the homogeneous ideals of S and I described above. It can also be seen
by examining the images of the rays Eτ under each matrix A• modulo the line spanned by
the vector (1, 1, . . . , 1). Each of the 15 vectors AigusaEij is the sum of four unit vectors in
TP9, while the 10 vectors AigusaEijk are the ten unit vectors multiplied by the factor 2.

We next discuss the tropicalization of the universal family of Kummer surfaces over S◦.
This is the hypersurface in S◦ × P3 defined by the equation (2.13). The tropicalization of
this hypersurface is a five-dimensional fan whose fibers over the tree space trop(S) are the
tropical Kummer surfaces in TP3. We computed this fan from the equations using gfan [57].

Proposition 2.2.5. The tropicalization of the universal Kummer surface in the coordinates
((m0 : m1 : · · · : m14), (x00 : x01 : x10 : x11)) is a 5-dimensional polyhedral fan in TP14×TP3.
This fan has 56 rays and 1536 maximal cones, and its f-vector is (56, 499, 1738, 2685, 1536).

Instances of tropical Kummer surfaces can be obtained by slicing the above fan with fixed
values of the 15 tropical m coordinates. Figure 2.2 shows the tropicalization of a Kummer
surface over a snowflake tree (Type (7) in Table 2.5). It consists of 30 two-dimensional
polyhedra, 24 unbounded and 6 bounded. The latter 6 form the facets of a parallelepiped.

Figure 2.2: Tropicalization of a Kummer surface over a snowflake tree.

Figure 2.2 shows a tropical Kummer surface over a caterpillar tree (Type (6) in Table
2.5). It consists of 33 two-dimensional polyhedra, 24 bounded and 9 bounded. The latter 9
polygons form a subdivision of a flat octagon. These two pictures were drawn using polymake

[42].



CHAPTER 2. TROPICALIZATION OF CLASSICAL MODULI SPACES 18

Figure 2.3: Tropicalization of a Kummer surface over a caterpillar tree.

On each Kummer surface we could now identify a tree that represents the bicanonical
image of the associated genus 2 curve. Classically, one obtains a double quadric with six
distinguished points by intersecting with any of the planes in the 166 configuration [74, (1.2)].

The tropical variety described in Theorem 2.2.4 defines the tropical compactification S
of the Segre cubic S. By definition, the threefold S is the closure of S◦ in the toric variety
determined by the given fan structure on trop(S). For details, see Tevelev’s article [89].

This tropical compactification of our moduli space (2.10) is intrinsic. To see this, we
recall that the intrinsic torus of a very affine variety X ⊂ Gn

m is the torus whose character
lattice is the finitely generated multiplicative free abelian group K[X]∗/K∗. The following
lemma can be used to find the intrinsic torus for each of the very affine varieties in this
chapter.

Lemma 2.2.6. Let m : T1 → T2 be a monomial map of tori and U ⊂ T1 a subvariety
embedded in its intrinsic torus. Then m(U) ⊂ m(T1) is the embedding of m(U) in its
intrinsic torus.

Proof. Choose identifications K[T1] = K[x±1 , . . . , x
±
r ] and K[T2] = K[y±1 , . . . , y

±
s ]. By as-

sumption, the pullback m∗(yi) is a monomial in the xj, which we call zi. We have an

injection of rings m∗ : K[m(U)] ⊂ K[U ], and hence we get an induced injection of groups
φ : K[m(U)]∗/K∗ ⊂ K[U ]∗/K∗. Since K[m(U)] is generated by the yi, we conclude that
m∗(K[m(U)]) is contained in the subalgebra K[z±1 , . . . , z

±
s ] ⊂ K[U ]. Pick f ∈ K[m(U)]∗/K∗.

Since U is embedded in its intrinsic torus, we have φ(f) = zd11 · · · zdss for some di ∈ Z. So
φ(yd11 · · · ydss ) = φ(f) and since φ is injective, we conclude that f = yd11 · · · ydss .

The embedding of the Segre cubic S into the 9-dimensional toric variety given by (2.5)
satisfies the hypotheses of Lemma 2.2.6. Indeed, S◦ is the image of the complement of a
hyperplane arrangement under a monomial map, and, by [89, §4], the intrinsic torus of an
essential arrangement of n hyperplanes in Pr is Gn−1

m . The same argument works for all
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moduli spaces studied in this chapter. That the ambient torus G9
m is intrinsic for the open

Segre cubic S◦ can also be seen from the fact that the 15 boundary divisors S ∩{mi = 0} are
irreducible. Indeed, by [56, §3.2.1], they are projective planes P2. Each of the ten singular
points of S lies on six of these planes, so each boundary plane contains four singular points.

The combinatorial structures described above have the following geometric interpretation.

Proposition 2.2.7. The tropical compactification of the open Segre cubic S◦, and hence
of the other moduli spaces in (2.10), is the Deligne–Mumford compactification M0,6. This
threefold is the blow-up of the 10 singular points of S, or of the 15 singular lines of the Igusa
quartic I.

Proof. The first sentence is a special case of [50, Theorem 1.11]. The second is [56, Theorem
3.3.11].

Our rationale for giving a detailed equational derivation of the familiar manifoldM0,6 is
that it sets the stage for our primary example in the next section.

2.3 Burkhardt Quartic and Abelian Surfaces

The Burkhardt quartic is a rational quartic threefold in P4. It can be characterized as the
unique quartic hypersurface in P4 with the maximal number 45 of nodal singular points [32].
It compactifies the moduli space M2(3) of genus 2 curves with level 3 structure [34, 41, 46,
56]. We identifyM2(3) with a subvariety of A2(3), the moduli space of principally polarized
abelian surfaces with level 3 structure, by sending a smooth curve to its Jacobian.

All constructions in this section can be carried out over any field K of characteristic other
than 2 or 3, provided K contains a primitive third root of unity ω. In the tropical context,
K will be a field with a valuation. For details on arithmetic issues see Elkies’ paper [37].

We realize the Burkhardt quartic as the image of a rational map that is given as a

composition P3 linear
↪→ P39 monomial

99K P39. We choose coordinates (c0 : c1 : c2 : c3) on P3 and
coordinates (m0 : m1 : · · · : m39) on the rightmost P39. The 40 homogeneous coordinates
uijk` on the middle P39 are indexed by the lines through the origin in the finite vector space
F4

3. Each line is given by the vector whose leftmost nonzero coordinate is 1. The linear map
P3 ↪→ P39 is defined as follows, where ω = 1

2
(−1 +

√
−3) is a third root of unity:

u0001 = c1+c2+c3 u0010 = c2−c3+c0 u0011 = c3+c0−c1 u0012 = c0+c1−c2

u0100 =
√
−3 · c1 u0101 = c1+ω2c2+ω2c3 u0102 = c1+ωc2+ωc3 u0110 = c2−ωc3+ω2c0

u0111 = c3+c0−ωc1 u0112 = c0+ω2c1−c2 u0120 = c2−ω2c3+ωc0 u0121 = c0+ωc1−c2

u0122 = c3+c0−ω2c1 u1000 =
√
−3 · c0 u1001 = c1+ωc2+ω2c3 u1002 = c1+ω2c2+ωc3

u1010 = c2−c3+ωc0 u1011 = c3+ωc0−c1 u1012 = c0+ω2c1−ω2c2 u1020 = c2−c3+ω2c0

u1021 = c0+c1ω−ωc2 u1022 = c3+ω2c0−c1 u1100 =
√
−3 · c3 u1101 = c1+c2+ωc3

u1102 = c1+c2+c3ω
2 u1110 = c2−ωc3+c0 u1111 = c3+ωc0−ωc1 u1112 = c0+ωc1−ω2c2
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u1120 = c2−ω2c3+c0 u1121 = c0+ω2c1−ωc2 u1122 = c3+c0ω
2−ω2c1 u1200 =

√
−3 · c2

u1201 = c1+ω2c2+c3 u1202 = c1+ωc2+c3 u1210 = c2−ω2c3+ω2c0 u1211 = c3+ωc0−ω2c1

u1212 = c0+c1−ω2c2 u1220 = c2−ωc3+ωc0 u1221 = c0+c1−ωc2 u1222 = c3+ω2c0−ωc1

These 40 linear forms cut out the hyperplanes of the complex reflection arrangement G32.
We refer to the book by Hunt [56, §5] for a discussion of this arrangement and its importance
for modular Siegel threefolds. Our first map P3 ↪→ P39 realizes the arrangement G32 as the
restriction of the 40 coordinate planes in P39 to a certain 3-dimensional linear subspace.

The monomial map P39 99K P39 is defined outside the hyperplane arrangement {∏uijk` =
0} which corresponds to G32. It is given by the following 40 monomials of degree four:

m0 = u0001u0010u0011u0012 m1 = u0001u1000u1001u1002 m2 = u0001u1010u1011u1012

m3 = u0001u1020u1021u1022 m4 = u0010u0100u0110u0120 m5 = u0010u0101u0111u0121

m6 = u0010u0102u0112u0122 m7 = u0011u1200u1211u1222 m8 = u0011u1201u1212u1220

m9 = u0011u1202u1210u1221 m10 = u0012u1100u1112u1121 m11 = u0012u1101u1110u1122

m12 = u0012u1102u1111u1120 m13 = u0100u1000u1100u1200 m14 = u0100u1010u1110u1210

m15 = u0100u1020u1120u1220 m16 = u0101u1000u1101u1202 m17 = u0101u1010u1111u1212

m18 = u0101u1020u1121u1222 m19 = u0102u1000u1102u1201 m20 = u0102u1010u1112u1211

m21 = u0102u1020u1122u1221 m22 = u0110u1001u1111u1221 m23 = u0110u1011u1121u1201

m24 = u0110u1021u1101u1211 m25 = u0111u1001u1112u1220 m26 = u0111u1011u1122u1200

m27 = u0111u1021u1102u1210 m28 = u0112u1001u1110u1222 m29 = u0112u1011u1120u1202

m30 = u0112u1021u1100u1212 m31 = u0120u1002u1122u1212 m32 = u0120u1012u1102u1222

m33 = u0120u1022u1112u1202 m34 = u0121u1002u1120u1211 m35 = u0121u1012u1100u1221

m36 = u0121u1022u1110u1201 m37 = u0122u1002u1121u1210 m38 = u0122u1012u1101u1220

m39 = u0122u1022u1111u1200.

The combinatorics behind this list is as follows. The 40 monomials represent the 40 isotropic
planes in the space F4

3, with respect to the symplectic inner product (2.7). The linear
inclusion P3 ↪→ P39 has the property that two linearly independent vectors x, y in F4

3 satisfy
〈x, y〉 = 0 if and only if the corresponding linear forms ux and uy are perpendicular in the
root system G32, using the usual Hermitian inner product (when considered over C).

Let B denote the Burkhardt quartic in P39, that is, the closure of the image of the
map above. Its homogeneous prime ideal IB is minimally generated by one quartic and a 35-
dimensional space of linear forms in K[m0,m1, . . . ,m39]. That space has a natural generating
set consisting of 160 = 4 · 40 linear trinomials. Namely, the four coordinates m• that share
a common parameter uijk` span a two-dimensional space modulo IB. For instance, the first
four coordinates share the parameter u0001, and they satisfy the following linear trinomials:

m0 + ω2m1 − ωm2 = m0 − ωm1 − ω2m3 =
m0 + ω2m2 + ωm3 = m1 + ωm2 − ω2m3 = 0.

(2.14)

These relations are constructed as follows: Each of the 40 roots uijk` appears as a factor in
precisely four of the coordinates m•, and these four span a two-dimensional space over K.
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The 160 linear trinomials (2.14) cut out a 4-dimensional linear subspace of P39. We fix
the following system of coordinates, analogous to (2.12), on that linear subspace P4 of P39:

r = 3c0c1c2c3 = m13/3
s01 = −c0(c3

1 + c3
2 + c3

3) = (
√
−3 ·m1 −m13)/3

s10 = c1(c3
0 + c3

2 − c3
3) = (−

√
−3 ·m4 −m13)/3

s11 = c2(c3
0 − c3

1 + c3
3) = (−

√
−3 ·m7 −m13)/3

s12 = c3(c3
0 + c3

1 − c3
2) = (−

√
−3 ·m10 −m13)/3

(2.15)

The polynomial that defines the Burkhardt quartic B ⊂ P4 is now written as

r(r3 + s3
01 + s3

10 + s3
11 + s3

12) + 3s01s10s11s12 = 0. (2.16)

The Burkhardt quartic has 45 isolated singular points. For example, one of the singular
points is (r : s01 : s10 : s11 : s12) = (0 : 0 : 0 : 1 : 1). In the m-coordinates, this point is

(0 : 0 : 0 : 0 : 0 : 0 : 0 : −ω2 : −ω : 1 : ω2 : −1 : ω : 0 : 0 : 0 : 0 : 0 :
0 : 0 : 0 : 0 : −ω2 : −1 : −ω : −1 : −ω2 : ω2 : −ω : ω2 :

ω2 : ω2 : 1 : ω : 1 : ω2 : −ω2 : ω : −ω2 : −ω2)
(2.17)

For each singular point precisely 16 of the 40 m-coordinates are zero. Each hyperplane
m• = 0 intersects the Burkhardt quartic B in a tetrahedron of four planes, known as Jacobi
planes, which contains 18 of the 45 singular points, in a configuration that is depicted
in [56, Figure 5.3(b)]. The relevant combinatorics will be explained when tropicalizing in
Section 2.4.

The closure of the image of the monomial map P39 99K P39, u 7→ m is a toric variety T .
Writing P4 for the linear subspace defined by the 160 trinomials like (2.14), we have

B = T ∩ P4 ⊂ P39. (2.18)

Thus we have realized the Burkhardt quartic as a linear section of the toric variety T , and it
makes sense to explore the combinatorial properties of T . Let A denote the 40× 40 matrix
representing our monomial map u 7→ m. The columns of A are indexed by the uijk`, and
hence by the lines in F4

3. The rows of A are indexed by the m•, and hence by the isotropic
planes in F4

3. The matrix A is the 0-1 matrix that encodes incidences of lines and isotropic
planes. Each row and each column has exactly four entries 1, and the other entries are 0.
The matrix A has rank 25, and we computed its Markov basis using the software 4ti2 [1].

Proposition 2.3.1. (a) The projective toric variety T has dimension 24.
(b) Its prime ideal is minimally generated by 5136 binomials, namely 216 binomials of

degree 5, 270 of degree 6, 4410 of degree 8, and 240 of degree 12.
(c) The Burkhardt quartic is the scheme-theoretic intersection in (2.18). This intersection

is not ideal-theoretic, since there is no quartic relation on T that could specialize to
(2.16).
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(d) The 24-dimensional polytope of T , which is the convex hull of the 40 rows of A, has
precisely 13144 facets.

Proof. (a) follows from the fact that rank(A) = 25. The statements in (b) and (c) follow
from our 4ti2 calculation. The facets in (d) were computed using the software polymake

[42]. The scheme-theoretic intersection in (c) can be verified by taking the following five
among the 216 quintic binomials that vanish on T :

m0m13m22m33m37 −m1m4m9m10m39 m0m14m23m33m35 −m2m4m9m10m36

m0m16m25m35m37 −m1m5m9m10m38 m0m17m26m36m38 −m2m5m8m11m39

m9m11m13m18m20 −m7m10m14m16m21

Each of these quintic binomials factors on P4 as the Burkhardt quartic (2.18) times a linear
form, and these five linear forms generate the irrelevant maximal ideal 〈r, s01, s10, s11, s12〉.

We next explain the connection to abelian surfaces. Consider the open Burkhardt quartic

B◦ = B \ {
∏

mi = 0} ⊂ P39.

In its modular interpretation ([41], [46, §3.1], [56, Lemma 5.7.1]), this threefold is the moduli
spaceM2(3) of smooth genus 2 curves with level 3 structure. With every point (r : s01 : s10 :
s11 : s12) ∈ B◦ we associate an abelian surface (which is a Jacobian) following [46, §3.2]. The
ambient space for this family of abelian surfaces is the projective space P8 whose coordinates

(x00 : x01 : x02 : x10 : x11 : x12 : x20 : x21 : x22)

are indexed by F2
3. The following five polynomials represent all the affine subspaces of F2

3:

f = x3
00 + x3

01 + x3
02 + x3

10 + x3
11 + x3

12 + x3
20 + x3

21 + x3
22,

g01 = 3(x00x01x02 + x10x11x12 + x20x21x22),

g10 = 3(x00x10x20 + x01x11x21 + x02x12x22),

g11 = 3(x00x11x22 + x01x12x20 + x10x21x02),

g12 = 3(x00x12x21 + x01x10x22 + x02x11x20).

Our abelian surface is the singular locus of the Coble cubic {C = 0} in P8, which is given by

C = rf + s01g01 + s10g10 + s11g11 + s12g12.

Theorem 2.3.2. The singular locus of the Coble cubic of any point in B◦ is an abelian
surface S of degree 18 in P8. This equips S with an indecomposable polarization of type
(3, 3). The prime ideal of S is minimally generated by 9 quadrics and 3 cubics. The theta
divisor on S is a tricanonical curve of genus 2, and this is obtained by intersecting S with
the P4 defined by

rank

(
x00 x01+x02 x10+x20 x11+x22 x12+x21

r s01 s10 s11 s12

)
≤ 1. (2.19)
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Proof. The first statement is classical (see [13, §10.7]). We shall explain it below using
theta functions. The fact about ideal generators is due to Gunji [48, Theorem 8.3]. The
representation (2.19) of the curve whose Jacobian is S is derived from [46, Theorem 3.14(d)].

We now discuss the complex analytic view of our story. Recall (e.g. from [13, §8.1]) that
a principally polarized abelian surface over C is given analytically as Sτ = C2/(Z2 + τZ2),
where τ is a complex symmetric 2× 2-matrix whose imaginary part is positive definite. The

set of such matrices is the Siegel upper half space H2. Fix the 4× 4 matrix J =

[
0 −Id2

Id2 0

]
.

Let Sp4(Z) be the group of 4 × 4 integer-valued matrices γ such that γJγT = J . This acts
on H2 via [

A B
C D

]
· τ = (Aτ +B)(Cτ +D)−1, (2.20)

where A,B,C,D are 2× 2 matrices, and this descends to an action of PSp4(Z) on H2. The
natural map PSp4(Z)→ PSp4(F3) takes the residue class modulo 3 of each matrix entry. Let
Γ2(3) denote the kernel of this map. The action of PSp4(Z) preserves the abelian surface,
while Γ2(3) preserves the abelian surface together with a level 3 structure. Hence H2/PSp4(Z)
is the moduli space A2 of principally polarized abelian surfaces, while H2/Γ2(3) is the moduli
space A2(3) of principally polarized abelian surfaces with level 3 structure. The finite group
PSp4(F3) is a simple group of order 25920 and it acts naturally on H2/Γ2(3).

The third-order theta function with characteristic σ ∈ 1
3
Z2/Z2 is defined as

Θ3[σ](τ , z) = exp(3πiσT τσ + 6πiσT z) · θ(3τ , 3z + 3τσ)

=
∑
n∈Z2

exp
(
3πi(n+σ)T τ(n+σ) + 6πi(n+ σ)T z

)
.

Here θ is the classical Riemann theta function. For a fixed matrix τ ∈ H2, the nine third-order
theta functions on C2 give precisely our embedding of the abelian surface Sτ into P8:

Sτ ↪→ P8, z 7→ (Θ3[σ](τ, z))σ∈ 1
3
Z2/Z2 .

Adopting the notation in [74, §2], for any (j, k) ∈ {0, 1, 2}2, we abbreviate

ujk = Θ3[(
j

3
,
k

3
)](τ , 0) and xjk = Θ3[(

j

3
,
k

3
)](τ , z).

The nine theta constants ujk satisfy u01 = u02, u10 = u20, u11 = u22, and u12 = u21. For that
reason, we need only five theta constants u00, u01, u10, u11, u12, which we take as homogeneous
coordinates on P4. These five coordinates satisfy one homogeneous equation:
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Lemma 2.3.3. The closure of the image of the map H2 → P4 given by the five theta
constants is an irreducible hypersurface H of degree 10. Its defining polynomial is the deter-
minant of

U =


u2

00 u2
01 u2

10 u2
11 u2

12

u2
01 u00u01 u11u12 u10u12 u10u11

u2
10 u11u12 u00u10 u01u12 u01u11

u2
11 u10u12 u01u12 u00u11 u01u10

u2
12 u10u11 u01u11 u01u10 u00u12

 .
Proof. This determinant appears in [34, (10)], [41, p. 252], and [65, §2.2].

At this point, we have left the complex analytic world and we are back over a more general
field K. The natural map H 99K B is 10-to-1 and it is given explicitly by 4× 4-minors of U .

Corollary 2.3.4. Over the Hessian H of the Burkhardt quartic, the Coble cubic is written
as

C = det


f(x) g01(x) g10(x) g11(x) g12(x)
u2

01 u00u01 u11u12 u10u12 u10u11

u2
10 u11u12 u00u10 u01u12 u01u11

u2
11 u10u12 u01u12 u00u11 u01u10

u2
12 u10u11 u01u11 u01u10 u00u12

 . (2.21)

For K = C, this expresses r, s01, s10, s11, s12 as modular forms in terms of theta constants.

We note that the 10-to-1 map H 99K B is analogous to the 64-to-1 map in [74, (7.1)]
from the Satake hypersurface onto the Göpel variety. The formula for the Coble cubic in
Corollary 2.3.4 is analogous to the expression for the Coble quartic in [74, Theorem 7.1].

In this section we have now introduced four variants of a universal abelian surface. Each
of these is a five-dimensional projective variety. Our universal abelian surfaces reside

(a) in P3 × P8 with coordinates (c,x),
(b) in B × P8 ⊂ P4 × P8 with coordinates ((r : sij),x),
(c) in B × P8 ⊂ P39 × P8 with coordinates (m,x),
(d) in H× P8 ⊂ P4 × P8 with coordinates (u,x).

A natural commutative algebra problem is to identify explicit minimal generators for the
bihomogeneous prime ideals of each of these universal abelian surfaces.

For instance, consider case (d). The ideal contains the polynomial det(U) of bidegree
(10, 0) and eight polynomials of bidegree (8, 2), namely the partial derivatives of C with
respect to the xij. However, these nine do not suffice. For instance, we have ten linearly
independent ideal generators of bidegree (3, 3), namely the 2× 2-minors of the 2× 5-matrix[

f(x) g01(x) g10(x) g11(x) g12(x)
f(u) g01(u) g10(u) g11(u) g12(u)

]
.

These equations have been verified numerically using Sage [85]. For a fixed general point
u ∈ S, these 2× 2-minors give Gunji’s three cubics that were mentioned in Theorem 2.3.2.

For the case (a) here is a concrete conjecture concerning the desired prime ideal.
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Conjecture 2.3.5. The prime ideal of the universal abelian surface in P3×P8 is minimally
generated by 93 polynomials, namely 9 polynomials of bidegree (4, 2) and 84 of bidegree (3, 3).

The 84 polynomials of bidegree (3, 3) are obtained as the 6×6-subpfaffians of the matrix

0 −c0x02 c0x01 −c1x20 −c2x22 −c3x21 c1x10 c3x12 c2x11

c0x02 0 −c0x00 −c3x22 −c1x21 −c2x20 c2x12 c1x11 c3x10

−c0x01 c0x00 0 −c2x21 −c3x20 −c1x22 c3x11 c2x10 c1x12

c1x20 c3x22 c2x21 0 −c0x12 c0x11 −c1x00 −c2x02 −c3x01

c2x22 c1x21 c3x20 c0x12 0 −c0x10 −c3x02 −c1x01 −c2x00

c3x21 c2x20 c1x22 −c0x11 c0x10 0 −c2x01 −c3x00 −c1x02

−c1x10 −c2x12 −c3x11 c1x00 c3x02 c2x01 0 −c0x22 c0x21

−c3x12 −c1x11 −c2x10 c2x02 c1x01 c3x00 c0x22 0 −c0x20

−c2x11 −c3x10 −c1x12 c3x01 c2x00 c1x02 −c0x21 c0x20 0


. (2.22)

This skew-symmetric 9 × 9-matrix was derived by Gruson and Sam [46, §3.2], building on
the construction in [47], and it is analogous to the elliptic normal curve in (2.1). The nine
principal 8× 8-subpfaffians of (2.22) are x00C, x01C, . . . , x22C, where C is the Coble quartic,
now regarded as a polynomial in (c,x) of bidegree (4, 3). Conjecture 2.3.5 is analogous to [74,
Conjecture 8.1]. The nine polynomials of bidegree (4, 2) are ∂C/∂x00, ∂C/∂x01, . . . , ∂C/∂x22.

In the remainder of this section we recall the symmetry groups that act on our varieties.
First there is the complex reflection group denoted by G32 in the classification of Shephard
and Todd [82]. The group G32 is a subgroup of order 155520 in GL4(K). Precisely 80 of
its elements are complex reflections of order 3. As a linear transformation on K4, each such
complex reflection has a triple eigenvalue 1 and a single eigenvalue ω±1 = 1

2
(−1±

√
−3).

The center of G32 is isomorphic to the cyclic group Z/6. In our coordinates c0, c1, c2, c3,
the elements of the center are scalar multiplications by 6th roots of unity. Therefore, this
gives an action by G32/(Z/6) on the hyperplane arrangement G32 in P3. In fact, we have

G32

Z/6
' PSp4(F3). (2.23)

The linear map P3 ↪→ P39, c 7→ u, respects the isomorphism (2.23). The group acts on the
c-coordinates by the reflections on K4, and it permutes the coordinates uijk` via its action
on the lines through the origin in F4

3. Of course, the group PSp4(F3) also permutes the 40
isotropic planes in P39, and this action is compatible with our monomial map P39 99K P39.

2.4 Tropicalizing the Burkhardt Quartic

Our goal is to understand the relationship between classical and tropical moduli spaces for
curves of genus two. To this end, in this section, we study the tropicalization of the Burkhardt
quartic B. This is a 3-dimensional fan trop(B) in the tropical projective torus TP39. We
shall see that the tropical compactification of B◦ equals the Igusa compactification of A3(2).
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The variety B is the closure of the image of the composition P3 ↪→ P39 99K P39 of the
linear map given by the arrangement G32 and the monomial map given by the 40×40 matrix
A that records incidences of isotropic planes and lines in F4

3. To be precise, recall that the
source P39 has coordinates e` indexed by lines ` ⊂ F4

3, the target P39 has coordinates eW
indexed by isotropic planes W ⊂ F4

3, and the linear map A is defined by A(e`) =
∑

W⊃` eW .
This implies the representation

trop(B) = A · Berg(G32) ⊂ TP39 (2.24)

of our tropical threefold as the image under A of the Bergman fan of the matroid of G32. By
this we mean the unique coarsest fan structure on the tropical linear space given by the rank
4 matroid on the 40 hyperplanes of G32. This Bergman fan is simplicial, as suggested by the
general theory of [5]. We computed its cones using the software TropLi due to Rincón [78].

Lemma 2.4.1. The Bergman complex of the rank 4 matroid of the complex root system G32

has 170 vertices, 1800 edges and 3360 triangles, so its Euler characteristic equals 1729. The
rays and cones of the corresponding Bergman fan Berg(G32) ⊂ TP39 are described below.

The Euler characteristic is the Möbius number of the matroid, which can also be computed
as the product of the exponents ni in [71, Table 2] of the complex reflection group G32:

1 · 7 · 13 · 19 = 1729 = 3360− 1800 + 170− 1.

See [74, (9.2)] for the corresponding formula for the Weyl group of E7 (and genus 3 curves).
We now discuss the combinatorics of Berg(G32). The space TP39 = R40/R(1, 1, . . . , 1) is

spanned by unit vectors e0001, e0010, . . . , e1222 that are labeled by the 40 lines in F4
3 as before.

The 170 rays of the Bergman fan correspond to the connected flats of the matroid of G32,
and these come in three symmetry classes, according to the rank of the connected flat:

(a) 40 Bergman rays of rank 1. These are spanned by the unit vectors e0001, e0010, . . . , e1222.

(b) 90 Bergman rays of rank 2, such as e0001 + e0100 + e0101 + e0102, which represents
{c1, c1+c2+c3, c1+ωc2+ωc3, c1+ω2c2+ω2c3}. These are the non-isotropic planes in F4

3.

(ä) 40 Bergman rays of rank 3, such as

e0001 + e0010 + e0011 + e1100 + e1101 + e1102 + e1110 + e1111 + e1112 + e1120 + e1121 + e1122.

These correspond to the Hesse pencils in G32, and to the hyperplanes in F4
3. Note that

the 12 indices above are perpendicular to (0, 0, 1, 2) in the symplectic inner product.

The 3360 triangles of the Bergman complex of G32 also come in three symmetry classes:

(aaä) Two orthogonal lines (a) together with a hyperplane (ä) that contains them both.
This gives 480 triangles because each hyperplane contains 12 orthogonal pairs.
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(abä) A flag consisting of a line (a) contained in a non-isotropic plane (b) contained in a
hyperplane (ä). There are 1440 such triangles since each of the 90 planes has 4·4 choices.

(aab) Two orthogonal lines (a) together with a non-isotropic plane (b). The plane contains
one of the lines and is orthogonal to the other one. The count is also 1440.

The 1800 edges of the Bergman complex come in five symmetry classes: there are 240
edges (aa) given by pairs of orthogonal lines, 360 edges (ab) given by lines in non-isotropic
planes, 480 edges (aä) given by lines in hyperplanes, 360 edges (bä) given by non-isotropic
planes in hyperplanes, and 360 edges (ab⊥) obtained by dualizing the previous pairs (bä).

Our calculations establish the following statement:

Proposition 2.4.2. The Bergman complex coincides with the nested set complex for the ma-
troid of G32. In particular, the tropical compactification of the complement of the hyperplane
arrangement G32 coincides with the wonderful compactification of de Concini–Procesi [31].

See [38] for the relation between tropical compactifications and wonderful compactifica-
tions. We expect that Proposition 2.4.2 is true for any finite complex reflection group, but
we have not made any attempts to prove this.

The wonderful compactification is obtained by blowing up the irreducible flats of lowest
dimension, then blowing up the strict transforms of the irreducible flats of next lowest
dimension, etc. In our case, the smallest irreducible flats are 40 points, corresponding to

the Bergman rays (a) and to Family 6 in [46, Table 1]. This first blow-up P̂3 is the closure
of the graph of the map P3 99K B, by [46, Proposition 3.25]. The next smallest irreducible
flats are the strict transforms of 90 P1’s, corresponding to the Bergman rays (b) and to
Family 4 in [46, Table 1]. After that, the only remaining irreducible flats are 40 hyperplanes,
corresponding to the Bergman rays (ä) and to Family 2 in [46, Table 1]. Hence the wonderful

compactification P̃3 is obtained by blowing up these 90 P1’s in P̂3. The 90 exceptional divisors

of P̃3 → P̂3 get contracted to the 45 nodes of B, so we can lift the map P̃3 → B to a map

P̃3 → B̃, where B̃ denotes the blow-up of the Burkhardt quartic at its 45 singular points.
The hyperplane arrangement complement P3∩G39

m is naturally identified with the moduli
spaceM2(3)− of smooth genus 2 curves with level 3 structure and the choice of a Weierstrass
point (or equivalently, the choice of an odd theta characteristic). See [15] for more about
M2(3)−. Hence we have the following commutative diagram

M2(3)− �
� //

��

P̃3

��

// P̂3

��
M2(3) �

� // B̃ // B

(2.25)

where the vertical maps are generically finite of degree 6, the right horizontal maps are
blow-ups, and the moduli spaces M2(3)− and M2(3) are realized as very affine varieties.
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We now compute the tropical Burkhardt quartic (2.24), by applying the linear map A
to the Bergman fan of G32. Note that the image lands in the tropicalization trop(T ) of the
toric variety T ⊂ P39. We regard trop(T ) as a 24-dimensional linear subspace of TP39.

Theorem 2.4.3. The tropical Burkhardt quartic trop(B) is the fan over a 2-dimensional
simplicial complex with 85 vertices, 600 edges and 880 triangles. A census appears in Ta-
ble 2.1.

Proof. Given the G32-symmetry, the following properties of the map A can be verified on
representatives of G32-orbits. The linear map A : TP39 → TP39 has the property that the
image of each vector (ä) equals twice that of the corresponding unit vector (a). For instance,

A(e0001+e0010+e0011+e1100+e1101+e1102+e1110+e1111+e1112+e1120+e1121+e1122) = 2Ae0012.

Likewise, the 90 vectors (b) come in natural pairs of non-isotropic planes that are orthogonal
complements. The corresponding vectors have the same image under A. For instance,

A(e0001 + e0100 + e0101 + e0102) = A(e0010 + e1000 + e1010 + e1020). (2.26)

We refer to such a pair of orthogonal non-isotropic planes as a plane pair. This explains the
85 rays of trop(B), namely, they are the 40 lines a and the 45 plane pairs {b, b⊥} in F4

3.
The image of each cone of Berg(G32) under A is a simplicial cone of the same dimension.

There are no non-trivial intersections of image cones. The map Berg(G32) → trop(B) is a
proper covering of fans. The 2-to-1 covering of the rays induces a 3-to-1 or 4-to-1 covering
on each higher-dimensional cone. The precise combinatorics is summarized in Table 2.1.

Dimension Orbits in Berg(G32) The map A Orbit size in trop(B) Cone type

1
40 (a)

2 to 1 40 (a)
40 (ä)
90 (b) 2 to 1 45 (b)

2

240 (aa)
3 to 1 240 (aa)

480 (aä)
360 (ab)

3 to 1 360 (ab)360 (bä)
360 (ab⊥)

3
1440 (aab)

4 to 1 720 (aab)
1440 (abä)
480 (aaä) 3 to 1 160 (aaa)

Table 2.1: Orbits of cones in the tropical Burkhardt quartic

The types of the cones are named by replacing ä with a, and b⊥ with b. In total, there
are 40 vertices of type (a) and 45 vertices of type (b). There are 240 edges of type (aa),
corresponding to pairs of lines a ⊥ a′, and 360 edges of type (ab), corresponding to inclusions
a ⊂ b. Finally, there are 160 triangles of type (aaa) and 720 triangles of type (aab).
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Remark 2.4.4. There is a bijection between the 45 rays of type (b) in trop(B) and the
45 singular points in B. Namely, each vector of type (b) can be written such that 16 of
its coordinates are 1 and the other coordinates are 0. These 16 coordinates are exactly the
16 zero coordinates in the corresponding singular point. Note that the zero coordinates of
the particular singular point in (2.17) form precisely the support of the vector (2.26). The
number 16 arises because each of the 45 plane pairs {b, b⊥} determines 16 of the 40 isotropic
planes: take any vector in b and any vector in b⊥, and these two will span an isotropic plane.

We next consider the tropical compactification B of the open Burkhardt quartic B◦ =
M2(3). By definition, B is the closure of B◦ ⊂ G24

m inside of the toric variety defined by the
fan trop(B). This toric variety is smooth because the rays of the two types of maximal cones
(aaa) and (aab) can be completed to a basis of the lattice Z24 spanned by all 85 rays.

Proposition 2.4.5. The tropical compactification B is schön in the sense of Tevelev [89].
The boundary B\B◦ is a normal crossing divisor consisting of 85 irreducible smooth surfaces.

Proof. Since our fan on trop(B) defines a smooth toric variety, it suffices to show that all
initial varieties V (inv(IB)) are smooth and connected in the torus G39

m [49, Lemma 2.7].
There are six symmetry classes of initial ideals inv(IB). Each of them is generated by linear
binomials and trinomials together with one non-linear polynomial f , obtained from the
quartic by possibly removing monomial factors. We present representatives for the six classes.
The plane pair {b, b⊥} appearing in three of the cases is precisely the one displayed in (2.26).

(a) For the vertex given by the line (0, 0, 0, 1) we take the weight vector v = Ae0001 =
e0 +e1 +e2 +e3. Then f = m0m

3
4−3m0m4m7m10 +m0m

3
7 +m0m

3
10−3

√
3m1m4m7m10.

This bihomogeneous polynomial defines a smooth surface in a quotient torus G3
m.

(b) For the vertex {b, b⊥} we take the vector (2.26). This is the incidence vector of the zero
coordinates in (2.17), namely v = e0 + e1 + e2 + e3 + e4 + e5 + e6 + e13 + e14 + e15 + e16 +
e17 +e18 +e19 +e20 +e21. The resulting non-linear polynomial is f = −m0m13 +m1m4.

(aa) For the edge given by the orthogonal lines (0, 0, 0, 1) and (0, 0, 1, 0) in F4
3, we take

v = 2e0 + e1 + e2 + e3 + e4 + e5 + e6, and we get f = m0m
3
7 +m0m

3
10−3

√
3m1m4m7m10.

(ab) For the edge given by (0, 0, 0, 1) and {b, b⊥}, we take v = 2e0 + 2e1 + 2e2 + 2e3 + e4 +
e5 +e6 +e13 +e14 +e15 +e16 +e17 +e18 +e19 +e20 +e21, and we get f = −m0m13 +m1m4.

(aaa) For the triangle given by (0, 0, 0, 1), (0, 0, 1, 0) and (0, 0, 1, 1), we take v = A(e0001+e0010

+e0011) = 3e0+e1+e2+e3+e4+e5+e6+e7+e8+e9, and we get f = m0m
2
10−3

√
3m1m4m7.

(aab) For the triangle given by (0, 0, 0, 1), (0, 0, 1, 0) and {b, b⊥}, we take v = 3e0+2e1+2e2 +
2e3+2e4+2e5+2e6+e13+e14+e15+e16+e17+e18+e19+e20+e21. Here, f=−m0m13+m1m4.
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Note that the polynomials f are the same in the cases (b), (ab) and (aab), but the varieties
V (inv(IB)) are different because of the 35 linear relations. In cases (b) and (ab) we have
both linear trinomials and linear binomials, while in case (aab) they are all binomials. In all
six cases the hypersurface {f = 0} has no singular points with all coordinates nonzero.

Our final goal in this section is to equate the tropical compactification B with the blown
up Burkhardt quartic B̃. By [56, Theorem 5.7.2], we can identify B̃ with the Igusa desin-
gularization of the Baily–Borel–Satake compactification A2(3)Sat of A2(3). The latter can

be constructed as follows. Let B̂ be the projective dual variety to B ⊂ P4. The canonical
birational map B 99K B̂ is defined outside of the 45 nodes. Since B is a normal variety, this
map factors through the normalization of B̂, which can be identified with A2(3)Sat by [40,
§4]. The closure of the graph of the birational map B 99K A2(3)Sat is the blow-up of B at its
indeterminacy locus, i.e., the 45 nodes. Using [91, Theorem 3.1], we may identify this with

B̃. By symmetry, we could also view this as the closure of the image of the inverse birational
map. This realizes B̃ as a blow-up of A2(3)Sat, and in particular, the map blows up the
Satake boundary A2(3)Sat\A2(3) which has 40 components all isomorphic to A1(3)Sat ∼= P1.

Lemma 2.4.6. The moduli space A2(3) coincides with the partial compactification ofM2(3)
given by the 1-dimensional subfan of trop(B) that consists of the 45 rays of type (b).

Proof. Let M be the partial compactification in question. Let P̃3 be the wonderful compacti-
fication for G32 as described above. The preimage of the 45 rays of type (b) in Berg(G32) con-
sists of 90 rays, and the resulting partial tropical compactification P of P3 \ (40 hyperplanes)

is the complement of the strict transforms of the reflection hyperplanes in P̃3. In the map
P → B, the 90 divisors are contracted to the 45 singular points (2 divisors to each point).
We have a map P →M which maps the 90 divisors of P to the 45 divisors of M , and hence
the birational map M 99K B (given by the identity map onM2(3)) extends to a regular map
M → B which contracts the 45 divisors to the 45 singular points.

By the universal property of blow-ups, there exists a map M → B̃ which takes each of the
45 divisors to one of the 45 exceptional divisors of the blow-up B̃ → B. From our previous
discussion, the image of the map P → B̃ equals A2(3). Since this map factors through M ,

the image of the map M → B̃ is also A2(3). This map has finite fibers: this just needs to

be checked on the 45 divisors and we can reduce to considering the map P → B̃; in the map

P̂3 → B̃, the inverse image of an exceptional divisor is 2 disjoint copies of P1 × P1 and any
surjective endomorphism of P1 × P1 has finite fibers. The map is birational and A2(3) is
smooth, so, by Zariski’s Main Theorem [69, §III.9], the map is an isomorphism.

Theorem 2.4.7. The intrinsic torus of M2(3) = B◦ is the dense torus G24
m of the toric

variety T described in Proposition 2.3.1. The tropical compactification ofM2(3) provided by

trop(B) is the Igusa desingularization B̃ of the Baily–Borel–Satake compactification A2(3)Sat

of A2(3).
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Proof. The first statement follows from Lemma 2.2.6 and Proposition 2.3.1(a).
By Lemma 2.4.6, B is a compactification of A2(3). The boundary of the compactification

M2(3) ⊂ B is a normal crossings divisor (Proposition 2.4.5), so the same is true for the
boundary of A2(3) ⊂ B, and hence it is toroidal. So there exists a map f : B → A2(3)Sat

that is the identity on A2(3) [16, Proposition III.15.4(3)]. This map is unique and surjective.
From what we said above, the Satake boundary A2(3)Sat\A2(3) has 40 components all

isomorphic to P1. Also, B\A2(3) consists of 40 divisors. Hence the map f contracts the
40 divisors to these P1’s. By the universal property of blow-ups, there is a unique map
f̃ : B → B̃ that commutes with the blow-up map. Then f̃ is birational and surjective. We
know this map is an isomorphism on A2(3) and the complement of this open subset in both
domain and target are a union of P2’s. Any surjective endomorphism of P2 has finite fibers,
and hence f̃ is an isomorphism by Zariski’s Main Theorem [69, §III.9] since B̃ is smooth.

2.5 Moduli of Genus Two Curves

The moduli space Mtr
g,n of tropical curves of genus g with n marked points is a stacky fan.

This was shown by Brannetti, Melo and Viviani [18] and Chan [26]. This space was studied
by many authors. See [21, 23] for some results. Here, a tropical curve is a triple (Γ, w, `),
where Γ = (V,E) is a connected graph, w is a weight function V → Z≥0, and ` is a length
function E → R≥0. The genus of a tropical curve is the sum of weights of all vertices plus
the genus of the graph Γ. In addition to identifications induced by graph automorphisms,
two tropical curves are isomorphic if one can be obtained from another by a sequence of the
following operations and their inverses:
• Removing a leaf of weight 0, together with the only edge connected to it.
• Removing a vertex of degree 2 of weight 0, and replacing the two edges connected to

it with an edge whose length is the sum of the two old edges.
• Removing an edge of length 0, and combining the two vertices connected by that edge.

The weight of the new vertex is the sum of the two old vertices.
In this way, every tropical curve of genus ≥ 2 is uniquely represented by a minimal skeleton,
i.e., a tropical curve with no vertices of weight 0 of degree ≤ 2 or edges of length 0. The
moduli space of tropical curves with a fixed combinatorial type (Γ, w) is R|E|>0/Aut(Γ), where

the coordinates of R|E|>0 are the lengths of the edges. The cones for all combinatorial types
are glued together to form Mtr

g . The boundary of the cone of a combinatorial type (Γ, w)
corresponds to tropical curves with at least one edge of length 0. Contracting that edge gives
a combinatorial type (Γ′, w′). Then, the cone for (Γ′, w′) is glued along the boundary of the
cone for (Γ, w) in the natural way. More generally, a tropical curve with marked points is
defined similarly, but allowing rays connecting a vertex with leaves “at infinity”.

The following construction maps curves over a valued field to tropical curves. It is
fundamental for [3, 9]. Our description follows [96, Lemma - Definition 2.2.4]. Let R be
a complete discrete valuation ring with maximal ideal m. Let K be its field of fractions,
k = R/m its residue field, and t ∈ R a uniformizing parameter. Fix a genus g curve C with
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n marked points over K. The curve C is a morphism Spec K → Mg,n. Since the stack
Mg,n is proper (i.e., by the stable reduction theorem), there is a finite extension K ′ of K
with discrete valuation ring R′ such that this morphism extends uniquely to a morphism
Spec R′ → Mg,n (we call this a stable model of C). Here we renormalize the valuation on
R′ so that its value group is Z. Reducing modulo m′ gives us a point Spec k → Mg,n.
By definition, this is a stable curve Ck over k. We remark that the stable model may not
be unique, but the stable curve is unique. Since such a stable curve has at worst nodal
singularities, we can construct a dual graph as follows. For each genus h component of
Ck, we draw a vertex of weight h. For each node of Ck, we draw an edge between the two
components that meet there (this might be a loop if the node comes from a self-intersection).
If a component has a marked point, then we attach a vertex at infinity to that vertex. The
stable condition translates to the fact that the dual graph is a minimal skeleton as above.
Finally, each node, when considered as a point in CR′ , is étale locally of the form xy = t` for
some positive integer `. We then assign the length `/d to the corresponding edge, where d
is the degree of the field extension K ⊂ K ′. In this way, we have defined a function

Mg,n(K)→Mtr
g,n. (2.27)

Here is a concrete illustration of this function for g = 0 and n = 4.

Example 2.5.1. Let K = C((t)) and R = C[[t]] and consider the four points in P1
K given

by (1 : p(t)), (1 : q(t)), (1 : a), (1 : b) where a, b ∈ C are generic and val(p(t)), val(q(t)) > 0.
Let x, y be the coordinates on P1. Naively, this gives us four points in P1

R, but it is not a
stable model since p(0) = q(0) = 0 and so two points coincide in the special fiber. The fix
is to blow-up the arithmetic surface P1

R at the ideal 〈y − p(t)x, y − q(t)x〉. We embed this
blow-up into P1

R ×R P1
R, where the latter P1

R has coordinates w, z, as the hypersurface given
by w(y − q(t)x) = z(y − p(t)x). The special fiber is the nodal curve given by y(w − z) = 0.
We wish to understand the étale local equation for the node cut out by y = w − z = 0. To
do this, set x = z = 1 and consider the defining equation y(w − 1) + p(t)− q(t)w = 0. Now
substitute w′ = w− 1 and y′ = y− q(t) to get y′w′+ (p(t)− q(t)) = 0. Hence the dual curve
is a line segment of length val(p(t)− q(t)) with both vertices having weight 0.

Evaluating the map (2.27) in general is a challenging computer algebra problem: how does
one compute the metric graph from a smooth curve C that is given by explicit polynomial
equations over K? This section represents a contribution to this problem for curves of genus
2. As a warm-up for our study of genus 2 curves, let us first consider the genus 1 case.

Example 2.5.2. An elliptic curve C can be defined by giving four points in P1. The curve
is the double cover of P1 branched at those four points. This gives us a map M0,4 →M1,
which is well-defined over our field K. The map is given explicitly by the following formula
for the j-invariant of C in terms of the cross ratio λ of four ramification points (see [90, §3]):

j = 256
(λ2 − λ+ 1)3

λ2(λ− 1)2
. (2.28)
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We now pass to the tropicalization by constructing a commutative square

M0,4(K) -Mtr
0,4

M1(K)
?

-Mtr
1

?

(2.29)

The horizontal maps are instances of (2.27), and the left vertical map is (2.28). Our task
is to define the right vertical map. The ingredients are the trees and tropical curves in
Table 2.5.2:

Tropical curve of genus 1 Tree with 4 leaves

1

Table 2.2: Trees on four taxa and tropical curves of genus 1

A point in Mtr
0,4 can be represented by a phylogenetic tree with taxa 1, 2, 3, 4. Writing

νij for half the distance from leaf i to leaf j in that tree, the unique interior edge has length

` = max
{
ν12 + ν34 − ν14 − ν23, ν13 + ν24 − ν12 − ν34, ν14 + ν23 − ν13 − ν24

}
.

Suppose we represent a point inM0,4 by four scalars, x1, x2, x3, x4 ∈ K, as in Example 2.5.1.
Then its image in Mtr

0,4 is the phylogenetic tree obtained by setting

νij = −val(xi − xj). (2.30)

The square (2.29) becomes commutative if the right vertical map takes trees with interior
edge length ` > 0 to the cycle of length 2`, and it takes the star tree (` = 0) to the node
marked 1. To see this, we recall that the tropical curve contains a cycle of length −val(j),
where j is the j-invariant. This is a standard fact (see [9, §7]) from the theory of elliptic
curves over K. Suppose the four given points in P1 are 0, 1,∞, λ, and that λ and 0 are
neighbors in the tree. This means val(λ) > 0. As desired, the length of our cycle is

−val(j) = −3val(λ2 − λ+ 1) + 2val(λ) + 2val(λ− 1) = 0 + 2val(λ) + 0 = 2val(λ).
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The other case, when λ and 0 are not neighbors in the tree, follows from the fact that the
rational function of λ in (2.28) is invariant under permuting the four ramification points.

In this example, the one-dimensional fanMtr
0,4 serves as a moduli space for tropical elliptic

curves. A variant where the fibers are elliptic normal curves is shown in Figure 1.2. In both
situations, all maximal cones correspond to elliptic curves over K with bad reduction.

Moving on to genus 2 curves, we shall now focus on the tropical spaces Mtr
2 and Mtr

0,6.
There are seven combinatorial types for genus 2 tropical curves. Their poset is shown in
[26, Figure 4]. The seven types are drawn in the second column of Table 2.5. The stacky
fan Mtr

2 is the cone over the two-dimensional cell complex shown in Figure 2.5. Note the
identifications.

(2)

(4)

(6)

(4)

(3)

(5)

(3)

(5)

(7)

(5)

(3)

Figure 2.4: The moduli space of genus 2 tropical curves

The tropical moduli spaceMtr
0,6 is the space of phylogenetic trees on six taxa. A concrete

model, embedded in TP14, is the 3-dimensional fan trop(M0,6) seen in Theorem 2.2.4. Com-
binatorially, it agrees with the tropical Grassmannian Gr(2, 6) as described in [84, Example
4.1], so its cones correspond to trees with six leaves. The fanMtr

0,6 has one zero-dimensional
cone of type (1), 25 = 10+15 rays of types (2) and (3), 105 = 60+45 two-dimensional cones
of types (4) and (5), and 105 = 90 + 15 three-dimensional cones of types (6) and (7). The
corresponding combinatorial types of trees are depicted in the last column of Table 2.5.

Table 2.5 shows that there is a combinatorial correspondence between the types of cones
of the tropical Burkhardt quartic trop(B) in Table 2.1 and the types of cones in Mtr

2 and
Mtr

0,6. We seek to give a precise explanation of this correspondence in terms of algebraic
geometry. At the moment we can carry this out for level 2 but we do not yet have a proof
for level 3.

Theorem 2.5.3. Let K be a complete non-archimedean field.
(a) There is a commutative square

M0,6(K) -Mtr
0,6

M2(K)
?

-Mtr
2

?

(2.31)
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Label Tropical curve of genus 2 Burkhardt cone Tree with 6 leaves

(1) 2 origin

(2) 1 1 (b)

(3)

1

(a)

(4)
1

(ab)

(5) (aa)

(6) (aab)

(7) (aaa)

Table 2.3: Correspondence between tropical curves, cones of trop(B), and metric trees.
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The left vertical map sends 6 points in P1 to the genus 2 hyperelliptic curve with these
ramification points. The horizontal maps send a curve (with or without marked points)
to its tropical curve (with or without leaves at infinity). The right vertical map is
a morphism of generalized cone complexes relating the second and fourth columns of
Table 2.5.

(b) The top horizontal map can be described in an alternative way: under the embedding of
M0,6 into P14 given by (2.5), take the valuations of the 15 coordinates m0,m1, . . . ,m14.

Proof of Theorem 2.5.3. We start with (a). Let C be a genus 2 curve over K and let
p1, . . . , p6 ∈ P1

K be the branch points of the double cover C → P1 induced from the canon-
ical divisor. Let R′ be a discrete valuation ring over which a stable model of both C and
(P1, p1, . . . , p6) can be defined and let k be its residue field. The fact that the combinatorial
types of dual graphs for C and the marked curve (P1, p1, . . . , p6) match up as in Table 2.5
is clear from the proof of [7, Corollary 2.5] which constructs the stable k-curve of C from
that of (P1, p1, . . . , p6). There is an obvious bijection of edges between the combinatorial
types in all cases. We claim that the edge length coming from the étale neighborhood of
nodal singularities is halved for curves of type (2) and is doubled for curves of type (3) from
Table 2.5: the description and proof for the other types can be reduced to these two cases.

First consider curves of type (3). Our stable genus 0 curve consists of the union of two
P1’s meeting in a point. One has 4 marked points and the other has 2 marked points. This
arises from 6 distinct points in P1

R′ such that exactly 2 of them coincide after passing to
the residue field. To build a stable model (cf. Example 2.5.1), we blow up the point of
intersection in the special fiber of P1

R′ to get an arithmetic surface P̃R′ . Let E be the double
cover of the first P1

k along the 4 marked points, and let E ′ be a copy of P1
k mapping to the

second P1
k so that it is ramified over the 2 marked points. Over the point of intersection,

both E and E ′ are unramified, and we glue together the two preimages (there are two ways
to do this, but the choice won’t matter). Then E ∪E ′ is a semistable (but not stable) curve
which is the special fiber of an admissible double cover CR′ → P̃R′ . Suppose that the node
in the special fiber of P̃R′ étale locally is xy = t`. In a small neighborhood of this node,
there are no ramification points. Thus, a small neighborhood of each of these two points of
intersection in CR′ is isomorphic to a small neighborhood of the node in P̃R′ and hence étale
locally look like xy = t`. Finally, we have to contract E ′ to a single point to get a stable
curve. The result is that the two nodes become one which étale locally looks like xy = t2`.

Now consider curves of type (2). Use the notation from the previous case. The semistable
model CR′ over Spec R′ has a hyperelliptic involution whose quotient is the union of two P1

R′ ’s.
At the node of CR′ , which locally looks like R′[[x, y]]/〈xy − tm〉 for some m, the involution
negates x and y since it preserves the two components of CR′ . The ring of invariants is
R′[[u, v]]/〈uv− t2m〉 where u=x2, v=y2. This is the local picture for the nodal genus 0 curve.

The result above can also be deduced from Caporaso’s general theory in [22, §2]. For a
combinatorial illustration of type (6) see Chan’s Figure 1 in [27]. The two leftmost and two
rightmost edges in her upstairs graph have been contracted away. What is left is a “barbell”
graph with five horizontal edges of lengths a, a, b, c, c, mapping harmonically to a downstairs
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graph of edge lengths a, 2b, c. Here we see both of the stretching factors represented in
different parts of this harmonic morphism: a 2-edge cycle of total length a + a maps to an
edge of length a, and a single edge of length b maps to an edge of length 2b downstairs.

Now we consider (b). We need to argue that the internal edge lengths can be computed
from the 15 quantities val(mi), in a manner that is consistent with the description above. For
genus 1 curves this is precisely the consistency between Examples 2.5.1 and 2.5.2. We explain
this for the case of the snowflake tree (7). Without loss of generality, we assume that {1, 2},
{3, 4} and {5, 6} are the neighbors on the tree. If νij is half the distance between leaves i and
j, computed from the six points as in (2.30), then, for instance, val(m13) = −ν16− ν24− ν35.
A direct calculation on the snowflake tree shows that the three internal edge lengths are

val(m2)− val(m13), val(m6)− val(m13), and val(m14)− val(m13). (2.32)

The edge lengths of the tropical curve are gotten by doubling these numbers.

At present we do not know the level 3 analogues to the stretching factors 1/2 and 2 we
saw in the proof above. Such lattice issues will play a role for the natural map from the
tropical Burkhardt quartic onto the tropical moduli space Mtr

2 . We leave that for future
research:

Conjecture 2.5.4. Let K be a complete non-archimedean field. There is a commutative
square

M2(3)(K) - trop(B)

M2(K)
?

-Mtr
2

?

(2.33)

The left map is the forgetful map. The top map is taking valuations of the coordinates
m0, . . . ,m39. The bottom map sends a curve to its tropical curve. The right map is a
morphism of (stacky) fans that takes the third column of Table 2.5 to the second column.

Here is one concrete way to evaluate the left vertical map M2(3)→M2 over a field K.
We can represent an element of M2(3) by a point (r : s01 : s10 : s11 : s12) ∈ P4

K that lies in
the open Burkhardt quartic B◦. The corresponding abelian surface S is the singular locus
of the Coble cubic in P8

K by Theorem 2.3.2. If we intersect the abelian surface S with the
linear subspace P4 given by (2.19), then the result is the desired genus 2 curve C ∈M2(K).
The conjecture asks about the precise relationship between the tropical curve constructed
from C and the valuations of our 40 canonical coordinates m0,m1, . . . ,m39 on B◦ inside P39

K .

2.6 Marked Del Pezzo Surfaces

This section is motivated by our desire to draw all combinatorial types of tropical cubic
surfaces together with their 27 lines (trees). These surfaces arise in fibers of the map from a
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six-dimensional fan to a four-dimensional fan. These tropical moduli spaces were character-
ized by Hacking, Keel and Tevelev in [50]. We now rederive their fans from first principles.

Consider a reflection arrangement of type En for n = 6, 7. The complement of the
hyperplanes is the moduli space of n points in P2 in general position (no 2 coincide, no 3 are
collinear, no 6 lie on a conic) together with a cuspidal cubic through these points (none of
which is the cusp). For n = 6, there is a 1-dimensional family of such curves (this family is
the parabolic curve in [30, Definition 3.2]). For n = 7 there are 24 choices. We can use maps
(2.3) that come from Macdonald representations to forget the data of the cuspidal cubic.

Consider the case n = 6. Six points on a cuspidal cubic in P2 are represented by a matrix

D =

 1 1 1 1 1 1
d1 d2 d3 d4 d5 d6

d3
1 d3

2 d3
3 d3

4 d3
5 d3

6

 . (2.34)

The maximal minors of this 3× 6-matrix are denoted

[ijk] = (di − dj)(di − dk)(dj − dk)(di + dj + dk) for 1 ≤ i < j < k ≤ 6.

We also abbreviate the condition for the six points to lie on a conic:

[conic] = [134][156][235][246]−[135][146][234][256] = (d1+d2+d3+d4+d5+d6)
∏

1≤i<j≤6

(di−dj).

The reflection arrangement of type E6 consists of the 36 =
(

6
3

)
+
(

6
2

)
+ 1 hyperplanes defined

by the linear forms in the products above. We list the flats of this arrangement in Table 2.4.
The bold numbers indicate irreducible flats. Each flat corresponds to a root subsystem, but
not conversely. Root subsystems that are not parabolic, such as A×3

2 , do not come from flats.
The Bergman fan of E6 is the fan over the nested set complex [5], a 4-dimensional

simplicial complex whose vertices are the 750 = 36+120+270+45+216+27+36 irreducible flats.
We define the Yoshida variety Y to be the closure of the image of the rational map

P5 linear
↪→ P35 monomial

99K P39, (2.35)

where the monomial map is defined by the root subsystems of type A×3
2 . Our name for Y

gives credit to Masaaki Yoshida’s explicit computations in [97]. (Warning: there is a closely
related variety Y studied in [56, §3.5]. This is not the same as our variety.) Explicitly,
as shown in [30, Proposition 2.4], the map into P39 is defined by 30 bracket monomials like
[125][126][134][234][356][456] and 10 bracket monomials like [conic][123][456]. We divide each
of these 40 expressions by

∏
1≤i<j≤6(di − dj) to get a product of 9 linear forms. Thus the

rational map (2.35) is given by 40 polynomials of degree 9 that factor into roots of E6. The
tropical Yoshida variety trop(Y) is the image of the Bergman fan of E6 under the linear map
TP35 → TP39 defined by the corresponding 40 × 36-matrix. The Yoshida variety Y has 40
singular points [94, Theorem 5.7]. Its open part Y◦ is the moduli space of marked smooth
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# Codim Size Root subsystem Equations of a representative flat

1 1 36 A1 d1 − d2

2 2 120 A2 d1 + d3 + d6, d2 + d4 + d5

3 2 270 A1 ×A1 d1 + d4 + d6, d2 + d4 + d5

4 3 270 A3 d1 + d4 + d6, d2 + d4 + d5, d5 − d6

5 3 720 A2 ×A1 d1 + d5 + d6, d2 + d4 + d5, d4 − d5

6 3 540 A×3
1 d1 + d4 + d6, d2 + d3 + d6, d2 + d4 + d5

7 4 45 D4 d5 − d6, d3 − d4, d2 + d4 + d6, d1 + d4 + d6

8 4 216 A4 d5 − d6, d3 + d4 + d6, d2 + d4 + d6, d1 + d4 + d6

9 4 540 A3 ×A1 d3 + d4 + d6, d2 + d3 + d6, d1 + d4 + d6, d2 + d4 + d5

10 4 120 A2 ×A2 d4 − d5, d3 + d4 + d5, d2 + d4 + d5, d1 + d5 + d6

11 4 1080 A2 ×A×2
1 d1 + d2 + d5, d2 + d3 + d6, d1 + d4 + d6, d2 + d4 + d5

12 5 27 D5 d5 − d6, d1 − d4, d1 − d3, d1 − d2, d1 + d5 + d6

13 5 36 A5 d5 + d4 + d6, d4 − d6, d3 − d5, d2 − d6, d1 − d5

14 5 216 A4 ×A1 d6, d4, d3 − d5, d2 + d5, d1

15 5 360 A×2
2 ×A1 d2 + d4 + d5, d2 − d3, d4 − d5, d2 + d3 + d6, d1 + d4 + d6

Table 2.4: The flats of the E6 reflection arrangement.

cubic surfaces [30, Theorem 3.1]. The blow-up of these points is Naruki’s cross ratio variety
Y 6

lc (following the notation of [50]) from [70]. The situation is analogous to Theorem 2.4.7.
As defined, we consider trop(Y) only as a set, but there is a unique coarsest fan structure

on this set. This was shown in [50]. It is the fan over a 3-dimensional simplicial complex that
was described by Naruki [70]. We call them the Naruki fan and Naruki complex, respectively.
The 76 = 36 + 40 vertices correspond to the two types of boundary divisors on Y 6

lc : the 36
divisors coming from the hyperplanes of E6 (type a) and the 40 exceptional divisors of the
blow-up (type b). The types of intersections of these divisors is given in [70, p.23] and is
listed in Table 2.5. The divisors of type (a) correspond to root subsystems of type A1 and
the divisors of type (b) correspond to root subsystems of type A×3

2 . The Naruki complex is
the nested set complex on these subsystems. Its face numbers are as follows:

type number
(a) 36
(b) 40
(aa) 270
(ab) 360
(aaa) 540
(aab) 1080
(aaaa) 135
(aaab) 1080

Table 2.5: The Naruki complex has 76 vertices, 630 edges, 1620 triangles and 1215 tetrahedra.
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Theorem 2.6.1. The Yoshida variety Y is the intersection in P39 of a 9-dimensional linear
space and a 15-dimensional toric variety whose dense torus G15

m is the intrinsic torus of Y◦.
The tropical compactification Y of Y◦ induced by the Naruki fan is the cross ratio variety Y 6

lc .

The polytope of the toric variety has 2232 facets. Its prime ideal is minimally generated
by 8922 binomials, namely 120 of degree 3, 810 of degree 4, 2592 of degree 5, 2160 of
degree 6, and 3240 of degree 8. These results, which mirror parts (b) and (d) in Proposition
2.3.1, were found using polymake [42] and gfan [57]. The prime ideal of Y is minimally
generated by 30 of the binomial cubics together with 30 linear forms. A natural choice of
such linear forms is described in [97, §3]. It comes from 4-term Plücker relations such as
[123][456]− [124][356] + [125][346] + [126][345]. There are no linear trinomial relations on Y .

Remark 2.6.2. After our result was published, Sikirić [83] computed the f -vector and the
number of orbits of faces of the polytope under the action of W (E6), as shown in Table 2.6.

Table 2.6: The f -vector and the number of orbits of faces of the polytope for Y
Dimension #Orbits #Faces
0 (vertices) 1 40

1 2 780
2 4 9720
3 12 83970
4 32 509544
5 84 2140560
6 189 6189210
7 336 12313755
8 442 16777012
9 412 15422760
10 282 9301770
11 136 3506895
12 50 756000
13 17 76806

14 (facets) 5 2232

The 750 rays of the Bergman fan map into trop(Y) as follows. Write m for the linear map
TP35 → TP39 and Fi for the rays representing family i of irreducible flats of Table 2.4. Then:

m(F1) = m(F8) = m(F13) has 36 elements (a),

m(F2) has 40 elements (b),

m(F4) has 270 elements.

All other rays map to 0 in TP39. Each element in m(F4) is the sum of two vectors from
m(F1) which form a cone. The image of the Bergman fan of E6 in TP39 is a fan with
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346 = 36+40+270 rays that subdivides the Naruki fan. That fan structure on trop(Y)
defines a modification of the Naruki variety Y 6

lc .
Here is the finite geometry behind (2.35). Let V = F6

2 with coordinates x1, . . . , x6. There
are two conjugacy classes of nondegenerate quadratic forms on V . Fix the non-split form

q(x) = x1x2 + x3x4 + x2
5 + x5x6 + x2

6.

Then the Weyl group W (E6) is the subgroup of GL6(F2) that preserves this form. Using
q(x), we define an orthogonal (in characteristic 2, this also means symplectic) form by

〈x, y〉 = q(x+ y)− q(x)− q(y).

There is a natural bijection between the 36 positive roots of E6 and the vectors x ∈ V
with q(x) 6= 0. There are 120 planes W such that q(x) 6= 0 for all nonzero x ∈ W . These
correspond to subsystems of type A2. The set of 120 planes breaks up into 40 triples of
pairwise orthogonal planes. These 40 triples correspond to the subsystems of type A×3

2 .

We now come to the case n = 7. The Göpel variety G of [74] is the closed image of a map

P6 linear
↪→ P62 monomial

99K P134. (2.36)

The linear map is given by the 63 hyperplanes in the reflection arrangement E7, and the
monomial map by the 135 root subsystems of type A×7

1 . The full list of all flats of the
arrangement E7 appears in [74, Table 2]. In [74, Corollary 9.2] we argued that the tropical
Göpel variety trop(G) is the image of the Bergman fan of E7 under the induced linear map
TP62 → TP134, and we asked how trop(G) would be related to the fan for Y 7

lc in [50, §1.14].
We call that fan the Sekiguchi fan, after [80]. The following theorem answers our question.

Theorem 2.6.3. The Göpel variety G is the intersection in P134 of a 14-dimensional linear
space and a 35-dimensional toric variety whose dense torus G35

m is the intrinsic torus of G◦.
The tropical compactification G of the open Göpel variety G◦ induced by the Sekiguchi fan is
the Sekiguchi variety Y 7

lc . Hence, the Sekiguchi fan is the coarsest fan structure on trop(G).

The result about the linear space and the toric variety is [74, Theorem 6.2]. The deter-
mination of the intrinsic tori in Theorems 2.6.1 and 2.6.3 is immediate from Lemma 2.2.6.
The last assertion follows from the fact that the open Göpel variety G◦ is the moduli space
of marked smooth del Pezzo surfaces of degree two. For this see [30, Theorem 3.1].

The Bergman fan of type E7 has 6091 rays. They are listed in [74, Table 2]. The 6091
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rays map into trop(G) as follows. Write Fi for family i in [74, Table 2]. Then:

m(F1) = m(F17) = m(F25) has 63 elements,

m(F2) = m(F15) has 336 elements,

m(F4) has 630 elements,

m(F24) has 36 elements,

m(F8) has 2016 elements,

m(F9) has 315 elements,

m(F16) has 1008 elements.

Finally, m sends F26 to 0 (multiple of all 1’s vector). The fan on the first 4 types of rays
is the Sekiguchi fan as described in [50, §1.14]. The image of the Bergman fan of E7 is a
refinement of the Sekiguchi fan, as follows:
• Every ray in m(F8) is uniquely the sum of a ray in m(F2) and a ray in m(F24). This

is in the image of a cone of nested set type A2 ⊂ A6.
• Every ray in m(F9) is uniquely the sum of three rays in m(F1). This is in the image

of a cone of nested set type A×3
1 .

• Every ray in m(F16) can be written uniquely as a positive sum of a ray in m(F1) and
a ray in m(F24). This is in the image of a cone of nested set type A1 ⊂ A6.

The Sekiguchi fan on trop(G) is a fan over a 5-dimensional simplicial complex with
1065 = 63 + 336 + 630 + 36 vertices. It has 9 types of facets, corresponding to the 9 tubings
shown in [50, Figure 2, page 200]. The significance of the Naruki fan and the Sekiguchi fan
lies in the commutative diagram in [50, Lemma 5.4], which we restate here:

P6 - G◦

P5
?

- Y◦
?

(2.37)

The horizontal maps are those in (2.36) and (2.35). The left vertical map is defined by
dropping a coordinate. The tropicalization of the right vertical map G◦ → Y◦ is a linear
projection

trop(G) → trop(Y) (2.38)

from the tropical Göpel variety onto the tropical Yoshida variety.
We wish to explicitly determine this map on each cone of trop(G). The point is that

all tropicalized generic del Pezzo surfaces of degree 3 appear in the fibers of (2.38), by the
result about the universal family in [50, Theorem 1.2], and our Theorems 2.6.1 and 2.6.3.
At infinity, such a del Pezzo surface is glued from 27 trees, which are exactly the tropical
image of the 27 lines on a cubic surface over K. Each tree has 10 leaves, which come from



CHAPTER 2. TROPICALIZATION OF CLASSICAL MODULI SPACES 43

the intersections of the 27 lines. Thus, each tree represents a point of M0,10(K). Thus
tropicalized del Pezzo surfaces of degree 3 can be represented by a tree arrangement in the
sense of [53, §4].

One issue with the map (2.38) is that its zero fiber is 3-dimensional. Namely, it the
union of tropicalizations of all constant coefficient cubic surfaces. The zero fiber has 27
rays, one for each line on the cubic surface, and 45 triangular cones, one for each triple
of pairwise intersecting lines. This is the subtle issue of Eckhart points, addressed by [50,
Theorem 1.19]. Cubic surfaces with Eckhart points are special, for they contribute to the
points in the interior of the 45 triangular cones. Disallowing these removes the interiors
of the triangular cones, and we are left with a balanced two-dimensional fan. This is the
fan over a graph with 27 vertices and 135 edges, representing generic constant coefficient
cubic surfaces.

In this section, we developed some tools for the classification of tropical cubic surfaces,
namely as fibers of (2.38), but we did not actually carry out this classification. The solution
to that problem is the topic of Chapter 4.
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Chapter 3

Algorithms for Mumford Curves

This chapter is joint work with Ralph Morrison. It will be published with the same title in
the Journal of Symbolic Computation, Special Issue on the Occasion of MEGA 2013 [66].

3.1 Introduction

Curves over non-archimedean fields are of fundamental importance to algebraic geometry
and number theory. Mumford curves are a family of such curves, and are interesting from
both a theoretical and computational perspective. In non-archimedean geometry, they are
quotients of an open subset of the projective line by Schottky groups. In tropical geometry,
which looks at the images in Rn of curves under coordinate-wise valuation, these are balanced
graphs with the maximal number of cycles. For instance, the tropicalization of an elliptic
Mumford curve can be realized as a plane cubic in honeycomb form [29].

LetK be an algebraically closed field complete with respect to a nontrivial non-archimedean
valuation. Unless otherwise stated, | · | will denote a choice of norm on K coming from this
valuation. Let R = {x ∈ K|val(x) ≥ 0} be the valuation ring of K. This is a local ring
with unique maximal ideal M = {x ∈ K|val(x) > 0}. Let k = R/M denote the residue field
of K. We are most interested in the field of p-adic numbers Qp, which unfortunately is not
algebraically closed. (For this case, R = Zp, the ring of p-adic integers, and k = Fp, the
field with p elements.) Therefore for theoretical purposes we will often consider K = Cp,
the complete algebraic closure of Qp. (In this case R is much larger, and k is the algebraic
closure of Fp.) In most of this chapter, choosing elements of Cp that happen to be elements
of Qp as inputs for algorithms yields an output once again in Qp. This “Qp in, Qp out”
property means we may take K to be Qp for our algorithmic purposes, while still considering
K = Cp when more convenient for the purposes of theory. Much of the theory presented
here works for other non-archimedean fields, such as the field of Puiseux series C{{t}}.

We recall some standard definitions and notation for p-adic numbers; for further back-
ground on the p-adics, see [54]. For a prime p, the p-adic valuation valp : Q∗ → Z is defined
by valp

(
pv m

n

)
= v, where m and n are not divisible by p. The usual p-adic norm | · |p on Q
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is defined for a ∈ Q∗ by |a|p = 1
pvalp(a)

and for 0 by |0|p = 0. This means that large powers

of p are small in absolute value, and small powers of p are large in absolute value. We will
usually omit the subscript p from both | · |p and valp.

The completion of Q with respect to the p-adic norm is denoted Qp, and is called the
field of p-adic numbers. Each nonzero element b of Qp can be written uniquely as

b =
∞∑
n=v

anp
n,

where v ∈ Z, av 6= 0 and an ∈ {0, 1, . . . , p − 1} for all n. The p-adic valuation and norm
extend to this field, and such a sum will have val(b) = v and |b| = 1

pv
. In analog to decimal

expansions, we will sometimes write

b = . . . aNaN−1 . . . a3a2a1a0.a−1a−2 . . . av,

where the expression trails to the left since higher powers of p are smaller in p-adic absolute
value. We may approximate b ∈ Qp by a finite sum

b ≈
N∑
n=v

anp
n,

which will give an error of size at most 1
pN+1 .

Consider the group PGL(2, K), which acts on P1(K) by treating elements as column
vectors. That is, a matrix acts on the point (a : b) ∈ P1(K) by acting on the vector ( ab )
on the left. Viewed on an affine patch, the elements of this group act as fractional linear
transformations. We are interested in the action of certain subgroups of PGL(2, K) called
Schottky groups, because a Schottky group minimally generated by g ≥ 2 elements will give
rise to a curve of genus g.

Definition 3.1.1. A 2 × 2 matrix is hyperbolic if it has two eigenvalues with different
valuations. A Schottky group Γ ≤ PGL(2, K) is a finitely generated subgroup such that
every non-identity element is hyperbolic.

There are many equivalent definitions of Schottky groups, including the following useful
characterization.

Proposition 3.1.2. A subgroup of PGL(2, K) is Schottky if and only if it is free, discrete,
and finitely generated.

As remarked in the introduction of [67], if the matrices have entries in a locally compact
field (like Qp), the definition of Schottky is equivalent to asking that Γ has no elements
of finite order. So if we are working with generators in Q2×2

p , we may replace “free” with
“torsion free.”
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Let Γ be a Schottky group minimally generated by γ1, . . . , γg. The above proposition
implies that each element γ ∈ Γ can be written as a unique shortest product h1h2 · · ·hk,
where each hi ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g }. This product is called the reduced word for γ.
Let Σ be the set of points in P1(K) that are fixed points of elements of Γ or limit points

of the fixed points. The group Γ acts nicely on Ω := P1(K) \ Σ; for this reason we will
sometimes refer to Σ as the set of bad points for Γ.

Theorem 3.1.3 (Mumford, [67]). Let Γ = 〈γ1, . . . , γg〉 and Ω be as above. Then Ω/Γ is
analytically isomorphic to a curve of genus g. We call such a curve a Mumford curve.

In a companion paper to [67] (see [68]), Mumford also considered abelian varieties over
non-archimedean fields. He showed that these could be represented as (K∗)g/Q, where
Q ∈ (K∗)g×g is called a period matrix for the abelian variety, and represents the multiplicative
subgroup generated by its columns.

Since their initial appearance in the 1970s, a rich theory behind Mumford curves has
been developed, largely in the 1980s in such works as [43]. However, prior to the work in this
project there have been few numerical algorithms for working with them (an exception being
a treatment of hyperelliptic Mumford curves, mostly genus 2, in [58] from 2007). We have
designed and implemented algorithms that accomplish Mumford curve-based tasks over Qp

previously absent from the realm of computation, and have made many seemingly theoretical
and opaque objects hands-on and tractable.

After discussing in Section 3.2 a technical hypothesis (“good position”) for the input
for our algorithms, we present our main algorithms in Section 3.3. They accomplish the
following tasks, where we denote Ω/Γ by C:

• Given a Schottky group Γ, find a period matrix Q for the abelian variety Jac(C)
(Algorithm 3.3.3).

• Given a Schottky group Γ, find a triple (G, `, h), where

– G is a graph,

– ` is a length function on G such that the metric graph (G, `) is the abstract
tropical curve which is a skeleton of Can (the analytification of C), and

– h is a natural equivalence h : Rg → G from the rose graph on g petals;

this data specifies a point in the tropical Teichmüller space described in [28] (Algorithm
3.3.9).

• Given a Schottky group Γ, find points in a canonical embedding of the curve C into
Pg−1 (Algorithm 3.3.13).

In Section 3.4, we present an algorithm to achieve the “good position” hypothesis that
allows the other algorithms to run efficiently, which in doing so verifies that the input group
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is Schottky (or proves that the group is not Schottky). This is the most important result of
this chapter, as the algorithms in Section 3.3 rely heavily upon it.

We take advantage of a property that makes non-archimedean valued fields like Qp special:
|x+y| ≤ max{|x|, |y|}. As a result, the error does not accumulate in the computation. Thus
we avoid a dangerous hazard present in doing numerical computation over R or C. The
computational problems are hard in nature. Efficient computation for similar problems is not
common in the literature even for genus 2 case. Our algorithms are capable of solving genus 2
and some genus 3 examples on a laptop in reasonable time (several minutes). However, they
are less efficient for larger genera. The reason is that the running time grows exponentially
as the requirement on the precision of the output (in terms of the number of digits) grows.
One of the future goals is to find a way to reduce the running time for the algorithms.

Other future goals for Mumford curve algorithms (detailed in Section 3.5) include natural
reversals of the algorithms in Section 3.3. We are also interested in a particular family of
Schottky groups called Whittaker groups, defined in Subsection 3.5. These are the Schottky
groups that give rise to hyperelliptic Mumford curves. Some computations for genus 2 curves
arising from Whittaker groups were done in [58], including computation of Jacobians and
finding group representations from ramification points. Two desirable algorithms in this area
include:

• Given a Whittaker group W , find an affine equation for Ω/W .

• Given a totally split hyperelliptic curve C, find a Whittaker group W such that C ∼=
Ω/W .

The first can be accomplished if a particular presentation of W is available, and a brute
force algorithm in [58] can compute the second if the ramification points of C are in a nice
position. Future work removing these requirements and improving efficiency would make
hyperelliptic Mumford curves very easy to work with computationally.

This project also looks towards understanding tropicalizations of Mumford curves, both
as abstract metric graphs and as balanced polyhedral complexes in Rn. For more background
on tropical geometry, in particular tropical curves, tropical Jacobians, and their relationships
to classical curves and Jacobians, see [3, 10, 18, 23, 26, 96].

Supplementary Material

We made extensive use of the software package sage [85]. Our supplementary files can
be found at http://math.berkeley.edu/~ralph42/mumford_curves_supp.html. We have
also included the files in the arXiv submission, and they can be obtained by downloading
the source. There are minor changes in the sage implementation from the description of the
algorithms in this chapter. The changes are made only for convenience in implementation,
and they do not affect the behavior of the algorithms.
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3.2 Good Fundamental Domains in P1 and (P1)an

This section introduces good fundamental domains and the notion of good position for gen-
erators, both of which will play key roles in our algorithms for Mumford curves. Our main
algorithms in Section 3.3 require as input Schottky generators in good position, without
which the rate of convergence of approximations will drop drastically. For our method of
putting generators into good position, see Section 3.4.

We start with the usual projective line P1, then discuss the analytic projective line (P1)an.
Our treatment of good fundamental domains follows Gerritzen and van der Put [43]. The
notion is also discussed by Kadziela [58]. The introduction to the analytic projective line
follows Baker, Payne and Rabinoff [9].

Definition 3.2.1. An open ball in P1 is either a usual open ball B(a, r) = {x ∈ K : |x−a| <
r} or the complement of a usual closed ball P1\B(a, r)+ = {∞} ∪ {x ∈ K : |x− a| > r}. A
closed ball is either a usual closed ball or the complement of a usual open ball.

The open balls generate a topology on P1. Both open balls and closed balls are simulta-
neously open and closed in this topology, as is the case for any non-archimedean field due to
the ultrametric inequality |x + y| ≤ max{|x|, |y|}. Let |K×| denote the image of K× under
| · |. If r ∈ |K×|, the open ball and the closed ball of radius r are distinguished by whether
there exist two points x, y in the ball such that |x−y| equals the diameter. The complement
of an open ball is a closed ball, and vice versa.

Definition 3.2.2. A good fundamental domain F ⊂ P1 corresponding to the generators
γ1, . . . , γg is the complement of 2g open balls B1, . . . , Bg, B

′
1, . . . , B

′
g, such that corresponding

closed ballsB+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g are disjoint, and that γi(P1\B′i) = B+

i and γ−1
i (P1\Bi) =

B′+i for all i. The interior of F is F ◦ = P1\(B+
1 ∪ · · · ∪B+

g ∪B′+1 ∪ · · · ∪B′+g ). The boundary
of F is F\F ◦.

The definition above implies that γi(P1\B′+i ) = Bi and γ−1
i (P1\B+

i ) = B′i for all i.

Example 3.2.3. (1) Let K = C3 and Γ be the group generated by

γ1 =

[
−5 32
−8 35

]
, γ2 =

[
−13 80
−8 43

]
Both matrices have eigenvalues 27 and 3. The matrix γ1 has left eigenvectors ( 1

1 ) and ( 4
1 ),

and γ2 has left eigenvectors ( 2
1 ) and ( 5

1 ). We use the convention that (z1 : z2) = z1/z2.
Then, F = P1\(B1 ∪ B′1 ∪ B2 ∪ B′2) where B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9),
B′2 = B(2, 1/9) is a good fundamental domain relative to the generators γ1 and γ2. One can
verify as follows. First rewrite

γ1z =
−5z + 32

−8z + 35
= 4 +

27(z − 1)− 81

−8(z − 1) + 27
.
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Suppose that z ∈ B′1 = B(1, 1/9). Then, val(27(z − 1)) = 3 + val(z − 1) ≥ 3 + 2 = 5,
and val(81) = 4. So val(27(z − 1) − 81) = 4. Also, val(−8(z − 1) + 27) ≥ min (val(8(z −
1)), val(27)) > min (2, 3) = 2. So,

|γ1z − 4| =
∣∣∣∣ 27(z − 1)− 81

−8(z − 1) + 27

∣∣∣∣ > 3−4

3−2
= 1/9.

So γ1(B′1) ⊂ P1\B+
1 . The other three conditions can be verified similarly.

(2) Let K = C3 and Γ be the group generated by

γ1 =

[
−79 160
−80 161

]
, γ2 =

[
−319 1600
−80 401

]
Both matrices have eigenvalues 81 and 1. The matrix γ1 has left eigenvectors ( 1

1 ) and ( 2
1 ),

and the matrix γ2 has left eigenvectors ( 4
1 ) and ( 5

1 ). Then, F = P1\(B1∪B′1∪B2∪B′2) where
B1 = B(2, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), B′2 = B(4, 1/9) is a good fundamental
domain relative to the generators γ1 and γ2.

(3) Let K = C3, and let Γ be the group generated by

γ1 =

[
121 −120
40 −39

]
, γ2 =

[
121 −240
20 −39

]
, γ3 =

[
401 −1600
80 −319

]
.

All three generators have eigenvalues 1 and 34. The element γ1 has eigenvectors ( 1
1 ) and

( 3
1 ). The element γ2 has eigenvectors ( 2

1 ) and ( 6
1 ). The element γ3 has eigenvectors ( 4

1 ) and
( 5

1 ). Then, F = P1\(B1 ∪ B′1 ∪ B2 ∪ B′2 ∪ B3 ∪ B′3) where B1 = B(1, 1/9), B′1 = B(3, 1/9),
B2 = B(2, 1/9), B′2 = B(6, 1/9), B3 = B(4, 1/9), B′3 = B(5, 1/9) is a good fundamental
domain relative to the generators γ1, γ2 and γ3.

The following lemma follows from Definition 3.2.2 by induction (see [58, Theorem 6.2]).

Lemma 3.2.4. Let F and γ1, . . . , γg be as in Definition 3.2.2, and let γ ∈ Γ \ {( 1 0
0 1 )} and

b ∈ P1(K). Write the reduced word for γ as h1h2 · · ·hk, where k ≥ 1 and hi ∈ {γ±1 , . . . , γ±g }
for all i. Assume that b /∈ B′j if hk = γj and b /∈ Bj if hk = γ−1

j . Then we have

γb ∈
{
B+
i , if h1 = γi,

B′+i , if h1 = γ−1
i .

Proof. To simplify notation we will outline the proof for the case where hi ∈ {γ1, . . . , γg} for
all i, and then describe how to generalize to the case of hi ∈ {γ±1 , . . . , γ±g }.

Write hi = γai for each i. Since hk = γak , we know by assumption that b /∈ B′ak . By
Definition 3.2.2 we have γak(P1 \ B′ak) = B+

ak
, so hkb ∈ B+

ak
. By the disjointness of the

2g closed balls, we know that hkb /∈ B′ak−1
, and since γak−1

(P1 \ B′ak−1
) = B+

ak−1
, we have

hk−1hkb ∈ B+
ak−1

. We may continue in this fashion until we find that h1h2 . . . hkb ∈ B+
a1

.
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The only possible obstruction to the above argument in the case of hi ∈ {γ±1 , . . . , γ±g }
occurs if hi . . . hkb ∈ B′+ai and hi−1 = γai (or, similarly, if hi . . . hkb ∈ B+

ai
and hi−1 = γ−1

ai
),

since the above argument needs γai to act on P1\B′+ai . However, this situation arises precisely
when hi = γ−1

ai
= h−1

i−1, meaning that the word is not reduced. Since we’ve assumed h1 . . . hk
is reduced, we have the desired result.

For a fixed set of generators of Γ, there need not exist a good fundamental domain. If
there exists a good fundamental domain for some set of free generators of Γ, we say that
the generators are in good position. Gerritzen and van der Put [43, §I.4] proved that there
always exists a set of generators in good position. They also proved the following desirable
properties for good fundamental domains.

Theorem 3.2.5. Let Γ be a Schottky group, Σ its set of bad points, and Ω = P1\Σ.
(1) There exists a good fundamental domain for some set of generators γ1, . . . , γg of Γ.
Let F be a good fundamental domain for γ1, . . . , γg, and let γ ∈ Γ.
(2) If γ 6= id, then γF ◦ ∩ F = φ.
(3) If γ /∈ {id, γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g }, then γF ∩ F = ∅.
(4) ∪γ∈ΓγF = Ω.

The statements (2), (3), and (4) imply that Ω/Γ can be obtained from F by glueing the
boundary of F . More specifically, B+

i \Bi is glued with B′+i \B′i via the action of γi. We have
designed the following subroutine, which takes any point p in Ω and finds a point q in F such
that they are equivalent modulo the action of Γ. This subroutine is useful in developing the
algorithms in Section 3 and 4.

Subroutine 3.2.6 (Reducing a point into a good fundamental domain).

Input: Matrices γ1, . . . γg generating a Schottky group Γ, a good fundamental domain F =
P1\(B1 ∪ · · · ∪Bg ∪B′1 ∪ · · · ∪B′g) associated to these generators, and a point p ∈ Ω.

Output: A point q ∈ F and an element γ ∈ Γ such that q = γp.
1: Let q ← p and γ ← id.
2: while q /∈ F do
3: If q ∈ B′i, let q ← γiq and γ ← γiγ.
4: Otherwise, if q ∈ Bi, let q ← γ−1

i q and γ ← γ−1
i γ.

5: end while
6: return q and γ.

Proof. The correctness of this subroutine is clear. It suffices to prove that the algorithm
always terminates. Given p ∈ Ω, if p /∈ F , by Theorem 3.2.5, there exists γ◦ = h1h2 · · ·hk ∈ Γ
(where each hj is γi or γ−1

i for some i) such that γ◦p ∈ F . Without loss of generality, we
may assume that γ◦ is chosen such that k is the smallest. Steps 3,4 and Lemma 3.2.4 make
sure that we always choose q ← hkq and γ ← hkγ. Therefore, this subroutine terminates
with γ = γ◦.
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We can extend the definition of good fundamental domains to the analytic projective line
(P1)an. The notion of Berkovich analytic space is defined in Chapter 1.

Definition 3.2.7. Let Σ be a discrete subset in P1. The subtree of (P1)an spanned by Σ,
denoted T (Σ), is the union of all paths connecting all pairs of points in Σ.

An analytic open ball B(a, r)an is a subset of (P1)an whose set of Type 1 points is just
B(a, r) and whose Type 2, 3, and 4 points correspond to closed balls B(a′, r′)+ ⊂ B(a, r)
and the limit of sequences of such closed balls. An analytic closed ball is similar, with B(a, r)
replaced with B(a, r)+. Just as in the case of balls in P1, the analytic closed ball (B+)an

is not the closure of Ban in the metric topology of (P1)an. The complement of an analytic
open ball is an analytic closed ball, and vice versa. In an analytic closed ball (B(a, r)+)an

such that r ∈ |K×|, the Gaussian point is the Type 2 point corresponding to B(a, r)+. An
analytic annulus is B\B′, where B and B′ are analytic balls such that B′ $ B. If B is an
analytic open (resp. closed) ball and B′ is an analytic closed (resp. open) ball, then B\B′
is an analytic open annulus (resp. analytic closed annulus). A special case of analytic open
annulus is the complement of a point in an analytic open ball.

Any element of PGL(2, K) sends open balls to open balls and closed balls to closed balls.
Thus, there is a well defined action of PGL(2, K) on (P1)an.

Definition 3.2.8. A good fundamental domain F ⊂ (P1)an corresponding to the generators
γ1, . . . , γg is the complement of 2g analytic open balls Ban

1 , . . . , Ban
g , B

′an
1 , . . . , B′ang , such that

the corresponding analytic closed balls (B+
1 )an, . . . , (B+

g )an, (B′+1 )an, . . . , (B′+g )an are disjoint,

and that γi((P1)an\B′ani ) = (B+
i )an and γ−1

i ((P1)an\Ban
i ) = (B′+i )an. The interior of F is

F ◦ = (P1)an\((B+
1 )an∪ . . . ∪ (B+

g )an∪ (B′+1 )an∪ . . . ∪ (B′+g )an). The boundary of F is F\F ◦.

Definition 3.2.8 implies that γi((P1)an\(B′+i )an) = Ban
i and γ−1

i ((P1)an\(B+
i )an) = B′ani .

We now argue that there is a one-to-one correspondence between good fundamental do-
mains in P1 and good fundamental domains in (P1)an. (This fact is well-known, though
seldom explicitly stated in the literature; for instance, it’s taken for granted in the later
chapters of [43].) If P1\(B1 ∪ · · · ∪ Bg ∪ B′1 ∪ · · · ∪ B′g) is a good fundamental domain in
P1, then (P1)an\(Ban

1 ∪ · · · ∪ Ban
g ∪ B′an1 ∪ · · · ∪ B′ang ) is a good fundamental domain in

(P1)an. Indeed, since the closed balls B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g are disjoint, and the corre-

sponding analytic closed balls consist of points corresponding to closed balls contained in
B+

1 , . . . , B
+
g , B

′+
1 , . . . , B

′+
g and their limits, the analytic closed balls are also disjoint. Con-

versely, if (P1)an\(Ban
1 ∪ · · · ∪ Ban

g ∪ B′an1 ∪ · · · ∪ B′ang ) is a good fundamental domain in
(P1)an, then P1\(B1∪ · · · ∪Bg∪B′1∪ · · · ∪B′g) is a good fundamental domain in P1, because
the classical statement can be obtained from the analytic statement by considering only
Type 1 points. This correspondence allows us to abuse notation by not distinguishing the
classical case and the analytic case. Theorem 3.2.5 is also true for analytic good fundamental
domains.
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3.3 Algorithms Starting With a Schottky Group

If we have a Schottky group Γ = 〈γ1, . . . , γg〉 in terms of its generators, there are many objects
we wish to compute for the corresponding curve Ω/Γ, such as the Jacobian of the curve, the
minimal skeleton of the analytification of the curve, and a canonical embedding for the curve.
In this section we present algorithms for numerically computing these three objects, given
the input of a Schottky group with generators in good position. For an algorithm that puts
arbitrary generators of a Schottky group into good position, see Section 3.4.

Remark 3.3.1. Several results in this section are concerned with the accuracy of numerical
approximations. Most of our results will be of the form∣∣∣∣estimate

actual
− 1

∣∣∣∣ = size of error term ≤ a small real number of the form p−N ,

where we think of N � 0. This is equivalent to

estimate

actual
− 1 = error term = a p-adic number of the form bpN ,

where |b| ≤ 1. So, since |pN | = p−N , the size of the error term is a small power of p, while
the error term itself is a large power of p (possibly with a constant that doesn’t matter
much).

Rearranging the second equation gives

estimate = actual + actual · bpN ,

meaning that we are considering not the absolute precision of our estimate, but rather the
relative precision. In this case we would say that our estimate is of relative precision O(pN).
So if we desire relative precision O(pN), we want the actual error term to be pN (possibly
with a constant term with nonnegative valuation), and the size of the error term to be at
most p−N .

The Period Matrix of the Jacobian

Given a Schottky group Γ = 〈γ1, . . . , γg〉, we wish to find a period matrix Q so that
Jac(Ω/Γ) ∼= (K∗)g/Q. For previous work on this computation in the genus-2 case, see
[88].

First we will set some notation. For any parameters a, b ∈ Ω, we introduce the following
analytic function in the unknown z, called a theta function:

Θ(a, b; z) :=
∏
γ∈Γ

z − γa
z − γb .
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Note that if Γ is defined over Qp and a, b, z ∈ Qp, then Θ(a, b; z) ∈ Qp ∪ {∞}. (This is an
instance of “Qp in, Qp out.”) For any α ∈ Γ and a ∈ Ω, we can specialize to

uα(z) := Θ(a, αa; z).

It is shown in [43, II.3] that the function uα(z) is in fact independent of the choice of a. This
is because for any choice of a, b ∈ Ω we have

Θ(a, αa; z)

Θ(b, αb; z)
=
∏
γ∈Γ

(
z − γa
z − γαa

z − γαb
z − γb

)
=
∏
γ∈Γ

(
z − γa
z − γb

z − γαb
z − γαa

)
=
∏
γ∈Γ

z − γa
z − γb ·

∏
γ∈Γ

z − γαb
z − γαa =

∏
γ∈Γ

z − γa
z − γb ·

∏
γ∈Γ

z − γb
z − γa

=Θ(a, b; z) ·Θ(b, a; z) = 1.

From [43, VI.2] we have a formula for the period matrix Q of Jac(Ω/Γ):

Theorem 3.3.2. The period matrix Q for Jac(Ω/Γ) is given by

Qij =
uγi(z)

uγi(γjz)
,

where z is any point in Ω.

As shown in [43, II.3], the choice of z does not affect the value of Qij.
Theorem 3.3.2 implies that in order to compute each Qij, it suffices to find a way to

compute Θ(a, b; z). Since a theta function is defined as a product indexed by the infinite
group Γ, approximation will be necessary. Recall that each element γ in the free group
generated by γ1, . . . , γg can be written in a unique shortest product h1h2 · · ·hk called the
reduced word, where each hi ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g }. We can approximate Θ(a, b; z) by
replacing the product over Γ with a product over Γm, the set of elements of Γ whose reduced
words have length ≤ m. More precisely, we approximate Θ(a, b; z) with

Θm(a, b; z) :=
∏
γ∈Γm

z − γa
z − γb ,

where
Γm = {h1h2 . . . hk | 0 ≤ k ≤ m,hi ∈ {γ±1 , . . . γ±g }, hi 6= h−1

i+1 for any i}.
With this approximation method, we are ready to describe an algorithm for computing Q.

Algorithm 3.3.3 (Period Matrix Approximation).

Input: Matrices γ1, . . . γg ∈ Q2×2
p generating a Schottky group Γ in good position, and an

integer n to specify the desired relative precision.
Output: An approximation for a period matrixQ for Jac(Ω/Γ) up to relative precisionO(pn).
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1: Choose suitable p-adic numbers a and z as described in Theorem 3.3.6.
2: Based on n, choose a suitable positive integer m as described in Remark 3.3.7.
3: for 1 ≤ i, j ≤ g do
4: Compute Qij = Θm(a, γi(a); z)/Θm(a, γi(a); γj(z))
5: end for
6: return Q.

The complexity of this algorithm is in the order of the number of elements in Γm, which
is exponential in m. The next issue is that to achieve certain precision in the final result,
we need to know how large m needs to be. Given a good fundamental domain F for the
generators γ1, . . . , γg, we are able to give an upper bound on the error in our estimation of Θ
by Θm. (Algorithm 3.3.3 would work even if the given generators were not in good position,
but would in general require a very large m to give the desired convergence. See Example
3.3.8(4).)

To analyze the convergence of the infinite product

Θ(a, γi(a); z) =
∏
γ∈Γ

z − γa
z − γγia

,

we need to know where γa and γγia lie. We can determine this by taking the metric of (P1)an

into consideration. Assume that∞ lies in the interior of F . Let S = {P1, . . . , Pg, P
′
1, . . . , P

′
g}

be the set of points corresponding to the set of closed balls {B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g } from

the characterization of the good fundamental domain. Let c be the smallest pairwise distance
between these points. This distance c will be key for determining our choice of m in the
algorithm.

Proposition 3.3.4. Let F , S, and c be as above. Suppose the reduced word for γ is
h1h2 · · ·hk, where k ≥ 0. Then d(γPi, S) ≥ kc for all i unless hk = γ−1

i , and d(γP ′i , S) ≥ kc
unless hk = γi.

Proof. We will prove this proposition by induction. If k = 0, there is nothing to prove. Let
k > 0, and assume that the claim holds for all integers n with 0 ≤ n < k. Without loss
of generality, we may assume h1 = γ1. Let B+ be the closed disk corresponding to Pi. By
Lemma 3.2.4, we have γ(B+) ⊂ B1. This means P1 lies on the unique path from γPi to ∞.
Since we assumed ∞ ∈ F , p1 lies on the unique path from γPi to any point in S. Thus,

d(γPi, S) = d(γPi, P1)

= d(γ−1
1 γPi, γ

−1
1 P1)

= d(h2h3 · · ·hkPi, P ′1).

Let P = Pj if h2 = γj and P = P ′j if h2 = γ−1
j . By the same argument as above, P lies on the

unique path from h2h3 · · ·hkPi to P ′1. The reducedness of the word h1h2 . . . hk guarantees
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that P 6= P ′1. So

d(γPi, S) = d(h2h3 · · ·hkPi, P ′1)

= d(h2h3 · · ·hkPi, P ) + d(P, P ′1)

≥ (k − 1)c+ c = kc.

The last step follows from the inductive hypothesis. The proof of the second part of this
proposition is similar.

Proposition 3.3.5. Let F , S, and c be as above. Let z ∈ F and a ∈ B′+i \B′i such that
a, z, and ∞ are distinct modulo the action of Γ. Suppose the reduced word for γ ∈ Γ is
h1h2 · · ·hk. If k ≥ 2 and hk 6= γ−1

i , then∣∣∣∣ z − γaz − γγia
− 1

∣∣∣∣ ≤ p−c(k−1).

Proof. Our choice of a guarantees that both a and γia are in F . Without loss of generality,
we may assume that hk = γ1. Then, both hka and hkγia are in B+

1 . So both γa and γγia
lie in h1h2 · · ·hk−1B

+
1 , which is contained in some B = Bj or B′j. By Proposition 3.3.4, the

points in (P1)an corresponding to the disks h1h2 · · ·hk−1B
+
1 and B+ have distance at least

c(k− 1). This implies diam(h1h2 · · ·hk−1B
+
1 ) ≤ p−c(k−1)diam(B+). Therefore, |γa− γγia| ≤

p−c(k−1)diam(B+). On the other hand, since z /∈ B and γγia ∈ B, we have |z − γγia| ≥
diam(B+). This means that∣∣∣∣ z − γaz − γγia

− 1

∣∣∣∣ =

∣∣∣∣γγia− γaz − γγia

∣∣∣∣ ≤ p−c(k−1)diam(B+)

diam(B+)
= p−c(k−1),

as claimed.

We are now ready to prove our approximation theorem, which is a new result that allows
one to determine the accuracy of an approximation of a ratio of theta functions. It is similar
in spirit to [58, Theorem 6.10], which is an approximation result for a particular subclass of
Schottky groups called Whittaker groups (see Subsection 3.5 of this chapter for more details).
Our result is more general, as there are many Schottky groups that are not Whittaker.

Theorem 3.3.6. Suppose that the given generators γ1, . . . , γg of Γ are in good position, with
corresponding good fundamental domain F and disks B1, . . . , Bg, B

′
1, . . . , B

′
g. Let m ≥ 1. In

Algorithm 3.3.3, if we choose a ∈ B′+i \B′i and z ∈ B′+j \B′j such that a 6= z, then∣∣∣∣Θm(a, γi(a); z)/Θm(a, γi(a); γj(z))

Θ(a, γi(a); z)/Θ(a, γi(a); γj(z))
− 1

∣∣∣∣ ≤ p−cm,

where c is the constant defined above.
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Proof. Our choice of z guarantees that both z and γjz are in F . Thus, if ∞ lies in the
interior of F , then this theorem follows directly from Proposition 3.3.5. The last obstacle is
to remove the assumption on ∞. We observe that Qij is a product of cross ratios:

Θ(a, γia; z)

Θ(a, γia; γjz)
=
∏
γ∈Γ

(z − γa)(γjz − γγia)

(z − γγia)(γjz − γa)
.

Therefore, each term is invariant under any projective automorphism of P1. Under such an
automorphism, any point in the interior of F can be sent to ∞.

As a special case of this approximation theorem, suppose that we want to compute the
period matrix for the tropical Jacobian of C, which is the matrix (val(Qij))g×g. We need
only to compute Qij up to relative precision O(1). Thus, setting m = 0 suffices. In this case,
each of the products Θm(a, γi(a); z), Θm(a, γi(a); γj(z)) has only one term.

Remark 3.3.7. If we wish to use Algorithm 3.3.3 to compute a period matrix Q with
relative precision O(pn) (meaning that we want p−cm ≤ p−n in Theorem 3.3.6), we must
first compute c. As above, c is defined to be the minimum distance between pairs of the
points P1, . . . , Pg, P

′
1, . . . , P

′
g ∈ (P1)an corresponding to the balls B1, . . . , Bg, B

′
1, . . . , B

′
g that

characterize our good fundamental domain. Once we have computed c (perhaps by finding
a good fundamental domain using the methods of Section 3.4), then by Theorem 3.3.6 we
must choose m such that cm ≥ n, so m = dn/ce will suffice.

Example 3.3.8. (1) Let Γ be the Schottky group in Example 3.2.3(1). Choose the same
good fundamental domain, with B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), and
B′2 = B(2, 1/9). The four balls correspond to four points in the tree (P1)an. We need to find
the pairwise distances between the points P1, P ′1, P2, and P ′2 in (P1)an. Since the smallest ball
containing both B+

1 and B′+1 is B+(1, 1/3), both P1 and P ′1 are distance val((1/3)/(1/9)) =
val(3) = 1 from the point corresponding to B+(1, 1/3), so P1 and P ′1 are distance 2 from
one another. Similar calculations give distances of 2 between P2 and P ′2, and of 4 between
P1 or P ′1 and P2 or P ′2. In fact, the distance between Pi and P ′i equals the difference in the
valuations of the two eigenvalues of γi. This allows us to construct the subtree of (P1)an

spanned by P1, P2, P
′
1, P

′
2 as illustrated in Figure 3.1. The minimum distance between them

is c = 2. To approximate Q11, we take a = 10 and z = 19. To compute Q up to relative
precision O(p10), we need 2m ≥ 10 (this is the equation cm ≥ n from Remark 3.3.7), so
choosing m = 5 works. The output of the algorithm is Q11 = (. . . 220200000100)3. Similarly,
we can get the other entries in the matrix Q:

Q =

[
(. . . 220200000100)3 (. . . 0101010101)3

(. . . 0101010101)3 (. . . 220200000100)3

]
.

(2) Let Γ be the Schottky group in Example 3.2.3(2). Choose the same good fundamental
domain. Again, we need m = 5 for relative precision O(p10). The algorithm outputs

Q =

[
(. . . 12010021010000)3 (. . . 002000212200)3

(. . . 002000212200)3 (. . . 12010021010000)3

]
.
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(3) Let Γ be the Schottky group in Example 3.2.3(3). Choose the same good fundamental
domain. The minimum distance between the corresponding points in (P1)an is 2, so we may
take m = 10/2 = 5 to have relative precision up to O(p10). Our algorithm outputs

Q =

(. . . 11201000010000)3 (. . . 12020022210)3 (. . . 20020002120)3

(. . . 12020022210)3 (. . . 10101010010000)3 (. . . 020201120.1)3

(. . . 20020002120)3 (. . . 020201120.1)3 (. . . 21010100010000)3

 .
(4) Let K = C3 and Γ be the group generated by

γ1 =

[
−5 32
−8 35

]
, γ2 = γ100

1

[
−13 80
−8 43

]
The group is the same as in part (1) of this set of examples, but the generators are not in
good position. To achieve the same precision, m needs to be up to 100 times greater than
in part (1), because the γ2 in part (1) now has a reduced word of length 101. Since the
running time grows exponentially in m, it is not feasible to approximate Q using Algorithm
3.3.3 with these generators as input.

The Abstract Tropical Curve

This subsection deals with the problem of constructing the corresponding abstract tropical
curve of a Schottky group over K, together with some data on its homotopy group. This
is a relatively easy task, assuming that the given generators γ1, . . . , γg are in good position,
and that we are also given a fundamental domain F = P1\(B1 ∩ · · · ∩Bg ∩B′1 ∩ · · · ∩B′g).
Without loss of generality, we may assume that ∞ ∈ F ◦. Let P1, . . . , Pg, P

′
1, . . . , P

′
g ∈ (P1)an

be the Gaussian points of the disks B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g .

Let Rg be the rose graph on g leaves (with one vertex and g loops), and let r1, . . . , rg be
the loops. A homotopy equivalence h : Rg → G must map r1, . . . , rg to g loops of G that
generate π1(G), so to specify h it will suffice to label g such loops of G with {s1, . . . , sg} and
orientations. It is for this reason that we call h a marking of G.

Algorithm 3.3.9 (Abstract Tropical Curve Construction).

Input: Matrices γ1, . . . γg ∈ Q2×2
p generating a Schottky group Γ, together with a good

fundamental domain F = P1\(B1 ∩ · · · ∩Bg ∩B′1 ∩ · · · ∩B′g).
Output: The triple (G, `, h) with (G, `) the abstract tropical curve as a metric graph with

a h a marking presented as g labelled oriented loops of G.
1: Construct the subtree in (P1)an spanned by P1, . . . , Pg, P

′
1, . . . , P

′
g, including lengths.

2: Label the unique shortest path from Pi to P ′i as si, remembering orientation.
3: Identify each Pi with P ′i , and declare the length of the new edge containing Pi = P ′i to

be the sum of the lengths of the edges that were joined to form it.
4: Define h by the labels si, with each si now an oriented loop.
5: return the resulting labeled metric graph (G, `, h).
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Proof. The proof is essentially given in [43, I 4.3].

Remark 3.3.10. It’s worth noting that this algorithm can be done by hand if a good
fundamental domain is known. If P1, P2 ∈ (P1)an are the points corresponding to the disjoint
closed balls B(a1, r1)+ and B(a2, r2)+, then the distance between P1 and P2 is just the sum of
their distances from P3 corresponding to B(a3, r3)+, where B(a3, r3)+ is the smallest closed
ball containing both a1 and a2. The distance between Pi and P3 is just val(r3/ri) for i = 1, 2.
Once all pairwise distances are known, constructing (G, `) is simple. Finding h is simply
a matter of drawing the orientation on the loops formed by each pair (Pi, P

′
i ) and labeling

that loop si. This process is illustrated three times in Example 3.3.12.

Remark 3.3.11. The space parameterizing labelled metric graphs (G, `, h) (identifying those
with markings that are homotopy equivalent) is called Outer space, and is denoted Xg. It is
shown in [28] that Xg sits inside tropical Teichmüller space as a dense open set, so Algorithm
3.3.9 can be viewed as computing a point in tropical Teichmüller space.

Example 3.3.12. (1) Let Γ be the Schottky group in Example 3.2.3(1). Choose the same
good fundamental domain, with B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), and
B′2 = B(2, 1/9). We have constructed the subtree of (P1)an spanned by P1, P2, P

′
1, P

′
2 as

illustrated in Figure 3.1 in Example 3.3.8(1). After identifying P1 with P ′1 and P2 with P ′2,
we get the “dumbbell” graph shown in Figure 3.1, with both loops having length 2 and the
connecting edge having length 2.

(2) Let Γ be the Schottky group in Example 3.2.3(2). Choose the same good fundamental
domain. The subtree of (P1)an spanned by P1, P2, P

′
1, P

′
2 is illustrated in Figure 3.2. After

identifying P1 with P ′1 and P2 with P ′2, we get the “theta” graph shown in Figure 3.2, with
two edges of length 2 and one edge of length 2.

(3) Let Γ be the Schottky group in Example 3.2.3(3). The subtree of (P1)an spanned
by P1, P2, P3, P

′
1, P

′
2, P

′
3 is illustrated in Figure 3.3. After identifying P1 with P ′1, P2 with P ′2

and P3 with P ′3, we get the “honeycomb” graph shown in Figure 3.3, with interior edges of
length 1 and exterior edges of length 2.

Canonical Embeddings

From [43, VI.4], we have that

ωi(z) := wi(z)dz =
u′γi(z)

uγi(z)
dz

are g linearly independent analytic differentials on Ω that are invariant under the action of
Γ. Therefore, they define g linearly independent differentials on C = Ω/Γ. Gerritzen and
van der Put [43, VI.4] also state that these form a basis of the space of Γ-invariant analytic
differentials. Since the space of algebraic differentials on C has dimension g, it must be
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Figure 3.1: The tree in Example 3.3.12(1), and the abstract tropical curve.
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Figure 3.2: The tree in Example 3.3.12(2), and the abstract tropical curve.
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Figure 3.3: The tree in Example 3.3.12(3), and the abstract tropical curve.
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generated by these g differentials. Therefore, the canonical embedding has the following
form:

C → Pg−1,

z 7→
(
u′γ1(z)

uγ1(z)
: . . . :

u′γg(z)

uγg(z)

)
.

It therefore suffices to approximate the derivative u′α(z). A näıve approach is to consider
the approximation

u′α(z) ≈ uα(z + h)− uα(z)

h
.

We can do better by taking advantage of the product form of uα(z):

u′α(z) =
d

dz

∏
γ∈Γ

z − γa
z − γαa

=
∑
γ∈Γ

(
d

dz

(
z − γa
z − γαa

) ∏
γ′∈Γ,γ′ 6=γ

z − γ′a
z − γ′αa

)

= uα(z)
∑
γ∈Γ

d

dz

(
z − γa
z − γαa

)(
z − γa
z − γαa

)−1

= uα(z)
∑
γ∈Γ

γa− γαa
(z − γa)(z − γαa)

.
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Algorithm 3.3.13 (Canonical Embedding).

Input: Matrices γ1, . . . , γg ∈ Q2×2
p generating a Schottky group Γ in good position, an

element z ∈ K, and an integer n to determine precision.
Output: An approximation for the image of z under the canonical embedding Ω/Γ→ Pg−1

determined by the choice of generators.
1: Based on n, choose a suitable positive integer m as described in Remark 3.3.15.
2: for i = 1 to g do
3: Choose a suitable element a ∈ K as described in Proposition 3.3.14.
4: Compute

wi =
∑
γ∈Γm

γa− γγia
(z − γa)(z − γγia)

.

5: end for
6: return (w1 : · · · : wg).

With appropriate choice of a, we can provide a lower bound on the precision of the result
in terms of m. Fortunately, we can choose different values of a to approximate∑

γ∈Γ

γa− γγia
(z − γa)(z − γγia)

for different γi. As in Proposition 3.3.5, we choose a ∈ B′+i \B′i to ensure that both a and
γia are in F .

Proposition 3.3.14. If we choose a ∈ B′+i \B′i in Algorithm 3.3.13, and assuming z ∈ F ,
then ∣∣∣∣∣∑

γ∈Γm

γa− γγia
(z − γa)(z − γγia)

− u′γi(z)

uγi(z)

∣∣∣∣∣ ≤ p−mc−logp(d),

where c is the minimum pairwise distance between P1, . . . , Pg, P
′
1, . . . , P

′
g, and d is the mini-

mum diameter of B1, . . . , Bg, B
′
1, . . . , B

′
g.

Proof. Let γ ∈ Γ have reduced word γ = h1h2 · · ·hk. We have seen in the proof of Proposition
3.3.5 that |γa−γγia| ≤ p−(k−1)cdiam(B+), |z−γa| ≥ diam(B+) and |z−γγia| ≥ diam(B+),
where B is one of B1, . . . , Bg, B

′
1, . . . , B

′
g. Thus,∣∣∣∣ γa− γγia

(z − γa)(z − γγia)

∣∣∣∣ ≤ p−(k−1)cdiam(B+)

diam(B+)2

≤ p−(k−1)cd−1

= p−(k−1)c−logp(d).

Since the difference between our approximation and the true value is the sum over terms
where γ has reduced words of length ≥ m+ 1, we conclude that the error has absolute value
at most p−mc−logp(d).
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In the last proposition, we assumed z ∈ F . If z /∈ F , we can do an extra step and replace
z by some γz such that γz ∈ F , with the help of Subroutine 3.2.6. This step does not change
the end result because the theta functions are invariant under the action of Γ.

Remark 3.3.15. If we wish to use Algorithm 3.3.13 to compute a period matrix Q with
accuracy up to the nth p-adic digit, we must first compute c and d. Recall that c is defined
to be the minimum distance between pairs of the points P1, . . . , Pg, P

′
1, . . . , P

′
g ∈ (P1)an

corresponding to the balls B+
1 , . . . , B

+
g , B

′+
1 . . . , B′+g that characterize our good fundamental

domain, and d is the minimum diameter of B1, . . . , Bg, B
′
1, . . . , B

′
g. Once we have computed

c and d, then by Proposition 3.3.14 we must choose m such that p−mcd−1 ≤ p−n. We could
also think of it as choosing m such that mc+ logp(d) ≥ n.

Remark 3.3.16. As was the case with Algorithm 3.3.3, we may run Algorithm 3.3.13 even
if the input generators are not in good position, and it will approximate images of points in
the canonical embedding. However, we will not have control over the rate of convergence,
which will in general be very slow.

Example 3.3.17. Let Γ be the Schottky group in Example 3.2.3(3). Choose the same good
fundamental domain. We will compute the image of the field element 17 under the canonical
embedding (we have chosen 17 as it is in Ω for this particular Γ). The minimum diameter is
d = 1/9, and the minimum distance is c = 2. To get absolute precision to the order of p−10,
we need p−mcd−1 ≤ p−10, i.e. m ≥ 6. Applying Algorithm 3.3.13 with m = 6 gives us the
following point in P2:

((. . . 2100012121)3 : (. . . 2211022001.1)3 : (. . . 2221222111.1)3).

This point lies on the canonical embedding of the genus 3 Mumford curve Ω/Γ. Any
genus 3 curve is either a hyperelliptic curve or a smooth plane quartic curve. However, it
is impossible for a hyperelliptic curve to have the skeleton in Figure 3.3 (see [27, Theorem
4.15]), so Ω/Γ must be a smooth plane quartic curve. Its equation has the form

C1x
4 + C2x

3y + C3x
3z + C4x

2y2 + C5x
2yz + C6x

2z2

C7xy
3 + C8xy

2z + C9xyz
2 + C10xz

3 + C11y
4 + C12y

3z + C13y
2z2 + C14yz

3 + C15z
4.

Using linear algebra over Q3, we can solve for its 15 coefficients by computing 14 points on
the curve and plugging them into the equation. The result is

C1 = 1, C2 = (. . . 11101)3, C3 = (. . . 00211)3,
C4 = (. . . 1020.2)3, C5 = (. . . 110.21)3, C6 = (. . . 1002.1)3,
C7 = (. . . 122)3, C8 = (. . . 222.02)3, C9 = (. . . 222.02)3,
C10 = (. . . 21101)3, C11 = (. . . 2122)3, C12 = (. . . 2201)3,
C13 = (. . . 0202.2)3, C14 = (. . . 10102)3, C15 = (. . . 01221)3.

For the Newton subdivision and tropicalization of this plane quartic, see the following sub-
section, in which we consider the interactions of the three algorithms of Section 3.3.
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Reality Check: Interactions Between The Algorithms

We close Section 3.3 by checking that the three algorithms give results consistent with one
another and with some mathematical theory. We will use our running example of a genus 3
Mumford curve from Examples 3.3.8(3), 3.3.12(3), and 3.3.17, for which we have computed
a period matrix of the Jacobian, the abstract tropical curve, and a canonical embedding.

First we will look at the period matrix and the abstract tropical curve, and verify that
these outputs are consistent. Recall that for the period matrix Q of Jac(Ω/Γ), we have

Qij =
uγi(z)

uγi(γjz)
.

Motivated by this, we define

Q : Γ× Γ→ K∗

(α, β) 7→ uα(z)

uα(βz)
,

where our choice of z ∈ Ω does not affect the value of Q(α, β). (Note that Qij = Q(γi, γj).)
As shown in [43, VI, 2], the kernel of Q is the commutator subgroup [Γ,Γ] of Γ, and Q is

symmetric and positive definite (meaning |Q(α, α)| < 1 for any α 6≡
[
1 0
0 1

]
mod [Γ,Γ]).

Moreover, the following theorem holds (see [93, Theorem 6.4]).

Theorem 3.3.18. Let G be the abstract tropical curve of Ω/Γ, and let π1(G) be its homotopy
group, treating G as a topological space. There is a canonical isomorphism φ : Γ → π1(G)
such that val(Q(γ, γ′)) = 〈φab(γ), φab(γ′)〉, where 〈p1, p2〉 denotes the shared edge length of
the oriented paths p1 and p2.

The map φ is made very intuitive by considering the construction of G in Algoirthm 3.3.9:
a generator γi of Γ yields two points Pi, P

′
i ∈ (P1)an (corresponding to balls containing the

eigenvalues of γi), and these points are glued together in constructing G. So γi corresponds
to a loop around the cycle resulting from this gluing; after abelianization, this intuition is
made rigorous.

Consider the matrix Q computed in Example 3.3.8(3). Worrying only about valuations,
we have

val(Q) =

4 1 1
1 4 −1
1 −1 4

 .
For i = 1, 2, 3, let si be the oriented loop in G arising from gluing Pi and P ′i . In light of
Theorem 3.3.18, we expect to find shared edge lengths

〈s1, s1〉 = 〈s2, s2〉 = 〈s3, s3〉 = 4,
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〈s1, s2〉 = 〈s1, s3〉 = 1,

and
〈s2, s3〉 = −1.

That is, each cycle length should be 4, and the common edge of each distinct pair of cycles
should have length 1, with the orientation of s1 agreeing with the orientation of s2 (re-
spectively, s3) on the shared edge and the orientation of s2 disagreeing with the orientation
of s3 on the shared edge. This is indeed what we found in Example 3.3.12(3), with edge
lengths and orientations shown in Figure 3.3. This example has shown how the outputs of
Algorithms 3.3.3 and 3.3.9 can be checked against one another.

We will now consider the relationship between the abstract tropical curve and the canon-
ical embedding for this example. In particular, we will compute a tropicalization of the curve
from the canonical embedding and see how this relates to the abstract tropical curve.

To compute the tropicalization of the curve, we will start with the quartic planar equation
computed in Example 3.3.17. The Newton polytope of this quartic is a triangle with side
length 4. We label each integral point inside or on the boundary of the Newton polytope
by the valuation of the coefficient of the corresponding term, ignoring the variable z. For
example, the point (1, 2) is labeled −2 because the valuation of the coefficient of xy2z is
val(C8) = −2. We then take the lower convex hull, giving a subdivision of the Newton
polytope as shown in Figure 3.4. The tropicalization of the curve is combinatorially the dual
graph of this subdivision, and using the max convention of tropical geometry it sits in R2 as
shown in Figure 3.4, with the common point of the three cycles at (0, 0).

Let us compare the cycles in the tropicalization with the cycles in the abstract tropical
curve. We know from [9, §6.23] that this tropicalization is faithful since all vertices are
trivalent and are adjacent to at least one edge of weight one. This means that lattice lengths
on the tropicalization should agree with lengths of the abstract tropical curve. Each cycle
in the tropicalization has five edges, and for each cycle two edges are length 1

2
and three are

length 1. This gives a length of 4, as we’d expect based on Example 3.3.12(3). Moreover,
each shared edge has lattice length 1, as was the case in the abstract tropical curve. Thus
we have checked the outputs of Algorithms 3.3.9 and 3.3.13 against one another.

3.4 From Generators in Bad Position to Generators

in Good Position

The previous section describes several algorithms that compute various objects from a set of
free generators of a Schottky group, assuming that the generators are in good position, and
(in Algorithm 3.3.9) that a good fundamental domain is given together with the generators.
This content of this section is what allows us to make this assumption. We give an algo-
rithm (Algorithm 3.4.8) that takes an arbitrary set of free generators of a Schottky group
and outputs a set of free generators that are in good position, together with a good funda-
mental domain. This algorithm can be modified as described in Remark 3.4.10 to perform a
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Figure 3.4: The Newton polytope of the plane quartic curve in Example 3.3.17, and the
corresponding tropical curve in R2 (drawn using the max convention). Each edge of infinite
length has weight 2, and all other edges have weight 1.

0 0 −1 0 0

0 −2 −2 0
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“Schottky test”; in particular, given a set of g invertible matrices generating a group Γ, the
modified algorithm will either

• return a set of g free generators of Γ in good position together with a good fundamental
domain, which is a certificate that Γ is Schottky;

• return a relation satisfied by the input matrices, which is a certificate that the gener-
ators do not freely generate the group; or

• return a non-hyperbolic, non-identity matrix γ ∈ Γ, which is a certificate that Γ is not
Schottky.

Before presenting Algorithm 3.4.8, we will first develop some theory for trees, and then define
useful subroutines. Our starting point is a remark in Gerritzen and van der Put’s book:

Proposition 3.4.1. [43, III 2.12.3] Let Γ be Schottky and Σ and Ω be as usual. Let T (Σ)
be the subtree of (P1)an spanned by Σ. Then the minimal skeleton of Ω/Γ is isomorphic
to T (Σ)/Γ.

This statement is essential for our algorithm, because it helps reducing problems involving
(P1)an to problems involving the much simpler tree T (Σ). Though T (Σ) is not finite, it is a
finitely branching tree: it consists of vertices and edges such that each vertex is connected
with finitely many edges. A good fundamental domain in (P1)an can be obtained from a
good fundamental domain in T (Σ), defined as follows:
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Definition 3.4.2. A principal subtree T of T (Σ) is a connected component of T (Σ)\{e} for
some edge e of T (Σ). An extended principal subtree is T+ = T ∪ {e}.

Definition 3.4.3. A good fundamental domain S in T (Σ) for a set of free generators
γ1, . . . , γg of Γ is the complement of 2g principal subtrees T1, . . . , Tg, T

′
1, . . . , T

′
g, such that

T+
1 , . . . , T

+
g , T

′+
1 , . . . , T ′+g are disjoint, and that γi(T (Σ)\T ′+i ) = Ti and γ−1

i (T (Σ)\T+
i ) = T ′i .

The interior of S is S◦ = T (Σ)\(T+
1 ∪ · · · ∪ T+

g ∪ T ′+1 ∪ · · · ∪ T ′+g ). The boundary of S
is S\S◦.

In other words, S is a connected finite subtree of T (Σ) with 2g boundary edges (Ri, Qi)
and (R′i, Q

′
i), whereQi, Q

′
i /∈ S, such that γi(R

′
i, Q

′
i) = (Qi, Ri). Given this data, the principal

subtree Ti (resp. T ′i ) is the connected component of T (Σ)\(Ri, Qi) (resp. T (Σ\(R′i, Q′i)) that
is disjoint from S. Given a good fundamental domain S in T (Σ), one can find a good
fundamental domain in (P1)an as follows. Without loss of generality, we may assume that
the retraction of ∞ to T (Σ) is in the interior of S. Then, Qi and Ri correspond to two
nested balls B(ai, ri)

+ ⊂ B(ai, Ri)
+. Define Bi = B(ai,

√
riRi). Define B′i similarly.

Proposition 3.4.4. Let Bi, B
′
i be as above. Then F = (P1)an\(B1∪ · · · ∪Bg∪B′1∪ · · · ∪B′g)

is a good fundamental domain.

Proof. Let Qi, Ri be as above. Let Pi be the midpoint of the segment of the boundary edge
(Qi, Ri). Then, Pi corresponds to the ball B+

i . Let π denote the retraction from (P1)an to
T (Σ). Again, we may assume π(∞) is in the interior of S. For any P ∈ B+

i , the unique path
from P to ∞ passes through Pi. Therefore, π(P ) lies on the union of Ti with the segment
(Pi, Qi), which is a subset of T+

i . Hence, the condition that T+
i and T ′+i are disjoint implies

that the retraction of the B+
i and the B′+i are disjoint. Thus, the B+

i and B′+i are disjoint.
Let (Q′i, R

′
i) be the boundary edge of T ′i , and let P ′i be its midpoint. Since γi(Q

′
i, R

′
i) =

(Ri, Qi), it sends the midpoint P ′i to Pi. Since B′i is a connected component in (P1)an\{P ′i},
the element γi must send B′i to a connected component of (P1)an\{Pi}. One of the connected
components in (P1)an\{Pi} is (P1)an\B+

i . Since γi sends Q′i ∈ B′i to Ri ∈ (P1)an\B+
i , it must

send B′i to (P1)an\B+
i . Similarly, γ−1

i sends Bi to (P1)an\B′+i . Thus F is a good fundamental
domain in (P1)an.

One can establish properties of S similar to Theorem 3.2.5. They can be derived either
combinatorially or from Proposition 3.4.4.

The following algorithm constructs a good fundamental domain S in T (Σ).

Subroutine 3.4.5 (Good Fundamental Domain Construction).

Input: An “agent” knowing all vertices and edges of T = T (Σ), and the map T (Σ) →
T (Σ)/Γ, where Γ is defined over Qp.

Output: A good fundamental domain S in T (Σ).
1: Choose a vertex P of T . Let P1, . . . , Pk be all neighbors of P in T .
2: Let V ← {P}, E ← ∅, O ← {(P, P1), . . . , (P, Pk)}, I ← ∅, A← ∅.
3: while O 6= φ do
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4: Choose (Q,Q′) ∈ O, remove it from O and add it to E.
5: Let Q,Q1, . . . , Qk be all neighbors of Q′ in T .
6: Add Q′ to V .
7: for each Qk do
8: With the help of the “agent” in the input, determine if (Qk, Q

′) is conjugate to
some edge (R,R′) ∈ O, i.e. γQk = R and γQ′ = R′ for some γ ∈ Γ.

9: if so then
10: Remove (R,R′) from O.
11: Add (Q′, Qk), (R,R

′) to I.
12: Add γ to A.
13: else
14: Add (Qk, Q

′) to O.
15: end if
16: end for
17: end while
18: return S = V ∪ E ∪ I. (The edges in I are the boundary edges, and A is a set of free

generators of Γ in good position.)

Proof. Consider the map from T (Σ) to G = T (Σ)/Γ. Let P be as in Step 1. Suppose that a
“fire” starts at P ∈ T (Σ) and the image of P in G. In each step, when we choose the edge
(Q,Q′) in Step 4 and add a vertex Q′ to V in Step 5, we “propagate” the fire from Q to
Q′, and “burn” Q′ together with halves of all edges connecting to Q′. Also, we “burn” the
corresponding part in G. Suppose two fires meet each other in G. In this case, both halves
of an edge in G are burned, but it corresponds to two half burned edges in T (Σ). If so, we
stop the fire by removing the edges from O and adding them to I (Step 9). The algorithm
terminates when the whole graph G is burned. The burned part S ′ of T (Σ) is a lifting of G.
Then, V is the set of vertices of S ′, E is the set of whole edges in S ′, and I is the set of half
edges in S ′. The fact that they form a good fundamental domain follows from the method
in the proof of [43, I (4.3)].

This algorithm requires an “agent” knowing everything about T (Σ). It is hard to con-
struct such an “agent” because T (Σ) is infinite. Therefore, we approximate T (Σ) by a finite
subtree. One candidate is T (Σm), where Σm is the set of fixed points of elements of Γm. Re-
call that Γm is the set of elements of Γ whose reduced words in terms of the given generators
have lengths at most m. We take one step further: we approximate T (Σ) by T (Γma), where
a is any point in Σ.

Lemma 3.4.6. For any a ∈ K, we have T (Γa) ⊃ T (Σ). Furthermore, if a ∈ Σ, then
T (Γa) = T (Σ).

Proof. For any g ∈ Γ, the fixed point corresponding to the eigenvalue with larger absolute
value is the limit of the sequence a, ga, g2a, . . . . The other fixed point is the limit of the
sequence a, g−1a, g−2a, . . . . Therefore, every point in Σ is either in Γa or a limit point of Γa.
Therefore, T (Γa) ⊃ T (Σ). The second statement is clear.
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We can construct a complete list of vertices and edges in T (Γma). Then, the map from
T (Γma) to T (Σ)/Γ can be approximated in the following way: for each pair of vertices P,Q
(resp. edges e, f in T (Γma) and each given generator γi, check if γiP = Q (resp. γie = f).
If so, then we identify them. Note that this method may not give the correct map, because
two vertices P and Q in T (Γma) may be conjugate via the action of some h1h2 · · ·hk ∈ Γ,
where some intermediate step hlhl+1 · · ·hkP /∈ T (Γma). Due to this flaw, we need a way to
certify the correctness of the output.

Subroutine 3.4.7 (Good Fundamental Domain Certification).

Input: Generators γ1, . . . , γg ∈ Q2×2
p of a Schottky group Γ, and a quadruple (V,E, I, A),

where V is a set of vertices in T (Σ), E and I are sets of edges of T (Σ), I contains k pairs
of edges (Pi, Qi), (P

′
i , Q

′
i), where Pi, P

′
i ∈ V , Qi, Q

′
i /∈ V , and A contains k elements ai

in Γ.
Output: TRUE if S = V ∪ E ∪ I is a good fundamental domain in T (Σ) for the set of

generators A, and I is the set of boundary edges. FALSE otherwise.
1: If k 6= g, return FALSE.
2: If S is not connected, return FALSE.
3: If any element of I is not a terminal edge of S, return FALSE.
4: If any (Pi, Qi) 6= ai(Q

′
i, P

′
i ), return FALSE.

5: Choose P in the interior of S.
6: for h ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g } do
7: Using a variant of Subroutine 3.2.6, find point P ′ ∈ S and group element γ ∈
〈a1, . . . , ak〉 such that P ′ = γ(hP ).

8: If P 6= P ′, return FALSE.
9: end for

10: return TRUE.

Proof. Steps 1–4 verify that S satisfies the definition of a good fundamental domain in T (Σ)
for the set of generators a1, . . . , ag. In addition, we need to verify that a1, . . . , ag generate
the same group as the given generators γ1, . . . , γg. This is done by Steps 5–9. If P = P ′ in
Step 8, then there exists γ ∈ 〈a1, . . . , ak〉 such that γhP = P . We are assuming ai ∈ Γ in
the input, so γh ∈ Γ. Since the action of Γ on (P1)an\Σ is free, we have γh = id. Thus,
h ∈ 〈a1, . . . , ak〉. If P = P ′ for all h, then Γ = 〈a1, . . . , ak〉.

Otherwise, if P 6= P ′ in Step 8 for some h, then there exists γ′ ∈ Γ such that γ′P = P ′.
For any γ ∈ 〈a1, . . . , ak〉 other than identity, we have γP ′ /∈ s◦ by a variant of Lemma 3.2.4.
Therefore, Γ 6= 〈a1, . . . , ak〉.

If the certification fails, we choose a larger m and try again, until it succeeds. We are
ready to state our main algorithm for this section:

Algorithm 3.4.8 (Turning Arbitrary Generators into Good Generators).

Input: Free generators γ1, . . . , γg ∈ Q2×2
p of a Schottky group Γ.
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Output: Free generators a1, . . . , ag of Γ, together with a good fundamental domain F =
(P1)an\(B1 ∪ · · · ∪Bg ∪B′1 ∪ · · · ∪B′g) for this set of generators.

1: Let m = 1.
2: Let a be a fixed point of some γi.
3: Compute all elements in Γma.
4: Find all vertices and edges of T (Γma).
5: Approximate the map T (Γma)→ T (Σ)/Γ.
6: Use Subroutine 3.4.5 to construct a subgraph S = V ∪ E ∪ I of T (Γma) and a subset
A ⊂ Γ.

7: Use Subroutine 3.4.7 to determine if S = V ∪ E ∪ I is a good fundamental domain in
T (Σ).

8: If not, increment m and go back to Step 2.
9: Compute Bi and B′i from S using the method in Proposition 3.4.4.

10: return generators A and good fundamental domain F = (P1)an\(B1 ∪ · · · ∪ Bg ∪ B′1 ∪
· · · ∪B′g).

Proof. The correctness of the algorithm follows from the proof of Subroutine 3.4.7. It suf-
fices to prove that the algorithm eventually terminates. Assume that we have the “agent”
in Subroutine 3.4.5. Since Subroutine 3.4.5 terminates in a finite number of steps, the com-
putation involves only finitely many vertices and edges in T (Σ). If m is sufficiently large,
T (Σm) will contain all vertices and edges involved in the computation. Moreover, for any
pair of vertices or edges in T (Σm) that are identified in T (Σ)/Γ, there exists a sequence
of actions by the given generators of Γ that sends one of them to the other, so there are
finitely many intermediate steps. If we make m even larger so that T (Σm) contains all these
intermediate steps, we get the correct approximation of the map T (Σ)→ T (Σ)/Γ. This data
is indistinguishable from the “agent” in the computation of Subroutine 3.4.5. Thus, it will
output the correct good fundamental domain.

Remark 3.4.9. The performance of the algorithm depends on how “far” the given generator
is from a set of generators in good position, measured by the lengths of the reduced words of
the good generators in terms of the given generators. If the given generators is close to a set
of generators in good position, then a relatively small m is sufficient for T (Γma) to contain
all relevant vertices. Otherwise, a larger m is needed. For example, in the genus 2 case,
this algorithm terminates in a few minutes for our test cases where each given generator
has a reduced word of length ≤ 4 in a set of good generators. However, the algorithm is
not efficient on Example 3.3.8 (4), where one of the given generators has a reduced word
of length 101. One possible way of speeding up the algorithm is to run the non-Euclidean
Euclidean algorithm developed by Gilman [44] on the given generators.

Remark 3.4.10. We may relax the requirement that the input matrices freely generate a
Schottky group by checking that every element in Γm not coming from the empty word is
hyperbolic before Step 3. If the group is Schottky and freely generated by the input matrices,
the algorithm will terminate with a good fundamental domain. Otherwise, Step 7 will never
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certify a correct good fundamental domain, but the hyperbolic test will eventually fail when
a non-hyperbolic matrix is generated. In particular, if the identity matrix is generated
by a nonempty word, the generators are not free (though they may or may not generate
a Schottky group); and if a non-identity hyperbolic matrix is generated, the group is not
Schottky. Thus, Algorithm 3.4.8 is turned into a Schottky test algorithm. Again, the non-
Euclidean Euclidean algorithm in [44] is a possible ingredient for a more efficient Schottky
test algorithm.

3.5 Future Directions: Reverse Algorithms and

Whittaker Groups

In this section we describe further computational questions about Mumford curves. Algo-
rithms answering these questions would be highly desirable.

Reversing The Algorithms in Section 3.3

Many of our main algorithms answer questions of the form “Given A, find B”, which we can
reverse to “Given B, find A.” For instance:

• Given a period matrix Q, determine if the abelian variety (K∗)g/Q is the Jacobian of
a Mumford curve, and if it is approximate the corresponding Schottky group.

• Given an abstract tropical curve G, find a Schottky group whose Mumford curve has
G as its abstract tropical curve.

• Given a polynomial representation of a curve, determine if it is a Mumford curve, and
if it is approximate the corresponding Schottky group.

A particular subclass of Schottky groups called Whittaker groups are likely a good starting
point for these questions.

Whittaker Groups

We will outline the construction of Whittaker groups (see [92] for more details), and discuss
possible algorithms for handling computations with them. We are particularly interested in
going from a matrix representation to a polynomial representation, and vice versa.

If s ∈ PGL(2, K) is an element of order 2, then s will have two fixed points, a and b,
and is in fact determined by the pair {a, b} as

s =

[
a b
1 1

] [
1 0
0 −1

] [
a b
1 1

]−1

,
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as long as ∞ 6= a, b. Let s0, . . . , sg be g + 1 elements of PGL(2, K) of order 2. Write their
fixed points as {a0, b0}, . . . , {ag, bg}, and assume without loss of generality that ∞ 6= ai, bi
for all i. Let B0, . . . , Bg denote small open balls containing each pair, and assume that the
corresponding closed balls B+

0 , . . . , B
+
g are all disjoint. Then the group Γ := 〈s0, . . . , sg〉 is

in fact the free product 〈s0〉 ∗ · · · ∗ 〈sg〉 by [92, Proposition 1].
Note that Γ is not a Schottky group, since its generators are not hyperbolic. However, we

can still consider its action upon P1 \ Σ = Ω. To fix some notation, we will choose a, b ∈ Ω
such that a /∈ Γb and ∞ /∈ Γa ∪ Γb and will define

G(z) := Θ(a, b; z) =
∏
γ∈Γ

z − γ(a)

z − γ(b)
.

(In our previous definition of theta functions, we took Γ to be Schottky, but the definition
works fine for this Γ as well.) If we choose a and b such that |G(∞)−G(s0∞)| < 1/2, then
G will be invariant under Γ, which gives a morphism Ω/Γ → P1. This will have only one
pole, so it is an isomorphism.

Now, let W be the kernel of the map ϕ : Γ→ Z/2Z defined by ϕ(si) = 1 for all i. Then
W = 〈s0s1, s0s2, . . . , s0sg〉, and is in fact free on those generators. One can show that W is
a Schottky group of rank g, and we call a group that arises in this way a Whittaker group.
We already know that Ω/W is a curve of genus g; in fact, we have more than that.

Theorem 3.5.1 (Van der Put, [92]). If W is a Whittaker group, then Ω/W is a totally
split hyperelliptic curve of genus g, with affine equation y2 =

∏g
i=0(x − G(ai))(x − G(bi)).

Conversely, if X be a totally split hyperelliptic curve of genus g over K, then there exists
a Whittaker group W such that X ∼= Ω/W , and this W is unique up to conjugation in
PGL(2, K).

Remark 3.5.2. There is a natural map Ω/W → Ω/Γ ∼= P1. This is the expected morphism
of degree 2 from the hyperelliptic curve to projective space, ramified at 2g + 2 points.

If we are content with an algorithm taking s0, s1, . . . , sg as the input representing a
Whittaker group W (so that W = 〈s0s1, . . . , s0sg〉), the above theorem tells us how to
compute the ramification points of the hyperelliptic Mumford curve Ω/W .

Example 3.5.3. Let us construct an example of a Whittaker group of genus 2 with K = Q3.
We need to come up with matrices s0, s1, s2 of order 2 with fixed points sitting inside open
balls whose corresponding closed balls are disjoint. We will choose them so that the fixed
points of s0 are 0 and 9; of s1 are 1 and 10; and of s2 are 2 and 11. (The smallest open balls
containing each pair of points has radius 1

3
, and the corresponding closed balls of radius 1

3

are disjoint.) The eigenvalues will be 1 and −1, and the eigenvectors are the fixed points
(written projectively), so we can take

s0 =

[
0 9
1 1

]−1 [
1 0
0 −1

] [
0 9
1 1

]
=

[
−1 0
−2/9 1

]
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s1 =

[
1 10
1 1

]−1 [
1 0
0 −1

] [
1 10
1 1

]
=

[
−11/9 20/9
−2/9 11/9

]
s2 =

[
2 11
1 1

]−1 [
1 0
0 −1

] [
2 11
1 1

]
=

[
−13/9 44/9
−2/9 13/9

]
.

So the group

Γ =

〈[
−1 0
−2/9 1

]
,

[
−11/9 20/9
−2/9 11/9

]
,

[
−13/9 44/9
−2/9 13/9

]〉
is generated by those three elements of order 2 (and is in fact the free product of the groups
〈s0〉, 〈s1〉, and 〈s2〉), and its subgroup

W = 〈s0s1, s0s2〉 =

〈[
59/81 20/9
−4/81 11/9

]
,

[
29/81 44/9
−8/81 13/9

]〉
is a Whittaker group of rank 2.

The quotient Ω/W is a hyperelliptic curve of genus 2, with six points of ramification
G(0), G(1), . . . , G(5), where G is the theta function for Γ with suitably chosen a and b.

Question 3.5.4. As long as we know the 2-torsion matrices s0, s1, . . . , sg that go into making
a Whittaker group, we can find the ramification points of the corresponding hyperelliptic
curve. But what if we don’t have that data?

• If we are given W = 〈γ1, . . . , γg〉, can we algorithmically determine whether or not W
is Whittaker?

• If we know W = 〈γ1, . . . , γg〉, can we algorithmically find s0, s1, . . . , sg from γ1, . . . , γg?

• If we know W is Whittaker but cannot find s0, s1, . . . , sg, is there another way to find
the ramification points of Ω/W?

A good first family of examples to consider is Schottky groups generated by two elements.
These give rise to genus 2 curves, which are hyperelliptic, so the groups must in fact be
Whittaker.

Having discussed going from a Whittaker group to a set of ramification points, we now
consider the other direction: going from the ramification points of a totally split hyperelliptic
curve and finding the corresponding Whittaker group. This more difficult, though a brute
force method was described by Kadziela in [58], and was used to compute several genus 2
examples over Q5. We will outline his approach.

After a projective transformation, we may assume that the set of fixed points of the group
Γ is of the form

S = {0, b0, a1, b1, . . . ag−1, bg−1, 1,∞},
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where
0 < |b0| < |a1| ≤ . . . ≤ |bg−1| < 1,

and where the generators of Γ are the 2-torsion matrices si with fixed points {ai, bi} (taking
a0 = 0, ag = 1, and bg =∞). Let us choose parameters for the theta function associated to
Γ as 0 and 1, and write

G(z) = Θ(0, 1; z) =
∞∏
n=0

Ln(z),

where

Ln(z) :=
∏

γ∈Γ,`(γ)=n

z − γ(0)

z − γ(1)

is the sub product of Θ over all matrices in Γ with reduced length exactly n.

Theorem 3.5.5 (Kadziela’s Main Approximation Theorem, [58]). Assume S and G are as
above, and let π denote the uniformizer. Then

G(0) = 0, G(1) =∞, G(∞) = 1,

and for z ∈ S − {0, 1,∞},

• G(z) ≡ 0 mod π

• G(z) ≡
{
−4b0 mod π2 if z = b0,

−2z mod π2 if z 6= b0

• G(z) mod πt =
∏t−2

i=0 Li(z) mod πt =
∏t−2

i=0 Li(z mod πt) for t ≥ 3.

Let X be a totally split hyperelliptic curve of genus g, which after projective transfor-
mation we may assume has its set of ramification points in the form

R = {0, r0, . . . , r2g−2, 1,∞}

where 0 < |r0| < |r1| ≤ . . . ≤ |r2g−2| < 1. We know X ∼= Ω/W for some Whittaker group W .
To find W it will suffice to find the fixed points S of the corresponding group Γ, so given R
we wish to find S. We know S = Θ−1(R), but Θ is defined by S, and we cannot immediately
invert a function we do not yet know. This means we must gradually approximate candidates
for both S and Θ that give the desired property that Θ(S) = R. To simplify notation, we
will sometimes write S = {0, x0, x1, . . . , x2g−2, 1,∞} instead of in terms of ai’s and bi’s.

The following algorithm follows the description in [58, §6]. Although we have not imple-
mented it, Kadziela used a Magma implementation of it to compute several genus 2 examples
over Q5.

Algorithm 3.5.6 (From Ramification Points to Whittaker Group).
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Input: Set of ramification points R = {0, r0, . . . , r2g−2, 1,∞} ⊂ Qp ∪ {∞}, and desired
degree of precision d ≥ 3

Output: The set of fixed points S = {x0, . . . , x2g−2, 1,∞} of Γ, approximated mod πd,
such that Ω/W has ramification points R for the corresponding Whittaker group of Γ.

1: Sort r0, . . . , r2g−1 in increasing absolute value and rename.
2: if |r0| = |r1| then
3: return “NOT VALID”
4: end if
5: Define xi = 0 for 0 ≤ i ≤ 2g − 2. (Approximation mod π.)
6: Let m = max{k | rk ≡ 0 mod π2}.
7: Set ` = 0 and GOOD=FALSE
8: while GOOD=FALSE do
9: Set x0 = −1

4
ri mod π2, and all other xj’s to the −1

2
rk mod π2.

10: Test if i is the right choice using Theorem 3.5.5; if it is, set GOOD=TRUE
11: Set ` = `+ 1.
12: end while
13: for 3 ≤ t ≤ d do
14: Set DONE=FALSE.
15: while DONE=FALSE do
16: Choose v ∈ (OK/mOK)2g−1, set x = (x mod πt−1) + vπt.
17: Compute

∏t−2
n=0 Ln(xi) for 0 ≤ i ≤ 2g − 2.

18: if this set equals {r0 mod πt, . . . r2g−1 mod πt} then
19: Set DONE=TRUE.
20: else
21: Set DONE=FALSE.
22: end if
23: end while
24: end for
25: return x0, . . . x2g−1.

This algorithm is in some sense a brute force algorithm, as for each digit’s place from 3rd

to dth it might in principal try every element of (OK/mOK)2g−1, essentially guessing the xi’s
digit by digit (lines 13 through 24). It is nontrivial that such a brute force method could even
work, but this is made possible by Theorem 3.5.5 as it tells us how to check whether a choice
of element in (OK/mOK)2g−1 is valid mod πm. As with the other algorithms presented in
this chapter, future algorithms improving the efficiency would be greatly desirable.
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Chapter 4

Tropicalization of del Pezzo Surfaces

This chapter is joint work with Kristin Shaw and Bernd Sturmfels. It is submitted with the
same title to Advances in Mathematics, Special Issue in Honor of Andrei Zelevinsky [76].

4.1 Introduction

A smooth cubic surface X in projective 3-space P3 contains 27 lines. These lines are charac-
terized intrinsically as the (−1)-curves on X, that is, rational curves of self-intersection −1.
The tropicalization of an embedded surface X is obtained directly from the cubic polyno-
mial that defines it in P3. The resulting smooth tropical surfaces are dual to unimodular
triangulations of the size 3 tetrahedron. These come in many combinatorial types [62, §4.5].

Alternatively, by removing the 27 lines from the cubic surface X, we obtain a very affine
surface X0. In this chapter, we study the tropicalization of X0, denoted trop(X0), via the
embedding in its intrinsic torus [50]. This is an invariant of the surface X. The (−1)-curves
on X now become visible as 27 boundary trees on trop(X0). This distinguishes our approach
from Vigeland’s work [95] on the 27 lines on tropical cubics in TP3. It also highlights an
important feature of tropical geometry [64]: there are different tropical models of a single
classical variety, and the choice of model depends on what structure one wants revealed.

Throughout this chapter we work over a field K of characteristic zero that has a non-
archimedean valuation. Examples include the Puiseux series K = C{{t}} and the p-adic
numbers K = Qp. We use the term cubic surface to mean a marked smooth del Pezzo
surface X of degree 3. A tropical cubic surface is the intrinsic tropicalization trop(X0)
described above. Likewise, tropical del Pezzo surface refers to the tropicalization trop(X0)
for degree ≥ 4. Here, the adjective “tropical” is used solely for brevity, instead of the more
accurate “tropicalized” used in [62]. We do not consider non-realizable tropical del Pezzo
surfaces, nor tropicalizations of surfaces defined over a field K with positive characteristic.

The moduli space of cubic surfaces is four-dimensional, and its tropical version is the
four-dimensional Naruki fan. This was constructed combinatorially by Hacking, Keel and
Tevelev [50], and it was realized in Section 2.6 as the tropicalization of the Yoshida variety
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Y in P39. The Weyl group W (E6) acts on Y by permuting the 40 coordinates. The maximal
cones in trop(Y0) come in two W (E6)-orbits. We here compute the corresponding cubic
surfaces:

Theorem 4.1.1. There are two generic types of tropical cubic surfaces. They are contractible
and characterized at infinity by 27 metric trees, each having 10 leaves. The first type has
73 bounded cells, 150 edges, 78 vertices, 135 cones, 189 flaps, 216 rays, and all 27 trees are
trivalent. The second type has 72 bounded cells, 148 edges, 77 vertices, 135 cones, 186 flaps,
213 rays, and three of the 27 trees have a 4-valent node. (For more data see Table 4.1.)

Here, by cones and flaps we mean unbounded 2-dimensional polyhedra that are affinely
isomorphic to R2

≥0 and [0, 1]×R≥0 respectively. The characterization at infinity is analogous
to that for tropical planes in [53]. Indeed, by [53, Theorem 4.4], every tropical plane L in
TPn−1 is given by an arrangement of n boundary trees, each having n − 1 leaves, and L
is uniquely determined by this arrangement. Viewed intrinsically, L is the tropicalization
of a very affine surface, namely the complement of n lines in P2. Theorem 4.1.1 offers the
analogous characterization for the tropicalization of the complement of the 27 lines on a
cubic surface.

Tropical geometry has undergone an explosive development during the past decade. To
the outside observer, the literature is full of conflicting definitions and diverging approaches.
The forthcoming text books [62, 64] offer some help, but they each stress one point of view.

An important feature of this chapter is its focus on the unity of tropical geometry. We
shall develop three different techniques for computing tropical del Pezzo surfaces:

• Cox ideals, as explained in Section 4.2;

• fan structures on moduli spaces, as explained in Section 4.3;

• tropical modifications, as explained in Section 4.4.

The first approach uses the Cox ring of X, starting from the presentation given in [87].
Propositions 4.2.1 and 4.2.2 extend this to the universal Cox ideal over the moduli space. For
any particular surface X, defined over a field such as K = Q(t), computing the tropicalization
is a task for the software gfan [57]. In the second approach, we construct del Pezzo surfaces
from fibers in the natural maps of moduli fans. Our success along these lines completes
the program started by Hacking et al. [50] and further developed in Section 2.6. The third
approach is to build tropical del Pezzo surfaces combinatorially from the tropical projective
plane TP2 by the process of modifications in the sense of Mikhalkin [63]. It mirrors the
classical construction by blowing up points in the plane P2. All three approaches yield the
same results. Section 4.5 presents an in-depth study of the combinatorics of tropical cubic
surfaces and their trees, including an extension of Theorem 4.1.1 that includes all degenerate
surfaces.
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Figure 4.1: Tropical del Pezzo surfaces of degree 4 illustrated by coloring the Clebsch graph

We now illustrate the rich combinatorics in our story for a del Pezzo surface X of degree 4.
Del Pezzo surfaces of degree d ≥ 6 are toric surfaces, so they naturally tropicalize as polygons
with 12−d vertices [64, Ch. 3]. On route to Theorem 4.1.1, we prove the following for d = 4, 5:

Proposition 4.1.2. Among tropical del Pezzo surfaces of degree 4 and 5, each has a unique
generic combinatorial type. For degree 5, this is the cone over the Petersen graph. For degree
4, the surface is contractible and characterized at infinity by 16 trivalent metric trees, each
with 5 leaves. It has 9 bounded cells, 20 edges, 12 vertices, 40 cones, 32 flaps, and 48 rays.

To understand degree 4, we consider the 5-regular Clebsch graph in Figure 4.1. Its 16
nodes are the (−1)-curves on X, labelled E1, . . . , E5, F12, . . . , F45, G. Edges represent inter-
secting pairs of (−1)-curves. In the constant coefficient case, when K has trivial valuation,
the tropicalization of X is the fan over this graph. However, over fields K with non-trivial
valuation, trop(X0) is usually not a fan, but one sees the generic type from Proposition 4.1.2.
Here, the Clebsch graph deforms into a trivalent graph with 48 = 16·3 nodes and 72 = 40+32
edges, determined by the color coding in Figure 4.1. Each of the 16 nodes is replaced by a
trivalent tree with five leaves. Incoming edges of the same color (red or blue) form a cherry
(= two adjacent leaves) in that tree, while the black edge connects to the non-cherry leaf.
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Figure 4.2: The bounded complex of the tropical del Pezzo surface in degree 4

Corollary 4.1.3. For a del Pezzo surface X of degree 4, the 16 metric trees on its tropical-
ization trop(X0), obtained from the (−1)-curves on X, are identical up to relabeling.

Proof. Moving from one (−1)-curve on X to another corresponds to a Cremona transforma-
tion of the plane P2. Each (−1)-curve on X has exactly five marked points arising from its
intersections with the other (−1)-curves. Moreover, the Cremona transformations preserve
the cross ratios among the five marked points on these 16 P1’s. From this we obtain the
following relabeling rules for the leaves on the 16 trees, which live in the nodes of Figure 4.1.

We start with the tree G whose leaves are labeled E1, E2, E3, E4, E5. The tree Fij is
obtained by relabeling the five leaves as follows:

Ei 7→ Ej, Ej 7→ Ei, Ek 7→ Flm, El 7→ Fkm, Em 7→ Fkl. (4.1)

Here {k, l,m} = {1, 2, 3, 4, 5}\{i, j}. The tree Ei is obtained from the tree G by relabeling

Ei 7→ G and Ej 7→ Fij where j 6= i. (4.2)

This explains the color coding of the graph in Figure 4.1.

The bounded complex of trop(X0) is shown in Figure 4.2. It consists of a central rectan-
gle, with two triangles attached to each of its four edges. There are 12 vertices, four vertices
of the rectangle, labeled S, and eight pendant vertices, labeled T. To these 12 vertices and
20 edges, we attach the flaps and cones, according to the deformed Clebsch graph struc-
ture. The link of each S vertex in the surface trop(X0) is the Petersen graph (Figure 4.3),
while the link of each T vertex is the bipartite graph K3,3. The bounded complex has 16
chains TST consisting of two edges with different colors. These are attached by flaps to the
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bounded parts of the 16 trees. The Clebsch graph (Figure 4.1) can be recovered from Figure
4.2 as follows: its nodes are the TST chains, and two chains connect if they share precisely
one vertex. Out at infinity, T vertices attach along cherries, while S vertices attach along
non-cherry leaves. Each such attachment between two of the 16 trees links to the bounded
complex by a cone.

4.2 Cox Ideals

In this chapter we study del Pezzo surfaces over K of degrees 5, 4 and 3. Such a surface X
is obtained from P2 by blowing up 4, 5 or 6 general points, and we obtain moduli by varying
these points. From an algebraic perspective, it is convenient to represent X by its Cox ring

Cox(X) =
⊕

L∈Pic(X)

H0(X,L). (4.3)

The Cox ring of a del Pezzo surface X was first studied by Batyrev and Popov [11]. We shall
express this ring explicitly as a quotient of a polynomial ring over the ground field K:

Cox(X) = K
[
xC : C is a (−1)-curve on X

]
modulo an ideal IX generated by quadrics.

The number of variables xC in our three polynomial rings is 10, 16 and 27 respectively. The
ideal IX is the Cox ideal of the surface X. It was conjectured already in [11] that the ideal
IX is generated by quadrics. This conjecture was proved in several papers, including [86, 87].

The Cox ring encodes all maps from X to a projective space. Such a map is given by the
N-graded subring Cox(X)[L] =

⊕
m≥0H

0(X,mL) for a fixed line bundle L ∈ Pic(X). We

obtain X → Proj(Cox(X)[L]) ⊂ PN , where N = dim(H0(X,L)) − 1, provided Cox(X)[L] is
generated in degree 1. This holds for the anticanonical map and the blow-down map to P2.

In what follows, we give explicit generators for all relevant Cox ideals IX . Some of this is
new and of independent interest. The tropicalization of X0 we seek is defined from the ideal
IX . So, in principle, we can compute trop(X0) from IX using the software gfan [57]. Recall
that X0 denotes the very affine surface obtained from X by removing all (−1)-curves.

Del Pezzo Surfaces of Degree 5
Consider four general points in P2. This configuration is projectively unique, so there are no
moduli. The surface X is the moduli space M0,5 of rational curves with five marked points.
The Cox ideal is the Plücker ideal of relations among 2× 2-minors of a 2× 5-matrix:

IX = 〈 p12p34 − p13p24 + p14p23, p12p35 − p13p25 + p15p23,
p12p45 − p14p25 + p15p24, p13p45 − p14p35 + p15p34, p23p45 − p24p35 + p25p34 〉.

The affine variety of IX in K̄10 is the universal torsor of X, now regarded over the algebraic
closure K̄ of the given valued field K. From the perspective of blowing up P2 at 4 points,
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Figure 4.3: The tropical del Pezzo surface trop(M0,5) is the cone over the Petersen graph.

the ten variables (representing the ten (−1)-curves) fall in two groups: the four exceptional
fibers, and the six lines spanned by pairs of points. For example, we may label the fibers by

E1 = p15, E2 = p25, E3 = p35, E4 = p45,

and the six lines by

F12 = p34, F13 = p24, F14 = p23, F23 = p14, F24 = p13, F34 = p12.

The Cox ideal IX is homogeneous with respect to the natural grading by the Picard
group Pic(X) = Z5. In Plücker coordinates, this grading is given by deg(pij) = ei + ej. This
translates into an action of the torus (K̄∗)5 = Pic(X)⊗Z K̄

∗ on the universal torsor in K̄10.
We remove the ten coordinate hyperplanes in K̄10, and we take the quotient modulo (K̄∗)5.
The result is precisely the very affine del Pezzo surface we seek to tropicalize:

X0 = M0,5 ⊂ (K̄∗)10/(K̄∗)5. (4.4)

It is known (and easy to check with gfan on IX) that the 2-dimensional balanced fan trop(X0)
is the cone over the Petersen graph. This fan is also the moduli space of 5-marked rational
tropical curves, that is, 5-leaf trees with lengths on the two bounded edges (cf. [62, §4.3]).

Del Pezzo Surfaces of Degree 4
Consider now five general points in P2. There are two degrees of freedom. The moduli space
is our previous del Pezzo surface M0,5. Indeed, fixing five points in P2 corresponds to fixing
a point (p12, . . . , p45) in M0,5, using Cox-Plücker coordinates as in (4.4). Explicitly, if we
write the five points as a 3× 5-matrix then the pij are the Plücker coordinates of its kernel.
Replacing K with the previous Cox ring, we may consider the universal del Pezzo surface
Y . The universal Cox ring is the quotient of a polynomial ring in 26 = 10 + 16 variables:

K[Y ] = Cox(M0,5)[E1, E2, E3, E4, E5, F12, F13, . . . , F45, G]/IY . (4.5)

As before, Ei represents the exceptional divisor over point i, and Fij represents the line
spanned by points i and j. The variable G represents the conic spanned by the five points.
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Proposition 4.2.1. Up to saturation with respect to the product of the 26 variables, the
universal Cox ideal IY for degree 4 del Pezzo surfaces is generated by the following 45 trino-
mials:

Base Group p12p34−p13p24+p14p23 p12p35−p13p25+p15p23 p12p45−p14p25 + p15p24,
p13p45−p14p35 + p15p34 p23p45−p24p35+p25p34

Group 1 F23F45−F24F35+F25F34 p23p45F24F35−p24p35F23F45−GE1

p23p45F25F34−p25p34F23F45−GE1 p24p35F25F34−p25p34F24F35−GE1

Group 2 F13F45−F14F35+F15F34 p13p45F14F35−p14p35F13F45−GE2

p13p45F15F34−p15p34F13F45−GE2 p14p35F15F34−p15p34F14F35−GE2

Group 3 F12F45−F14F25+F15F24 p12p45F14F25−p14p25F12F45−GE3,
p12p45F15F24−p15p24F12F45−GE3 p14p25F15F24−p15p24F14F25−GE3

Group 4 F12F35−F13F25+F15F23 p12p35F13F25−p13p25F12F35−GE4

p12p35F15F23−p15p23F12F35−GE4 p13p25F15F23−p15p23F13F25−GE4

Group 5 F12F34−F13F24+F14F23 p12p34F13F24−p13p24F12F34−GE5

p12p34F14F23−p14p23F12F34−GE5 p13p24F14F23−p14p23F13F24−GE5

Group 1’ p25F12E2−p35F13E3+p45F14E4 p24F12E2−p34F13E3+p45F15E5

p23F12E2−p34F14E4+p35F15E5 p23F13E3−p24F14E4+p25F15E5

Group 2’ p15F12E1−p35F23E3+p45F24E4 p14F12E1−p34F23E3+p45F25E5

p13F12E1−p34F24E4+p35F25E5 p13F23E3−p14F24E4+p15F25E5

Group 3’ p15F13E1−p25F23E2+p45F34E4 p14F13E1−p24F23E2+p45F35E5

p12F13E1−p24F34E4+p25F35E5 p12F23E2−p14F34E4+p15F35E5

Group 4’ p15F14E1−p25F24E2+p35F34E3 p13F14E1−p23F24E2+p35F45E5

p12F14E1−p23F34E3+p25F45E5 p12F24E2−p13F34E3+p15F45E5

Group 5’ p14F15E1−p24F25E2+p34F35E3 p13F15E1−p23F25E2+p34F45E4

p12F15E1−p23F35E3+p24F45E4 p12F25E2−p13F35E3+p14F45E4

Proposition 4.2.1 will be derived later in this section. For now, let us discuss the structure
and symmetry of the generators of IY . We consider the 5-dimensional demicube, here denoted
D5. This is the convex hull of the following 16 points in the hyperplane {a0 = 0} ⊂ R6:{

(1, a1, a2, a3, a4, a5) ∈ {0, 1}6 : a1 + a2 + a3 + a4 + a5 is odd
}
. (4.6)

The group of symmetries of D5 is the Weyl group W (D5). It acts transitively on (4.6). There
is a natural bijection between the 16 variables in the Cox ring and the vertices of D5:

E1 ↔ (1, 1, 0, 0, 0, 0), E2 ↔ (1, 0, 1, 0, 0, 0), . . . , E5 ↔ (1, 0, 0, 0, 0, 1),
F12 ↔ (1, 0, 0, 1, 1, 1), F13 ↔ (1, 0, 1, 0, 1, 1), . . . , F45 ↔ (1, 1, 1, 1, 0, 0),

G↔ (1, 1, 1, 1, 1, 1).
(4.7)
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This bijection defines the grading via the Picard group Z6. We regard the pij as scalars, so
they have degree 0. Generators of IY that are listed in the same group have the same Z6

degrees. The action of W (D5) on the demicube D5 gives the action on the 16 variables.
Consider now a particular smooth del Pezzo surface X of degree 4 over the field K, so

the pij are scalars in K that satisfy the Plücker relations in the Base Group. The universal
Cox ideal IY specializes to the Cox ideal IX for the particular surface X. That Cox ideal is
minimally generated by 20 quadrics, two per group. The surface X0 is the zero set of the
ideal IX inside (K̄∗)16/(K̄∗)6. The torus action is obtained from (4.7), in analogy to (4.4).

Proof of Proposition 4.1.2. We computed trop(X0) by applying gfan [57] to the ideal IX .
If K = Q with the trivial valuation then the output is the cone over the Clebsch graph in
Figure 4.1. This 5-regular graph records which pairs of (−1)-curves intersect on X. This
also works over a field K with non-trivial valuation. The software gfan uses K = Q(t). If
the vector (p12, . . . , p45) tropicalizes into the interior of an edge in the Petersen graph then
trop(X0) is the tropical surface described in Proposition 4.1.2. Each node in Figure 4.1 is
replaced by a trivalent tree on 5 nodes according to the color coding explained in Section 4.1.
The surface trop(X0) can also be determined by tropical modifications, as in Section 4.4.

The same tropicalization method works for the universal family Y0. Its ideal IY is given
by the 45 polynomials in 26 variables listed above, and Y0 is the zero set of IY in the 15-
dimensional torus (K̄∗)10/(K̄∗)5 × (K̄∗)16/(K̄∗)6. The tropical universal del Pezzo surface
trop(Y0) is a 4-dimensional fan in R26/R11. We compute it by applying gfan to the universal
Cox ideal IY . The Gröbner fan structure on trop(IY) has f-vector (76, 630, 1620, 1215). It is
isomorphic to the Naruki fan described in Table 2.5 and discussed further in Section 4.3.

Del Pezzo Surfaces of Degree 3 (Cubic Surfaces)
There exists a cuspidal cubic through any six points in P2. See e.g. (2.34) and [74, (4.4)].
Hence any configuration of six points in P2 can be represented by the columns of a matrix

D =

 1 1 1 1 1 1
d1 d2 d3 d4 d5 d6

d3
1 d3

2 d3
3 d3

4 d3
5 d3

6

 . (4.8)

The maximal minors of the matrix D factor into linear forms,

[ijk] = (di − dj)(di − dk)(dj − dk)(di + dj + dk), (4.9)

and so does the condition for the six points to lie on a conic:

[conic] = [134][156][235][246]− [135][146][234][256]
= (d1 + d2 + d3 + d4 + d5 + d6) ·∏1≤i<j≤6(di − dj). (4.10)

The linear factors in these expressions form the root system of type E6. This corresponds
to an arrangement of 36 hyperplanes in P5. Similarly, the arrangement of type E7 consists
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of 63 hyperplanes in P6, as in [74, (4.4)]. To be precise, for m = 6, 7, the roots for Em are

di + dj for 1 ≤ i < j ≤ m,
di + dj + dk for 1 ≤ i < j < k ≤ m,

di1 + di2 + · · · + di6 for 1 ≤ i1 < i2 < · · · < i6 ≤ m.
(4.11)

Linear dependencies among these linear forms specify a matroid of rank m, also denoted Em.
The moduli space of marked cubic surfaces is the 4-dimensional Yoshida variety Y defined

in Section 2.6. It coincides with the subvariety Y0 of (K̄∗)26/(K̄∗)11 cut out by the 45
trinomials listed in Proposition 4.1.2. The universal family for cubic surfaces is denoted by
G0. This is the open part of the Göpel variety G ⊂ P134 constructed in [74, §5]. The base of
this 6-dimensional family is the 4-dimensional Y0. The map G0 → Y0 was described in [50].
Thus the ring K[Y ] in (4.5) is the natural base ring for the universal Cox ring for degree 3
surfaces.

At this point it is essential to avoid confusing notation. To aim for a clear presentation,
we use the uniformization of Y by the E6 hyperplane arrangement. Namely, we take R =
Z[d1, d2, d3, d4, d5, d6] instead of K[Y ] as the base ring. We write X for the universal cubic
surface over R. The universal Cox ring is a quotient of the polynomial ring over R in 27
variables, one for each line on the cubic surface. Using variable names as in [87, §5], we write

Cox(X ) = R[E1, E2, . . . , E6, F12, F13, . . . , F56, G1, G2, . . . , G6]/IX . (4.12)

This ring is graded by the Picard group Z7, similarly to (4.7). The role of the 5-dimensional
demicube D5 is now played by the 6-dimensional Gosset polytope with 27 vertices, here also
denoted by E6. The symmetry group of this polytope is the Weyl group W (E6).

Proposition 4.2.2. Up to saturation by the product of all 27 variables and all 36 roots,
the universal Cox ideal IX is generated by 270 trinomials. These are clustered by Z7-degrees
into 27 groups of 10 generators, one for each line on the cubic surface. For instance, the 10
generators of IX that correspond to the line G1 involve the 10 lines that meet G1. They are

(d3−d4)(d1+d3+d4)E2F12 + (d2−d4)(d1+d2+d4)E3F13 − (d2−d3)(d1+d2+d3)E4F14,
(d3−d5)(d1+d3+d5)E2F12 + (d2−d5)(d1+d2+d5)E3F13 − (d2−d3)(d1+d2+d3)E5F15,
(d3−d6)(d1+d3+d6)E2F12 + (d2−d6)(d1+d2+d6)E3F13 − (d2−d3)(d1+d2+d3)E6F16,
(d5−d4)(d1+d4+d5)E2F12 − (d2−d5)(d1+d2+d5)E4F14 + (d2−d4)(d1+d2+d4)E5F15,
(d4−d6)(d1+d4+d6)E2F12 + (d2−d6)(d1+d2+d6)E4F14 − (d2−d4)(d1+d2+d4)E6F16,
(d5−d6)(d1+d5+d6)E2F12 + (d2−d6)(d1+d2+d6)E5F15 − (d2−d5)(d1+d2+d5)E6F16,
(d4−d5)(d1+d4+d5)E3F13 − (d3−d5)(d1+d3+d5)E4F14 + (d3−d4)(d1+d3+d4)E5F15,
(d4−d6)(d1+d4+d6)E3F13 − (d3−d6)(d1+d3+d6)E4F14 + (d3−d4)(d1+d3+d4)E6F16,
(d5−d6)(d1+d5+d6)E3F13 − (d3−d6)(d1+d3+d6)E5F15 + (d3−d5)(d1+d3+d5)E6F16,
(d6−d5)(d1+d5+d6)E4F14 + (d4−d6)(d1+d4+d6)E5F15 − (d4−d5)(d1+d4+d5)E6F16.

The remaining 260 trinomials are obtained by applying the action of W (E6). The variety
defined by IX in P5 × (K̄∗)27/(K̄∗)7 is 6-dimensional. It is the universal family X 0.
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Proof of Propositions 4.2.1 and 4.2.2. We consider the prime ideal in [74, §6] that defines
the embedding of the Göpel variety G into P134. By [74, Theorem 6.2], G is the ideal-theoretic
intersection of a 35-dimensional toric variety T and a 14-dimensional linear space L. The
latter is cut out by a canonical set of 315 linear trinomials, indexed by the 315 isotropic
planes in (F2)6. Pulling these linear forms back to the Cox ring of T , we obtain 315 quartic
trinomials in 63 variables, one for each root of E7. Of these 63 roots, precisely 27 involve
the unknown d7. We identify these with the (−1)-curves on the cubic surface via

di − d7 7→ Ei, di + dj + d7 7→ Fij, −dj +
7∑
i=1

di 7→ Gj. (4.13)

Moreover, of the 315 quartics, precisely 270 contain a root involving d7. Their images
under the map (4.13) are the 270 Cox relations listed above. Our construction ensures
that they generate the correct Laurent polynomial ideal on the torus of T . This proves
Proposition 4.2.2.

The derivation of Proposition 4.2.1 is similar, but now we use the substitution

di − d6 7→ Ei, di + dj + d6 7→ Fij,
6∑
i=1

di 7→ G.

We consider the 45 quartic trinomials that do not involve d7. Of these, precisely 5 do not in-
volve d6 either. They translate into the 5 Plücker relations for M0,5. With this identification,
the remaining 40 quartics translate into the ten groups listed after Proposition 4.2.1.

For an alternative argument, in degree 3, we may consider the base ring

R = K[d1, d2, ..., d6, (d1 − d2)−1, (d1 + d2 + d3)−1, ..., (d1 + d2 + d3 + d4 + d5 + d6)−1].

Then, our ideal I can be regarded as an ideal in the ring R[E·, F·, G·]. We need to show that
the ideal is prime.

Consider the family Proj(R[E·, F·, G·]/I) → SpecR. The base SpecR is the variety of 6
points in P2 in general position. Up to the grading, the fibers are smooth cubic surfaces,
which are reduced. We claim that the family is flat. If so, then Proj(R[E·, F·, G·]/I) is also
reduced, by [45, 11.3.13].

By [52, III 9.9], it suffices to show that the Hilbert polynomials for all fibers are the
same. To show this, we compute a Gröbner basis of I over the fraction field Frac(R) =
K(d1, d2, d3, d4, d5, d6). By abuse of notation, we also write I for Frac(R)[E·, F·, G·] · I.
Then, we look at the coefficients of the leading terms in the Gröbner basis and observe
that only products of the 36 roots in E6 appear. Therefore, it remains a Gröbner basis
when d1, d2, . . . , d6 are specialized to any point in SpecR. Since the Hilbert polynomial is
determined by the leading terms, we conclude that the Hilbert polynomials are all same.

The irreducibility of Proj(R[E·, F·, G·]/I) follows from the fact that the generic fiber

Proj(Frac(R)[E., F., G.]/I)
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is irreducible, also by a standard theorem on flat families. Hence, the ideal I is prime.
The degree 4 case is similar.

We now fix a K-valued point in the base Y0, by replacing the unknowns di with scalars
in K. In order for the resulting surface X to be smooth, we require (d1 : d2 : d3 : d4 : d5 : d6)
to be in the complement of the 36 hyperplanes for E6. The corresponding specialization of
IX is the Cox ideal IX of X. Seven of the ten trinomials in each degree are redundant over
K. Only three are needed to generate IX . Hence, the Cox ideal IX is minimally generated
by 81 quadrics in the Ei, Fij and Gi. Its variety is the surface X0 = V (IX) ⊂ (K̄∗)27/(K̄∗)7.

Proposition 4.2.3. Each of the marked 27 trees on a tropical cubic surface has an involu-
tion.

Proof. Every line L on a cubic surface X over K, with its ten marked points, admits a double
cover to P1 with five markings. The preimage of one of these marked points is the pair of
markings on L given by two other lines forming a tritangent with L. Tropically, this gives
a double cover from the 10-leaf tree for L to a 5-leaf tree with leaf labelings given by these
pairs. The desired involution on the 10-leaf tree exchanges elements in each pair.

For instance, for the tree that corresponds to the line L = G1, the involution equals

E2 ↔ F12, E3 ↔ F13, E4 ↔ F14, E5 ↔ F15, E6 ↔ F16.

Indeed, this involution fixes the 10 Cox relations displayed in Proposition 4.2.2. This will be
seen more clearly in Figures 4.4 and 4.5, where the involution reflects about a vertical axis.
The corresponding 5-leaf tree is the tropicalization of the line in

Proj(K[E2F12, E3F13, E4F14, E5F15, E6F16]) ' P4

that is the intersection of the 10 hyperplanes defined by the polynomials in Proposition 4.2.2.
We aim to compute trop(X0) by applying gfan to the ideal IX . This works well for

K = Q with the trivial valuation. Here the output is the cone over the Schläfli graph which
records which pairs of (−1)-curves intersect on X. This is a 10-regular graph with 27 nodes.
However, for K = Q(t), our gfan calculations did not terminate. Future implementations of
tropical algorithms will surely succeed; see also Conjecture 4.5.3. To get the tropical cubic
surfaces, and to prove Theorem 4.1.1, we used the alternative method explained in Section
4.3.

4.3 Sekiguchi Fan to Naruki Fan

In the previous section we discussed the computation of tropical del Pezzo surfaces directly
from their Cox ideals. This worked well for degree 4. However, using the current imple-
mentation in gfan, this computation did not terminate for degree 3. We here discuss an
alternative method that did succeed. In particular, we present the proof of Theorem 4.1.1.
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The successful computation uses the following commutative diagram of balanced fans:

Berg(E7) −−−→ trop(G0)y y
Berg(E6) −−−→ trop(Y0)

(4.14)

This diagram was first derived by Hacking et al. [50], in their study of moduli spaces of
marked del Pezzo surfaces. Combinatorial details were worked out in Section 2.6. The
material that follows completes the program that was suggested at the very end of Section
2.6.

The notation Berg(Em) denotes the Bergman fan of the rank m matroid defined by the
(36 resp. 63) linear forms listed in (4.11). Thus, Berg(E6) is a tropical linear space in TP35,
and Berg(E7) is a tropical linear space in TP62. Coordinates are labeled by roots.

The list (4.11) fixes a choice of injection of root systems E6 ↪→ E7. This defines coordinate
projections R63 → R36 and TP62 99K TP35, namely by deleting coordinates with index 7.
This projection induces the vertical map from Berg(E7) to Berg(E6) on the left in (4.14).

On the right in (4.14), we see the 4-dimensional Yoshida variety Y ⊂ P62 and the 6-
dimensional Göpel variety G ⊂ P134. Explicit parametrizations and equations for these
varieties were presented in [74] and Chapter 2. The corresponding very affine varieties
G0 ⊂ (K̄∗)36/K̄∗ and Y0 ⊂ (K̄∗)63/K̄∗ are moduli spaces of marked del Pezzo surfaces [50].
Their tropicalizations trop(G0) and trop(Y0) are known as the Sekiguchi fan and Naruki fan,
respectively. The modular interpretation in [50] ensures the existence of the vertical map
trop(G0)→ trop(Y0).

The two horizontal maps in (4.14) are surjective and (classically) linear. The linear map
Berg(E7)→ trop(G0) is given by the 135× 63 matrix A in [74, §6]. The corresponding toric
variety is the object of [74, Theorem 6.1]. The map Berg(E6) → trop(Y0) is given by the
40× 36-matrix in Theorem 2.6.1. We record the following computational result. It refers to
the natural simplicial fan structure on Berg(Em) described by Ardila et al. in [5].

Lemma 4.3.1. The Bergman fans of E6 and E7 have dimensions 5 and 6. Their f-vectors
are

fBerg(E6) = (1, 750, 17679, 105930, 219240, 142560),
fBerg(E7) = (1, 6091, 315399, 3639804, 14982660, 24607800, 13721400).

The moduli fans trop(Y0) and trop(G0) have dimensions 4 and 6. Their f-vectors are

ftrop(Y0) = (1, 76, 630, 1620, 1215),
ftrop(G0) = (1, 1065, 27867, 229243, 767025, 1093365, 547155).

Proof. The f-vector for the Naruki fan trop(Y0) appears in Table 2.5. For the other three
fans, only the numbers of rays (namely 750, 6091 and 1065) were known from Section 2.6.
The main new result in Lemma 4.3.1 is the computation of all 57273155 cones in Berg(E7).
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The fans Berg(E6) and trop(G0) are subsequently derived from Berg(E7) using the maps in
(4.14).

We now describe how fBerg(E7) was found. We did not use the theory of tubings in [5].
Instead, we carried out a brute force computation based on [38] and [78]. Recall that a point
x lies in the Bergman fan of a matroid if and only if the minimum is obtained twice on each
circuit. We computed all circuits of the rank 7 matroid on the 63 vectors in the root system
E7. That matroid has precisely 100662348 circuits. Their cardinalities range from 3 to 8.
This furnishes a subroutine for deciding whether a given point lies in the Bergman fan.

Our computations were mostly done in sage [85] and java. We achieved speed by
exploiting the action of the Weyl group W (E7) given by the two generators in [74, (4.2)].
The two matrices derived from these two generators using [74, (4.3)] act on the space R7 with
coordinates d1, d2, . . . , d7. This gives subroutines for the action of W (E7) on R63, e.g. for
deciding whether two given sequences of points are conjugate with respect to this action.

Let r1, . . . , r6091 denote the rays of Berg(E7), as in [50, Table 2] and Section 2.6. They
form 11 orbits under the action of W (E7). For each orbit, we take the representative ri with
smallest label. For each pair i < j such that ri is a representative, our program checks if
ri + rj lies in Berg(E7), using the precomputed list of circuits. If yes, then ri and rj span
a 2-dimensional cone in Berg(E7). This process gives representatives for the W (E7)-orbits
of 2-dimensional cones. The list of all 2-dimensional cones are produced by applying the
action of W (E7) on the result. For each orbit, we keep only the lexicographically smallest
representative (ri, rj).

Next, for each triple i < j < k such that (ri, rj) is a representative, we check if ri+rj +rk
lies in Berg(E7). If so, then {ri, rj, rk} spans a 3-dimensional cone in Berg(E7). The list of all
3-dimensional cones can be found by applying the action of W (E7) on the result. As before,
we fix the lexicographically smallest representatives. Repeating this process for dimensions
4, 5 and 6, we obtain the list of all cones in Berg(E7), and hence the f-vector of this fan.

We now describe the procedure to derive trop(G0) by applying the top horizontal map
φ : Berg(E7)→ trop(G0). Each ray r in Berg(E7) maps to either (a) 0, (b) a ray of trop(G0),
or (c) a positive linear combination of 2 or 3 rays, as listed in Section 2.6. For each ray in
case (c), our program iterates through all pairs and triples of rays in trop(G0) and writes
the image explicitly as a positive linear combination of rays. With this data, we give a first
guess of trop(G0) as follows: for each maximal cone σ = span(ri1 , . . . , ri6) of Berg(E7), we
write φ(ri1), . . . , φ(ri6) as linear combinations of the rays of trop(G0) and take σ′ ⊂ TP134 to
be the cone spanned by all rays of trop(G0) that appear in the linear combinations. From
this we get a list of 6-dimensional cones σ′. Let Φ ⊂ TP134 be the union of these cones.

To certify that Φ = trop(G0) we need to show (1) for each σ ∈ Berg(E7), we have
φ(σ) ⊂ σ′ for some cone σ′ ⊂ Φ; (2) each cone σ′ ⊂ Φ is the union of some φ(σ) for
σ ∈ Berg(E7); and (3) the intersection of any two cones σ′1, σ′2 in Φ is a face of both σ′1
and σ′2. The claim (1) follows from the procedure of constructing Φ. For (2), one only
needs to verify the cases where σ′ is one of the 9 representatives by the action of W (E7).
For each of these, our program produces a list of φ(σ), and we check manually that σ′ is
indeed the intersection. For (3), one only needs to iterate through the cases where σ′1 is a
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representative, and the procedure is straightforward. Therefore, our procedure shows that
Φ is exactly trop(G0). Then the f -vector is obtained from the list of all cones in the fan Φ.

Finally, we recover the list of all cones in Berg(E6) and trop(Y0) by following the same
procedure with the left vertical map and the bottom horizontal map.

Remark 4.3.2. We see from Lemma 4.3.1 that the Euler characteristic of Berg(E7) equals

1− 6091 + 315399− 3639804+14982660− 24607800 + 13721400

= 765765 = 1 · 5 · 7 · 9 · 11 · 13 · 17.

This is the product of all exponents of W (E7), thus confirming the prediction in [74, (9.2)].

The Naruki fan trop(Y0) is studied in Section 2.6. Under the action of W (E6) through
Berg(E6), it has two classes of rays, labelled type (a) and type (b). It also has two W (E6)-
orbits of maximal cones: there are 135 type (aaaa) cones, each spanned by four type (a)
rays, and 1080 type (aaab) cones, each spanned by three type (a) rays and one type (b) ray.

The map trop(G0) → trop(Y0) tropicalizes the morphism G0 → Y0 between very affine
K-varieties of dimension 6 and 4. That morphism is the universal family of cubic surfaces.
In order to tropicalize these surfaces, we examine the fibers of the map trop(G0)→ trop(Y0).
The next lemma concerns the subdivision of trop(Y0) induced by this map. By definition,
this is the coarsest subdivision such that each cone in trop(G0) is sent to a union of cones.

Lemma 4.3.3. The subdivision induced by the map trop(G0)→ trop(Y0) is the barycentric
subdivision on type (aaaa) cones. For type (aaab) cones, each cone in the subdivision is a
cone spanned by the type (b) ray and a cone in the barycentric subdivision of the (aaa) face.
Thus each (aaaa) cone is divided into 24 cones, and each (aaab) cone is divided into 6 cones.

Proof. The map π : trop(G0)→ trop(Y0) can be defined via the commutative diagram (4.14):
for x ∈ trop(G0), take any point in its preimage in Berg(E7), then follow the left vertical
map and the bottom horizontal map to get π(x) in trop(Y0). It is well-defined because
the kernel of the map Berg(E7) → trop(G0) is contained in the kernel of the composition
Berg(E7)→ Berg(E6)→ trop(Y0). With this, we can compute the image in trop(Y0) of any
cone in trop(G0). For each orbit of cones in trop(Y0), pick a representative σ, and examine
all cones in trop(G0) that map into σ. Their images reveal the subdivision of σ.

Lemma 4.3.3 shows that each (aaaa) cone of the Naruki fan trop(Y0) is divided into 24
subcones, and each (aaab) cone is divided into 6 subcones. Thus, the total number of cones
in the subdivision is 24×135+6×1080 = 9720. For the base points in the interior of a cone,
the fibers are contained in the same set of cones in trop(G0). The fiber changes continuously
as the base point changes. Therefore, moving the base point around the interior of a cone
simply changes the metric but not the combinatorial type of marked tropical cubic surface.

Corollary 4.3.4. The map trop(G0) → trop(Y0) has at most two combinatorial types of
generic fibers up to relabeling.
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×24

×3

Figure 4.4: The 27 trees on tropical cubic surfaces of type (aaaa)

Proof. We fixed an inclusion E6 ↪→ E7 in (4.11). The action of StabE6(W (E7)) on the fans
is compatible with the entire commutative diagram (4.14). Hence, the fibers over two points
that are conjugate under this action have the same combinatorial type. We verify that the
9720 cones form exactly two orbits under this action. One orbit consists of the cones in the
type (aaaa) cones, and the other consists of the cones in the type (aaab) cones. Therefore,
there are at most two combinatorial types, one for each orbit.

×12

×12 ×3

Figure 4.5: The 27 trees on tropical cubic surfaces of type (aaab)

We can now derive our classification theorem for tropical cubic surfaces.

Proof of Theorem 4.1.1. We compute the two types of fibers of π : trop(G0) → trop(Y0).
In what follows we explain this for a cone σ of type (aaaa). The computation for type
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(aaab) is similar. Let r1, r2, r3, r4 denote the rays that generate σ. We fix the vector x =
r1 + 2r2 + 3r3 + 4r4 that lies in the interior of a cone in the barycentric subdivision.

The fiber π−1(x) is found by an explicit computation. First we determine the directions
of the rays. They arise from rays of trop(G0) that are mapped to zero by π. There are
27 such ray directions in π−1(x). These are exactly the image of the 27 type A1 rays
in Berg(E7) that correspond to the roots in E7\E6. We label them by Ei, Fij, Gj as in
(4.13). Next, we compute the vertices of π−1(x). They are contained in 4-dimensional
cones σ′ = pos{R1,R2,R3,R4} with x ∈ π(σ′). The coordinates of each vertex in TP134 is
computed by solving y1π(R1) + y2π(R2) + y3π(R3) + y4π(R4) = x for y1, y2, y3, y4.

The part of the fiber contained in each cone in trop(G0) is spanned by the vertices and
the Ei, Fij, Gj rays it contains. Iterating through the list of cones and looking at this data,
we get a list that characterizes the polyhedral complex π−1(x). In particular, that list verifies
that π−1(x) is 2-dimensional and has the promised f-vector. For each of the 27 ray directions
Ei, Fij, Gj, there is a tree at infinity. It is the link of the corresponding point at infinity
π−1(x) ⊂ TP134. The combinatorial types of these 27 trees are shown in Figure 4.4. The
metric on each tree can be computed as follows: the length of a bounded edge equals the
lattice distance between the two vertices in the corresponding flap.

The surface π−1(x) is homotopy equivalent to its bounded complex. We check directly
that the bounded complex is contractible. This can also be inferred from Theorem 4.4.4.

Remark 4.3.5. We may replace x = r1 + 2r2 + 3r3 + 4r4 with a generic point x = x1r1 +
x2r2 + x3r3 + x4r4, where x1<x2<x3<x4. This lies in the same cone in the barycentric
subdivision, so the combinatorics of π−1(x) remains the same. Repeating the last step over
the field Q(x1, x2, x3, x4) instead of Q, we write the length of each bounded edge in the 27
trees in terms of the parameters. Each length either equals x1, x2, x3, x4 or is xi − xj for
some i, j. The complete data on the 27 trees are given in Appendix A.

4.4 Modifications

In Section 4.2 we computed tropical varieties from polynomial ideals, along the lines of
the book by Maclagan and Sturmfels [62]. We now turn to tropical geometry as a self-
contained subject in its own right. This is the approach presented in the book by Mikhalkin
and Rau [64]. Central to that approach is the notion of tropical modifications. In this
section we explain how to construct our tropical del Pezzo surfaces from the flat plane R2

by modifications. This leads to proofs of Proposition 4.1.2 and Theorem 4.1.1 purely within
tropical geometry.

Modification is an operation that relates topologically different tropical models of the
same variety. This operation was first defined by Mikhalkin in [63]; see also [64, Chapter 5].
Here we work with a variant known as open modifications. These were introduced in the
context of Bergman fans of matroids in [81]. They were also used by Brugallé and Lopez de
Medrano [19] to study intersections and inflection points of tropical plane curves.
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We fix a tropical cycle Y in Rn, as in [64]. An open modification is a map p : Y ′ → Y
where Y ′ ⊂ Rn+1 is a new tropical variety to be described below. One should think of Y ′ as
being an embedding of the complement of a divisor in Y into a higher-dimensional torus.

Consider a piecewise integer affine function g : Y → R. The graph

Γg(Y ) =
{

(y, g(y)) | y ∈ Y
}
⊂ Rn+1

is a polyhedral complex which does not usually satisfy the balancing condition. There is
a canonical way to turn Γg(Y ) into a balanced complex. If Γg(Y ) is unbalanced around
a codimension one face E, then we attach to it a new unbounded facet FE in direction
−en+1. (We here use the max convention, as in [64]). The facet FE can be equipped with a
unique weight wFE

∈ Z such that the complex obtained by adding FE is balanced at E. The
resulting tropical cycle is Y ′ ⊂ Rn+1. By definition, the open modification of Y given by g is
the map p : Y ′ → Y , where p comes from the projection Rn+1 → Rn with kernel Ren+1.

The tropical divisor DivY (g) consists of all points y ∈ Y such that p−1(y) is infinite. This
is a polyhedral complex. It inherits weights on its top-dimensional faces from those of Y ′. A
tropical cycle is effective if the weights of its top-dimensional faces are positive. Therefore, the
cycle Y ′ is effective if and only if Y and the divisor DivY (g) are effective. Given a tropical
variety Y and an effective divisor DivY (g), we say the modification p : Y ′ → Y is along
DivY (g). See [63, 64, 81] for details and examples concerning divisors and modifications.

Open tropical modifications are related to re-embeddings of classical varieties as follows.
Fix a very affine K-variety X ⊂ (K̄∗)n and Y = trop(X) ⊂ Rn. Given a polynomial function
f ∈ K[X], let D be its divisor in X. Then X\D is isomorphic to the graph of the restriction
of f to X\D. In this manner, the function f gives a closed embedding of X\D into (K̄∗)n+1.

Proposition 4.4.1. Let X ⊂ (K̄∗)n, f ∈ K[X], D = divX(f), X ′ = X\D ⊂ (K̄∗)n+1,
Y = trop(X) ⊂ Rn, Y ′ = trop(X ′) ⊂ Rn+1, and suppose that all facets of Y have weight
one. There exists a piecewise integer affine function g : Y → R such that DivY (g) = trop(D)
and the coordinate projection Y ′ → Y is the open modification of Y along that divisor.

Proof. That Y ′ maps onto Y under the coordinate projection p : Rn+1 → Rn is clear since
the tropicalization map is coordinate-wise. We next show that the fiber over a point y ∈ Y is
either a single point or a half-line in the −en+1 direction. This is a simple application of the
balancing condition and the assumption that Y has weight one facets. Firstly, Y ′ induces a
polyhedral subdivision S(Y ) of Y via the coordinate projection p. Let F be a facet of this
subdivision, then p−1(F ) must be a unique facet of Y ′ since all facets of Y are of weight one.

Now, let E be an open codimension one face in S(Y ), and let F1, . . . , Fl be the facets
of S(Y ) that contain E. The preimage of E cannot consist of more than one codimension
one face of Y ′, since otherwise these faces would be adjacent to some collection of facets of
Y ′ whose projections would necessarily overlap with F1, . . . , Fl, again violating the weight
one condition. Therefore, the preimage of E is either a single face of codimension one in
Y ′ or it is a facet of Y ′ which is parallel to en+1. Moreover, it cannot be a bounded facet
since then there would be another codimension one face in the preimage of E. Also, since
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f ∈ K[X] is a regular function, Y ′ cannot have any unbounded faces in the +en+1 direction.
Thus the only other possible preimage p−1(E) is an unbounded face in the −en+1 direction.
This occurs if and only if E ⊂ trop(D). Therefore, we have determined all facets of Y ′, by
taking their closure we obtain Y ′. Finally, we obtain the piecewise integer affine function g
by taking g(y) = p−1(y) for y ∈ Y \trop(D) and then extending by continuity to the rest of
Y . Then Y ′ is the tropical modification along the function g which was described above.

Any two tropical rational functions g and g′ that define the same tropical divisor on Y
must differ by a map which is integer affine on Y . This leads to the following conclusion.

Corollary 4.4.2. Under the assumptions of Proposition 4.4.1, the tropicalization of X ′ =
X\D ⊂ Rn+1 is determined uniquely by those of D and X, up to an integer affine map.

It is generally not the case that trop(X ′) is determined by the tropical hypersurface of
f ∈ K[X], as the tropicalization of the divisor D = divX(f) may differ from the stable inter-
section of trop(X ′) and the tropical hypersurface. Examples 4.2 and 4.3 of [19] demonstrate
both this and that Proposition 4.4.1 can fail without the weight one hypothesis.

Suppose now that X ′ ⊂ (K̄∗)n+k is obtained from X ⊂ (K̄∗)n by taking the graph of a
list of k ≥ 2 polynomials f1, f2, . . . , fk. This gives us a sequence of projections

X ′ = Xk → Xk−1 → · · · → X2 → X1 → X0 = X, (4.15)

where Xi ⊂ (K̄∗)n+i is obtained from X by taking the graph of (f1, . . . , fi). We further get
a corresponding sequence of projections of the tropicalizations:

trop(X ′) = trop(Xk)→ trop(Xk−1)→ · · · → trop(X0) = trop(X). (4.16)

We may ask if it is possible to recover trop(X ′) ⊂ Rn+k just from trop(X) and its k tropical
divisors trop(Di). For example, this is possible in the special case when trop(X) = Rn and
the arrangement of divisors trop(Di) intersect properly, meaning the intersection of any k of
the tropical divisors is always of codimension k. However, in general, iterating modifications
to recover trop(X ′) can be a delicate procedure. In most cases, the outcome is not solely
determined by the configuration of tropical divisors in trop(X), even if the divisors intersect
pairwise properly. We illustrate this by deriving the degree 5 del Pezzo surface trop(M0,5).

Example 4.4.3. This is a variation on [81, Example 2.29]. Let X = (K̄∗)2 and consider the
functions f(x) = x1 − 1, g(x) = x2 − 1 and h(x) = ax1 − x2, for some constant a ∈ K∗ with
val(a) = 0. Denote divX(f) by F , and analogously for G and H. The tropicalization of each
divisor is a line through the origin in R2. The directions of trop(F ), trop(G), and trop(H)
are (1, 0), (0, 1), and (1, 1) respectively. Let X ′ ⊂ (K̄∗)5 denote the graph of X along the
three functions f, g, and h, in that order. This defines a sequence of projections,

X ′ −→ X2 −→ X1 −→ X = (K̄∗)2.
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Figure 4.6: The tropical divisors in Example 4.4.3. The positions of trop(G1∩H1) in trop(X1)
for three choices of a are marked on the downward purple edge. For a = 1 we get M0,5.

v = 0 v ∈ (0,∞) v =∞
Figure 4.7: The different possibilities for trop(H2) ∩ σ in Example 4.4.3

Here, X2 = {(x1, x2, x1−1, x2−1)} ⊂ (K̄∗)4. The tropical plane trop(X2) contains the cone
σ = {0}×{0}× (−∞, 0]× (−∞, 0], corresponding to points with val(x1) = val(x2) = 0. Let
H2 denote the graph of f and g restricted to H. This is a line in 4-space, namely,

H2 = {(x1, ax1, x1 − 1, ax1 − 1)} ⊂ X2 ⊂ (K̄∗)4.

The tropical line trop(H2) depends on the valuation of a− 1. It can be determined from

trop(G1 ∩H1) =
{(

0, 0,−val(
1

a
− 1)

)}
.

Here, H1, G1 denote the graph of f restricted to H and G, respectively. Figure 4.6 shows
the possibilities for trop(G1 ∩H1) in trop(X1). Figure 4.7 shows trop(H2) ∩ σ in trop(X2).

We can prescribe any value v ∈ (0,∞) for the valuation of 1
a
− 1, for instance by taking

1
a

= 1 + tv when K = C{{t}}. In these cases, the tropical plane trop(X ′) is not a fan.
However, it becomes a fan when v moves to either endpoint of the interval [0,−∞]. For
instance, v = 0 happens when the constant term of 1

a
is not equal to 1 and trop(X ′) is the
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Figure 4.8: The tropical conic and the tropical lines determined by the 5 points for a marked
del Pezzo surface of degree 4. The diagram is drawn in R2 on the left and in TP2 on the right.
The 16 trivalent trees in Figure 4.1 arise from the plane curves shown here by modifications.

fan obtained from R2 by stable modification along the three tropical divisors, shown on the
left in Figure 4.6. The other extreme is when a = 1. Here, F,G,H are concurrent lines in
(K̄∗)2, and trop(H2) contains a ray in the direction e3 + e4. Upon modification, we obtain
the fan over the Petersen graph in Figure 4.3. This is the tropicalization of the degree 5
del Pezzo surface in (4.4). Thus beginning from the tropical divisors trop(F ), trop(G), and
trop(H) in R2, we recover trop(M0,5) if we also insist that they represent concurrent lines in
(K̄∗)2. ♦

In Example 4.4.3, knowing simply the position of the three tropical divisors in R2 was
not sufficient to determine trop(X ′). However, if we insist that the initial divisors F,G,H in
(K̄∗)2 are concurrent, then the tropical surface in R5 is unique; it must be the Petersen fan.

We now explain how this extends to a del Pezzo surface X of degree d ≤ 4. As before,
we write X0 for the complement of the (−1)-curves in X. Then X ′ = X0 is obtained from
(K̄∗)2 by taking the graphs of the polynomials f1, . . . , fk of the curves in (K̄∗)2 that give rise
to (−1)-curves on X. More precisely, fix p1 = (1 : 0 : 0), p2 = (0 : 1 : 0) , p3 = (0 : 0 : 1),
p4 = (1 : 1 : 1), and take p5, . . . , p9−d to be general points in P2. If d = 4 then there is only
one extra point p5, we have k = 8 in (4.15), and f1, . . . , f8 are the polynomials defining

F14, F15, F24, F25, F34, F35, F45, G. (4.17)

For d = 3, there are two extra points p5, p6 in X, we have k = 18, and f1, . . . , f18 represent

F14, F15, F16, F24, F25, F26, F34, F35, F36, F45, F46, F56, G1, G2, G3, G4, G5, G6. (4.18)

We write Pi = trop(pi) ∈ TP2 for the image of the point pi under tropicalization. The
tropical points P1, P2, . . . are in general position if any two lie in a unique tropical line, these



CHAPTER 4. TROPICALIZATION OF DEL PEZZO SURFACES 95

lines are distinct, any five lie in a unique tropical conic, and these conics are distinct in
TP2. A configuration in general position for d = 4 is shown in Figure 4.8. Our next result
implies that the colored Clebsch graph in Figure 4.1 can be read off from Figure 4.8 alone.
For d = 3, in order to recover the tropical cubic surface from the planar configuration, the
points Pi must satisfy further genericity assumptions, to be revealed in the proof of the next
theorem.

Theorem 4.4.4. Fix d ∈ {3, 4, 5} and points p1, . . . , p9−d in P2 whose tropicalizations Pi are
sufficiently generic in TP2. The tropical del Pezzo surface trop(X0) can be constructed from
TP2 by a sequence of open modifications that is determined by the points P1, . . . , P9−d.

Proof. The sequence of modifications we use to go from R2 to trop(X0) is determined if we
know, for each i, the correct divisor on each (−1)-curve C in the tropical model trop(Xi).
Then, the preimage of C in the next surface trop(Xi+1) is the modification C ′ of the curve
C along that divisor. With this, Theorem 4.4.4 follows from Proposition 4.4.1, applied to
both the i-th surface and its (−1)-curves. The case of degree d = 5 was covered in Exam-
ple 4.4.3. From the metric tree that represents the boundary divisor C of X0 we can derive
the corresponding trees on each intermediate surface trop(Xi) by deleting leaves. Thus, to
establish Theorem 4.4.4, it suffices to prove the following claim: the final arrangement of the
(16 or 27) metric trees on trop(X0) is determined by the locations of the points Pi in TP2.

Consider first the case d = 4. The points P4 and P5 determine an arrangement of plane
tropical curves (4.17) as shown in Figure 4.8. The conic G through all five points looks
like an “inverted tropical line”, with three rays in directions P1, P2, P3. By the genericity
assumption, the points P4 and P5 are located on distinct rays of G. These data determine a
trivalent metric tree with five leaves, which we now label by E1, E2, E3, E4, E5. Namely, P4

forms a cherry together with the label of its ray, and ditto for P5. For instance, in Figure
4.8, the cherries on the tree G are {E1, E4} and {E2, E5}, while E3 is the non-cherry leaf.
This is precisely the tree sitting on the node labeled G in Figure 4.1. The lengths of the two
bounded edges of the tree G are the distances from P4 resp. P5 to the unique vertex of the
conic G in R2. Thus the metric tree G is easily determined from P4 and P5. The other 15
metric trees can also be determined in a similar way from the configuration of points and
curves in R2 and by performing a subset of the necessary modifications. Alternatively, we
may use the transition rules (4.1) and (4.2) to obtain the other 15 trees from G. This proves
the above claim, and hence Theorem 4.4.4, for del Pezzo surfaces of degree d = 4.

Consider now the case d = 3. Here the arrangement of tropical plane curves in R2 ⊂ TP2

consists of three lines at infinity, F12, F13, F23, nine straight lines, F14, F15, . . . , F36, three
honest tropical lines, F45, F46, F56, three conics that are “inverted tropical lines” G4, G5, G6,
and three conics with one bounded edge, G1, G2, G3. Each of these looks like a tree already
in the plane, and it gets modified to a 10-leaf tree, like to ones in Figures 4.4 and 4.5. We
claim that these labeled metric trees are uniquely determined by the positions of P4, P5, P6

in R2.
Consider one of the 9 straight lines in our arrangement, say, F14. If the points P4, P5, P6

are generically chosen, 7 of the 10 leaves on the tree Fij can be determined from the diagram
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in R2. These come from the 7 markings on the line F14 given by E1, E4, F23, F25, F26, F35, F36.
The markings E1 and F23 are the points at infinity, the marking E4 is the location of point P4,
and the markings F25, F26, F35, F36 are the points of intersection with those lines. Under our
hypothesis, these 7 marked points on the line F14 will be distinct. With this, F14 is already
a metric caterpillar tree with 7 leaves. The three markings which are missing are G1, G4 and
F56. Depending on the positions of P4, P5, P6, the intersection points of these three curves
with the line F14 may coincide with previously marked points. Whenever this happens,
the position of the additional marking on the tree F14 can be anywhere on the already
attached leaf ray. Again, the actual position of the point on that ray may be determined by
performing modifications along those curves. Alternatively, we use the involution given in
Corollary 4.2.3. The involution on the ten leaves of the desired tree F14 is

E1 ↔ G4, E4 ↔ G1, F23 ↔ F56, F25 ↔ F36, F26 ↔ F35.

Since the involution exchanges each of the three unknown leaves with one of the seven known
leaves, we can easily construct the final 10-leaf tree from the 7-leaf caterpillar.

A similar argument works the other six lines Fij, and the conics G4, G5, G6. In these
cases, 8 of the 10 marked points on a tree are determined from the arrangement in the
plane, provided the choice of points is generic. Finally, the conics G1, G2, G3 are dual to
subdivisions of lattice parallelograms of area 1. They may contain a bounded edge. Suppose
no point Pj lies on the bounded edge of the conic Gi, then the positions of all 10 marked
points of the tree are visible from the arrangement in the plane. If Gi does contain a marked
point Pj on its bounded edge, then the tropical line Fij intersects Gi in either a bounded
edge or a single point with intersection multiplicity 2, depending on the dual subdivision
of Gi. In the first case the position of the marked point Fij is easily determined from the
involution; the distance from a vertex of the bounded edge of Gi to the marked point Fij
must be equal to the distance from Pj to the opposite vertex of the bounded edge of Gi.

If Gi∩Fij is a single point of intersection multiplicity two, then Pj and Fij form a cherry
on the tree Gi which is invariant under the involution. We claim that this cherry attaches to
the rest of the tree at a 4-valent vertex. The involution on the 10-leaf tree can also be seen
as a tropical double cover from our 10-leaf tree to a 5-leaf tree, h : T → t, where the 5-leaf
tree t is labeled with the pair of markings interchanged by the involution. As mentioned
in Corollary 4.2.3, this double cover comes from the classical curve in the del Pezzo surface
X. In particular, the double cover locally satisfies the tropical translation of the Riemann-
Hurwitz condition [12, Definition 2.2]. In our simple case of a degree 2 map between two
trees, this local condition for a vertex v of T is deg(v)− dh,v(deg(h(v))− 2)− 2 ≥ 0, where
deg denotes the valency of a vertex, and dh,v denotes the local degree of the map h at v.
Suppose the two leaves did not attach at a four valent vertex, then they form a cherry, this
cherry attaches to the rest of the tree by an edge e which is adjacent to another vertex v of
the tree. The Riemann-Hurwitz condition is violated at v, since deg(v) = deg(h(v)) = 3 and
dh,v = 2.

We conclude that the tree arrangement can be recovered from the position of the points
P1, P2, . . . in R2. Therefore it is also compute to recover the tropical del Pezzo surface
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trop(X0) by open modifications. In each case, we recover the corresponding final 10 leaf tree
from the arrangement in TP2 plus our knowledge of the involution in Corollary 4.2.3.

Remark 4.4.5. Like in the case d = 4, knowledge of transition rules among the 27 metric
trees on trop(X0) can greatly simplify their reconstruction. We give such a rule in Proposi-
tion 4.5.2.

In this section we gave a geometric construction of tropical del Pezzo surfaces of degree
d ≥ 3, starting from a configuration of points P1, . . . , P9−d in the tropical plane TP2. The
lines and conics in TP2 that correspond to the (−1)-curves are transformed, by a sequence
of open modifications, into the trees that make up the boundary of the del Pezzo surface.
Knowing these well-specified modifications of curves ahead of time allows us to carry out
a unique sequence of open modifications of surfaces, starting with R2. In each step, going
from right to left in (4.15), we modify the surface along a divisor given by one of the trees.

This gives a geometric construction for the bounded complex in a tropical del Pezzo
surface: it is the preimage under (4.15) of the bounded complex in the arrangement in
R2. For instance, Figure 4.2 is the preimage of the parallelogram and the four triangles in
Figure 4.8.

The same modification approach can be used to construct (the bounded complexes of)
any tropical plane in TPn from its tree arrangement. This provides a direct link between the
papers [53] and [81]. That link should be useful for readers of the text books [62] and [64].

4.5 Tropical Cubic Surfaces and their 27 Trees

This section is devoted to the combinatorial structure of tropical cubic surfaces. Throughout,
X is a smooth del Pezzo surface of degree 3, without Eckhart points, and X0 the very
affine surface obtained by removing the 27 lines from X. Going well beyond the summary
statistics of Theorem 4.1.1, we now offer an in-depth study of the combinatorics of the surface
trop(X0).

We begin with the construction of trop(X0) from six points in TP2, as in Section 4.4.
The points P5 and P6 are general in R2 ⊂ TP2. The first four points are the coordinate
points

P1 = (0 : −∞ : −∞), P2 = (−∞ : 0 : −∞), P3 = (−∞ : −∞ : 0), P4 = (0 : 0 : 0). (4.19)

Theorem 4.4.4 tells us that trop(X0) is determined by the locations of P5 and P6 when the
points are generically chosen. There are two generic types, namely (aaaa) and (aaab), as
shown in Figures 4.4 and 4.5. This raises the question of how the type can be decided from
the positions of P5 and P6. To answer that question, we shall use tropical convexity [62, §5.2].
Recall that there are five generic types of tropical triangles, depicted e.g. in [24, Figure 6(i)].
The unique 2-cell in such a tropical triangle has either 3, 4, 5 or 6 vertices. Two of these have
4 vertices, but only one type contains a parallelogram. That is the type which gives (aaaa).
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Figure 4.9: Markings of a conic G1 which produce trees of type (aaab).

Theorem 4.5.1. Suppose that the tropical cubic surface constructed as in Theorem 4.4.4
has one of the two generic types. Then it has type (aaaa) if and only if the 2-cell in the
tropical triangle spanned by P4, P5 and P6 is a parallelogram. In all other cases, it has type
(aaab).

Note that the condition that the six points Pi are in general position is not sufficient
to imply that the tropical cubic surface is generic. In some cases, the corresponding point
in the Naruki fan trop(Y0) will lie on the boundary of the subdivision induced by the map
from trop(G0), as described in Section 4.3 and below. If so, the tropical cubic surface is
degenerate.

Proof of Theorem 4.5.1. The tree arrangements for the two types of generic surfaces consist
of distinct combinatorial types, i.e. there is no overlap in Figures 4.4 and 4.5. Therefore,
when the tropical cubic surface is generic, it is enough to determine the combinatorial type
of a single tree. We do this for the conic G1. Given our choices of points (4.19) in TP2,
the tropical conic G1 is dual to the Newton polygon with vertices (0, 0), (1, 0), (0, 1), and
(1, 1). The triangulation has one interior edge, either of slope 1 or of slope −1. We claim
the following:

2

Figure 4.10: Markings of a conic G1 which produce trees of type (aaaa).
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Figure 4.11: The tropical triangles formed by points on G1 as in Figure 4.9, giving type
(aaab).

Figure 4.12: The tropical triangles formed by points on G1 as in Figure 4.10, giving type
(aaaa).

The tropical cubic surface trop(X0) has type (aaaa) if and only if the following holds:

1. The bounded edge of the conic G1 has slope −1 and contains a marked point Pj, or

2. the bounded edge of the conic G1 has slope 1 and contains a marked point Pj, and the
other two points Pj, Pk lie on opposite sides of the line spanned by the bounded edge.

To show this, we follow the proof of Theorem 4.4.4. For each configuration of P4, P5, P6

on the conic G1, we draw lines with slope 1 through these points. These are the tropical lines
F14, F15, F16. Each intersects G1 at one further point. These are the images of E4, E5, E6

under the tree involution, i.e. the points labeled F14, F15, F16 on the tree G1. Together with
E2, E3, F12 and F13 lying at infinity of TP2, we can reconstruct a tree with 10 leaves. Then,
we can identify the type of the tree arrangement. We did this for all possible configurations
up to symmetry. Some of the results are shown in Figures 4.9 and 4.10. The claim follows.

To derive the theorem from the claim, we must consider the tropical convex hull of the
points P4, P5, P6 in the above cases. As an example, the 2-cells of the tropical triangle corre-
sponding to the trees in Figures 4.9 and 4.10 are shown in Figures 4.11 and 4.12 respectively.
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The markings of G1 producing a type (aaaa) tree always give parallelograms. Finally, if the
marking of a conic produces a type (aaab) tree then the 2-cell may have 3, 4, 5, or 6 vertices.
However, if it has 4 vertices, then it is a trapezoid with only one pair of parallel edges.

We next discuss some relations among the 27 boundary trees of a tropical cubic surface X.
Any pair of disjoint (−1)-curves on X meets exactly five other (−1)-curves. Thus, two 10-
leaf trees T and T ′ representing disjoint (−1)-curves have exactly five leaf labels in common.
Let t and t′ denote the 5-leaf trees constructed from T and T ′ as in the proof of Proposition
4.2.3. Thus T double-covers t, and T ′ double-covers t′. Given a subset E of the leaf labels
of a tree T , we write T |E for the subtree of T that is spanned by the leaves labeled with E.

Proposition 4.5.2. Let T and T ′ be the trees corresponding to disjoint (−1)-curves on a
cubic surface X, and E the set of five leaf labels common to T and T ′. Then t = T ′|E and
t′ = T |E.

Proof. The five lines that meet two disjoint (−1)-curves C and C ′ define five points on C
and five tritangent planes containing C ′. The cross-ratios among the former are equal to the
cross-ratios among the latter modulo C ′. The proposition follows by taking valuations.

Proposition 4.5.2 suggests a combinatorial method for recovering the entire arrangement
of 27 trees on trop(X0) from a single tree T . Namely, for any tree T ′ that is disjoint from
T , we can recover both t′ and T ′|E. Moreover, for any of the 10 trees Ti that are disjoint
from both T and T ′, with labels Ei common with T , we can determine T ′|Ei

as well. Then
T ′ is an amalgamation of t′, T ′|E, and the 10 subtrees T ′|Ei

. This amalgamation process is
reminiscent of a tree building algorithm in phylogenetics known as quartet puzzling [20].

Q

P

E1F35

E3F15

E5F13

F24G6

F26G4

F46G2

Figure 4.13: The bounded complex of the tropical cubic surface of type (a)

×15

×12

Figure 4.14: The 27 trees on the tropical cubic surface of type (a)
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We next examine tropical cubic surfaces of non-generic types. These surfaces are obtained
from non-generic fibers of the vertical map on the right in (4.14). We use the subdivision
of the Naruki fan trop(Y0) described in Lemma 4.3.3. There are five types of rays in this
subdivision. We label them (a), (b), (a2), (a3), (a4). A ray of type (ak) is a positive
linear combination of k rays of type (a). The new rays (a2), (a3), (a4) form the barycentric
subdivision of an (aaaa) cone. With this, the maximal cones in the subdivided Naruki fan
are called (aa2a3a4) and (aa2a3b). They are known as the generic types (aaaa) and (aaab) in
the previous sections. A list of all 24 cones, up to symmetry, is presented in the first column
of Table 4.1.

The fiber of trop(G0) → trop(Y0) over any point in the interior of a maximal cone is a
tropical cubic surface. However, some special fibers have dimension 3. Such fibers contain
infinitely many tropical cubic surfaces, including those with Eckhart points. Removing such
Eckhart points is a key issue in [50]. We do this by considering the stable fiber, i.e. the
limit of the generic fibers obtained by perturbing the base point by an infinitesimal. Alter-
natively, the tree arrangement of the stable fiber is found by setting some edge lengths to 0
in Remark 4.3.5. We computed representatives for all stable fibers. Our results are shown
in Table 4.1.

P1

P2

P3

d1 − d3
d1 + d2 + d5
d2 + d3 + d5

d2 − d5
d2 + d4 + d6

d4 + d5 + d6

d4 − d6
d1 + d3 + d4

d1 + d3 + d6

Figure 4.15: The bounded complex of the tropical cubic surface of type (b)

We explain the two simplest non-trivial cases. The 36 type (a) rays in the Naruki fan
are in bijection with the 36 positive roots of E6. Figure 4.13 shows the bounded cells in

×27

Figure 4.16: The 27 trees on the tropical cubic surface of type (b)
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Type #cones Vertices Edges Rays Triangles Squares Flaps Cones
0 1 1 0 27 0 0 0 135

(a) 36 8 13 69 6 0 42 135
(a2) 270 20 37 108 14 4 81 135
(a3) 540 37 72 144 24 12 117 135
(a4) 1620 59 118 177 36 24 150 135
(b) 40 12 21 81 10 0 54 135

(aa2) 540 23 42 114 13 7 87 135
(aa3) 1620 43 82 156 22 18 129 135
(aa4) 540 68 133 195 33 33 168 135
(a2a3) 1620 43 82 156 22 18 129 135
(a2a4) 810 71 138 201 32 36 174 135
(a3a4) 540 68 133 195 33 33 168 135
(ab) 360 26 48 123 16 7 96 135
(a2b) 1080 45 86 162 24 18 135 135
(a3b) 1080 69 135 198 34 33 171 135

(aa2a3) 3240 46 87 162 21 21 135 135
(aa2a4) 1620 74 143 207 31 39 180 135
(aa3a4) 1620 74 143 207 31 39 180 135
(a2a3a4) 1620 74 143 207 31 39 180 135
(aa2b) 2160 48 91 168 23 21 141 135
(aa3b) 3240 75 145 210 32 39 183 135
(a2a3b) 3240 75 145 210 32 39 183 135

(aa2a3a4) 3240 77 148 213 30 42 186 135
(aa2a3b) 6480 78 150 216 31 42 189 135

Table 4.1: All combinatorial types of tropical cubic surfaces

the stable fiber over the (a) ray corresponding to root r = d1 + d3 + d5. It consists of six
triangles sharing a common edge. The two shared vertices are labeled by P and Q. Recall
the identification of the roots of E6 involving d7 with the 27 (−1)-curves from (4.13). Then,
considering Ei, Fij and Gi as roots of E6, exactly 15 of them are orthogonal to r. The other
12 roots are

E1, F35; E3, F15; E5, F13; F24, G6; F26, G4; F46, G2. (4.20)

These form a Schläfli double six. The 36 double six configurations on a cubic surface are in
bijection with the 36 positive roots of E6. Each of the six pairs forms an A2 subroot system
with d1 + d3 + d5. The non-shared vertices in the (a) surface are labeled by these pairs.

The 12 rays labeled by (4.20) emanate from Q, and the other 15 rays emanate from
P . Each other vertex has 7 outgoing rays, namely its labels in Figure 4.13 and the 5 roots
orthogonal to both of these. Figure 4.14 shows the resulting 27 = 12 + 15 trees at infinity.
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The 40 type (b) rays in the Naruki fan are in bijection with the type A×3
2 subroot systems

in E6. Figure 4.15 illustrates the stable fiber over a point lying on the ray corresponding to

d1 − d3, d1 + d2 + d5, d2 + d3 + d5,
d2 − d5, d2 + d4 + d6, d4 + d5 + d6,
d4 − d6, d1 + d3 + d4, d1 + d3 + d6.

(4.21)

This is the union of three type A2 subroot systems that are pairwise orthogonal. The bounded
complex consists of 10 triangles. The central triangle P1P2P3 has 3 other triangles attached
to each edge. The 9 pendant vertices are labeled with the roots in (4.21). The 3 vertices in
the triangles attached to the same edge are labeled with 3 roots in a type A2 subroot system.

Each of P1,P2 and P3 is connected with 9 rays, labeled with the roots in E7\E6 that are
orthogonal to a type A2 subroot system in (4.21). Each of the other vertices is connected
with 6 rays. The labels of these rays are the roots in E7\E6 that are orthogonal to the label
of that vertex but are not orthogonal to the other two vertices in the same group.

All of the 27 trees are isomorphic, as shown in Figure 4.16. In each tree, the 10 leaves
are partitioned into 10 = 4 + 3 + 3, by orthogonality with the type A2 subroot systems in
(4.21). The bounded part of the tree is connected by two flaps to two edges containing the
same Pi.

We close this chapter with a brief discussion of open questions and future directions. One
obvious question is whether our construction can be extended to del Pezzo surfaces of degree
d = 2 and d = 1. In principle, this should be possible, but the complexity of the algebraic
and combinatorial computations will be very high. In particular, the analogues of Theorem
4.4.4 for 7 and 8 points in TP2 are likely to require rather complicated genericity hypotheses.

For d = 4, we were able compute the Naruki fan trop(Y0) without any prior knowledge,
by just applying the software gfan to the 45 trinomials in Proposition 4.2.1. We believe that
the same will work for d = 3, and that even the tropical basis property [62, §2.6] will hold:

Conjecture 4.5.3. The 270 trinomial relations listed in Proposition 4.2.2 form a tropical
basis.

This chapter did not consider embeddings of del Pezzo surfaces into projective spaces.
However, it would be very interesting to study these via the results obtained here. For
cubic surfaces in P3, we should see a shadow of Table 4.1 in TP3. Likewise, for complete
intersections of two quadrics in P4, we should see a shadow of Figures 4.1 and 4.2 in TP4. One
approach is to start with the following modifications of the ambient spaces TP3 resp. TP4.
Consider a graded component in (4.3) with L very ample. Let N + 1 be the number of
monomials in Ei, Fij, Gk that lie in H0(X,L). The map given by these monomials embeds
X into a linear subspace of PN . The corresponding tropical surfaces in TPN should be
isomorphic to the tropical del Pezzo surfaces constructed here. In particular, if L = −K is
the anticanonical bundle, then the subspace has dimension d, and the ambient dimensions
are N = 44 for d = 3, and N = 39 for d = 4. In the former case, the 45 monomials (like
E1F12G2 or F12F34F56) correspond to Eckhart triangles. In the latter case, the 40 monomials
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(like E1E2F12G or E1F12F13F45) are those of degree (4, 2, 2, 2, 2, 2) in the grading (4.7). The
tropicalizations of these combinatorial anticanonical embeddings, X ⊂ P3 ⊂ P44 for d = 3
and X ⊂ P4 ⊂ P39 for d = 4, should agree with our surfaces here. This will help in
resolving the mysteries regarding the 27 tropical lines on a cubic surface in TP3 uncovered
by Vigeland [95].

One last consideration concerns cubic surfaces defined over R. A cubic surface equipped
with a real structure induces another involution on the 27 metric trees corresponding to
real (−1)-curves. These trees already come partitioned by combinatorial type, depending
on the type of tropical cubic surface. One could ask which trees can result from real lines,
and whether the tree arrangement reveals Segre’s partition of real lines on cubic surfaces
into hyperbolic and elliptic types [79]. For example, for the (aaaa) and (aaab) types, if
the involution on the trees from the real structure is the trivial one, then the trees with
combinatorial type occurring exactly three times always correspond to hyperbolic real lines.
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Chapter 5

A Formula for the Cayley-Bacharach
9th Point

This chapter is based on my final project in the course Math 255: Algebraic curves, which
was taught in Fall 2011 at Berkeley.

5.1 The Formula

In this chapter, K is an algebraically closed field of characteristic 0 (not necessarily with
a valuation). The goal of this chapter is to give an explicit formula for P9 in terms of the
coordinates of the other 8 points in the classical Caylay-Bacharach theorem:

Theorem 5.1.1. (Cayley–Bacharach) Let C1, C2 be two cubic curves (not necessarily irre-
ducible) in P2 over K. Suppose that they intersect in 9 distinct points P1, P2, . . . , P9. Then
any cubic curve that contains P1, P2, . . . , P8 also contains P9.

The proof of the theorem is given as an exercise in [59, Exercise 3.13]. Proofs of various
versions of the theorem are given in [36]. Let P1 = (x1 : y1 : z1), P2 = (x2 : y2 : z2), . . . , P8 =
(x8 : y8 : z8) be 8 distinct points in general position. Consider the linear system of cu-
bic curves which contain P1, P2, . . . , P8. Its dimension is at least #degrees of freedom −
#constraints = 10− 8 = 2. Choose two linearly independent elements C1, C2, and let P9 be
their 9th intersection point. In this way, P9 is uniquely determined by P1, P2, . . . , P8.

Lemma 5.1.2. Regard the quotients y9/x9, z9/x9 as functions in x1, y1, z1, . . . , x8, y8, z8.
Then, y9/x9, z9/x9 ∈ Q(x1, y1, z1, . . . , x8, y8, z8).

Proof. Let L = Q(x1, y1, z1, . . . , x8, y8, z8). Let F1, F2 ∈ L[x, y, z] be two linearly independent
cubics that pass through P1, P2, . . . , P8. Since P9 is an intersection point of F1 and F2, we
see that y9/x9 and z9/x9 are in the algebraic closure of L. Let L′ be a finite Galois extension
of L that contains y9/x9 and z9/x9. Every σ ∈ Gal(L′/L) fixes F1 and F2, thus fixes their
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intersection. All other points P1, . . . , P8 are fixed, so P9 must also be fixed. Therefore,
y9/x9, z9/x9 are fixed by the Galois group, thus they are in L.

This chapter gives a formula for the coordinates of P9 in Theorem 5.1.6. Before stating
the formula, let us define some notations:

Definition 5.1.3. The Plücker coordinates of the eight given points are

[ijk] = det

xi yi zi
xj yj zj
xk yk zk

 .

Definition 5.1.4. The polynomial C(P1, P2, . . . , P6) ∈ K[x·, y·, z·] is defined as follows:

C(P1, P2, . . . , P6) = det


x2

1 x1y1 x1z1 y2
1 y1z1 z2

1

x2
2 x2y2 x2z2 y2

2 y2z2 z2
2

x2
3 x3y3 x3z3 y2

3 y3z3 z2
3

x2
4 x4y4 x4z4 y2

4 y4z4 z2
4

x2
5 x5y5 x5z5 y2

5 y5z5 z2
5

x2
6 x6y6 x6z6 y2

6 y6z6 z2
6


Definition 5.1.5. The polynomial D(P1;P2, . . . , P8) ∈ K[x·, y·, z·] is defined as follows:

D(P1;P2, . . . , P8) = det



x3
2 x2

2y2 x2
2z2 x2y

2
2 x2y2z2 x2z

2
2 y3

2 y2
2z2 y2z

2
2 z3

2

x3
3 x2

3y3 x2
3z3 x3y

2
3 x3y3z3 x3z

2
3 y3

3 y2
3z3 y3z

2
3 z3

3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x3

8 x2
8y8 x2

8z8 x8y
2
8 x8y8z8 x8z

2
8 y3

8 y2
8z8 y8z

2
8 z3

8

3x2
1 2x1y1 2x1z1 y2

1 y1z1 z2
1 0 0 0 0

0 x2
1 0 2x1y1 x1z1 0 3y2

1 2y1z1 z2
1 0

0 0 x2
1 0 x1y1 2x1z1 0 y2

2 2y1z1 3z2
1


The geometric interpretation of C(P1, P2, . . . , P6) and D(P1;P2, . . . , P8) are as follows. If

P1, P2, . . . , P6 lie on a conic, then the system of linear equations F (xi, yi, zi) = 0, 1 ≤ i ≤ 6,
where F is a conic with 6 unknown coefficients, has a nontrivial solution. Consequently,
C(P1, P2, . . . , P6) = 0. The converse is also true. Similarly, D(P1;P2, . . . , P8) = 0 if and only
if there exists a cubic curve that passes through P1, P2, . . . , P8 and is singular at P1.

Of course, there are choices of homogeneous coordinates of the points, up to constant
factors. Whenever we write [ijk], C(P1, P2, . . . , P6) and D(P1;P2, . . . , P8), we assume that
the choices of homogeneous coordinates are fixed. For simplicity, we write

Cx = C(P1, P4, P5, P6, P7, P8),

Cy = C(P2, P4, P5, P6, P7, P8),

Cz = C(P3, P4, P5, P6, P7, P8),

Dx = D(P1;P2, P3, P4, P5, P6, P7, P8),

Dy = D(P2;P3, P1, P4, P5, P6, P7, P8),

Dz = D(P3;P1, P2, P4, P5, P6, P7, P8).
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Now we are ready to state the main theorem:

Theorem 5.1.6. The Cayley-Bacharach 9th point equals

P9 = CxDyDzP1 +DxCyDzP2 +DxDyCzP3, (5.1)

or equivalently, its coordinates are the rational functions

x9 = CxDyDzx1 +DxCyDzx2 +DxDyCzx3,

y9 = CxDyDzy1 +DxCyDzy2 +DxDyCzy3,

z9 = CxDyDzz1 +DxCyDzz2 +DxDyCzz3.

It is worth noting that one may derive a formula following the geometric construction
of Cayley [25]. However, this formula would be too complicated for any further derivation
related to the Cox ring of del Pezzo surfaces of degree 3 in Section 5.2. Another attempt is
to find the cubics F1 and F2 in the proof of Lemma 5.1.2, intersect them and solve for the
9th point. However, this approach is not feasible due to the large number of variables and
terms in the computation.

The polynomials C(P1, P2, . . . , P6) and D(P1;P2, . . . , P8) can be written neatly in terms
of the Plücker coordinates. A formula that expresses C(P1, P2, . . . , P6) in terms of the [ijk]
is given by [25] and [73, Equation 7.3], see also Equation 4.10:

C(P1, P2, . . . , P6) = −[123][145][246][356] + [124][135][236][456].

A similar formula for D(P1;P2, . . . , P8) was suggested to us by Jürgen Richter-Gebert
[77]. This equation can be verified by symbolic computation.

D(P7;P1, P2, P3, P4, P5, P6, P8) =

−3(−[647][857][473][428][178][123][573][526][176]

+[647][857][478][128][173][423][573][526][176]

+[647][857][473][428][178][576][126][173][523]

+[657][847][573][528][178][123][473][426][176]

−[657][847][578][128][173][523][473][426][176]

−[657][847][573][528][178][476][126][173][423]).

The following lemma follows from the above formulas:

Lemma 5.1.7. Let T be a projective transformation on P2, expressed as a 3 by 3 matrix.
Fix the homogeneous coordinates of T (Pi) to be the product of the matrix T with the fixed
homogeneous coordinates of Pi. Then

C(T (P1), T (P2), . . . , T (P6)) = det (T )4C(P1, P2, . . . , P6),

D(T (P1);T (P2), . . . , T (P8)) = det (T )9D(P1;P2, . . . , P8).
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Proof of Theorem 5.1.6. The ringK[x·, y·, z·] is Z8-graded with deg(xi) = deg(yi) = deg(zi) =
ei. It is straightforward to check that the right hand side of (5.1) is homogeneous of mul-
tidegree (9, 9, 9, 8, 8, 8, 8, 8). Therefore, it is independent from the choice of homogeneous
coordinates, up to a constant factor. Moreover, by Lemma 5.1.7, it is also preserved by
projective transformations on P2, up to a constant factor. Therefore, it suffices to prove
(5.1) for the simpler case P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 :
1), P5 = (1 : a : b), P6 = (1 : c : d), P7 = (1 : e : f), P8 = (1 : g : h).

Let u = y9/x9 and v = z9/x9. By linear algebra, the condition that F (x9, y9, z9) = 0
whenever F (xi, yi, zi) = 0, 1 ≤ i ≤ 8 is equivalent to the condition that the following matrix
does not have full rank:

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1
1 a b a2 ab b2 a3 a2b ab2 b3

1 c d c2 cd d2 c3 c2d cd2 d3

1 e f e2 ef f 2 e3 e2f ef 2 f 3

1 g h g2 gh h2 g3 g2h gh2 h3

1 u v u2 uv v2 u3 u2v uv2 v3


(5.2)

This is true if and only if each of its ten 9 by 9 minors are 0. Therefore, we get 10 equations
in u, v whose coefficients are polynomials in a, b, . . . , h. Each equation is of the form

A1u
2v + A2uv

2 + A3v
2 + A4uv + A5v

2 + A6u+ A7v = 0, (5.3)

where A1, A2, . . . , A7 ∈ Z[a, b, c, d, e, f, g, h]. Under our new assumption, the formula in
Theorem 5.1.6 becomes P9 = (1 : u : v), where

u =
DxCy
CxDy

,

v =
DxCz
CxDz

It suffices to verify that this particular set of values of u and v satisfies the 10 equations
(5.3), i.e.

−A1C
2
yCzD

2
xDz + A2CyC

2
zD

2
xDy + A3CxC

2
yDxD

2
z − A4CxCyCzDxDyDz

+A5CxC
2
zDxD

2
y + A6C

2
xCyDyD

2
z − A7C

2
xCzD

2
yDz = 0.
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The amount of computation needed to multiply out each term on the left hand side is still
too large for a standard computer. To make it faster, we rewrite it in the following form:

CzDx
−A1CyDz+A2CzDy

Cx
+ A3CyD

2
z

Dy

− A4CzDz

+
CzDy

A5CzDx−A7CxDz

Cy
+ A6CxD

2
z

Dx

= 0.

After computing −A1CyDz+A2CzDy, one verifies that the result is divisible by Cx. Similarly,
all other fractions in the above expression leave integral quotients. Therefore, the sizes of
the intermediate results are limited. The final verification is carried out symbolically in
sage [85].

The formula in Theorem 5.1.6 is defined up to a common factor. The following proposition
gives the simplest form:

Proposition 5.1.8. Let

P9 = (x9, y9, z9)T = (CxDyDzP1 +DxCyDzP2 +DxDyCzP3)/[123]. (5.4)

Then, x9, y9, z9 ∈ K[x·, y·, z·], and gcd(x9, y9, z9) = 1.

Remark 5.1.9. With respect to the grading defined in the proof of Theorem 5.1.6, the right
hand side of (5.4) is homogeneous of degree (8, 8, 8, 8, 8, 8, 8, 8). The formula is invariant
under the action of S8 that permutes the 8 given points, though it is not obvious in the
expression.

Proof. Define Fx = CxDyDzx1 +DxCyDzx2 +DxDyCzx3, and Fy, Fz similarly. The variety
of Fx in K24 is the union of irreducible hypersurfaces, one for each irreducible factor of Fx. In
order to prove that [123] divides Fx, it suffices to prove that the variety of [123] is contained in
the variety of Fx. That is, Fx = 0 whenever the points P1, P2, P3 are collinear. Similarly, one
needs to show that Fy = Fz = 0 whenever [123] = 0. Since (5.1) is preserved by projective
transformations on P2, without loss of generality, we may assume that P1 = (1 : 0 : 0),
P2 = (0 : 1 : 0) and P3 = (1 : 1 : 0). For the special case, it can be verified with sage that
Fx = Fy = Fz = 0. Therefore, [123] divides Fx, Fy and Fz, thus x9, y9, z9 ∈ K[x·, y·, z·].

For the second statement, let

A =

x1 x2 x3

y1 y2 y3

z1 z2 z3

 .

Then, det(A)A−1 has entries in K[x1, y1, z1, . . . , x3, y3, z3]. Then,

det(A)A−1P9 = det(A)A−1(CxDyDzP1 +DxCyDzP2 +DxDyCzP3)/[123] =

CxDyDz

DxCyDz

DxDyCz

 .
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Therefore, gcd(x9, y9, z9) divides gcd(CxDyDz, DxCyDz, DxDyCz). If gcd(x9, y9, z9) 6= 1,
then it has an irreducible factor f . All of CxDyDz, DxCyDz, DxDyCz vanish on the hyper-
surface in K24 cut out by f . Let (P1, P2, . . . , P8) be a generic point on this hypersurface. Up
to symmetry, three cases may occur: (a) Cx = Cy = 0; (b) Cx = Dx = 0; (c) Dx = Dy = 0.

First, we want to exclude some special cases: (1) Two of the points are the same; (2)
Four of the points lie on a line; (3) Three of the points lie on a line, and three of the points
lie on another line; (4) Seven of the points lie on a conic; (5) Three of the points lie on a
line, and six of the points lie on a conic. All of these are codimension 2 conditions, so they
do not occur to a generic point on the hypersurface V (f). Now, we claim contradiction in
each case:

(a) If Cx = Cy = 0, then there is a conic C1 passing through P1, P4, P5, P6, P7, P8 and a
conic C2 passing through P2, P4, P5, P6, P7, P8. If C1 = C2, then it passes through seven of the
eight points. We have already excluded this case. If C1 6= C2, then these two conics intersect
at five points P4, P5, P6, P7, P8. By Bézout’s theorem, they must share a line L. Then, C1 is
the union of two lines, which implies either (2) or (3). Therefore, this case is impossible.

(b) If Cx = Dx = 0, then there is a conic C1 passing through P1, P4, P5, P6, P7, P8 and a
cubic C2 passing through P1, P2, P3, P4, P5, P6, P7, P8 that is singular at P1. They intersect
at six points P1, P4, P5, P6, P7, P8 with multiplicity ≥ 2 at P1. By Bézout’s’s theorem, two
cases may occur: (b1) C1 ⊂ C2; (b2) C1 and C2 share a line. For (b1), let C2 = C1 ∪ L. The
line L cannot pass through P1 because we excluded (5). Therefore, C1 is singular at P1, so
it is the union of two lines, which implies either (2) or (3). For (b2), C1 is the union of two
lines, which also implies (2) or (3). Therefore, this case is impossible.

(c) If Dx = Dy = 0, then there is a cubic C1 passing through P1, P2, P3, P4, P5, P6, P7, P8

that is singular at P1 and a cubic C2 passing through P1, P2, P3, P4, P5, P6, P7, P8 that is
singular at P2. They intersect at these eight points with multiplicity 2 at P1 and P2. By
Bézout’s’s theorem, three cases may occur: (c1) C1 = C2; (c2) C1 and C2 share a conic; (c3) C1

and C2 share a line. For (c1), the cubic is singular at two points, thus it cannot be irreducible.
So this case is reduced to either (c2) or (c3). For (c2), let C1 = C ∪ L1 and C2 = C ∪ L2. If
the conic C is the union of two lines, then C1 is the union of three lines. Then, either (2) or
(3) occurs. If C is smooth, then both L1 and L2 must contain P1 and P2. So L1 = L2. Then,
either L1 contains 4 given points or C contains 7 given points. Both cases are excluded. For
(c3), let C1 = C ′1 ∪ L and C2 = C ′2 ∪ L. For the same reason, both C ′1 and C ′2 are smooth.
By Bézout’s’s theorem, they intersect at at most four points. The other four must lie on L,
which is (2). Therefore, this case is impossible.

Therefore, there cannot be such an irreducible factor f . Thus, gcd(x9, y9, z9) = 1.

Remark 5.1.10. The Newton polytope of a polynomial f =
∑
cα1,α2,...,αnx

α1
1 x

α2
2 · · · xαn

n in
n variables (cα1,α2,...,αn 6= 0) is the convex hull of {(α1, α2, . . . , αn)} in Rn. Suppose that
P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1). Then, CxCy, Cz, Dx, Dy, Dz

are polynomials in 12 variables xi, yi, zi, 5 ≤ i ≤ 8. It is verified with polymake [42] that
their Newton polytopes are isometric. The f-vector for the Newton polytope is

(120, 1980, 7430, 11470, 8720, 3460, 700, 60).
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That is, the polytope has 120 vertices, 1980 edges, 7430 2-dimensional faces, etc.
The tropical polynomial for f is

f tr = min{val(cα1,α2,...,αn) + α1x
tr
1 + α2x

tr
2 + · · · + αnx

tr
n }.

Suppose that (xtr
1 , . . . , x

tr
n ) ∈ Rn is generic, in the sense that the minimum is attained only

once. One sufficient condition is that all val(cα1,α2,...,αn) = 0 and (val(x1), . . . , val(xn)) is
not orthogonal to any edge of the Newton polytope. If so, the valuation of f is uniquely
determined by

val(f) = f tr(val(x1), . . . , val(xn)).

One further question is to find a tropical version of Theorem 5.1.6.

5.2 Connection to Cubic Surfaces

Cox Coordinates

In this subsection, let P1, P2, . . . , P6 be six points in P2 in general position. By blowing up
the plane at P1, P2, . . . , P6, we obtain a del Pezzo surface S of degree 3. Section 4.2 describes
the Cox embedding

S ↪→ Proj(K[E1, . . . , E6, F12, . . . , F56, G1, . . . , G6])/(K∗)6,

with the ideal given in Proposition 4.2.2. The quotient by (K∗)6 is due to the Z7-grading

deg(Ei) = ei + e7,

deg(Fij) = (e1 + e2 + · · · + e7)− ei − ej,
deg(Gi) = (e1 + e2 + · · · + e7) + ei

The coordinates E·, F·, G· correspond to the divisors of S given by the 27 lines. The excep-
tional divisors of the blowing-up map φ : S → P2 are exactly E1, E2, . . . , E6.

Up to a projective transformation, we may assume that the coordinates of P1, P2, . . . , P6

are the columns of the matrix (4.8): 1 1 1 1 1 1
d1 d2 d3 d4 d5 d6

d3
1 d3

2 d3
3 d3

4 d3
5 d3

6


Lemma 5.2.1 and Proposition 5.2.2 allow us to go back and forth between the Cox coordinates
of a point in S and its image under the blowing-up map.

Lemma 5.2.1. Let P ′ be a point in S with Cox coordinates (E·, F·, G·), and P = φ(P ′)
be its image under the blowing-up map. Then, up to a “+/−” sign before each term, the
coordinates of P are

P = (d2 − d3)E2E3F23P1 + (d1 − d3)E1E3F13P2 + (d1 − d2)E1E2F12P3. (5.5)
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Proof. Let L be the line in P2 passing through P1 and P2. Then, the pull back divisor
φ∗(L) = E1 + E2 + F12. Note that this divisor has degree (3, 1, 1, 1, 1, 1, 1). Therefore,
φ∗(OP2(1)) = OS(Ei+Ej+Fij) = OS(3, 1, 1, 1, 1, 1, 1). Let L denote this line sheaf. Its global
section H0(X,L) is a 3-dimensional vector space over K generated by E1E2F12, E2E3F23

and E1E3F13 in the Cox coordinates.
Let φ′ : S → P2 be the map given by (5.5). The coordinates of P is a linear combination

of E1E2F12, E2E3F23 and E1E3F13. Thus, φ and φ′ are projective morphisms corresponding
to the same very ample sheaf L. Hence, they differ only by a linear automorphism of P2.
Since a linear automorphism of P2 is determined at 4 generic points, it suffices to show that
φ and φ′ coincide at P ′1, P

′
2, P

′
3, P

′
4, namely, φ′(P ′i ) = Pi for i = 1, 2, 3, 4, where P ′i is a generic

point in the exceptional divisor Ei.
For P ′1, the coordinate E1 = 0. Then, φ′(P ′1) = (d2 − d3)E2E3F23P1, which equals P1 up

to the choice of homogeneous coordinates. The situation is similar for P ′2 and P ′3. In order
to show φ′(P ′4) = P4, it suffices to show that

[P12]

[412]
=

[P23]

[423]
=

[P13]

[413]
,

where P = φ′(P ′4). By symmetry, it suffices to show the first equality. It follows from (5.5)
that

[P12] = (d1 − d2)E1E2F12[312],

[P23] = (d2 − d3)E2E3F23[123].

Then, it suffices to show that

(d1 − d2)E1E2F12

[412]
=

(d2 − d3)E2E3F23

[423]
.

This follows from the first equation in Proposition 4.2.2 by setting E4 = 0.

Proposition 5.2.2. Let P ∈ P2\{P1, P2, . . . , P6}, and let P ′ be its preimage in S under the
blowing-up map. Up to a “+/−” sign and the Z7-grading, the Cox coordinates of P ′ are

Ei = 1,

Fij = [ijP ]/(di − dj),
Gi = C(Pi1 , Pi2 , Pi3 , Pi4 , Pi5 , P )/

∏
1≤j<k≤5

(dij − dik),

where {i1, i2, i3, i4, i5} = {1, 2, 3, 4, 5, 6}\{i}.

Proof. Let Q ∈ S be the point with the above Cox coordinates. It can be verified by
straightforward computation that Q satisfy the 270 relations in Proposition 4.2.2. It remains
to show that φ(Q) = P . By Lemma 5.2.1, it suffices to verify that (5.5) holds. This can also
be done by straightforward computation.
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Remark 5.2.3. Assume in addition that P = (1 : d : d3). In the proof of Proposition 4.2.2,
another set of Cox coordinates is given in (4.13):

Ei = di − d,
Fij = di + dj + d,

Gi = −di +
6∑
j=1

dj + d.

This is equivalent to the one given by Proposition 5.2.2 up to the Z7-grading.

Now let us return to Cayley-Bacharach theorem. Let P7, P8 be two other generic points
in P2, and P9 be the Cayley-Bacharach 9th point. The linear system of cubics vanishing
at P1, P2, . . . , P6 has dimension 4. Choose a basis f1, f2, f3, f4. Let f be the rational map
(f1 : f2 : f3 : f4) from P2 to P3. Then, the closure of its image in P3 is isomorphic to
S. In fact, f is the inverse of the blowing-up map φ on P2\{P1, P2, . . . , P6}. The following
proposition was suggested by James Blinn [14].

Proposition 5.2.4. The points f(P7), f(P8), f(P9) are collinear.

Proof. Let W = {u1f1 + u2f2 + u3f3 + u4f4|ui ∈ K}. Consider W as the dual of the space
P3 where the image of f : P2 99K P3 lies in: each (c1 : c2 : c3 : c4) ∈ P3 corresponds to a
codimension 1 subspace {c1u1+c2u2+c3u3+c4u4 = 0} ⊂ W . Then, f(P7) = (f1(P7) : f2(P7) :
f3(P7) : f4(P7)) corresponds to the subspace {u1f1(P7)+u2f2(P7)+u3f3(P7)+u4f4(P7) = 0},
which is the space of homogeneous cubics that vanish at P1, P2, . . . , P7. Let W7 denote this
subspace. Similarly, we define W8,W9. Then W7∩W8 is the subspace of homogeneous cubics
that vanish at P1, P2, . . . , P8. Since any cubic curve that contains P1, P2, . . . , P8 also contains
P9, we have W7 ∩W8 ⊂ W9. Therefore, W7 ∩W8 ∩W9 has dimension at least 1. Dually in
P3, this means f(P7), f(P8), f(P9) are collinear.

Thus, f(P9) can be constructed by finding the third intersection point of S and the line
passing through f(P7) and f(P8). The following proposition gives the Cox coordinates of
the point f(P9) in terms of the coordinates of P1, P2, . . . , P8.

Proposition 5.2.5. Up to a “+/−” sign and the Z7-grading, the Cox coordinates of f(P9)
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are

Ei = D(Pi;Pi1 , Pi2 , Pi3 , Pi4 , Pi5 , P7, P8)/

(
5∏
j=1

(di − dij)2
∏

1≤j<k≤5

(dij − dik)

)
,

where {i1, i2, i3, i4, i5} = {1, 2, 3, 4, 5, 6}\{i},
Fij = C(Pi1 , Pi2 , Pi3 , Pi4 , P7, P8)/

∏
1≤j<k≤4

(dij − dik),

where {i1, i2, i3, i4} = {1, 2, 3, 4, 5, 6}\{i, j},
Gi = [i78].

Proof. Let Q ∈ S be the point with the above Cox coordinates. It can be verified by
straightforward computation that Q satisfy the 270 relations in Proposition 4.2.2. It remains
to show that φ(Q) = P9. By Lemma 5.2.1, this is equivalent to P = P9 in (5.5). After
plugging in the expressions for E1, E2, E3, F12, F13, F23, this becomes exactly Theorem 5.1.6.

An analog in P3

Three quadratic surfaces in P3 in general position intersect in 8 distinct points Q1, . . . , Q8.
The coordinates of Q8 are uniquely determined by the coordinates of Q1, . . . , Q7. Plaumann,
Sturmfels and Vinzant [73, Proposition 7.1] give a formula for the 8th intersection points
of three quadratic surfaces in P3 in terms of coordinates of the other 7 intersection points.
Proposition 5.2.6 gives its general form.

Proposition 5.2.6. Let Qi = (wi : xi : yi : zi), such that the linear system of quadratics
that vanish at Q1, Q2, . . . , Q7 has dimension 3. Then any quadratic surface that contains
Q1, Q2, . . . , Q7 also contains

Q8 =
[1567]

B1

Q1 +
[2567]

B2

Q2 +
[3567]

B3

Q3 +
[4567]

B4

Q4,

where

[1567] = det


w1 x1 y1 z1

w5 x5 y5 z5

w6 x6 y6 z6

w7 x7 y7 z7

 ,
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B1 = det



w2
2 w2x2 w2y2 w2z2 x2

2 x2y2 x2z2 y2
2 y2z2 z2

2

w2
3 w3x3 w3y3 w3z3 x2

3 x3y3 x3z3 y2
3 y3z3 z2

3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
w2

7 w7x7 w7y7 w7z7 x2
7 x7y7 x7z7 y2

7 y7z7 z2
7

2w1 x1 y1 z1 0 0 0 0 0 0
0 w1 0 0 2x1 y1 z1 0 0 0
0 0 w1 0 0 x1 0 2y1 z1 0
0 0 0 w1 0 0 x1 0 y1 2z1


,

and the other terms are defined similarly.

Proof. The proof is analogous to the proof of Theorem 5.1.6. First notice that the formula is
invariant under projective transformations on P3, up to a constant factor in the homogeneous
coordinates of Q8. Then, without loss of generality, we may assume that Q1 = (1 : 0 : 0 : 0),
Q2 = (0 : 1 : 0 : 0), Q3 = (0 : 0 : 1 : 0), Q4 = (0 : 0 : 0 : 1) and Q5 = (1 : 1 : 1 : 1). The
special case follows from [73, Proposition 7.1].

Note that [1567] = 0 if and only if Q1, Q5, Q6, Q7 lie on a plane, and B1 = 0 if and only
if there exists a quadratic surface S containing Q1, Q2, . . . , Q7 that is singular at Q1. This
is analogous to the geometric interpretation of C· and D·.

There is a similar geometric construction for the 3-dimensional analog. Consider the
rational map g from P3 to P5 defined by (w : x : y : z) 7→ (wx : wy : wz : xy : xz : yz). It is
regular on P3\{Q1, Q2, Q3, Q4}. Take the closure V of its image in P5.

Proposition 5.2.7. The points f(Q5), f(Q6), f(Q7), f(Q8) lie on a plane.

Proof. The proof is similar to the 2-dimensional analog. {wx,wy, wz, xy, xz, yz} form a basis
of the vector space of homogeneous quadratics in x, y, z, w that vanish at Q1, Q2, Q3, Q4. Let
W = {u1wx + u2wy + u3wz + u4xy + u5xz + u6yz|ui ∈ K}. Consider W as the dual of
the space P5 where the image of g : P3 99K P5 lies in: each (c1 : c2 : c3 : c4 : c5 : c6) ∈ P5

corresponds to a codimension 1 subspace {c1u1 + c2u2 + c3u3 + c4u4 + c5u5 + c6u6 = 0} ⊂ W .
Then, f(Q5) = (w5x5 : w5y5 : w5z5 : x5y5 : x5z5 : y5z5) corresponds to the subspace
{u1w5x5+u2w5y5+u3w5z5+u4x5y5+u5x5z5+u6y5z5 = 0}, which is the space of homogeneous
quadratics that vanish at Q1, Q2, Q3, Q4, Q5. Let W5 denote this subspace. Similarly, we
define W6,W7,W8. Then W5 ∩ W6 ∩ W7 is the subspace of homogeneous quadratics that
vanish at Q1, Q2, . . . , Q7. Since any quadratic surface that contains Q1, Q2, . . . , Q7 also
contains Q8, we have W5 ∩W6 ∩W7 ⊂ W8. Therefore, W5 ∩W6 ∩W7 ∩W8 has dimension at
least 3. Dually in P5, this means f(Q5), f(Q6), f(Q7), f(Q8) lie on a plane.

Remark 5.2.8. The 3-dimensional variety V is the blowing–up of P3 at 4 pointsQ1, Q2, Q3, Q4.
It contains 8 planes: 4 planes correspond to the 4 blown up points, and 4 planes correspond
to the planes passing through 3 of the 4 chosen points.
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Appendix A

Appendix: Supplementary Data on
the 27 Trees

The following represents the 27 metric trees for each generic type of tropical cubic surfaces.
The bounded edges in the trees are represented by the split systems. For each bounded edge
e in a tree T , there are exactly two connected components in T\{e}. This gives a partition
of the set of leaves into two subsets. The labels of these leaves are listed in the two brackets
in each row of the data. For example, the first tree in the data represents the tree in Figure
A.1.

x1 x1x4 − x1

x2 x2

x3 x3

G6

F15

F13

G2

G4 F14

F16

G5

G3

F12

Figure A.1: One of the 27 trees for a type (aaaa) tropical cubic surface, with labels on the
leaves.
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Type (aaaa)

----------Tree (E1)----------

involution: F12<-->G2 F13<-->G3 F14<-->G4 F15<-->G5 F16<-->G6

[F12, G3 ] [G2 , F13, F14, G4 , F15, G5 , F16, G6 ] length: x3

[G2 , F13] [F12, G3 , F14, G4 , F15, G5 , F16, G6 ] length: x3

[F15, G6 ] [F12, G2 , F13, G3 , F14, G4 , G5 , F16] length: x2

[G5 , F16] [F12, G2 , F13, G3 , F14, G4 , F15, G6 ] length: x2

[F12, G3 , G5 , F16] [G2 , F13, F14, G4 , F15, G6 ] length: x1

[G2 , F13, F15, G6 ] [F12, G3 , F14, G4 , G5 , F16] length: x1

[F12, G3 , F14, G5 , F16] [G2 , F13, G4 , F15, G6 ] length: -x1 + x4

----------Tree (E2)----------

involution: F12<-->G1 F23<-->G3 F24<-->G4 F25<-->G5 F26<-->G6

[F12, G3 ] [G1 , F23, F24, G4 , F25, G5 , F26, G6 ] length: x3

[G1 , F23] [F12, G3 , F24, G4 , F25, G5 , F26, G6 ] length: x3

[F24, G6 ] [F12, G1 , F23, G3 , G4 , F25, G5 , F26] length: x4

[G4 , F26] [F12, G1 , F23, G3 , F24, F25, G5 , G6 ] length: x4

[F12, G3 , G4 , F26] [G1 , F23, F24, F25, G5 , G6 ] length: x1

[G1 , F23, F24, G6 ] [F12, G3 , G4 , F25, G5 , F26] length: x1

[F12, G3 , G4 , F25, F26] [G1 , F23, F24, G5 , G6 ] length: -x1 + x2

----------Tree (E3)----------

involution: F13<-->G1 F23<-->G2 F34<-->G4 F35<-->G5 F36<-->G6

[F13, G2 ] [G1 , F23, F34, G4 , F35, G5 , F36, G6 ] length: x3

[G1 , F23] [F13, G2 , F34, G4 , F35, G5 , F36, G6 ] length: x3

[F34, G5 ] [F13, G1 , F23, G2 , G4 , F35, F36, G6 ] length: x1

[G4 , F35] [F13, G1 , F23, G2 , F34, G5 , F36, G6 ] length: x1

[F13, G2 , G4 , F35] [G1 , F23, F34, G5 , F36, G6 ] length: x2

[G1 , F23, F34, G5 ] [F13, G2 , G4 , F35, F36, G6 ] length: x2

[F13, G2 , G4 , F35, G6 ] [G1 , F23, F34, G5 , F36] length: -x2 + x4

----------Tree (E4)----------

involution: F14<-->G1 F24<-->G2 F34<-->G3 F45<-->G5 F46<-->G6

[F24, G6 ] [F14, G1 , G2 , F34, G3 , F45, G5 , F46] length: x4

[G2 , F46] [F14, G1 , F24, F34, G3 , F45, G5 , G6 ] length: x4

[F34, G5 ] [F14, G1 , F24, G2 , G3 , F45, F46, G6 ] length: x1

[G3 , F45] [F14, G1 , F24, G2 , F34, G5 , F46, G6 ] length: x1

[F24, F34, G5 , G6 ] [F14, G1 , G2 , G3 , F45, F46] length: x2

[G2 , G3 , F45, F46] [F14, G1 , F24, F34, G5 , G6 ] length: x2

[F14, F24, F34, G5 , G6 ] [G1 , G2 , G3 , F45, F46] length: -x2 + x3
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----------Tree (E5)----------

involution: F15<-->G1 F25<-->G2 F35<-->G3 F45<-->G4 F56<-->G6

[F15, G6 ] [G1 , F25, G2 , F35, G3 , F45, G4 , F56] length: x2

[G1 , F56] [F15, F25, G2 , F35, G3 , F45, G4 , G6 ] length: x2

[F35, G4 ] [F15, G1 , F25, G2 , G3 , F45, F56, G6 ] length: x1

[G3 , F45] [F15, G1 , F25, G2 , F35, G4 , F56, G6 ] length: x1

[F15, F35, G4 , G6 ] [G1 , F25, G2 , G3 , F45, F56] length: x3

[G1 , G3 , F45, F56] [F15, F25, G2 , F35, G4 , G6 ] length: x3

[F15, G2 , F35, G4 , G6 ] [G1 , F25, G3 , F45, F56] length: -x3 + x4

----------Tree (E6)----------

involution: F16<-->G1 F26<-->G2 F36<-->G3 F46<-->G4 F56<-->G5

[F16, G5 ] [G1 , F26, G2 , F36, G3 , F46, G4 , F56] length: x2

[G1 , F56] [F16, F26, G2 , F36, G3 , F46, G4 , G5 ] length: x2

[F26, G4 ] [F16, G1 , G2 , F36, G3 , F46, F56, G5 ] length: x4

[G2 , F46] [F16, G1 , F26, F36, G3 , G4 , F56, G5 ] length: x4

[F16, F26, G4 , G5 ] [G1 , G2 , F36, G3 , F46, F56] length: x1

[G1 , G2 , F46, F56] [F16, F26, F36, G3 , G4 , G5 ] length: x1

[F16, F26, F36, G4 , G5 ] [G1 , G2 , G3 , F46, F56] length: -x1 + x3

----------Tree (F12)----------

involution: E1<-->G2 E2<-->G1 F34<-->F56 F35<-->F46 F36<-->F45

[E1 , F35] [G2 , E2 , G1 , F34, F56, F46, F36, F45] length: x4

[G2 , F46] [E1 , E2 , G1 , F34, F56, F35, F36, F45] length: x4

[E2 , F34] [E1 , G2 , G1 , F56, F35, F46, F36, F45] length: x2

[G1 , F56] [E1 , G2 , E2 , F34, F35, F46, F36, F45] length: x2

[E1 , E2 , F34, F35] [G2 , G1 , F56, F46, F36, F45] length: x1

[G2 , G1 , F56, F46] [E1 , E2 , F34, F35, F36, F45] length: x1

[E1 , E2 , F34, F35, F36] [G2 , G1 , F56, F46, F45] length: -x1 + x3

----------Tree (F13)----------

involution: E1<-->G3 E3<-->G1 F24<-->F56 F25<-->F46 F26<-->F45

[E1 , F26] [G3 , E3 , G1 , F24, F56, F25, F46, F45] length: x1

[G3 , F45] [E1 , E3 , G1 , F24, F56, F25, F46, F26] length: x1

[E3 , F24] [E1 , G3 , G1 , F56, F25, F46, F26, F45] length: x2

[G1 , F56] [E1 , G3 , E3 , F24, F25, F46, F26, F45] length: x2

[E1 , E3 , F24, F26] [G3 , G1 , F56, F25, F46, F45] length: x3

[G3 , G1 , F56, F45] [E1 , E3 , F24, F25, F46, F26] length: x3

[E1 , E3 , F24, F46, F26] [G3 , G1 , F56, F25, F45] length: -x3 + x4

----------Tree (F14)----------

involution: E1<-->G4 E4<-->G1 F23<-->F56 F25<-->F36 F26<-->F35



APPENDIX A. APPENDIX: SUPPLEMENTARY DATA ON THE 27 TREES 126

[E1 , F35] [G4 , E4 , G1 , F23, F56, F25, F36, F26] length: -x1 + x4

[G4 , F26] [E1 , E4 , G1 , F23, F56, F25, F36, F35] length: -x1 + x4

[E4 , F56] [E1 , G4 , G1 , F23, F25, F36, F26, F35] length: -x2 + x3

[G1 , F23] [E1 , G4 , E4 , F56, F25, F36, F26, F35] length: -x2 + x3

[E1 , G4 , F26, F35] [E4 , G1 , F23, F56, F25, F36] length: x1

[E4 , G1 , F23, F56] [E1 , G4 , F25, F36, F26, F35] length: x2

----------Tree (F15)----------

involution: E1<-->G5 E5<-->G1 F23<-->F46 F24<-->F36 F26<-->F34

[E1 , F26] [G5 , E5 , G1 , F23, F46, F24, F36, F34] length: x1

[G5 , F34] [E1 , E5 , G1 , F23, F46, F24, F36, F26] length: x1

[E5 , F46] [E1 , G5 , G1 , F23, F24, F36, F26, F34] length: x3

[G1 , F23] [E1 , G5 , E5 , F46, F24, F36, F26, F34] length: x3

[E1 , E5 , F46, F26] [G5 , G1 , F23, F24, F36, F34] length: x2

[G5 , G1 , F23, F34] [E1 , E5 , F46, F24, F36, F26] length: x2

[E1 , E5 , F46, F24, F26] [G5 , G1 , F23, F36, F34] length: -x2 + x4

----------Tree (F16)----------

involution: E1<-->G6 E6<-->G1 F23<-->F45 F24<-->F35 F25<-->F34

[E1 , F35] [G6 , E6 , G1 , F23, F45, F24, F25, F34] length: x4

[G6 , F24] [E1 , E6 , G1 , F23, F45, F35, F25, F34] length: x4

[E6 , F45] [E1 , G6 , G1 , F23, F24, F35, F25, F34] length: x3

[G1 , F23] [E1 , G6 , E6 , F45, F24, F35, F25, F34] length: x3

[E1 , E6 , F45, F35] [G6 , G1 , F23, F24, F25, F34] length: x1

[G6 , G1 , F23, F24] [E1 , E6 , F45, F35, F25, F34] length: x1

[E1 , E6 , F45, F35, F25] [G6 , G1 , F23, F24, F34] length: -x1 + x2

----------Tree (F23)----------

involution: E2<-->G3 E3<-->G2 F14<-->F56 F15<-->F46 F16<-->F45

[E2 , F16] [G3 , E3 , G2 , F14, F56, F15, F46, F45] length: x1

[G3 , F45] [E2 , E3 , G2 , F14, F56, F15, F46, F16] length: x1

[E3 , F15] [E2 , G3 , G2 , F14, F56, F46, F16, F45] length: x4

[G2 , F46] [E2 , G3 , E3 , F14, F56, F15, F16, F45] length: x4

[E2 , E3 , F15, F16] [G3 , G2 , F14, F56, F46, F45] length: x2

[G3 , G2 , F46, F45] [E2 , E3 , F14, F56, F15, F16] length: x2

[E2 , E3 , F14, F15, F16] [G3 , G2 , F56, F46, F45] length: -x2 + x3

----------Tree (F24)----------

involution: E2<-->G4 E4<-->G2 F13<-->F56 F15<-->F36 F16<-->F35

[E2 , F16] [G4 , E4 , G2 , F13, F56, F15, F36, F35] length: x1

[G4 , F35] [E2 , E4 , G2 , F13, F56, F15, F36, F16] length: x1

[E4 , F56] [E2 , G4 , G2 , F13, F15, F36, F16, F35] length: x3
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[G2 , F13] [E2 , G4 , E4 , F56, F15, F36, F16, F35] length: x3

[E2 , E4 , F56, F16] [G4 , G2 , F13, F15, F36, F35] length: x2

[G4 , G2 , F13, F35] [E2 , E4 , F56, F15, F36, F16] length: x2

[E2 , E4 , F56, F36, F16] [G4 , G2 , F13, F15, F35] length: -x2 + x4

----------Tree (F25)----------

involution: E2<-->G5 E5<-->G2 F13<-->F46 F14<-->F36 F16<-->F34

[E2 , F34] [G5 , E5 , G2 , F13, F46, F14, F36, F16] length: -x1 + x2

[G5 , F16] [E2 , E5 , G2 , F13, F46, F14, F36, F34] length: -x1 + x2

[E5 , F13] [E2 , G5 , G2 , F46, F14, F36, F16, F34] length: -x3 + x4

[G2 , F46] [E2 , G5 , E5 , F13, F14, F36, F16, F34] length: -x3 + x4

[E2 , G5 , F16, F34] [E5 , G2 , F13, F46, F14, F36] length: x1

[E5 , G2 , F13, F46] [E2 , G5 , F14, F36, F16, F34] length: x3

----------Tree (F26)----------

involution: E2<-->G6 E6<-->G2 F13<-->F45 F14<-->F35 F15<-->F34

[E2 , F34] [G6 , E6 , G2 , F13, F45, F14, F35, F15] length: x2

[G6 , F15] [E2 , E6 , G2 , F13, F45, F14, F35, F34] length: x2

[E6 , F45] [E2 , G6 , G2 , F13, F14, F35, F15, F34] length: x3

[G2 , F13] [E2 , G6 , E6 , F45, F14, F35, F15, F34] length: x3

[E2 , E6 , F45, F34] [G6 , G2 , F13, F14, F35, F15] length: x1

[G6 , G2 , F13, F15] [E2 , E6 , F45, F14, F35, F34] length: x1

[E2 , E6 , F45, F14, F34] [G6 , G2 , F13, F35, F15] length: -x1 + x4

----------Tree (F34)----------

involution: E3<-->G4 E4<-->G3 F12<-->F56 F15<-->F26 F16<-->F25

[E3 , F15] [G4 , E4 , G3 , F12, F56, F26, F16, F25] length: x4

[G4 , F26] [E3 , E4 , G3 , F12, F56, F15, F16, F25] length: x4

[E4 , F56] [E3 , G4 , G3 , F12, F15, F26, F16, F25] length: x3

[G3 , F12] [E3 , G4 , E4 , F56, F15, F26, F16, F25] length: x3

[E3 , E4 , F56, F15] [G4 , G3 , F12, F26, F16, F25] length: x1

[G4 , G3 , F12, F26] [E3 , E4 , F56, F15, F16, F25] length: x1

[E3 , E4 , F56, F15, F16] [G4 , G3 , F12, F26, F25] length: -x1 + x2

----------Tree (F35)----------

involution: E3<-->G5 E5<-->G3 F12<-->F46 F14<-->F26 F16<-->F24

[E3 , F24] [G5 , E5 , G3 , F12, F46, F14, F26, F16] length: x2

[G5 , F16] [E3 , E5 , G3 , F12, F46, F14, F26, F24] length: x2

[E5 , F46] [E3 , G5 , G3 , F12, F14, F26, F16, F24] length: x3

[G3 , F12] [E3 , G5 , E5 , F46, F14, F26, F16, F24] length: x3

[E3 , E5 , F46, F24] [G5 , G3 , F12, F14, F26, F16] length: x1

[G5 , G3 , F12, F16] [E3 , E5 , F46, F14, F26, F24] length: x1
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[E3 , E5 , F46, F26, F24] [G5 , G3 , F12, F14, F16] length: -x1 + x4

----------Tree (F36)----------

involution: E3<-->G6 E6<-->G3 F12<-->F45 F14<-->F25 F15<-->F24

[E3 , F15] [G6 , E6 , G3 , F12, F45, F14, F25, F24] length: -x2 + x4

[G6 , F24] [E3 , E6 , G3 , F12, F45, F14, F25, F15] length: -x2 + x4

[E6 , F45] [E3 , G6 , G3 , F12, F14, F25, F15, F24] length: -x1 + x3

[G3 , F12] [E3 , G6 , E6 , F45, F14, F25, F15, F24] length: -x1 + x3

[E3 , G6 , F15, F24] [E6 , G3 , F12, F45, F14, F25] length: x2

[E6 , G3 , F12, F45] [E3 , G6 , F14, F25, F15, F24] length: x1

----------Tree (F45)----------

involution: E4<-->G5 E5<-->G4 F12<-->F36 F13<-->F26 F16<-->F23

[E4 , F23] [G5 , E5 , G4 , F12, F36, F13, F26, F16] length: x2

[G5 , F16] [E4 , E5 , G4 , F12, F36, F13, F26, F23] length: x2

[E5 , F13] [E4 , G5 , G4 , F12, F36, F26, F16, F23] length: x4

[G4 , F26] [E4 , G5 , E5 , F12, F36, F13, F16, F23] length: x4

[E4 , E5 , F13, F23] [G5 , G4 , F12, F36, F26, F16] length: x1

[G5 , G4 , F26, F16] [E4 , E5 , F12, F36, F13, F23] length: x1

[E4 , E5 , F12, F13, F23] [G5 , G4 , F36, F26, F16] length: -x1 + x3

----------Tree (F46)----------

involution: E4<-->G6 E6<-->G4 F12<-->F35 F13<-->F25 F15<-->F23

[E4 , F23] [G6 , E6 , G4 , F12, F35, F13, F25, F15] length: x2

[G6 , F15] [E4 , E6 , G4 , F12, F35, F13, F25, F23] length: x2

[E6 , F12] [E4 , G6 , G4 , F35, F13, F25, F15, F23] length: x1

[G4 , F35] [E4 , G6 , E6 , F12, F13, F25, F15, F23] length: x1

[E4 , E6 , F12, F23] [G6 , G4 , F35, F13, F25, F15] length: x3

[G6 , G4 , F35, F15] [E4 , E6 , F12, F13, F25, F23] length: x3

[E4 , E6 , F12, F25, F23] [G6 , G4 , F35, F13, F15] length: -x3 + x4

----------Tree (F56)----------

involution: E5<-->G6 E6<-->G5 F12<-->F34 F13<-->F24 F14<-->F23

[E5 , F13] [G6 , E6 , G5 , F12, F34, F24, F14, F23] length: x4

[G6 , F24] [E5 , E6 , G5 , F12, F34, F13, F14, F23] length: x4

[E6 , F12] [E5 , G6 , G5 , F34, F13, F24, F14, F23] length: x1

[G5 , F34] [E5 , G6 , E6 , F12, F13, F24, F14, F23] length: x1

[E5 , E6 , F12, F13] [G6 , G5 , F34, F24, F14, F23] length: x2

[G6 , G5 , F34, F24] [E5 , E6 , F12, F13, F14, F23] length: x2

[E5 , E6 , F12, F13, F23] [G6 , G5 , F34, F24, F14] length: -x2 + x3

----------Tree (G1)----------
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involution: E2<-->F12 E3<-->F13 E4<-->F14 E5<-->F15 E6<-->F16

[E2 , F16] [F12, E3 , F13, E4 , F14, E5 , F15, E6 ] length: x1

[F12, E6 ] [E2 , E3 , F13, E4 , F14, E5 , F15, F16] length: x1

[E3 , F15] [E2 , F12, F13, E4 , F14, E5 , E6 , F16] length: x4

[F13, E5 ] [E2 , F12, E3 , E4 , F14, F15, E6 , F16] length: x4

[E2 , E3 , F15, F16] [F12, F13, E4 , F14, E5 , E6 ] length: x2

[F12, F13, E5 , E6 ] [E2 , E3 , E4 , F14, F15, F16] length: x2

[E2 , E3 , F14, F15, F16] [F12, F13, E4 , E5 , E6 ] length: -x2 + x3

----------Tree (G2)----------

involution: E1<-->F12 E3<-->F23 E4<-->F24 E5<-->F25 E6<-->F26

[E1 , F26] [F12, E3 , F23, E4 , F24, E5 , F25, E6 ] length: x1

[F12, E6 ] [E1 , E3 , F23, E4 , F24, E5 , F25, F26] length: x1

[E3 , F24] [E1 , F12, F23, E4 , E5 , F25, E6 , F26] length: x2

[F23, E4 ] [E1 , F12, E3 , F24, E5 , F25, E6 , F26] length: x2

[E1 , E3 , F24, F26] [F12, F23, E4 , E5 , F25, E6 ] length: x3

[F12, F23, E4 , E6 ] [E1 , E3 , F24, E5 , F25, F26] length: x3

[E1 , E3 , F24, E5 , F26] [F12, F23, E4 , F25, E6 ] length: -x3 + x4

----------Tree (G3)----------

involution: E1<-->F13 E2<-->F23 E4<-->F34 E5<-->F35 E6<-->F36

[E1 , F35] [F13, E2 , F23, E4 , F34, E5 , E6 , F36] length: x4

[F13, E5 ] [E1 , E2 , F23, E4 , F34, F35, E6 , F36] length: x4

[E2 , F34] [E1 , F13, F23, E4 , E5 , F35, E6 , F36] length: x2

[F23, E4 ] [E1 , F13, E2 , F34, E5 , F35, E6 , F36] length: x2

[E1 , E2 , F34, F35] [F13, F23, E4 , E5 , E6 , F36] length: x1

[F13, F23, E4 , E5 ] [E1 , E2 , F34, F35, E6 , F36] length: x1

[E1 , E2 , F34, F35, F36] [F13, F23, E4 , E5 , E6 ] length: -x1 + x3

----------Tree (G4)----------

involution: E1<-->F14 E2<-->F24 E3<-->F34 E5<-->F45 E6<-->F46

[E2 , F34] [E1 , F14, F24, E3 , E5 , F45, E6 , F46] length: x2

[F24, E3 ] [E1 , F14, E2 , F34, E5 , F45, E6 , F46] length: x2

[E5 , F46] [E1 , F14, E2 , F24, E3 , F34, F45, E6 ] length: x3

[F45, E6 ] [E1 , F14, E2 , F24, E3 , F34, E5 , F46] length: x3

[E2 , F34, F45, E6 ] [E1 , F14, F24, E3 , E5 , F46] length: x1

[F24, E3 , E5 , F46] [E1 , F14, E2 , F34, F45, E6 ] length: x1

[E1 , F24, E3 , E5 , F46] [F14, E2 , F34, F45, E6 ] length: -x1 + x4

----------Tree (G5)----------

involution: E1<-->F15 E2<-->F25 E3<-->F35 E4<-->F45 E6<-->F56

[E1 , F35] [F15, E2 , F25, E3 , E4 , F45, E6 , F56] length: x4
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[F15, E3 ] [E1 , E2 , F25, F35, E4 , F45, E6 , F56] length: x4

[E4 , F56] [E1 , F15, E2 , F25, E3 , F35, F45, E6 ] length: x3

[F45, E6 ] [E1 , F15, E2 , F25, E3 , F35, E4 , F56] length: x3

[E1 , F35, F45, E6 ] [F15, E2 , F25, E3 , E4 , F56] length: x1

[F15, E3 , E4 , F56] [E1 , E2 , F25, F35, F45, E6 ] length: x1

[E1 , F25, F35, F45, E6 ] [F15, E2 , E3 , E4 , F56] length: -x1 + x2

----------Tree (G6)----------

involution: E1<-->F16 E2<-->F26 E3<-->F36 E4<-->F46 E5<-->F56

[E1 , F26] [F16, E2 , E3 , F36, E4 , F46, E5 , F56] length: x1

[F16, E2 ] [E1 , F26, E3 , F36, E4 , F46, E5 , F56] length: x1

[E4 , F56] [E1 , F16, E2 , F26, E3 , F36, F46, E5 ] length: x3

[F46, E5 ] [E1 , F16, E2 , F26, E3 , F36, E4 , F56] length: x3

[E1 , F26, F46, E5 ] [F16, E2 , E3 , F36, E4 , F56] length: x2

[F16, E2 , E4 , F56] [E1 , F26, E3 , F36, F46, E5 ] length: x2

[E1 , F26, E3 , F46, E5 ] [F16, E2 , F36, E4 , F56] length: -x2 + x4

Type (aaab)

----------Tree (E1)----------

involution: F12<-->G2 F13<-->G3 F14<-->G4 F15<-->G5 F16<-->G6

[F13, G5 ] [F12, G2 , G3 , F14, G4 , F15, F16, G6 ] length: x2

[G3 , F15] [F12, G2 , F13, F14, G4 , G5 , F16, G6 ] length: x2

[F12, G3 , F15] [G2 , F13, F14, G4 , G5 , F16, G6 ] length: x4

[G2 , F13, G5 ] [F12, G3 , F14, G4 , F15, F16, G6 ] length: x4

[F12, G3 , F15, F16] [G2 , F13, F14, G4 , G5 , G6 ] length: x1

[G2 , F13, G5 , G6 ] [F12, G3 , F14, G4 , F15, F16] length: x1

[F12, G3 , G4 , F15, F16] [G2 , F13, F14, G5 , G6 ] length: -x1 + x3

----------Tree (E2)----------

involution: F12<-->G1 F23<-->G3 F24<-->G4 F25<-->G5 F26<-->G6

[F12, F23] [G1 , G3 , F24, G4 , F25, G5 , F26, G6 ] length: x1

[G1 , G3 ] [F12, F23, F24, G4 , F25, G5 , F26, G6 ] length: x1

[F25, G6 ] [F12, G1 , F23, G3 , F24, G4 , G5 , F26] length: x3

[G5 , F26] [F12, G1 , F23, G3 , F24, G4 , F25, G6 ] length: x3

[F24, G5 , F26] [F12, G1 , F23, G3 , G4 , F25, G6 ] length: x4

[G4 , F25, G6 ] [F12, G1 , F23, G3 , F24, G5 , F26] length: x4

[F12, F23, G4 , F25, G6 ] [G1 , G3 , F24, G5 , F26] length: x2

----------Tree (E3)----------

involution: F13<-->G1 F23<-->G2 F34<-->G4 F35<-->G5 F36<-->G6

[F13, G5 ] [G1 , F23, G2 , F34, G4 , F35, F36, G6 ] length: x2
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[G1 , F35] [F13, F23, G2 , F34, G4 , G5 , F36, G6 ] length: x2

[F13, G2 , G5 ] [G1 , F23, F34, G4 , F35, F36, G6 ] length: x4

[G1 , F23, F35] [F13, G2 , F34, G4 , G5 , F36, G6 ] length: x4

[F13, G2 , G5 , G6 ] [G1 , F23, F34, G4 , F35, F36] length: x1

[G1 , F23, F35, F36] [F13, G2 , F34, G4 , G5 , G6 ] length: x1

[F13, G2 , F34, G5 , G6 ] [G1 , F23, G4 , F35, F36] length: -x1 + x3

----------Tree (E4)----------

involution: F14<-->G1 F24<-->G2 F34<-->G3 F45<-->G5 F46<-->G6

[F14, F34] [G1 , F24, G2 , G3 , F45, G5 , F46, G6 ] length: x1

[G1 , G3 ] [F14, F24, G2 , F34, F45, G5 , F46, G6 ] length: x1

[F14, F34, G6 ] [G1 , F24, G2 , G3 , F45, G5 , F46] length: x4

[G1 , G3 , F46] [F14, F24, G2 , F34, F45, G5 , G6 ] length: x4

[F14, G2 , F34, G6 ] [G1 , F24, G3 , F45, G5 , F46] length: x2

[G1 , F24, G3 , F46] [F14, G2 , F34, F45, G5 , G6 ] length: x2

[F14, G2 , F34, G5 , G6 ] [G1 , F24, G3 , F45, F46] length: -x2 + x3

----------Tree (E5)----------

involution: F15<-->G1 F25<-->G2 F35<-->G3 F45<-->G4 F56<-->G6

[F15, G3 ] [G1 , F25, G2 , F35, F45, G4 , F56, G6 ] length: -x1 + x2

[G1 , F35] [F15, F25, G2 , G3 , F45, G4 , F56, G6 ] length: -x1 + x2

[F25, G6 ] [F15, G1 , G2 , F35, G3 , F45, G4 , F56] length: x3

[G2 , F56] [F15, G1 , F25, F35, G3 , F45, G4 , G6 ] length: x3

[F25, G4 , G6 ] [F15, G1 , G2 , F35, G3 , F45, F56] length: x4

[G2 , F45, F56] [F15, G1 , F25, F35, G3 , G4 , G6 ] length: x4

[F15, G1 , F35, G3 ] [F25, G2 , F45, G4 , F56, G6 ] length: x1

----------Tree (E6)----------

involution: F16<-->G1 F26<-->G2 F36<-->G3 F46<-->G4 F56<-->G5

[F16, F36] [G1 , F26, G2 , G3 , F46, G4 , F56, G5 ] length: x1

[G1 , G3 ] [F16, F26, G2 , F36, F46, G4 , F56, G5 ] length: x1

[F26, G5 ] [F16, G1 , G2 , F36, G3 , F46, G4 , F56] length: x3

[G2 , F56] [F16, G1 , F26, F36, G3 , F46, G4 , G5 ] length: x3

[F16, F36, G4 ] [G1 , F26, G2 , G3 , F46, F56, G5 ] length: x4

[G1 , G3 , F46] [F16, F26, G2 , F36, G4 , F56, G5 ] length: x4

[F16, G2 , F36, G4 , F56] [G1 , F26, G3 , F46, G5 ] length: x2

----------Tree (F12)----------

involution: E1<-->G2 E2<-->G1 F34<-->F56 F35<-->F46 F36<-->F45

[E1 , F34] [G2 , E2 , G1 , F56, F35, F46, F36, F45] length: x3

[G2 , F56] [E1 , E2 , G1 , F34, F35, F46, F36, F45] length: x3

[E2 , F46] [E1 , G2 , G1 , F34, F56, F35, F36, F45] length: x2
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[G1 , F35] [E1 , G2 , E2 , F34, F56, F46, F36, F45] length: x2

[E1 , F34, F36] [G2 , E2 , G1 , F56, F35, F46, F45] length: x4

[G2 , F56, F45] [E1 , E2 , G1 , F34, F35, F46, F36] length: x4

[E1 , G1 , F34, F35, F36] [G2 , E2 , F56, F46, F45] length: x1

----------Tree (F13)----------

involution: E1<-->G3 E3<-->G1 F24<-->F56 F25<-->F46 F26<-->F45

[E1 , E3 ] [G3 , G1 , F24, F56, F25, F46, F26, F45] length: x1

[G3 , G1 ] [E1 , E3 , F24, F56, F25, F46, F26, F45] length: x1

[E1 , E3 , F25] [G3 , G1 , F24, F56, F46, F26, F45] length: x4

[G3 , G1 , F46] [E1 , E3 , F24, F56, F25, F26, F45] length: x4

[E1 , E3 , F56, F25] [G3 , G1 , F24, F46, F26, F45] length: x2

[G3 , G1 , F24, F46] [E1 , E3 , F56, F25, F26, F45] length: x2

[E1 , E3 , F56, F25, F26] [G3 , G1 , F24, F46, F45] length: -x2 + x3

----------Tree (F14)----------

involution: E1<-->G4 E4<-->G1 F23<-->F56 F25<-->F36 F26<-->F35

[E4 , F26] [E1 , G4 , G1 , F23, F56, F25, F36, F35] length: x2

[G1 , F35] [E1 , G4 , E4 , F23, F56, F25, F36, F26] length: x2

[E4 , F56, F26] [E1 , G4 , G1 , F23, F25, F36, F35] length: x4

[G1 , F23, F35] [E1 , G4 , E4 , F56, F25, F36, F26] length: x4

[E4 , F56, F25, F26] [E1 , G4 , G1 , F23, F36, F35] length: x1

[G1 , F23, F36, F35] [E1 , G4 , E4 , F56, F25, F26] length: x1

[E1 , E4 , F56, F25, F26] [G4 , G1 , F23, F36, F35] length: -x1 + x3

----------Tree (F15)----------

involution: E1<-->G5 E5<-->G1 F23<-->F46 F24<-->F36 F26<-->F34

[E1 , F34] [G5 , E5 , G1 , F23, F46, F24, F36, F26] length: x3

[G5 , F26] [E1 , E5 , G1 , F23, F46, F24, F36, F34] length: x3

[E1 , F36, F34] [G5 , E5 , G1 , F23, F46, F24, F26] length: x4

[G5 , F24, F26] [E1 , E5 , G1 , F23, F46, F36, F34] length: x4

[E1 , F23, F36, F34] [G5 , E5 , G1 , F46, F24, F26] length: x1

[G5 , F46, F24, F26] [E1 , E5 , G1 , F23, F36, F34] length: x1

[E1 , E5 , F23, F36, F34] [G5 , G1 , F46, F24, F26] length: -x1 + x2

----------Tree (F16)----------

involution: E1<-->G6 E6<-->G1 F23<-->F45 F24<-->F35 F25<-->F34

[E1 , F34] [G6 , E6 , G1 , F23, F45, F24, F35, F25] length: x3

[G6 , F25] [E1 , E6 , G1 , F23, F45, F24, F35, F34] length: x3

[E6 , F24] [E1 , G6 , G1 , F23, F45, F35, F25, F34] length: x2

[G1 , F35] [E1 , G6 , E6 , F23, F45, F24, F25, F34] length: x2

[E6 , F45, F24] [E1 , G6 , G1 , F23, F35, F25, F34] length: x4
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[G1 , F23, F35] [E1 , G6 , E6 , F45, F24, F25, F34] length: x4

[E1 , G1 , F23, F35, F34] [G6 , E6 , F45, F24, F25] length: x1

----------Tree (F23)----------

involution: E2<-->G3 E3<-->G2 F14<-->F56 F15<-->F46 F16<-->F45

[E2 , F46] [G3 , E3 , G2 , F14, F56, F15, F16, F45] length: x2

[G3 , F15] [E2 , E3 , G2 , F14, F56, F46, F16, F45] length: x2

[E3 , F14] [E2 , G3 , G2 , F56, F15, F46, F16, F45] length: x3

[G2 , F56] [E2 , G3 , E3 , F14, F15, F46, F16, F45] length: x3

[E3 , F14, F16] [E2 , G3 , G2 , F56, F15, F46, F45] length: x4

[G2 , F56, F45] [E2 , G3 , E3 , F14, F15, F46, F16] length: x4

[E2 , G2 , F56, F46, F45] [G3 , E3 , F14, F15, F16] length: x1

----------Tree (F24)----------

involution: E2<-->G4 E4<-->G2 F13<-->F56 F15<-->F36 F16<-->F35

[E4 , F13] [E2 , G4 , G2 , F56, F15, F36, F16, F35] length: x3

[G2 , F56] [E2 , G4 , E4 , F13, F15, F36, F16, F35] length: x3

[F15, F35] [E2 , G4 , E4 , G2 , F13, F56, F36, F16] length: x1

[F36, F16] [E2 , G4 , E4 , G2 , F13, F56, F15, F35] length: x1

[E2 , F15, F35] [G4 , E4 , G2 , F13, F56, F36, F16] length: x4

[G4 , F36, F16] [E2 , E4 , G2 , F13, F56, F15, F35] length: x4

[E2 , E4 , F13, F15, F35] [G4 , G2 , F56, F36, F16] length: x2

----------Tree (F25)----------

involution: E2<-->G5 E5<-->G2 F13<-->F46 F14<-->F36 F16<-->F34

[E2 , F46] [G5 , E5 , G2 , F13, F14, F36, F16, F34] length: x2

[G5 , F13] [E2 , E5 , G2 , F46, F14, F36, F16, F34] length: x2

[F14, F34] [E2 , G5 , E5 , G2 , F13, F46, F36, F16] length: x1

[F36, F16] [E2 , G5 , E5 , G2 , F13, F46, F14, F34] length: x1

[E2 , E5 , F46] [G5 , G2 , F13, F14, F36, F16, F34] length: x4

[G5 , G2 , F13] [E2 , E5 , F46, F14, F36, F16, F34] length: x4

[E2 , E5 , F46, F36, F16] [G5 , G2 , F13, F14, F34] length: x3

----------Tree (F26)----------

involution: E2<-->G6 E6<-->G2 F13<-->F45 F14<-->F35 F15<-->F34

[F14, F34] [E2 , G6 , E6 , G2 , F13, F45, F35, F15] length: x1

[F35, F15] [E2 , G6 , E6 , G2 , F13, F45, F14, F34] length: x1

[E2 , F35, F15] [G6 , E6 , G2 , F13, F45, F14, F34] length: x4

[G6 , F14, F34] [E2 , E6 , G2 , F13, F45, F35, F15] length: x4

[E2 , E6 , F35, F15] [G6 , G2 , F13, F45, F14, F34] length: x2

[G6 , G2 , F14, F34] [E2 , E6 , F13, F45, F35, F15] length: x2

[E2 , E6 , F45, F35, F15] [G6 , G2 , F13, F14, F34] length: -x2 + x3
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----------Tree (F34)----------

involution: E3<-->G4 E4<-->G3 F12<-->F56 F15<-->F26 F16<-->F25

[E4 , F26] [E3 , G4 , G3 , F12, F56, F15, F16, F25] length: x2

[G3 , F15] [E3 , G4 , E4 , F12, F56, F26, F16, F25] length: x2

[E4 , F56, F26] [E3 , G4 , G3 , F12, F15, F16, F25] length: x4

[G3 , F12, F15] [E3 , G4 , E4 , F56, F26, F16, F25] length: x4

[E4 , F56, F26, F25] [E3 , G4 , G3 , F12, F15, F16] length: x1

[G3 , F12, F15, F16] [E3 , G4 , E4 , F56, F26, F25] length: x1

[E3 , E4 , F56, F26, F25] [G4 , G3 , F12, F15, F16] length: -x1 + x3

----------Tree (F35)----------

involution: E3<-->G5 E5<-->G3 F12<-->F46 F14<-->F26 F16<-->F24

[E3 , F14] [G5 , E5 , G3 , F12, F46, F26, F16, F24] length: x3

[G5 , F26] [E3 , E5 , G3 , F12, F46, F14, F16, F24] length: x3

[E3 , F14, F16] [G5 , E5 , G3 , F12, F46, F26, F24] length: x4

[G5 , F26, F24] [E3 , E5 , G3 , F12, F46, F14, F16] length: x4

[E3 , F12, F14, F16] [G5 , E5 , G3 , F46, F26, F24] length: x1

[G5 , F46, F26, F24] [E3 , E5 , G3 , F12, F14, F16] length: x1

[E3 , E5 , F12, F14, F16] [G5 , G3 , F46, F26, F24] length: -x1 + x2

----------Tree (F36)----------

involution: E3<-->G6 E6<-->G3 F12<-->F45 F14<-->F25 F15<-->F24

[E3 , F14] [G6 , E6 , G3 , F12, F45, F25, F15, F24] length: x3

[G6 , F25] [E3 , E6 , G3 , F12, F45, F14, F15, F24] length: x3

[E6 , F24] [E3 , G6 , G3 , F12, F45, F14, F25, F15] length: x2

[G3 , F15] [E3 , G6 , E6 , F12, F45, F14, F25, F24] length: x2

[E6 , F45, F24] [E3 , G6 , G3 , F12, F14, F25, F15] length: x4

[G3 , F12, F15] [E3 , G6 , E6 , F45, F14, F25, F24] length: x4

[E3 , G3 , F12, F14, F15] [G6 , E6 , F45, F25, F24] length: x1

----------Tree (F45)----------

involution: E4<-->G5 E5<-->G4 F12<-->F36 F13<-->F26 F16<-->F23

[E4 , F13] [G5 , E5 , G4 , F12, F36, F26, F16, F23] length: -x2 + x3

[G5 , F26] [E4 , E5 , G4 , F12, F36, F13, F16, F23] length: -x2 + x3

[F12, F23] [E4 , G5 , E5 , G4 , F36, F13, F26, F16] length: x1

[F36, F16] [E4 , G5 , E5 , G4 , F12, F13, F26, F23] length: x1

[E5 , F12, F23] [E4 , G5 , G4 , F36, F13, F26, F16] length: x4

[G4 , F36, F16] [E4 , G5 , E5 , F12, F13, F26, F23] length: x4

[E4 , G5 , F13, F26] [E5 , G4 , F12, F36, F16, F23] length: x2

----------Tree (F46)----------
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involution: E4<-->G6 E6<-->G4 F12<-->F35 F13<-->F25 F15<-->F23

[E4 , F13] [G6 , E6 , G4 , F12, F35, F25, F15, F23] length: x3

[G6 , F25] [E4 , E6 , G4 , F12, F35, F13, F15, F23] length: x3

[F12, F23] [E4 , G6 , E6 , G4 , F35, F13, F25, F15] length: x1

[F35, F15] [E4 , G6 , E6 , G4 , F12, F13, F25, F23] length: x1

[E4 , E6 , F13] [G6 , G4 , F12, F35, F25, F15, F23] length: x4

[G6 , G4 , F25] [E4 , E6 , F12, F35, F13, F15, F23] length: x4

[E4 , E6 , F35, F13, F15] [G6 , G4 , F12, F25, F23] length: x2

----------Tree (F56)----------

involution: E5<-->G6 E6<-->G5 F12<-->F34 F13<-->F24 F14<-->F23

[E6 , F24] [E5 , G6 , G5 , F12, F34, F13, F14, F23] length: x2

[G5 , F13] [E5 , G6 , E6 , F12, F34, F24, F14, F23] length: x2

[F12, F23] [E5 , G6 , E6 , G5 , F34, F13, F24, F14] length: x1

[F34, F14] [E5 , G6 , E6 , G5 , F12, F13, F24, F23] length: x1

[E5 , F12, F23] [G6 , E6 , G5 , F34, F13, F24, F14] length: x4

[G6 , F34, F14] [E5 , E6 , G5 , F12, F13, F24, F23] length: x4

[E5 , E6 , F12, F24, F23] [G6 , G5 , F34, F13, F14] length: x3

----------Tree (G1)----------

involution: E2<-->F12 E3<-->F13 E4<-->F14 E5<-->F15 E6<-->F16

[E3 , F14] [E2 , F12, F13, E4 , E5 , F15, E6 , F16] length: x3

[F13, E4 ] [E2 , F12, E3 , F14, E5 , F15, E6 , F16] length: x3

[E3 , F14, F16] [E2 , F12, F13, E4 , E5 , F15, E6 ] length: x4

[F13, E4 , E6 ] [E2 , F12, E3 , F14, E5 , F15, F16] length: x4

[E2 , F13, E4 , E6 ] [F12, E3 , F14, E5 , F15, F16] length: x1

[F12, E3 , F14, F16] [E2 , F13, E4 , E5 , F15, E6 ] length: x1

[E2 , F13, E4 , F15, E6 ] [F12, E3 , F14, E5 , F16] length: -x1 + x2

----------Tree (G2)----------

involution: E1<-->F12 E3<-->F23 E4<-->F24 E5<-->F25 E6<-->F26

[E1 , E3 ] [F12, F23, E4 , F24, E5 , F25, E6 , F26] length: x1

[F12, F23] [E1 , E3 , E4 , F24, E5 , F25, E6 , F26] length: x1

[E4 , F26] [E1 , F12, E3 , F23, F24, E5 , F25, E6 ] length: x2

[F24, E6 ] [E1 , F12, E3 , F23, E4 , E5 , F25, F26] length: x2

[E1 , E3 , F25] [F12, F23, E4 , F24, E5 , E6 , F26] length: x4

[F12, F23, E5 ] [E1 , E3 , E4 , F24, F25, E6 , F26] length: x4

[E1 , E3 , E4 , F25, F26] [F12, F23, F24, E5 , E6 ] length: x3

----------Tree (G3)----------

involution: E1<-->F13 E2<-->F23 E4<-->F34 E5<-->F35 E6<-->F36

[E1 , F34] [F13, E2 , F23, E4 , E5 , F35, E6 , F36] length: x3
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[F13, E4 ] [E1 , E2 , F23, F34, E5 , F35, E6 , F36] length: x3

[E1 , F34, F36] [F13, E2 , F23, E4 , E5 , F35, E6 ] length: x4

[F13, E4 , E6 ] [E1 , E2 , F23, F34, E5 , F35, F36] length: x4

[E1 , F23, F34, F36] [F13, E2 , E4 , E5 , F35, E6 ] length: x1

[F13, E2 , E4 , E6 ] [E1 , F23, F34, E5 , F35, F36] length: x1

[E1 , F23, F34, E5 , F36] [F13, E2 , E4 , F35, E6 ] length: -x1 + x2

----------Tree (G4)----------

involution: E1<-->F14 E2<-->F24 E3<-->F34 E5<-->F45 E6<-->F46

[E1 , F34] [F14, E2 , F24, E3 , E5 , F45, E6 , F46] length: -x1 + x3

[F14, E3 ] [E1 , E2 , F24, F34, E5 , F45, E6 , F46] length: -x1 + x3

[E2 , F46] [E1 , F14, F24, E3 , F34, E5 , F45, E6 ] length: x2

[F24, E6 ] [E1 , F14, E2 , E3 , F34, E5 , F45, F46] length: x2

[E2 , E5 , F46] [E1 , F14, F24, E3 , F34, F45, E6 ] length: x4

[F24, F45, E6 ] [E1 , F14, E2 , E3 , F34, E5 , F46] length: x4

[E1 , F14, E3 , F34] [E2 , F24, E5 , F45, E6 , F46] length: x1

----------Tree (G5)----------

involution: E1<-->F15 E2<-->F25 E3<-->F35 E4<-->F45 E6<-->F56

[E1 , E3 ] [F15, E2 , F25, F35, E4 , F45, E6 , F56] length: x1

[F15, F35] [E1 , E2 , F25, E3 , E4 , F45, E6 , F56] length: x1

[E1 , F25, E3 ] [F15, E2 , F35, E4 , F45, E6 , F56] length: x4

[F15, E2 , F35] [E1 , F25, E3 , E4 , F45, E6 , F56] length: x4

[E1 , F25, E3 , F56] [F15, E2 , F35, E4 , F45, E6 ] length: x2

[F15, E2 , F35, E6 ] [E1 , F25, E3 , E4 , F45, F56] length: x2

[E1 , F25, E3 , E4 , F56] [F15, E2 , F35, F45, E6 ] length: -x2 + x3

----------Tree (G6)----------

involution: E1<-->F16 E2<-->F26 E3<-->F36 E4<-->F46 E5<-->F56

[E1 , E3 ] [F16, E2 , F26, F36, E4 , F46, E5 , F56] length: x1

[F16, F36] [E1 , E2 , F26, E3 , E4 , F46, E5 , F56] length: x1

[E2 , F46] [E1 , F16, F26, E3 , F36, E4 , E5 , F56] length: x2

[F26, E4 ] [E1 , F16, E2 , E3 , F36, F46, E5 , F56] length: x2

[E2 , F46, E5 ] [E1 , F16, F26, E3 , F36, E4 , F56] length: x4

[F26, E4 , F56] [E1 , F16, E2 , E3 , F36, F46, E5 ] length: x4

[E1 , F26, E3 , E4 , F56] [F16, E2 , F36, F46, E5 ] length: x3




