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Abstract

One possible method for improving real-world
quantitative estimation is to "seed the knowledge-
base" with explicit quantitative facts. This method
was employed in two population estimation
experiments. In Experiment 1, subjects estimated
the populations of 99 countries. They then studied
the populations of 24 of these countries. Finally,
they estimated the populations of all 99 countries
a second time. As predicted, the post-learning
estimates for the 75 "transfer" countries were
much more accurate (48 %) than the pre-learning
estimates. However, the rank-order correlations
between estimated population and true
populations showed almost no improvement.
These results suggested that there may be two
analytically distinct components to estimation, a
range component and a ranking component, and
that an arbitrary set of quantitative facts is likely
to affect the former but not the latter. The aim of
Experiment 2 was to demonstrate that one can
affect the ranking component by presenting
subjects with a consistent set of population facts.
In this experiment, one group of subjects was
presented with facts that consistently confirmed
their prior belief that European countries are quite
large and Asian countries are quite small. Another
group was presented with a set that consistently
disconfirmed this view. As predicted, rank-order
correlations between estimated and true
populations were negatively affected by the bias-
confirming facts and positively affected by the
bias disconfirming facts.

The world is composed of innumerable discrete entities;
each of these entities has many properties; some of these
properties can be specified in quantitative terms. It is
common for a person to known that a certain entity exists,
o recognize that this entity must have a certain
quantitative property, and still to have no knowledge of the
value of that property. For example, the typical U.S.
college student is likely to have heard of Malaysia, to be
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absolutely certain that some number of people live there,
and to be very uncertain as to what that number might be.
Nonetheless, when pressed, this student will produce an
estimate that is at least more accurate than a random guess
and often will express some confidence in the rough
accuracy of the estimate.

How do people generate real-world quantitative
estimates of this sort? The cognitive literature provides
two distinct perspectives on the matter. One focuses on
domain-specific knowledge. According to this view, the
estimation process is driven by a cycle of retrieval and
inference. This process first recovers a fact from long-term
memory that is related to the "target" entity (e.g.,
Malaysia) and/or to the "target" property (e.g., population).
If the fact is relevant, it triggers an inference that narrows
the response range in some way. For example, a person
attempting to estimate the population of Malaysia might
recall that there are about 120 million Japanese. If this
person also believes that Malaysia has fewer people than
Japan, he or she can confidently infer that the population
of Malaysia is less than 120 million. Generally, a single
fact will not allow the response range to be narrowed
enough to yield a precise estimate. As a result, the cycle of
retrieval and inference may continue until a precise
estimate has been reached, until all immediately relevant
knowledge has been exhausted, or until some time or effort
limit is exceeded (Collins, 1978; Collins & Michalski,
1989).

The second perspective on real-world estimation holds
that people depend on a small number of general purpose
heuristics (e.g., availability, representativeness) to estimate
the quantitative properties of objects and events (e.g.,
Brown, Rips, & Shevell, 1985; Lichtenstein, Slovic,
Fischhoff, Layman, & Combs, 1978). According to this
view, a person attempting to estimate the population of
Malaysia might realize that he or she knows relatively
little about this country. This would imply, via the
application of the availability heuristic (Tversky &
Kahneman, 1973, 1974), that the population of Malaysia
is relatively small. Alternatively, a person attempting to
estimate the population of Norway might depend on its
representativeness. This person might decide that Norway
is typical of Scandinavian countries and then infer that the
population of Norway is likely to be similar to the
populations of other typical Scandinavian countries, such
as Sweden.

Interestingly, the same estimation task often produces
results consistent with both the knowledge-based and
heuristics perspectives. For example, a number of studies
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have demonstrated that people consider well-known public
and autobiographical events to have happened more
recently than less well-known events of the same objective
age (e.g., Brown et al., 1985; Wagenaar, 1986). These
results indicate that availability plays a role in date
estimation. There is also clear evidence that domain-
specific knowledge plays a central role in this task. For
example, Brown (1990) reported an experiment in which
subjects were asked to think aloud as they estimated dates
for a set of well-known public events. Analysis of these
protocols revealed that 78% of the estimates were justified
with reference to one or more domain-specific fact.

The existence of evidence within a single task that is
consistent with both perspectives suggests that any
satisfactory approach to estimation must account for the
influences of both general heuristics and domain-specific
knowledge. One way to reconcile these two approaches is
to assume a knowledge-based architecture and to view a
given estimate as a weighted blend of available relevant
information. Thus, when estimating the population of
Malaysia, one might recall the population of Japan and use
it to truncate the response at 120 million. One might also
use availability to classify Malaysia as a not-very-large
country. Taken together these two sources of information
suggest not only that the target population is smaller than
120 million, but that it probably is a good deal smaller.

Viewing estimates as a weighted blend of relevant
information provides a plausible mechanism for
reconciling knowledge-based and heuristic perspectives.
However, when estimates are conceived in this way, one is
confronted with the issue of how the estimation process
weighs competing sources of information. Drawing on
recent work carried out within the cue validity framework
(e.g., Gigerenzer, Kleinbolting, & Hoffrage, in press;
MacWhinney, 1987), we hypothesized that competing facts
are weighed according to (a) their predictive strength or
validity, and (b) their specific relevance to the task. In the
current context, predictive strength reflects the ability of a
fact or inference to correctly predict the value of the to-be-
estimated quantity. In other words, we assumed that people
believe some inferences to be more credible or more
reliable than others and that they weigh the more credible
inferences more heavily than the less credible inferences.
We also believed that inferences based on specific
quantitative facts (e.g., the population of Japan is 120
million) would be weighed more heavily than those that
were not. The two experiments described below bear
directly on the accuracy on this particular instantiation of
the specificity assumption.

Experiment 1

In an earlier experiment we found that (a) estimates of
national populations tended to be very inaccurate in an
absolute sense; the average population estimate was 3/4 of
an order of magnitude away from the actual population. We
also found that (b) better-known countries were considered
to have larger populations than less well-known countries,
other things being equal (Brown & Siegler, in preparation).
We took the first finding to indicate that accurate
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knowledge of national populations is extremely
uncommon, and the second to indicate that availability
played a major role in this task.

The aim of the current experiment was to see if we
could improve estimation performance and decrease the
dependency on availability by introducing a set of relevant
quantitative facts. In this experiment, subjects first
estimated the populations of 99 countries. They then
learned the actual populations of 24 of these countries.
Finally, they were provided another set of estimates for all
99 countries. We expected that subjects would use the
population facts they learmed in two ways. First, these
facts might serve as the basis for accurate generalizations
about the geographical, social, economic and historical
factors that result in populations of various sizes. Second,
it seemed likely that the populations might be retrieved and
used as quantitative reference points when subjects
attempted to estimate the populations of the "transfer
countries." These reference points would allow subjects
either to truncate the range of possible responses or to
select a numerically anchored region within the range that
was likely to contain the target country's population.

Given these expectations, we predicted that "seeding the
knowledge-base” would have the following effects on
estimation performance. First, subjects should display a
decreased dependence on availability. This follows from the
specificity assumption made above; both the population
facts and the newly derived demographic generalizations are
more specifically relevant than availability judgments.
Therefore, inferences based on this new information should
be weighed more heavily than inferences based on
availability. Second, we predicted that seeding the
knowledge-based would lead to an improved rank-order
correlation between true populations and estimated
populations for the transfer countries. This would come
about if subjects were able to use the seed set to correctly
induce the factors that predict population size, or if they
were able to select the most appropriate seed country or
countries to serve as quantitative reference points. These
same considerations led us to predict that mean estimates
across the the transfer countries should be much more
accurate in an absolute sense after the knowledge-base had
been seeded.

Method

Twenty-four Carnegie Mellon undergraduates participated
in this experiment. Each of these subjects performed four
tasks during a 1 hr experimental session: a knowledge
rating task, an initial estimation task, a learning task, and
a final estimation task. In all but the learning task,
subjects were exposed once to each of 99 countries. These
99 countries represented all but one of the countries that
had populations of at least 4 million in 1989 (Information
Please Almanac, 1989). The one exception was the United
States, whose population was given to subjects as an
example before the first estimation task.

During the knowledge rating task, subjects were
presented with the names of the 99 test countries, one at a
time, on a computer controlled video display. They were



instructed to evaluate their knowledge of each country on a
0-t0-9 scale, with 0 indicating no knowledge of the country
in question, 9 indicating a great deal of knowledge, and
intermediate values indicating intermediate levels of
knowledge. In this task, as in the others, subjects
responded by typing their answers at the computer
keyboard.

Following the knowledge rating task, subjects
performed the initial estimation task. Again, the 99 test
countries were presented, one at a time in a random order.
Subjects were instructed to respond to each country with
their best estimate of that country's current population.

Subjects were then presented with the four study-test
blocks of the learning task. During each block, subjects
were given the opportunity to study the actual population
of each of 24 seed countries and were then tested on their
knowledge of these populations. These countries were a
subset of the full set of 99 countries. They were selected so
that there were 6 countries in each cell of a 2 (country
knowledge: High and Low) X 2 (estimation accuracy: High
and Low) factorial design. Half of of the seed countries had
received high knowledge ratings in a prior experiment and
half received low ratings; half had received accurate
estimates in the prior experiment and half had received
inaccurate estimates. The high-knowledge, high-accuracy
seed countries were: South Africa, Spain, Egypt, Italy,
Great Britain, and West Germany. The the high-knowledge,
low-accuracy seed countries were: Israel, Switzerland,
Greece, Australia, Canada, and Vietnam. The low-
knowledge, high-accuracy countries were: the Netherlands,
Venezuela, Kenya, Romania, the Sudan, and Argentina.
The low-knowledge, low-accuracy countries were: Bolivia,
Zimbabwe, the Ivory Coast, Chile, Zaire, and Thailand.

The study-test blocks were divided into a study phase
and a test phase. During the study phase, each seed country
was presented with its population for 6 seconds. After
subjects had studied all 24 study-test countries, they began
the test phase. The task here was to respond to each
country's name by typing its true population. When
subjects could not recall a country's exact population, they
were to respond with their closest approximation.

After completing the learning task, subjects began the
second estimation task.The procedure followed during this
task was identical to the one followed during the first
estimation task.

Results and Discussion

The results provided clear support for only one of the three
predictions made above. As predicted, “seeding the
knowledge-base" resulted in a large decrease in absolute
error across 75 transfer countries (i.e., the 75 countries that
were not presented during the learning task). Specifically,
for each subject, we first computed the absolute difference
between the estimated population and the true population
for each transfer country. Then, we computed the median
absolute difference (MAD), for each subject, over all 75
transfer countries. Average MAD for the transfer countries
decreased 48%, from 20.9 million in the first estimation
task, to 10.9 million in the second (1(23)= -2.45, p < .05).
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In contrast to the large decrease in MAD, the seeding
procedure had little effect on the correlation between
estimated and true population. For the 75 transfer
countries, the average (taken over subjects) rank-correlation
between these two measures was .40 before the learning
task, and .43 after the learning task (#(23)=1.57, p > 1).

Finally, the data completely failed to support the
prediction that seeding the knowledge-base would decrease
reliance on availability. The results relevant to this
prediction come from a pair of regression analyses, one on
the estimates before the leaming task and one on the
estimates after the learning task. In both cases, the
dependent measure was the median estimated population for
each of the transfer countries. The predictor variables were
mean knowledge rating, true population, and true land area.
The medians were computed over subjects. The three
largest countries, China, India, and the Soviet Union, were
excluded from these analyses because they unduly

influenced the outcome of the regressions. The R2
computed for the pre-learning estimates was .66, as was

the RZ for the post-learning estimates.

If subjects had depended less on availability after the
learning task than before, then the knowledge variable
should play a larger role in the analysis conducted on the
the pre-learning estimates than in the analysis conducted on
the post-learning estimates. Contrary to this prediction, the
knowledge variable played a smaller role in the former than
in the latter. In the pre-learning analysis, country
knowledge accounted for 35% of the unique variance; in the
post-learning analysis, it accounted for 42% (p < .001. in
both cases). Neither actual population nor actual land area
accounted for more than 4% of the unique variance in either
analysis.

These results suggest that there may be two
analytically distinct components to real-world quantitative
estimation. One component is an absolute or range
component, and the other is a relative or ranking
component. In the population estimation task, the absolute
component can be equated with the assumptions
concerning the plausible range of national populations, and
the relative component with the knowledge used to locate a
country's population within the assumed range.

The seeding procedure primarily affected the absolute
component. It makes sense that studying the populations
of 24 countries would lead subjects to develop a better
understanding of the response range. There is support for
this claim. The subjects who decreased the size of their
estimates to the greatest extent across the two estimation
tasks were those who provided the largest overestimates in
the pre-learning task. Similarly, the subjects who increased
their estimates the most were those who provided the most
extreme underestimates in the pre-learning task (r=.98).

At the outset of this study, we expected that the seeding
procedure would affect both the relative and the absolute
components. However, the two failed predictions described
above indicate that this procedure had little or no effect on
the relative component. We believe that there are (wo
reasons for this outcome. First, it appears that high task
specificity is not necessarily equivalent to high predictive
strength. That is, quantitative reference points will not



necessarily dominate performance when other credible
source of information are available. Recalling the
population of Japan may provide an upper bound for an
estimate of Malaysia's population, but it may have no
effect on a strongly held, availability-based belief that
Malaysia has a fairly small population.

In addition to overestimating the potential usefulness of
explicit reference points, we also seem to have
overestimated the ability of subjects to act as "naive
demographers." It appears that subjects were not able to
use the population facts presented during the learning task
to correctly update their beliefs about relative populations
of different countries. In retrospect, this is not too
surprising. Information provided by populations of the
high-accuracy countries was consistent with subjects’ prior
beliefs, while the information provided by populations of
the low-accuracy was inconsistent It seems unlikely that an
ambiguous situation of this sort would compel subjects to
reevaluate their beliefs.

Experiment 2

The aim of Experiment 2 was to demonstrate that seeding
the knowledge-base with sets of population facts that are
consistent and informative can influance relative
population estimates. In the current context, a consistent
set of facts is one in which all of the seed countries from
an identifiable geographical region have similar
populations (e.g., all of the European populations are
small), and an informative set of facts is one in which the
generalizatons implicit in the set always confirm or
always disconfirm prior beliefs about populations.

We knew from prior experiments (Brown & Siegler, in
preparation) that subjects tended to believe that small
European countries have relatively large populations and
that large Asian countries have relatively small
populations. In the current experiment, we attempted to
influence these beliefs, and hence the ranking of European
and Asian countries, by seeding the knowledge-base with
sets of facts that consistently confirmed or consistently
disconfirmed them. The expectation was that exposure (o
disconfirming population facts (i.e., facts about small
European countries and large Asian countries) would
improve the rank-order correlation between estimated and
true population, and that exposure to confirming
population facts (i.e., facts about large European countries
and small Asian countries) would decrease this correlation.

Method

Three factors were varied: seed set, transfer region, and trial
block. Seed set was a between subjects factor. It involvled
the particular population facts that subjects learned. The 20
subjects in one group, the bias-disconfirming group, saw
the populations of three small European countries
(Switzerland, Sweden, the Netherlands) and three large
Asian countries (Thailand, the Philippines, Vietnam). The
20 subjects in a second group, the bias-confirming group,
saw the populations of three large European countries
(Great Britain, Italy, West Germany) and three small Asian
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countries (Cambodia, Sri Lanka, Malaysia). Finally, 20
subjects were run in a control condition; these subjects
were never exposed to the actual populations of any
countries.

Trial block and transfer region were both within-
subjects factors. Subjects in all three groups were required
to estimate the populations of 36 countries once during
each of 4 tnal blocks. This set of countries consisted of the
12 seed countries and 24 transfer countries. Six transfer
countries were selected from Asia (Burma, South Korea,
Pakistan, Bangladesh, Japan, Indonesia), six from Europe
(Norway, Denmark, Austria, Belgium, Greece, Portugal),
six from Africa (Chad, Zimbabwe, the Ivory Coast, South
Africa, Ethiopia, Nigeria) and six from Latin America
(Honduras, Bolivia, Ecuador, Argentina, Mexico, Brazil).
We refer to Asia and Europe as the seeded regions because
both the confirming and disconfirming countries were
drawn from them, and to Africa and Latin America as the
unseeded regions, because subjects were not exposed to the
populations of any of the countries from these regions.

The procedure followed on the first of the four trial
blocks was identical to the procedure used during the
Experiment 1 estimation tasks, except that subjects were
only tested on the populations of 36 countries. As in the
earlier experiment, subjects were instructed to enter a
response that reflected their best estimate of each country’s
current population.

At the beginning of the second trial block, subjects in
the bias-confirming and bias-disconfirming conditions. For
the bias-disconfirming subjects, the computer display listed
the names and populations of the smallest European seed
country and the largest Asian seed country. Similarly,
subjects in the bias-confirming condition saw the names
and populations of the smallest Asian country and the
largest European country. At the beginning of the third
estimation block, two more country names and
populations were added to the display. During this block,
subjects in the experimental conditions were presented with
information about the second largest of the small seed
countries and the second smallest of the large seed
countries. Finally, during the fourth block, the
experimental subjects saw all six of the relevant seed set
countries.

Subjects in the control condition simply provided four
sets of estimates for the 36 stimulus countries and never
saw the actual populations of any of these countries.
Presentation order of the stimulus countries was
randomized for each subject and each block.

Predictions

The central prediction of this experiment concerned
possible changes in rank-order correlations across blocks.
Specifically, we predicted a Seed Set X Transfer Region X
Trial Block interaction. We expected that subjects who
received the disconfirming seeds might realize that some
European countries have very small populations and that
some Asian countries have quite large populations. This
understanding should lead subjects to decrease estimates for
the European transfer countries and increase them for the



Asian transfer countries. This in turn should lead to an
increased rank-order correlation between estimated and true
population for the countries in the seed regions.

In the bias-confirming condition, we expected that the
seed facts would increase subjects' confidence in their prior
biased beliefs. To the extent that these beliefs are
strengthen by exposure to the confirming seed set, subjects
should increase population estimates for the European
countries and decrease them for the Asian counties, leading
to an overall decrease in the rank-order correlation between
estimated and true population.

In brief, for countries in the seeded regions, rank-order
correlation between estimated and true population should
increase over blocks in the bias-disconfirming condition
and decrease over block in the bias-confirming condition.
In contrast, we predicted no change in rank-order correlation
for the countries in the unseeded regions, in either the bias-
confirming or bias-disconfirming conditions. This is
because neither seed set had clear implications for the
accuracy of the beliefs that determine the relative size of
African and Latin American countries. Finally, since the
control subjects were given no information about national
populations, we expected no change in the rank-orderings
of the countries in either the seeded or unseeded regions.

We expected a large decrease in MAD for the countries
from the seeded regions and for countries from the unseeded
regions, in both the bias-confirming and bias-
disconfirming conditions. This is because the seed facts
should provide information that would allow subjects to
evaluate and update their range assumptions. Since range
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assumptions play an important role in determining the
absolute accuracy of all responses (at least when range
assumptions can be off by several orders magnitude), the
improvement in MAD should not be restricted to the
countries drawn from the seeded regions. The MAD scores
for the control subjects should not change over blocks.

Results and Discussion

In order 1o test predictions concerning changes in the rank-
ordering of countries, we first obtained eight rank-order
correlations per subject. For each subject and each trial
block, we computed one correlation between estimated and
actual population for the 12 transfer countries drawn from
the seeded regions, and one for the 12 transfer countries
drawn from the unseeded regions. These correlations were
then submitted to an ANOVA, which indicated that the
interaction between seed set, transfer region and trial block
was significant (F(6,171)=5.21, p < .0001).

As predicted, the rank-order correlation for the seeded
regions increased when subjects were presented with bias-
disconfirming seed populations and decreased when they
were presented with bias-confirming seed populations (see
Figure 1). Also as predicted, the rank-order correlations for
the unseeded regions were unaffected by the presence of
either confirming or disconfirming information. Finally,
the control condition indicates subjects did not alter their
ranking-ordering of countries in the absence of externally
provided cues.

0-6 _—-—’-“‘.=-___--='_._-____-
== ='----.... ———————— *"—-—...___

Seeded-Disconfirming
Seeded-Confirming

Seeded-Control
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Figure 1. Mean rank-order correlations computed across countries in the seeded regions (Asia and Europe: solid lines) and the
unseeded regions (Africa and Latin America: dashed lines), for subjects in the bias-disconfirming (squares), bias-confirming
(triangles), and control conditions (circles). Experiment 2 data.
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An ANOVA was also performed on the the accuracy
data. In order to do this, we first computed the absolute
difference between the estimated and actual population for
each response. Next, for each subject and each block, we
obtained medians of these absolute differences over the 12
seeded transfer countries and over the 12 unseeded transfer
countries.

The most interesting result in this ANOVA was a
significant Seed Set X Trial Block interaction
(F(6,171)=3.27, p < .01). Across the four trial blocks,
estimates in the control condition became slightly less
accurate (MAD = 27.9 million in Block 1, MAD = 34.5
million in Block 4); estimates in the bias-confirming
condition became somewhat more accurate (MAD = 35.6
million in Block 1, MAD = 24.0 million in Block 4); and
estimates in the bias-disconfirming condition improved a
great deal. (MAD = 34.5 million in Block 1, MAD = 18.5
million in Block 4). In contrast to the analysis performed
on the rank-order correlations, the Seed Set X Transfer
Region X Trial Block interaction was not signficant for
the MAD measure (F(6,171)=1.19, p > .1). This is
consitent with the prediction that the seeding proceedure
would improve preformance in an absolute sense for both
the seed and unseeded regions.

Conclusions

There are three main points to take away from the research
just described. First the process that generates real-world
quantitative estimates often blends qualitative and
quantitative information. It appears that this process does
not necessarily grant a special status to information that is
explicitly quantitative. Second, estimation can be seen as
having two distinct components: an absolute or range
component and a relative or ranking component. When the
knowledge-base is seeded with an arbitrary or neutral set of
quantitative facts, one can expect to improve performance
in an absolute sense but not in a relative sense. Finally, it
appears that seed facts must be carefully selected if one
hopes to improve performance in both relative and absolute
senses. Specifically, the set of facts presented to subjects
must be consistent, informative, and valid. A consistent
set of facts is one that allows for an obvious mapping
between the items' qualitative and quantitative category; an
informative set of facts is one that provides subjects with
evidence that suggests changes in their beliefs; and a valid
set of facts is one that leads to an increase of the predictive
validity of the modified beliefs.
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