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This work investigates fundamental two-dimensional vortex pair dynamics in un-

stratified and stably stratified environments through numerical and analytical tech-

niques. The study focuses on two main topics: (i) vortex interaction and merging

of co-rotating vortex pairs and (ii) internal wave generation by co-rotating and

counter-rotating vortex pairs.

Two-dimensional vortex merging in a viscous fluid is studied using numer-

ical simulations. Analysis of the ideal case of two equal co-rotating vortices (sym-

metric pair) identifies the basic underlying physics of vortex merger. Through the

interaction of the vorticity gradient and the mutually induced strain rate near the

central hyperbolic point, a tilt in vorticity contours is established. This leads to

core detrainment and the entrainment of core fluid into the exchange band, which

transforms the flow into a single vortex.

In the case of the asymmetric (unequal strength) vortex pair, the disparity
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in the deformation rates between the vortices alters the interaction. A critical value

for a strain rate parameter characterizing the establishment of core detrainment

is determined. The onset of merging is associated with the achievement of the

critical strain by both vortices and a generalized merging criterion is formulated.

A classification scheme of the various viscous vortex interactions is developed.

Results for the symmetric, horizontally oriented vortex pair in a weakly

stratified fluid provide further insight on vortex merging. The effects of weak

stratification depend on the ratio of the diffusive time scale to the turnover time,

i.e., the Reynolds number. A crossover Reynolds number is found, above which

convective merging is accelerated with respect to unstratified flow and below which

it is delayed.

The generation of internal waves by horizontally orientated co-rotating and

counter-rotating vortex pairs is studied. Linearized inviscid equations are derived

that describe the internal wave, vorticity and energy fields. These solutions are

compared with nonlinear numerical viscous simulations in moderately and strongly

stratified environments. Through evaluation of the energy field, the time at which

the flow reaches a steady state for strongly stratified flows is found, along with a

characterization of the regimes of strongly and moderately stratified environments.
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Chapter 1

Introduction

1.1 Introduction

Vortex pairs are elementary flows that have both fundamental and practical

significance. They consist of two co-rotating vortices with same sign vorticity or two

counter-rotating vortices with opposite sign vorticity. Vortices are the fundamental

building blocks of more complex flows, such as turbulence, transitional flows and

wakes. A pair of vortices is the simplest configuration with which to study vortex

interactions. These interactions play a significant role in the transfer of energy and

enstrophy across scales. With ambient stable stratification, these interactions and

associated energy transfer are complicated by production of baroclinic torque and

internal wave generation.

The ideal case of a two-dimensional symmetric vortex pair consists of two

equal size and equal strength vortices. For counter-rotating vortex pairs in a

viscous fluid, it is known that they propagate together in a fixed direction due to

their mutually induced velocity and remain a fixed distance apart. The physical

mechanisms underlying the behavior of this flow are understood and well studied.

In contrast, for co-rotating vortex pairs, the physical mechanisms governing the

interactions are not fully understood. Initially these vortices rotate about one

1
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another at a constant distance apart. The vortex cores grow due to diffusion

until their size is a certain fraction of the separation distance. At this time, the

separation distance rapidly decreases and the vortices merge into a single vortex.

Despite the apparent simplicity of this flow, the physics underlying the merging

process is unclear.

In engineering and environmental applications, what is more commonly

observed are asymmetric vortex pairs, with vortices of unequal size and strength.

The behavior of such pairs is quite different from symmetric vortex pairs. For the

counter-rotating vortex pairs, the unequal induced velocities cause the vortices to

rotate about one another and the unequal induced strain field causes an asymmetric

deformation of the vortices. The final states of these vortices are Reynolds number

independent and only dependent on the initial core size and separation distance.

For co-rotating vortex pairs, the final states are dependent not only on the initial

geometry, but there is also a distinct Reynolds number dependence. Such pairs

may result in the destruction of the smaller/weaker vortex (Dritschel and Waugh,

1992). Additional issues arise concerning the definition of merger.

Also of interest is the effect of stable density stratification on these flows,

such as is found in the atmosphere and oceans. Wakes, turbulence, transitional

flows, etc... can all be subject to stable density stratification. The stirring of the

density field by horizontally oriented vortex pairs results in the baroclinic gener-

ation of vorticity and the production of internal waves. For weak stratification, a

counter-rotating vortex pair’s separation distance decreases. However, in a strongly

stratified fluid, the vortices are found to move apart. This variation is caused by

the generated vorticity (Garten et al., 2001). In addition to generated vorticity, the

internal wave field produced by these vortices greatly affects the energy transfer

in the flow. This energy transfer is shown to be dependent on the level of strat-

ification, which has not been well studied for moderate stratification, when the

buoyancy and convective effects are of comparable importance. The presence of

stratification may also significantly influence the co-rotating vortex pair. However,
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(a) Initial flow field (b) Co-rotating frame

Figure 1.1: (a) Initial symmetric vortices with equal circulation strength, Γo, and

centers separated by a distance, bo, with equal core diameters, 2ao, (b)

Co-rotating frame streamlines superimposed on contours of vorticity

for a symmetric unstratified vortex pair. Streamlines indicate the

boundary between the inner-core region and the exchange band and

the boundary between the exchange band and the outer-recirculation

region (location of filamentation).

the behavior of a horizontally oriented co-rotating vortex pair in a stably strati-

fied fluid, and in particular the merging process and properties of the generated

internal wave field, has not been previously studied.

The motivation of this study is the need for a better understanding of

fundamental dynamics of vortex pairs, which are the foundation for a broad scope

of flows. The current study will focus on two specific topics:

• co-rotating vortex interactions and merging in unstratified and stratified

environments; and

• internal wave generation by co-rotating and counter-rotating vortex pairs.

We will conduct these studies by means of analytical techniques and numerical

simulations.
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1.2 Literature Review

1.2.1 Unstratified, Symmetric, Co-rotating Vortex Pairs

There have been several proposals for a criterion that predicts the onset

of vortex merger. In an unstratified fluid, a pair of symmetric vortices of equal

circulation, Γ, and equal core radius, a, separated by a distance, b, will rotate

about each other due to the mutually induced velocity (figure 1.1a). Much of

the previous work on symmetric vortex merger has focused on the determination

of (a/b)cr (Rossow, 1977; Saffman and Szeto, 1980; Overman and Zabusky, 1982;

Griffiths and Hopfinger, 1987; Meunier et al., 2002), where if the aspect ratio a/b

exceeds some critical value, (a/b)cr, vortex merger results. Using contour dynamics

of uniform vortices, Saffman and Szeto (1980) and Overman and Zabusky (1982)

find a critical separation distance, (ao/b)cr, above which equilibrium configura-

tions of non-circular vortices can exist, and below which the vortices are unstable

and merge. A linear stability analysis of such equilibrium configurations is per-

formed by Dritschel (1985) which associates the instability with the vortex core

boundary deformation. However, in general, experimental measurements (viscous,

non-uniform vortices) of (a/b)cr and the onset of instability predicted by analytical

stability analysis have varied due to difficulties of measurement and inconsistent

definitions of acr and bcr. Meunier et al. (2002) develop a general merging crite-

rion for equal nonuniform vortices using both a stability analysis and experimental

data (viscous flow) in an attempt to generalize all the previous work. The crite-

rion is expressed by (a/bo)cr, with a evaluated from the second moment of vorticity

(or angular impulse). In their experiments, the onset of merging is considered to

be the transition from a diffusive- to a convective-dominated process, the former

characterized by the diffusive growth of the core. The critical values from their

stability analysis are comparable, although somewhat lower.

There have been several hypotheses to explain the physical mechanism of
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vortex merger. An important study was conducted by Melander et al. (1988).

They were the first to examine the flow in a co-rotating reference frame which

reveals the differential motion and associated flow structure. This is illustrated

here in figure 1.1b which shows the principle streamlines (separatrices) defining

three distinct regions in the flow. The inner core regions consist of closed stream-

lines encircling each individual vorticity maximum and correspond to the primary

vortices. The exchange band consists of closed streamlines encompassing both in-

ner core regions and corresponds to fluid circulating (exchanged) between the two

vortices. The two outer recirculation regions consist of fluid which circulates in the

opposite sense (in the co-rotating frame) to that of the cores and exchange band.

Melander et al. (1988) explain the occurrence of merger in terms of the vorticity

distribution relative to the separatrices. In particular, when vorticity enters the

outer recirculation regions, differential rotation causes the formation of filaments

which breaks the symmetry of the flow. This modifies the orientation of the vor-

ticity contours with respect to the streamlines and leads to merger through an

inviscid axisymmetrization process. The process of axisymmetrization was studied

in detail for an isolated elliptical vortex by Melander et al. (1987b). They indicate

both filaments and gradient intensification in the core contribute to asymmetric

vorticity. Although the importance of the exchange band was noted, Melander

et al. (1988) indicate that merger is driven by filament formation. A subsequent

study by Dritschel (1998) shows that non-axisymmetry may persist indefinitely

in an inviscid flow suggesting that it is the presence of diffusion that promotes

axisymmetrization.

Cerretelli and Williamson (2003) further consider these ideas and demon-

strate experimentally that merger is due to the antisymmetric part of the vortic-

ity field which is also considered to be primarily associated with the filaments.

They suggest that vorticity enters the outer recirculation region through viscous

or turbulent diffusion thereby initiating filament formation. Meunier et al. (2005)

explain the role of the filaments and accompanying reduction in b in terms of
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conservation of angular momentum. They develop a simple model depicting the

role of filamentation. Although the model accurately predicts the initial reduc-

tion in b, it does not predict the dominant motion of the vortices, suggesting that

some other mechanism is present. Velasco Fuentes (2005) finds that filamenta-

tion does not always lead to merger. In the case of vorticity profiles with steeper

gradients, merger begins before filamentation takes place. The stability analysis

by Dritschel (1985) also precludes the requirement of filamentation for convective

merger. Huang (2005) shows that “sheetlike structures” emanating from the vor-

tices, which includes both filament and exchange band fluid, are responsible for

the induced merging velocity. The formation of these structures is attributed to a

tilt of the major axes of the vortices and the connecting line between the vortex

centroids. How the tilt is established is not explained.

1.2.2 Unstratified, Asymmetric, Co-rotating Vortex Pairs

While many studies have focused on the physics behind symmetric co-

rotating vortex merger, what is more commonly observed are asymmetric (unequal

size and strength) vortex pairs. In this case, there is a greater range of flow behav-

ior and the interaction of the vortices may result in the destruction of the smaller

and/or weaker vortex. In the case of asymmetric co-rotating vortex pairs, there

are limited studies (Melander et al., 1987a; Dritschel and Waugh, 1992; Mitchell

and Driscoll, 1996; Trieling et al., 2005).

Dritschel and Waugh (1992), using detailed contour dynamics simulations,

study the inviscid interactions between two unequal sized vortex patches of uni-

form vorticity and equal strength. They develop a classification of the flow into

five distinct regimes based on the changes in the initial and final circulations for

the vortices: elastic interaction occurs when there are small deformations and es-

sentially no change in circulation of the vortices; partial straining-out and complete

straining-out regimes are associated with a reduction or destruction, respectively,
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of the smaller vortex, with no increase in the larger vortex; complete merger and

partial merger correspond to increased circulation of the initially larger vortex,

i.e., a compound vortex is ultimately formed which contains ω from both vortices.

They develop a flow regime map, in terms of the initial vortex radii ratio and initial

separation distance.

Trieling et al. (2005) study the inviscid interactions of unequal vortices

with nonuniform vorticity distributions. They consider both unequal-size/equal-

vorticity and equal-size/unequal-vorticity cases. They find the same flow regimes

of Dritschel and Waugh (1992) to exist for these more general vortex distributions,

but the regime boundaries are highly sensitive to the vorticity profile. They show,

through contour surgery, the removal of the low level ω contours, that it is this

”halo” of low level ω, and not the internal vorticity distribution of the vortex,

that causes an increase in the critical distance with decreasing profile steepness.

The influence of vorticity distribution was qualitatively similar for both the equal-

vorticity and equal-size cases. The resulting mapping of flow regimes is a very

complex function of vorticity distribution, initial vortex radii ratio (or initial vortex

strength ratio) and initial separation distance.

Ehrenstein and Rossi (1999) and Meunier et al. (2002) consider equilibrium

states for nonuniform vortices. In these studies, the critical distance is associated

with an exchange of stability, which is considered as the onset of merger. The

corresponding vortex configuration is characterized by nearly elliptical streamlines

within the inner core region and the formation of a cusp at the outer core bound-

aries, where ω is low, in the vicinity of the center of the pair. In the case of an

asymmetric vortex pair (Ehrenstein and Rossi, 1999), the cusp forms at the outer

boundary of the weaker vortex.

Trieling et al. (2005) attempted to calculate the point at which asymmetric

pairs would merge in a similar way as Meunier et al. (2002) did for the symmetric

pairs, by normalizing the separation distance by the second moment of vorticity.

However, this did not produce a universal critical value to characterize the flow
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regimes. With significant asymmetry between vortices, merger may not occur and

the weaker vortex may be strained-out and either partially or completely destroyed.

Dritschel and Waugh (1992) estimate a critical separation distance for complete

destruction of the smaller vortex by considering the critical strain rate for an

initially circular vortex to undergo irreversible tearing by an imposed adverse shear

(Kida, 1981; Legras and Dritschel, 1993; Mariotti et al., 1994). This provides a

good estimate for the boundary between partial and complete straining out regimes

in the more asymmetric cases (ratio of initial radii . 0.4). The question still

remains as to whether or not a critical aspect ratio can be defined for asymmetric

merger.

1.2.3 Stratified, Symmetric, Vortex Pairs

The effects of density stratification on horizontally oriented vortex pairs

greatly affects the flow dynamics with the generation of vorticity and produc-

tion of internal waves. For co-rotating vortices, there have been numerous studies

conducted that look at complex flows containing these pairs. However, the funda-

mental case of a horizontally oriented co-rotating vortex pair in a stably stratified

fluid has not been examined.

Contrary to the co-rotating vortex pair, there have been numerous studies

conducted that look into the effects of stratification on horizontal counter-rotating

vortex pairs. One of the first studies to consider a horizontal counter-rotating

vortex pair in a stratified fluid was Scorer and Davenport (1970). Their study con-

sidered an inviscid fluid which neglected baroclinically generated vorticity. Buoy-

ancy effects were considered by equating the vortex pair impulse rate of change

to the total buoyancy force, with the conclusion that the vortex pair accelerated

downward and that the separation distance increased. This study was succeeded

by Saffman (1972), who formulated an approximate solution by considering a con-

stant separation distance. Through the determination of the velocity potential,
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he found that the vortex pair decelerated and in time reversed directions, which

in turn caused the pair to oscillate. Crow (1974) showed how generated vorticity

causes the vortices to move away from one another, thereby validating Scorer and

Davenport (1970) theory. This study was succeeded by Hill (1975), who shows

that initially the vortex pair decelerates, but eventually detrained vorticity causes

a downward acceleration.

In more recent studies, there has been a distinction in levels of stratifica-

tion. For weak stratification (convective affects dominate over buoyancy affects),

a number of numerical studies (Schilling et al., 1996; Spalart, 1996; Garten et al.,

1998) have found that the vortex pair’s separation distance decreases while the

acceleration of the pair increases. However these findings are in direct contrast

to those found by experimental results (Sarpkaya, 1983; Delisi et al., 1991), which

show there is a deceleration in the flow while the separation distance decreases.

In a two-dimensional numerical study, Holzapfel and Gerz (1999) show that early

in the flow development the vortex pair decelerates, but that later on the pair be-

gins to accelerate. They attributed these flow characteristics to the generation of

opposite signed vorticity through baroclinic torque, which is the same conclusion

that Hill (1975) found 24 years earlier.

For very strong stratification (buoyancy affects dominate over convective af-

fects), the flow behaves according to the linearized Navier Stokes equations. Meng

and Rottman (1988) analytically derive the linearized inviscid solution for vari-

ous vortex configurations, including the counter-rotating vortex pair. For strong

enough stratification, this solution accurately predicts the flows behavior.

For moderate stratification (buoyancy affects are comparable to convective

affects), Garten et al. (1998) found that there is an early adjustment phase of

the flow, where the separation of the pair does not change and the flow develops

according to Saffman’s theory (Saffman, 1972). The duration of this period was

found to be dependent on the level of stratification. After this phase, the flow

transitions into an advection phase where the separation distance begins to increase
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following Crow’s theory (Crow, 1974), while the trajectory of the pair may be

predicted by Saffman (1972). This work focuses its discussion on the effects of

generated vorticity and its affect on the flow. However, little attention is focused

on the generation of gravity waves.

In stably stratified fluids disturbances in the density field will generate

internal waves. The presence of such waves generated by co-rotating and counter-

rotating vortex pairs leads to complex wave-vortex and wave-wave interactions.

These interactions are primary attributes of complex turbulent flows found in the

oceans and atmosphere. There have been a number of studies, both observational

and numerical, that have considered the coherent structures within turbulent mo-

tions in unstratified and stratified environments with attention placed on vortex

structures (Rogers and Moin, 1987; She et al., 1990; Vincent and Meneguzzi, 1991,

1994; Sandham and Kleiser, 1992; Cadot et al., 1995; Carnevale et al., 1991; Metais

et al., 1995; Diamessis and Nomura, 2004). Such structures influence the energy

transfer and enstrophy of the flow through the pairing and destruction of the vor-

tices. In stably stratified flows, internal gravity waves also affect the energy and

enstrophy of the flow.

There has been numerous observational, experimental and numerical work

that demonstrates a strong interaction between internal waves and turbulence.

Early studies, such as Lin and Pao (1979) review article on wakes in stratified

fluids, find that stratification inhibits fluctuations in the vertical velocity and that

turbulence decays more rapidly than internal waves. Lin and Veenhuizen (1974)

investigated the decay of grid-generated turbulence in stratified fluid both visually

and quantitatively, finding that as the vertical displacements of the fluid increased,

the stronger the internal-wave field became. Pao et al. (1968) studied a vortex

street in a stratified fluid, observing that the vertical spacing between the vortices

decreases downstream and rapidly collapses into internal waves. In a later study

(Pao and Lin, 1973), Pao developed a method for distinguishing turbulence from

internal waves through their phase characteristics. These early papers focused
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primarily on the effect that stratification had on the turbulent source, but placed

little attention on the generation of the internal waves.

Staquet and Sommeria (2002) review both numerical and experimental

studies that analyze internal gravity waves produced by instabilities and turbu-

lence. Through comparative studies of oceanic and atmospheric observations, ex-

periments and numerical simulations, various properties of wave turbulence were

illustrated. They present various statistical models of turbulence generated inter-

nal waves for weakly and strongly stratified fields. However, there is a lack of

universality among the models, where each model is only valid for a particular

range of temporal and spatial scales.

In a recent study conducted by Sutherland et al. (2004), the generation of

internal waves by the collapse of a mixed fluid mass immersed in a vertically strat-

ified fluid was studied through laboratory and numerical experiments. Through

this study it was found that the long horizontally scaled internal gravity waves

cause the mixed region to be significantly distorted, which greatly varied from the

collapse of a standard interfacial gravity current. Dohan and Sutherland (2005)

studied the generation of internal waves in a uniformly stratified mixed region by

use of oscillating grid experiments in the laboratory and two-dimensional numeri-

cal simulations. This study focused on the vertically propagating wave field within

the quiescent region rather than study the turbulence or interfacial waves as done

in numerous other studies (Fernando and Hunt, 1997; McGrath et al., 1997; Briggs

et al., 1996). They found that their two-dimensional numerical simulations and

their three-dimensional experimental results were consistent. This demonstrates

that much insight into turbulence generated internal waves may be found through

two-dimensional studies. Their study also suggests that there is a coupling between

the turbulence and internal wave field, where most of the horizontal momentum is

carried away from the turbulent source by the dominant wave frequencies.

Buhler and McIntyre (1999) formulate an idealized linear model for low-

frequency inertia-gravity waves generated by Kelvin-Helmhotltz shear instability
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in three-dimensional clear-air turbulence. This model is formulated in terms of an

initial value problem, treating the turbulence as instantaneous. They compare this

model with nonlinear numerical simulations and find that the linear and nonlinear

estimated quantities are of the same order of magnitude. This indicates that linear

theory captures relevant features of the emission stage of the Kelvin-Helmhotltz

instability. However, they state that nonlinear effects caused by shear on the scale

of the mixed region were not considered when comparing nonlinear and linear

estimates.

Lighthill (1996) conducts a comprehensive linear analysis of waves ema-

nating from an arbitrary initial disturbance and the residual motions remaining

after the waves have propagated away. While this linear method could be used

to analyze a strongly stratified turbulent source, nonlinear interactions, which are

inherent in moderately to weakly stratified fluids, are neglected. Griffiths (1999)

conducted a nonlinear analytical study of the mechanism by which internal gravity

waves were generated by a single vortex and the back reaction caused by the waves

on the vortex. However while Griffiths’s analytical work proved insightful, its re-

sult was inconclusive due to the inability of mathematical matching the asymptotic

solutions for the different flow regimes.

Therefore, a clear model describing the generation of internal waves from a

source valid for all temporal and spatial scales is still missing. From these studies

it is seen that some attributes of internal waves from a turbulent source may

be studied in two-dimensions and that for strong stratification the flow behavior

is predominantly linear. However, nonlinear affects may greatly affect the flows

overall behavior depending on the level of stratification. Therefore, it is of interest

to study how vortical structures (such as vortex pairs) found in turbulence generate

internal waves and the effect that these waves have on the coherent structures.
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1.3 Summary and Outstanding Issues

As discussed, there has been a substantial amount of work focused on vortex

pairs and their behavior in more complicated flows.

Much of the previous work on symmetric co-rotating vortex pairs has fo-

cused on the determination of a critical aspect ratio, (a/b)cr, which marks when

merger will occur. In general, experimental and numerical measurements of (a/b)cr

have varied due to difficulties of measurement and inconsistent definitions of acr

and bcr leading to a discrepancy when predicting merger. The physical mechanism

associated with merger is still unclear. Recent studies suggest that merger is not

caused by the filaments in the flow, as previously thought, but rather by some

other mechanism. This mechanism causes a misalignment of the major axes of

the vortices and the connecting line between the vortex centroids, which results in

merger. How the misalignment is established has not been explained and requires

further attention.

In the case of asymmetric co-rotating vortex pairs, there are limited studies

and primarily consider inviscid flow. Existing results indicate there is a greater

range of flow behavior and the interaction of the vortices may even result in

smaller vortices than that of the original vortex pair or in the destruction of the

smaller/weaker vortex. A complex flow regime map is developed based on the flows

circulation that indicates when/if merger will occur. However, there is little phys-

ical understanding of the flow characteristics and no general predictive methods

in place. In general, a clearer description of the vortex interactions and merging

criteria is needed.

Turning our attention to stratified flow, we see that the effects of stable

density stratification on vortex pair dynamics have been considered in a number

of studies. In the case of horizontal counter-rotating vortex pair, past research

has been able to clearly define and predict the behavior of this flow in strongly

and weakly stratified fluids. However, the behavior of the generated internal wave
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field in a moderately stratified fluid requires further research. In regards to the

horizontal co-rotating vortex pair, there have been no previous studies that have

looked at this fundamental interaction. While the behavior of counter-rotating

and co-rotating vortex pairs have been considered in turbulence, an improved un-

derstanding of these flows and associated processes is still needed.

1.4 Objectives

The primary objective of this study is to use numerical and analytical tech-

niques to investigate the fundamental two-dimensional vortex pair dynamics, in

particular:

• co-rotating vortex pair interactions and merging; and

• internal wave generation by co-rotating and counter-rotating vortex pairs.

The study was carried out in the five parts, which are listed below along with the

specific goals.

• Symmetric co-rotating vortex pairs (unstratified): The merging process of

an unstratified symmetric vortex pair in a viscous fluid is first studied

through numerical simulations. The primary goals are to:

– identify the physical mechanism(s) that cause two equal co-rotating

vortices to merge.

• Asymmetric co-rotating vortex pairs (unstratified): Once the basic mecha-

nisms of symmetric merger were clear, the merging process of an asymmetric

(unequal strength) vortex pair is similarly studied. The primary goals are

to:

– develop a more general understanding of vortex interactions and merger,

which includes possibility of the domination/destruction of one vortex;

and
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– establish a more generalized merging criterion for unequal vortices.

• Symmetric co-rotating vortex pairs (weakly stratified): The study is con-

tinued by considering a symmetric co-rotating vortex pair in a weakly strat-

ified viscous fluid. The primary goals are to:

– determine the effect of baroclinially generated vorticity on the merging

process; and

– generalize merging criterion for symmetric pairs to include weakly

stratified flow.

• Symmetric vortex pairs and the generation of linear internal waves: The

production of linear internal waves by various configurations of symmet-

ric vortex pairs is considered analytically. The primary goals are to:

– using linear theory, show how internal waves are generated, the effect

they have on the initial vorticity field and how they transport energy;

and

– validate the analytical approach through numerical simulations of strongly

stratified flow.

• Symmetric vortex pairs and the generation of nonlinear internal waves: With

an understanding of linear internal wave behavior, the production of non-

linear internal waves by various configurations of symmetric vortex pairs is

considered numerically. The primary goals are to:

– using nonlinear numerical simulations, investigate the effect that dif-

ferent levels of stratification have on the internal wave field, vorticity

field and energy transport; and

– investigate to what extent nonlinear interactions influence the flow for

different levels of stratification.
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Results of these two-dimensional studies clarify and improve our understanding

of the fundamental physics of co-rotating and counter-rotating vortex pairs and

vortex interactions. This knowledge will be valuable for accurate prediction and

interpretation of more complex flows.

1.5 Dissertation Outline

The remainder of the dissertation is organized into seven chapters:

• Chapter 2 presents the framework in which the investigation took place.

The general flow geometry/parameters are outlined and a description of

the numerical simulations is given.

• Chapter 3 presents the investigation of the merging of a pair of symmetric

vortices in an unstratified viscous fluid. The merging process is resolved into

four phases of development and the key underlying physics are identified.

• Chapter 4 presents the interaction of two co-rotating vortices of equal size

and varying relative strengths in a viscous fluid. With unequal strengths,

the disparity of the vortices alters the interaction and merger may not occur.

The flow behavior is distinguished based on the relative onset of the core

erosion process. Through scaling analysis and simulation results, a critical

nondimensional strain rate characterizing the onset of erosion is determined.

If the disparity of strengths is sufficiently large, the critical strain rate is

not attained by the stronger vortex and the vortices do not merge.

• Chapter 5 presents the study of symmetric, horizontally oriented vortices

in a weakly stably stratified viscous fluid. It is found that for weakly strat-

ified flows, the vortices still merge and that the flow develops according to

the same four phases of development as in the unstratified flow. The key

underlying physics also remains the same, but the addition of baroclinically
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generated vorticity (BV) modifies the time scale of the flow development.

In general, the effects of stratification depend on the ratio of the diffusive

time scale (growth of cores) to the turnover time (establishment of BV),

i.e., the Reynolds number. A crossover Reynolds number is found, above

which convective merging is accelerated with respect to unstratified flow

and below which it is delayed. A critical aspect ratio is found to be the

same for both the unstratified and stratified flows.

• Chapter 6 presents an analytical study of the production of linear internal

gravity waves by different configurations of two-dimensional horizontally

oriented vortices in a stably stratified fluid. The vortex systems considered,

which consist of initially Lamb-Oseen vortices, include a co-rotating vortex

pair, counter-rotating vortex pair and two sets of co-rotating vortex pairs

in a quadrupole configuration (VQ). The effect that different source config-

urations have on the density, vorticity and energy fields is investigated.

• Chapter 7 presents a numerical study of the production of nonlinear internal

gravity waves by counter-rotating vortex pairs and VQ in a stably stratified

fluid. This investigation looks into the effect of different stratification levels

on the density, vorticity and energy fields. In order to understand the effect

of the nonlinear and viscous interactions, results from these simulations

were compared with the linearized analytical solutions from Chapter 6.

• Chapter 8 concludes the dissertation and summarizes key findings and fu-

ture research.



Chapter 2

Mathematical Formulation and

Numerical Methods

The purpose of this chapter is to set up the initial flow systems, present

the governing equations and discuss the numerical procedures for each part of the

study. In section 2.1, the initial flow configurations for the study are addressed.

This is followed by section 2.2, which will address the primary flow parameters.

In section 2.3, the initial vorticity and velocity profiles for each vortex system is

addressed and normalized. In section 2.4, the governing equations of the flow are

presented and normalized. This chapter will then conclude in section 2.5 with a

brief discussion of the numerical schemes used to simulate these flows.

2.1 Initial Flow Systems

Each portion of this study concerns a slightly different flow. However,

the common thread connecting all the flow systems is that the initial flow fields

consist of the superposition of Lamb-Oseen vortex pairs with Gaussian vorticity

distribution, the definition of which will be addressed later in section 2.4.

In chapter 3, we investigate a symmetric co-rotating vortex pair in an un-

18
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stratified environment, in which each vortex has the same circulation, Γo, and core

size, ao, and the two vortices are separated by a distance, bo. The geometry of this

flow may be seen in figure 2.1a. Here, the spatial coordinates, x, z, correspond to

the transverse and vertical directions, respectively. Figure 2.1a may also be used

to address the asymmetric co-rotating vortex pair configuration studied in chapter

4. The primary difference between the flows is that in the asymmetric study, the

circulations of the two vortices are of different magnitudes.

In chapter 5, the initial flow again considers a symmetric co-rotating vortex

pair (figure 2.1a). However, in this analysis there is an initially ambient stable

density stratification in place, ρ̄ (figure 2.2a). Chapters 6 & 7 also considers a

stably stratified environment, as in figure 2.2. However in these chapters, differ-

ent flow configurations are considered: a co-rotating vortex pair (figure 2.1a); a

counter-rotating vortex pair (figure 2.1b); and two sets of co-rotating vortices in

a quadrupole configuration, VQ (figure 2.1c). In VQ, the flow is set up such that

the direction of the initial outward advection velocity is aligned perpendicular to

the horizontal axis.

2.1.1 Stable Density Stratification

In the current study, the flow systems are stratified by means of a linear

temperature differential, where the cooler, denser fluid lies beneath the warmer,

lighter fluid (figure 2.2). The changes in the density profile may be directly related

to the temperature field using a first order Taylor series expansion:

ρ(θ) ≈ ρo

[
1 +

1

ρo

∂ρ(θo)

∂θ
(θ − θo)

]
≈ ρo[1− α(θ − θo)], (2.1)

where ρ and θ represent the density and temperature, respectfully. The terms θo

and ρo are constant reference values, where ρ(θo) = ρo. The volumetric expansion

coefficient, α, is defined as

α ≡ 1

ρo

∂ρ(θo)

∂θ
. (2.2)
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(a) co-rotating vortex pair (b) counter-rotating vortex pair

(c) VQ

Figure 2.1: Coordinate system and initial conditions for flow systems under con-

sideration with vortex circulation strength Γ, vortex centers initially

separated by a distance bo and vortex initial core radius of ao.
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(a) (b)

Figure 2.2: Background linear (a) density profile, ρ̄, and (b) temperature profile,

θ̄.

In the current study, we are interested in the density perturbations to the mean

profile. Therefore, for any point in the flow, we may write the instantaneous den-

sity field as ρ(x, z, t) = ρ̄(z) + ρ′(x, z, t). Here ρ̄(z) represents the initial horizon-

tally homogeneous background density that depends only on vertical position and

ρ′(x, z, t) represents the deviation (or rather perturbation) away from this value.

Similarly, the temperature field may be represented as θ(x, z, t) = θ̄(z)+ θ′(x, z, t),

where θ̄(z) is the initial horizontally homogeneous background temperature de-

pendent purely on vertical position and θ′(x, z, t) is a perturbation away from the

this mean value. The background temperature, θ̄(z), and density, ρ̄(z), fields are

shown in figure 2.2. The level of stratification is characterized by the buoyancy

frequency, N (also known as the Brunt-Väisälä frequency). This is defined as the

frequency at which a fluid particle which is vertically displaced will oscillate within

a stably stratified environment:

N2 ≡ − g

ρo

dρ̄(z)

dz
= α

g

ρo

dθ̄(z)

dz
, (2.3)

where g represents gravity. Since we are dealing with a mean density gradient

(figure 2.2), dρ̄(z)/dz = constant, N is constant. Here we define another charac-

teristic density scale, ∆ρ̄, as the change in ρ̄(z) over the length scale of the flow,

bo. The same may be done for the temperature scale, where ∆θ̄ is defined as the
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change in θ̄(z) over bo. This leads to:

N2 = − g

ρo

∆ρ̄

bo

= α
g

ρo

∆θ̄

bo

. (2.4)

2.2 Flow Parameters

The characteristic length scales of these flows are ao and bo. Here, ao is based

on the vorticity second moment,
∫

r2ω dA/
∫

ω dA, where r is the radial distance

from a vortex centroid, ω is vorticity, and the integral is performed over a single

vortex. The initial vortex separation distance may be defined as bo = |x2 − x1|,
where (x1, z1) and (x2, z2) are the initial coordinates of the two vortex centroids.

The characteristic velocity is defined based on the initial advection velocity

of a symmetric vortex pair,

Wo = Γo/2πbo. (2.5)

It should be noted that in the asymmetric vortex pair study, Wo is based on the

stronger vortex advection velocity.

The characteristic velocity, Wo, and the buoyancy frequency, N , are used

in defining stratification levels. We define the level of stratification based on the

Froude number, Fr, which represents the square root of the ratio of inertial to

buoyancy forces:

Fr =
Wo

boN
. (2.6)

If we substitute in (2.4),

Fr2 = −W 2
o

bog

ρo

∆ρ̄
=

W 2
o

bog

ρo

α∆θ̄
. (2.7)

When dealing with stratified flows, the Prandtl number must be considered. It is

defined as the ratio of the viscous diffusion rate to thermal diffusion rate:

Pr =
ν

κ
, (2.8)
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where κ is the thermal diffusivity. In all cases considered, Pr = 1.

Another major parameter in any viscous flow is that of the circulation

Reynolds number,

ReΓ =
Γo

ν
= 2π

boWo

ν
, (2.9)

where ν represents the kinematic viscosity. This parameter measures the relative

magnitude of the inertial to viscous forces.

2.2.1 Flow Parameters and Time Scales

In this study, there are four different levels of stratification considered:

unstratified, weakly stratified, moderately stratified, and strongly stratified. These

levels of stratification are dependent on the relationship between the inertial and

buoyancy forces, which may be expressed in terms of time scales.

The flow behavior is significantly modified based on the level of stratifica-

tion. Therefore, the expressions for the time scales will be dependent on the level

of stratification. For a co-rotating pair in an unstratified or weakly stratified fluid,

inertial effects dominate the flow where the vortices are able to rotate about one

another. Therefore, when dealing with these flows (chapters 3, 4 & 5), a convective

time scale based on the rotational period of the flow is appropriate,

tc = πbo/Wo = 2π2bo
2/Γo. (2.10)

For the weakly stratified cases, the fluid is overturned every half revolution. There-

fore, the buoyancy time scale may be defined as half the buoyancy period (2.4),

ts = π/N. (2.11)

For moderately to strongly stratified flows, the buoyancy forces become more preva-

lent and the vortices are unable to rotate about each other. Therefore, when con-

sidering this level of stratification (chapters 6 & 7), it is appropriate to base the
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inertial time scale on the time scale of the initial advection velocity of the vortices,

tc = bo/Wo = 2πb2
o/Γo. (2.12)

Since the vortices do not overturn, the buoyancy time scale may be defined as the

inverse of the buoyancy frequency,

ts = 1/N. (2.13)

Based on the definitions of the time scales above, it is found that for all levels of

stratification considered that Fr = ts/tc:

Fr =
ts
tc

=
Wo

boN
=

Γo

2πb2
oN

. (2.14)

For Fr ¿ 1, the buoyancy effects dominate, N À Γo/(2πb2
o), and the flow is

considered strongly stratified and develops on ts. For Fr À 1, the inertial effects

dominate, N ¿ Γo/(2πb2
o), and the flow is considered weakly stratified and is

appropriately studied on tc. For flows found around Fr ≈ 1 the flow may be

considered moderately stratified, N ≈ Γo/(2πb2
o), and both buoyancy and inertial

effects will play a major role in the flow development.

The circulation Reynolds number, ReΓ = Γo

ν
, may also be shown using time

scales. A viscous time scale for all flows considered is defined as,

tv = a2
o/4ν. (2.15)

Therefore, for unstratified or weakly stratified fluids, the circulation Reynolds num-

ber is given by,

ReΓ =
8π2

(ao/bo)2

tv
tc

(2.16)

and for moderately to strongly stratified fluids, it is given by,

ReΓ =
8π

(ao/bo)2

tv
tc

. (2.17)
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2.3 Initial Vorticity and Velocity Profiles

The initial flow field consists of the superposition of Lamb-Oseen (Gaussian)

vortices, which are representative of the initial vortices used in Meunier and Leweke

(2001) and Garten et al. (1998).

2.3.1 Initial Vorticity Field

The corresponding vorticity distribution for a Lamb-Oseen single vortex

with a Gaussian shape profile (rotating in a clockwise direction) is given by,

ω(x, z, to) = Ωo e
−((x−xc)2+(z−zc)2)

a2
o ,

where Ωo = Γo/πa2
o is the peak magnitude of vorticity and xc = zc = 0. In

the cases of multiple vortices, the flow fields may be added together. The vorticity

distribution for a co-rotating vortex pair (rotating in a counter-clockwise direction),

with the same ao, is given by,

ω(x, z, to) = Ωo,1 e
−((x−x1)2+(z−z1)2)

a2
o + Ωo,2 e

−((x−x2)2+(z−z2)2)

a2
o ,

where Ωo,i = Γo,i/πa2
o is the peak magnitude of vorticity for a particular vortex

(i = 1, 2) and x1 = −x2 = bo/2 and z1 = z2 = 0. In a similar fashion, the remaining

vortex systems vorticity distributions may be equated (Appendix A.1).

2.3.2 Initial Velocity Field

The flow fields under consideration are two dimensional and incompress-

ible. Therefore, the velocity and vorticity equations may be written in terms of

the stream function, Ψ, where u = ∂Ψ
∂z

, w = −∂Ψ
∂x

and ωy = −∇2Ψ (Laplace’s

equation). This leads to the following equations for the velocity components u and

w for a single vortex (rotating in a counter-clockwise direction):

u(x, z, to) =
1

2

a2
oΩo(z − zc)

(x− xc)2 + (z − zc)2
(1− e−((x−xc)2−(z−zc)2)/a2

o) (2.18)
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w(x, z, to) = −1

2

a2
oΩo(x− xc)

(x− xc)2 + (z − zc)2
(1− e−((x−xc)2−(z−zc)2)/a2

o), (2.19)

where xc = zc = 0. In the case of the co-rotating vortex pair, the velocity compo-

nents u and w are

u(x, z, to) =
1

2

a2
oΩo,1(z − z1)

(x− x1)2 + (z − z1)2
(1− e−((x−x1)2−(z−z1)2)/a2

o)

+
1

2

a2
oΩo,2(z − z2)

(x− x2)2 + (z − z2)2
(1− e−((x−x2)2−(z−z2)2)/a2

o)

(2.20)

and

w(x, z, to) = −1

2

a2
oΩo,1(x− x1)

(x− x1)2 + (z − z1)2
(1− e−((x−x1)2−(z−z1)2)/a2

o)

−1

2

a2
oΩo,2(x− x2)

(x− x2)2 + (z − z2)2
(1− e−((x−x2)2−(z−z2)2)/a2

o),

(2.21)

where x1 = −x2 = bo/2 and z1 = z2 = 0. The velocity distributions for the

remaining vortex systems may be found in Appendix A.2.

The characteristic velocity, Wo, is used to non-dimensionalize the velocity

distributions. As stated in §2.2, in the flow systems with multiple vortices, Wo is

defined as the initial advection velocity of a symmetric vortex pair and may be

calculated by substituting in x = x1 and z = z1 into (2.21). The resulting equation

for Wo is:

Wo =
1

2

a2
oΩo,1

bo

(1− e−b2o/a2
o). (2.22)

We will note that since z1 = z2 = 0, if the same substitution is made into (2.20) that

all terms vanish indicating that their is no initial horizontal advection velocity. The

velocity equations are subsequently normalized by Wo providing non-dimensional

equations for u and w. For a single vortex:

u∗(x, z, to) =
ao(z − zc)

(x− xc)2 + (z − zc)2

(
1− e−((x−xc)2−(z−zc)2)/a2

o

1− e−1

)
(2.23)

w∗(x, z, to) = − ao(x− xc)

(x− xc)2 + (z − zc)2

(
1− e−((x−xc)2−(z−zc)2)/a2

o

1− e−1

)
. (2.24)
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In the case of a co-rotating vortex pair:

u∗(x, z, to) =
bo(z − z1)

(x− x1)2 + (z − z1)2

(
1− e−((x−x1)2−(z−z1)2)/a2

o

1− e−b2o/a2
o

)

+
Ωo,2

Ωo,1

bo(z − z2)

(x− x2)2 + (z − z2)2

(
1− e−((x−x2)2−(z−z2)2)/a2

o

1− e−b2o/a2
o

) (2.25)

and

w∗(x, z, to) = − bo(x− x1)

(x− x1)2 + (z − z1)2

(
1− e−((x−x1)2−(z−z1)2)/a2

o

1− e−b2o/a2
o

)

−Ωo,2

Ωo,1

bo(x− x2)

(x− x2)2 + (z − z2)2

(
1− e−((x−x2)2−(z−z2)2)/a2

o

1− e−b2o/a2
o

)
.

(2.26)

The normalized velocity distributions for all other flow systems are found in Ap-

pendix A.3. Note that these normalized equations are dependent on the initial

vortex placement, ao, bo and Ωo,2/Ωo,1 (which is equivalent to ReΓ,2/ReΓ,1).

2.4 Governing Equations

This study considers two-dimensional flow in an incompressible fluid. There-

fore, the primitive governing equations used in this analysis are the continuity

equation, the two-dimensional Navier-Stokes equations and the two-dimensional

energy equation. In the above equations, the Boussinesq approximation is uti-

lized. This approximation is made because there are only small perturbations to

the flow. Therefore, unless multiplied by gravity, which will cause the specific

weight of a fluid particle to appreciably differ from its surround fluid, the density

perturbation may be neglected.

Throughout the remainder of this thesis, quantities represented with an

(∗) are non-dimensional quantities unless otherwise noted. The scaling utilized to

normalize these quantities is found in Table 2.1.
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Pressure: p∗ = p
ρoW 2

o
Time: t∗ = tWo

bo

Temperature: θ∗ = θ′
∆θ̄

Density: ρ′∗ = ρ′
∆ρ̄

Velocity: u∗i = ui

Wo
Length: x∗i = xi

bo

Table 2.1: Non-dimensional flow parameters

2.4.1 Continuity Equation

The general form of the continuity equation is defined as:

Dρ

Dt
+ ρ(∇ · v) =

∂ρ

∂t
+∇ · (ρv) = 0, (2.27)

where v = (u,w) is the instantaneous velocity. With the assumption of incom-

pressibility, this equation may be rewritten as:

∇ · v = 0, (2.28)

which in non-dimensional form (using Table 2.1) becomes:

∇ · v∗ = 0. (2.29)

2.4.2 Momentum Equation

The general form of the incompressible Navier Stokes equations, with con-

stant viscosity, µ, are:

Dv

Dt
=

∂v

∂t
+ v · ∇v = −1

ρ
∇p +

µ

ρ
∇2v + g, (2.30)

where g = (0,−g) is the gravitational acceleration and p is the pressure. By

making the substitution ρ = ρ̄(z) + ρ′(x, z, t) into (2.30), we obtain:

[ρ̄(z) + ρ′(x, z, t)]
Dv

Dt
= −∇p + µ∇2v + [ρ̄(z) + ρ′(x, z, t)]g (2.31)
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The pressure field may be decomposed into dynamic, p′(x, z, t), and hydrostatic,

p̄(z), components: p = p̄(z) + p′(x, z, t). The hydrostatic pressure field may be

related to the density by dp̄/dz = −ρ̄(z)g. Therefore, the pressure equation may

now be re-written as: p =
∫

ρ̄(z)gdz + p′(x, z, t). If we substitute this equation

into the above Navier Stokes (2.31) and apply the Boussinesq approximation, we

obtain:

Dv

Dt
= − 1

ρo

∇p′ + ν∇2v +
ρ′

ρo

g, (2.32)

where ν = µ/ρo. In non-dimensional form (using Table 2.1), this equation becomes:

Dv∗

Dt∗
= −∇∗p′∗ +

[
ν

boWo

]
∇2∗v∗ +

[
bog

W 2
o

∆ρ̄

ρo

]
ρ′∗. (2.33)

It is easy to see that the first term in brackets on the right hand side is 2π times the

inverse of the ReΓ (2.9) and that the second term in brackets is the inverse of −Fr2

(2.7). Therefore, the normalized Navier Stokes equations with the non-dimensional

flow parameters are:

Dv∗

Dt∗
=

∂v
∗

∂t∗
+ v∗ · ∇∗v∗ = −∇∗p′∗ +

2π

ReΓ

∇2∗v∗ − 1

Fr2
ρ′∗êz, (2.34)

where ê is a unit vector. It may also be expressed in terms of the perturbed

temperature as:

Dv∗

Dt∗
=

∂v
∗

∂t∗
+ v∗ · ∇∗v∗ = −∇∗p′∗ +

2π

ReΓ

∇2∗v∗ +
1

Fr2
θ′∗êz. (2.35)

2.4.3 Energy Equation

The energy equation for an incompressible fluid may be reduced to a convection-

diffusion equation. Written in terms of density, the energy equation is:

∂ρ

∂t
+ v · ∇ρ = κ∇2ρ, (2.36)

where κ is the thermal diffusivity. Substituting ρ = ρ̄(z) + ρ′(x, y, z, t) into (2.36)

returns:

∂ρ′

∂t
+ v · ∇ρ′ + w

dρ̄

dz
= κ∇2ρ′. (2.37)
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The corresponding normalized equation using Table 2.1 is:

∂ρ′∗

∂t∗
+ v∗ · ∇ρ′∗ + w∗ =

[
κ

boWo

]
∇∗2ρ′∗ =

2π

PrReΓ

∇∗2ρ′∗. (2.38)

Written in terms of the temperature perturbation, the normalized energy equation

is:

∂θ′∗

∂t∗
+ v∗ · ∇θ′∗ + w∗ =

[
κ

boWo

]
∇∗2θ′∗ =

2π

PrReΓ

∇∗2θ′∗. (2.39)

2.5 Overview of Numerical Simulations

To conduct these studies, the governing equations (2.29), (2.35) and (2.39)

were solved using direct numerical simulations. Two codes were used: DISTUF

and DIABLO. Both numerical schemes are based on a uniform discretized com-

putational domain and have periodic boundary conditions.

2.5.1 DISTUF

For the symmetric cases in unstratified and weakly stratified environments,

a CFD code known as DISTUF was utilized. It was written by Gerz et al.

(1989). DISTUF makes use of a numerical solution procedure based on two

computational phases. The first phase contains a second order finite difference

scheme on a staggered discretized grid that solves for diffusion and advection with

second order explicit Adams-Bashforth time integration. The second phase uses a

Poisson solver to implicitly update the pressure field.

The non-dimensional Navier Stokes equations (2.35) may be broken down

into terms:
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Unsteady Acceleration Term: ∂v∗/∂t∗

Convective Acceleration Term: v∗ · ∇∗v∗

Pressure Gradient Term: −∇∗p′∗

Viscous Term: 2π
ReΓ
∇2∗v∗

Buoyancy Term: 1
Fr2 θ

′∗êz

In DISTUF’s first computational phase, the viscous, buoyancy, and convective

terms are explicitly solved using a second-order accurate finite-difference approx-

imation. Since the code is written on a staggered grid, the algebraic average of

two grid points separated by one grid interval is used when taking derivatives.

The unsteady acceleration term is then integrated using the second order Adams-

Bashforth scheme. Note that the pressure field is neglected in this first phase. The

temperature field is calculated in the same fashion as the velocity field using the

energy equation (2.39).

In the second computational phase, the pressure field is implicity solved

using a Poisson solver. This method is used in order to ensure that the flow is

divergence free, i.e. that it satisfies the continuity equation (2.29). Fast Fourier

Transforms in the horizontal directions and Gaussian elimination are used in solv-

ing the Poisson equations. Once calculated, the pressure term is used to update

the velocity equations found in the first phase.

2.5.2 DIABLO

While the velocity and temperature fields calculated by DISTUF were

accurate for the symmetric flows found in unstratified and weakly stratified envi-

ronments, a need for an increase in accuracy was found when dealing with different

strength vortices and strong stratification. Therefore, a different CFD code, known

as DIABLO, was used for these flow systems. This easy-to-follow code was de-

veloped by graduate students at the University of California San Diego under
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the supervision of Thomas Bewely. The code is capable of solving the governing

equations in rectangular two- or three-dimensional domains. There are currently

two options for boundary conditions: triply periodic or doubly periodic (stress-free

and/or wall condition imposed in one direction). In the simulations conducted, the

domain is two-dimensional with periodic boundary conditions imposed in both di-

rections. In the fully periodic version of the code, DIABLO uses spectral methods

for spatial differentiation and a mixed Crank-Nicolson and Runga-Kutta fractional

step algorithm for temporal integration.

As in DISTUF, the computational routine is broken down into two phases:

velocity/ temperature solver and pressure corrector. In DIABLO’s first phase, the

convective and buoyancy terms are handled explicitly where exact derivatives are

taken in Fourier space. Since DIABLO utilizes Fourier transforms, the unsteady

acceleration and viscous terms are handled implicitly. The terms found in the

energy equation (2.39) are handled in a similar manner for the temperature field.

We note that as in DISTUF, the first computational phase neglects the pressure

term.

In the second phase, a Poisson solver is used to calculate the divergence.

This is done in Fourier space for speed and accuracy. The velocity fields calculated

in the first phase are then updated with the corrective term.

2.5.3 Resolution of Numerical Simulations

In the unstratified two-dimensional calculations, the computational domain

has dimensions of Lx = Lz = 12bo, and employs 10242 grid points. In order to allow

adequate room for the mixing of the density field, the computational domain in

the stratified two-dimensional calculations has dimensions of Lx = Lz = 24bo, and

employs 20482 grid points. This allows, for an initial aspect ratio of ao/bo = 0.157,

approximately 27 grid points across the core of each vortex (i.e., 2ao). Resolution

tests using 54 grid points across the core showed minimal differences in computed
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quantities (e.g., the integrated quantity a differed by a maximum of 0.4%) thereby

indicating a resolution independent solution. Domain size independence was also

examined. In the these simulations, the periodic boundary conditions used are,

in general, inconsistent with the nonzero circulation of these flows. Rather than

attempting to negate the circulation by introducing an unphysical background flow

such as done in Melander et al. (1987b), we consider a sufficiently large domain to

minimize the effect of neighboring vortices and far-field flow interaction. Domain

size tests were conducted for the unstratified flows and compared both integrated

(e.g. a) and local (e.g., strain rate, vorticity) quantities for a range of Lx = Lz = L

domain sizes and showed maximum differences of 0.01% between L = 12bo and

L = 24bo results. In addition, the induced flow from neighboring vortices was

computed and found to be negligible.

2.5.4 Summary of Simulations Conducted

The geometry of the vortex pair is specified by the dipole aspect ratio,

ao/bo. In all the simulations presented, we consider a fixed initial aspect ratio of

ao/bo = 0.157.

In chapter 3, an unstratified symmetric vortex pair is studied for ReΓ =

5000. This study is expanded upon in chapter 4, where an asymmetric co-rotating

vortex pair is studied in an unstratified fluid. These vortex pairs have the same

initial aspect ratio, but their circulation strengths vary with respect to one another.

The stronger vortex circulation strength, for all simulations, is ReΓ = 5000 and the

weaker vortex strength varies with respect to the stronger vortex by ReΓ,2/ReΓ,1 =

1, 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4.

In chapter 5, the study conducted in chapter 3 is further modified to include

the effects of ReΓ and stratification, Fr. The range of Reynolds number considered

are 2000 ≤ ReΓ ≤ 5000. The Froude numbers considered are Fr = 2, 3, 5 and ∞.

In chapter 6, an analytical study into the effect of strong density stratifi-
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cation for different configurations of vortex pairs is conducted. In strong stratifi-

cation, viscosity is deemed negligible so that ReΓ is not considered. In the results

presented, this model was validated with linearized inviscid numerical simulations

for Fr = 0.01

In chapter 7, a numerical investigation into the effects of moderate stratifi-

cation was investigated. In all simulations ReΓ = 5000. A range of stratification

levels were investigated, Fr = 0.01, 0.05, 0.1, 0.3, 0.5, 1.



Chapter 3

Symmetric co-rotating vortex

pairs (unstratified)

In this chapter, we will discuss the merging of an unstratified co-rotating

vortex pair of equal size and strength. Only one Reynolds number is considered

in this chapter, ReΓ = 5000, in order to set up the framework with which to study

the flow.

The discussion of results will proceed as follows. First the flow development

is discussed in detail and the flow’s general behavior, phases and structure is laid

out (§3.1). This is followed by a discussion of the merging processes in relation to

the mechanism of merger (§3.2) and the coupled interaction of strain and vorticity

(§3.3). The chapter concludes with the redefining of the flow phases of merger

based on the interaction of strain and vorticity (§3.4).

3.1 Flow behavior and development

The flow development may easily be seen when viewing time sequences of

vorticity contours (figure 3.1), where the vortices are seen to rotate about one

another due to the mutually induced velocity. In the cases considered in this

35
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study, the vortex pair rotates in a counter-clockwise direction. Before merging is

initiated, the rate of rotation is nearly equal to that of a two point vortex system,

Γ/πb2 (figure 3.2). At early times (figures 3.1a-e, tc
∗ ≤ 1.31), the vortices grow due

to viscous diffusion. They also adjust to the induced strain field, which results in

an elliptic deformation of the cores. Later in time (figures 3.1f-h, tc
∗ ≥ 1.45), more

significant deformation is observed, particularly at the lowest vorticity contour

levels. At the outer locations of the vortex pair, filamentation occurs, and in the

vicinity of the center of rotation, a tilt in the vorticity contours develops. The major

axes of the vortices are tilted with respect to the connecting line of the vortices;

subsequently, the vortex centers are rapidly drawn towards and around each other

(figures 3.1i-k, tc
∗ ≥ 1.97). The rate of rotation of the vortex pair increases due to

conservation of angular momentum (figure 3.2). The inward spiral motion leaves

the filaments wrapped around the vortex centers (figure 3.1l). At late times (not

shown), the overall flow consists of essentially a single structure within which the

two vorticity maxima revolve. In time, the two maxima eventually disappear by

viscous diffusion. A single vortex is established.

In previous studies (Cerretelli and Williamson, 2003; Melander et al., 1988;

Meunier, 2001), vortex merging in a viscous unstratified fluid is considered to occur

in three phases: the first diffusive phase, the convective phase, and the second

diffusive phase; the phases designated by the behavior of the separation distance,

b(t), and the core size, a(t). Time histories of b∗ = b/bo and a∗2 = a2/bo
2 are

given in figure 3.3. Note that the core size in figure 3.3b, aω, is defined in terms of

the second moment of vorticity, and that in figure 3.3c, aθ, in terms of the radial

location of maximum azimuthal velocity (averaged over azimuthal coordinate). At

tc
∗ = 0, aθ = 1.12 aω, as expected for a Lamb-Oseen vortex. We note that aθ will

assist in the analysis of asymmetric and stratified flows found in chapters 4 & 5,

respectively.

During the first diffusive phase, b(t) remains relatively constant (figure 3.3a)

while a(t) grows by viscous diffusion (figure 3.3b,c). The development of both a2
ω(t)
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(a) tc
∗ = 0.26 (b) tc

∗ = 0.55 (c) tc
∗ = 0.78

(d) tc
∗ = 1.07 (e) tc

∗ = 1.31 (f) tc
∗ = 1.45

(g) tc
∗ = 1.69 (h) tc

∗ = 1.78 (i) tc
∗ = 1.97

(j) tc
∗ = 2.05 (k) tc

∗ = 2.12 (l) tc
∗ = 2.16

Figure 3.1: Line plots of vorticity contours for ReΓ = 5000.
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Figure 3.2: Revolutions versus time for Re = 5000.

and a2
θ(t) is linear and essentially follows the behavior of a single vortex,

a2 = c2νt + ao
2 (3.1)

or in nondimensional form

a∗2 = c2 2π2

ReΓ

t∗c + ao
∗2 . (3.2)

The growth rate constants for a2
ω(t) and a2

θ(t) are determined to be cω = 2.11

and cθ = 2.17, respectively. We note that for a Lamb-Oseen vortex, cω = 2.0 and

cθ = 2.24 (Saffman, 1992). The end of the diffusive phase is typically marked by the

deviation of a2(t) from its linear growth (transition from a diffusive to convective

dominated process). This occurs for both a2
ω(t) and a2

θ(t) at tc
∗ ∼ 1.7 (figure 3.3b,c)

which corresponds to a critical core size of (aω/bo)cr ≈ 0.23, which is comparable

to reported values by Meunier et al. (2002). The convective phase corresponds to

the predominant reduction in b∗(t). Note that in the latter part of this phase, b∗(t)

exhibits a rapid and nearly linear decrease. The convective phase terminates when

b reaches approximately 0.20bo− 0.25bo at which point the inward velocities at the

centroids are nearly zero. The second diffusive phase is characterized by a slow

reduction in b∗(t) (not shown) as the two ω maxima diffuse into one. Beyond this

time, development of a2(t) (for single merged vortex) eventually returns to linear

growth by diffusion (Cerretelli and Williamson, 2003).
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(b) (c)

Figure 3.3: Time development of (a) separation distance, b∗(t) = b(t)/bo, (b) core

size evaluated by second moment, a2
ω(t)/b2

o, (c) core size evaluated

by maximum azimuthal velocity, a2
θ(t)/b

2
o. The dashed line in (b)

corresponds to (3.2) where c = cθ/1.12 = 1.94.
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(a) (b)

Figure 3.4: Streamlines in co-rotating frame with (a) vorticity contours superim-

posed and (b) shading indicating flow region analysis based on velocity

gradient tensor (Dark gray: cores, light gray: exchange band, white:

outer-recirculation region, i.e. filaments), for ReΓ = 5000 at t∗c = 1.88.

3.2 Physical Mechanisms

The basic physical mechanisms of the merging process are now considered.

As discussed in §1.2.1, there is some uncertainty about the specific source of the

merging velocity, and thus b(t). We address this directly by considering the contri-

bution of each of the distinct flow regions, i.e., the inner cores, the exchange band,

and the filaments (figure 3.4a). The flow regions are identified in our analysis as

follows. First, the inner recirculation (cores and exchange band) and outer recir-

culation (filaments) regions are distinguished by the sign of ω in the co-rotating

frame, since the outer recirculation is associated with differential rotation. Next,

the cores and exchange band are distinguished by considering the second invariant

of the velocity gradient tensor (co-rotating frame), II = (ω2/2 − S2)/2, where S

is the strain rate tensor (Nomura and Post, 1998). Thus, II > 0 corresponds to
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rotation dominated regions which effectively characterizes the cores, and II < 0

corresponds to strain dominated regions which characterizes the exchange band.

We note that in two-dimensional flow, II > 0 is equivalent to the λ2 criterion for

vortex identification of Jeong and Hussain (1995). Figure 3.4b illustrates the three

defined regions used in the analysis sampling. Although our identification scheme

is not based on a strict definition, a sensitivity analysis indicates that it appears

to capture the main portion and behavior of these regions. The sampling method

is effective through most of the convective phase of the flow. Beyond this, a funda-

mental transformation of the flow structure occurs and the identification procedure

is terminated since the rotation rate can no longer be accurately evaluated.

With the flow regions identified, the velocity field induced by each region

is computed using the Biot-Savart law. These velocities are then integrated in

time. Figure 3.5 shows the contribution of the flow regions to the change in b∗(t),

∆b∗region(t). This is determined by evaluating the inward velocity induced at the

vortex centroids by each region and integrating it in time. The contribution of

the filaments, which begins at tc
∗ ≈ 1, corresponds to the initial, slow decrease

in b∗(t). The contribution of the exchange band, which begins at tc
∗ ≈ 1.7, is

associated with the predominant and rapid decrease in b∗(t) during the latter part

of the convective phase. We note that the contribution of the inner cores oscillates

about zero through the diffusive phase (not shown). In the flow considered here,

just after tc
∗ ≈ 1.7, the cores contribute to an increase in b∗(t).

Figure 3.6 shows the induced flow fields of each of the regions in the vicinity

of the center of rotation (a hyperbolic point) at two times (tc
∗ = 1.69, 1.97). At

tc
∗ = 1.69 (figures 3.6a-c), the velocities induced by the cores are still dominant;

those of the filaments are at least an order of magnitude less due to the relatively

low ω in this region. However, an inward component of the velocities between the

cores is detected in the filament induced flow field (figure 3.6b), consistent with

the results in figure 3.5. From figure 3.6a, we observe a tilt in the lowest level ω

contours and the associated misalignment of ω with the streamlines (the actual
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Figure 3.5: Contribution of flow regions to separation distance development,

∆b∗region(t), for ReΓ = 5000 (Symbols: ◦: cores, 2: filaments, B:

exchange band).

streamlines are close to those of the core induced velocities at this time). The

exchange band induced velocity field (figure 3.6c) corresponds to weak circulatory

motion between the two cores. At tc
∗ = 1.97 (figures 3.6d-f), the ω contours show

vorticity from the core regions entrained into the exchange band. The velocities

induced by the exchange band (figure 3.6f) thereby become significant with magni-

tudes comparable to those induced by the cores and correspond to predominantly

rotational motion about the center of the vortex pair. In time, as more of the core

vorticity is entrained into the exchange band, this induced flow strengthens and

eventually dominates the flow.

The overall merging process is now considered. Meunier et al. (2005) pro-

duced a model of vortex merging that considers the effect of the filaments. Al-

though it predicts quite well the initial gradual reduction of b∗(t), it fails to predict

the final rapid reduction. However, as shown in figure 3.5, the dominant reduction

in b∗(t) is due to the exchange band. This is the missing mechanism in the model.

The process is initiated when core vorticity enters the exchange band through a

tilt in ω contours near the center hyperbolic point (figure 3.6a). Vorticity is ad-



43

(a) inner cores (d) inner cores

(b) filaments (e) filaments

(c) exchange band (f) exchange band

Figure 3.6: Vorticity contours (thin solid lines) superimposed with vectors showing

the induced velocity field of the indicated flow regions for ReΓ = 5000

at (a)-(c) tc
∗ = 1.69, (d)-(f) tc

∗ = 1.97. The dark solid line represents

the induced flow streamline which passes through the center hyperbolic

point.
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vected away from its source core and into the exchange band; the inner cores are

thereby stripped and eroded (figure 3.6d). At some point, the cores themselves are

entrained. This corresponds to the rapid linear decrease in b∗(t) associated with

the induced flow by the exchange band (figure 3.5). We therefore consider the con-

vective phase to consist of two components: i) induced motion of filaments advects

the two vortices towards each other and ii) core erosion and entrainment by the

exchange band, the latter transforming the structure of the flow to essentially a

single vortex.

3.3 Influence of strain and vorticity

on vortex merger

In order to understand the deformation of the vortices, and, in particular,

how the tilt in ω contours develops, we first consider the structure and behavior of

the rate of strain, S. Since this is a two-dimensional incompressible flow, the two

principal eigenvalues of S are equal in magnitude and opposite in sign, and the

corresponding eigenvectors are easily computed. Early in the first diffusive phase,

the strain rate field is characteristic of two separate vortices, i.e., a band of high

strain surrounds each of the cores, and the associated eigenvectors are oriented 45◦

from the radial direction. During this phase, as viscous diffusion increases the core

size, the strain bands correspondingly spread outward. The strain bands interact

and result in a locally enhanced region of strain in the vicinity of the center of

rotation (see figure 3.7a-c).

Figure 3.8a,b shows the time development of the non-dimensionalized local

(principal) strain rate evaluated at the center of rotation. As a reference value, we

consider the external strain at a given location, defined as the strain rate induced

by one vortex if the other vortex was not present. The strain field for a Lamb-Oseen
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(a) tc
∗ = 1.31 (d) tc

∗ = 1.31

(b) tc
∗ = 1.69 (e) tc

∗ = 1.69

(c) tc
∗ = 1.97 (f) tc

∗ = 1.97

Figure 3.7: Close-up of vorticity contours with (a)-(c) superimposed principal ex-

tensional strain (vectors indicating magnitude of eigenvalue and di-

rection of eigenvector), (d)-(f) gray shading corresponding to |∇ω|2

production term, Ps = −(∇ωT S∇ω)/|∇ω|2 (light gray scale: Ps > 0,

dark gray scale: Ps < 0), for ReΓ = 5000.
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(a) (b)

Figure 3.8: Time development of the local strain rate, Si, at the center of rotation

normalized by the external strain rates (3.3) (a) Seo = Srθ(b/2, 0), (b)

Srθ(b/2, t) for ReΓ = 5000.

vortex (Saffman, 1992) is given by,

Srθ(r, t) =
Γo

2π

[
− 1

r2
+

(
1

a2
+

1

r2

)
exp

(
−r2

a2

)]
. (3.3)

At t = 0 (large b/a and b = bo), the external strain value at the center of rotation

(r = b/2) is Srθ(r, 0) = 4 Γo/(2πbo
2). The strain values plotted in figure 3.8a are

non-dimensionalized by the constant value, Srθ(r, 0) = Seo, and in figure 3.8b by

the time varying external strain, Srθ(r, t), which accounts for both b(t) and a(t).

Results indicate that the local strain rate increases linearly during the diffusive

phase. Initially the value is approximately twice the external strain indicating

that the contributions from each of the vortices are nearly additive. The main

increase during the convective phase is due to the reduction in b(t). We note that

although Srθ(r, t) describes the overall behavior quite well for some time, the scaled

strain in figure 3.8b does exhibit a slow increase until tc
∗ ≈ 1.7, at which time it

decreases and deviates from Srθ(r, t) significantly. This corresponds to the start of

the exchange band process.

The interaction of the vortices will also influence the directionality of S,
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Figure 3.9: Time development of the angle between extensional strain eigenvector

and vortex connecting line at the center of rotation for ReΓ = 5000.

which will in turn affect subsequent vortex deformation (3.4). Figure 3.9 shows

the angle between the extensional strain eigenvector and the vortex connecting

line at the center of rotation, i.e., the relative orientation of the extensional strain

with respect to the vortex pair. At early times, the angle remains approximately

45◦ due to the relatively weak interaction between the vortices. At approximately

tc
∗ ≈ 1.0, the angle begins to decrease. At tc

∗ ≈ 1.7, the angle is reduced to

approximately 43◦. At this time, the exchange band process is initiated (figure

3.5). Close inspection of the induced flow fields (figure 3.6a-c), and in particular the

streamlines passing through the center hyperbolic point indicating local extensional

straining, demonstrates that the exchange band is responsible for the reduction in

this angle. Note that the induced flow by the filaments tends to increase this angle

(figure 3.6b). At tc
∗ ≈ 2.1, the angle reaches approximately 40◦, beyond which it

then rapidly increases. This indicates a substantial change in the flow, i.e., core

entrainment, which corresponds to the time b∗(t) begins its rapid and nearly linear

descent (figure 3.3a). The reduction in strain orientation is associated with the

development of the tilt in ω contours (see figure 3.7a-c). We will consider this

angle as an indicator of the tilt, which results from a dynamic interaction between



48

vorticity and strain.

In a two-dimensional flow, the interaction of ω and S is understood in terms

of the vorticity gradient, ∇ω, which may undergo reorientation and amplification

by S. It is directly related to the behavior of vorticity contours since −∇ω/|∇ω|
is the local normal vector of an isovorticity contour line. The equation for |∇ω|2

is,

D 1
2
|∇ω|2
Dt

= |∇ω|2 D ln |∇ω|
Dt

= −∇ωT S∇ω + ν∇ωT∇2∇ω (3.4)

The two terms on the right-hand side represent gradient amplification and diffu-

sion, respectively. Here, we define two quantities associated with the production

term:

P = −∇ωT S∇ω (3.5)

and

Ps = −(∇ωT S∇ω)/|∇ω|2 (3.6)

(Ps obtained by dividing (3.4) by |∇ω|2), whose sign indicates the relative orien-

tation of ∇ω with the principal strain axes and, in the case of Ps, the magnitude

indicates the strain in the direction of ∇ω. Thus, P, Ps > 0 correspond to ∇ω

orienting towards the direction of the compressive strain, i.e., there is gradient

amplification by compressive straining. Figure 3.10 shows the time development

of the area averaged production term, 〈P 〉, which indicates a global mean rate of

deformation of the vorticity field. Prior to merging, the behavior of 〈P 〉 is con-

sistent with the elliptic deformation of the vortices as characterized by computed

eccentricities (not shown). As discussed in Le Dizes and Verga (2002), beyond the

initial flow adjustment and prior to the merging threshold, the vortices relax to a

mean state in which they deform at a steady rate. This mean state corresponds to

the small and nearly constant value exhibited by 〈P 〉 during this time (figure 3.10).

A net positive value of 〈P 〉 is exhibited indicating the significance of the gradient
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Figure 3.10: Time development of < P >= − < ∇ωT S∇ω >, averaged over do-

main, for ReΓ = 5000.

amplification process. Beyond the diffusive phase, there is a significant increase in

〈P 〉 indicating deviation from the mean state and accelerated deformation.

In general, the local behavior of P will depend on the relative significance of

rotation and strain. In rotation dominated regions (II > 0), P oscillates between

positive and negative values. Physically, ∇ω rotates and alternates between am-

plification and damping, a condition which results in the elliptic instability (Protas

et al., 1999). We expect the dynamic effect of P on ∇ω to be most significant in

strong strain-dominated regions (II < 0), i.e., the exchange band region, and in

particular, in the vicinity of the center of rotation where there is an enhancement

of strain. In these regions, S is dynamically active and significantly alters ∇ω.

Figure 3.7 shows S (vectors) and Ps (light gray scale: Ps > 0, dark gray

scale: Ps < 0) superimposed on vorticity contours at the central region of the vortex

pair at three times. Each vortex exhibits the quadrapole structure of P associated

with elliptic vortices (Kimura and Herring, 2001). As discussed in Kimura and

Herring, in positive Ps (compressive straining) regions ω isocontours are squeezed

together while at the same time, they are extended in the orthogonal direction due

to flow incompressibility. The opposite is true for negative Ps regions. This is seen

in figure 3.7e where, in the vicinity of the center (hyperbolic point) and above it,
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ω contours in Ps > 0 regions extend to the left, while ω contours in Ps < 0 regions

contract to the left. This results in the observed tilting of the upper vortex to

the left and a corresponding tilting of the lower vortex to the right, which thereby

tilts the vortices with respect to their connecting line. This also results in the

central region to be dominated by Ps > 0; i.e., gradient amplification. The tilting

effect also occurs in the vicinity of the outer hyperbolic points where filamentation

initiates (not shown). In their study of isolated elliptic vortices, Kimura and

Herring (2001) show that P plays a significant role in the filamentation process.

In regions of P > 0, vorticity gradient amplification was found to occur prior

to filament ejection. This is also observed in the present case of two co-rotating

vortices.

As discussed by Le Dizes and Verga (2002), prior to merging, the vortic-

ity and streamfunction exhibit a distinct functional relation suggesting that the

flow in the rotating frame is nearly a stationary solution to the Euler equation.

However, in time and near the merging threshold, the relation between ω and the

streamfunction deviates at the hyperbolic points where |ω| is low (see their figure

14). At the central hyperbolic point, they find an accumulation of vorticity and

a Reynolds number dependence which they suggest is due to complex advection-

diffusion processes. Based on our results, we conclude that the tilt of the vortices

and associated diffusion, which is enhanced by gradient amplification (Ps > 0 at

center), results in this accumulation and the observed misalignment of ω contours

with respect to the streamlines in these regions (e.g., figure 3.6a). Since the stream-

lines are separatrices, this causes vorticity to enter a different flow region in the

co-rotating frame and be advected away.

In order to examine further the development of the tilt, we define the cen-

tral region of the flow by a box in the co-rotating frame with a width of 0.25bo

(along connecting line of vortices) and a height of 0.08bo. The box dimensions are

chosen to capture the primary misalignment in ω contours. Figure 3.11 shows 〈P 〉
averaged over the central region which is predominantly positive and exhibits a
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Figure 3.11: Time development of 〈P 〉 = −〈∇ωT S∇ω〉 in the central region for

ReΓ = 5000.

significant increase beyond tc
∗ & 0.5. This increase corresponds directly with the

extension of Ps > 0 regions and the positive feedback nature of gradient amplifi-

cation by compressive straining. Since the production term, ∇ωT S∇ω, depends

on both the magnitudes and relative orientation of ∇ω and S, we now isolate the

directional component. Figure 3.12 shows the average angle between ∇ω and the

compressive strain eigenvector in the central region. Beyond the initial adjustment

period, the average angle is ≈ 40◦ which is near the 45◦ associated with a passive

strain field, i.e., controlled by the primary vortex. Beyond a time tc
∗ ≈ 1, the

angle decreases towards zero indicating that the strain has become active in influ-

encing the vorticity field by amplifying and reorienting ∇ω. This corresponds to

the development of the tilt (figure 3.9).

3.4 Flow Phases - Redefined

In summary, we present the following description of the merging process,

which we consider to consist of four phases. During the diffusive/deformation

phase, b∗(t) remains constant and the vortices grow by diffusion. The induced
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Figure 3.12: Time development of the angle between ∇ω and compressive strain,

α, in the central region for ReΓ = 5000.

strain field of each of the vortices correspondingly spreads by diffusion and also

develops through their mutual interaction. In the strain dominated regions of the

flow, and in particular in the vicinity of the center hyperbolic point where the mu-

tual interaction of strain is strongest, S becomes dynamically active and influences

the vorticity field through amplification and reorientation of ∇ω. This establishes

a tilt in ω contours with respect to the vortex connecting line which, together with

diffusion, results in a misalignment of ω with respect to the streamlines. At the

outer regions of the exchange band (near outer hyperbolic points), this causes ω

to enter the outer recirculation region and filamentation to occur. The associated

vorticity acts to advect the vortices towards each other but does not drive the

merger to completion. We consider this as the convective/deformation phase since

the (slow) reduction in b∗(t) enhances the induced strain at the vortices and cen-

tral region. In the vicinity of the center hyperbolic point, this misalignment allows

inner core ω to enter the exchange band and be advected away from its source

core. This is the start of the convective/entrainment phase, which is associated

with a rapid reduction in b∗(t). The inner cores are thereby stripped and eroded.

The circulation of the exchange band increases at the expense of that of the inner
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cores, which become increasingly weak. At some point, the cores themselves are

entrained. The resulting fluid motion becomes rotation dominated and what is es-

sentially a single vortex is established. The last phase, diffusive/axisymmetrization

phase, is characterized by the final slow reduction in b∗(t) as the two ω maxima

diffuse and the flow evolves towards axisymmetry.

As will be discussed in the following chapters, this new description of

merger, which resolves the convective phase into the two distinct processes, as-

sists in accounting for the effects of asymmetry and weak stratification.

Chapter 3, in part, is a reprint of the material as it appears in Physics

of Fluids Volume 18, pages 1-4. Brandt, L.; Nomura, K., American Institute of

Physics, 2006 and Journal of Fluid Mechanics Volume 592, pages 413-446. Brandt,

L.; Nomura, K., Cambridge University Press, 2007. The dissertation author was

the primary investigator and author of these papers.



Chapter 4

Asymmetric co-rotating vortex

pairs (unstratified)

In this chapter, we discuss the physics of asymmetric vortex interactions.

These vortex pairs are asymmetric in that they have the same initial aspect ratio,

but their circulation strengths vary with respect to one another. The stronger

vortex circulation strength, for all simulations, is ReΓ = 5000 and the weaker vortex

strength varies with respect to the stronger vortex by ReΓ,2/ReΓ,1 = 1, 0.9, 0.8, 0.7,

0.6, 0.5 and 0.4.

We begin with a qualitative description of the flow behavior in §4.1 and a

discussion of the frame of reference that will be used during the analysis in §4.2.

The physical mechanisms are discussed in §4.3. The critical parameter is defined

in §4.4 and used to define the flow regimes in §4.5. We will conclude with a brief

discussion of results in §4.6.

4.1 Flow behavior and development

We begin by examining the basic development of the flows. Figure 4.1a,b

shows time sequences of vorticity contour plots for different ReΓ,2/ReΓ,1. Due to

54
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ReΓ,2/ReΓ,1 = 1 ReΓ,2/ReΓ,1 = 0.9 ReΓ,2/ReΓ,1 = 0.8 ReΓ,2/ReΓ,1 = 0.7

(i) tc
∗ ≈ 0.75

(ii) tc
∗ ≈ 1.25

(iii) tc
∗ ≈ 1.5

(iv) tc
∗ ≈ 1.75

(v) tc
∗ ≈ 2.0

Figure 4.1a: Line plots of vorticity contours.
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ReΓ,2/ReΓ,1 = 0.6 ReΓ,2/ReΓ,1 = 0.5 ReΓ,2/ReΓ,1 = 0.4

(i) tc
∗ ≈ 0.75

(ii) tc
∗ ≈ 1.25

(iii) tc
∗ ≈ 1.5

(iv) tc
∗ ≈ 1.75

(v) tc
∗ ≈ 2.0

Figure 4.1b: Line plots of vorticity contours.
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Figure 4.2: Time development of separation distance, b∗(t) = b(t)/bo, Symbols:

◦: ReΓ,2/ReΓ,1 = 1, 2: ReΓ,2/ReΓ,1 = 0.9, B: ReΓ,2/ReΓ,1 = 0.8, ∗:
ReΓ,2/ReΓ,1 = 0.7, ×: ReΓ,2/ReΓ,1 = 0.6, 3: ReΓ,2/ReΓ,1 = 0.5, +:

ReΓ,2/ReΓ,1 = 0.4

the mutually induced velocity, the vortices initially rotate about each other at a

fixed distance, while diffusion causes the cores to grow.

As was discussed in chapter 3, in the case of equal vortices (ReΓ,2/ReΓ,1 = 1;

first column in figure 4.1a), the vortex cores deform elliptically as they diffuse.

A tilt in the vorticity contours develops near the center of rotation. Filaments

develop at the outer edge of each vortex. The major axes of the vortices are tilted

with respect to the connecting line of the vortices; subsequently, the vortices move

rapidly towards each other and intertwine. The two vorticity maxima eventually

diffuse as the flow evolves towards axisymmetry (not shown).

In the case of unequal vortices (ReΓ,2/ReΓ,1 < 1), the vortices do not deform

at the same rate. The smaller the ReΓ ratio, the greater the deformation of the

weaker vortex in comparison with that of the stronger vortex. The tilt in the
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weaker vortex develops earlier. For the cases 0.7 ≤ ReΓ,2/ReΓ,1 ≤ 0.9, the vortices

approach each other, however the stronger vortex appears to endure the interaction.

For lower ReΓ ratios (ReΓ,2/ReΓ,1 ≤ 0.6), the vorticity maxima do not rapidly

move towards each other. Instead, the weaker vortex is significantly deformed and

becomes encircled about the stronger vortex, eventually diffusing into its low level

outlying vorticity. The stonger vortex appears to be relatively unaffected.

Figure 4.2 shows the time development of nondimensional separation dis-

tance, b∗(t) = b(t)/b0 for various ReΓ,2/ReΓ,1. In all the flows, b∗(t) remains nearly

constant for some time and then exhibits a gradual reduction. As shown in chapter

3, and suggested in the visualizations (figure 4.1a), the gradual reduction in b∗(t)

is associated with the formation of filaments. For ReΓ,2/ReΓ,1 & 0.7, a more rapid

reduction in b∗(t) then follows which occurs at approximately the same time in all

the flows. For ReΓ,2/ReΓ,1 < 0.7, b∗(t) behaves differently and beyond the early

gradual reduction, instead exhibits an increase.

With sufficient initial separation, the vortex cores will initially increase in

time due to viscous diffusion. As stated in chapter 3, there are various ways of

defining the size of vortex cores. Meunier et al. (2002) defines the core size by

the second moment of vorticity, aω. However, in the case of asymmetric vortex

pairs, this approach has difficulties since eventually, vorticity detrained from the

weaker vortex is accounted for in the stronger vortex and vice versa. To circumvent

this difficulty, we use the (circumferential) averaged distance between the vorticity

maxima and the maximum azimuthal velocity as an indicator of the vortex core

size, aθ (chapter 3).

Figure 4.3 shows a2∗
θ = a2

θ/b
2
0 for both the stronger and weaker vortices.

The initial linear development in a2∗
θ corresponds to growth by viscous diffusion.

In the symmetric case, at some point both cores deviate from its linear growth.

This indicates the transition from a diffusive- to convective-dominated process

which corresponds to the predominant change in b∗(t). In the asymmetric vortex

interactions, the weaker vortex core (figure 4.3b) deviates from its linear growth
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earlier in time than the stronger vortex core. However, this does not cause b∗ to

rapidly decrease (figure 4.2). Rather, the rapid decrease in b∗ is associated with the

deviation from linear growth of the stronger vortex core. For sufficiently unequal

vortices (ReΓ,2/ReΓ,1 . 0.6), the latter may not be substantial or occur at all

(figure 4.3a). In general, the transition from diffusive- to convective-dominated

flow, which has been used to determine the critical aspect ratio for symmetric

merger (Meunier et al., 2002), does not readily yield a corresponding merging

criteria for the asymmetric case. In order to develop an appropriate merging

criterion, we must gain a better understanding of the physics underlying the vortex

interactions.

4.2 Flow structure in the co-rotating frame

As in previous studies, it is useful to consider the flow in the co-rotating

reference frame. Figures 4.4a,b show the flow structure for ReΓ,2/ReΓ,1 = 1 and

ReΓ,2/ReΓ,1 = 0.6 simulation results. Here, the shaded contours indicate vorticity

and the streamlines shown are the separatrices in the co-rotating frame. In figures

4.4c,d, the separatrices are evaluated from a corresponding point vortex system.

The basic flow structure is effectively represented by the point vortices as long as

the separation is sufficiently large.

In §3.2, we gave a detailed explanation of the symmetric co-rotating frame

(figures 4.4a,c). We showed that there are three primary flow regions. The in-

ner core regions consist of closed streamlines encircling each individual vorticity

maximum and correspond to the primary vortices. The exchange band consists of

closed streamlines encompassing both inner core regions and corresponds to fluid

circulating (exchanged) between the two vortices. The outer recirculation regions

consist of fluid which circulates in the opposite sense (in the co-rotating frame) to

that of the cores and exchange band and is where the filaments are formed. There

are three hyperbolic points in the flow including the central hyperbolic (CH) point
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(a) Vortex 1
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(b) Vortex 2

Figure 4.3: Time development of vortex cores based on the maximum azimuthal

velocity, Symbols: ◦: ReΓ,2/ReΓ,1 = 1, 2: ReΓ,2/ReΓ,1 = 0.9, B:

ReΓ,2/ReΓ,1 = 0.8, ∗: ReΓ,2/ReΓ,1 = 0.7, ×: ReΓ,2/ReΓ,1 = 0.6
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which coincides with the center of rotation (CR).

In the asymmetric vortex pair (figures 4.4b,d), the flow structure differs.

The locations of the CR and the CH point are shifted and no longer coincide.

These basic features in the flow geometry are indicated by the point vortex model

(figure 4.4d). For a pair of point vortices, the normalized distance between the

CR and the centers of the stronger (V1) and weaker (V2) vortices, respectively,

r∗|CR−V 1|,o and r∗|CR−V 2|,o, are given by,

r∗|CR−V 1|,o =
r|CR−V 1|,o

bo

=
ReΓ,2/ReΓ,1

1 + ReΓ,2/ReΓ,1

,

r∗|CR−V 2|,o =
r|CR−V 2|,o

bo

=
1

1 + ReΓ,2/ReΓ,1

(4.1)

which indicates that the CR shifts towards the stronger vortex as the ReΓ ratio is

reduced from unity. We note that in the simulations, the CR remains nearly fixed

prior to core destruction. The point vortex system (figure 4.4d) also illustrates the

modified flow structure which consists of three hyperbolic points and four primary

regions.

The inner-core and exchange band regions are similar to that of the sym-

metric case, however, the CH point has shifted. The locations of the hyperbolic

points for the point vortex system are given by,

[
ReΓ,1

ReΓ,2

+ 1

]
d∗3|H−V 1|,o −

[
ReΓ,1

ReΓ,2

+ 2

]
d∗2|H−V 1|,o −

ReΓ,1

ReΓ,2

d∗|H−V 1|,o +
ReΓ,1

ReΓ,2

= 0

[
ReΓ,2

ReΓ,1

+ 1

]
d∗3|H−V 2|,o −

[
ReΓ,2

ReΓ,1

+ 2

]
d∗2|H−V 2|,o −

ReΓ,2

ReΓ,1

d∗|H−V 2|,o +
ReΓ,2

ReΓ,1

= 0

(4.2)

where d∗|H−V 1|,o = d|H−V 1|,o/bo represents the initial distance from the stronger

vortex to a hyperbolic point (H) and d∗|H−V 2|,o = d|H−V 2|,o/bo represents the initial

distance from the weaker vortex to a hyperbolic point. The exact solution of (4.2)

is cumbersome. However, a fourth order approximation may be obtained through
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(a) ReΓ,2/ReΓ,1 = 1.0, simulation (b) ReΓ,2/ReΓ,1 = 0.6, simulation

(c) ReΓ,2/ReΓ,1 = 1.0, point vortices (d) ReΓ,2/ReΓ,1 = 0.6, point vortices

Figure 4.4: Flow structure in the co-rotating frame (a),(b) simulation results at

t∗c = 0.32, and (c),(d) point vortex system. (a),(c): ReΓ,2/ReΓ,1 =

1.0 and (b),(d): ReΓ,2/ReΓ,1 = 0.6. Streamlines show separatrices of

primary flow regions and shading corresponds to vorticity.
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a perturbation expansion. This gives the location of the CH point to be,

d∗|CH−V 2|,o =

√
2

2

[
ReΓ,2

ReΓ,1

]1/2

− 1

8

[
ReΓ,2

ReΓ,1

]1

− 19
√

2

128

[
ReΓ,2

ReΓ,1

]3/2

+
1

8

[
ReΓ,2

ReΓ,1

]2

d∗|CH−V 1|,o = 1− d∗|CH−V 2|,o (4.3)

where d∗|CH−V 1|,o = d|CH−V 1|,o/bo represents the initial distance from the stronger

vortex to the CH point and d∗|CH−V 2|,o = d|CH−V 2|,o/bo represents the initial distance

from the weaker vortex to the CH point. Equation 4.3 provides a good estimate of

the initial location of the CH point and indicates that the smaller the ReΓ ratio,

the closer the CH point is to the weaker vortex. This will be used in our scaling

analysis in §4.4. We note that for very small ReΓ ratios, the point vortex result

of (4.3) breaks down due to the close proximity of the CH point to the finite size

core.

As will be discussed, the processes occuring in the vicinity of the CH point

are key in understanding the behavior of the flow.

4.3 Asymmetric vortex interactions

As shown in figure 4.1a&b, the difference in vortex strengths in asymmetric

vortex pairs alters the flow structure and interaction. Initially the two vortices

will develop in a diffusive/deformation phase in which the cores grow by diffusion

(figure 4.3) as in the symmetric case (chapter 3). However, the greater deformation

rates at the weaker vortex will cause it to depart earlier from this phase. A measure

of the rate of vortex deformation is the local eccentricity, εl, defined as the ratio of

the strain rate to the rotation rate (Le Dizes and Verga, 2002). Figure 4.5 shows

εl evaluated at the vorticity maximum of each vortex. The results clearly indicate

the disparity in deformation rates between the vortices. We note that for low ReΓ

ratios (e.g., ReΓ,2/ReΓ,1 ≤ 0.6), the local eccentricity of the stronger vortex, εl,1,

remains low and in time, indicates little influence by the weaker vortex.
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The implication of the differences in deformation rates is indicated in figure

4.6 where we investigate the interaction of S and ∇ω (3.6). In §3.3, a measure

of the relationship between S and ∇ω in symmetric vortex interactions was ex-

pressed through the quantity Ps = −(∇ωT S∇ω)/|∇ω|2. It was found that each

vortex exhibited a quadrapole structure of Ps corresponding to alternate regions

of gradient amplification/attenuation by compressive/extensional straining which

are associated with the elliptic deformation during this time (figure 4.6a). For the

asymmetric vortex interactions it is seen in figure 4.6b that Ps is stronger at the

weaker vortex due to the induced S by the stronger vortex and that conversely, Ps

is weaker at the stronger vortex due to the induced S by the weaker vortex. As

discussed in §4.2, the CH point is closer to the weaker vortex. The weaker vortex

is thereby subject to earlier tilting in the vicinity of the CH point and resultant

core detrainment.

As discussed, in the symmetric vortex pair (chapter 3), a convective/ de-

formation phase follows in which there is a gradual motion of the vortices towards

each other due to induced flow by the filaments. As seen in figure 4.2, this occurs at

approximately t∗c ≈ 1 (approximately one revolution of the vortex pair) for all ReΓ

ratios. After this time, filaments are observed in the flows (figure 4.1a&b). How-

ever, the more asymmetric the vortex pair, the more the filamentation occurs on

the weaker vortex side. Filamentation occurs when ω from the core and exchange

band enters the outer-recirculation regions due to the combined action of diffusion

and tilting of ω contours in the vicinity of the two outer hyperbolic points (figure

4.4). Once ω enters the outer-recirculation region, it is advected away by the flow

in this region, thereby forming filaments. As noted in §4.2, the asymmetric pair

contains an additional region just outside the exchange band on the outer side of

the stronger vortex (figure 4.4b,d). This acts to buffer the stronger vortex from

the nearby outer hyperbolic point. Any ω diffusing out from the exchange band in

this region will be advected into the filament of the weaker vortex. This change in

the flow structure allows the stronger vortex to retain its shape. In contrast, the
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enhanced filamentation occuring on the side of the weaker vortex further promotes

the deformation and erosion of the weaker vortex.

Although the weaker vortex experiences significant erosion and detrain-

ment, as indicated by its departure from diffusive core growth (figure 4.3b), the

separation distance does not correspondingly exhibit a significant decrease (figure

4.2) as in the convective/entrainment phase of the symmetric pair. This may be

understood by considering the results from Huang (2005) who uses a vortex sim-

ulation method to track Lagrangian flow structures in a symmetric vortex pair.

It is shown that the primary inward motion of the computed vortex is due to a

”sheet-like” structure, emitted by the opposite vortex, which wraps around the

computed vortex (see figure 7 in (Huang, 2005)). In the case of the asymmetric

vortex pair, the weaker vortex will emit a sheet-like structure (detrainment) earlier

in time. This relatively weak vorticity may wrap around the stronger vortex, but

the associated induced flow on the stronger vortex is correspondingly weak and

insufficient to result in significant motion.

If, within some time period, the stronger vortex also erodes sufficiently, then

there will be some extent of mutual (reciprocal), but unequal, entrainment. This is

observed in the simulations with 0.7 ≤ ReΓ,2/ReΓ,1 ≤ 0.9, where it is seen that the

linear growth of the stronger core, a2
θ,1(t), is eventually interrupted (figure 4.3a).

However in these cases, the stronger vortex ultimately dominates (figure 4.1a&b)

and entrains vorticity from the weaker vortex. We therefore consider the process

as vortex merger since the result is an enhanced (compound) vortex. If significant

erosion occurs in the weaker vortex before it is established in the stronger vortex

(e.g., ReΓ,2/ReΓ,1 = 0.6), the weaker vortex is destroyed leaving the stronger vortex

to remain in the flow relatively unaffected (since there is no longer a significant

source of external strain). In this case, merger does not occur.

We therefore consider a critical state for a given vortex to be associated

with the establishment of core detrainment. If both vortices reach this state, there

will be some degree of mutual entrainment which results in an enhanced vortex,
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(b) Vortex 2

Figure 4.5: Time development of local eccentricity for each vortex, Symbols: ◦:
ReΓ,2/ReΓ,1 = 1, 2: ReΓ,2/ReΓ,1 = 0.9, B: ReΓ,2/ReΓ,1 = 0.8, ∗:
ReΓ,2/ReΓ,1 = 0.7, ×: ReΓ,2/ReΓ,1 = 0.6, 3: ReΓ,2/ReΓ,1 = 0.5, +:

ReΓ,2/ReΓ,1 = 0.4
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(a) ReΓ,2/ReΓ,1 = 1.0 (b) ReΓ,2/ReΓ,1 = 0.6

Figure 4.6: Vorticity contours with gray shading corresponding to 5ω production

term, Ps = −(∇ωT S∇ω)/|∇ω|2 (light gray scale: Ps > 0, dark gray

scale: Ps < 0) at t∗c = 0.32.

i.e., convective merger will occur. Based on these ideas, we may now consider the

development of a merging criterion.

4.4 Generalized merging criterion

From our analysis of results, a mean critical aspect ratio, 1
2
(a1+a2

b
), is not

expected to appropriately characterize the onset of merger in asymmetric vortex

pairs and an alternative criterion is needed. As discussed above, we consider the

critical state of a vortex to be associated with the establishment of core detrain-

ment. Since the process is initiated by the interaction between S and 5ω in the

vicinity of the CH point, we expect that it will proceed if the induced local strain

rates are sufficiently high. We therefore consider one characteristic quantity to be
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the strain rate at the CH point, SCH . Furthermore, we expect significant core

detrainment to occur if the vortex strength is relatively weak. A characteristic

core vorticity is the maximum, ωvi
. In order to relate the strain rate at the CH

point, which has contributions from both vortices, to the maximum vorticity of

the vortex, we normalize each quantity by a characteristic local strain rate,

S∗CH =
SCH

SCH,o

, ω∗vi
=

ωvi

Svi,o

(4.4)

This introduces appropriate scalings for these quantities. We may then define a

strain parameter for vortex i,

γi(t) ≡
(

S∗CH(t)
1
2
ω∗vi

(t)

)1/2

(4.5)

which is a measure of the relative strength of the induced strain rate at the CH

point to the vortex strength. Figure 4.7 shows computed γ1(t) and γ2(t). We then

consider the critical value of the vortex strain parameter to be the value at the

critical time, tcr,i, when core detrainment (and entrainment into exchange band) is

established, i.e., γcr,2 = γ2(tcr,2) and γcr,1 = γ1(tcr,1). As discussed in the previous

section, this also corresponds to the time at which the departure from viscous core

growth occurs. From the data of figures 4.3 and 4.7, we obtain: γcr,1 ≈ 0.249±0.003

and γcr,2 ≈ 0.245± 0.005. The values are within the range of error. We therefore

find a single value for the critical strain parameter,

γcr,1 ≈ γcr,2 ≈ γcr = 0.247± 0.007 . (4.6)

To test the generality of (4.6), additional simulations were performed for different

initial aspect ratios, varying both core size and strengths. Resulting values for

γcr are within the range given in (4.6). We note that data for cases in which the

initial flow condition is near or beyond the critical state, e.g., ReΓ,2/ReΓ,1 . 0.5,

are excluded from (4.6), as will be discussed below.

We now further consider the strain parameter, and in particular γ2, through

a scaling analysis. Prior to significant vortex interaction, SCH is proportional to
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the local external strain rate and ωvi
is proportional to the ratio of Γi and a2

ω,i,

SCH ∝ Γ1

2πd2
|CH−V 1|

+
Γ2

2πd2
|CH−V 2|

, ωvi
∝ Γi

πa2
ω,i

. (4.7)

We thereby have the following scaling for the nondimensional strain rate and vor-

ticity,

S∗CH =
SCH

SCH,o

∝
[

Γ2

Γ2,o

][
d∗2|CH−V 2|,o
d∗2|CH−V 2|

][ 1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|
d∗2|CH−V 1|

1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|,o
d∗2|CH−V 1|,o

,

]

ω∗vi
=

ωvi

Svi,o

∝
[

Γi

Γ1,o

][
2

a∗2ω,i

]
. (4.8)

Note that in the equation above, the approximation was made that Γ2

Γ1
= Γ2,o

Γ1,o
=

ReΓ,2

ReΓ,1
. This relationship, as well as the scaling in (4.7), holds reasonably well up

to the critical state of the weaker vortex. The strain parameter for the weaker

vortex may then be related to the ReΓ ratio along with aω and d|CH−Vi|, which is

the distance from the maximum vorticity of vortex i to the CH point (§4.2),

γ2(t) ≡
(

S∗CH
1
2
ω∗v2

)1/2

=

([
SCH

1
2
ωv2

][
d∗2|CH−V 2|,o

ReΓ,2

ReΓ,1

][
1

1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|,o
d∗2|CH−V 1|,o

])1/2

(4.9)

∝ a∗ω,2

[
ReΓ,1

ReΓ,2

]1/2[d∗|CH−V 2|,o
d∗|CH−V 2|

]( 1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|
d∗2|CH−V 1|

1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|,o
d∗2|CH−V 1|,o

)1/2

. (4.10)

This gives the following scaling for the critical strain parameter for the weaker

vortex,

γcr,2 = f a∗ω,2(t
∗
cr,2)

[
ReΓ,1

ReΓ,2

]1/2[ d∗2|CH−V 2|,o
d∗2|CH−V 2|(t

∗
cr,2)

](1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|(t
∗
cr,2)

d∗2|CH−V 1|(t
∗
cr,2)

1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|,o
d∗2|CH−V 1|,o

)1/2

. (4.11)

where f is a proportionality constant. In the case of a symmetric vortex pair, this

equation reduces to

(
S∗CH(t∗crit)
1
2
ω∗v2

(t∗crit)

)1/2

=

(
SCH(t∗crit)

4ωvi
(t∗crit)

)1/2

= f
a∗ω(t∗crit)

2d∗|CH−V |(t
∗
crit)

= f

(
aω

b

)

crit

. (4.12)
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Thus, the strain parameter for ReΓ,1/ReΓ,2 = 1 is directly related to the

critical aspect ratio. As stated earlier, for the weaker vortex core, γcr,2 ≈ 0.245±
0.005, and the corresponding proportionality factor is found to be, f ≈ 1.05±0.03.

This compares well with previously determined values for the critical aspect ratio

for symmetric vortex merger. In §3.1 it was found that (aω/b)crit ≈ 0.23 where

γcr,2/f ≈ 0.233± 0.005.

We note that a corresponding scaling analysis (4.11) for the stronger vortex

strain parameter, γcr,1, cannot be carried out. In general, when (if) the stronger

vortex reaches the critical state, significant changes may have occurred for the

weaker vortex and the associated strain field and scaling for SCH are no longer

straightforward. We also noted earlier that data for ReΓ,2/ReΓ,1 . 0.5 is not

included in the determination of the critical strain parameter in (4.6). Recall that

the lower the ReΓ ratio, the closer the CH point is to the weaker vortex (4.3). From

(4.9), the critical weaker vortex core size for ReΓ,2/ReΓ,1 = 0.5 is a∗ω,2(t
∗
cr,2) ≈ 0.163,

which is close to the initial value of a∗o = 0.157 (initial aspect ratio). Therefore,

for aω,o/bo = 0.157 and ReΓ,2/ReΓ,1 . 0.5, the weaker vortex is close to or beyond

the critical state and is quickly destroyed.

As discussed in §4.3, for an asymmetric vortex pair, convective merger will

occur if both vortices reach the critical state. The critical state of the weaker vortex

is achieved earlier, when γ2(t) = γcr,2. From figure 4.7b it is observed that γ1(t)

eventually reaches its critical value for ReΓ,2/ReΓ,1 & 0.7. However, in the case of

ReΓ,2/ReΓ,1 = 0.6, γ1(t) does not achieve the critical value and, correspondingly,

aθ,1 does not deviate from linear viscous growth (figure 4.3a). Core detrainment

is not established by the stronger vortex and convective merger does not occur in

this case.
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(b)

Figure 4.7: Time development of the strain parameter, γi, for (a) vortex 1 and

(b) vortex 2. Symbols: ◦: ReΓ,2/ReΓ,1 = 1, 2: ReΓ,2/ReΓ,1 = 0.9, B:

ReΓ,2/ReΓ,1 = 0.8, ∗: ReΓ,2/ReΓ,1 = 0.7, ×: ReΓ,2/ReΓ,1 = 0.6
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4.5 Classification of vortex interactions

From our viscous flow simulations in §4.3, several distinct vortex interac-

tions/flow regimes are observed for the asymmetric pair. We may characterize these

interactions based on the timing of key processes: weaker vortex core detrainment,

stronger vortex core detrainment, and weaker vortex destruction. Figure 4.8 shows

these process times (scaled by convective timescale) as a function of the ReΓ ratio.

The observed interactions may be identified in terms of the relative timing of these

processes. We first consider each of the times separately.

The time required for the weaker vortex to reach the critical state (γ2(t) =

γcr), t∗cr,2 (2 in figure 4.8), is seen to increase linearly with respect to the ReΓ ratio.

As stated earlier, t∗cr,2 is evaluated in the simulations as the time of departure from

viscous core growth. Based on the scaling analysis in the previous section (§4.4),

t∗cr,2 can then be estimated through the right hand side of (4.11) and using the

viscous growth relation in terms of aω,

a2
ω,2 = c2

ω,2 ν t + a2
ω,o (4.13)

For symmetric vortex pairs, it was found that cω = 2.11 (§3.1) for a large range

of ReΓ and that the resulting behavior was similar to that of a single vortex.

However, in the asymmetric vortex pairs, the weaker vortex core growth differs

(figure 4.3b) and the growth rate is found to scale with the rotation rate, c2
ω,2 =

2.112
√

.5(1 + ReΓ,2/ReΓ,1). The resulting equation is of the form,

t∗cr,2 ≈
([

γ2
cr

f 2

][
ReΓ,2

4c2
ω,2π

2

]
g −

[
a∗2ω,oReΓ,1

4c2
ω,2π

2

])[
1 +

ReΓ,2

ReΓ,1

]
. (4.14)

where the factor, g is defined as,

g =

[
d∗2|CH−V 2|(t

∗
cr,2)

d∗2|CH−V 2|,o

][ 1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|,o
d∗2|CH−V 1|,o

1 +
ReΓ,1

ReΓ,2

d∗2|CH−V 2|(t
∗
cr,2)

d∗2|CH−V 1|(t
∗
cr,2)

]
(4.15)

In general, the precise behaviors of d∗|CH−V 1|(t) and d∗|CH−V 2|(t) are complex. How-

ever we find that the changes are not substantial. Based on the simulation results,
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Figure 4.8: Process times (scaled by convective timescale) corresponding to 2: t∗cr,2

weaker vortex detrainment, ◦: t∗cr,1 stronger vortex detrainment, ∗: t∗de,2

weaker vortex destruction.

we evaluate g ≈ 0.985±0.008. Using this approximation in (4.14) gives the result-

ing prediction for t∗cr,2, which is represented by the dashed line in figure 4.8. As

indicated, the relation effectively predicts the time for weaker vortex core detrain-

ment. This also corroborates our scaling analysis in §4.4.

The time at which the stronger vortex reaches the critical state, t∗cr,1 (◦ in

figure 4.8), appears to be independent of ReΓ ratio. Therefore, this critical time

may be defined based on the case of symmetric merger. Using (4.13) and (4.12),

we obtain,

t∗cr,1 = [ReΓ,1 + ReΓ,2]

[
a∗2ω,1 − a∗2ω,o

4c2
ω,1π

2

]
≈ ReΓ,1

(γcr/f)2b∗2sym − a∗2ω,o

4c2
symπ2

≈ 1.65± 0.02.

(4.16)

We note that unlike the weaker vortex, the stronger vortex core growth is not

dependent on rotation rate, cω,1 ≈ 2.11.
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The final process time considered is the time characterizing the destruction

of the weaker vortex, t∗de,2 (∗ in figure 4.8). In the present analysis, the weaker

vortex is considered to be destroyed when its core vorticity no longer dominates

over the imposed strain rate field. An indicator of this is the second invariant of the

velocity gradient tensor, II = (ω2/2 − S2)/2. Thus, we estimate the destruction

time, t∗de,2, when the local value of II at the vorticity maximum, IIV 2, is very small.

The values shown in figure 4.8, correspond to IIV 2 = 0.05IIV 1,0. Although this is

a highly simplified characterization of vortex destruction, it serves the purposes of

the present analysis.

We now formulate a classification scheme for the observed vortex interac-

tions in §4.3, We define the interactions based on modifications of the classifica-

tions previously developed for inviscid asymmetric vortex interactions (Trieling

et al., 2005; Dritschel and Waugh, 1992). Based on our analysis, we classify our

simulations in terms of three interactions: complete merger, partial merger, and

straining-out. These are characterized as follows,

• Complete merger (ReΓ,2/ReΓ,1 = 1.0): detrainment from both vortices,

mutual entrainment of the cores transforms the flow into a single vortex.

(t∗cr,2 ≈ t∗cr,1 < t∗de,2).

• Partial merger (ReΓ,2/ReΓ,1 = 0.9, 0.8, 0.7): detrainment from both vor-

tices, weaker vortex is destroyed and entrained by the stronger vortex

(t∗cr,2 < t∗cr,1 < t∗de,2).

• Strained-out (ReΓ,2/ReΓ,1 ≤ 0.6): detrainment from weaker vortex only,

weaker vortex is destroyed (t∗cr,2 < t∗de,2 < t∗cr,1).

These interactions all eventually result in a single vortex for which the circulation

may differ from that of the initial vortices. In complete merger, the circulation of
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the final compound vortex increases. This increase is due to the mutual entrain-

ment of both vortices and the transformation into a single vortex. The concept of

partial merger in a viscous fluid is not as clear as in inviscid interactions. In the

cases considered, vorticity is detrained from both vortices. However, the weaker

vortex is destroyed before the stronger vortex is significantly eroded. Ultimately,

the stronger vortex dominates and is enhanced by the entrained vorticity from

the weaker vortex. The interaction thus yields a compound vortex with increased

circulation. In the flows in which the weaker vortex is strained out, there is no

mutual entrainment. The stronger vortex remains but its circulation may not be

significantly changed. These interactions do not yield a compound vortex and thus

merger does not occur.

4.6 Summary

The interaction of two unequal co-rotating vortices in a viscous fluid has

been investigated using two-dimensional numerical simulations. The vortices con-

sidered have the same initial core size and different strengths. In the simulations

presented, the initial aspect ratio is fixed at a0/b0 = 0.157. The initial strength of

the stronger vortex is given by ReΓ,1 = 5000 and the initial strength of the weaker

vortex is varied such that 0.4 ≤ ReΓ,2/ReΓ,1 ≤ 1.0.

The primary physical mechanisms of vortex interaction and merging are

identified and described. We consider the flow in the co-rotating frame and describe

the deformation of the vortices in terms of the interaction of vorticity gradient,

∇ω, and rate of strain, S. In particular, the processes occuring in the vicinity of

the central hyperbolic (CH) point are key in understanding the behavior of the

flow.

With unequal strengths, i.e., asymmetric pairs, the difference in vortex

strengths alters the flow structure and interaction. The variation in local timescales

may be such that the vortices no longer experience the flow processes simultane-
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ously. As in the symmetric vortex pair, the vortices initially grow by diffusion. The

deformation rates are stronger at the weaker vortex due to the difference in induced

S, and the tilt of ω contours and subsequent core detrainment occurs earlier than

the stronger vortex. However, the dominant attracting motion occurs only when,

and if, core detrainment is established by the stronger vortex. If this occurs, then

there will be some extent of mutual (reciprocal), but unequal, entrainment. This

is observed in the present simulations for 0.7 ≤ ReΓ,2/ReΓ,1 ≤ 0.9. In these cases,

the stronger vortex ultimately dominates and entrains vorticity from the weaker

vortex. We therefore consider the process as vortex merger since the result is an

enhanced compound vortex. If core detrainment is not established by the stronger

vortex before significant erosion occurs in the weaker vortex (ReΓ,2/ReΓ,1 ≤ 0.6),

the weaker vortex is destroyed leaving the stronger vortex to remain in the flow

relatively unaffected. In this case, merger does not occur.

A generalized merging criterion for unequal vortices is developed. We con-

sider the critical state for a given vortex to be associated with the establishment

of core detrainment. A vortex strain parameter, γi, is defined in terms of the ratio

of the strain rate at the CH point, SCH , to the maximum vorticity of vortex i, ωvi
,

thereby providing a measure of the relative strength of the induced strain rate at

the CH point to the vortex strength. We then consider the critical value of γi to be

the value at the critical time, tcr,i, when core detrainment (and entrainment into

exchange band) is established, i.e., γcr,2 = γ2(tcr,2) and γcr,1 = γ1(tcr,1). The onset

of merging is associated with the joint achievement of the critical strain by both

vortices. For all our simulations, we find a single critical value for both vortices,

i.e., γcr,1 = γcr,2 = γcr ≈ 0.247 ± 0.007. In the case of equal vortices, the critical

strain rate is shown to be related to the critical aspect ratio. From the present

results, γcr,2/f ≈ 0.233 ± 0.005, which compares well with previously determined

values for the critical aspect ratio for symmetric vortex merger.

From our viscous flow simulations, three distinct vortex interactions are

observed for the asymmetric pair. We define the interactions based on modifi-
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cations of the classifications previously developed for inviscid asymmetric vortex

interactions (Trieling et al., 2005; Dritschel and Waugh, 1992). However, here we

characterize the interactions based on the timing of key processes: weaker vortex

core detrainment (tcr,2), stronger vortex core detrainment (tcr,1), and weaker vortex

destruction (tde,2). We consider complete merger to occur if both vortices reach γcr

and are mutually entrained prior to vortex destruction (t∗cr,2 ≈ t∗cr,1 < t∗de,2). The

flow is transformed into a single compound vortex in which the final circulation

is increased due to the contribution of both vortices. We consider partial merger

to occur when both vortices reach γcr, however, the weaker vortex is destroyed

before the stronger vortex is significantly eroded (t∗cr,2 < t∗cr,1 < t∗de,2). Ultimately,

the stronger vortex dominates and is enhanced by the entrained vorticity from

the weaker vortex. The interaction thus yields a compound vortex with increased

circulation. We consider flows in which the weaker vortex is strained out when

only the weaker vortex core is detrained (t∗cr,2 < t∗de,2 < t∗cr,1). There is no mutual

entrainment. The stronger vortex remains but its circulation may not be signifi-

cantly altered. These interactions do not yield a compound vortex and thus merger

does not occur.

Chapter 4, in part, is a reprint of the material as it appears in Journal of

Fluid Mechanics submitted. Brandt, L.; Nomura, K., Cambridge University Press,

2008. The dissertation author was the primary investigator and author of this

paper.



Chapter 5

Symmetric co-rotating vortex

pairs and the generation of

vorticity (weakly stratified)

This chapter expands upon the study conducted in chapter 3, where the

merging process of a co-rotating vortex pair was studied in an unstratified envi-

ronment. In this chapter, the effect of weak stratification on the merging pro-

cess is taken under consideration. The range of Reynolds number considered,

2000 ≤ ReΓ ≤ 5000, which is comparable to laboratory experiments (Meunier

and Leweke, 2001). The Froude numbers considered are Fr = 2, 3, and 5, which

cover a range of conditions corresponding to relatively strong (Fr = 2), moderate

(Fr = 3) and weak (Fr = 5) stratification. In general however, stratification is

not a dominating effect in the flows considered (Fr > 1), and vortex merger will

result. In flows with lower Fr, stratification will hinder fluid motion and/or result

in significant internal waves. Such flows are taken into consideration in chapters 6

& 7. The case of Fr = ∞ corresponding to an unstratified flow is also considered

for comparison.

The discussion of results is organized as follows. First, the general flow

78
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development is examined in §5.1. This is followed by a discussion of baroclinic

torque, which is prevalent in stratified fluids (§5.2). Then, utilizing the same

framework in which the unstratified study was conducted (chapter 3), the effects

of stratification on the mechanism of merger (§5.3) and the relationship between

strain and vorticity (§5.4) is investigated. A generalized description of the merging

process is then developed (§5.5) and the effects of Reynolds number are considered

(§5.6). We conclude with a brief summary of results in §5.7.

5.1 Flow behavior and development

Figures 3.1 and 5.1 show time sequences of vorticity contours illustrating

the basic development of unstratified (Fr = ∞) and stratified (Fr = 3) flows,

respectively, for ReΓ = 5000. In both flows, due to the mutually induced velocity,

the two vortices rotate about each other in the counter-clockwise direction. Before

merging is initiated, the rate of rotation is nearly equal to that of a two point

vortex system, Γ/πb2.

As discussed in chapter 3, the unstratified flow (figure 3.1) develops as

observed in previous studies. Early in time, the vortices grow due to viscous

diffusion and adjust to the induced strain field. As time increases, deformation

becomes more significant in the areas of low level vorticity, where filaments are

formed and the vorticity contours tilt (center of rotation). The major axes of the

vortices tilt with respect to the connecting line of the vortices. This leads to the

vortex centers rapidly moving towards and around each other resulting in merger.

In time, the two maxima eventually disappear by viscous diffusion. A single vortex

is established.

In the stratified flow (figure 5.1), as the vortex pair rotates, it stirs the

stably stratified ambient fluid. After approximately half a revolution, opposite

signed vorticity appears at the periphery of the outer recirculation regions (figure

5.1c, tc
∗ = 0.78). This is due to baroclinic torque generation as will be discussed
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(a) tc
∗ = 0.26 (b) tc

∗ = 0.55 (c) tc
∗ = 0.78

(d) tc
∗ = 1.07 (e) tc

∗ = 1.31 (f) tc
∗ = 1.45

(g) tc
∗ = 1.69 (h) tc

∗ = 1.78 (i) tc
∗ = 1.97

Figure 5.1: Vorticity contours (solid line: ω > 0, dash line: ω < 0) superimposed

on density field (shading) for ReΓ = 5000, Fr = 3.
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Figure 5.2: Revolutions versus time for Re = 5000. Symbols: ◦: Fr = ∞, B:

Fr = 3, 2: Fr = 2.

in §5.2. There is a slight decrease in the rate of rotation of the vortex pair (fig-

ure 5.2). Later in time (figure 5.1d, tc
∗ = 1.07), both opposite-signed vorticity

and same-signed vorticity occur just outside and within the outer-recirculation re-

gions. Filamentation and tilting of the primary vortices, and the motion of the

vortices towards each other all occur earlier in time (figure 5.1e, tc
∗ = 1.31) than

in unstratified flow. At late times (figure 5.1g-i, tc
∗ ≥ 1.69), the structure of the

vorticity field is more complex and consists of alternating signed vorticity patches

and filaments. Some reduction in the vertical scale of the flow is also observed.

When looking at the flow separation distance (figure 5.3a; Fr = 2, 3),

a slight increase in b∗ is initiated at approximately t∗ = 0.5 for stratified flow,

followed by an earlier decrease as compared with the Fr = ∞ flow. The rate of

increase and initial decrease in b∗(t) is greater with increased stratification (Fr =

2). In both stratified flows, the rapid linear decrease in b∗(t) exhibits nearly the

same slope as that of the unstratified flow. Overall, convective effects and merger,

as indicated by b∗(t), occur earlier in the stratified flows. From figure 5.3b, we see

that the initial development of a2
ω(t) is linear. However, since a2

ω is evaluated by

integration of ω which includes generated vorticity (figure 5.1), it does not solely

describe the growth by viscous diffusion during this time. In contrast, the quantity
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Figure 5.3: Time development of (a) separation distance, b∗(t) = b(t)/bo, (b) core

size evaluated by second moment, a2
ω(t)/b2

o, (c) core size evaluated

by maximum azimuthal velocity, a2
θ(t)/b

2
o. The dashed line in (b)

corresponds to (5.1) where c′ = cθ/1.12 = 1.94. Symbols: ◦: Fr = ∞,

B: Fr = 3, 2: Fr = 2.
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a2
θ(t) in figure 5.3c does not have this ambiguity and is used here to indicate the

core growth in stratified flow. From figure 5.3c, we observe that a2
θ(t) grows linearly

and with the same growth rate as that in unstratified flow, as expected since they

have the same ReΓ. Note that the dashed line in figure 5.3b corresponds to:

a2 =
( cθ

1.12

)2

νt + ao
2 = c′2νt + ao

2 (5.1)

where c′ = 1.94 based on the above results and (ao/bo) = 0.157 (ao based on

aω). This allows us to evaluate an effective a2 for stratified flows that is consistent

with the defined ao (to be used in §5.6). As also observed in figure 5.3c, a2
θ(t)

indicates deviation from linear behavior earlier in the stratified flows, and it occurs

at approximately the same time, tc
∗ ≈ 1.25, for both Fr = 3 and Fr = 2. From the

results in figure 5.3, we find that b∗(t) and a∗(t) show convective effects initiating at

different times. Thus, the evaluation of a critical aspect ratio and the demarcation

of the first diffusive phase and convective phase are unclear. These issues will be

considered in the following sections and resolved in §5.6. As in the unstratified

flow, the convective phase terminates when b reaches approximately 0.2bo and the

second diffusive phase allows for the final reduction in b∗(t) (see figure 5.11).

5.2 Baroclinic torque generation

We first consider the basic physics of the stratified flow. As observed in

figure 5.1, additional vorticity develops in the flow. As the vortex pair rotates, it

stirs the stably stratified ambient fluid and establishes horizontal density gradients,

∂ρ′/∂x, which generates vorticity through baroclinic torque, as described by the

last term in the vorticity equation for two-dimensional flow,

∂ω

∂t
+ (v · ∇)ω = ν∇2ω +

1

ρo

∇ρ′ × g , (5.2)

where g = (0,−g) is the gravitational acceleration. Plots are presented showing

vorticity contours superimposed on the associated baroclinic torque (figure 5.4) for

Fr = 3 at the same times in figure 5.1.



84

(a) tc
∗ = 0.26 (b) tc

∗ = 0.55 (c) tc
∗ = 0.78

(d) tc
∗ = 1.07 (e) tc

∗ = 1.31 (f) tc
∗ = 1.45

(g) tc
∗ = 1.69 (h) tc

∗ = 1.78 (i) tc
∗ = 1.97

Figure 5.4: Vorticity contours (lines) superimposed on baroclinic torque, ∇ρ′ ×
g/ρo (dark shading: positive, light shading: negative), for ReΓ = 5000,

Fr = 3.
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As indicated in figure 5.1, after approximately a quarter rotation and then

another half a rotation beyond (figure 5.1a-c, tc
∗ = 0.26 − 0.78), the vortex pair

establishes significant ∂ρ′/∂x at its periphery, thereby resulting in negative baro-

clinic torque on the left and right sides of the pair (figure 5.4a-c). As indicated

at the later time (figures 5.1c, 5.4c; tc
∗ = 0.78), this results in opposite-signed

baroclinically generated vorticity, OSBV, which forms at the boundary of the outer

recirculation regions. After three-quarters rotation (tc
∗ = 0.78), we also observe

significant ∂ρ′/∂x at the periphery of the primary cores due to fluid that is en-

trained into the outer recirculation regions (figures 5.1). The presence of this

entrained fluid leads to a layer of same-signed baroclinically generated vorticity,

SSBV, just inside the previous OSBV after the completion of one full revolution

(figures 5.1d, 5.4d; tc
∗ = 1.07). The SSBV is extended as the vortex pair continues

its rotation, thereby establishing same-signed ω, filament-like structures (figures

5.1e, 5.4e; tc
∗ = 1.31). Note that filamentation of primary ω is also occuring. This

is observed in the vorticity contours in figures 5.1f,g and 5.4f,g in which ω from

the primary cores is entering into the outer recirculation region. At later times,

continued stirring of ρ results in successive generation of ∂ρ′/∂x resulting in layers

of alternate-signed baroclinic torque (figure 5.4i, tc
∗ = 1.97).

5.3 Physical Mechanisms

As indicated in figure 5.3a, merging is completed earlier in stratified flows,

although b∗(t) exhibits a more complex development. The contributions to the

change in b∗ of each of the flow regions are shown in figure 5.5. Here, the outer

recirculation region is subdivided into two regions: (a) OSBV and (b) filaments

and SSBV (i.e., same-signed ω is considered together).

The OSBV (figure 5.5a) causes the vortices to initially move apart after

half a rotation (t∗c ≈ 0.5). After tc
∗ ≈ 0.78, the vortices then move together

until t∗c ≈ 1.45, approximately half a revolution later, at which time they begin
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Figure 5.5: Contribution of flow regions to separation distance development,

∆b∗region(t), for ReΓ = 5000, Fr = ∞, 3, 2: (a) opposite-signed baro-

clinically generated vorticity (OSBV), (b) same-signed baroclinically

generated vorticity (SSBV) and filaments, (c) exchange band (Sym-

bols: ◦: Fr = ∞. B: Fr = 3. 2: Fr = 2).
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to move apart again. As observed in figures 5.1 and 5.4, OSBV forms arches at

the lower left and upper right peripheral regions that are nearly stationary as the

vortex pair rotates. The resulting spatial distribution causes the induced motion

to vary with the rotation as described. Beyond the first complete revolution, the

behavior is more complex as additional layers of OSBV are formed (figures 5.4,

5.5; t∗c > 1.45). With increased stratification (Fr = 2), the magnitudes of OSBV

are greater thereby increasing the amplitude of the corresponding induced velocity

and contribution to b∗(t). However, the frequency of the contribution is unchanged

since baroclinic torque depends on the rotation of the vortex pair.

The SSBV, together with the filaments (figure 5.5b), contributes to a de-

crease in b∗. The induced motion of same-signed ω in the outer-recirculation region

is initiated at nearly the same time (tc
∗ ≈ 1) in both the stratified and unstratified

flows. However, the presence of the additional vorticity, i.e. the SSBV, enhances

the motion and thereby the rate of decrease in b∗(t), the effect being stronger with

increased stratification (Fr = 2).

The exchange band contribution (figure 5.5c) occurs earlier in time in the

stratified flows. From the vorticity contour plots for Fr = ∞ and Fr = 3 flows

(figures 3.1d, 5.1d; t∗c = 1.07), we see that a slight tilt in the lowest level ω contour

near the origin appears at an early time in both flows. At the subsequent time

(figures 3.1e, 5.1e; t∗c = 1.31), the tilt is diminished in the unstratified flow while

it is maintained in the stratified flow. This causes the exchange band process to

proceed earlier in time.

From figure 5.5c, we see that while the exchange band process in stratified

flows initiates earlier than in unstratified flow, the slope of the rapid decrease

is not significantly altered by stratification indicating that the same physics is

associated with this process, i.e., core entrainment is not significantly influenced

by stratification in the considered flows.

Figure 5.6 shows the induced flow fields of the OSBV and the filaments

and SSBV for the Fr = 3 flow. The OSBV induced flow (figure 5.6a-c) resembles
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that of the filaments, but exhibits a cyclic behavior with respect to its direction,

consistent with the results in figure 5.5a. As the plotted streamlines indicate, this

influences both the magnitude and the relative orientation of the strain rate in the

vicinity of the center of rotation. The flow induced by the filaments and SSBV

combined (figure 5.6d-f) is similar to that of solely filaments in unstratified flow

(figure 3.6b,e). The induced flow by the exchange band (not shown) is similar to

that of unstratified flow (figure 3.6c,f). Note that although the tilt in ω contours

is established earlier in time (t∗c = 1.31), a reduction in the tilt is observed at a

later time (t∗c = 1.45) in this flow. This is also indicated by the strain orientation

in figure 5.10.

5.4 Influence of strain and vorticity

on vortex merger

The development of the tilt in the ω contours is now considered. Recall

the unstratified discussion in §3.3 where the equation for |∇ω|2 is give by (3.4),

P = −∇ωT S∇ω and Ps = P/|∇ω|2. The equation for |∇ω|2 in stratified flow is,

D 1
2
|∇ω|2
Dt

= −∇ωT S∇ω + ν∇ωT∇2∇ω +
1

ρo
∇ωT∇ (∇ρ′ × g) (5.3)

in which there is an additional term associated with the gradient of baroclinic

torque. However, in the central region of the flow, it is not expected to be significant

in comparison with P , and evaluation of this term confirms this. Figure 5.7 shows

the Ps field for the Fr = 3 flow. At tc
∗ = 1.31 (figure 5.7a), we observe the same

basic features as in the unstratified flow (figure 3.7). However, higher values of

Ps > 0 are observed consistent with the establishment of the tilt at this earlier

time. At tc
∗ = 1.45 (figure 5.7b), there is an enhancement of regions of Ps < 0 in

the central region associated with the reduction in the tilt. The time development

of 〈P 〉 for the central region is given in figure 5.8. In the stratified flows, a slight

decrease to negative values is observed at tc
∗ ≈ 0.5 followed by an increase to
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(a) OSBV t∗c = 1.31 (d) filament/SSBV t∗c = 1.31

(b) OSBV t∗c = 1.45 (e) filament/SSBV t∗c = 1.45

(c) OSBV t∗c = 1.69 (f) filament/SSBV t∗c = 1.69

Figure 5.6: Vorticity contours (thin solid lines) superimposed with vectors of the

induced velocity field of the indicated flow regions for ReΓ = 5000,

Fr = 3 at (a),(d) tc
∗ = 1.31, (b),(e) tc

∗ = 1.45, (c),(f) tc
∗ = 1.69. The

dark solid line represents the induced flow streamline which passes

through the center hyperbolic point.
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(a) tc
∗ = 1.31 (b) tc

∗ = 1.45

Figure 5.7: Vorticity contours with gray shading corresponding to |∇ω|2 produc-

tion term, Ps = −(∇ωT S∇ω)/|∇ω|2 (light gray scale: Ps > 0, dark

gray scale: Ps < 0), for ReΓ = 5000, Fr = 3, (a) tc
∗ = 1.31, (b)

tc
∗ = 1.45.

predominantly positive values for tc
∗ > 0.75. For tc

∗ > 1, the rate of increase

in 〈P 〉 is greater than that of the unstratified flow. This results in the earlier

development of the tilt and subsequent exchange band process. Note that there

is a marked difference between the two stratified cases. In the Fr = 3 flow, 〈P 〉
exhibits a sharp dip, while in the Fr = 2 flow, 〈P 〉 continues to increase. The

reduction in 〈P 〉 for Fr = 3 corresponds with the observed reduction in tilt (figure

5.7b; tc
∗ = 1.45). Beyond tc

∗ ≈ 1.5, 〈P 〉 resumes its rapid increase.

The behavior of 〈P 〉 is explained by considering both the magnitude and

orientation of S. Time development of the local strain rate at the center of rotation

is shown in figure 5.9a and indicates a reduction in magnitude during 0.5 < tc
∗ <

0.78, followed by an increase until tc
∗ ≈ 1.5. Prior to core entrainment, the induced

strain is directly related to changes in the separation distance and generally follows
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Figure 5.8: Time development of 〈P 〉 = −〈∇ωT S∇ω〉 in the central region for

ReΓ = 5000 (Symbols: ◦: Fr = ∞. B: Fr = 3. 2: Fr = 2).

(3.3) as indicated by figure 5.9b. As the vortices move away from each other due

to the OSBV (0.5 < tc
∗ < 0.78), the strain at the center of rotation is reduced, and

as they move towards each other (0.78 . tc
∗ . 1.35), the strain is increased; the

effect of OSBV on 〈P 〉 is cyclic. Beyond t∗c ≈ 1.35 the OSBV has less of an effect,

particularly in the Fr = 2 flow. This may be attributed to the greater extent of

OSBV surrounding the vortex pair which results in some effective cancelation of

the associated flow. Since the SSBV acts only to reduce b∗(t), SSBV enhances

the strain thereby resulting in higher strain in the stratified flows than that of

the unstratified flow for tc
∗ > 1.1 (figure 5.9a). Thus, the effect of SSBV is to

promote 〈P 〉. In the Fr = 2 flow, the strain magnitude continues to increase due

to the OSBV, SSBV and exchange band induced flows until it exhibits a sharp drop

due to core entrainment, which occurs earlier in time. In the Fr = 3 flow, while

the SSBV enhances the strain, its induced radial velocity is much smaller than in

the Fr = 2 flow and the OSBV counteracts this effect. The reduction in b∗(t)

is thereby delayed during 1.35 . tc
∗ . 1.55. Beyond this, the strain magnitude

levels off before it drops as core entrainment occurs (figure 5.9a). This does not,

however, fully explain the observed reduction in tilt at tc
∗ ≈ 1.45 in the Fr = 3
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Figure 5.9: Time development of the local strain rate, Si, at the center of rotation

normalized by the external strain rates (3.3) (a) Seo = Srθ(b/2, 0), (b)

Srθ(b/2, t). for Fr = ∞, 3, 2, ReΓ = 5000 (Symbols: ◦: Fr = ∞. B:

Fr = 3. 2: Fr = 2).

flow.

As indicated earlier, the induced flows (figure 5.6) also influence the orien-

tation of S. As shown in figure 5.10, the orientation angle of the extensional strain

at the center of rotation begins to decrease from 45◦ at approximately tc
∗ ≈ 1

and does so at a greater rate in the stratified flows than in the unstratified flow.

Examination of figures 5.6a-c indicates that the induced flow of the OSBV rotates

with respect to the vortex connecting line and thus has a cyclic influence on the

strain rate orientation. In the Fr = 3 flow, for 1.0 . tc
∗ . 1.35, the induced flow

enhances the reduction in the strain orientation angle while for 1.35 . tc
∗ . 1.55,

it opposes the reduction. This explains the observed increase in the angle at

tc
∗ ≈ 1.45 (figure 5.6b,e). The reduction in 〈P 〉 during this time (figure 5.8b,e)

and corresponding reduction in the tilt is associated with a reduced alignment be-

tween ∇ω and the compressive strain (figure 5.10). However, beyond this time, the

angle resumes its decrease until core entrainment occurs, at which point the strain

angle sharply diverges as the flow becomes vorticity dominated. In both stratified
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Figure 5.10: Time development of the angle between extensional strain eigenvec-

tor and vortex connecting line at the center of rotation for ReΓ =

5000, F r = ∞, 3, 2 (Symbols: ◦: Fr = ∞. B: Fr = 3. 2: Fr = 2).

flows, the rotation of the strain axes is such to generally promote the alignment of

the compressive strain and ∇ω thereby increasing P and enhancing the gradient

amplification process. As illustrated by this process, the interaction of ∇ω and S

is complex. While local S interacts directly with ∇ω, through both its magnitude

and relative orientation, both local and nonlocal ω will feedback on S.

5.5 Flow Phases

In summary, we describe vortex merging in the stratified flows in terms

of the four phases of development presented in §3.4. This is illustrated in figure

5.11. The diffusive/deformation phase begins as in unstratified flow; however, it

is interrupted by an earlier convective/deformation phase due to baroclinically

generated vorticity. Essentially, the OSBV and SSBV play a similar role to that

of the filaments, i.e., the induced flow advects the vortices thereby modifying S,

which in general may hinder or enhance the gradient amplification process. In

the flows considered, the combined effects of the enhanced magnitude and change
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Figure 5.11: Diagram illustrating four phases of merging process with respect to

the development of b∗(t) for ReΓ = 5000, Fr = 2 (t∗DD = 0.49,

t∗CD = 1.32, t∗E = 1.46, t∗CE = 1.62).

in orientation of S by OSBV and SSBV leads to a more rapid development of

the tilt in ω contours and subsequent exchange band process. In general, the

effects of both OSBV and SSBV depend on the rotation of the vortex pair and

are cyclic. Thus, their implication on the merging process will depend on the

relative time and stage of flow development that they appear. This issue will be

considered in the following section. Once the core entrainment process is initiated,

the convective/entrainment phase proceeds as in the unstratified flow.

5.6 Flow development and the effect of ReΓ

We have developed a description of the vortex merging process in both

unstratified and stratified flows in terms of four phases of development (figure

5.11) based on results for ReΓ = 5000. We now further develop this description by

more explicitly defining and delimiting the phases. In particular, we consider the
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Figure 5.12: Time development of < P >= − < ∇ωT S∇ω > over central region

for Fr = ∞ flows (Symbols: ◦: ReΓ = 2000 2: ReΓ = 3000, B:

ReΓ = 4000, ∗: ReΓ = 5000).

determination of the critical aspect ratio. We also generalize the description for

stratified flows by considering the effect of ReΓ.

During the diffusive/deformation phase (tc
∗ < t∗DD), a2

θ(t) grows linearly by

diffusion while b(t) remains constant. As indicated in figure 5.3b, the growth of

a2(t) is well described by (5.1) and the average growth rate for all our simulations,

2000 ≤ ReΓ ≤ 5000 and Fr = ∞, 5, 3, 2, is c′ = 1.94 ± 0.05. Physically, as the

vorticity distribution spreads by diffusion, the induced strain field of each of the

vortices correspondingly spreads and develops through their mutual interaction.

The vortices adjust to the induced strain which results in deformation of the vor-

ticity field. Thus, the interaction of ∇ω and S is established by diffusion. This is

indicated in figure 5.12 which shows the development of 〈P 〉 plotted against time

scaled by the diffusive time scale, t∗v,

t∗v =
t

tv
=

tc
tv

t

tc
=

8π2

(ao/bo)2ReΓ

tc
∗ , (5.4)

for the unstratified flows at different ReΓ. The diffusion rate of ω and S is higher

for lower ReΓ and the initial interaction is established earlier. Beyond the initial

rapid adjustment from initial conditions, the behavior of 〈P 〉 generally scales well
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with t∗v until t∗v ≈ 1.1 (figure 5.12). Beyond this time, convective effects become

important and the higher ReΓ flows exhibit a greater rate of increase in 〈P 〉.
During the convective/deformation phase (t∗DD ≤ tc

∗ < t∗CD), a2
θ(t) continues

to grow linearly and b(t) changes by advection. In unstratified flow, the change in

b∗(t) is due to filamentation. The induced flow by the filaments causes a relatively

slow reduction in b∗(t) and thus (a/bo)cr will vary only slightly with ReΓ. At the

end of the convective/deformation phase, t∗c = t∗CD, and a2
θ(t) deviates from linear

growth at (a/bo)cr ≈ 0.23 (e.g., figure 5.3c) which we find to be nearly independent

of ReΓ. In stratified flow, OSBV and SSBV, together with the filaments, cause b∗(t)

to vary more significantly during the convective/deformation phase. The induced

flow from OSBV and SSBV may advect the vortices, either away from or towards

each other, thereby modifying S and hindering or enhancing, respectively, the

development of the tilt in ω contours. In the stratified flows presented in §5.3,

a greater rate of decrease in b∗(t) leads to an earlier start of the exchange band

process. However, in general, the effects of OSBV and SSBV may also separate the

vortices, i.e., the merger process may, to some extent, be reversed. We therefore

distinguish this convective process explicitly by this phase.

During the convective/entrainment phase (t∗CD ≤ tc
∗ < t∗CE), a2

θ(t) no longer

grows linearly (the ω field is significantly altered) and b(t) significantly decreases

as the vortex cores are eroded and entrained into the exchange band. In contrast

to the convective/deformation processes, we consider erosion and entrainment to

be irreversible. We now define the critical state of the flow to be the start of the

exchange band process, beyond which there is no reversal and merging will occur.

The corresponding time, t∗CD, is marked by the initiation of the contribution to b∗(t)

from the exchange band, ∆b∗E (figure 5.5c). This is also comparable to the time

a2
θ(t) deviates from linear growth. The critical state is therefore characterized by

the aspect ratio (a/b) at tc
∗ = t∗CD for which the corresponding values of a(t) and

b(t) are thereby determined. In the stratified flows, an effective a is determined

from (5.1) at tc
∗ = t∗CD. For all flows considered, 2000 ≤ ReΓ ≤ 5000 and Fr =
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Figure 5.13: Critical aspect ratio, (a/b)crit according to (5.1), versus ReΓ for dif-

ferent Fr. Dashed line represents the mean value, (a/b)crit ≈ 0.235

(Symbols: ◦: Fr = ∞, ∗: Fr = 5, B: Fr = 3, 2: Fr = 2).

∞, 5, 3, 2, (a/b)cr = 0.235 ± 0.006 (figure 5.13). This is in agreement with the

values (a/b)cr = 0.24 ± 0.01 reported by Meunier et al. (2002) for unstratified

flow. As discussed earlier, the latter portion of the convective/entrainment phase

is clearly marked by the rapid, nearly linear decrease in b∗(t) due to the exchange

band contribution, ∆b∗E (e.g., figure 5.5c). We consider a time, t∗E, as the effective

start of core entrainment and defined by extending the linear portion of ∆b∗E to

where it intersects with ∆b∗E = 0. A plot of ∆b∗E versus tc
∗ − t∗E (figure 5.14)

thereby overlays the exchange band process for the different ReΓ and Fr flows.

For all flows, the process proceeds at nearly the same rate. We therefore consider

the core entrainment process, t∗E < tc
∗ < t∗CE (figure 5.11), to be independent of

ReΓ and Fr.

The merging time is therefore controlled by the processes prior to t∗E, which

depend on ReΓ, Fr, and the initial aspect ratio. Thus, for the ao/bo considered,

t∗E = t∗E(ReΓ, F r). Figure 5.15 shows t∗E versus ReΓ for various Fr. In unstratified

flow, a linear dependence is exhibited, consistent with results of Meunier et al.

(2002), and is due to the predominance of diffusion prior to the exchange band
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Figure 5.14: Exchange band contribution to separation distance development,

∆b∗E(t), versus tc
∗ − t∗E for ReΓ = 2000, 3000, 4000, 5000, Fr =

∞, 5, 3, 2.

process which is the dominant convective process. For the stratified flows, we see

that there is a crossover Reynolds number (ReΓ ≈ 2500), above which convec-

tive merging is accelerated with respect to the unstratified flow at that ReΓ, and

below which merging is delayed. In stratified flow, convective effects (in the con-

vective/deformation phase) become more significant due to the OSBV and SSBV.

Since they arise due to the stirring of the density field by the co-rotating vor-

tices, they have a timescale corresponding to the rotation, tc = 2π2bo
2/Γo, i.e.,

the turnover time. The effects of OSBV and SSBV will therefore depend on to

what extent diffusion has developed the ω and S fields by the time OSBV/SSBV

are generated. That is, for a given initial aspect ratio, the merging time in strat-

ified flow will depend on the ratio of the diffusive time scale to the turnover time

and hence, ReΓ (5.4). From results of the unstratified flows, for ReΓ = 5000,

t∗E = 2.02 and for ReΓ = 2000, t∗E = 1.05. Thus, the ReΓ = 5000 flow rotates

more than one revolution while the ReΓ = 2000 flow just reaches one revolution

prior to core entrainment. We may therefore expect their behaviors to differ with

stratification. Results in figure 5.15 indicate that stratification accelerates merg-
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Figure 5.15: Effect of ReΓ and stratification on merging time, t∗E (Symbols:◦: Fr =

∞, B: Fr = 3, 2: Fr = 2).

ing for ReΓ = 5000 and delays merging for ReΓ = 2000. In general, the ReΓ

dependency will be cyclic. The effects of OSBV and SSBV will also, of course,

depend on their strength, and hence, Fr. Additionally, in the present study, we

have considered only ao/bo = 0.157. In general, the crossover Reynolds number

will vary with aspect ratio. As indicated by (5.4), the diffusion time will increase

with smaller ao/bo. Additional simulation results (not shown) indicate a lower

crossover Reynolds number for smaller ao/bo.

We now examine the ReΓ = 2000 flow in which stratification delays merging.

Figure 5.16a shows b∗(t) for Fr = ∞, 3 and 2 and clearly indicates greater delay

with increased stratification. Figure 5.16b-d shows the contribution of each flow

region to b∗(t). We observe that the OSBV (figure 5.16b) again acts to move

the vortices apart during 0.5 . tc
∗ . 0.8, as in the ReΓ = 5000 flow (figure 5.5).

However, since this occurs near the end of the convective/deformation phase in

this flow, the OSBV counteracts the initiation of convective/entrainment. Note

that the amplitude of the OSBV contribution is reduced in comparison with that

of ReΓ = 5000 due to the increased diffusion of ∇ρ′ (recall Pr = 1). In addition,

since the core entrainment phase begins at approximately one full revolution, there
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is little SSBV generated (figure 5.16c) to assist in the merging process. Figure

5.17 indicates that 〈P 〉 is generally reduced with increasing stratification. As the

OSBV moves the vortices apart during 0.5 < tc
∗ < 0.8, the magnitude of the strain

decreases as it does in the ReΓ = 5000. This affects and controls the behavior of

〈P 〉 (figure 5.17). Since 〈P 〉 is reduced in the stratified flows, the tilting of ω

contours is delayed. The core entrainment process therefore initiates later in time

(figure 5.16d).

The final phase of the merging process is the diffusive/axisymmetrization

phase (tc
∗ > t∗CE), during which b(t) is reduced to zero and a2(t) eventually returns

to linear growth for the single vortex. As stated earlier, this phase begins when

b reaches approximately 0.20bo − 0.25bo, at the end of the convective/entrainment

phase at which point the inward velocities at the centroids are nearly zero. Al-

though two ω maxima are still detected, inspection of the general flow structure

shows that it is rotation dominated and essentially consists of a single vortex.

Thus, we consider this final phase, which extends beyond the time at which b∗(t)

reaches zero, as a diffusion process in which the flow evolves towards axisymmetry.

Details of this process are beyond the scope of this work.

5.7 Summary

The merging of a pair of symmetric, horizontally oriented vortices in a

viscous fluid with and without stable stratification has been investigated using

two-dimensional numerical simulations. The flow conditions considered consist of

a fixed initial aspect ratio ao/bo = 0.157, a range of circulation Reynolds numbers

2000 ≤ ReΓ ≤ 5000, and a range of stratification levels given by Froude numbers,

Fr = ∞, 5, 3, 2. All of these flows are dominated by convection and diffusion, not

by stratification (Fr > 1), and merging always occurs. The stratification essen-

tially introduces a disturbance to the merging process. By determining its effects,

we have obtained further insight and understanding of the fundamental physics
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Figure 5.16: Contribution of flow regions to separation distance development,

∆b∗(t), for ReΓ = 2000 (Symbols: ◦: Fr = ∞. B: Fr = 3. 2:

Fr = 2).
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Figure 5.17: Time development of < P >= − < ∇ωT S∇ω >, averaged over cen-

tral region, for ReΓ = 2000, Fr = ∞ (Symbols: ◦: Fr = ∞. B:

Fr = 3. 2: Fr = 2).

of merging. We have also developed a generalized description of the merging pro-

cess which consists of four phases: diffusive/deformation, convective/deformation,

convective/entrainment, and diffusive/axisymmetrization. The phases are clearly

defined and summarized in §5.6. This new description of merger, which resolves

the convective effects into two distinct processes, assists in accounting for the ef-

fects of stratification and allows for a more explicit determination of the critical

aspect ratio.

With stably stratified ambient fluid, as the vortex pair rotates, it stirs

the density field and generates both opposite-signed and same-signed vorticity

through baroclinic torque. As in the unstratified flow, the interaction of ∇ω and

S is established by diffusion. The merging process in stratified flow therefore

depends on the ratio of the diffusive time scale (growth of cores, establishment

of ∇ω and S interaction) to the turnover time (establishment of baroclinically

generated vorticity, BV), i.e., the Reynolds number. A crossover Reynolds number

(ReΓ ≈ 2500 for this initial aspect ratio) is found, above which convective merging

is accelerated with respect to unstratified flow and below which merging is delayed.

In general, the effect of the BV is similar to that of the filaments. The induced
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flow field will advect the vortices, either towards or away from each other, and this

will modify the strain rate field, both in magnitude and direction. We distinguish

this convective process by defining the convective/deformation phase, which may

initiate while diffusion remains significant. Depending on the relative timescales,

and stage of evolution (also initial aspect ratio), it may either enhance or hinder

the ∇ω amplification process. The strength of the BV depends on the level of

stratification, as characterized by the Froude number. Therefore, initiation of the

exchange band process and the convective/entrainment phase depends on both

ReΓ and Fr. Once initiated, the core entrainment process is relatively unaffected

by either viscosity or level of stratification.

For both unstratified and stratified flows, we define the critical state of

the flow to be the start of the convective/entrainment phase, beyond which there

is no reversal and merging will occur. This is also approximately the time a2(t)

deviates from linear growth. However, since b(t) may change significantly, the

critical aspect ratio must be determined by a(t)/b(t) at the time the exchange band

process initiates. For all flows considered, 2000 ≤ ReΓ ≤ 5000 and Fr = ∞, 5, 3, 2,

(a/b)cr = 0.235 ± 0.006, where the core size is effectively based on the second

moment of vorticity. This is in agreement with values previously determined for

unstratified viscous flows (Meunier et al., 2002).

Chapter 5, in part, is a reprint of the material as it appears in Journal of

Fluid Mechanics Volume 592, pages 413-446. Brandt, L.; Nomura, K., Cambridge

University Press, 2007. The dissertation author was the primary investigator and

author of this paper.



Chapter 6

Symmetric vortex pairs and the

generation of linear internal waves

As a first step toward improving our understanding of the behavior of a

turbulent patch in a stratified fluid, we investigate the effects of stable stratification

on two-dimensional, symmetric, horizontally oriented co-rotating vortex pairs and

counter-rotating vortex pairs. In this chapter, analytical methods are used to

compute the evolution of the vorticity field and the internal wave field that is

produces.

In strongly stratified fluids, the flow evolves according to the inviscid lin-

earized Navier-Stokes equations. We define the flow to be strongly stratified when,

N >> Γo/(2πb2
o), so that Fr = Γo

2πb2oN
<< 1. This chapter is a preliminary study

in which we review the effects of strong stratification on vortex configurations. In

the next chapter, the insight gained from these results is used in a numerical study

concerning the effects of moderate stratification, where nonlinear interactions are

important.

The discussion will commence with a derivation of the linearized equations

and initial conditions for vortex pairs (§6.1). Solutions of these equations are

obtained in the form of inverse Fourier transforms. In §6.2, these solutions are

104
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approximated by use of the stationary phase approximation (Lighthill, 1996). Once

these general results are established, the energy field is investigated (§6.3). In §6.4,

multiple vortex pairs are examined, which gives insight into the effect that strong

stratification will have on a turbulent patch. In §6.5, we conclude with a brief

discussion of results.

6.1 Linearized Equations

In this section the linearized inviscid set of equations is derived for the per-

turbed density and velocity fields. The first step is to calculate the exact linear

density perturbations for the horizontally oriented vortex systems in a stably strati-

fied fluid. From these equations it is straightforward to calculate the corresponding

velocity fields.

6.1.1 Density Perturbation

The linearized inviscid primitive governing equations (Fernando and Hunt, 1997)

are:

∂u

∂t
= − 1

ρo

∂p′

∂x
(6.1)

∂w

∂t
= − ρ′

ρo

g − 1

ρo

∂p′

∂z
(6.2)

∂ρ′

∂t
= −w

dρ

dz
(6.3)

∂u

∂x
+

∂w

∂z
= 0, (6.4)

which can be reduced to a single equation for ρ′ (details may be found in Appendix

B.1):

∂2

∂t2
52 ρ′ + N2∂2ρ′

∂x2
= 0. (6.5)
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The initial conditions for the density perturbation are:

ρ′(x, z) = f1(x, z), (6.6)

∂ρ′

∂t
(x, z) = f2(x, z). (6.7)

Using Fourier transform methods, the solution for the Fourier transform of the

density perturbation is, with Fourier Transform indicated by a “ ˆ ”:

ρ̂′(k, m, t) = f̂1 cos(ωt) +
f̂2 sin(ωt)

iω
(6.8)

in which the frequency, ω, is given by the dispersion relation,

ω2 =
k2N2

k2 + m2
(6.9)

and k and m are the horizontal and vertical components of the wave-number.

Details of this derivation are found in Appendix B.2.

The initial conditions corresponding to no initial density perturbation and

a nonzero velocity field:

f̂1(k, m) = 0 (6.10)

f̂2(k, m) = −ŵo
dρ̄

dz
, (6.11)

where ŵo is the Fourier transform of the vertical velocity field associated with the

vortices. Substituting in f̂1 and f̂2 into (6.8), ρ̂′ becomes:

ρ̂′(k, m, t) = −ŵo

iω

dρ(z)

dz
sin(ωt). (6.12)

For a single Lamb-Oseen vortex with a Gaussian shape vorticity distribution, the

vertical velocity is given by

wo =
Γo

2πr
(1− e−r2/a2

o) cos θ. (6.13)

Here r represents the radial distance from the vortex center and θ represents the

angle from the positive horizontal axis. In Fourier space wo becomes (details found

in Appendix B.3):

ŵo = − iΓo cos φ

K
e−K2a2

o/4, (6.14)
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where K2 = k2 + m2 and φ = tan−1(m/k). The shifting theorem,

f(x−∆) ↔ exp(−ik∆)f̂(k),

may be used to calculate the initial vertical velocities for the vortex pairs (details

found in Appendix B.4). By substituting in the equations for the initial vertical

velocities into (6.12), the exact linear solutions for the perturbed density fields in

Fourier space are found for the co-rotating vortex pair

ρ̂′(k, m, t)

b3
oN

2 ρo

g

= −4πiFr

Kbo

e−K2a2
o/4 sin(ωt)sgn(cos φ)[cos(

1

2
kbo)] (6.15)

and for the counter-rotating vortex pair

ρ̂′(k, m, t)

b3
oN

2 ρo

g

= −4πFr

Kbo

e−K2a2
o/4 sin(ωt)sgn(cos φ)[sin(

1

2
kbo)]. (6.16)

6.1.2 Vorticity Field

Equation 6.3 provides a relationship between the vertical velocity and den-

sity field:

w = −∂ρ′/∂t

dρ/dz
. (6.17)

With the substitution of N (2.4) into this equation and taking the Fourier trans-

form:

ŵ

Nb3
o

=
1

b3
oN

2 ρo

g

[
1

N

∂ρ̂′

∂t

]
. (6.18)

By taking the time derivative of ρ̂′ (6.15 & 6.16) and substituting it into (6.18),

the vertical velocity in terms of ρ̂′ is:

ŵ

Nb3
o

= cot(ωt)| cos φ|
[

ρ̂′

b3
oN

2 ρo

g

]
. (6.19)

The horizontal velocity may be found through the Fourier transform of the conti-

nuity equation (6.4) and solving for û:

û

Nb3
o

= −m

k

ŵ

Nb3
o

= −m

k
cot(ωt)| cos φ|

[
ρ̂′

b3
oN

2 ρo

g

]
. (6.20)
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Utilizing these equations, the vorticity field (ζ(x, z) = ∂w(x, z)/∂x− ∂u(x, z)/∂z)

in Fourier space is,

ζ̂ = i[kŵ −mû] = i
K2

k
ŵ,

which leads to:

ζ̂

b2
oN

= iKbo cot(ωt)sgn(cos φ)

[
ρ̂′

b3
oN

2 ρo

g

]
. (6.21)

6.1.3 Validation of Analytical Solution

In order to validate the derived equations, linearized inviscid simulations

were conducted using a pseudospectral DNS code. In order to directly compare

with simulations, approximate solutions for ρ′(x, z, t) and ζ(x, z, t) in physical space

were made by taking the discrete Fourier transforms of ρ̂′(k, m, t) and ζ̂(k,m, t),

respectively. Results from the linear analytical equations and numerical simula-

tions for ρ′ and ζ are consistent. The maximum error is 0.4% at Nt = π, which is

within truncation error.

6.2 Large-Time Approximation

After a long time, dispersion causes all waves to separate in space, such that

at every location (x, z) there will be one wave-number (k,m). In this section, the

stationary phase approximation (Lighthill, 1996) will be employed to approximate

the linearized perturbation density solution in physical space at large time. This

approximation becomes more accurate as time increases, t → ∞. We note that

this solution is accurate only for the far field.

The inverse Fourier transform of ρ̂′ is:

ρ′(x, z, t) =

∫ ∞

−∞

∫ ∞

−∞

[
1

2
F+(k, m)eiωt +

1

2
F−(k,m)e−iωt

]
ei(kx+mz)dkdm. (6.22)
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Since
∫ 0

−∞ fdk equals the complex conjugate of
∫∞
0

fdk, an alternative expression,

using ω(−k) = ω(k), is:

ρ′(x, z, t) = Real

{∫ ∞

−∞

∫ ∞

0

[
F+(k, m)eitΦ+(k,m) + F−(k, m)eitΦ−(k,m)

]
dkdm

}
,

(6.23)

where Φ±(k, m)(k, m) = k x
t

+ m z
t
± ω, F−(k, m) = f̂1(k, m) − f̂2(k, m)/iω and

F+(k, m) = f̂1(k, m) + f̂2(k, m)/iω. In this formulation, the first term in the

integral represents the waves propagating in the negative horizontal direction (x <

0) and the second term represents the waves propagating in the positive horizontal

direction (x > 0).

We seek an approximate evaluation of this integral as t → ∞ with x/t

and z/t held constant. According to the method of stationary phase set forth by

Lighthill (1996), the major contributors to the integral at a particular time are

where ∂Φ±
∂k

= ∂Φ±
∂m

= 0. The spacial locations at which this occurs is known as the

points of stationary phase and are found to be:

[x, z] =

[
− ∂ω

∂k
t,− ∂ω

∂m
t

]
x < 0

[x, z] =

[
∂ω

∂k
t,

∂ω

∂m
t

]
x > 0. (6.24)

The group velocities, (cg,x, cg,z), in the horizontal and vertical directions are:

cg,x =
∂ω

∂k
= N

m2

K3
sgn(k)

cg,z =
∂ω

∂m
= −N

m|k|
K3

sgn(k), (6.25)

respectfully, where ω = |k|N
K

= N | cos φ| and k = K| cos φ|. Since only positive

k are being considered cg,x is always positive and cg,z is the opposite sign of m.

Therefore, (6.24) may be rewritten as:

[x, z] =

[
−Nt

m2

K3
, Nt

m|k|
K3

]
x < 0 (6.26)

[x, z] =

[
Nt

m2

K3
,−Nt

m|k|
K3

]
x > 0. (6.27)
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Figure 6.1: Shows relationship between θ and φ based on direction of wave prop-

agation.
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Since cg· k = 0, the group speed is perpendicular to the wave vector, φ =

θ ± π/2. Therefore, the direction of the propagation of the waves must be taken

into consideration when solving.

Figures 6.1a&b show the relation between θ and φ for waves propagating

in the x > 0 direction, while figures 6.1c&d show the relation between θ and φ for

waves propagating in the x < 0 direction. With the knowledge that k = K| cos φ|
and m = K sin φ, it is seen that:

ks = Ks| sin θ| (6.28)

ms = −Ks cos θsgn(sin θ). (6.29)

Substituting in (6.28) & (6.29) into (6.26) & 6.27, the spacial coordinates in terms

of (Ks, θ) are found:

[x, z] =
Nt cos θ

Ks

[
cos θ, sin θ

]
, x < 0 (6.30)

[x, z] = −Nt cos θ

Ks

[
cos θ, sin θ

]
, x > 0. (6.31)

This corresponds to

Ks =
Nt

r
| cos θ|, (6.32)

where r is the radius outward from the vortex center, r2 = x2 + z2.

According to Lighthill (1996), the stationary phase approximation of (6.23)

is

ρ′(x, z, t) ≈Real

{
2π

t
|detA−|−1/2F−(ks,ms)e

−itω(ks,ms)

}
(6.33)

+Real

{
2π

t
|detA+|−1/2F+(ks,ms)e

itω(ks,ms)

}
, (6.34)

where detA is dependent on the partial derivatives of cg with respect to (ks,ms).

Details of the calculation of |detA|−1/2 are worked out in Appendix B.5. The

solution is

|detA−|−1/2 = |detA+|−1/2 =
K2

s

N | cos θ| . (6.35)
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The final equation for the stationary phase approximation is:

ρ′(x, z, t) ≈

2π

K2
s

Nt| cos θ|


×

Real

{
F+(ks,ms)e

itω(ks,ms) + F−(ks,ms)e
−itω(ks,ms)

}
. (6.36)

The equations for F−(ks,ms) and F+(ks,ms) are dependent on the initial

conditions of the flow and may be found similarly to that of the exact solution,

where F−(k, m) = f̂1(k, m)− f̂2(k, m)/iω and F+(k, m) = f̂1(k,m) + f̂2(k, m)/iω.

These quantities are worked out in detail in Appendix B.6. Substituting in the

values for F−(ks,ms) and F+(ks,ms) into (6.36), it is found that the linearized

density perturbation may be approximated at large times for the co-rotating vortex

pair as

ρ′(x, z, t)

boN2ρo/g
∼ 4Fr

Ksbo

Nt| cos θ|e
−K2

s a2
o/4 cos(

1

2
ksbo) cos(ωst)sgn(x) (6.37)

and for the counter-rotating vortex pair as

ρ′(x, z, t)

boN2ρo/g
∼ −4Fr

Ksbo

Nt| cos θ|e
−K2

s a2
o/4 sin(

1

2
ksbo) sin(ωst), (6.38)

where ks, ms and Ks are defined by (6.28), (6.29) and (6.32), respectively, and

ωs = N | sin θ|.
Therefore, we now have a set of equations that approximate the far field

density perturbation at large times for vortex pairs.

6.2.1 Validation of Large-Time Approximation

Figures 6.2 shows the discrete Fourier transform of the exact analytical

solution for ρ′ and the stationary phase approximation of ρ′ for Fr = 0.01 at

Nt = 30. In figure 6.2a&c, it is observed that the approximation captures the

general wave behavior. In both the analytical and stationary phase solutions,

the waves are seen to propagate as rays away from the disturbance region and

their phases appear to propagate from the vertical to the horizontal axis in time
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(not shown). As time progresses, the far field solution for the stationary phase

approximation more accurately reproduces the exact analytical solution.

However, there are a few discrepancies in the approximation. In the case of

a co-rotating vortex pair, it is observed that near the vertical axis of figure 6.2b,

the stationary phase approximation begins to break down. This discrepancy is to

be expected since (6.37) is dependent on the sign of x. As time increases, this

dependence becomes less pronounced at the axis, but it will inherently have to be

included in the approximation. The stationary phase approximation also cannot

resolve the interactions taking place at the disturbance region.

6.3 Energy Exchange

The equations for the kinetic (KE), potential (PE), and total (E) energies

per unit area of the flow are:

PE =
1

2

g2

ρoN2
ρ′2, (6.39)

KE =
1

2
ρo(u

2 + w2), (6.40)

E = PE + KE. (6.41)

By taking the Fourier transform of these equations, the kinetic (KE), po-

tential (PE), and total (E) energies per unit area may be written as:

K̂E(k, m, t)

b6
oN

2ρo

=
1

2

[(
û

Nb3
o

)(
û∗

Nb3
o

)
+

(
ŵ

Nb3
o

)(
ŵ∗

Nb3
o

)]
, (6.42)

P̂E(k, m, t)

b6
oN

2ρo

=
1

2

(
ρ̂′

N2b3
o

ρo

g

)(
ρ̂′∗

N2b3
o

ρo

g

)
, (6.43)

Ê(k, m, t)

b6
oN

2ρo

=
P̂E

b6
oN

2ρo

+
K̂E

b6
oN

2ρo

, (6.44)

respectfully, where ∗ represents the complex conjugate. Substituting in (6.42)

(where ŵ and û are described by (6.19) & (6.20), respectively) and (6.43) into
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(a) Co-rotating vortex pair (b) Co-rotating vortex pair

Linear Analytical Solution Stationary Phase Solution

(c) Counter-rotating vortex pair (d) Counter-rotating vortex pair

Linear Analytical Solution Stationary Phase Solution

Figure 6.2: Contours of perturbed density for Fr = 0.01 at Nt = 30 produced by

(a)&(c) equations 6.15 & 6.16 and (b)&(d) equations 6.37 & 6.38.
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(6.44), a generalized equation for Ê may be found in terms of ρ̂:

Ê(k, m, t)

b6
oN

2ρo

=
1

2 sin2(ωt)

(
ρ̂′

N2b3
o

ρo

g

)(
ρ̂′∗

N2b3
o

ρo

g

)
. (6.45)

Substituting in (6.15) & (6.16) into (6.45), the total energy for the co-rotating

vortex pair is:

Ê(k, m)

b6
oN

2ρo

= Fr2 8π2

K2b2
o

e−K2a2
o/2 cos2(

1

2
kbo). (6.46)

and for the counter-rotating vortex pair is:

Ê(k, m)

b6
oN

2ρo

= Fr2 8π2

K2b2
o

e−K2a2
o/2 sin2(

1

2
kbo). (6.47)

Recall that the initial flow field consists of the superposition of the vortex

pairs in a stably stratified fluid with the initial conditions of ρ̂′(k,m, to) = 0 and

∂ρ̂′(k, m, to)/∂t 6= 0. Therefore, since the initial density field is not perturbed,

there is no initial P̂E and Ê = K̂E. As the density field is perturbed, the energy

is transferred between K̂E and P̂E, where Ê = K̂E + P̂E = constant since we do

not have any viscous dissipation. Thus, there is no time dependence in the total

energy (6.46) & (6.47).

Equations (6.46) & (6.47) are the two-dimensional power spectral density

(2DPSD) equations that describe how the energy of the flow is distributed in every

wave-number. Figures 6.3a,c show the 2DPSD for the linearized analytical equa-

tions of the co-rotating and counter-rotating vortex pairs. There is a distinctive

pattern of energy in wave-space. From (6.46) & (6.47), the energy of the flow is

based on a harmonic function in the k direction. In the case of the co-rotating

vortex pair it is dependent on cos2(.5kbo) and in the case of the counter-rotating

vortex pair it is dependent on sin2(.5kbo). These terms enter the analysis when

configuring the initial vertical velocity field with the shifting theorem. Therefore,

different orientations of the initial velocity field will greatly affect the wave-numbers

in which the energy is concentrated. For our given flow conditions, what we see is a
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(a) Co-rotating vortex pair (b) Co-rotating vortex pair

Linear Analytical Solution Linear Numerical Solution

(c) Counter-rotating vortex pair (d) Counter-rotating vortex pair

Linear Analytical Solution Linear Numerical Solution

Figure 6.3: 2DPSD for vortex pairs at Nt = 3π.
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Figure 6.4: 1DPSD calculated by use of the linearized analytical equations for a

co-rotating vortex pair (-), a counter-rotating vortex pair (- -) and VQ

(-·-).

series of constructive and destructive wave interactions in the horizontal direction,

which occur every kbo = 2π.

As was done for the analytic solutions of ρ′ and ζ, the analytical solution

for the energy field was validated by numerical simulations. Figure 6.3b,d presents

results from the linearized numerical simulations at Nt = 3π. It is found that

the 2DPSD for the analytical and linear numerical solutions are within numerical

error.

As seen in figure 6.3a, the co-rotating vortex pair energy peaks at k = m =

0. The reason for this energy at the zero-wave-number may be seen from (6.46),

where it is observed that there is a 1/K2 multiplied by cos2(.5kbo). Therefore,

at k = 0, the function goes to infinity and, hence, there is energy at infinity.

This indicates that the motion of the flow in space does not decay sufficiently

rapidly as it approaches infinity. While attempts were made to remove this infinite

energy by superimposing a uniform background vorticity field, the energy of the

field was still predominantly in the large wavelengths indicating that the motion

of the flow in space was still not decaying sufficiently rapidly in the spatial domain

as it approached large distances. In order to remove this energy at the large
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Figure 6.5: Disturbance Region Energy for counter-rotating vortex pair (-) and

VQ (- -).

wavelengths, a point vortex of opposite sign was superimposed on the flow field.

However, the resulting energy field was dominated by the point vortex which was

not the intent of the study. Therefore, the study proceeds with the same vortex

configurations, but emphasis is placed on the counter-rotating vortex pair study.

The energy distribution as a function of wavelength may more clearly be

seen by looking at the one dimensional power spectral density (1DPSD) in figure

6.4. The peak energy in the counter-rotating vortex pair is at Kbo ≈ 2.5. This

distribution of energy in wave space does not change in time even though the

energy is being transferred between KE and PE. However, it does change in the

physical domain.

We may evaluate the rate at which the energy is removed from the distur-

bance region in physical space by evaluating the energy in that vicinity. Figure

6.5 shows E integrated over a square domain, with sides of length Lsource = 12bo,

surrounding the counter-rotating vortex pair. Here the energy is calculated from

(6.39) through (6.41), with w, u and ρ′ were calculated through the discrete Fourier

transforms of (6.19), (6.20) and (6.16), respectively.

In figure 6.5, it is observed that the energy associated with the disturbance

region behaves according to three phases. The first phase roughly occurs during
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the first buoyancy period where the energy rate of change is gradual. The next

phase consists of a rapid and constant change in the energy rate, where the waves

with higher group velocities are removed early in time. There appears to be a

transition after about 9 buoyancy periods where the rate of decrease significantly

reduces. During the remaining time, the energy is slowly propagated away. The

fluid at the disturbance region will eventually return to rest and a state of stable

stratification.

6.4 Multiple Vortex Pairs

Now that we have developed and verified our analytical set of equations

for the simple cases of vortex pairs, we are now ready to address more complex

flows. In this section, we will make the flow more complex by looking at a set of

co-rotating vortex pairs in a quadrupole configuration (VQ), where the pairs are

of opposite sign. Figure 2.1 presents the geometry of this flow field. Note, the flow

is set up such that the direction of the initial outward advection velocity is aligned

perpendicular to the horizontal axis.

6.4.1 Analytical Solution

The analytical set of equations for this more complex flow remains unaltered

with the exception of the initial vertical velocities, which are worked out in detail

in Appendix B.4. By substituting in the equations for the initial vertical velocities

into (6.12), the exact linear solution for the perturbed density field in Fourier space

of VQ is found

ρ̂′(k,m, t)

b3
oN

2 ρo

g

= −8πFr

Kbo

e−K2a2
o/4 sin(ωt)sgn(cos φ)[sin(

1

2
kbo) cos(

1

2
mbo)]. (6.48)

The corresponding velocity fields may be calculated with (6.19) & (6.20). Results

show that the analytical set of equations and inviscid linear simulations are in

agreement (not shown).
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(a) Analytical Solution (b) Stationary Phase Solution

Figure 6.6: Contours of VQ perturbed density for Fr = 0.01 at Nt = 30 produced

by (a) equation 6.48 and (b) equations 6.49.

6.4.2 Large Time Approximation

We also may calculate the long time and far field density perturbation

approximation to the flow through the stationary phase approximation with the

knowledge of the initial velocity field (Details may be found in Appendix B.6):

ρ′(x, z, t)

boN2ρo/g
≈ −8Fr

Ksbo

Nt| cos θ|e
−K2

s a2
o/4 sin(

1

2
ksbo) cos(

1

2
msbo) sin(ωst), (6.49)

where ks, ms and Ks are defined by (6.28), (6.29) and (6.32), respectfully. Figure

6.6 shows a comparison between the analytic and linearized numerical solutions,

which besides the differences found at the disturbance region and vertical axis, are

in agreement.

6.4.3 Energy Exchange

As was discussed in the cases of the single vortex pairs, the energy is trans-

ferred between K̂E and P̂E, where Ê = K̂E + P̂E = constant. Substituting in



121

Figure 6.7: 2DPSD for VQ

(6.48) into (6.45), the 2DPSD equation for the total energy per unit area is:

Ê(k, m)

b6
oN

2ρo

= Fr2 16π2

K2b2
o

e−K2a2
o/2 sin2(

1

2
kbo) cos2(

1

2
mbo). (6.50)

Figure 6.7 shows a figure of the 2DPSD equations, where it is observed that

there is a series of constructive and destructive wave interactions in the horizontal

and vertical directions, which occur every 2π. This is due to the energy of the flow

being based on harmonic functions in the k and m directions as seen in (6.50). It

is also noted that as in the counter-rotating vortex pair, there is a sine operator

present in the equation that acts on the horizontal wave-number. Therefore, the

peak energy in the flow is not located at k = m = 0 as it was in the co-rotating

vortex pair flow, thereby indicating that the energy goes to zero at infinity.

Figure 6.4 shows the energy distribution as a function of wavelength (1DPSD).

The peak energy in the VQ is at Kbo ≈ 1.9, which is significantly lower than the

wave-number found in the counter-rotating vortex pair. It is also observed that

the peak energy’s magnitude of the more complex system is significantly higher

than the counter-rotating vortex pair. Therefore, it is interesting to see how the

disturbance region’s energy field change in time given these circumstances.
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As was done for the counter-rotating vortex pair, we may evaluate the rate

at which the energy is removed from the disturbance region by evaluating E in

that vicinity. Figure 6.5 shows the E integrated over a square, with sides of length

Lsource = 12bo, region surrounding the disturbance region. The change in the

energy rate for the VQ behaves according to the same 3 phases as found for the

counter-rotating vortex pair. The initial gradual change in the energy rate occurs

during the first buoyancy period. This is followed by a rapid, constant change in

the disturbance region’s energy. When comparing the disturbance region’s energy

of this more complex flow with the counter-rotating vortex pair, it is observed that

the rate at which energy is transferred is increased. However in both configurations,

the rate at which energy is removed from the disturbance region decreases in time

and becomes more steady after approximately 9 buoyancy periods.

6.5 Summary

Through analytical techniques, we have investigated the linear interactions

of co-rotating and counter-rotating vortex pairs. The formulated equations for

the density, vorticity and energy fields accurately describe the interactions taking

place in a strongly stratified environment, where nonlinear effects may be neglected

(validated through numerical simulations).

The 2DPSD gives information about the distribution of energy in wave-

number space. There is a distinctive harmonic pattern of constructive and destruc-

tive wave interactions in the horizontal direction, which occur every kbo = 2π.

From the evaluation of the rate at which energy is removed from the region

near the initial disturbance, it is observed that during the first buoyancy period

the initial rate of change is quite gradual. This period is followed by a rapid,

constant rate of change of the energy where the waves with higher group velocities

are removed. After approximately 9 buoyancy periods, the rate decreases, where

the rate of change comparatively becomes very small and the remaining waves



123

slowly propagate away leaving the initial disturbance region as a stably stratified

fluid.

We also investigated, two sets of co-rotating vortex pairs in a quadrupole

configuration, VQ. From our analysis of the energy field we found that modifying

the flow’s initial velocity distribution greatly affects the distribution of energy and

the rate at which energy is transported away from the disturbance region. Since

the initial velocity field contains harmonic functions in the k and m wave-numbers,

the energy field in wave space is seen to have constructive and destructive wave

interactions in the horizontal direction and vertical directions, which occur every

2π. Looking at the energy in terms of the 1DPSD, it was seen that the peak

energy associated with the VQ is maintained in a lower wave-number than in the

counter-rotating vortex pair. However, the peak energy magnitude of the VQ was

significantly higher than the counter-rotating vortex pair. Through the evaluation

of the rate at which energy is removed from the disturbance region, it was found

that the time duration of the change in the energy rate was comparable with that

of the counter-roasting vortex pair. During the first buoyancy period both the

VQ and counter-rotating vortex pair energy gradually decreased. This trend was

followed by a rapid, nearly constant decrease in the energy. After approximately

9 buoyancy periods, the energy rate relaxed to a gradual steady rate. However,

over the time duration between Nt = 2π and Nt = 18π, the rate at which energy

was removed from the disturbance region surrounding the VQ was much more

substantial than for the counter-rotating vortex pair.

In the future it would be interesting to use these equations to calculate

the linear flow behavior of a statistical distribution of vortex pairs that would be

representative of turbulence and compare the results with a real turbulent patch

in order to see if our linearized equations accurately captures the energetics of the

flow. In the next chapter, we will investigate numerically the effects of moderate

stratification and the influences of nonlinear and viscous effects on the flow. We

will also identify the validity of this linear set of equations in describing flows which
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contain nonlinear interactions.



Chapter 7

Symmetric vortex pairs and the

generation of nonlinear internal

waves

In this chapter we expand upon the study of chapter 6 by investigating

the effects of moderately stable stratification on the counter-rotating vortex pair

and the co-rotating vortex quadrupole configuration, VQ. We note that we are not

considering the isolated case of the co-rotating vortex pair, since it was found in

chapter 6 that the energetics of that flow are unrealistic.

We define moderate stratification as Fr ≈ 1, so that N ≈ Γo/(2πb2
o). In

the previous chapter we investigated Fr ¿ 1 analytically using the linearized

inviscid Navier Stokes equations. However, as stratification levels decrease, i.e.

Fr increases, inertial effects become more important, which brings in nonlinear-

ity. Studying the nonlinear effects of the flow analytically would be very tedious.

For each configuration considered, a detailed mathematical model would need to

be developed, such as that done for a single Rankine vortex in Griffiths (1999).

This means that the generality in studying these flows analytically would be lost.

Therefore, we will analyze the flow numerically in order to study the nonlinear

125
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effects.

In the previous chapter, viscosity was neglected. The lower Fr, the less of

an effect viscosity will have on the flow. From §2.2.1 it may be shown that the

ratio of viscous to inertial time scales is:

tv
ts

=
(ao/bo)

2

8π

ReΓ

Fr
.

For viscous effects to be negligible tv >> ts and therefore ReΓ >> 8π
(ao/bo)2

Fr.

In strongly stratified flow, where Fr ¿ 1, ReΓ may be neglected. However, in

moderately stratified flow where Fr ≈ 1, ReΓ must be taken into consideration.

In the current simulations ReΓ = 5000 and ao/bo = 0.157.

We will begin by addressing the effect of Fr on the density and vorticity

fields of a counter-rotating vortex pair in §7.1 and §7.2, respectively. These results

will then be used to explain the behavior of the energy field for different Fr in §7.3.

We then investigate the effect of moderate stratification on VQ in §7.4. With the

knowledge gained from studying these flow configurations, we classify the strongly

stratified and moderately stratified regimes in §7.5 and conclude in §7.6 with a

brief discussion.

7.1 Density Field - Counter-rotating vortex pair

From our analysis of the previous chapter, it is seen from (6.16) that in an

inviscid linearized flow the perturbed density field magnitude is affected by the level

of stratification. However, when analyzing the flow on the buoyancy time scale, the

flow behavior develops in a similar fashion. As was previously discussed, regardless

of Fr, the waves are seen to propagate as rays away from the disturbance region

and their phases appear to propagate from the vertical to the horizontal axis.

The effect of viscosity on the linear interactions of the flow may be seen by

comparing the analytical model with viscous linearized numerical simulations. In

figure 7.1a, the analytical model (i & iii) and numerical simulations (ii & iv) are
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(i) Fr = 0.05 Analytical Solution (ii) Fr = 0.5

(iii) Fr = 0.05 Linear Viscous Numerical Solution (iv) Fr = 0.5

Figure 7.1a: Density contours of a counter-rotating vortex pair at Nt = 3π (Do-

main L = 24bo).
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(i) Fr = 0.05 Nonlinear Viscous Numerical Solution (ii) Fr = 0.5

(iii) Fr = 0.05 Difference in Viscous Numerical Solutions (iv) Fr = 0.5

Figure 7.1b: Density contours of a counter-rotating vortex pair at Nt = 3π (Do-

main L = 24bo).
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shown for Nt = 3π. It is seen that there is a minimal effect due to viscosity in

the flows presented. The general behavior of the flow is well represented by the

analytical solution of the inviscid linearized equations.

For the nonlinear viscous simulations presented in figure 7.1b (i & ii) for

Nt = 3π, we observe that the general behavior of the wave field is similar to

the linearized model. The waves are still seen to propagate as rays away from

the disturbance region and their phases still propagate from the vertical to the

horizontal axis. However, the flow has been significantly altered in the vicinity of

the disturbance region.

This may be seen more clearly in figure 7.1b (iii & iv), where the density

perturbation fields of the linear viscous simulations have been subtracted from the

density perturbation fields of the nonlinear viscous simulations. There are several

key differences observed in the vicinity of the disturbance region. It is seen that

the nonlinearities in the flow enhance mixing and are more pronounced the larger

the value of Fr. The nonlinear interactions also appear to generate waves and alter

the existing wave field surrounding the disturbance region. The region in which

the nonlinear effects modify the flow field increases in size for increasing Fr.

7.2 Vorticity Field - Counter-rotating vortex pair

The effects of stratification and viscosity can clearly be seen when looking

at contours of vorticity. In figure 7.2a the vorticity field at Nt = 3π for the analytic

linearized solution (i & ii) and the linearized viscous numerical simulations (iii &

iv) are shown. It is seen that for increasing Fr, the more viscosity acts to diffuse

the vorticity of the flow, which is seen when comparing ii & iv. However, the

general distribution of vorticity is unaltered.

Figure 7.2b shows contours of vorticity for the nonlinear viscous simulations

for Nt = 3π. Here the effects of viscosity and Fr are clearly evident. As was found

for the perturbed density field, there is significant mixing found in the region
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(i) Fr = 0.05 Analytical Solution (ii) Fr = 0.5

(iii) Fr = 0.05 Linear Viscous Numerical Solution (iv) Fr = 0.5

Figure 7.2a: Vorticity contours of a counter-rotating vortex pair at Nt = 3π.
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(i) Fr = 0.05 Nonlinear Viscous Numerical Solution (ii) Fr = 0.5

(iii) Fr = 0.05 Difference in Viscous Numerical Solutions (iv) Fr = 0.5

Figure 7.2b: Vorticity contours of a counter-rotating vortex pair at Nt = 3π.
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surrounding the initial disturbance and that the size of this region is enlarged for

increasing Fr. This may be seen more clearly in figure 7.2b (iii & iv), where

the vorticity fields from the linear viscous simulations were subtracted from the

nonlinear viscous simulations. For increasing Fr, the disturbance region’s vorticity

field breaks down into smaller structures through nonlinear interactions, which are

more susceptible to dissipation.

7.3 Energy Exchange - Counter-rotating vortex

pair

As seen in the density and vorticity fields, nonlinear interactions enhance

mixing and viscous effects. These interactions can significantly influence the ener-

getics of the flow field.

Figure 7.3 shows the 2DPSD for the linear viscous simulations and nonlinear

viscous simulations for Fr = 0.05 and Fr = 0.5 at Nt = 3π. As observed in the

linear viscous simulations, the energy magnitude is reduced for increasing Fr due

to viscous dissipation. However, since it is the nonlinear interactions that cause

energy to transfer to different wave-numbers, the energy field retains the same

general profile. In the nonlinear simulations it is seen that the energy is transferred

among wave-numbers. This trait is enhanced the weaker the stratification, where

it is seen in figure 7.3d that there is spreading of energy to higher wave-numbers,

leading to a transfer of energy to smaller scales which are more susceptible to

viscous dissipation. Therefore, we observe that the larger the Fr, the more the

energy’s magnitude decreases.

Recall that in the analytical study there is no transfer of energy between

wave-numbers, resulting in a time independent 1DPSD (figure 6.4). Figure 7.4

shows the 1DPSD for the linear viscous simulations and nonlinear viscous simu-

lations for Fr = 0.05 and Fr = 0.5 at Nt = 0, π, 2π, 3π, 4π. As observed in the
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(a) Linear Viscous Solution Fr = 0.05 (b) Nonlinear Viscous Solution

(c) Linear Viscous Solution Fr = 0.5 (d) Nonlinear Viscous Solution

Figure 7.3: 2DPSD plots for counter-rotating vortex pair in a viscous fluid at Nt =

3π
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2DPSD (figure 7.3), the energy magnitude in the linearized viscous simulations is

reduced for increasing Fr due to viscous dissipation (figure 7.4a,c). However, the

peak energy is found to retain its corresponding K value in time. In the nonlinear

simulations (figure 7.4b,d), the peak energy and corresponding K value change in

time. For the Fr = 0.05, the nonlinearities in the flow cause the peak energy to

decrease slightly and for the energy to spread to other wave-numbers. For Fr = 0.5

(figure 7.4d), there are two distinct peaks during the time evolution. These peaks

are due to the wave-wave interactions. In time the peak at larger wave-numbers de-

creases at an enhanced rate compared with the peak at lower wave-numbers. The

energy is removed by viscous dissipation which is enhanced by nonlinear interac-

tions. The peak energy found at the lower wave-numbers converges to a relatively

constant value indicating that the flow field reaches a relatively linear state. The

time that it takes for the flow to reach this state is Fr dependent.

In order to estimate when this conversion time occurs, the behavior of the

peak energy associated with the lower wave-number for the nonlinear simulations

is investigated for various Fr (figure 7.5a). We observed that the peak energy for

each Fr converges in time to a relatively constant value, indicating a relatively

linear state. We will note that in the case of Fr = 1 that the peak energy magni-

tude varies due to difficulties in distinguishing between the numerous peaks in the

1DPSD.

We are able to estimate subjectively the times, Ntsteady, at which the dis-

tribution of energy in wave space is relatively steady. For Fr . 0.1, specific times

at which this relatively linear state was reached were estimated by observing the

transition in the peak energy rate of change to a nearly stable decay. In figure

7.6a, we see that the time at which this state is reached is relatively linear for

these lower Fr, where we may estimate the time at which the nonlinear effects

become relatively insignificant by Ntsteady = 21.5πFr. For Fr > 0.1, the time to

reach the relatively linear state is difficult to decipher due to oscillations in the

peak energy in time. However, it is observed that the main changes in the peak
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(a) Linear Viscous Solution Fr = 0.05 (b) Nonlinear Viscous Solution
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(c) Linear Viscous Solution Fr = 0.5 (d) Nonlinear Viscous Solution

Figure 7.4: 1DPSD for Counter-rotating vortex pair, where Nt = 0 (-), Nt = π (-

-), Nt = 2π (-·-), Nt = 3π (-), Nt = 4π (- -)
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Figure 7.5: 1DPSD peak energy for counter-rotating vortex pair versus time for

nonlinear viscous simulations, where Fr = 0.01 (-), Fr = 0.05 (- -),

Fr = 0.1 (-·-), Fr = 0.3 (-), Fr = 0.5 (- -), Fr = 1 (-·-) .

energy occurs over the duration of the first buoyancy period.

During the time duration Nt . Ntsteady, the wave-number associated with

the peak energy converges to a relatively constant value. Figure 7.6b shows the

wave-number associated with this nearly linear state, Ksteady. We observe that

Ksteady rapidly decreases for increasing Fr, for Fr . 0.1. However for Fr ranging

between 0.1 and 1, Ksteady decreases minimally in comparison with the lower Fr

indicating that buoyancy has less of an effect on the wave-number in which the

peak energy resides. We would then expect to see a change in the rate that energy

is being removed from the disturbance region around Fr = 0.1.

Figure 7.7 provides a comparison of the rate at which the energy is removed

from the disturbance region for the analytical model, linear viscous simulations and

nonlinear viscous simulations. In this figure, E is integrated over a square region

surrounding the counter-rotating vortex pair, where Lsource = 12bo. It is observed

that in the case of Fr = 0.05, the effect of viscosity on the linearized simulation is

nearly negligible. However, there is a notable decrease in energy for the nonlinear

simulations. For Fr = 0.5, the effect of viscosity on the linear simulations is more

substantial and the effect of the nonlinear interactions cause the energy to rapidly
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(a) Nt of linear state (b) K of linear state

Figure 7.6: Relatively linear state conditions for counter-rotating vortex pair non-

linear viscous simulations.

dissipate and propagate away from the disturbance region.

Figure 7.8a shows the disturbance region’s energy from the nonlinear sim-

ulations for 0.01 ≤ Fr ≤ 1.0. It is evident that for increasing Fr there is an

increase in energy being removed from the disturbance region due to viscosity and

internal waves. Recall that in chapter 6 the analytical solution’s rate of decay of

energy in the initial disturbance region changed from a gradual decay to a rapid

decay around Nt = 2π. Observing the behavior of the nonlinear simulations for

Fr . 0.1 during the first buoyancy period, we see that for increasing Fr that this

gradual change in energy rate becomes more substantial. After Nt = 2π, it is seen

that the energy rate of change is linear with Fr (figure 7.8b). For Fr > 0.1, we

find that Fr significantly influences the disturbance regions energy rate of change

during the first buoyancy period. However after the first buoyancy period, Fr

does not significantly effect the rate of change. This indicates that the nonlinear

interactions are becoming less influential after Nt = 2π.
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(a) Fr = 0.05 (b) Fr = 0.5

Figure 7.7: Disturbance region energy for the counter-rotating vortex pair. (Lines:

Analytical (-), Linear Viscous Simulations (- -), Nonlinear Viscous Sim-

ulations (-·-))

7.4 Multiple Vortex Pairs

With a better understanding of the nonlinear interactions taking place in a

viscous fluid with the initial condition of a counter-rotating vortex pair, we are now

ready to address the more complicated co-rotating vortex quadrupole configuration

(VQ) that was previously studied in chapter 6.

Figure 7.9a,b shows the VQ perturbed density fields from the analytical

solution, linear viscous simulations and nonlinear viscous simulations for Fr = 0.05

and Fr = 0.5 at Nt = 3π. In figure 7.9a, if we compare the results from the linear

viscous simulations (iii & iv) with the analytical solution (i & ii), we observe that

as Fr increases that the effects of viscosity are greater, while it is seen that the

density field appears more diffused. However, viscosity has done little to change

the general flow behavior as was found in the counter-rotating vortex pair. In

figure 7.9b (i & ii) the nonlinear simulation results are presented. It is apparent

that the flow is experiencing mixing and viscous dissipation at the disturbance

region. When comparing it to the linear viscous simulations (figure 7.9b (iii &
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Figure 7.8: Disturbance region (a) energy and (b) energy rate after Nt = 2π for

counter-rotating vortex pair nonlinear viscous simulations, where Fr =

0.01 (-), Fr = 0.05 (- -), Fr = 0.1 (-·-), Fr = 0.3 (-), Fr = 0.5 (- -),

Fr = 1 (-·-).

iv)), it is seen that as Fr is increased the region in which nonlinear interactions

affect the flow’s behavior is increased, as was also observed in the counter-rotating

vortex pair.

The mixing occurring in the disturbance region may more clearly be ob-

served when looking at contours of vorticity. Figure 7.10a,b shows the VQ vortic-

ity fields from the analytical linearized equations, linear viscous simulations and

nonlinear viscous simulations for Fr = 0.05 and Fr = 0.5 at Nt = 3π. As shown

in the density perturbation contours, when we compare the results from the linear

viscous simulations with the analytical solution, we observe that as Fr increases,

viscous dissipation is enhanced, but that the general flow behavior is the same.

However, when comparing the nonlinear and linear viscous results, it becomes ap-

parent that increasing Fr causes the disturbance region to be greatly modified. In

figure 7.10b (i & ii) the nonlinear simulation results are presented. When observ-

ing the disturbance region, it is seen that there is an enhanced amount of mixing
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(i) Fr = 0.05 Analytical Solution (ii) Fr = 0.5

(iii) Fr = 0.05 Linear Viscous Numerical Solution (iv) Fr = 0.5

Figure 7.9a: Perturbed density contours of VQ at Nt = 3π (Domain L = 24bo).
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(i) Fr = 0.05 Nonlinear Viscous Numerical Solution (ii) Fr = 0.5

(iii) Fr = 0.05 Difference in Viscous Numerical Solutions (iv) Fr = 0.5

Figure 7.9b: Perturbated density contours of VQ at Nt = 3π (Domain L = 24bo).
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for increasing Fr, which occurs on smaller scales. We can see the extent of the

affects that nonlinear interactions have on the disturbance region if we subtract

out the linear viscous vorticity from the nonlinear viscous vorticity (figure 7.10b

(iii & iv)). The region in which nonlinear interactions affect the flow increases as

Fr increases.

Figure 7.11 shows the 2DPSD for the linear viscous simulations and nonlin-

ear viscous simulations for Fr = 0.05 and Fr = 0.5 at Nt = 3π. As we observed

in the single vortex pair study, the energy magnitude is reduced in the linear vis-

cous simulations for increasing Fr due to viscous dissipation. For the nonlinear

flow, the energy is seen to transfer between wave-numbers more significantly for

increasing Fr. While the energy was spread among wave-numbers in the vortex

pair study, it is evident that for this more complex flow that there is much more

energy being transferred to higher wave-numbers. We note that our wave-number

space is carried out to k = m = ±268 in order to properly resolve the flow and

avoid aliasing.

Figure 7.12 shows the 1DPSD for the linear viscous simulations and nonlin-

ear viscous simulations for Fr = 0.05 and Fr = 0.5 at various Nt, results of which

emulate the counter-rotating vortex pair. As observed in 2DPSD (figure 7.11), the

energy magnitude in the linearized viscous simulations is reduced for increasing

Fr due to viscous dissipation. However, the peak power is found to retain its

corresponding wave-number in time since there is no mechanism for transferring

energy among wave-numbers in linear flow. For the nonlinear viscous simulations,

we find that there is substantial spreading of energy to higher wave-numbers for

increasing Fr. Note that as in the counter-rotating vortex pair that during the du-

ration of the time evolution there is more than one peak. This trait is enhanced for

increasing Fr. However, the peak energy associated with the linear terms converge

to a relatively constant value at lower wave-numbers, indicating a convergence to

a nearly linear state. The duration time of this convergence is dependent on the

level of stratification as will be discussed below.
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(i) Fr = 0.05 Analytical Solution (ii) Fr = 0.5

(iii) Fr = 0.05 Linear Viscous Numerical Solution (iv) Fr = 0.5

Figure 7.10a: Vorticity contours of VQ at Nt = 3π.
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(i) Fr = 0.05 Nonlinear Viscous Numerical Solution (ii) Fr = 0.5

(iii) Fr = 0.05 Difference in Viscous Numerical Solutions (iv) Fr = 0.5

Figure 7.10b: Vorticity contours of VQ at Nt = 3π.
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(a) Linear Viscous Solution Fr = 0.05 (b) Nonlinear Viscous Solution

(c) Linear Viscous Solution Fr = 0.5 (d) Nonlinear Viscous Solution

Figure 7.11: 2DPSD for VQ in a viscous fluid at Nt = 3π.
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(a) Linear Viscous Solution Fr = 0.05 (b) Nonlinear Viscous Solution
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(c) Linear Viscous Solution Fr = 0.5 (d) Nonlinear Viscous Solution

Figure 7.12: 1DPSD for VQ, where Nt = 0 (-), Nt = π (- -), Nt = 2π (-·-),
Nt = 3π (-), Nt = 4π (- -).



147

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

  Nt/π
 P

ea
k 

E
n

er
g

y

Figure 7.13: 1DPSD peak energy for VQ versus time for nonlinear viscous simula-

tions, where Fr = 0.01 (-), Fr = 0.05 (- -), Fr = 0.1 (-·-), Fr = 0.3

(-), Fr = 0.5 (- -), Fr = 1 (-·-) .

Figure 7.13, shows the peak power for the nonlinear simulations versus Nt

for various Fr, where it is observed that the peak power for each Fr converges in

time to a relatively constant value. In the same manner as done in the counter-

rotating vortex pair, we estimate the time, Ntsteady, at which the flow reaches a

relatively linear state. For Fr ≤ 0.1, we see that the time at which this state is

reached is linear with Fr (figure 7.14a), where the line may be described by the

slope Ntsteady = 22.3πFr. In the previous section, it was found that Ntsteady for

the counter-rotating vortex pair may be described by Ntsteady = 21.5πFr. These

time estimates are within a fraction of half a buoyancy period. For Fr > 0.1, we

observe that the main changes in the peak energy occur prior to Nt = 2π as was

also found for the counter-rotating vortex pair.

We have estimated the wave-number associated with the peak energy, Ksteady

(figure 7.14b). We note the similarity of this figure to the counter-rotating vortex

pair (figure 7.6b), where it is seen that for all flows that Ksteady rapidly decreases

for increasing Fr, for Fr . 0.1. However for Fr ranging between 0.1 and 1, the

change in Ksteady is minimal.
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(a) Nt of linear state (b) K of linear state

Figure 7.14: Relatively linear state conditions for VQ nonlinear viscous simula-

tions.

As was done for the counter-rotating vortex pair, we provide a comparison

of the rate at which the energy is removed (dissipated or propagated away) from

the disturbance region for the analytical solution, linear viscous simulations and

nonlinear viscous simulations. In figure 7.15, the E is integrated over a square

region surrounding the vortices, where Lsource = 12bo. As in the counter-rotating

vortex pair for Fr = 0.05, the effect of viscosity on the linear interactions is nearly

negligible for these more complex flows. However, there is a notable decrease in

energy when nonlinear interactions are taken into account. For Fr = 0.5, there is

a substantial affect due to the nonlinear interactions in the flow. When compared

to the counter-rotating vortex pair it is seen that the rate at which the disturbance

region loses energy is significantly enhanced for this more complex flow.

Figure 7.16a compares the disturbance region’s energy from the nonlinear

simulations for 0.01 ≤ Fr ≤ 1.0. When comparing the disturbance region’s energy

of the VQ (figure 7.16a) with the counter-rotating vortex pair (figure 7.8a), it is

apparent that there is a distinctive relationship between Fr and the rate at which

energy leaves the vicinity. The same observations that were made for the counter-

rotating vortex pair may be made for the VQ. For Fr . 0.1, the energy rate is linear
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(a) Fr = 0.05 (b) Fr = 0.5

Figure 7.15: Disturbance region energy for the :w VQ, (Lines: Analytical (-), Lin-

ear Viscous Simulations (- -), Nonlinear Viscous Simulations (-·-).

with Fr after Nt = 2π. For Fr > 0.1, the energy rate is not significantly altered

by Fr after Nt = 2π, indicating a transition in the flow where the disturbance

region’s energy rate is not dependent on Fr. However, the rate at which energy

leaves the disturbance region for VQ is significantly enhanced when compared with

the counter-rotating vortex pair. The rate is more than a factor of two greater.

7.5 Stratification Levels

From the above analysis, we are now better able to characterize the flow

based on the level of stratification.

From observations of the density and vorticity fields, we have seen that

the effects of stratification on the nonlinear interactions in the flow increase with

increasing Fr. We also have seen that the region over which nonlinearities effect

the flow surrounding the vortex pairs increases with increasing Fr. Therefore, the

solutions to the linearized analytical equations developed in the previous chapter

begin to break down as Fr increases.

In our energy analysis, we discussed the influence of Fr on the nonlinear in-
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Figure 7.16: Disturbance region (a) energy and (b) energy rate after Nt = 2π for

VQ nonlinear viscous simulations, where Fr = 0.01 (-), Fr = 0.05 (-

-), Fr = 0.1 (-·-), Fr = 0.3 (-), Fr = 0.5 (- -), Fr = 1 (-·-).

teractions of the flow. It was found that for increasing Fr, the greater the nonlinear

interactions which caused energy to be transferred to higher wave-numbers. The

energy at these higher wave-numbers are more susceptible to viscosity. Therefore,

in time the flow’s energy field became relatively linear. We were able to estimate

specific times at which this linear state is reached for Fr . 0.1. We also found that

the corresponding K value associated with the relatively linear state decreased lin-

early. For Fr > 0.1, we found that the primary changes in the peak energy in

relation to wave-space occurred during the first buoyancy period and that the

corresponding K value of this relatively linear state are comparable among Fr.

Through qualitative estimates of the disturbance region’s energy, we found that

for Fr > 0.1 that Fr has less of an influence on the rate at which energy is re-

moved (dissipated and propagated away) from the region. Therefore, we conclude

that a transition occurs for Fr between 0.1 and 0.3. Based on this conclusion, we

define a strongly stratified flow as Fr . 0.1 and a moderately stratified flow having

Fr > 0.1. Note we have not discussed the upper limit of the moderately stratified

flow regime marking the distinction between moderately and weakly stratified. In
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chapter 5, we found that for Fr & 2 that the flow was convectively dominated,

falling within the weakly stratified regime. While a better distinction should be

made, for now we leave the stratification levels falling between 1 . Fr . 2 as

undefined.

In the previous chapter, we derived the linearized, inviscid, analytical equa-

tions that describe vortex pairs, which we found is valid for Fr << 1, where

nonlinear and viscous effects are not important for adequately large ReΓ. Through

this analysis, we are now better able to distinguish for what range of Fr the solu-

tion is valid. We conclude that the analytical solutions are quantitatively correct

for Fr . 0.01 and qualitatively correct for Fr . 0.1. Although there is some influ-

ence of weak nonlinearities and viscous effects, the general flow behavior remains

unaltered and we are able to predict when the flow reaches a relatively linear state,

indicating that the flow is governed by linear interactions.

7.6 Summary

In this chapter, we numerically studied the effect of stratification on differ-

ent vortex pair configurations. The levels of stratification considered are within

the range of strongly to moderately stratified environments, 0.01 ≤ Fr ≤ 1.0. In

all simulations ReΓ = 5000. Results from this study show the effect that Fr has

on the generated internal wave field, vorticity field and energy field of vortex pairs.

We have qualitatively shown through analysis of the density and vortic-

ity fields that nonlinear interactions cause significant mixing and dissipation of

the disturbance region and that the region containing these nonlinear interactions

grows with increasing Fr. Nonlinear interactions cause energy to be transferred

from large scales to small scales. Therefore, viscosity has more of an influence in

these flows.

We have observed that the orientation of the vortex pairs within the strat-

ified environment plays a significant role in energy transport. However, in all flow
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configurations, the peak power associated with the energy field of the nearly linear

state decreases for increasing Fr. It was shown that the time it takes for the energy

field to reach this relatively linear state is approximately proportional to Fr when

Fr . 0.1 and that the primary changes in the peak energy occur during the first

buoyancy period for Fr > 0.1. By evaluating the evolution of the energy in the

vicinity of the disturbance region, the rate at which energy leaves the region after

the first buoyancy period is shown to increase for increasing Fr . 0.1. However,

it is seen that for Fr > 0.1 that the rate is relatively independent of Fr.

Therefore, we clarify the definition of strong stratification when considering

vortex pair configurations. We have found that there is a transition point at which

the flow becomes less susceptible to buoyancy effects. We classify Fr . 0.1 as

being strongly stratified where the behavior may be qualitatively modeled by the

linear equations developed in chapter 6. The moderate regime is classified as

2.0 > Fr > 0.1 where there appears to be a convergence to a relatively linear state

after Nt = 2π.



Chapter 8

Conclusions

This work considers the fundamental dynamics of two-dimensional vortex

pairs in unstratified and stratified environments and in particular:

• co-rotating vortex interactions and merging; and

• internal wave generation by co-rotating and counter-rotating vortex pairs.

These studies identify and describe key physical mechanisms and characterize flow

behavior based on convective, diffusive and stratification effects. The investigation

was conducted by means of analytical techniques and numerical simulations.

8.1 Symmetric co-rotating vortex pairs

(unstratified)

In chapter 3, we identify the physical mechanism leading to merger through

two-dimensional numerical simulations of a symmetric co-rotating vortex pair con-

sisting of vortices of equal size and strength (ReΓ = 5000). The evolution of the

flow and merging process are described in terms of four phases. During the first

phase (diffusive/deformation phase) the vortices grow by viscous diffusion and the

153
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separation distance, b, remains constant. The diffusive growth of the vortices es-

tablishes the interaction of the gradient of vorticity, ∇ω, and mutually induced

strain, S, which causes the vortices to deform elliptically. During this time, a dis-

tinct functional relation between vorticity and streamfunction exists, suggesting

quasi-equilibrium conditions. However, in the vicinity of the hyperbolic points,

and in particular of the central hyperbolic point (CH) where mutual interaction

strengthens, the interaction of ∇ω and S eventually produces a tilt in vorticity

contours. At the outer hyperbolic points, this initiates filamentation. During the

second phase (convective/deformation phase), the induced flow by the filaments

acts to advect the vortices towards each other and enhances the mutually induced

S but does not drive the merger to completion. The enhanced tilting and diffusion

of vorticity near the CH causes vorticity from the core region to enter the exchange

band where it is advected away. In the third phase (convective/entrainment phase),

the vortex cores erode and the integrity of the vortices is significantly diminished.

The cores are mutually entrained into the exchange band, whose induced flow

becomes dominant and transforms the flow into a single compound vortex. The

beginning of the last phase (diffusive/axisymmetrization phase) is marked by the

end of the rapid reduction in b. During this phase there is a slow reduction in b as

flow evolves towards axisymmetry.

Results from this study clarify the timing of the flow processes and the

merging criterion. Past studies have stated that merger begins when the vortex

cores growth rate deviates from that of a single vortex, but there was a lack of

physical significance. We have identified the key physical mechanism of merger and

showed that the rapid decrease in b is due to fluid from the cores being entrained

into the exchange band. The time at which this process starts corresponds with

the vortex cores growth rate deviation.

The present study provides fundamental insight on vortex interaction and

the merging process. Most importantly, it provides a framework with which more

complex flows may be analyzed. Further studies should consider other vorticity
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distributions and higher Reynolds numbers. It is expected that vortex pairs in

these flows will behave quite differently.

8.2 Asymmetric co-rotating vortex pairs

(unstratified)

In chapter 4, we further consider vortex interactions and merging by consid-

ering an asymmetric (vortices of unequal strengths) case in which there is unequal

influence of each of the vortices on each other. This enables the development of

a more generalized merging criterion and a classification scheme for co-rotating

vortex interactions in a viscous fluid. In the simulations presented, the same ini-

tial aspect ratio that was used in our previous study was utilized, ao/bo = 0.157.

The initial strength of the stronger vortex is fixed at ReΓ = 5000 and the initial

strength of the weaker vortex is varied such that 0.4 ≤ ReΓ,2/ReΓ,1 ≤ 1.0.

The same physical mechanisms that govern symmetric vortex merger were

found to govern asymmetric vortex interactions. We consider the flow in the co-

rotating frame, which rotates at the same rate as the vortices rotate about one

another, and describe the deformation of the vortices in terms of the interaction

of vorticity gradient, ∇ω, and rate of strain, S, with emphasis placed on the inter-

actions taking place in the vicinity of the CH point.

In asymmetric pairs, the flow structure and interactions are altered by the

difference in vortex strengths. As in the symmetric vortex pair, the vortices ini-

tially grow by diffusion. However, the rate at which the vortices deform differs

from each other. The stronger vortex deforms less than the weaker vortex due to

the difference in induced S, and the tilt of ∇ω contours. Therefore, the subsequent

core detrainment of the weaker vortex occurs earlier than for the stronger vortex.

However, the dominant attracting motion occurs only when, and if, core detrain-

ment is established by the stronger vortex. When this occurs, if it occurs at all,
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the vortex cores will be entrained into the exchange band. We found that this

occurs for 0.7 ≤ ReΓ,2/ReΓ,1 ≤ 0.9. However in these cases, the stronger vortex

ultimately dominates and entrains vorticity from the weaker vortex. We consider,

therefore, the process as vortex merger since the result is an enhanced compound

vortex. If the stronger vortex core is not detrained prior to significant erosion of

the weaker vortex (ReΓ,2/ReΓ,1 ≤ 0.6), the weaker vortex is destroyed leaving the

stronger vortex to remain in the flow relatively unaffected. In this case, merger

does not occur.

From this understanding of the physics behind asymmetric vortex interac-

tions, we develop a generalized merging criterion for unequal vortices. We consider

the critical state for a given vortex to be associated with the establishment of core

detrainment. A vortex strain parameter, γi, is defined in terms of the ratio of

the strain rate at the CH point, SCH , to the maximum vorticity of vortex i, ωvi,

thereby providing a measure of the relative strength of the induced strain rate

at the CH point to the vortex strength. For all our simulations (including those

conducted in the weakly stratified study), we find a single critical value for both

vortices, γcr,1 = γcr,2 = γcr ≈ 0.247±0.007, marking the point at which each vortex

core is detrained. Through a scaling analysis, the critical strain rate is shown to be

related to the critical aspect ratio in the case of symmetric vortex pairs. Similarly,

through a scaling analysis, the time at which this critical strain rate is reached is

found for both vortices.

We have developed a description for asymmetric vortex pair interactions

for viscous flow. The key result is a generalized merging criterion formulated in

terms of strain and vorticity. Through scaling analysis, this criterion is related to

the critical aspect ratio found for symmetric vortex merger. This criterion is then

used to predict when the flow processes occur and when/if the vortices merge.

This criterion was developed using moderate ReΓ and Lamb-Oseen vortices

with a Gaussian vorticity distribution. It would be of interest to test the criterion

with further numerical simulations and laboratory experiments for higher Reynolds
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numbers to see its generality. It is expected that the criterion would have to

be modified to account for different vorticity profiles, which may only entail an

additional scaling factor.

8.3 Symmetric co-rotating vortex pairs

(weakly stratified)

In chapter 5, we used two-dimensional numerical simulations and considered

a range of Reynolds numbers, 2000 ≤ ReΓ ≤ 5000, and Froude numbers, Fr = 2, 3,

and 5. Stratification is considered weak, i.e. the flow is dominated by convection

and diffusion, not by stratification (Fr > 1), and merging always occurs.

In a weakly stratified fluid, the flows state is dependent on the ratio of the

diffusive time scale (growth of cores, establishment of ∇ω and S interaction) to

the turnover time (establishment of baroclinically generated vorticity, BV), i.e.,

the Reynolds number. It was found that a crossover Reynolds number, which is

dependent on the initial aspect ratio, exists above which convective merging is

accelerated with respect to unstratified flow and below which merging is delayed.

The induced flow field caused by BV advects the vortices towards or away from

each other, the amount of which is governed by the level of stratification which is

characterized by Fr. This advection modify the strain rate field, resulting in an

enhancement or hindrance of the ∇ω amplification process. Therefore, initiation

of the exchange band process and the convective/entrainment phase depends on

both ReΓ and Fr. However, once initiated the process is ReΓ and Fr independent.

This description of merger allows for a more explicit determination of (a/b)cr.

We define the critical state of the flow to be the start of the convective/entrainment

phase, beyond which there is no reversal and merging will occur. This time

corresponds to when a2(t) deviates from linear growth and the exchange band

process begins. At this point, we have found that for all flows considered that
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(a/b)cr = 0.235± 0.006, where a is defined based on the second-moment of vortic-

ity.

The results presented in this study apply to pairs of symmetric (equal)

co-rotating Gaussian vortices at moderate ReΓ and weak stratification. For more

strongly stratified flows, buoyancy effects will alter the flows behavior causing the

vortices to no longer merge. Future work should consider for what Fr this transi-

tion takes place. Furthermore, future studies should test to see if this criterion is

valid for larger ReΓ and different vorticity distributions.

8.4 Symmetric vortex pairs and the generation

of linear internal waves

In chapter 6, through analytical techniques, we investigated the linear in-

teractions of co-rotating vortex pairs, counter-rotating vortex pairs and two sets

of co-rotating vortex pairs in a quadrupole configuration (VQ). Our linearized

equations accurately approximate the flow in a strongly stratified environment

(Fr . 0.01), where nonlinear effects may be neglected. In these equations, we

assume moderate to large Re so that viscous effects are negligible.

Information concerning the flow’s energy and distribution in wave space was

computed analytically. It was found that there is a distinctive harmonic pattern

of constructive and destructive wave interactions which are dependent on the flow

geometry. For flows consisting of two vortices at the same vertical location, there

is a harmonic pattern in the horizontal direction, which occur every kbo = 2π. For

more complex flows consisting of multiple vortex pairs, this harmonic pattern will

become more complicated. In the VQ flow, which consists of four vortices, there

is a harmonic pattern in the horizontal and vertical direction, which occur every

kbo = 2π and mbo = 2π. If more vortices were included there would be a more

complicated pattern of constructive and destructive wave interactions.
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Looking at the energy in terms of the one dimensional power spectral density

(1DPSD), it was seen that the peak energy associated with the VQ is maintained in

a lower wave-number than in the counter-rotating vortex pair. However, the peak

energy magnitude of the VQ was significantly higher than the counter-rotating

vortex pair. Through evaluation of the rate at which energy is removed from the

disturbance region due to viscous dissipation and internal waves, it was found that

early in time energy was removed faster from the VQ than the counter-rotating

vortex pair, but that after approximately 9 buoyancy periods the rate at which

energy is transferred from the disturbance region becomes relatively steady in both

the VQ and counter-rotating vortex pair.

Solutions to these linearized equations provide accurate results for strongly

stratified flows. It was shown that these equations may be manipulated to allow for

varying initial conditions, which in the future could be used to calculate the linear

flow behavior of a statistical distribution of vortex pairs that represents turbulence.

8.5 Symmetric vortex pairs and the generation

of nonlinear internal waves

In chapter 7, we used numerical simulations to study the effect of moder-

ately to strongly stratified fluid on a counter-rotating vortex pair and VQ. The

levels of stratification considered are within the range of strongly to moderately

stratified environments, 0.01 ≤ Fr ≤ 1.0. In all simulations ReΓ = 5000.

Through analysis of the density and vorticity fields, it was seen that non-

linear interactions cause significant mixing of vorticity. These interactions cause

large-scale structures to evolve to small scale structures, which enhance dissipation.

Therefore, viscosity has more of an influence in these flows. The time duration that

it takes for the influences of these small structures to decay and reach a relatively

linear state is Fr dependent. For Fr . 0.1, it was found that this time is approx-
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imately linear with Fr and occurred prior to the completion of the first buoyancy

period. For Fr > 0.1, it was found that the primary influences of these small struc-

tures occurred during the first buoyancy period. By evaluating the evolution of

the energy in the vicinity of the disturbance region, it is shown that after the first

buoyancy period the rate at which energy leaves the region increase for increasing

Fr . 0.1 and is relatively constant for Fr > 0.1.

With this knowledge, we clarified the definition of strong stratification when

considering vortex pair configurations. We have found that there is a transition

point at which the flow becomes less susceptible to buoyancy effects after the

first buoyancy period. We classify Fr . 0.1 as being strongly stratified and the

behavior may be qualitatively modeled utilizing the analytical equations developed

in chapter 6. The moderate regime is classified as Fr > 0.1 where convective effects

are required to be taken into consideration during the first buoyancy period, but

that there is a convergence of the flow to a relatively linear state occurring around

the first buoyancy period. Note we have not discussed the upper limit of the

moderately stratified flow regime marking the distinction between moderate and

weak stratification. In chapter 5, we found that for Fr & 2 that the flow was

convectively dominated falling within the weakly stratified regime. While a better

distinction should be made, for now we leave the stratification levels falling between

1 . Fr . 2 as undefined. This is considered future work.

This study is a preliminary investigation into the effects of moderate strat-

ification on vortex pairs and more complex flows. The study needs to distinguish

between energy lost to internal waves and energy removed due to dissipation. The

next step in this study, is to calculate the buoyancy flux across the boundary of

the disturbance region in order to estimate the rate at which energy is being lost

to internal waves. This would allow us to predict the strength of the wave and

give us insight into the effect that dissipation has on the disturbance region.
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8.6 Further Work

In unstratified two-dimensional flow there are a number of aspects of vortex

pair interactions that are of interest. Further studies should consider larger ReΓ

that are more representative of flows found in the oceans and atmosphere. As

observed in the weakly stratified and asymmetric co-rotating vortex pair studies,

there is a strong ReΓ dependence; at larger ReΓ the flow may be greatly modified

and not behave according to our low-ReΓ criterion. Another aspect of these flows

that should be researched further is the impact of vortex vorticity distributions.

The addition of a turbulent core, which is realistic of aircraft wake and geophysical

flows, is also of interest. Such strong cores will cause the dissipation and destruction

of the vortices to be inhibited and may inevitably result in different regimes than

that found at lower ReΓ and more stable flows.

Future studies in stratified flows should consider the influence of strong and

moderate stratification on multiple vortices and the internal wave field develop-

ment. It would be interesting to investigate the internal wave field generated by

a flow containing a turbulent patch both analytically for strongly stratified flows

and numerically for moderately stratified flows.

Future research should consider the extension of these studies into three

dimensions. It is known that pairs of co-rotating and counter-rotating vortex

pairs undergo an elliptic instability in there axial direction when perturbed. In

a stratified environment, this instability may be hindered or enhanced depending

on the level of stratification and ReΓ. Such studies have not been performed in

regards to horizontally co-rotating vortex pairs in a stratified environment.



Appendix A

Elementary Vortex Systems

A.1 Initial Vorticity Distributions

The initial base flow consists of the superposition of Lamb-Oseen (Gaussian) vor-

tices. The corresponding vorticity distribution for a single vortex (rotating in a

clockwise direction) is given by,

ω(x, z, to) = Ωo e
−((x−xc)2+(z−zc)2)

a2
o ,

where Ωo = Γo/πa2
o is the peak magnitude of vorticity and xc = zc = 0. In the

cases of multiple vortices, the distributions may be added together. The vorticity

distribution for a co-rotating vortex pair (rotating in a counter-clockwise direction)

is given by,

ω(x, z, to) = Ωo,1 e
−((x−x1)2+(z−z1)2)

a2
o + Ωo,2 e

−((x−x2)2+(z−z2)2)

a2
o ,

where Ωo,i = Γo,i/πa2
o is the peak magnitude of vorticity for a particular vortex

(i = 1, 2) and x1 = −x2 = bo/2 and z1 = z2 = 0. For a counter rotating vortex

pair with an advection velocity in the negative vertical direction,

ω(x, z, to) = Ωo,1 e
−((x−x1)2+(z−z1)2)

a2
o − Ωo,2 e

−((x−x2)2+(z−z2)2)

a2
o ,
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where x1 = −x2 = bo/2 and z1 = z2 = 0. For a co-rotating quadrapole configura-

tion with an outward advection velocity in the vertical direction,

ω(x, z, to) = Ωo,1 e
−((x−x1)2+(z−z1)2)

a2
o − Ωo,2 e

−((x−x2)2+(z−z2)2)

a2
o (A.1)

−Ωo,3 e
−((x−x3)2+(z−z3)2)

a2
o + Ωo,4 e

−((x−x4)2+(z−z4)2)

a2
o ,

where x1 = −x2 = −x3 = x4 = bo/2 and z1 = z2 = −z3 = −z4 = bo/2.

A.2 Initial Velocity Distributions

The velocity field of the vortex systems may be described by u = ∂Ψ
∂z

and

w = −∂Ψ
∂x

, where ωy = −∇2Ψ. This leads to the the velocity field of a single vortex

(rotating in a counter-clockwise direction) to be described by

u(x, z, to) =
1

2

a2
oΩo(z − zc)

(x− xc)2 + (z − zc)2
(1− e−((x−xc)2−(z−zc)2)/a2

o) (A.2)

and

w(x, z, to) = −1

2

a2
oΩo(x− xc)

(x− xc)2 + (z − zc)2
(1− e−((x−xc)2−(z−zc)2)/a2

o), (A.3)

where xc = zc = 0. In the case of the co-rotating vortex pair, the velocity compo-

nents u and w are

u(x, z, to) =
1

2

a2
oΩo,1(z − z1)

(x− x1)2 + (z − z1)2
(1− e−((x−x1)2−(z−z1)2)/a2

o)

+
1

2

a2
oΩo,2(z − z2)

(x− x2)2 + (z − z2)2
(1− e−((x−x2)2−(z−z2)2)/a2

o)

(A.4)

and

w(x, z, to) = −1

2

a2
oΩo,1(x− x1)

(x− x1)2 + (z − z1)2
(1− e−((x−x1)2−(z−z1)2)/a2

o)

−1

2

a2
oΩo,2(x− x2)

(x− x2)2 + (z − z2)2
(1− e−((x−x2)2−(z−z2)2)/a2

o),

(A.5)
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where x1 = −x2 = bo/2 and z1 = z2 = 0. In the case of the counter-rotating vortex

pair, the velocity components u and w are

u(x, z, to) =
1

2

a2
oΩo,1(z − z1)

(x− x1)2 + (z − z1)2
(1− e−((x−x1)2−(z−z1)2)/a2

o)

−1

2

a2
oΩo,2(z − z2)

(x− x2)2 + (z − z2)2
(1− e−((x−x2)2−(z−z2)2)/a2

o)

(A.6)

and

w(x, z, to) = −1

2

a2
oΩo,1(x− x1)

(x− x1)2 + (z − z1)2
(1− e−((x−x1)2−(z−z1)2)/a2

o)

+
1

2

a2
oΩo,2(x− x2)

(x− x2)2 + (z − z2)2
(1− e−((x−x2)2−(z−z2)2)/a2

o),

(A.7)

where x1 = −x2 = bo/2 and z1 = z2 = 0. For a co-rotating quadrapole configura-

tion with an outward advection velocity in the vertical direction,

u(x, z, to) =
1

2

a2
oΩo,1(z − z1)

(x− x1)2 + (z − z1)2
(1− e−((x−x1)2−(z−z1)2)/a2

o)

−1

2

a2
oΩo,2(z − z2)

(x− x2)2 + (z − z2)2
(1− e−((x−x2)2−(z−z2)2)/a2

o)

−1

2

a2
oΩo,3(z − z3)

(x− x3)2 + (z − z3)2
(1− e−((x−x3)2−(z−z3)2)/a2

o)

+
1

2

a2
oΩo,4(z − z4)

(x− x4)2 + (z − z4)2
(1− e−((x−x4)2−(z−z4)2)/a2

o)

(A.8)

and

w(x, z, to) = −1

2

a2
oΩo,1(x− x1)

(x− x1)2 + (z − z1)2
(1− e−((x−x1)2−(z−z1)2)/a2

o)

+
1

2

a2
oΩo,2(x− x2)

(x− x2)2 + (z − z2)2
(1− e−((x−x2)2−(z−z2)2)/a2

o)

+
1

2

a2
oΩo,3(x− x3)

(x− x3)2 + (z − z3)2
(1− e−((x−x3)2−(z−z3)2)/a2

o)

−1

2

a2
oΩo,4(x− x4)

(x− x4)2 + (z − z4)2
(1− e−((x−x4)2−(z−z4)2)/a2

o)

(A.9)

where x1 = −x2 = −x3 = x4 = bo/2 and z1 = z2 = −z3 = −z4 = bo/2.
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A.3 Initial Normalized Velocity Distributions

The normalized velocity field of the vortex systems may be described u/Wo

and w/Wo, where for a single vortex

Wo =
1

2
aoΩo(1− e−1) (A.10)

and for all other systems

Wo =
1

2

a2
oΩo,1

bo

(1− exp(−b2
o/a

2
o)). (A.11)

This leads to the the velocity field of a single vortex (rotating in a counter-

clockwise direction) to be described by

u∗(x, z, to) =
ao(z − zc)

(x− xc)2 + (z − zc)2

(
1− e−((x−xc)2−(z−zc)2)/a2

o

1− e−1

)
(A.12)

w∗(x, z, to) = − ao(x− xc)

(x− xc)2 + (z − zc)2

(
1− e−((x−xc)2−(z−zc)2)/a2

o

1− e−1

)
. (A.13)

where xc = zc = 0. In the case of the co-rotating vortex pair, the velocity compo-

nents u and w are

u∗(x, z, to) =
bo(z − z1)

(x− x1)2 + (z − z1)2

(
1− e−((x−x1)2−(z−z1)2)/a2

o

1− e−b2o/a2
o

)

+
Ωo,2

Ωo,1

bo(z − z2)

(x− x2)2 + (z − z2)2

(
1− e−((x−x2)2−(z−z2)2)/a2

o

1− e−b2o/a2
o

) (A.14)

and

w∗(x, z, to) = − bo(x− x1)

(x− x1)2 + (z − z1)2

(
1− e−((x−x1)2−(z−z1)2)/a2

o

1− e−b2o/a2
o

)

−Ωo,2

Ωo,1

bo(x− x2)

(x− x2)2 + (z − z2)2

(
1− e−((x−x2)2−(z−z2)2)/a2

o

1− e−b2o/a2
o

)
,

(A.15)

where x1 = −x2 = bo/2 and z1 = z2 = 0. In the case of the counter-rotating vortex

pair, the velocity components u and w are

u∗(x, z, to) =
bo(z − z1)

(x− x1)2 + (z − z1)2

(
1− e−((x−x1)2−(z−z1)2)/a2

o

1− e−b2o/a2
o

)

−Ωo,2

Ωo,1

bo(z − z2)

(x− x2)2 + (z − z2)2

(
1− e−((x−x2)2−(z−z2)2)/a2

o

1− e−b2o/a2
o

) (A.16)
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and

w∗(x, z, to) = − bo(x− x1)

(x− x1)2 + (z − z1)2

(
1− e−((x−x1)2−(z−z1)2)/a2

o

1− e−b2o/a2
o

)

+
Ωo,2

Ωo,1

bo(x− x2)

(x− x2)2 + (z − z2)2

(
1− e−((x−x2)2−(z−z2)2)/a2

o

1− e−b2o/a2
o

)
,

(A.17)

where x1 = −x2 = bo/2 and z1 = z2 = 0. For a co-rotating quadrapole configura-

tion with an outward advection velocity in the vertical direction,

u∗(x, z, to) =
bo(z − z1)

(x− x1)2 + (z − z1)2

(
1− e−((x−x1)2−(z−z1)2)/a2

o

1− e−b2o/a2
o

)

−Ωo,2

Ωo,1

bo(z − z2)

(x− x2)2 + (z − z2)2

(
1− e−((x−x2)2−(z−z2)2)/a2

o

1− e−b2o/a2
o

)

−Ωo,3

Ωo,1

bo(z − z3)

(x− x3)2 + (z − z3)2

(
1− e−((x−x3)2−(z−z3)2)/a2

o

1− e−b2o/a2
o

)

+
Ωo,4

Ωo,1

bo(z − z4)

(x− x4)2 + (z − z4)2

(
1− e−((x−x4)2−(z−z4)2)/a2

o

1− e−b2o/a2
o

)

(A.18)

and

w∗(x, z, to) = − bo(x− x1)

(x− x1)2 + (z − z1)2

(
1− e−((x−x1)2−(z−z1)2)/a2

o

1− e−b2o/a2
o

)

+
Ωo,2

Ωo,1

bo(x− x2)

(x− x2)2 + (z − z2)2

(
1− e−((x−x2)2−(z−z2)2)/a2

o

1− e−b2o/a2
o

)

+
Ωo,3

Ωo,1

bo(x− x3)

(x− x3)2 + (z − z3)2

(
1− e−((x−x3)2−(z−z3)2)/a2

o

1− e−b2o/a2
o

)

−Ωo,4

Ωo,1

bo(x− x4)

(x− x4)2 + (z − z4)2

(
1− e−((x−x4)2−(z−z4)2)/a2

o

1− e−b2o/a2
o

)

(A.19)

where x1 = −x2 = −x3 = x4 = bo/2 and z1 = z2 = −z3 = −z4 = bo/2.
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Analytical Model

B.1 General Wave Equation

The derivation of the general wave equation begins with the two dimensional in-

viscid primitive governing equations with the Boussinesq approximation (6.1-6.4).

We begin, by taking the time derivative of (6.2) and substituting it into

(6.3) to get:

∂2w

∂t2
+ N2w =

−1

ρo

∂2p′

∂z∂t
. (B.1)

Then by taking the derivative of (6.1) and substituting it into (6.4), we

obtain:

−1

ρo

∂2p′

∂x2
+

∂2w

∂z∂t
= 0. (B.2)

Through observation, it seen that these two equations may be related if

(B.1) is differentiated by ∂2/∂x2 and (B.2) is differentiated by ∂2/∂z∂t. The re-

sulting governing wave equation in terms of w and N is, therefore,

∂2

∂t2
52 w + N2∂2w

∂x2
= 0. (B.3)
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In order to re-write this equation in terms of ρ′ and N , the plane wave

assumption is utilized,

w(x, z, t) = ŵ(k, m, t)ei(kx+mz−ωt) (B.4)

ρ′(x, z, t) = ρ̂′(k, m, t)ei(kx+mz−ωt) (B.5)

where k and m are the wave numbers in the horizontal and vertical directions,

respectively, and ω is the dispersion relation.

By substituting these equations into equation 6.3, it is found that

w = −i
gω

ρoN2
ρ′ (B.6)

By substituting this equation into (B.3), the governing wave equation in

terms of ρ′ and N becomes

∂2

∂t2
52 ρ′ + N2∂2ρ′

∂x2
= 0. (B.7)

B.2 General solution for ρ̂′

We define the equations for the Fourier transform and reverse Fourier trans-

form as:

f̂(k, m) =

∫ ∞

−∞

∫ ∞

−∞
f(x, z)e−i(kx+mz)dxdz (B.8)

f(x, z) = (1/4π)

∫ ∞

−∞

∫ ∞

−∞
f̂(k, m)ei(kx+mz)dkdm. (B.9)

By taking the Fourier transform of ρ′ (B.5) and substituting it into (B.7),

the governing wave equation in Fourier space is found

∂2ρ̂′

∂t2
+ ω2ρ̂′ = 0, (B.10)

where ω2 = k2N2

k2+m2 is the dispersion relation.

The general solution to this equation is of the form:

ρ̂′(k, m, t) = c1(k, m)eiωt + c2(k, m)e−iωt, (B.11)
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where c1 and c2 are based on the flows initial conditions. The initial conditions

are defined as:

f̂1(k,m) = ρ̂′(k, m, to) (B.12)

f̂2(k,m) =
dρ̂′(k, m, to)

dt
. (B.13)

By substituting (B.12) into (B.11) and substituting (B.13) into the time

derivative of (B.11), equations for c1 and c2 are found:

c1(k,m) =
1

2
(f̂1(k, m) + f̂2(k, m)/iω) (B.14)

c2(k, m) =
1

2
(f̂1(k, m)− f̂2(k, m)/iω). (B.15)

Substituting these equations into (B.11) produces the generic equation for

ρ̂′:

ρ̂′(k, m, t) =
1

2

[
f̂1(k, m) +

f̂2(k, m)

iω

]
eiωt +

1

2

[
f̂1(k,m)− f̂2(k, m)

iω

]
e−iωt, (B.16)

which may be re-written as

ρ̂′(k, m, t) = f̂1 cos(ωt) +
f̂2 sin(ωt)

iω
(B.17)

In the flows presented here, the initial velocity field is superimposed on a

linearly stable density field. Therefore, the initial density field is undisturbed and

f̂1(k, m) = ρ̂′(k, m, to) = 0 (B.18)

Utilizing (6.3), the initial time derivative of the density perturbation is

found,

∂ρ′

∂t
(x, z, to) = −wo

dρ(z)

dz
, (B.19)

which leads to

f̂2(k, m) =
∂ρ̂′(k,m, to)

∂t
= −ŵo

dρ(z)

dz
(B.20)
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in Fourier space where dP/dz = const.

Substituting f̂1 and f̂2 into equation B.17, ρ̂′ becomes:

ρ̂′(k, m, t) = −ŵo

iω

dρ(z)

dz
sin(ωt), (B.21)

B.3 Single vortex, ŵo

In all configurations considered, the initial flow field is made up of Lamb-

Oseen vortices with Gaussian profiles. The velocity field of a single vortex is

wo =

[
Γo

2πr
(1− e−r2/a2

o)

]
cos θ (B.22)

uo =

[
Γo

2πr
(1− e−r2/a2

o)

]
sin θ. (B.23)

Here r represents the radial distance from the vortex center and θ represents

the angle from the positive horizontal axis.

In Fourier space w becomes:

ŵo(k,m) =

∫ ∞

−∞

∫ ∞

−∞
w(x, z)e−i(kx+mz)dxdz (B.24)

=

∫ ∞

0

∫ 2π

0

w(x, z)e−iKr cos(θ−φ)rdθdr (B.25)

=
Γo

2π

∫ ∞

0

(1− e−r2/a2
o)

∫ 2π

0

cos θe−iKr cos(θ−φ)dθdr, (B.26)

where φ represents the angle made by k and m, φ = tan−1(m/k), and where

K =
√

k2 + m2.

This equation reduces to:

ŵo = −i cos φΓo

[
1

K

∫ ∞

0

J1(Kr)d(Kr)−
∫ ∞

0

e−r2/a2
oJ1(Kr)dr

]
(B.27)

where J1(Kr) is a Bessel function of the first order and first kind.

The first integral term of (B.27) is 1/K. However, the second integral term

of (B.27) is complicated:
∫ ∞

0

e−r2/a2
oJ1(Kr)dr =

Γ(1)(Ka2
o)

Γ(2)
M

(
1, 2,−−K2a2

o

4

)
, (B.28)
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where M is the confluent hypergeometric function (Abramowitz and Stegun, 1972)

and Γ is the Gamma function.

Utilizing the Handbook of Mathematical Functions (Abramowitz and Ste-

gun, 1972), it is found that:

M

(
1, 2,−−K2a2

o

4

)
= −e−K2a2

o/2

K2a2
o/2

sinh(−K2a2
o/2). (B.29)

Therefore bringing everything together, it is found that:

ŵo = − iΓo cos φ

K
e−K2a2

o/4. (B.30)

B.4 Vortex systems, ŵo

As stated earlier, since the initial condition is based on the superposition

of vortices, the initial flow field may be added together using the shifting theorem:

f(x−∆, z) ↔ exp(−ik∆)f̂(k, m). (B.31)

Equation B.30 gives us ŵo for a single vortex. In the cases of co-rotating or counter-

rotating vortex pairs separated by a distance, bo, the shifting theorem becomes,

f(x− bo

2
) ↔ e−i 1

2
kbo f̂(k), (B.32)

where ∆ = bo/2 and the vertical axis corresponds to the midpoint between the

vortices. This leads to ŵo, found in equation B.30, to be multiplied by e±i 1
2
kbo . In

the co-rotating vortex pair, the vortices are of the same sign circulation. Therefore,

the quantities may be summed together to get:

ŵo = −2i
Γo cos φ

K
e−K2a2

o/4 cos(
1

2
kbo).

In the case of a counter-rotating vortex pair, the vortices are of opposite sign.

Therefore, one term is subtracted from the other term. This provides the equation

of:

ŵo = 2
Γo cos φ

K
e−K2a2

o/4 sin(
1

2
kbo).
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In the quadrapole configurations we are positioning each vortex in its own quad-

rant. Therefore, the shifting theorem becomes,

f(x− bo

2
, z − bo

2
) ↔ e−i 1

2
(k+m)bo f̂(k, m). (B.33)

By applying this theorem to the VQ and taking into consideration the signs of the

vortex circulation, the ŵo equation becomes:

ŵo = 4
Γo cos φ

K
e−K2a2

o/4 sin(
1

2
ksbo) cos(

1

2
msbo).

B.5 Determinant of A

In this section, the calculation for the determinant of A found in (6.34) is

calculated, where

A =




∂cg,x

∂ks

∂cg,x

∂ms

∂cg,z

∂ks

∂cg,z

∂ms


 (B.34)

and

detA =
∂cg,x

∂ks

∂cg,z

∂ms

− ∂cg,x

∂ms

∂cg,z

∂ks

. (B.35)

Note that detA = t−2det(At). With the knowledge that x = cgt, At may

be written as:

At =




∂x
∂ks

∂x
∂ms

∂z
∂ks

∂z
∂ms


 =




∂x
∂Ks

∂x
∂θ

∂z
∂Ks

∂z
∂θ







∂Ks

∂ks

∂Ks

∂ms

∂θ
∂ks

∂θ
∂ms


 . (B.36)

We are defining the matrices on the right hand side of the equation as B and C,

respectively. In section 6.2, the stationary wave numbers and their corresponding

spacial locations for x > 0, were calculated to be:

[ks, ms] = Kssgn(sin θ)

[
sin θ,− cos θ

]

[x, z] =
Nt cos θ

Ks

[
cos θ, sin θ

]
.
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Therefore, the partial derivatives required to solve for B are:

∂x

∂Ks

= −Nt
cos2 θ

K2
s

∂x

∂θ
= Nt

−2 cos θ sin θ

Ks

∂z

∂Ks

= −Nt
cos θ sin θ

K2
s

∂z

∂θ
= Nt

cos2 θ − sin2 θ

Ks

and the partial derivatives required to solve for C are:

∂θ

∂ks

=
sgn(sin θ)

Ks cos θ

∂Ks

∂ks

=
sgn(sin θ)

sin θ
∂θ

∂ms

=
sgn(sin θ)

Ks sin θ

∂Ks

∂ms

= −sgn(sin θ)

cos θ
.

Therefore,

det(B) = det




∂x
∂Ks

∂x
∂θ

∂z
∂Ks

∂z
∂θ


 =

∂x

∂Ks

∂z

∂θ
− ∂x

∂θ

∂z

∂Ks

= −Nt cos2 θ

K3
(B.37)

det(C) = det




∂Ks

∂ks

∂Ks

∂ms

∂θ
∂ks

∂θ
∂ms


 =

∂Ks

∂ks

∂θ

∂ms

− ∂Ks

∂ms

∂θ

∂ks

= −Nt

K
, (B.38)

which leads to

det(At) = det(BC) = det(B)det(C) =

[
Nt cos θ

K2

]2

. (B.39)

Rewriting this equation, it may be shown that:

|detA|−1/2 = |t−2det(At)|−1/2 =
K2

s

N | cos θ| . (B.40)

B.6 Vortex Configuration -

Stationary Phase Approximation

In section 6.2, the equation for the stationary phase approximation was

found to be:

ρ′(x, z, t) ≈Real

{
2π

Nt

K2
s

| cos θ|
[
F+(ks,ms)e

itω(ks,ms) + F−(ks,ms)e
−itω(ks,ms)

]}
,

(B.41)
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where

F−(ks,ms) = f̂1(ks,ms)− f̂2(ks,ms)/iω, //F+(ks,ms) = f̂1(ks, ms) + f̂2(ks,ms)/iω

and ks, ms and Ks are defined by equations 6.28, 6.29 and 6.32, respectfully. Recall

that:

f̂1(k, m) = ρ̂′(k, m, to) = 0

f̂2(k, m) =
∂ρ̂′(k,m, to)

∂t
= −ŵo

dρ̄

dz
.

Therefore, equations F−(ks,ms) and F+(ks,ms) will very between the vortex sys-

tems due to different wo. Therefore, by substituting in the values for ŵo (found in

Appendix B.4) into (B.42), and solving for F−(ks,ms) and F+(ks, ms), it is found

that:

for a single vortex

F−(ks,ms) =

[
ρo

g
N2Lo

]
1

2π

FrL2
o

KsLo

e−K2
s a2

o/4

F+(ks,ms) = −
[
ρo

g
N2Lo

]
1

2π

FrL2
o

KsLo

e−K2
s a2

o/4,

for a co-rotating vortex pair

F−(ks,ms) =

[
ρo

g
N2Lo

]
2

2π

FrL2
o

KsLo

e−K2
s a2

o/4 cos(
1

2
kbo)

F+(ks,ms) = −
[
ρo

g
N2Lo

]
2

2π

FrL2
o

KsLo

e−K2
s a2

o/4 cos(
1

2
kbo),

for a counter-rotating vortex pair

F−(ks,ms) = −i

[
ρo

g
N2Lo

]
2

2π

FrL2
o

KsLo

e−K2
s a2

o/4 sin(
1

2
kbo)

F+(ks,ms) = i

[
ρo

g
N2Lo

]
2

2π

FrL2
o

KsLo

e−K2
s a2

o/4 sin(
1

2
kbo),

for a VQ

F−(ks,ms) = −i

[
ρo

g
N2Lo

]
4

2π

FrL2
o

KsLo

e−K2
s a2

o/4 cos(
1

2
kbo)

F+(ks,ms) = i

[
ρo

g
N2Lo

]
4

2π

FrL2
o

KsLo

e−K2
s a2

o/4 cos(
1

2
kbo).
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Substituting these equations into equation B.41, it is found that:

for a single vortex

ρ′(x, z, t)

LoN2ρo/g
≈


Fr

KsLo

Nt| cos θ|e
−K2

s a2
o/4


Real

{
− eitω(ks,ms) + e−itω(ks,ms)

}

≈

2Fr

KsLo

Nt| cos θ|e
−K2

s a2
o/4





sgn(x) cos(ωt)


, (B.42)

for a co-rotating vortex pair

ρ′(x, z, t)

LoN2ρo/g
≈


2Fr

KsLo

Nt| cos θ|e
−K2

s a2
o/4 cos(

1

2
ksbo)




·Real

{
− eitω(ks,ms) + e−itω(ks,ms)

}

≈

4Fr

KsLo

Nt| cos θ|e
−K2

s a2
o/4 cos(

1

2
ksbo)





sgn(x) cos(ωt)


, (B.43)

for a counter-rotating vortex pair

ρ′(x, z, t)

LoN2ρo/g
≈


− 2Fr

KsLo

Nt| cos θ|e
−K2

s a2
o/4 sin(

1

2
ksbo)




·Real

{
ieitω(ks,ms) − ie−itω(ks,ms)

}

≈

− 4Fr

KsLo

Nt| cos θ|e
−K2

s a2
o/4 sin(

1

2
ksbo)





 sin(ωt)


, (B.44)

for a VQ

ρ′(x, z, t)

LoN2ρo/g
≈


− 4Fr

KsLo

Nt| cos θ|e
−K2

s a2
o/4 sin(

1

2
ksbo) cos(

1

2
msbo)




·Real

{
ieitω(ks,ms) − ie−itω(ks,ms)

}

≈

− 8Fr

KsLo

Nt| cos θ|e
−K2

s a2
o/4 sin(

1

2
ksbo) cos(

1

2
msbo)





 sin(ωt)


.

(B.45)
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