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ARTICLE

Genome-wide association and Mendelian
randomisation analysis provide insights into
the pathogenesis of heart failure
Sonia Shah et al.#

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion

of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide

association studies (GWAS) have yielded only limited insights, leaving the observed herit-

ability of HF largely unexplained. We report results from a GWAS meta-analysis of HF

comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic

loci are associated with HF, all of which demonstrate one or more associations with coronary

artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared

genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in

cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular

senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several

HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass

index, and hypertension. These findings extend our knowledge of the pathways underlying HF

and may inform new therapeutic strategies.

https://doi.org/10.1038/s41467-019-13690-5 OPEN

#A full list of authors and their affiliations appears at the end of the paper.

NATURE COMMUNICATIONS |          (2020) 11:163 | https://doi.org/10.1038/s41467-019-13690-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5860-4526
http://orcid.org/0000-0001-5860-4526
http://orcid.org/0000-0001-5860-4526
http://orcid.org/0000-0001-5860-4526
http://orcid.org/0000-0001-5860-4526
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Heart failure (HF) affects >30 million individuals world-
wide and its prevalence is rising1. HF-associated mor-
bidity and mortality remain high despite therapeutic

advances, with 5-year survival averaging ~50%2. HF is a clinical
syndrome defined by fluid congestion and exercise intolerance
due to cardiac dysfunction3. HF results typically from myo-
cardial disease with impairment of left ventricular (LV) function
manifesting with either reduced or preserved ejection fraction.
Several cardiovascular and systemic disorders are implicated as
aetiological factors, most notably coronary artery disease (CAD),
obesity and hypertension; multiple risk factors frequently co-
occur and the contribution to aetiology has been challenging
based on observational data alone1,4. Monogenic hypertrophic
and dilated cardiomyopathy (DCM) syndromes are known
causes of HF, although they account for a small proportion of
disease burden5. HF is a complex disorder with an estimated
heritability of ~26%6. Previous modest-sized genome-wide
association studies (GWAS) of HF reported two loci, while stu-
dies of DCM have identified a few replicated loci7–11. We
hypothesised that a GWAS of HF with greater power would
provide an opportunity for: (i) discovery of genetic variants
modifying disease susceptibility in a range of comorbid contexts,
both through subtype-specific and shared pathophysiological
mechanisms, such as fluid congestion; and (ii) provide insights
into aetiology by estimating the unconfounded causal contribu-
tion of observationally associated risk factors by Mendelian
randomisation (MR) analysis12.

Herein, we perform a large meta-analysis of GWAS of HF to
identify disease associated genomic loci. We seek to relate HF-
associated loci to putative effector genes through integrated
analysis of expression data from disease-relevant tissues, includ-
ing statistical colocalisation analysis. We evaluate the genetic
evidence supporting a causal role for HF risk factors identified
through observational studies using Mendelian randomisation
and explore mediation of risk through conditional analysis. In
summary, our study identifies additional HF risk variants,
prioritises putative effector genes and provides a genetic appraisal
of the putative causal role of observationally associated risk fac-
tors, contributing to our understanding of the pathophysiological
basis of HF.

Results
Meta-analysis identifies 11 genomic loci associated with HF.
We conducted a GWAS comprising 47,309 cases and 930,014
controls of European ancestry across 26 studies from the Heart
Failure Molecular Epidemiology for Therapeutic Targets
(HERMES) Consortium. The study sample comprised both
population cohorts (17 studies, 38,780 HF cases, 893,657 con-
trols) and case-control samples (9 studies, 8,529 cases, 36,357
controls; see Supplementary Notes 2 and 3 for a detailed
description of the included studies). Genotype data were imputed
to either the 1000 Genomes Project (60%), Haplotype Reference
Consortium (35%) or study-specific reference panels (5%). We
performed a fixed-effect inverse variance-weighted (IVW) meta-
analysis relating 8,281,262 common and low-frequency variants
(minor allele frequency (MAF) > 1%) to HF risk (Fig. 1). We
identified 12 independent genetic variants, at 11 loci associated
with HF at genome-wide significance (P < 5 × 10−8), including 10
loci not previously reported for HF (Fig. 2, Table 1). The
quantile–quantile, regional association plots and study-specific
effects for each independent variant are shown in Supplementary
Figs. 1–3. We replicated two previously reported associations for
HF and three of four loci for DCM (Bonferroni-corrected P <
0.05; Supplementary Data 1). Using linkage disequilibrium score
regression (LDSC)13, we estimated the heritability of HF in UK

Biobank ðh2gÞ on the liability scale, as 0.088 (s.e.= 0.013), based
on an estimated disease prevalence of 2.5%14.

Phenotypic effects of HF-associated variants. Next, we investi-
gated associations between the identified loci and other traits that
may provide insights into aetiology. First, we queried the
NHGRI-EBI GWAS Catalog15 and a large database of genetic
associations in UK Biobank (http://www.nealelab.is/uk-biobank),
and identified several biomarker and disease associations at each
locus (Supplementary Data 2 and 3). Second, we tested for
associations of identified loci with ten known HF risk factors,
including cardiac structure and function measures, using GWAS
summary data (Supplementary Data 4)16–23. Six sentinel variants
were associated with CAD, including established loci, such as
9p21/CDKN2B-AS1 and LPA18. Four variants were associated
with atrial fibrillation (AF), a common antecedent and sequela of
HF24. To estimate whether the HF risk effects were mediated
wholly or in part by risk factors upstream of HF (e.g., CAD), we
conditioned HF GWAS summary statistics on nine HF risk fac-
tors using Multi-trait Conditional and Joint Analysis (mtCOJO)25

(Supplementary Data 5). Conditioning on AF attenuated the HF
risk effect by >50% for the PITX2/FAM241A locus but not other
AF-associated loci (KLHL3, SYNPOL2/AGAP5), conditioning on
CAD fully attenuated effects for two of the six CAD loci (LPA,
9p21/CDKN2B-AS1) and conditioning on body mass index (BMI)
ablated the effect of the FTO locus (Supplementary Fig. 4, Sup-
plementary Data 5). Next, we performed hierarchical agglom-
erative clustering of loci based on cross-trait associations to
identify groups related to HF subtypes (Fig. 3). Among HF loci
not associated with CAD, a group of four clustered together, of
which two (KLHL3 and SYNPO2L/AGAP5) were associated with
AF and two (BAG3 and CDKN1A) with reduced LV systolic
function (fractional shortening (FS); Bonferroni-corrected P <
0.05); we highlight the results for these loci in our reporting of
subsequent analyses to identify candidate genes. Notably, genetic

GWAS meta-analysis
26 studies
European ancestry 

8,246,881 variants
47,309 HF cases
930,014 controls

Gene based association

• Burden test (MAGMA)
• Predicted gene expression 

(MetaXcan)    

LD score regression

• SNP heritability (h2
g)

• Genetic correlation with HF risk
factors 

12 independent variants, 11 independent loci P < 5 × 10–8

Variant effects on gene expression

• eQTL analysis (heart, blood)
• Colocalisation analysis
• Serum protein QTL analysis

Functional variant consequence

• Coding variation (CADD)

Pleiotropy scan

• Association with HF risk factors 
• Association with diseases and

traits in UK Biobank and GWAS
Catalog   

Causal analysis HF risk factors

• Mendelian randomisation
• mtCOJO conditional analysis to

estimate mediation 

Characterisation of HF loci Secondary analyses

Fig. 1 Study design and analysis workflow. Overview of study design to
identify and characterise heart failure-associated risk loci and for secondary
cross-trait genome-wide analyses. GWAS, genome-wide association study;
QTL, quantitative trait locus; MAGMA, Multi-marker Analysis of GenoMic
Annotation; SNP, single-nucleotide polymorphism; mtCOJO, multi-trait-
based conditional and joint analysis.
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associations with DCM at the BAG3 locus have been reported
previously10,11.

Tissue-enrichment analysis. We performed gene-based associa-
tion analyses using MAGMA26 to identify tissues and aetiological
pathways relevant to HF. Thirteen genes were associated with HF
at genome-wide significance, of which four were located within
1Mb of a sentinel HF variant and expressed in heart tissue
(Supplementary Data 6). Tissue specificity analysis across 53
tissue types from the Genotype-Tissue Expression (GTEx) project
identified the atrial appendage as the highest ranked tissue for
gene expression enrichment, excluding reproductive organs
(Supplementary Fig. 5). We sought to map candidate genes to the
HF loci by assessing the functional consequences of sentinel
variants (or their proxies) on gene expression, and protein
structure/abundance using quantitative trait locus (QTL)
analyses.

Variant effects on protein coding sequence. Since the identified
HF variants were located in non-coding regions, we investigated if
sentinel variants were in linkage disequilibrium (LD, r2 > 0.8)
with non-synonymous variants with predicted deleterious effects.
We identified a missense variant in BAG3 (rs2234962; r2= 0.99
with sentinel variant rs17617337) associated previously with
DCM and progression to HF, and three missense variants in
SYNPO2L (rs34163229, rs3812629 and rs60632610; all r2 > 0.9
with sentinel variant rs4746140)10,11,27. All four missense variants
had Combined Annotation Dependent Depletion scores > 20,
suggesting deleterious effects (Supplementary Data 7).

Prioritisation of putative effector genes by expression analysis.
We then sought to identify candidate genes for HF risk loci by
assessing their effects on gene expression. Given that cardiac
dysfunction defines HF and that HF-associated genes by
MAGMA analysis were enriched in heart tissues, we first looked
for expression quantitative trait loci (eQTL) in heart tissues (LV,
left atrium, and RAA, right atrium auricular region) from the
Myocardial Applied Genomics Network (MAGNet) and GTEx
projects. Three of 12 variants were significantly associated with
the expression of one or more genes located in cis in at least one
heart tissue (Bonferroni-corrected P < 0.05; Supplementary
Data 8). For several of the identified HF loci, extra-cardiac tissues
are likely to be relevant; for example, liver is reported to mediate

effects of the LPA locus28. To further explore these effects, we
then analysed results from a large whole-blood eQTL dataset
(n= 31,684) and found associations with cis-gene expression
(P < 5 × 10−8) for 8 of 12 sentinel variants (Supplementary
Table 1)29. For most HF variants, heart eQTL associations were
consistent with those for blood traits; however, for intronic HF
sentinel variants in BAG3, CDKN1A and KLHL3 we detected
expression of the corresponding gene transcripts in blood only.

Next, to prioritise among candidate genes identified through
eQTL associations, we estimated the posterior probability for a
common causal variant underlying associations with gene
expression and HF at each locus, by conducting pairwise Bayesian
colocalisation analysis30. We found evidence for colocalisation
(posterior probability > 0.7) for MYOZ1 and SYNPO2L in heart,
PSRC1 and ABO in heart and blood; and CDKN1A in blood
(Supplementary Data 8, Supplementary Table 1). PSRC1 and
MYOZ1 were also implicated in a transcriptome-wide association
analysis performed using predicted gene expression based on
GTEx human atrial and ventricular expression reference data
(Supplementary Table 2). Using serum pQTL data from the
INTERVAL study (N= 3,301), we also identified significant
concordant cis associations for BAG3 and ABO (Supplementary
Data 9)31.

The evidence linking candidate genes with HF risk loci is
summarised in Supplementary Table 3, and candidate genes are
described in Supplementary Note 1. At HF risk loci associated
with reduced systolic function or AF, but not with CAD, the
annotated functions of candidate genes related to myocardial
disease processes, and traits that may influence clinical expres-
sivity, such as renal sodium handling. For example, the sentinel
variant at the SYNPO2L/AGAP5 locus was associated with
expression of MYOZ1 and SYNPO2L, encoding two α-actinin
binding Z-disc cardiac proteins. MYOZ1 is a negative regulator of
calcineurin signalling, a pathway linked to pathological
hypertrophy32,33 and SYNPO2L is implicated in cardiac devel-
opment and sarcomere maintenance34. The HF sentinel variant at
the BAG3 locus was in high LD with a non-synonymous variant
associated previously with DCM11, and was associated with
decreased cis-gene expression in blood. BAG3 encodes a Z-disc-
associated protein that mediates selective macroautophagy and
promotes cell survival through interaction with apoptosis
regulator BCL235. CDKN1A encodes p21, a potent cell cycle
inhibitor that mediates post-natal cardiomyocyte cell cycle
arrest36 and is implicated in LMNA-mediated cellular stress
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responses37. KLHL3 is a negative regulator of the thiazide-
sensitive Na+Cl− cotransporter (SLC12A3) in the distal nephron;
loss of function variants cause familial hyperkalaemic hyperten-
sion (FHHt) by increasing constitutive sodium and chloride
resorption38. The sentinel variant at this locus was associated with
decreased gene expression and could predispose to sodium and
fluid retention. Notably, thiazide diuretics inhibit SLC12A3 to
restore sodium and potassium homoeostasis in FHHt and are
effective treatments for preventing hypertensive HF39.

Genetic appraisal of HF risk factors. Although many risk factors
are associated with HF, only myocardial infarction and hyper-
tension have an established causal role based on evidence from
randomised controlled trials (RCTs)40. Important questions
remain about causality for other risk factors. For instance, type 2
diabetes (T2D) is a risk factor for HF, yet it is unclear if the
association is mediated via CAD risk or by direct myocardial
effects, which may have important preventative implications41.
Accordingly, we investigated potential causal roles for modifiable
HF risk factors, using GWAS summary data. First, we estimated
the genetic correlation (rg) between HF and 11 related traits, using
bivariate LDSC. For eight of the eleven traits tested, we found
evidence of shared additive genetic effects with estimates of rg
ranging from −0.25 to 0.67 (Supplementary Table 4). The esti-
mated CAD-HF rg was 0.67, suggesting 45% ðr2g Þ of variation in
genetic risk of HF is accounted for by common genetic variation
shared with CAD, and that the remaining genetic variation is
independent of CAD.

Next, we estimated the causal effects of the 11 HF risk factors
using Generalised Summary-data-based Mendelian Randomisa-
tion, which accounts for pleiotropy by excluding heterogenous
variants based on the heterogeneity in dependent instrument
(HEIDI) test (Methods, Supplementary Fig. 6, Supplementary
Data 10). Consistent with evidence from RCTs and genetic
studies42, we found evidence for causal effects of higher diastolic
blood pressure (DBP; OR= 1.30 per 10 mmHg, P= 9.13 × 10−21)
and systolic blood pressure (SBP; OR= 1.18 per 10 mmHg, P=
4.8 × 10−23), and higher risk of CAD (OR= 1.36, P= 1.67 ×
10−70) on HF. We note that the effect estimates for variant
associations with blood pressure, included as instrumental
variables, were adjusted for BMI, which may attenuate the
estimated causal effect on HF. We found a s.d. increment of BMI
(equivalent to 4.4 kg m−2 (men)− 5.4 kg m−2 (women)43)
accounted for a 74% higher HF risk (P= 2.67 × 10−50), consistent
with previous reports44,45. We identified evidence supporting
causal effects of genetic liability to AF (OR of HF per 1 log odds
higher AF= 1.19, P= 1.40 × 10−75) and T2D (OR of HF per 1
log odds higher T2D= 1.05, P= 6.35 × 10−05) and risk of HF.
We did not find supportive evidence for a causal role for higher
heart rate (HR) or lower glomerular filtration rate (GFR) despite
reported observational associations46,47. We then performed a
sensitivity analysis to explore potential bias arising from the
inclusion of case-control samples by repeating the Mendelian
randomisation analysis, using HF GWAS estimates generated
from population-based cohort studies only. The results of this
analysis were consistent with those generated from the overall
sample (Supplementary Table 5).

To investigate whether risk factor effects on HF were mediated
by CAD and AF, we performed analyses conditioning for CAD
and AF using mtCOJO. We observed attenuation of the effect of
T2D after conditioning for CAD (OR= 1.02, P= 0.19), suggest-
ing at least partial mediation by CAD risk rather than through
direct myocardial effects of hyperglycaemia. Similarly, the effects
of low-density lipoprotein cholesterol (LDL-C) were fully
explained by effects of CAD on HF risk (OR= 1.00, P= 0.80).T
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Conversely, the effects of blood pressure, BMI and triglycerides
(TGs) were only partially attenuated, suggesting causal mechan-
isms independent of those associated with AF and CAD (Fig. 4,
Supplementary Data 10).

Discussion
We identify 12 independent variant associations for HF risk at 11
genomic loci by leveraging genome-wide data on 47,309 cases and
930,014 controls, including 10 loci not previously associated with
HF. The identified loci were associated with modifiable risk fac-
tors and traits related to LV structure and function, and include
the strongest associations signals from GWAS of CAD (9p21,
LPA)18, AF (PITX2)17 and BMI (FTO)20. Conditioning for CAD,
AF and blood pressure traits demonstrated that the effects of
some loci (e.g., 9p21/CDKN2B-AS1) were mediated wholly via
risk factor trait associations (e.g., CAD); however, for 8 of 12
variants the attenuation of effects was <50%, suggesting alter-
native mechanisms may be important. Those loci associated with
reduced LV systolic function or AF mapped to candidate genes
implicated in processes of cardiac development, protein homo-
eostasis and cellular senescence. We use genetic causal inference
and conditional analysis to explore the syndromic heterogeneity
and causal biology of HF, and to provide insights into aetiology.
Mendelian randomisation analysis confirms previously reported
casual effects for BMI and provides evidence supporting the
causal role of several observationally linked risk factors, including
AF, elevated blood pressure (DBP and SBP), LDL-C, CAD, TGs
and T2D. Using conditional analysis, we demonstrate CAD-
independent effects for AF, BMI, blood pressure and estimate that
the effects of T2D are mostly mediated by an increased risk
of CAD.

The heterogeneity of aetiology and clinical manifestation of HF
are likely to have reduced statistical power. We identify a modest
number of genetic associations for HF compared to other cardi-
ovascular disease GWAS of comparable sample size, such as for
AF, suggesting that an important component of HF heritability
may be more attributable to specific disease subtypes than com-
ponents of a final common pathway17. Subsequent studies will
explore emerging opportunities to define HF subtypes and
longitudinal phenotypes in large biobanks and patient registries at
scale using standardised definitions based on diagnostic codes,
imaging and electronic health records. We speculate that future
analysis of HF subtypes may yield additional insights into the
genetic architecture of HF to inform new approaches to pre-
vention and treatment.

Methods
Samples. Participants of European ancestry from 26 cohorts (with a total of 29
distinct datasets) with either a case-control or population-based study design were
included in the meta-analysis, as part of the HERMES Consortium. Cases included
participants with a clinical diagnosis of HF of any aetiology with no inclusion
criteria based on LV ejection fraction; controls were participants without HF.
Definitions used to adjudicate HF status within each study are detailed in the
Supplementary Data 11 and baseline characteristics for each study are provided in
Supplementary Data 12. We meta-analysed data from a total of 47,309 cases and
930,014 controls. All included studies were ethically approved by local institutional
review boards and all participants provided written informed consent. The meta-
analysis of summary-level GWAS estimates from participating studies was per-
formed in accordance with guidelines for study procedures provided by the UCL
Research Ethics Committee.

Genotyping and imputation. All studies used high-density genotyping arrays and
performed genotype calling and pre-imputation quality control (QC), as reported
in Supplementary Data 13. Studies performed imputation using one or more of the
following reference panels: 1000 Genomes (Phase 1 or Phase 3)48, Hapmap 2 NCBI
build 3649, Haplotype Reference Consortium (HRC)50, the Estonian Whole-
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type 2 diabetes; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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Genome Sequence reference51 or a reference sample based on 15,220 whole-
genome sequences of Icelandic individuals. The following software tools were used
by studies for phasing: Eagle52, MaCH53 and SHAPEIT54; and imputation:
mimimac255 and IMPUTE256. For imputation to the HRC reference panel, the
Sanger Imputation Server (https://www.sanger.ac.uk/science/tools/sanger-
imputation-service) was used. The deCODE study was imputed using study specific
procedures57. Methods for phasing, imputation and post-imputation QC for each
study are detailed in Supplementary Data 13.

Study-level GWA analysis. GWA analysis for each study was performed locally
according to a common analysis plan, and summary-level estimates were provided
for meta-analysis. Autosomal single-nucleotide polymorphisms (SNPs) were tested
for association with HF using logistic regression, assuming additive genetic effects.
For the Cardiovascular Health Study, HF association estimates were generated by
analysis of incident cases using a Cox proportional hazards model. All studies
included age and sex (except for single-sex studies) as covariates in the regression
models. Principal components (PCs) were included as covariates for individual
studies as appropriate. The following tools were used for study-level GWA analysis:
ProbABEL58, mach2dat (http://www.unc.edu/~yunmli/software.html), QuickT-
est59, PLINK260, SNPTEST61 or R62 as detailed in Supplementary Data 13.

QC on study summary-level data. QC of summary-level results for each study
was performed according to the protocol described in Winkler et al.63. In brief, we
used the EasyQC tool to harmonise variant IDs and alleles across studies and to
compare reported allele frequencies with allele frequencies in individuals of Eur-
opean ancestry from the 1000 Genomes imputation reference panel64. We
inspected P–Z plots (reported P value against P value derived from the Z-score),
beta and s.e. distributions, and Manhattan plots to check for consistency and to

identify spurious associations. For each study, variants were removed if they
satisfied any one of the following criteria: imputation quality < 0.5, MAF < 0.01,
absolute betas and s.e. > 10. As recommended in Sinnott et al.65 and Johnson
et al.66, more stringent QC measures were applied to studies where genotyping of
cases and controls was performed on different platforms. This included more
stringent thresholds for removing SNPs with low-quality imputation, and where
available, individuals genotyped on both platforms were used to remove SNPs with
low concordance rates between the two platforms. To check for study-level
genomic inflation, we examined quantile–quantile plots and calculated the genomic
inflation factor (λGC). For three studies, where some degree of genomic inflation
was observed (λGC > 1.1), genomic control correction was applied (Supplementary
Data 13)67.

Meta-analysis. Meta-analysis of summary data was conducted using the fixed-
effect IVW approach implemented in METAL (released March 25 2011)68. Var-
iants were included if they were present in at least half of all studies. We tested for
inflation of the meta-analysis test statistic due to cryptic population structure by
estimating the LDSC intercept, implemented using LDSC v1.0.013. As the LDSC
intercept indicated no inflation (LD score intercept of 1.0069), no further correc-
tion was applied to the meta-analysis summary estimates. To identify variants
independently associated with HF, we analysed the genome-wide results using
FUMA v1.3.269, selecting a random sample of 10,000 UK Biobank participants of
European ancestry as an LD reference dataset70. Variants were filtered using a P <
5 × 10−8 and independent genomic loci were LD-pruned based on an r2 < 0.1. We
calculated Cochrane’s Q and I2 statistics to assess whether the effect estimates for
HF sentinel variants were consistent across studies71.

Heritability estimation. To estimate the proportion of HF risk explained by
common variants we estimated heritability h2g on the liability scale, using LDSC on
the UK Biobank summary data (6,504 HF cases, 387,652 controls), assuming a
population prevalence of 2.5%14. This approach assumes that a binary trait has an
underlying continuous liability, and above a certain liability threshold an individual
becomes affected. We can then estimate the genetic contribution to the continuous
liability. Sample ascertainment can change the distribution of liability in the
sampled individuals and needs to be adjusted for, which requires making
assumptions about the population prevalence of the trait.

LD reference dataset. A LD reference was created, including 10,000 UK Biobank
participants of European ancestry, based on HRC-imputed genotypes (referred to
henceforth as UKB10K). European individuals were identified by projecting the UK
Biobank samples onto the 1000 G Phase 3 samples. A genomic relationship matrix
was constructed using HapMap3 variants, filtered for MAF > 0.01, PHWE < 10−6

and missingness < 0.05 in the European subset, and one member of each pair of
samples with observed genomic relatedness >0.05 was excluded to obtain a set of
unrelated European individuals. Random sampling without replacement was used
to extract a subset of 10,000 unrelated individuals of European ancestry. Variants
with a minor allele count > 5, a genotype probability > 0.9 and imputation quality
> 0.3 were converted to hard calls. This LD reference dataset was used for down-
stream summary-based analysis and for identifying SNP proxies.

Gene set enrichment analysis. A gene-based and gene set enrichment analysis of
variant associations was performed using MAGMA26, implemented by FUMA
v1.3.269. This analysis was performed using summary-level meta-analysis results.
First, a gene-based association analysis to identify candidate genes associated with
HF was conducted. Second, a tissue enrichment analysis of HF-associated genes
was performed using gene expression data for 30 tissues from GTEx. Finally, a gene
set enrichment analysis was performed based on pathway annotations from the
Gene Ontology database72. For all MAGMA analyses, multiple testing was
accounted for by Bonferroni correction.

Missense consequences of sentinel variants and proxies. We queried the
protein coding consequence of the sentinel variants and proxies (r2 > 0.8) using the
Combined Annotation Dependent Depletion (CADD) score73, implemented using
FUMA v1.3.269. The CADD score integrates information from 63 distinct func-
tional annotations into a single quantitative score, ranging from 1 to 99, based on
variant rank relative to all 8.6 billion possible single nucleotide variants of the
human reference genome (GRCh37). Sentinel SNPs or proxies with CADD score >
20 were identified. A CADD score of 20 indicates that the variant is ranked in the
top 1% of highest scoring variants, while a CADD score of 30 indicates the variant
is ranked in the top 0.1%.

Expression quantitative trait analysis. To determine if HF sentinel variants had
cis effects on gene expression, we queried two eQTL datasets based on RNA
sequencing of human heart tissue—the GTEx v7 resource74 and the MAGNet
repository (http://www.med.upenn.edu/magnet/). The GTExv7 sample included
272 LV and 264 RAA non-diseased tissue samples from European (83.7%) and
African Americans (15.1%) individuals. The MAGNet repository included 89 LV
and 101 LA tissue samples obtained from rejected donor tissue from hearts with no
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Fig. 4 Conditional Mendelian randomisation analyses of HF risk factors.
Forest plot of HF risk factors with significant causal effect HF risk estimated
using Mendelian randomisation, implemented with GSMR. Diamonds
represent the odds ratio and the error bars indicate the 95% confidence
interval. The unadjusted estimates represent the risk of HF as estimated
from the HF GWAS data, while the adjusted estimates represent risk of HF
conditioned, using GWAS summary statistics for atrial fibrillation (adjusted
for AF) or coronary artery disease (adjusted for CAD) estimated using the
mtCOJO method. For binary traits (coronary artery disease, atrial
fibrillation and type 2 diabetes), the MR estimates represent average causal
effect per natural-log odds increase in the trait risk. For continuous traits,
the MR estimates represent average causal effect per standard deviation
increase in the reported unit of the trait. LDL, low-density lipoprotein; HDL,
high-density lipoprotein; CAD, coronary artery disease; AF, atrial fibrillation.
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evidence of structural disease; and 89 LV samples from individuals with DCM,
obtained at the time of transplantation. eQTL analysis of the LV data from
MAGNet analysis was performed using the QTLtools package75 in DCM with
adjustment for age, sex, disease status and the first three genetic PCs. To account
for observed batch effects, a surrogate variant analysis was performed using the R
package SVAseq76 and 22 additional covariates were identified and included in the
model. Existing eQTL summary data in LA tissue from MAGNet and heart tissue
from GTEx were queried17,77. We queried HF sentinel variants for eQTL asso-
ciations with genes located either fully or partly within a 1 megabase (Mb) region
upstream or downstream of the sentinel variant (referred to as cis-genes). We
accounted for multiple testing by adjusting a significance threshold of P < 0.05 for
the total number of SNP-cis-gene tests performed across the four heart tissue eQTL
datasets (P < 4.73E-05 for a total of 1,056 SNP–gene associations). Baseline char-
acteristics for the MAGNet study are provided in Supplementary Table 6. We also
queried sentinel HF variants for associations with cis gene expression in blood from
the eQTLGen consortium (N= 31,684)29. Given the large sample size, we used a
stringent genome-wide significance threshold of P < 5 × 10−8 to identify significant
blood eQTLs.

Colocalisation analysis. Bayesian colocalisation analysis was performed using R
package coloc to test whether shared associations with gene expression and HF risk
were consistent with a single common causal variant hypothesis30. We tested all
genes with significant cis–eQTL association by analysing all variants within a 200
kilobase window around the gene using eQTL summary data for heart tissues and
whole blood, and HF summary data from present study. We set the prior prob-
ability of a SNP being associated only with gene expression, only with HF, or with
both traits as 10−4, 10−4 and 10−5. For each gene, we report the posterior prob-
ability that the association with gene expression and HF risk is driven by a single
causal variant. We consider a posterior probability of ≥0.7 as providing evidence,
supporting a causal role for the gene as a mediator of HF risk.

Transcriptome-wide association analysis. We employed the S-PrediXcan
method78 implemented in the MetaXcan software (https://github.com/hakyimlab/
MetaXcan) to identify genes whose predicted expression levels in heart tissue are
associated with HF risk. Prediction models trained on GTExv7 heart tissue datasets
were applied to the HERMES meta-analysis results. Only models that significantly
predicted gene expression in the GTEx eQTL dataset (false discovery rate < 0.05)
were considered. A total of 4859 genes were tested in left ventricle tissue and 4467
genes for right atrial appendage. Genes with an association P < 5.36 × 10−6 [0.05/
(4859+ 4467)] were considered to have gene expression profiles significantly
associated with HF.

Protein quantitative trait analysis in blood. We queried both cis- and trans-
protein QTL (pQTL) associations based on measures for serum proteins mapping
to 3000 genes in 3301 healthy individuals from the INTERVAL study31. We
accounted for multiple testing by adjusting a significance threshold of P < 0.05 for
the total number of tests for all variants and proteins tested (36,000 tests).

Association of HR risk loci with other phenotypes. We queried associations
(with P < 1 × 10−5) of sentinel variants and proxies (r2 > 0.6) with any trait in the
NHGRI-EBI Catalog of published GWAS (accessed 21 January 2019)15,79. We
report associations (where P < 1 × 10−5) for the sentinel variants with traits in the
UK Biobank cohort using the MRBase PheWAS database (http://phewas.mrbase.
org/, accessed 17 January 2019). The database contains GWA summary data for
4203 phenotypes measured in 361,194 unrelated individuals of European ancestry
from the UK Biobank data. We queried GWAS data for ten traits related to HF risk
factors, endophenotypes and related disease traits using summary-level data from
the largest available GWAS study (either publicly available or through agreement
with study investigators). The following phenotypes were considered: fractional
shortening (FS), LV dimension16, DCM; AF17, CAD18, LDL-C22, T2D23; BMI20,
SBP and DBP19. For DCM, a GWAS was performed in the UKB among individuals
of European ancestry with cases defined by the presence of ICD10 code I42.0 as a
main/secondary diagnosis or primary/secondary cause of death with non-cases as
referents, using PLINK2. Logistic regression was performed with adjustment for
age, sex, genotyping array and the first ten PCs.

Hierarchical agglomerative clustering. We performed hierarchical agglomerative
clustering on a locus level using the complete linkage method based on the asso-
ciations with related traits as described above. Where a sentinel variant is not
available in any of the other traits summary results, a common proxy is used in
place of the sentinel variant. For the LPA locus, we used associations for a proxy of
the more common variant (rs55730499). Dissimilarity structure was calculated
using Euclidean distance based on the Z-score (beta of continuous traits or log odds
of disease risk divided by s.e.) of the cross-trait associations. We accounted for
multiple testing at family-wise error rate of 0.05 by Bonferroni correction for the
ten traits tested per HF locus (110 tests), and considered P < 4.5e−4 (0.05/110) as
our significance threshold for association.

Genetic correlation analysis. We estimated genetic correlation between HF and
11 risk factors using LDSC13 on the GWAS summary statistics for each trait: AF17,
CAD18, LDL-C, high-density lipoprotein cholesterol (HDL-C), TGs22, T2D23;
BMI20, SBP, DBP19, HR21 and estimated GFR80.

Mendelian randomisation analysis. We performed two sample Mendelian ran-
domisation analysis using the Generalised summary data-based Mendelian rando-
misation (GSMR)25 implemented in GCTA v1.91.7beta81. To identify independent
SNP instruments for each exposure, GWAS-significant SNPs (P < 5 × 10−08) for
each risk factor were pruned (r2 < 0.05; LD window of 10,000 kb; using the UKB10K
LD reference). We then estimated the causal effect of the risk factor on the disease
trait according to the MR paradigm. The HEIDI test implemented in GSMR was
used to detect and remove (if HEIDI P < 0.01) variants showing horizontal pleio-
tropy i.e., having independent effects on both exposure and outcome, as such var-
iants do not satisfy the underlying assumptions for valid instruments. As sensitivity
analyses, we estimated the causal effects of known risk factors on HF risk other
statistical methodology and software—the R package TwoSampleMR82 was used to
select independent variant instruments for the exposure using the same parameters
as per the GSMR analysis (P < 5 × 10−8; r2 < 0.05; LD window of 10,000 kb), except
the TwoSampleMR package uses the 1000 Genomes as the LD reference. Causal
estimates based on the IVW83, MR-Egger and median-weighted methods84 were
then calculated using the Mendelian Randomisation85 R package. To enable com-
parison of MR estimates between traits, we present effect estimates corresponding to
the risk of HF for a 1-s.d. higher risk factor of interest. Where the original GWAS
conducted rank-based inverse normal transformation (RINT) of a trait prior to
GWAS, we used the per-allele beta coefficients following RINT to approximate the
equivalent values on the standardised scale, as has been conducted previously.

To determine if the causal effects of the continuous risk factors on HF were
mediated via their effects on CAD or AF risk, we repeated the GSMR analysis after
conditioning the HF summary statistics on CAD and AF GWAS summary
statistics, as described below.

Conditional analysis. To estimate the effects of HF risk variants after adjusting for
risk factors which showed a significant causal effect on HF in the MR analyses, we
performed the mtCOJO on summary data, as implemented in GCTA v1.91.7beta81.
HF summary statistics were adjusted for AF17, CAD18, LDL-C, HDL-C, TGs22,
DBP, SBP19 and BMI20 using GWAS summary data. The UKB10K LD reference
was used.

Reporting summary. Further information is provided in the Nature Research
Reporting Summary.

Data availability
The datasets generated during this study are available from the corresponding author
upon reasonable request. The summary GWAS estimates for this analysis are available on
the Cardiovascular Disease Knowledge Portal (http://www.broadcvdi.org/).
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