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Abstract of the Dissertation

Global Distribution of Carbon Stock in Live

Woody Vegetation

by

Yifan Yu

Doctor of Philosophy in Atmospheric and Oceanic Sciences

University of California, Los Angeles, 2013

Professor Ulrike Seibt, Chair

The terrestrial biosphere is responsible for removing roughly one quarter of the to-

tal anthropogenic emissions of carbon dioxide from the atmosphere. This process

is dominated by the forests. The terrestrial portion of the global carbon cycle is

also the most uncertain. Growing forests are a major sink of CO2 while deforesta-

tion contributes as a major source of CO2. While the locations of deforestation

can be tracked with remote sensing data relatively well, the amount of carbon

removed is not well known due to the lack of knowledge on the biomass density

of the forests that were disturbed. Spatially explicit distribution of carbon stocks

in global forests can greatly reduce this uncertainty by improving estimates of

emissions from land use activities. It will also help with green house gas inventory

at regional and national scales.

Increasing amounts of remote sensing based forest studies are being con-

ducted, however, there is currently no global spatially explicit map of forest

biomass/carbon. This dissertation aims to address that by producing the first

global spatially explicit map of live biomass and carbon stock in forests and other

living woody vegetation at ∼1 km resolution for circa year 2005. A combination

of remote sensing data from the Quick Scatterometer (QuikSCAT), Moderate

Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography
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Mission (SRTM) are used to provide wall-to-wall spatial information. Ground

inventory and LiDAR from the Geosciences Laser Altimeter System (GLAS) on-

board the Ice, Cloud, and land Elevation Satellite (ICESat) are used to create a

global network of aboveground biomass (AGB) samples. Landcover map based on

the GlobCover product from the European Space Agency (ESA) is used as ancil-

lary data. These are combined in a statistical model using Maximum Entropy to

create the first global map of AGB and total carbon stock (above + below ground)

in living biomass. Uncertainty at the pixel level is also produced alongside the

above products. The total global carbon in live woody vegetation is estimated at

337 PgC, with 311.4 PgC being in the forests (92% of total) for circa year 2005,

compared with 302.8 PgC in total global live forest biomass as reported in the

United Nations Food and Agriculture Organization’s 2010 Forest Resources As-

sessment report (FRA 2010). Shrublands and savannas account for the other 25.6

PgC (8% of total) globally. National carbon stocks are calculated and reported

for all the countries using several different thresholds for forest cover.
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CHAPTER 1

Introduction

1.1 Motivation

Forests covers roughly 40 million square km of area, 30% of the total land surface

area on Earth, and contain 80% of the Earth’s total plant biomass[Kindermann

et al., 2008]. Savanna and shrubland biomes cover another 15 million square km.

They create the base for most of the terrestrial ecosystems. Additionally, the

bio-diversity in these ecosystems is highly correlated with tree species richness

and structure of forests and forested landscapes[Perry et al., 2008, chap. 10].

The terrestrial plants are also responsible for removing approximately a quarter

of the anthropogenic carbon dioxide emissions, and is one of the most uncertain

part of the global carbon cycle[Sarmiento and Gruber, 2002, Ballantyne et al.,

2012, Canadell et al., 2007]. Much of this uncertainty comes from emissions from

deforestation and land-use change[Pan et al., 2011, Houghton et al., 2009], the

estimation of which require knowledge of the fine scale spatial patterns of forest

carbon content.

Our knowledge of the spatial patterns of forests is limited on the global scale

due to the sheer size of forest area and the costs and difficulties associated with

conducting field inventory[Brown et al., 1989, Houghton et al., 2009]. As an

example, the United States has one of the most extensive ground-based forest

inventory program in the world. Phase 2 of the US Forest Inventory and Analysis

(FIA) program, where forest plot measurements are taken, consists of 1 field
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sample site for every 6000 acres (∼24 km2)[FIA, 2005]. The actual area measured

in a phase 2 plot is ∼700 m2. This equates to sampling roughly 0.003% of the

total area. Over a large enough area, these samples can provide a good estimate of

the mean[Heath and Smith, 2000], but they cannot capture the fine scale spatial

patterns.

Of the three main categories of tropical, temperate, and boreal forests, the

temperate forests are relatively much better sampled with field measurements

than the other two. Tropical forests contain over half of the total live biomass

in global forests, yet is the least sampled in terms of field measurements[Corlett

and Primack, 2006, Grainger, 2008]. It is also where most of the emissions from

deforestation is coming from. The lack of field data is partly due to the dense

nature of these forests making field measurements difficult and partly due to

the fact that these forests are located in the poorer nations who do not have a

sophisticated forestry program.

Remote sensing techniques are ideal for providing cost-effective measurements

over large areas. Many regional mapping of forest biomass have been conducted

using remote sensing data[Saatchi et al., 2011b, Simard et al., 2011, Baccini et al.,

2008, Yu et al., 2010, Mitchard et al., 2009]. However, at the global scale, only

inventory based estimates exist[Kindermann et al., 2008, Pan et al., 2012] for

biomass and carbon stock, or forest coverage using remote sensing[Hansen et al.,

2013], but there is no spatially explicit map of biomass or carbon density at the

global scale. Mapping forest biomass at the global scale faces several challenges:

1. large heterogeneity of vegetation structure and wood density within and across

biomes due to environmental (climate and edaphic) and species variations [Jenkins

et al., 2003, Baraloto et al., 2011]; 2. lack of sufficient, well distributed ground

samples at the scale of remote sensing image resolutions [Houghton et al., 2009];

3. limitation of sensitivity of existing satellite observations to the large range

of aboveground biomass found across the globe[Patenaude et al., 2005]. The
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work in this dissertation address these challenges and creates the first global-scale

spatially explicit biomass and carbon map of living woody vegetation at 1km

resolution using remote sensing and ground data. A globally consistent biomass

and carbon stock map will help reduce the uncertainties in the terrestrial portion

of the carbon cycle, as well as providing a resource for national green house gas

inventory reporting[Gibbs et al., 2007], such as for the United Nations Framework

Convention on Climate Change (UNFCCC).

1.2 Overview of Dissertation

The topic of this dissertation touches a wide area of knowledge. As such, some

background information on ecology and remote sensing is provided in Chapter 2

for readers who may not be familiar with the subjects. The reader can feel free to

move ahead to a specific subject background or skip the chapter, if already familiar

with the subject matters, without any issue. Chapter 3 covers the processing and

preparations performed on the remote sensing data sets before they are used in

the model. Chapter 4 contains the analyses on ground data, development of

allometric equations, and combining the results of those analyses with LiDAR

from the Geoscience Laser Altimeter System (GLAS) to create the global sample

data set.

Chapter 5 covers the statistical modeling performed using the Maximum En-

tropy method. The results of the model along with model validation and uncer-

tainty analysis are discussed in the remainder of this chapter before moving on

to analyses of the results in terms of carbon stocks and comparison with other

ground inventory in Chapter 6. Finally, I’ll summarize the work contained in this

dissertation in Chapter 7.
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CHAPTER 2

Background

This chapter briefly covers some of the background information on ecology and

remote sensing. Readers who are not familiar with these subjects may find it useful

to go over the following sections before proceeding to the subsequent chapters.

2.1 Forest and other Woody Plant Biomes of the World

What is a forest? This may seem like a simple question with the answer being

a grouping of individual trees. However, the specific definition of a forest can

have effects on the quantitative values one might calculate involving forests. In

the GlobCover landcover mapping effort[Bicheron et al., 2008], forest is defined as

greater than 15% cover (at the 300 m native GlobCover resolution) and canopy

height of greater than 5 m. The US FIA defined a forest as 10% cover by forest

trees of any size with a minimum area of 1 hectare and minimum width of 120

feet[Bechtold and Patterson, 2005]. In the United Nations Food and Agriculture

Organization’s (FAO) Global Forest Resource Assessment 2010 (FRA2010) [Food

and Agriculture Orgnization, 2010], forest is defined as “Land spanning more than

0.5 hectares with trees higher than 5 meters and a canopy cover of more than 10

percent, or trees able to reach these thresholds in situ.” This difference in forest

definition will be encountered again in Chapter 6 when calculating global total

values. The major forest biomes of the world can be grouped into three main

categories (tropical, temperate, and boreal) of forests based on climate plus the

mangrove forests. Other non-forest biomes that still contain woody vegetation
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are described in section 2.1.4.

2.1.1 Tropical Forests

Figure 2.1: Tropical forests of the world. Based on biome map of the world by

Olson et al. [2001]

Tropical forests are the most dense forests in the world with the highest species

diversity, generally located between 30◦N and 30◦S latitude (Figure 2.1). Most of

these areas are tropical moist broadleaf evergreen forest along with small areas of

tropical dry forest and tropical conifer. More than half of the total global biomass

in living woody vegetation is contained in the tropical forests.

These regions are mainly located in the poorer nations of the world. Combined

with the fact that the density of the forest also makes field inventory difficult, this

means the tropical forests are also the most uncertain in terms of total and spatial

distribution of biomass[Losos and Leigh, 2004]. This is also where most of the

carbon emissions from deforestation is coming from[Achard et al., 2002, Hansen

et al., 2008, Asner et al., 2005].
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Figure 2.2: Temperate forests of the world. Based on biome map of the world by

Olson et al. [2001]

2.1.2 Temperate Forests

Temperate forests consist of deciduous broadleaf forest and needleleaf evergreen

forest. Most of these forests are located in the mid-latitudes of the northern

hemisphere (Figure 2.2). Biomass density is generally lower than that of tropical

forests, but some regions such as the Pacific Northwest of North America can con-

tain very high biomass density[Busing and Fujimori, 2005] (>5000 Mg/ha above-

ground biomass for small plots, ∼1.4 ha, >300 Mg/ha over larger area ∼1km) due

to the massive redwoods. The temperate forest tends to have the most amount of

field inventory.

2.1.3 Boreal Forests

The boreal forest (also known as taiga, from Russian) is dominated by conifers.

Due to the harsh environmental conditions of this northern region, the biomass

density is much lower than the other two forest groups, generally less than 100

Mg/ha[Botkin and Simpson, 1990]. However, because of the large area of coverage,

this biome does contain a significant portion of the global woody biomass. Addi-

tionally, there is massive amount of carbon stored in the frozen soils here[Davidson
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Figure 2.3: Boreal forests of the world. Based on biome map of the world by

Olson et al. [2001]

and Janssens, 2006]. However, soil carbon is outside the scope of this dissertation.

The sensitivity of this region to climate change also makes it one of interest for

study.

2.1.4 Savannas, Shrubland, and Woodland

Figure 2.4: Savanna/shrublands/woodlands. Based on biome map of the world

by Olson et al. [2001]

The savannas, shrublands, and woodland types span vast areas of the tropics

and temperate regions. These biome types contain largely herbaceous vegetation,
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and have woody vegetation as shrubs or low number density of trees that do not

meet the requirement to be considered forest. This is largely due to the limited

precipitation[Dallman, 1998, Archer et al., 1995], but can also be controlled by

other factors such as herbivory and fire[Van Langevelde et al., 2003, Roques et al.,

2001]. While the biomass density is low in these biomes, their large area of

coverage means the total amount of carbon in woody vegetation contained in

these biomes globally is significant.

2.1.5 Mangrove

Mangroves dot the coastlines of the tropics. These are trees that are adapted to

live in regions that are permanently flooded with salt water. Due to the nature

of the mangrove biome, the area is small and do not lend itself well to the spatial

resolution of this study. However, some areas of mangrove are captured at the 1

km resolution. This biome is mentioned separately here because it is very different

from the other forest types. Even though it contains very small amounts of total

biomass compared to the other biomes due to the small total area, it does serve

some very important ecological functions[Valiela et al., 2001].

2.2 Remote Sensing

This section contains background information for those readers who may not be

familiar with remote sensing data. The actual processing and preparations of

specific remote sensing data used as part of this dissertation is covered in Chapter

3. Here, I’ll go over the general concepts behind the broad groups of remote

sensing techniques used.

8



2.2.1 Optical

Optical remote sensing uses the visible and near-visible spectrum of the elec-

tromagnetic radiation. The satellite-based Moderate Resolution Imagine Spec-

troradiometer (MODIS)[Justice et al., 2002] and Medium Resolution Imagining

Spectrometer (MERIS)[Arino et al., 2008] take advantage of the strong source of

light, the sun, and capture the reflected light intensities. When looking at the

land-surface, one issue with optical data is that light at this frequency does not

penetrate clouds. As a result, any cloud cover will hinder the ability of optical-

based satellites to observe the land-surface.

One of the most commonly used metrics for vegetation based on optical data

is the Normalized Difference Vegetation Index (NDVI), defined as

NDVI =
aNIR − aVIS

aNIR + aVIS

(2.1)

where aNIR is the reflectance in the near infra-red band, and aVIS is the reflectance

in the visible band. This exploits the difference in absorption characteristics of

chlorophyll in the visible and near infrared spectrum[Carlson and Ripley, 1997,

Huete et al., 2002] to correlate the remote sensing data with live green vegetation.

In the case of MODIS NDVI, the visible band used is red (620-670 nm). Leaf

Area Index (LAI) is another commonly used metric derived from optical remote

sensing[Myneni et al., 1997]. This derived quantity specifies the ratio of the area

of the one-side of all the leaves in an unit area to the unit area.

2.2.2 Radar

Radar instruments work in a much longer wavelength range of the electromagnetic

wave spectrum than optical instruments (microwave). As such, these instruments

are much better at penetrating clouds. The Quick Scatterometer (QuikSCAT)

data [Tsai et al., 2000] and Shuttle Radar Topography Mission (SRTM) data

[Van Zyl, 2001] used in this dissertation are based on radar. Over forested areas,
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the radar signal is affected by the scattering of the stem, branch, and leaves of

the forest[Saatchi and McDonald, 1997]. Because of this effect on the scattering,

the backscatter from the radar, such as those measured by QuikSCAT, is cor-

related with forest structure, and thus, biomass. SRTM uses interferometry to

infer surface elevation. While vegetation structure also interacts with SRTM[Yu

et al., 2010, Simard et al., 2006], here, SRTM is only used to provide elevation

information and surface roughness.

2.2.3 LiDAR

Light Detection and Ranging (LiDAR) uses a laser pulse to measure the distance

from the sensor to the target by using the time it takes for the laser pulse to

reflect off the target and return. The LiDAR data used in this dissertation is

from a space-borne instrument: the Geoscience Laser Altimeter System (GLAS)

onboard the Ice, Cloud, and Elevation Satellite (IceSAT). GLAS orbits around

the Earth and sends out LiDAR pulses (sometimes referred to as “shots”) to the

surface at regular intervals. When the LiDAR pulse is over an surface area with

vertical structure, such as a forest canopy, information on the vertical structure

can be retrieved by looking at the waveform of the return pulse using photon

counting[Harding, 2005, Lefsky et al., 2006].
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CHAPTER 3

Remote Sensing Data

The remote sensing data used in this dissertation that have wall-to-wall coverage

are from the Quick Scatterometer (QuikSCAT), Moderate Resolution Imaging

Spectroradiometer (MODIS), GlobCover landcover map based on the Medium

Resolution Imaging Spectrometer (MERIS), and the Shuttle Radar Topography

Mission (SRTM). While the data products used are already higher level processed

products, large amounts of additional processing is required before they can be

used as model inputs. This chapter goes over the processing that were performed

with each of the remote sensing data.

The MODIS global sinusoidal 1km projection (Figure 3.1, actual pixel size is

926.6m) was chosen as the native projection and resolution for the model runs.

All wall-to-wall remote sensing layers are converted to the MODIS sinusoidal 1km

grid after processing. This was chosen because MODIS products has the largest

number of layers used in the model, and its native projection is an equal area

Figure 3.1: MODIS sinusoidal projection with 10 degree tiles. Source: MODIS

Land Team website (modis-land.gsfc.nasa.gov)
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projection, which is necessary to avoid weighting pixels differently at different

latitudes in non-equal area projections. A total of 22 remote sensing data layers

(12 MODIS, 8 QuikSCAT, 2 SRTM) plus 1 landcover layer are produced and used

in the Maximum Entropy model. The following sections describe how each of the

layers are produced.

3.1 QuikSCAT

The QuikSCAT data used is the enhanced resolution QuikSCAT “slice” images

for 2005 from Brigham Young University’s Center for Remote Sensing. These are

enhanced resolution images by combining multiple passes of the satellite [Early

and Long, 2001]. Data is available as ascending and descending passes, and in

H and V polarization. Both the ascending and descending passes for H and V

polarization are averaged to create four seasonal averages for each polarization,

consisting of December January February (DJA), March April May (MAM), June

July August (JJA), and September October November (SON). This creates a total

of eight image layers from QuickSCAT (two polarizations per seasonal average).

The data is mosaicked into global images and then re-projected into the MODIS

sinusoidal projection.

3.2 MODIS

The data products used from MODIS include the Normalized Difference Vege-

tation Index (NDVI) and infrared reflectance from MOD13A2, and Leaf Area

Index (LAI) from MOD15A2. These data are available from the United States

Geological Survey’s (USGS) Land Processes Distributed Active Archive Center

(lpdaac.usgs.gov). Cloud cover can be a significant issue, especially in the tropics

where cloud-free days can be very difficult to find. To help reduce the effect of

12



no

yes

MODIS pixels 
for a season

Has cloud-
free pixel

Average cloud-
free pixel

Final MODIS 
pixel

check adjacent 
seasons

Has cloud-
free pixel

check opposite 
season

Has cloud-
free pixel

average lower-
quality pixels

yes

no

yes

no

Figure 3.2: MODIS cloud processing algorithm. Cloud check is done using the

quality flag of each pixel within the MODIS product. This process is repeated for

each pixel location globally for all MODIS image layers

clouds, MODIS image layers are obtained for years 2004-2006, and an algorithm

is developed to process the images.

The monthly MODIS images are collected into 4 groups by seasons DJA,

MAM, JJA, and SON. Each group contains 9 image layers (3 months × 3 years).

The image groups are then processed using decision algorithm shown in Figure 3.2

by going through the algorithm with each pixel location. All land pixels globally

are processed through this algorithm. While some error is introduced due to the

time difference through the inclusion of three years, this error is small compared

to the the error caused by cloud cover. The inclusion of three years is necessary

for acquiring enough cloud-free pixels to create clean seasonal averages.
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a b c

Figure 3.3: Removing cloud-cover effects from MODIS images. Location shown

is in the northeast border of the Amazon rain forest. Data is from JJA group of

images. a) Red marks areas where no cloud-free pixels exist in the JJA group for

that pixel for the entire date range from 2004-2006 b) Average NDVI value by

taking a simple average of all pixels within the JJA group c) NDVI value produced

by using algorithm shown in Figure 3.2.

The effect of this cloud processing algorithm is shown in Figure 3.3. In panel

3.3a, the red area marks where there are no cloud-free pixels in the JJA group for

this area. The second panel 3.3b shows the straight-forward averaging of NDVI

values for this area for this season. It is remarkable that the pattern of lower

NDVI values on the left portion of the region matches very well with the pattern

of cloud contamination. Cloud cover acts to reduce NDVI because it reflects

relatively equally between the red and near infrared bands. After processing the

seasonal group through the algorithm, panel c shows that the lower NDVI patterns

on the left side of the region has disappeared, while the pattern on the right (where

there is no cloud contamination) remains, showing actual vegetation pattern on

the ground. After the processing, we are left with 4 seasonal averages for each

MODIS product (NDVI, LAI, and near infrared reflectance), making it a total of

12 image layers from MODIS.
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3.3 GlobCover

The European Space Agency’s GlobCover product (2005-2006) version 2.2 is used

as landcover map for the model. The native resolution of this product is 300m.

In order to use the landcover, it must be reprojected and scaled to the MODIS

1km sinusoidal projection. Because landcover type is categorical, an decision rule

algorithm must be developed to scale the image. This process is shown in figure

3.4. This algorithm treats the forest/non-forest classes more intelligently than a

simple majority-rule algorithm. By taking the information of the various forest

class types into account, it allows certain classes to change, such as a mixture of

small forest stands of different types at high resolution to become a mixed forest

class pixel at low resolution. In addition to creating the output landcover map,

the program also keeps track of the heterogeneity of each final pixel by calculating

a the ratio of the dominant class pixels to the total number of pixels that fall into

a final output pixel. This information is used later when filtering data samples

for the Maximum Entropy model.
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Figure 3.4: Flowchart for algorithm on scaling 300m GlobCover data to 1km.

Class numbers corresponds to the class numbering used in GlobCover product.
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3.4 SRTM

The elevation data used is the Shuttle Radar Topography Mission (SRTM) digital

elevation map (DEM) enhanced with USGS’ GTOPO30 DEM. This dataset is

referred to as SRTM30 version 2.1, and can be downloaded from the USGS website

(dds.cr.usgs.gov/srtm). The use of GTOPO30 in this dataset is due to the fact

that SRTM coverage ends at around 60◦N and 56◦S. A surface roughness map is

calculated using the standard deviation of SRTM DEM based on higher resolution

(3-arcsec, 90m) SRTM DEM. Additionally, a global percent slope map is created

using the 3-arcsec SRTM DEM. While the slope map is not used in the Maximum

Entropy model, it is used to help correct the effect of slope when calculating

Lorey’s height from GLAS waveform, as well as filtering GLAS shots based on

slope threshold (refer to section 5.1).
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CHAPTER 4

LiDAR Based Aboveground Biomass

GLAS LiDAR data has been used in numerous studies on forest structure[Lefsky

et al., 2006, Lefsky, 2010, Simard et al., 2011, Neigh et al., 2013, Popescu et al.,

2011, Los et al., 2012]. The large number of GLAS LiDAR shots globally make it

the ideal source of biomass samples for the global scale study. Figure 4.1 shows

the coverage of the GLAS LiDAR shots globally. The actual number and coverage

of GLAS LiDAR data is much larger. Only ones that provide a return on vertical

vegetation structure are included here. Therefore, the pattern roughly follows

that of woody vegetation cover.

The GLAS level 1A waveform from operational periods 3A through 3J, which

corresponds to October 2004 through March 2008, are used to derive Lorey’s

height by Michael Lefsky (personal communication) using techniques similar to

those in [Lefsky et al., 2007, Lefsky, 2010]. Metrics of percentile return height

from the waveforms are fitted empirically to Lorey’s height, defined below, using

co-located GLAS shots and field plots. Lorey’s height is the basal area weighted

mean height of a forest plot, defined as:

Hl =

∑N
i=1BAihi∑N
i=1BAi

(4.1)

where BAi is the basal area, defined as the cross-sectional area of the trunk at

breast height (typically 1.3m above ground), N is the number of trees in the plot,

and hi is the height of the ith tree. Empirical equations for Hl as a function of

GLAS waveform are in the form of

Hl = α + β1extent+ β2lead10 + β3trail10 (4.2)
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Figure 4.1: Global coverage of GLAS LiDAR shots. Only shots that have vertical

structural return over vegetation are included.

where extent is the distance from the first to the last wave energy return, lead10

and trail10 are the heights of the 10th and 90th percentile of waveform energy.

Three sets of coefficients for equation 4.2 are fitted for broadleaf, needleleaf, and

mixed forest types with root mean squared error (RMSE) of 3.3 m, 4.9 m, and

6.9 m respectively. More details of GLAS and ground datasets used can be found

in Lefsky et al. [2007], and details on the fitting of equation 4.2 can be found in

Lefsky [2010]. A total of 7 million individual GLAS shots are processed for this

study.

Lorey’s height is chosen as the measure on the plot level over simple average

height because it exhibits better correlation with the total aboveground biomass

(AGB) of the plot. This is due to the fact that the AGB of a forest plot is

dominated by the largest trees, as the AGB of an individual tree scales with the

height of that tree with a power higher than 1[West et al., 1997]. Allometric

equations can then be used to convert Lorey’s height into AGB.

Mass is equal to density times volume. Therefore, a general allometric equation

between Lorey’s height and AGB will take on the form of AGB = αHβ
l ρ where α
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Figure 4.2: Major terrestrial biomes of the world. Map is based on the division

of biomes from [Olson et al., 2001].

and β are fitting coefficients, and ρ is the wood density. Since wood density data

is generally not available, ρ is absorbed into the fitting coefficient α:

AGB = αHβ
l (4.3)

However, there are a few cases in the pan-tropics where wood density come into

play. These are discussed in more detail in sections 4.2 and 4.3.

How Hl scales with volume depend on the growth characteristics of individual

trees, which depend on the species of the tree and environmental conditions[West

et al., 1997, Chave et al., 2005, Komiyama et al., 2008]. Because of the footprint

size of GLAS being roughly 50m across, it is necessary to develop allometric equa-

tions at similar plot size. To account for the variation in allometry of forests across

the globe, the entire global land area is divided by continents as well as biomes

based on the World Wide Fund for Nature (WWF) major terrestrial biomes[Olson

et al., 2001]. There are 14 major terrestrial biomes based on this division (Figure

4.2). Allometric equations are developed for each biome/continent combination

where ground-based inventory data is available. The following sections of this

chapter detail this process for the various regions.
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4.1 United States Inventory Data

The US Forest Inventory and Analysis (FIA) provide extensive forest plot samples

across the contiguous 48 states. This data is available to the public at the FIA web-

site (http://apps.fs.fed.us/fiadb-downloads/datamart.html). Plot level data from

phase 2 of the FIA inventory was used. Figure 4.3 shows the design of the FIA

field plot. In each plot, trees with diameter greater than or equal to 5 inches are

measured within the 4 circular subplots with 24 ft radius. This makes the total

area measured for each plot ∼ 700m2. For each plot, FIA provides tree-level basal

area measurement, height measurement, and AGB value based on species-specific

allometry. From these data, one can calculate a Lorey’s height and total AGB for

each plot[Jenkins et al., 2003].

The individual plots are grouped based on which biome (Figure 4.2) they

fall in. For the temperate conifer biome, the east and west coast regions are

treated as separate biomes, although, it was later found that the difference in

allometric coefficients between these two regions are minimal. The temperate

broadleaf/mixed forest (WWF biome 4) and temperate coniferous forest (WWF

biome 5) are further divided into broadleaf, needleleaf, and mixed forests using

GlobCover landcover map. Each group is fitted to equation 4.3 to find α and

β. These relationships are shown in figure 4.4 a-i. GLAS-based Hl values are

then used in equation 4.3 along with these coefficients to calculate AGB values in

North America. Due to the lack of field inventory in other continents compared to

North America, some of the allometric equations developed using FIA plot data

are used for the same biome in other continents.
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Figure 4.3: FIA plot design. In a phase 2 inventory, which were used for this

dissertation, trees 5in in diameter or larger inside the 4 subplots (24 ft radius) were

measured. Plot level values are then calculated based on all the trees measured

inside these subplots. Figure is from FIA website
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Figure 4.4: Scatterplots showing relationship between Lorey’s height and AGB

based on field inventory. a) North America temperate broadleaf forest (WWF

biome 4). b) North America temperate mixed forest (WWF biome 4). c) North

America east coast coniferous forest (WWF biome 5). d) North America east

coast mixed forest (WWF biome 5). e) North America west coast coniferous

forest (WWF biome 5). f) North America boreal forest (WWF biome 6). g)

North America temperate savanna and shrublands (WWF biome 8). h) North

America Mediterranean shrublands (WWF biome 12 and 13). i) North America

tropical savanna and shrublands (WWF biome 7). j) China broadleaf/mixed forest

(WWF biome 4).
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4.2 Pan-Tropics

Plot-level allometric equations were developed by Saatchi et al. [2011b] for the

pan-tropical regions of South America, Africa, and Asia. These equations are

AGB = 0.6011H1.894
l , AGB = 0.2788H2.12

l , AGB = 0.06328H2.4814
l for America,

Africa, and Asia respectively. In the case of tropical moist broadleaf forests in

Asia, it was found later that the plots used to develop the allometric equation are

dominated by plantation plots, thus not a good representation of the biome as

a whole (S. Saatchi, personal communication). As a result, South America and

Africa moist broadleaf forest equations are based on Saatchi et al. [2011b], while

Asia uses the Africa allometric equation of the same biome.

These allometric equations were developed with a certain set of field plots.

When comparing these field plots with a more substantial set of wood density

measurements in the region, it was found that the plots used to develop the

allometric equations have a slightly different average wood density than the more

extensively sampled wood density of the area. For Africa and Asia, where wood

density variation is not as large, the AGB derived from allometric equations based

on Saatchi et al. [2011b] are scaled by the ratio of the average wood density values,

which are 1.047 and 1.017 for Africa and Asia respectively. The following section

4.3 will go into detail on the treatment of wood density in the tropical moist forest

of the Americas.

4.3 Wood Density in the Amazon

The Amazon rainforest is treated differently from Africa and Asia when dealing

with wood density because the area is much larger and the variation in wood

density is also larger. It has been shown that wood density plays an important

role in the regional variation of AGB in this region[Baker et al., 2004]. In this
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case, a wood density map over the biome was developed using Maximum Entropy

approach similar to what is used for the estimation of AGB in this dissertation.

The remote sensing layers used for this model run includes the L-band synthetic

aperture radar backscatter from the Japanese Advanced Land Observing Satellite

(ALOS), mean and standard deviation of surface temperature based on MODIS

MOD11C3 product, as well as elevation and standard deviation of elevation from

SRTM. Ground-based samples (3468 total samples) of wood-density values (Fig-

ure 4.5) are used as input to the model. Only model predictions over broadleaf

evergreen forest as classified by GlobCover are used to scale the GLAS-based AGB

values.

The mean wood density for the entire region, ρ̄, is calculated by taking the

mean wood density of all the ground plots. For each GLAS-based AGB sample

within the region, the AGB value is then scaled using ρ/ρ̄ where ρ is the model

predicted wood density at the location of the GLAS shot.

4.4 Mexico, Russia, and China Inventory Data

Mexico contains large areas of tropical conifer and tropical dry broadleaf forests.

Inventory data from the Mexican Forestry Commission (www.conafor.gob.mx )

are used to develop allometric equations for these biomes. Russian forest in-

ventory data is obtained from the Russian Forests and Forestry website (we-

barchive.iiasa.ac.at). Both the Mexico and Russia inventory data only contain

mean canopy heights for the plots instead of Lorey’s height. The data are fit-

ted using the same functional form as equation 4.3 using mean height in place of

Lorey’s height.

Using the FIA plot data, relationships are then developed between mean

canopy height and Lorey’s height over all FIA plots and over only the Boreal

plots, shown in figure 4.6. The equation based on all plots (Figure 4.6a) is used to
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Figure 4.5: Locaitons of ground-based wood density plots in South America. Only

those that are classified as broadleaf evergreen forest by GlobCover were used in

the wood density model.
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a b

Figure 4.6: Scatterplot between mean canopy height and Lorey’s height. a) Re-

lationship using all FIA plots. b) Relationship using only FIA plots within the

Boreal biome using the WWF biome map

convert GLAS Lorey’s height into mean canopy height for tropical dry broadleaf

and tropical conifer biomes; equation based on Boreal plots (Figure 4.6b) is used

to convert GLAS Lorey’s height into mean canopy height for the Russian taiga

biome. The allometric equations developed are then used to calculate AGB from

the mean canopy height values.

For the temperate broadleaf/mixed biome in Asia, allometric equation is de-

veloped using field data from China (Guoqing Sun, personal communication).

These plots do include Lorey’s height, and equation 4.3 is used in this case with

relationship shown in figure 4.7.

4.5 Summary of Biome-Level Allometric Equations

Due to the limited availability of ground based inventory plots, not all biome/continent

combinations have their own allometric equations. For the regions that do not

have ground data, allometric equations from another continent of the same biome

is used. Pedro Rodriguez-Veiga (University of Leicester) also provided allometric

equation for the Mediterranean biome of Europe based on forestry data from Spain
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Figure 4.7: Scatterplot between Lorey’s height and AGB for temperate broadleaf

and mixed forests in China.

(personal communication). All the coefficients for allometric equations across the

globe are summarized in table 4.1.
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Table 4.1: Summary of allometric equations between Lorey’s height and AGB

for different biomes of the world. ∗ Only mean heights of plots were available.

Coefficients are for mean height, and GLAS based Lorey’s heights were converted

to mean heights first before applying allometric equations. † Saatchi et al. 2011

‡ Equation provided by Pedro Rodriguez-Veiga (personal communication)

North South Africa Eurasia Southeast Australia

America America Asia

Tropical/subtropical α=0.6011 α=0.6011 α=0.2788 – α=0.2788 α=0.06328

moist broadleaf β=1.894 β=1.894 † β=2.12 † – β=2.12 † β=2.4814 †

Tropical/subtropical α=0.73696 α=0.73696 α=0.73696 – α=0.73696 α=0.73696

dry broadleaf β=2.0062 ∗ β=2.0062 ∗ β=2.0062 ∗ – β=2.0062 ∗ β=2.0062 ∗

Tropical/subtropical α=6.4389 – – – α=6.4389 –

conifer β=1.0556 ∗ – – – β=1.0556 ∗ –

Temperate α=1.1799 – – α=1.1799 (W) α=0.061015 α=1.1799

broadleaf / mixed β=1.536 – – β=1.536 β=2.6032 β=1.536

α=0.689 (mixed) α=0.061015 (E)

β=1.6932 β=2.6032

Temperate α=0.68255 (East) α=0.71774 α=0.68255 α=0.68255 α=0.68255 –

conifer β=1.6939 β=1.6892 β=1.6939 β=1.6939 β=1.6939 –

α=0.18321 (Mixed E)

β=2.1059

α=0.71774 (West)

β=1.6892

Boreal / taiga α=0.023409 – – α=4.5925 – –

β=2.8782 – – β=1.1627 ∗ – –

Tropical/subtropical α=1.1633 α=1.1633 α=1.1633 α=1.1633 α=1.1633 α=1.1633

savanna,shrubland β=1.504 β=1.504 β=1.504 β=1.504 β=1.504 β=1.504

Temperate α=1.3403 α=1.3403 α=1.3403 α=1.3403 – α=1.3403

savanna,shrubland β=1.4694 β=1.4694 β=1.4694 β=1.4694 – β=1.4694

Mediterranean α=2.3053 α=2.3053 α=1.4243 α=1.4243 – α=2.3053

forest,woodlands β=1.3171 β=1.3171 β=1.595 ‡ β=1.5953 ‡ – β=1.3171
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CHAPTER 5

Maximum Entropy modelling of Aboveground

Biomass

This chapter covers the statistical modeling of aboveground biomass (AGB) using

the Maximum Entropy model MaxEnt[Phillips and Dud́ık, 2004, Phillips et al.,

2006, Phillips and Dud́ık, 2008]. The global land areas are divided into 6 regions

based on continents as shown in figure 5.1. The regions are labeled North America,

South America, Africa, Eurasia, Southeast Asia, and Australia. For the remainder

of this dissertation, reference to these continent names will be referring to the

divisions shown in figure 5.1. Sections 5.1 and 5.2 describe the preparation of

the AGB samples and the statistical model itself. The subsequent sections will

discuss the specific steps taken for the modeling of each of the continental regions.

Section 5.3 contains analysis of model uncertainty at the pixel level.

5.1 GLAS AGB Sample Preparation

In chapter 4, it was shown how GLAS shots were converted to AGB values. Fur-

ther processing is performed on these GLAS-based AGB values before being used

for the statistical model. The footprint of a single GLAS shot is an oval of roughly

70m along the long side. Additionally, the Gaussian pattern of the GLAS laser

energy means the effective foot-print size is even slightly smaller[Popescu et al.,

2011]. Along the orbital track, the distance between adjacent GLAS shots is

200m. The relative size of GLAS foot-print and shot spacing when compared to a
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Figure 5.1: Division of global land area into 6 regions for model run. a)North

America, b)South America, c)Africa, d)Eurasia, e)Southeast Asia, f)Australia.

Base map shown is the scaled and reprojected GlobCover landcover map described

in section 3.3

1km square area is shown in figure 5.2. It is easy to see that a single GLAS shot

would be a poor representation of a native pixel in this case because any hetero-

geneity in the forest and landcover will introduce noise. To help reduce this effect,

GLAS shots that fall within the same pixel are aggregated to produce an average

AGB value for the pixel. However, due to the spacing between GLAS shots being

approximately 200m, it becomes much less likely to find pixels with more than 5

GLAS shots (Figure 5.3), as that will generally require having either two orbits

crossing or two nearby orbits. Therefore, a minimum of 5 shots is chosen as the

threshold for aggregating GLAS AGB values to represent pixel-level AGB values.

Another source of error for using GLAS-waveform to infer AGB is the un-

derlying topography within the GLAS footprint[Lefsky et al., 2007]. Since the

LiDAR waveform returns distance from the instrument to the reflecting surface,

the height information from vegetation will be mixed with the change in height of
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Individual GLAS shots are aggregated to represent a pixel

1km

~ 70m

We used only pixels 
where a minimum of 5 

GLAS shots were 
located inside it

Wednesday, October 10, 2012Figure 5.2: Comparison, to scale, of GLAS shot foot-print size within an 1km

area. Two hypothetical crossing orbits are shown with average distance between

shots of 200m
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Figure 5.3: Distribution of number of pixels with 5 or more GLAS shots per pixel.

The number shows significant drop after 5

the underlying topography within the LiDAR foot-print. This is not an issue with

small-footprint LiDAR, but the larger foot-print size of GLAS LiDAR means steep

topography within the foot-print will introduce more error. A threshold of 20 per-

cent slope, calculated from 90m SRTM (Section 3.4), is used to filter out LiDAR

shots over steep topography. After all the filtering and aggregation, ∼400,000

pixel-level AGB samples are available for the statistical modeling.

5.2 Maximum Entropy Model

The model chosen for this study is a statistical model based on the Maximum

Entropy concept called MaxEnt[Phillips et al., 2006, Phillips and Dud́ık, 2008].

There are several factors in choosing this model over others. MaxEnt has been suc-

cessfully used in the modeling of AGB in the US as well as the pan-tropics[Saatchi

et al., 2011b]. Because each remote sensing layer generally has poor correlation

with AGB with high levels of noise, typical linear regression models do not work
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well in this case.

The Maximum Entropy method approaches the problem in the following man-

ner. There is an unknown actual probability distribution π(i, j) of a quantity we

are interested in being positive at any given pixel location (i, j), for example, the

presence of a certain species (what MaxEnt was originally developed for). We

have a set of observed samples X in the area, as well as remote sensing image

layers covering the same area. We try to construct a distribution π̂(i, j) that

approximates π(i, j). There are many choices for π̂, but they can be constrained

using information from the samples and values from the remote sensing layers at

the locations X.

We can calculate a set of statistics on the remote sensing data using the values

from the locations of the observed samples at (i, j). Assuming that these statistics

are close to the true values of all the positive locations, we can then constrain our

choices of π̂ using this information. For example, one such constraint can be that

the expectation value, using π̂, of NDVI, defined in equation 5.1

〈NDVI〉 ≡
∑

(i,j) NDVI(i,j)π̂(i,j)∑
(i,j) π̂(i,j)

(5.1)

has to be close to the mean value calculated from the samples X. We cannot

set the constraint to be exactly equal because we do not expect the mean value

calculated from samples X to be exactly equal to the true meal value.

Given this constraint, we can then construct a set of π̂ that all give expectation

values of NDVI within a pre-set threshold of the value calculated from X. The

Maximum Entropy theory then tellls us which of this set of π̂ is the best approx-

imation of π. The theory states that the best choice of π̂ here, out of all the ones

that satisfy the given constraints, is the one that maximizes the entropy where the

entropy of a probability distribution p is defined as H(p) ≡ −∑
x∈X p(x)ln[p(x)].

This statement can be interpreted as saying that the best approximate to the

distribution π is the estimate π̂ that satisfies all the known constraints based on
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the observed samples without introducing any other artificial constraints. Since

entropy can also be interpreted as information or randomness, a distribution that

has a higher entropy is more random and contains more information, meaning less

constraints. If we have a set of approximate distributions π̂ that all satisfy the

observed constraints, then the one with the highest entropy has the least amount

of constraints other than the ones from the observed samples.

The software implementation of the Maximum Entropy method used in this

study is MaxEnt. It is designed for the modeling of animal species distribution

using sampling of presence data with gridded remote sensing environmental layers.

The MaxEnt implementation is a binomial model that estimate the probability of

the presence of the given species at each location[Elith et al., 2010]. As such, some

adaptation is required for the modeling of AGB, which is a continuous variable.

To adapt MaxEnt for the estimation of a continuous variable, AGB values are

broken down into bins. For example, one possible set of AGB bins might look

like 0-20 Mg/ha, 20-40 Mg/ha, 40-60 Mg/ha, and >60 Mg/ha. Each AGB sample

is then placed into one of the bins and used to calculate the mean AGB of each

bin. The MaxEnt model is then used independently for each of the bin over a

region. Each individual MaxEnt run will estimate a probability distribution π̂(x)

over the area for the probability of a pixel x being inside that bin. Using the

variable B (biomass) to represent AGB, just to make the equations easier to read,

we can write this as P (Bmin ≤ Bi,j ≤ Bmax|A) : the probability of B at pixel i, j

being inside the bin (with Bmin and Bmax being the end values of the bin) given

condition A. In this case, condition A refers to the specific MaxEnt run for this

particular bin. Generalizing this over all MaxEnt runs for the bins, we get the

expectation value over a pixel i, j as

〈Bi,j〉 =

∑N
k=1 P (Bmin ≤ Bi,j ≤ Bmax|Ak)P (Ak)B̄k∑N
k=1 P (Bmin ≤ Bi,j ≤ Bmax|Ak)P (Ak)

(5.2)

where N is the total number of bins, P (Ak) is the probability of any pixel in the
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domain being inside the kth bin, and B̄k is the mean AGB of the kth bin.

We can estimate P (Ak) by using the observed samples as P (Ak) = Nk

Ntotal
where

Nk is the number of samples in the kth bin and Ntotal is the total samples across

all bins. This can also be interpreted as the prior probability, or prior knowledge,

based on our observed samples. P (Bmin ≤ Bi,j ≤ Bmax|A) is then the modeled

probability. It was found through empirical tests that the model performance is

increased when the modeled probability across the bins is weighted by using

〈Bi,j〉 =

∑N
k=1 P (Bmin ≤ Bi,j ≤ Bmax|Ak)mP (Ak)B̄k∑N
k=1 P (Bmin ≤ Bi,j ≤ Bmax|Ak)mP (Ak)

(5.3)

where m can be used to adjust the weight of the model probability. Different

values of m were tested and the results for m=3 is chosen for giving the best

predictor of AGB (for results of comparison between different values, see section

5.3).

In their usage of MaxEnt model for the pan-tropic biomass study, Saatchi

et al. [2011b] only separated the model domains by continent. Here, to further

increase the model’s ability to differentiate between AGB ranges, landcover map

is included in the form of GlobCover classification (Section 3.3). This can be

thought of in terms of the constraints on sample data statistics. The constraints,

referred to as “features” in Phillips and Dud́ık [2008], are statistical quantities

calculated from the observed samples. The features implemented in MaxEnt are:

linear, quadratic, product, threshold, hinge, and category indicator. The linear,

quadratic, and product features constrain the means, variances, and covariances

respectively. It is easy to see then, that these features will be dependent on the

distribution of the values of the different remote sensing layers for the sample

pixels.

Different forest types tend to have different distribution of corresponding re-

mote sensing values. For example, radar backscatter is dependent on the shape

and structure of the water-containing leaves and branches of the trees [Imhoff,
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1995, Saatchi and Moghaddam, 2000]. This growth pattern is different between

broadleaf trees and conifers. Therefore, a 50 Mg/ha broadleaf forest will have

a slightly different radar backscatter profile than a 50 Mg/ha conifer forest, all

other things being equal. Another effect is the phenology of deciduous and ever-

green forests. The NDVI value, which depends on the chlorophyll content of the

leaves, will be different between these forests. Additionally, different forest types

tend to have different AGB distributions [Perry et al., 2008]. Therefore, it would

be more precise to divide the bins differently for different forest types such that

their unique distributions may be captured as various features in MaxEnt. To

this effect, the GlobCover landcover map is used as an ancillary data to divide

the maxent runs, determine AGB binning, and as an input to MaxEnt model as

categorical layer for certain runs.

The GlobCover classes 40, 50, 60, 70, 90, 100, 110, 120, 130, 160, 170, and

180 are modeled in this study. These correspond to, in the order above: closed to

open (>15%) broadleaf evergreen or semi-deciduous forest (>5 m); closed (>40%)

broadleaved deciduous forest (>5m); open (15-40%) broadleaved deciduous for-

est/woodland (>5m); closed (>40%) needleleaved deciduous or evergreen forest

(>5m); open (15-40%) needleleaved deciduous or evergreen forest (>5m); closed

to open (>15%) mixed broadleaved and needleleaved forest (>5m); mosaic forest

or shrubland (50-70%) / grassland (20-50%); mosaic grassland (50-70%) / forest

or shrublnd (20-50%); closed to open (>15%) (broadleaved or needleaved, ever-

green or deciduous) shrubland (<5m); closed to open (>15%) broadleaved forest

regularly flooded (semi-permanently or temporarily) - fresh or brackish water;

closed (>40%) broadleaved forest or shrubland permanently flooded - saline or

brackish water; closed to open (>15%) grassland or woody vegetation on regu-

larly flooded or waterlogged soil - fresh, brackish or saline water[Bicheron et al.,

2008]. Classes 40 - 100, 160, and 170 are considered forest classes. The rest are

considered shrubland/savanna classes.
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A special class is created, in the tropical regions, for forested areas that may

be misclassified by GlobCover. This tends to be an issue especially in the tropical

forests due to cloud cover. Dong et al. [2012] found that GlobCover forest area

in Southeast Asia tropical forests to be significantly lower than other forest cover

estimates. A random sample of mean NDVI value across all 3 years is taken for

the GlobCover non-forest classes to represent the global NDVI distribution for

these classes. The NDVI value of all GLAS shots that fall within these same non-

forest classes are also extracted. The distribution of NDVI values for each class is

compared with the distribution of NDVI values of the GLAS shot locations within

those classes in figure 5.4. It is clear that the distribution of NDVI for a given
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Figure 5.4: NDVI distribution for GlobCover non-forest class types (solid lines)

compared with NDVI distribution of all pixels in the same landcover classes where

GLAS-shot based AGB exist (dashed lines). The distribution of pixel locations

with GLAS AGB values represent areas with vertical vegetation structure that

GlobCover misclassified as non-forest.

GlobCover non-forest class in areas with GLAS shots is very different from the

overall distribution of that non-forest class itself.
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A threshold at NDVI of 0.75 is chosen to distinguish the areas that are most

likely forested but misclassified as non-forest by GlobCover. Almost all of the areas

that qualify using this threshold are within the tropical regions with persistent

cloud cover. For areas between the latitudes of 20◦N and 15◦S, the pixels of non-

forest classes shown in figure 5.4 that also have NDVI values ≥ 0.75 are marked

as a separate “misclassed” category that is added as an additional MaxEnt model

run domain.

Finally, 80% of the AGB samples (∼320,000) are randomly selected as model

input, while the other 20% (∼80,000) are set aside for model validation. Each

continental region is handled differently in terms of how the landcover classes are

used in the Maximum Entropy model. The details are covered in the following

subsections.

5.2.1 North America

Landcover types that exist in the North America domain are classes 40, 50, 60, 70,

90, 100, 110, 120, 130, 160 and 170. Due to the total size of certain landcover types

within the domain, some of the smaller landcover types need to be combined with

other similar landcover types in order to have enough samples for the MaxEnt

model. In this case, classes 50 and 60 are combined; 160 and 170 are combined;

110, 120, and 130 are combined.

Model performance is evaluated using receiver operating characteristic (ROC)

curves[Phillips et al., 2006, Fielding and Bell, 1997]. The ROC for a binomial

model is the sensitivity of the model (fraction of positive instances predicted)

plotted against 1-specificity (false positive rate) for all threshold values. The area

under the curve (AUC) of the ROC can then be used to test model performance by

comparing against the AUC of a random prediction, which is 0.5. The maximum

achievable AUC will always be less than 1. The ROC curve for the North America
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Figure 5.5: GlobCover map of North America model domain reprojected to ge-

ographic lat/lon projection. Curved white areas are outside of model domain,

since native model projection is sinusoidal, straight lines become curved in this

reprojection.

deciduous broadleaf class (50,60) AGB bin of 91-104 Mg/ha is shown in figure

5.6. This figure shows strong model performance as the AUC is much higher

than random prediction of 0.5, and is very close to the maximum possible value.

The performance of all the MaxEnt instances for North America is summarized

in table 5.1.
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Figure 5.6: Receiver operating characteristic curve for North America MaxEnt

run over deciduous broadleaf forest class for the AGB bin of 91-104 Mg/ha.

Table 5.1: MaxEnt model performance statistics for North America domain runs.

Each row represents a separate domain with its own bins for AGB and area for

model prediction. A random prediction will have an AUC of 0.5.

GlobCover class # of bins min AUC median AUC max AUC

110, 120 3 0.928 0.969 0.974

130 3 0.854 0.931 0.981

160 9 0.827 0.902 0.952

170, 180 2 0.926 0.932 0.932

40, 70, 90, 100 18 0.784 0.886 0.977

50 11 0.880 0.939 0.978

60 5 0.867 0.943 0.990

misclass 9 0.768 0.887 0.966
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5.2.2 South America

South America (domain shown in Figure 5.7) contains the largest area of tropical

moist broadleaf forests as well as the largest amount of aboveground biomass in a

single biome. In addition to the wood density map used to help distinguish AGB

patterns (Section 4.3), another technique is introduced when interpreting model

output probabilities. In equation 5.3, one prior probability distribution P (A) is

calculated for each landcover type. If the same approach is used for the Amazon,

one P (A) would be calculated for the entire region. Since the area is very large

with strong spatial patterns of AGB [Slik et al., 2013, Baker et al., 2004, Losos

and Leigh, 2004], it is important to try to capture this spatial variation without

having too much of it being over-ridden by the use of one single prior probability

distribution.

Luckily, this region also contain the largest amount of GLAS samples (over

160,000 samples globally are located here). The spatial patterns of AGB proba-

bility distribution can be incorporated by breaking the region into smaller areas,

each with its own local prior distribution P (A). This is facilitated by the dense

coverage of GLAS samples, which allows enough samples in each local region to

develop its own P (A). The soil map developed by Saatchi et al. [2009] is used

as an independent dataset for separating the Amazon into local regions (Figure

5.8). For the “young alluvial deposits”, the eastern segments and the western

segment is further differentiated. The AGB samples in each soil type is counted

to create a local P (A) for the area of that particular soil type. This is then used

when calculating 〈AGB〉 from the model probabilities for each area in equation

5.3. The actual types of soil do not matter in this case because it is only used

as an independent way of subdividing the Amazon. Six of the soil types did not

have sufficient samples to calcultae P (A). The default probability distribution

that was calculated for the entire Amazon is used for these areas.
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There is a small region of overlap between the North America domain and

the South America domain (Figure 5.1). This is by design so that the regions

of tropical moist broadleaf forests in Central America can be modeled together

with the rest of this forest type within South America. The “misclass” category

is included here for areas that pass the threshold value of NDVI 0.75. Summary

of South America model performance is included in table 5.2.

Table 5.2: MaxEnt model performance statistics for South America domain runs.

Each row represents a separate domain with its own bins for AGB and area for

model prediction. A random prediction will have an AUC of 0.5.

GlobCover class # of bins min AUC median AUC max AUC

110, 120, 130 7 0.933 0.973 0.990

160, 170 9 0.830 0.876 0.952

40 24 0.741 0.881 0.970

50, 60, 100 5 0.873 0.971 0.985

misclass 11 0.898 0.940 0.975
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Figure 5.7: GlobCover map of South America model domain reprojected to ge-

ographic lat/lon projection. Curved white areas are outside of model domain,

since native model projection is sinusoidal, straight lines become curved in this

reprojection.
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Figure 5.8: Soil map of the Amazon. The specific classes of soil do not matter

in this case because they are only used as an independent way of subdividing the

Amazon into smaller regions. Source: [Saatchi et al., 2009]
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5.2.3 Africa

Figure 5.9: GlobCover map of Africa model domain reprojected to geographic

lat/lon projection. Curved white areas are outside of model domain, since native

model projection is sinusoidal, straight lines become curved in this reprojection.

The GlobCover class types within the Africa domain are 40, 50, 60, 70, 90,

100, 110, 120, 130, 160, 170, and 180. Africa contains large areas of wood-

lands and savannas/shrublands compared with the other continents. Here, the

savanna/shrubland class of 130 and woodland class of 60 have enough AGB sam-

ples to be modeled independently. Classes 110 and 120 are combined; 170 and

180 are combined; 40, 70, 90, and 100 are combined; “misclass” category is also

included here. Model performance evaluation statistics are shown in table 5.3.
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Table 5.3: MaxEnt model performance statistics for Africa domain runs. Each

row represents a separate domain with its own bins for AGB and area for model

prediction. A random prediction will have an AUC of 0.5.

GlobCover class # of bins min AUC median AUC max AUC

110, 120 3 0.928 0.969 0.974

130 3 0.854 0.931 0.981

160 9 0.827 0.902 0.952

170, 180 2 0.926 0.932 0.932

40, 70, 90, 100 18 0.784 0.886 0.977

50 11 0.880 0.939 0.978

60 5 0.867 0.943 0.990

misclass 9 0.768 0.887 0.966

5.2.4 Eurasia

Figure 5.10: GlobCover map of Eurasia model domain reprojected to geographic

lat/lon projection. Curved white areas are outside of model domain, since native

model projection is sinusoidal, straight lines become curved in this reprojection.

The Eurasia domain covers Europe as well as portions of northern Asia (Figure

5.10). Being located in the northern latitudes, there are no tropical landcover

types in this region. Majority of the region are needleleaf forest types, and as such,

the open and closed needleleaf classes (70 and 90) are each modeled independently.

There is also no “misclass” category in this domain because cloud contamination is
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minimal at higher latitudes. Summary of model performance evaluation is shown

in table 5.4

Table 5.4: MaxEnt model performance statistics for Eurasia domain runs. Each

row represents a separate domain with its own bins for AGB and area for model

prediction. A random prediction will have an AUC of 0.5.

GlobCover class # of bins min AUC median AUC max AUC

100 9 0.844 0.887 0.967

110, 120, 130 2 0.950 0.960 0.960

160, 170, 180 2 0.890 0.906 0.906

50, 60 9 0.801 0.882 0.944

70 8 0.926 0.940 0.959

90 6 0.811 0.880 0.935

5.2.5 Southeast Asia

The Southeast Asia domain contains the tropical forests of Asia. Due to the

extensive cloud cover in this region, it is also the most problematic area in terms of

GlobCover misclassification. The “misclass” category is included here to improve

the forest cover estimation. Model performance evaluation is summarized in table

5.5.
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Figure 5.11: GlobCover map of Southeast Asia model domain reprojected to

geographic lat/lon projection. Curved white areas are outside of model domain,

since native model projection is sinusoidal, straight lines become curved in this

reprojection.

Table 5.5: MaxEnt model performance statistics for Southeast Asia domain runs.

Each row represents a separate domain with its own bins for AGB and area for

model prediction. A random prediction will have an AUC of 0.5.

GlobCover class # of bins min AUC median AUC max AUC

110, 120, 130 10 0.925 0.950 0.972

160, 170, 180 7 0.833 0.891 0.928

40 17 0.860 0.908 0.976

50, 60 3 0.956 0.958 0.959

70, 90, 100 2 0.965 0.965 0.965

misclass 9 0.885 0.927 0.955
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5.2.6 Australia

Figure 5.12: GlobCover map of Australia model domain reprojected to geographic

lat/lon projection. Curved white areas are outside of model domain, since native

model projection is sinusoidal, straight lines become curved in this reprojection.

The Australia model domain contains Australia and some of the larger islands

in the region such as New Zealand. This domain is also close enough to the

tropics to warrant the “misclass” category, although the total area is small and

AGB values are not as high as the ones in the other tropical regions. Model

performance evaluation is summarized in table 5.6.
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Table 5.6: MaxEnt model performance statistics for Australia domain runs. Each

row represents a separate domain with its own bins for AGB and area for model

prediction. A random prediction will have an AUC of 0.5.

GlobCover class # of bins min AUC median AUC max AUC

120, 130 2 0.922 0.954 0.954

40 14 0.870 0.919 0.960

50, 60, 160, 170, 180 2 0.916 0.938 0.938

70, 90, 100, 110 2 0.960 0.985 0.985

misclass 4 0.878 0.931 0.989

5.2.7 Sapling Biomass

One more adjustment to AGB is needed after calculating expectation values of

AGB from the model output using equation 5.3: to take into account the biomass

of the saplings. Generally, when trees are measured in an inventory plot in the

field, only trees above a certain diameter are measured. This is due to the fact

that measuring the small saplings are prohibitive because of the typically large

number of saplings within a forest. In the US, FIA measures trees that have a

diameter at breast height (DBH) greater than or equal to 5 inches[FIA, 2005].

Similar methods are used elsewhere with slightly varying DBH thresholds. The

saplings represent a small (generally around 10%) but significant amount of total

forest AGB[Makana et al., 2011, Smith et al., 2013, Losos and Leigh, 2004].

Since the allometric equations are developed using field plots that do not

include sapling biomass, the AGB estimated by the model is also the AGB of

the larger trees excluding sapling biomass. To take the sapling AGB into ac-

count, methods of estimating sapling AGB from model predicted AGB is devel-

oped. There are typically a small subset of forest inventory plots that do measure

saplings. These plots are used to develop a relationship between larger-tree AGB
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and sapling AGB.

Data from FIA is used to develop this relationship for the temperate and

boreal forests. The FIA plots are separated into hardwood, softwood, and mixed

types, and the AGB of saplings (DBH < 12.7 cm) is plotted against AGB of larger

trees (DBH ≥ 12.7 cm) in figure 5.13. While the maximum range of sapling AGB

exhibits a decreasing trend with increasing large-tree AGB, the overall correlation

is insignificant. Therefore, for the temperate and boreal regions, three simple

ratios are calculated from FIA field data and used to calculate sapling AGB.

Ratios of 9.8%, 10.6%, and 13.5% are used for deciduous, conifers, and mixed

forests respectively.

In the tropics, field plot samples from Southeast Asia and Barro Colorado

Island (BCI) in South America are used to evaluate sapling AGB (Sassan Saatchi,

personal communication). Here, the sapling measurements are for trees with DBH

< 10 cm. Figure 5.14 shows sapling AGB versus large tree AGB as well as the

distribution of AGB in the rainforest landcover types (class 40) from model output.

Simple linear regression is used to develop a relationship between sapling AGB

and larger tree AGB. The fitted equations are AGBsap = 16.8− 0.01072AGB and

AGBsap = 24.263−0.034396AGB for BCI and Southeast Asia respectively, where

AGBsap is the sapling AGB and AGB is the AGB of trees with DBH ≥ 10cm.

The distribution of AGB from model output for landcover class 40 is also included

in figure 5.14. This is to show that the AGB ranges sampled in the field inventory

cover the large ranges of AGB found in the forest class. No sapling plot data

was available for the Africa tropical forests. The AGB distributions in figure 5.14

show that the Africa tropical forest AGB distribution is closer to that of South

America than Southeast Asia. Therefore, the sapling equation developed using

BCI plots is used for the Africa tropical rain forest.
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Figure 5.13: Scatterplot of sapling (DBH < 12.7 cm) AGB versus AGB of trees

with DBH ≥ 12.7 cm in using FIA plot data. The forest plots are separated by

mixed (top panel), hardwood (middle panel), and softwood (bottom panel).
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Figure 5.14: Tropical sapling (DBH < 10 cm) AGB versus larger tree (DBH ≥

10cm) AGB from plots in Southeast Asia and Barro Colorado Island. Solid lines

show the fitted linear regression equations for sapling AGB. Dotted lines show

normalized probability density of model predicted AGB for GlobCover class 40

(tropical moist broadleaf forest). Vertical axis for the normalized probability is

not shown.
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5.2.8 Global Aboveground Biomass Distribution

The map of global distribution of aboveground biomass can now be assembled

from the 6 model domains after adjusting for sapling AGB. The results are shown

in figure 5.15. Because of resolution limitations, the global map at 1km resolution

cannot be shown here. Instead, the values are aggregated to 10km resolution for

display. A more detailed view of the AGB over South America is shown in figure

5.17 with the inset showing detailed patterns of biomass and deforested areas.

The areas with the highest density of AGB are found in Pacific coast of North

America; the Guiana Shields and western end of the Amazon and coastal regions

of Columbia in South America; Gabon, small portions of Libera, and eastern

Democratic Republic of Congo in Africa; Indonesia (especially central Borneo),

central region of New Guinea island, southeastern border of the Himalayas, and

central region of Taiwan. These regions all have AGB values of over 300 Mg/ha.

The distribution of AGB across four major forest types based on GlobCover

is analyzed globally with the histograms shown in figure 5.16. The four cate-

gories consist of broadleaf evergreen (GlobCover class 40), broadleaf deciduous

and mixed (GlobCover 50 and 100), needleleaf (GlobCover class 70 and 90), and

woodlands (GlobCover 60). These forest show distinct AGB distribution patterns

with the tropical forest group of broadleaf evergreen containing the highest AGB

density, peaking around 220 Mg/ha. Broadleaf deciduous and mixed forests have

much lower AGB in comparison with most values lower than 150 Mg/ha. Needle-

leaf forests mostly contain similar lower AGB values but have a smaller peak in

the 350 Mg/ha range, which correspond to the massive red-woods of the Pacific

coast of North America. Woodlands contain the lowest AGB density with most

values being below 100 Mg/ha.
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a b

c d

Figure 5.16: Histogram of global forest AGB for a) tropical broadleaf evergreen,

b) broadleaf deciduous and mixed, c) needleleaf, and d) woodland forest classes.

Forest classification here is based on GlobCover with a) class 40; b) class 50 and

100; c) class 70 and 90; d) class 60. Coloring uses the same AGB coloring bin as

figure 5.15.
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Figure 5.17: Detailed view of model results for aboveground biomass over South

America. Inset is at actual resolution, showing detailed variation in AGB and

deforested areas.
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5.3 Model Evaluation and Uncertainty Analysis

Model uncertainty at the pixel level is evaluated by using the 20% AGB samples

(∼80,000) that were set aside for validation. The GLAS based AGB samples are

plotted against model predicted AGB values at those pixels in figure 5.18. Three

values of m=1, 2, and 3 in equation 5.3 are shown with R2 values of 0.667, 0.665,

and 0.642 respectively. The root mean squared error (RMSE) at the pixel level is

calculated to be 51.1, 51.5 55.6 Mg/ha. Average relative error at the pixel level

is 36%, 30%, and 29% respectively.

The values of R2, RMSE, and average percent relative error cannot definitively

decide which value of m gives the best predictor of AGB. A more prominent way of

comparing the relative performance of the three weighting values of m is through

analysis of the density scatterplot shown in figure 5.18. In panel a) of figure

5.18, three regions of high density is visible around 220 Mg/ha, 50-100 Mg/ha,

and <50 Mg/ha. These three regions correspond to the peak densities of tropical

broadleaf evergreen forests (Figure 5.16a); temperate forests (Figure 5.16b and c);

woodlands (Figure 5.16d) and shrubs/savanna. In panel a) of figure 5.18, we can

see the three main density clusters are estimated more towards the mean of each

respective cluster (visually as the distribution turning more horizontal). As we

increase m from 1 to 2 and then 3, the three density clusters become more aligned

with the 1-to-1 line, meaning that the model does a better job at predicting values

away from the mean. After testing different values of m, m=3 is found to give

the best predictor for AGB.

The probability distribution of AGB density is tested against the validation

points for each of the GlobCover landcover type, shown in Figures 5.19 and 5.20.

The forested landcover types of broadleaf evergreen (40), closed broadleaf decid-

uous (50), open broadleaf deciduous (60), closed needleleaf (70), open needleleaf

(90), and mixed (100) are shown in figure 5.19. The other landcover types of
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c

Figure 5.18: Sample test of using different weighting values of m in equation 5.3 in

the tropical moist broadleaf region of South America for a) m=1, b)m=2, c)m=3.

80% of AGB samples were used for model run and 20% were used for validation

to create the density scatter plot. One-to-one line is drawn in for reference.
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mosaic forest/shrubland with grassland (110), mosaic grassland with forest or

shrubland (120), closed to open shrubland (130), closed to open flooded broadleaf

(160), mangroves (170), and closed to open flooded woody vegetation (180) are

shown in figure 5.20. All landcover types show good agreement between input

sample probability distribution of AGB and model-predicted AGB probability

distribution.

Spatially explicit pixel-level model uncertainty is also calculated. For a given

pixel, the model uncertainty is calculated as

εB =

∑N
k=1 |B̄k − 〈B〉|PkP (Ak)∑N

k=1 PkP (Ak)
(5.4)

where k is the AGB bin number, B̄k is the mean AGB for kth bin, 〈B〉 is the

model predicted expectation value of AGB for the pixel, Pk is the model pre-

dicted probability at the pixel for the kth bin, and P (Ak) is the prior probability.

Here, the expectation value of the absolute error is used instead of the typical

expectation of squared error as variance and then the square root of variance as

standard deviation.

The variance definition is commonly used because the algebra is generally

easier with squares than with absolute values, leading to the typical definition of

variance and then taking the square root for standard deviation to get a measure

with the same unit as the quantity being examined [Pitman, 1993, chap 3.]. The

issue with using standard deviation is that when taking the square root, due to

the non-linear nature of the function, a bias is introduced. This leads to the use

of approximations in trying to remove this bias such as using Bessel’s correction

for normal distributions. However, in this case, the AGB value distribution is

not normal, and no good approximation is known to remove the bias. Instead,

by working with the expectation of the absolute error, no bias is introduced, and

since the values are directly computed here, the ease of working with squared

function is a moot point.
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Using equation 5.4, an accompanying pixel-level model uncertainty map is

generated at 1km resolution, shown in figure 5.21. Similar to figure 5.15, for

display purposes, the 1km error pixels are aggregated to 10km pixels and then

colored by bin. As expected, the areas with higher AGB values tend to have

higher absolute error, meaning the relative error is more constant. In terms of the

high biomass density tropical rain forests, the absolute model uncertainty over

the Amazon is less than that over Gabon or Southeast Asia. This is likely partly

due to the more detailed treatment over the Amazon using local prior probability

distributions as well as the higher density of AGB samples in the area.

There are additional sources of error other than model prediction error (εB

in equation 5.4, here now referred to as εprediction). These are listed here in the

order they appear in the methodology. These are: measurement error associated

with estimation of Lorey’s height from GLAS (εmeasure), allometric error when

converting Lorey’s height to AGB (εallometry), and sampling error associated with

representativeness of GLAS-derived AGB on the true AGB of GLAS footprint as

well as heterogeneity of forest biomass in the 1-km pixel (εsampling). RMSE for

Lorey’s height prediction from GLAS is estimated at 3.3 m, 4.9 m, and 6.9 m

for broadleaf, needleaf, and mixed forests [Lefsky, 2010]; which are 13.7%, 20.3%,

and 28.6% relative errors respectively. Allometric errors for individual allometric

equations can be estimated from the relationships in figure 4.4. The total uncer-

tainty taking all the errors into account can now be calculated, assuming all errors

are independent and random, by using

εAGB =
√
ε2measure + ε2allometry + ε2sampling + ε2prediction (5.5)

This equation, when applied on the pixel level, will increase the error terms to take

into account the other sources of error. But since the other terms are relatively

constant spatially, the spatial pattern of error in figure 5.21 is preserved.
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Figure 5.19: Histogram of normalized probability distribution of aboveground

biomass for validation samples in the forested landcover types. Green lines are

probability distribution of AGB of the GLAS-based samples that were set aside

and not used in the model. Red lines are the probability distribution of model

predicted AGB at the same pixel locations of the validation samples. Landcover

types are based on GlobCover for classes a) 40, b) 50, c) 60, d) 70, e) 90, f) 100
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Figure 5.20: Histogram of normalized probability distribution of aboveground

biomass for validation samples in the nonforest landcover types and mangrove.

Green lines are probability distribution of AGB of the GLAS-based samples that

were set aside and not used in the model. Red lines are the probability distribution

of model predicted AGB at the same pixel locations of the validation samples.

Landcover types are based on GlobCover for classes a) 110, b) 120, c) 130, d) 160,

e) 170, f) 180
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5.4 Summary

The entire process in the modeling of aboveground biomass is presented in this

chapter. GLAS-derived AGB values are used as samples in the Maximum Entropy

model MaxEnt, along with 22 wall-to-wall remote sensing image layers and land-

cover map as ancillary input, to predict global spatial distribution of aboveground

biomass at ∼1km (926.6 m) resolution. Associated pixel-level model uncertainty

is also calculated. Other sources of error are discussed and quantified and can

be included to account for errors outside of the Maximum Entropy model. The

aboveground biomass and associated uncertainty map presented here are the first

of its kind on the global scale. This spatially explicit dataset can help to greatly

reduce the uncertainties in the terrestrial portion of the global carbon cycle by

locating and improving calculations of carbon emissions from land-use change and

forest regrowth. It will also help with the national reporting efforts on greenhouse

gas inventory. The next chapter will now go over the calculation of carbon stocks

that can be used for carobn emission calculations and reporting purposes.
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CHAPTER 6

Carbon Stocks and Comparison with Existing

Inventory

The carbon content of woody biomass is typically around 50% by weight [McK-

endry, 2002]. The generally accepted convention is to multiply biomass by 0.5 to

get mass of carbon[Saatchi et al., 2011b, Baccini et al., 2012], and that is used

here as well to calculate carbon content. The calculation of carbon, therefore, is

straightforward. However, for inventory reports, the carbon pools of live woody

vegetation typically include both aboveground and belowground portions. This

chapter will first go over the calculation of the belowground biomass. Then, the

carbon stocks based on AGB+BGB is analyzed for spatial patterns and compared

with other existing inventory data.

6.1 Belowground Biomass

Belowground biomass is extremely difficult and time consuming to measure in the

field, typically involving careful excavation of the roots by hand [Ryan et al., 2011,

Kajimoto et al., 1999, Aerts et al., 1991]. Therefore, field plots are very limited.

Additionally, due to the physical location of the root system, it is practically

impossible for remote sensing methods to detect this portion of the plant. Here,

relationships between aboveground biomass and belowground biomass, generally

known as root:shoot ratio are compiled from exiting literature that is based on

field study, and BGB is then calculated from AGB.
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Table 6.1: Equations used for calculation of BGB. Bold fonts are default equations

for that landcover type while regular fonts are equations for specific regions where

available. ∗ Brown S. (personal communication via Saatchi S.) † FIA field plots ‡

[Saatchi et al., 2011b] § [Mokany et al., 2006] ‖ [Ryan et al., 2011] ¶ [Komiyama

et al., 2008]

Temperate/Boreal forest ∗ BGB = 4.0165 + 0.204AGB

deciduous (NAm) † BGB = 0.196631AGB

evergreen (NAm) † BGB = 0.221198AGB

mixed (NAm) † BGB = 0.20634AGB

flooded (NAm) † BGB = 0.203549AGB

Tropical forest ‡ BGB = 0.489AGB0.89

Shrubs & savanna § BGB = 7.83AGB0.32

Africa ‖ BGB = 0.4933AGB

Mangrove ¶ BGB = 0.4AGB
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All the BGB equations used are shown in table 6.1. The general equation

for temperate and boreal forests is based on simple linear regression model using

∼1000 plots located in US, Asia, and Europe (S. Saatchi, personal communication,

data from S. Brown). North America equations are calculated using FIA plot data

by fitting BGB to AGB using linear regression with intercept set at 0 for deciduous,

evergreen, mixed, and flooded forests (A. Fore, personal communication). Tropical

forest relationship is from Saatchi et al. [2011b]. General equation for shrubs

and savannas are based on Mokany et al. [2006]. For Africa, shrub and savanna

equations are from Ryan et al. [2011]. When calculating BGB, if an equation for a

specific region exist, then that equation is used. If no regional equation exist, then

the default equation for the given landcover type is used (shown in bold in the

table). GlobCover landcover classification is used to determine which equation to

apply.

6.2 National and Biome Level Comparison

It is difficult to compare the model output with field plots at the pixel level due to

the mismatch in size. A typical ground plot, such as from the FIA, is less than 0.1

ha while one pixel is roughly 100 ha, which is 3 orders of magnitude larger. Any

heterogeneity in the AGB within the pixel will cause mismatch between field value

and model predicted value even if both are correct. Instead, the model predicted

carbon stock using 0.5(AGB + BGB) is compared with national and biome levels

as independent validation.

In order to only select national inventories that are relatively reliable, 26 of the

35 nations listed under the International Monetary Fund’s “advanced economies”,

excluding ones that do not have appreciable forest area, are selected to compare

the reported national carbon stocks with those calculated from model prediction.

The national reports are from the Food and Agriculture Organization (FAO) of
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the United Nations’ 2010 report[Food and Agriculture Orgnization, 2010]. This

comparison is shown in figure 6.1. When comparing the reported total carbon

stock directly with the model predicted total stock, the correlation is high but

there are some discrepancies in the larger countries where the difference should

be smaller. This is due to the difference in estimation of forest area between the

reported inventory and remote sensing based estimates.

In conducting field inventory, since the area of coverage is sparse, the goal

is to design a good sampling scheme such as that of the US FIA [Bechtold and

Patterson, 2005] so that over a large enough area, the samples can approximate

the mean carbon density well. To report a national carbon stock, this mean value

is then multiplied by forest area. In order to correct for this mismatch in forest

area, in panel b) of figure 6.1, the national carbon density from the report is used.

This value is multiplied by the forest area based on the remote sensing data of

this study to create a national total carbon stock value. When scaled by the forest

area, the agreement improves significantly with 99.5% of the variance explained

at this national level. Model estimated total carbon stock for the US is within

0.03% of the FAO reported total. The model estimated total for Canada is higher

than reported, which is to be expected due to the fact that Canada’s reported

values only included “managed forests”, which would have lower carbon density

than undisturbed forests.

At the biome level, the total carbon stock is calculated for each of the WWF

major terrestrial biome on each continent. Their total values are shown in figure

6.2. The tropical moist broadleaf forests of Americas contain the largest carbon

stock of any biome at 70.5 PgC aboveground and 19.2 PgC belowground. The

next highest biome, tropical broadleaf forests of Asia, is approximately half of

that with 35.5 PgC aboveground and 9.49 PgC belowground. The taiga forests

of Eurasia comes in third at 29.9 PgC aboveground and 7.89 PgC belowground.

Even though this biome has relatively lower carbon density, the large extend of
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Figure 6.1: Comparison of model predicted national forest carbon stock (AGB +

BGB) with reported forest stock in the FAO 2010 report [Food and Agriculture

Orgnization, 2010], table 11, 2005 column. One-to-one line is drawn in. a) Na-

tional carbon stock from the report is directly compared with model calculated

total. b) Mean reported carbon density is used to calculate total using forest area

based on remote sensing data in this study. Inset is an expanded view of the lower

carbon ranges. ∗Canada report only includes “managed” forests.
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forest cover makes the total carbon stored in this biome significant. The tropical

broadleaf forest and savannas of Africa comes in third and fourth. In the global

boreal forests, the model estimation of total aboveground carbon from this study

is also compared with recently published results by Neigh et al. [2013]. Neigh

et al. [2013] estimates the total aboveground carbon in the boreal biome globally

to be 38 PgC. The model estimate from this study puts the boreal biome total

aboveground carbon at 37.5 PgC, 2% less than Neigh’s estimate, but well within

their margin of error of 3.1 PgC.

The distribution of carbon is also calculated using GlobCover classes and lat-

itude bands, shown in figure 6.3. Roughly half of the total global carbon in

live woody vegetation is contained in the broadleaf evergreen forests. Needleleaf

forests contains just under a quarter, while shrubland also contain a significant

amount of the global live carbon stock at 11.7%. Latitudinally, over 65% (212

PgC) is located in the tropics (30◦N - 30◦S), 26% (85 PgC) in the mid-latitudes

(30-60 latitude), and 9% (29PgC) in the polar regions (>60◦ latitude). The total

global carbon stock in live woody vegetation is estimated at 337 PgC, with 311.4

PgC being in the forests. This is within 3% of the reported global forest carbon

number (302.8 PgC for the year 2005) in the United Nations Food and Agriculture

Organization’s (FAO) Forest Resources Assessment 2010 (FRA 2010)[Food and

Agriculture Orgnization, 2010, table 2.19]. The reported biomass value is used

with conversion factor of 0.5 instead of the reported total carbon stock number

because for that value (288.8 PgC), different countries used different conversion

factors ranging from 0.47 to 0.5. By using total biomass and a conversion factor

of 0.5, it is consistent with the conversion factor used in this dissertation.

National carbon inventories are also calculated using political boundaries from

Esri’s (www.esri.com) world boundaries 2010 edition. As demonstrated earlier, a

big factor in discrepancy between inventories is the disagreement in forest area.

Taking this factor into account, carbon stock numbers are calculated using Glob-
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Figure 6.3: Global distribution of carbon stock (AGB + BGB) divided by a)

GlobCover classes and b) latitude bands. Tropics here is between 30◦N and 30◦S.
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Cover, and MODIS vegetation continuous field (VCF) [DiMiceli et al., 2011] values

of 10%, 25%, and 30% forest cover. MODIS VCF value of 10% comes closest to

the forest definition in FRA 2010. The national inventory values are included in

tables 6.2 - 6.8.
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Table 6.2: National inventory of total live carbon (AGB+BGB) in woody

vegetation. Calculation is performed using political boundaries from Esri

(www.esri.com) world boundaries 2010 edition. All carbon numbers are in units of

million tonnes of carbon (TgC). All area numbers are in units of million hectares.

MODIS columns use VCF as thresholds.

GlobCover MODIS

forest shrub/savanna total VCF 10% VCF 25% VCF 30%

Country carbon area carbon area carbon area carbon area carbon area carbon area

Afghanistan 47.072 0.1370 5.8803 0.3112 52.952 0.4482 45.336 0.1483 31.674 0.1022 25.649 0.0831

Albania 31.115 0.5610 3.4228 0.1023 34.538 0.6633 33.756 0.6364 23.788 0.4002 19.241 0.3076

Algeria 19.477 0.2561 57.756 1.4161 77.233 1.6723 47.060 0.6978 28.435 0.3817 24.678 0.3228

American Samoa 0.0049 0.0004 – – 0.0049 0.0004 0.0049 0.0004 0.0049 0.0004 0.0049 0.0004

Andorra 1.7454 0.0186 – – 1.7454 0.0186 1.7454 0.0186 1.7198 0.0183 1.6628 0.0174

Angola 1618.9 65.384 642.02 29.182 2260.9 94.566 1811.4 68.017 1126.5 34.170 964.05 27.219

Anguilla – – 0.0008 0.0001 0.0008 0.0001 – – – – – –

Antigua 1.0637 0.0179 0.0022 0.0003 1.0660 0.0182 1.0629 0.0180 1.0384 0.0171 1.0184 0.0165

and Barbuda

Argentina 999.89 29.673 2262.1 108.36 3262.0 138.03 1489.0 57.453 874.15 22.867 763.93 17.454

Armenia 22.157 0.4508 3.3778 0.1467 25.535 0.5974 20.600 0.3836 15.727 0.2569 14.214 0.2268

Aruba – – 0.0094 0.0003 0.0094 0.0003 – – – – – –

Australia 3584.9 69.140 3620.1 173.14 7205.0 242.28 4065.5 92.849 2779.0 43.250 2569.8 37.164

Austria 355.24 4.4634 4.6365 0.1307 359.88 4.5941 359.46 4.5867 349.50 4.3755 340.71 4.1987

Azerbaijan 47.081 0.8718 21.177 0.8738 68.258 1.7456 49.079 0.9353 40.365 0.6869 37.371 0.6083

Bahamas 4.6635 0.1519 0.9944 0.0893 5.6579 0.2412 5.3456 0.2101 4.1319 0.1298 3.6087 0.1060

Bahrain – – 0.0025 0.0003 0.0025 0.0003 – – – – – –

Bangladesh 61.877 0.9524 49.353 0.8066 111.23 1.7590 111.02 1.7497 105.72 1.5473 102.87 1.4418

Barbados 0.7872 0.0140 – – 0.7872 0.0140 0.6862 0.0118 0.3212 0.0043 0.3047 0.0039

Belarus 336.65 9.2550 3.6683 0.2722 340.31 9.5272 339.45 9.4543 327.34 8.5839 317.26 7.9821

Belgium 33.663 0.7013 0.8916 0.0312 34.554 0.7325 34.542 0.7320 33.463 0.6873 32.374 0.6457

Belize 197.07 1.9096 0.9196 0.0567 197.99 1.9663 197.85 1.9581 195.24 1.8421 193.45 1.7753

Benin 52.710 3.3337 64.851 5.3660 117.56 8.6997 35.964 2.2942 0.1360 0.0039 0.0613 0.0013

Bhutan 485.39 2.8961 7.8038 0.0686 493.19 2.9647 490.75 2.9461 482.02 2.8839 476.14 2.8404

Bolivia 5068.3 62.590 428.82 13.029 5497.1 75.620 5130.1 65.322 4935.1 57.020 4838.1 53.495

Bosnia and 131.20 2.0736 14.878 0.3345 146.07 2.4081 146.07 2.4079 145.00 2.3691 143.06 2.3092

Herzegovina

Botswana 4.6282 0.4197 47.136 4.3250 51.764 4.7447 12.000 1.1712 0.6953 0.0718 0.2066 0.0208

Brazil 47917 429.14 3108.7 123.91 51026 553.05 50095 499.64 47694 417.22 46964 399.74

Brunei 78.562 0.5231 0.0495 0.0007 78.611 0.5238 78.610 0.5236 78.587 0.5224 78.492 0.5188

Darussalam

Bulgaria 244.19 4.5115 5.2998 0.1499 249.49 4.6614 242.19 4.3952 222.67 3.7797 213.96 3.5285

Burkina Faso 4.4957 0.4224 47.806 5.4263 52.302 5.8487 1.9948 0.1966 – – – –

Burundi 57.978 1.4559 5.6503 0.1643 63.628 1.6202 25.443 0.5556 8.7580 0.1096 7.0025 0.0790

Cambodia 625.75 5.3204 200.49 2.8785 826.24 8.1989 825.62 8.1755 795.47 7.3011 768.71 6.6524

Cameroon 3893.9 33.762 160.05 7.4312 4054.0 41.193 3987.3 37.189 3472.6 23.368 3327.3 21.755

Canada 16138 377.80 964.41 59.362 17102 437.16 16742 419.99 15219 346.77 14323 309.72

Cape Verde 0.0059 0.0005 – – 0.0059 0.0005 0.0020 0.0002 – – – –
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Table 6.3: National inventory of total live carbon (AGB+BGB) in woody vegeta-

tion. Continued - part 2

GlobCover MODIS

forest shrub/savanna total VCF 10% VCF 25% VCF 30%

Country carbon area carbon area carbon area carbon area carbon area carbon area

Cayman Islands 0.1962 0.0058 0.0102 0.0004 0.2063 0.0062 0.1966 0.0058 0.1380 0.0039 0.1066 0.0031

Central African 1699.3 37.808 574.62 22.155 2273.9 59.963 2160.9 53.225 1129.4 13.904 978.17 10.445

Republic

Chad 55.657 4.9663 168.14 18.957 223.79 23.923 61.004 5.5237 0.5197 0.0392 0.1929 0.0146

Chile 931.57 14.928 674.98 16.874 1606.5 31.802 1325.3 25.055 1134.0 19.121 1078.4 17.657

China 12686 122.51 1839.9 31.881 14526 154.39 14160 149.48 13278 133.00 12761 124.90

Christmas Island 0.1231 0.0022 – – 0.1231 0.0022 0.1231 0.0022 0.1231 0.0022 0.1231 0.0022

Colombia 9516.8 85.529 157.66 5.1664 9674.5 90.696 9441.2 87.801 8783.0 75.434 8530.7 71.027

Comoros 10.632 0.1294 0.5895 0.0087 11.222 0.1381 11.014 0.1364 9.6759 0.1130 9.1059 0.1037

Congo 2952.2 24.729 239.36 6.6639 3191.5 31.393 3019.9 27.796 2698.9 22.455 2619.9 21.471

Congo DRC 16372 198.12 379.31 11.235 16751 209.36 16581 200.76 15653 165.14 15275 152.91

Costa Rica 370.31 3.8664 1.3509 0.0297 371.66 3.8961 370.62 3.8811 354.06 3.6264 342.25 3.4147

Cote d’Ivoire 1206.6 21.338 113.46 5.8835 1320.0 27.221 1251.7 22.399 793.07 8.1990 700.09 6.6426

Croatia 100.75 1.8261 9.7701 0.2109 110.52 2.0370 110.51 2.0367 109.73 2.0067 108.08 1.9501

Cuba 197.02 2.8647 13.788 0.9424 210.80 3.8072 208.92 3.6255 197.52 2.9303 191.76 2.7093

Cyprus 14.770 0.1207 5.8310 0.1370 20.601 0.2577 17.447 0.1698 5.4628 0.0673 3.2469 0.0428

Czech Republic 178.22 2.8693 1.4887 0.0431 179.70 2.9124 179.65 2.9085 176.85 2.7888 173.41 2.6605

Denmark 13.792 0.4357 1.9216 0.1229 15.714 0.5585 15.140 0.5197 13.331 0.4042 12.566 0.3650

Djibouti 0.0006 0.0001 0.2581 0.0174 0.2588 0.0175 0.0563 0.0032 – – – –

Dominica 6.8115 0.0504 1.4625 0.0161 8.2741 0.0665 7.9595 0.0633 7.5450 0.0596 7.3178 0.0577

Dominican 168.37 2.4039 2.3824 0.0762 170.75 2.4801 170.62 2.4748 162.80 2.2952 155.96 2.1393

Republic

Ecuador 2103.4 17.996 84.437 1.8927 2187.8 19.889 2100.2 18.277 1879.8 14.646 1816.7 13.775

Egypt – – 0.8164 0.0629 0.8164 0.0629 0.0578 0.0069 – – – –

El Salvador 37.977 0.4260 1.9024 0.0522 39.880 0.4782 39.787 0.4743 38.828 0.4483 37.917 0.4308

Equatorial 439.78 2.6403 0.0568 0.0012 439.84 2.6415 433.09 2.5819 425.94 2.5204 421.01 2.4798

Guinea

Eritrea 0.0054 0.0003 19.124 1.1821 19.130 1.1823 2.2045 0.1140 – – – –

Estonia 78.892 2.7111 3.3908 0.2117 82.283 2.9228 82.213 2.9168 79.582 2.6997 76.617 2.4864

Ethiopia 457.41 8.6193 699.68 39.656 1157.1 48.275 804.15 23.596 333.54 4.5187 305.15 4.0320

Falkland Islands 3.9981 0.1493 9.8345 0.5429 13.833 0.6922 10.123 0.4611 2.5752 0.0955 1.7120 0.0606

(Malvinas)

Faroe Islands 0.1571 0.0017 0.5924 0.0276 0.7495 0.0294 0.6154 0.0230 0.1359 0.0035 0.0520 0.0009

Fiji 40.814 0.3553 1.0157 0.0143 41.830 0.3696 41.703 0.3684 41.591 0.3659 41.447 0.3634

Finland 1109.7 24.088 23.204 0.8891 1132.9 24.977 1129.3 24.866 1077.0 23.228 1017.4 21.511

France 605.65 12.882 12.133 0.3421 617.79 13.224 617.11 13.192 584.96 11.653 558.65 10.698

French Guiana 1489.9 8.2074 1.2357 0.0216 1491.2 8.2290 1491.1 8.2251 1487.8 8.1752 1479.8 8.1184
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Table 6.4: National inventory of total live carbon (AGB+BGB) in woody vegeta-

tion. Continued - part 3

GlobCover MODIS

forest shrub/savanna total VCF 10% VCF 25% VCF 30%

Country carbon area carbon area carbon area carbon area carbon area carbon area

Gabon 4129.7 23.794 65.047 1.1397 4194.8 24.933 4174.2 24.609 4092.0 23.571 4028.1 23.061

Gambia 2.0058 0.1813 1.4537 0.1664 3.4595 0.3477 1.1806 0.1084 0.0448 0.0039 0.0071 0.0006

Georgia 169.47 2.7026 10.581 0.2957 180.05 2.9983 174.27 2.7588 165.77 2.4930 160.41 2.3661

Germany 665.07 11.776 11.759 0.4589 676.83 12.235 676.53 12.217 654.10 11.302 634.57 10.627

Ghana 554.01 11.055 108.87 7.8148 662.88 18.869 535.83 8.6938 261.24 2.7692 212.14 2.1690

Gibraltar – – 0.0026 0.0002 0.0026 0.0002 0.0026 0.0002 – – – –

Greece 195.35 2.8536 62.967 1.0504 258.32 3.9040 250.64 3.7112 214.62 3.0254 196.11 2.6962

Greenland – – 25.229 1.5097 25.229 1.5097 5.1185 0.3190 0.4784 0.0264 0.1381 0.0077

Grenada 2.6161 0.0264 – – 2.6161 0.0264 2.6161 0.0264 2.4604 0.0245 2.3081 0.0225

Guadeloupe 9.2537 0.1000 0.0100 0.0002 9.2637 0.1002 9.2560 0.0999 8.7772 0.0902 8.2885 0.0806

Guam 0.0140 0.0009 – – 0.0140 0.0009 0.0140 0.0009 0.0126 0.0008 0.0098 0.0006

Guatemala 664.44 7.3336 46.928 1.1422 711.37 8.4758 708.69 8.4067 673.53 7.6341 646.34 7.1328

Guernsey 0.0022 0.0001 – – 0.0022 0.0001 0.0022 0.0001 – – – –

Guinea 489.28 12.587 216.46 7.9371 705.74 20.525 643.49 16.536 162.63 2.4387 110.98 1.4532

Guinea-Bissau 43.181 1.8565 8.5538 0.4220 51.734 2.2786 46.787 1.9369 8.1906 0.2819 3.0853 0.1345

Guyana 3026.5 19.379 13.882 1.1174 3040.4 20.496 3031.5 19.846 3009.6 19.064 2986.2 18.790

Haiti 23.616 0.3830 0.3482 0.0125 23.964 0.3955 23.937 0.3943 23.073 0.3726 22.075 0.3512

Honduras 649.19 7.5199 12.262 0.4073 661.45 7.9273 661.10 7.9043 637.91 7.2100 614.03 6.6870

Hungary 69.308 1.4854 1.2238 0.0337 70.532 1.5192 70.074 1.4815 67.795 1.3908 65.783 1.3138

Iceland – – 38.264 2.2609 38.264 2.2609 24.246 1.3408 5.0053 0.2234 2.1993 0.0892

India 3654.9 32.877 647.97 10.551 4302.9 43.428 3999.8 37.688 3602.2 30.099 3411.2 27.093

Indonesia 21901 155.87 70.372 2.5602 21971 158.44 21672 156.77 21142 149.22 20689 143.83

Iran Islamic 152.10 1.8255 93.531 4.2453 245.63 6.0708 155.11 1.9601 140.71 1.7046 135.40 1.6153

Republic of

Iraq 0.6918 0.0189 14.556 0.6942 15.247 0.7131 2.6360 0.0907 0.0572 0.0021 – –

Ireland 3.6250 0.0819 33.152 1.3120 36.777 1.3939 35.641 1.3339 24.641 0.7943 20.965 0.6353

Israel 0.0996 0.0015 1.3001 0.0326 1.3997 0.0342 0.7012 0.0116 0.1444 0.0020 0.0849 0.0011

Italy 565.21 7.8805 22.457 0.4855 587.66 8.3659 583.69 8.2278 550.31 7.3871 522.49 6.8362

Jamaica 75.967 0.7997 0.0601 0.0039 76.027 0.8036 76.007 0.8024 75.148 0.7839 74.222 0.7657

Japan 2210.9 24.652 1.4003 0.0172 2212.3 24.669 2211.4 24.636 2188.6 23.979 2169.0 23.568

Jordan – – 0.1745 0.0076 0.1745 0.0076 – – – – – –
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Table 6.5: National inventory of total live carbon (AGB+BGB) in woody vegeta-

tion. Continued - part 4

GlobCover MODIS

forest shrub/savanna total VCF 10% VCF 25% VCF 30%

Country carbon area carbon area carbon area carbon area carbon area carbon area

Kazakhstan 124.58 2.4523 21.296 1.0671 145.88 3.5194 137.85 3.0565 114.38 2.1608 101.19 1.7796

Kenya 156.47 5.3382 174.20 14.041 330.67 19.379 166.98 5.1011 77.010 1.5147 68.205 1.2685

Korea DPRK 462.27 6.5592 87.910 1.7038 550.18 8.2630 497.55 7.1395 428.89 5.9265 406.60 5.5457

Korea 412.71 5.6697 71.220 1.1753 483.93 6.8450 469.01 6.5245 429.84 5.8121 410.35 5.4809

Republic of

Kyrgyzstan 9.9963 0.1777 3.4172 0.1481 13.413 0.3258 12.396 0.2925 6.8624 0.1296 4.7595 0.0799

Laos 1562.7 10.478 648.51 7.3462 2211.2 17.824 2210.9 17.816 2196.0 17.390 2177.3 17.014

Latvia 120.40 4.0720 2.6161 0.1484 123.01 4.2204 122.95 4.2146 118.30 3.8060 113.72 3.4553

Lebanon 0.5995 0.0059 1.9641 0.0445 2.5636 0.0504 1.9557 0.0316 1.1164 0.0137 0.8518 0.0094

Lesotho 6.4108 0.2425 8.5997 0.3310 15.010 0.5735 7.6868 0.2212 0.4059 0.0063 0.1606 0.0024

Liberia 1175.9 8.0934 0.3255 0.0125 1176.3 8.1059 1143.0 7.8368 950.06 6.2054 821.22 5.2768

Libyan Arab – – 12.678 0.4523 12.678 0.4523 – – – – – –

Jamahiriya

Liechtenstein 0.8693 0.0094 0.0148 0.0003 0.8841 0.0098 0.8841 0.0098 0.8273 0.0087 0.7857 0.0079

Lithuania 83.254 2.5568 0.3690 0.0191 83.623 2.5758 83.410 2.5587 78.623 2.1878 75.345 1.9712

Luxembourg 4.8974 0.0941 0.0076 0.0002 4.9050 0.0943 4.9025 0.0941 4.5077 0.0830 4.1824 0.0751

Macedonia 48.748 0.9933 2.9774 0.0872 51.725 1.0805 50.063 1.0290 41.585 0.7873 37.051 0.6709

Madagascar 942.69 12.218 557.08 17.789 1499.8 30.007 1167.8 17.256 853.95 8.5724 803.94 7.5513

Malawi 96.142 2.9795 74.911 3.1566 171.05 6.1361 122.54 3.7408 44.548 1.0854 29.908 0.6630

Malaysia 4516.5 29.270 8.3275 0.1444 4524.9 29.415 4518.5 29.346 4464.2 28.595 4412.4 27.951

Mali 11.200 0.8746 134.67 13.856 145.87 14.730 24.495 1.5715 0.0228 0.0006 – –

Martinique 7.4420 0.0820 0.0015 0.0002 7.4435 0.0822 7.4065 0.0817 6.4401 0.0693 5.9792 0.0629

Mauritania – – 16.881 1.7356 16.881 1.7356 0.0448 0.0107 – – – –

Mauritius 0.3224 0.0282 – – 0.3224 0.0282 0.3204 0.0281 0.2616 0.0229 0.2420 0.0212

Mayotte 2.1048 0.0280 – – 2.1048 0.0280 2.1048 0.0280 2.0800 0.0272 2.0558 0.0268

Mexico 3978.8 48.350 2641.8 84.880 6620.6 133.23 4670.7 67.182 3418.9 40.344 3074.3 34.990

Micronesia 0.0268 0.0003 – – 0.0268 0.0003 0.0268 0.0003 0.0268 0.0003 0.0268 0.0003

Moldova 6.6619 0.1529 0.2106 0.0097 6.8725 0.1626 6.8190 0.1590 6.6266 0.1499 6.4510 0.1426

Republic of

Mongolia 150.33 3.7168 4.6919 0.2827 155.02 3.9995 152.59 3.8910 132.35 3.0284 118.61 2.5155

Montenegro 24.473 0.4006 1.5872 0.0391 26.060 0.4396 26.039 0.4388 25.178 0.4140 23.759 0.3805

Montserrat 0.4638 0.0041 0.0301 0.0009 0.4939 0.0050 0.4612 0.0040 0.4313 0.0033 0.4011 0.0032

Morocco 4.6563 0.0568 61.767 1.8679 66.423 1.9246 26.071 0.4534 8.6252 0.1157 6.2293 0.0819

Mozambique 1135.5 45.854 385.17 15.038 1520.7 60.891 1358.6 51.166 566.29 16.833 348.69 9.5441

Myanmar 3307.5 23.257 1350.3 14.745 4657.8 38.001 4653.8 37.950 4590.6 36.512 4526.8 35.319
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Table 6.6: National inventory of total live carbon (AGB+BGB) in woody vegeta-

tion. Continued - part 5

GlobCover MODIS

forest shrub/savanna total VCF 10% VCF 25% VCF 30%

Country carbon area carbon area carbon area carbon area carbon area carbon area

Namibia 1.4741 0.1072 15.917 1.9962 17.392 2.1035 4.4144 0.4108 0.2323 0.0160 0.0711 0.0042

Nepal 423.02 3.6311 28.054 0.4627 451.07 4.0938 448.59 4.0636 405.56 3.5071 374.39 3.1367

Netherlands 12.675 0.3720 1.8803 0.1014 14.555 0.4735 14.554 0.4734 13.662 0.4212 12.941 0.3842

Netherlands 0.0752 0.0019 0.0415 0.0026 0.1168 0.0045 0.0596 0.0019 0.0030 0.0001 0.0030 0.0001

Antilles

New Caledonia 77.231 0.8804 1.8877 0.0750 79.119 0.9554 79.083 0.9539 75.105 0.8579 72.354 0.8038

New Zealand 397.61 5.3789 61.309 1.7772 458.91 7.1561 458.85 7.1505 455.79 7.0286 453.19 6.9561

Nicaragua 691.15 7.6215 5.2756 0.1976 696.43 7.8191 695.20 7.7683 656.10 6.8613 628.97 6.2853

Niger 0.0038 0.0003 12.600 1.3708 12.604 1.3711 0.0161 0.0025 – – – –

Nigeria 980.45 19.836 398.07 22.177 1378.5 42.013 904.76 17.722 312.74 3.3598 215.27 2.1152

Niue 0.0020 0.0002 – – 0.0020 0.0002 0.0020 0.0002 0.0020 0.0002 0.0020 0.0002

Northern 0.0042 0.0003 – – 0.0042 0.0003 0.0042 0.0003 0.0042 0.0003 0.0028 0.0002

Mariana Islands

Norway 679.60 10.057 27.050 0.9374 706.65 10.995 666.97 10.285 560.42 8.2405 523.16 7.5447

Oman 0.0013 0.0002 4.3719 0.3392 4.3732 0.3393 0.0075 0.0003 – – – –

Pakistan 75.375 0.4328 129.98 2.6256 205.35 3.0585 75.278 0.4470 60.705 0.3593 54.506 0.3246

Palau 4.2206 0.0295 0.0668 0.0009 4.2874 0.0303 4.2874 0.0303 4.2758 0.0301 4.2522 0.0299

Palestinian – – 0.0036 0.0003 0.0036 0.0003 – – – – – –

Territory

Palestinian – – 0.0614 0.0023 0.0614 0.0023 0.0112 0.0002 – – – –

Territory

Panama 736.82 5.4417 11.969 0.1661 748.79 5.6077 718.89 5.3876 619.45 4.5330 580.77 4.2107

Papua 6852.0 42.031 16.901 0.6160 6868.9 42.647 6747.5 42.002 6529.2 40.213 6366.4 38.925

New Guinea

Paraguay 503.26 20.373 109.29 5.8207 612.55 26.194 591.93 24.837 397.22 14.209 324.63 10.395

Peru 10682 77.619 717.95 20.354 11400 97.973 10682 79.568 10354 73.836 10233 72.417

Philippines 2501.7 17.491 25.222 0.4730 2527.0 17.964 2491.8 17.729 2287.8 15.974 2173.3 14.933

Poland 431.07 9.3719 1.6521 0.0653 432.73 9.4373 432.37 9.4157 420.85 8.8332 408.98 8.3304

Portugal 94.435 1.4350 76.773 1.7006 171.21 3.1356 132.01 2.2116 86.324 1.3035 73.292 1.0633

Puerto Rico 61.338 0.5959 0.0458 0.0037 61.383 0.5996 61.378 0.5990 58.782 0.5604 55.299 0.5148

Qatar – – 0.0113 0.0013 0.0113 0.0013 – – – – – –

Reunion 1.0994 0.0963 – – 1.0994 0.0963 1.0475 0.0918 0.9436 0.0827 0.8819 0.0773

Romania 458.65 6.7910 20.362 0.6849 479.01 7.4760 476.48 7.3634 466.13 6.9824 457.56 6.7091

Russia 42708 863.68 2628.2 113.56 45336 977.24 42078 869.92 32698 590.57 29655 508.67

Rwanda 49.077 0.8832 3.2337 0.1680 52.311 1.0512 36.949 0.6148 15.771 0.1683 14.414 0.1386
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Table 6.7: National inventory of total live carbon (AGB+BGB) in woody vegeta-

tion. Continued - part 6

GlobCover MODIS

forest shrub/savanna total VCF 10% VCF 25% VCF 30%

Country carbon area carbon area carbon area carbon area carbon area carbon area

Saint Kitts 0.8593 0.0074 – – 0.8593 0.0074 0.8593 0.0074 0.8593 0.0074 0.8593 0.0074

and Nevis

Saint Lucia 5.2994 0.0488 0.0867 0.0017 5.3861 0.0505 5.3861 0.0505 5.2855 0.0493 5.1075 0.0467

Saint Pierre 0.5176 0.0153 0.0419 0.0009 0.5595 0.0162 0.5595 0.0162 0.4671 0.0099 0.3976 0.0079

and Miquelon

Saint Vincent and 3.2199 0.0246 0.0088 0.0002 3.2287 0.0247 2.7584 0.0214 1.9291 0.0143 1.6240 0.0121

the Grenadines

Samoa 0.2156 0.0189 – – 0.2156 0.0189 0.2156 0.0189 0.2156 0.0189 0.2126 0.0186

Sao Tome 10.938 0.0915 – – 10.938 0.0915 8.4594 0.0747 6.2781 0.0578 5.2741 0.0495

and Principe

Saudi Arabia 0.0374 0.0037 5.8102 0.2330 5.8476 0.2367 0.0403 0.0020 – – – –

Senegal 29.815 2.3594 44.616 4.4214 74.431 6.7808 13.418 0.9236 0.1342 0.0110 0.0881 0.0073

Serbia 140.42 2.7372 12.211 0.2696 152.63 3.0068 152.31 2.9896 143.47 2.6784 135.20 2.4373

Seychelles 0.0010 0.0001 0.0013 0.0001 0.0023 0.0002 0.0023 0.0002 0.0010 0.0001 0.0010 0.0001

Sierra Leone 351.41 6.0159 6.6397 0.2153 358.05 6.2312 355.73 6.1731 262.60 4.0595 216.17 3.0291

Singapore 0.4819 0.0047 0.0056 0.0002 0.4875 0.0049 0.4565 0.0046 0.3546 0.0033 0.2196 0.0021

Slovakia 149.81 2.0618 4.1913 0.0938 154.00 2.1556 153.95 2.1518 151.91 2.0799 149.85 2.0163

Slovenia 92.694 1.3588 0.9183 0.0202 93.613 1.3790 93.612 1.3789 93.069 1.3618 91.998 1.3321

Solomon Islands 442.40 2.3940 1.5689 0.0188 443.97 2.4128 442.49 2.4046 438.49 2.3832 435.03 2.3636

Somalia 11.005 0.8396 183.31 16.888 194.31 17.728 8.4545 0.5767 0.7809 0.0174 0.5434 0.0104

South Africa 366.23 15.798 262.43 11.050 628.67 26.848 350.22 12.721 184.80 4.6644 153.89 3.5631

South Georgia – – 0.0301 0.0016 0.0301 0.0016 0.0092 0.0008 0.0018 0.0002 0.0008 0.0001

and the South

Sandwich Islands

Spain 514.92 8.6738 260.29 6.3462 775.21 15.020 649.01 11.458 467.75 7.6953 415.26 6.6129

Sri Lanka 479.57 5.3126 18.021 0.5397 497.60 5.8523 487.06 5.6506 379.24 3.8426 341.20 3.3069

Sudan 270.16 15.055 617.10 64.055 887.25 79.110 529.93 39.316 35.267 0.9977 21.039 0.4627

Suriname 2246.8 14.126 1.0263 0.0724 2247.8 14.198 2247.6 14.181 2241.9 13.975 2234.9 13.876

Swaziland 20.595 0.8528 9.2495 0.2727 29.845 1.1255 17.539 0.6415 6.7409 0.1633 5.0563 0.1120

Sweden 1628.5 31.709 26.293 1.0743 1654.8 32.783 1636.4 32.309 1535.1 29.569 1463.5 27.726

Switzerland 104.46 1.4055 5.6926 0.1484 110.15 1.5539 109.64 1.5467 102.22 1.3874 96.757 1.2799

Syrian Arab 2.3844 0.0344 13.250 0.5397 15.634 0.5741 3.7857 0.0653 2.5241 0.0404 2.2534 0.0356

Republic
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Table 6.8: National inventory of total live carbon (AGB+BGB) in woody vegeta-

tion. Continued - part 7

GlobCover MODIS

forest shrub/savanna total VCF 10% VCF 25% VCF 30%

Country carbon area carbon area carbon area carbon area carbon area carbon area

Tajikistan 0.8854 0.0027 0.1904 0.0106 1.0757 0.0132 0.1504 0.0009 0.0831 0.0003 0.0541 0.0003

Tanzania 1269.9 40.229 279.54 13.540 1549.4 53.769 1284.8 39.778 540.78 12.250 359.01 7.0750

Thailand 1444.1 12.257 419.64 5.3834 1863.7 17.641 1862.0 17.591 1808.3 16.409 1763.3 15.602

Timor-Leste 41.195 0.3498 0.2270 0.0111 41.422 0.3609 41.338 0.3587 40.858 0.3495 39.746 0.3369

Togo 48.743 1.7595 65.398 3.0081 114.14 4.7676 68.224 1.5701 14.778 0.1730 8.9161 0.0989

Tonga 0.0039 0.0003 – – 0.0039 0.0003 0.0039 0.0003 0.0039 0.0003 0.0039 0.0003

Trinidad 43.202 0.4146 0.0497 0.0027 43.252 0.4173 42.809 0.4037 41.131 0.3658 40.480 0.3539

and Tobago

Tunisia 4.8881 0.0613 3.8417 0.1421 8.7297 0.2034 6.4992 0.0872 5.4362 0.0687 4.9120 0.0609

Turkey 663.42 9.8150 290.49 8.5846 953.91 18.400 796.48 12.480 623.84 9.2905 552.35 8.1133

Turkmenistan – – 0.3457 0.0214 0.3457 0.0214 0.0040 0.0003 – – – –

Turks and 0.0177 0.0005 0.0025 0.0002 0.0202 0.0007 0.0202 0.0007 0.0195 0.0006 0.0195 0.0006

Caicos Islands

Uganda 156.26 4.9435 101.41 5.7430 257.68 10.686 215.05 8.0346 108.75 2.7718 97.577 2.3194

Ukraine 365.94 8.1028 11.378 0.5674 377.32 8.6701 373.57 8.4260 362.53 7.8356 353.95 7.4214

United Arab – – 0.0151 0.0013 0.0151 0.0013 – – – – – –

Emirates

United Kingdom 21.976 0.4761 151.59 6.2413 173.57 6.7174 165.49 6.2321 105.42 3.2391 87.652 2.4986

United Kingdom 0.0357 0.0011 0.4505 0.0120 0.4862 0.0131 0.4862 0.0131 0.4347 0.0111 0.4108 0.0104

United States 17145 277.94 5810.7 212.08 22955 490.02 17546 303.33 15601 244.25 14714 221.74

Uruguay 15.182 0.4452 58.044 2.6840 73.226 3.1292 68.507 2.8333 33.111 0.9524 26.946 0.7187

Uzbekistan 0.3124 0.0094 0.2829 0.0142 0.5953 0.0236 0.2709 0.0083 0.0999 0.0027 0.0257 0.0009

Vanuatu 38.349 0.4656 0.0086 0.0003 38.358 0.4660 38.307 0.4653 38.001 0.4605 37.816 0.4580

Venezuela 6276.7 55.807 92.966 4.8908 6369.7 60.698 6321.0 58.562 6115.5 52.477 6015.7 50.268

Viet Nam 1024.3 7.5948 419.77 5.5052 1444.1 13.100 1441.4 13.028 1400.7 12.026 1368.6 11.441

Virgin Islands 0.4922 0.0042 0.0011 0.0001 0.4933 0.0043 0.4933 0.0043 0.4922 0.0042 0.4922 0.0042

British

Virgin Islands 0.9081 0.0094 – – 0.9081 0.0094 0.9081 0.0094 0.8972 0.0091 0.8826 0.0088

U.S.

Wallis and 0.0127 0.0011 – – 0.0127 0.0011 0.0127 0.0011 0.0127 0.0011 0.0127 0.0011

Futuna

Yemen 0.2602 0.0270 26.558 1.2117 26.819 1.2387 1.9199 0.0866 – – – –

Zambia 749.77 32.398 537.73 23.106 1287.5 55.504 1195.5 49.642 548.38 21.033 379.25 14.228
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Figure 6.4: US county-level comparison between FIA inventory and model esti-

mated total carbon stock (AGB+BGB). Inset enlarges the lower carbon ranges

of the plot. a) Scatterplot of total carbon values. Coloring shows the density of

FIA plots within the given county, in terms of number of plots per 1000 ha. b)

Prediction error, absolute value of predicted total carbon minus FIA plot-based

total carbon, at the county level as a function of FIA plot density within the

county.

6.3 US County Level Comparison

The model estimations of carbon stock is also compared with field-based inventory

at smaller scales - US county level. Again, to remove the discrepancy due to

forest area differences, US county level mean carbon density is first calculated by

averaging all the plot-level biomass values in that county, then scaling this by

the forested area of the county based on remote sensing data used in this study

(Figure 6.4), and finally converting to carbon using a factor of 0.5. Only counties

with a minimum of 100 plots are included. This leaves 564 counties located in the

contiguous 48 states, ranging in forested area from 20,000 ha to 1.66 million ha.

On the county level in the US, our model prediction has R2 value of 0.83 with an

average positive bias of 1.63 Mg/ha. However, figure 6.4 shows that part of this
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error comes from under-sampling with the field inventory. Panel a) shows that the

counties with higher density of FIA plots tend to be much better correlated with

model estimates of carbon total, while panel b) clearly demonstrates the decrease

in prediction error as FIA plot density in the county increases.

6.4 Tropics comparison

The tropical forests are the most difficult to validate due to the lack of reliable

field inventory data. Unlike the national level and county level comparisons in

the previous sections, reported inventory for the tropics are not as reliable[Brown

et al., 1989, Gibbs et al., 2007, Saatchi et al., 2011b]. For the comparison here,

3660 geo-referenced field plots across the pan-tropics are compiled (Sandra Brown,

Nancy Harris, personal communication). The aboveground biomass values of these

plots are compared with the model estimated aboveground biomass at the same

location.

The main issue with this approach is the mis-match between the size of the field

plot and the size of the model output pixel. Saatchi et al. [2011a] demonstrated

that in tropical forests, plot-measured AGB values can have coefficient of variation

from 30% to almost 100% within the same forest stand when the plot size is 0.1

ha or less. To reduce the effect of forest heterogeneity, the 3660 plots are checked

against the 1km grid, and plots that fall within the same pixel have their AGB

values averaged. All grids that do not have at least 5 plots are dropped. After

this step, 52 averaged AGB values remain. These 52 averaged AGB values are

plotted again the model estimated AGB values for the same location in figure 6.5,

with 2 outlier points removed (50 points remaining).

The field plots show moderate correlation between model estimated AGB val-

ues and plot-based average AGB values (R2 = 0.323). Given the correlation shown

in section 6.3 between model prediction errors and sampling density even at the
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Figure 6.5: Comparison between model estimated pixel-level AGB density and

field-measured AGB density for the same locations by average a minimum of 5

field plots where 5 or more are available. Two outlier locations were removed.

One-to-one line is drawn in red, a simple linear regression fit line is shown in

green, with R2 value of 0.323

much larger county level, it is likely that a significant portion of the prediction

error seen here is due to forest heterogeneity at the smaller field plot scales.
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CHAPTER 7

Summary and Discussion

In this dissertation, I have shown the various pieces of the puzzle required to

construct the first global spatially explicit biomass map. Chapter 3 showed the

processing of the remote sensing data that is required to make them useable, such

as the removal of cloud-cover effects from optical data and the size scaling of

land-cover map. Next, in chapter 4, GLAS data from IceSAT were used to create

global samples of AGB through the use of regional allometric equations developed

from field inventory data. The use of regional allometric equations is important

to reduce regional biases due to errors in allometry. With the set of global AGB

samples, the prediction of global AGB distribution was then performed using the

Maximum Entropy method.

Chapter 5 detailed the steps required in using the MaxEnt model. The globe

was first divided into continents, then further divided by GlobCover landcover

type. Each landcover type or a combination of several types was used as one

domain for the MaxEnt model. AGB samples within the domain were divided

into bins and each bin was modeled independently using MaxEnt. This was due

to the binomial design of the model that required interpreting the final output by

combining the probabilities to create an expectation value of AGB which is the

model prediction.

Prior probability was introduced to take advantage of the prior information

from the GLAS samples, with the Amazon region further divided into sub-regions

with local prior distributions using a soil map for division. Tropical regions had
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issues with cloud cover and required using MODIS NDVI to identify possibly

misclassified pixels.

After the model estimation of aboveground biomass, model uncertainty is cal-

culated at the pixel level to augment the AGB product with a spatially explicit

model uncertainty map. Sapling biomass was accounted for using developed re-

lationships. Belowground biomass was then calculated from the AGB (including

sapling) using a compilation of root:shoot equations from existing literature.

Finally, the carbon stocks are calculated from the AGB and BGB estimates,

with analyses performed on the national and biome levels. The spatial patterns

allowed us to see the carbon distributions across the various biomes of the globe

as well as latitude ranges. The national carbon stock tables also provided a

new reference for inventory reporting, especially for countries that do not have

a well developed forestry program. The model estimates compared very well

with national inventories from countries with relatively reliable forest inventory

programs, which are in the temperate zones. Globally, the total carbon stock in

live biomass of forests is estimated to be 311.4 PgC for the year 2005 compared

with 302.8 PgC (also for 2005) based on the FAO Forest Resources Assessment

report (FRA 2010). The shrubland and savanna biomes add another 25.6 PgC

for a total global carbon in live woody vegetation of 337 PgC.

The products created as a part of this dissertation will hopefully help in the

efforts to reduce uncertainties in the terrestrial carbon cycle by providing better

estimates of carbon emissions due to land-use change and forest regrowth. It can

also serve as a reference for nations who do not have an extensive forest inventory

program.
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B Riéra, and T Yamakura. Tree allometry and improved estimation of carbon

stocks and balance in tropical forests. Oecologia, 145(1):87–99, June 2005.

R T Corlett and R B Primack. Tropical rainforests and the need for cross-

continental comparisons. Trends in Ecology & Evolution, 21(2):104–110, 2006.

Peter R. Dallman. Plant life in the world’s mediterranean climates : California,

Chile, South Africa, Australia, and the Mediterranean Basin. University of

California Press, 1998.

Eric A Davidson and Ivan A Janssens. Temperature sensitivity of soil carbon

decomposition and feedbacks to climate change. Nature, 440(7081):165–173,

March 2006.

C.M. DiMiceli, M.L. Carroll, R.A. Sohlberg, C. Huang, M.C. Hansen, and J.R.G.

Townshend. Annual global automated modis vegetation continuous fields

(mod44b) at 250 m spatial resolution for data years beginning day 65, 2000

- 2010, collection 5 percent tree cover, 2011.

Jinwei Dong, Xiangming Xiao, Sage Sheldon, Chandrashekhar Biradar,

Nguyen Dinh Duong, and Manzul Hazarika. A comparison of forest cover maps

90



in mainland southeast asia from multiple sources: Palsar, meris, modis and fra.

Remote Sensing Of Environment, 127(C):60–73, December 2012.

David S Early and David G Long. Image reconstruction and enhanced resolu-

tion imaging from irregular samples. Geoscience and Remote Sensing, IEEE

Transactions on, 39(2):291–302, 2001.

Jane Elith, Steven J Phillips, Trevor Hastie, Miroslav Dud́ık, Yung En Chee, and

Colin J Yates. A statistical explanation of maxent for ecologists. Diversity and

Distributions, 17(1):43–57, November 2010.

Jingyun Fang, Takehisa Oikawa, Tomomichi Kato, Wenhong Mo, and Zhiheng

Wang. Biomass carbon accumulation by japan’s forests from 1947 to 1995.

Global Biogeochemical Cycles, 19(2):n/a–n/a, April 2005.

FIA. Forest Inventory and Analysis: Sampling and Plot Design, February 2005.

Alan H Fielding and John F Bell. A review of methods for the assessment of pre-

diction errors in conservation presence/absence models. Environmental Con-

servation, 24(01):38–49, 1997.

Food and Agriculture Orgnization. Global Forest Resources Assessment 2010 -

Main report. FAO Forestry, 2010.

Holly K Gibbs, Sandra Brown, John O Niles, and Jonathan A Foley. Monitoring

and estimating tropical forest carbon stocks: making redd a reality. Environ-

mental Research Letters, 2(4):045023, December 2007.

A Grainger. Difficulties in tracking the long-term global trend in tropical forest

area. Proceedings of the National Academy of Sciences, 105(2):818–823, January

2008.

M C Hansen, S V Stehman, P V Potapov, T R Loveland, J R G Townshend, R S

DeFries, K W Pittman, B Arunarwati, F Stolle, and M K Steininger. Humid

91



tropical forest clearing from 2000 to 2005 quantified by using multitemporal and

multiresolution remotely sensed data. Proceedings of the National Academy of

Sciences, 105(27):9439, 2008.

M C Hansen, P V Potapov, R Moore, M Hancher, S A Turubanova, A Tyukavina,

D Thau, S V Stehman, S J Goetz, T R Loveland, A Kommareddy, A Egorov,

L Chini, C O Justice, and J R G Townshend. High-Resolution Global Maps

of 21st-Century Forest Cover Change. Science, 342(6160):850–853, November

2013.

David J Harding. ICESat waveform measurements of within-footprint topographic

relief and vegetation vertical structure. Geophysical Research Letters, 32(21):

L21S10, 2005.

Linda S. Heath and James E Smith. An assessment of uncertainty in forest carbon

budget projections. Environmental Science & Policy, 3(2):73–82, 2000.

R A Houghton, Forrest Hall, and Scott J Goetz. Importance of biomass in the

global carbon cycle. Journal of Geophysical Research, 114:G00E03, September

2009.

A Huete, K Didan, T Miura, EP Rodriguez, X Gao, and LG Ferreira. Overview

of the radiometric and biophysical performance of the modis vegetation indices.

Remote Sensing Of Environment, 83:195–213, 2002.

Marc L Imhoff. A theoretical analysis of the effect of forest structure on synthetic

aperture radar backscatter and the remote sensing of biomass. Geoscience and

Remote Sensing, IEEE Transactions on, 33(2):341–352, 1995.

J.C. Jenkins, D.C. Chojnacky, L.S. Heath, and R.A. Birdsey. National-scale

biomass estimators for united states tree species. Forest Science, 49(1):12–35,

2003.

92



C O Justice, JRG Townshend, E F Vermote, E Masuoka, R E Wolfe, N Saleous,

D P Roy, and J T Morisette. An overview of MODIS Land data processing and

product status. Remote Sensing Of Environment, 83(1):3–15, 2002.

T Kajimoto, Y Matsuura, M A Sofronov, A V Volokitina, S Mori, A Osawa, and

A P Abaimov. Above-and belowground biomass and net primary productivity

of a larix gmelinii stand near tura, central siberia. Tree physiology, 19(12):

815–822, 1999.

GE Kindermann, I McCallum, and S Fritz. A global forest growing stock, biomass

and carbon map based on fao statistics. Silva Fennica, 2008.

Akira Komiyama, Jin Eong Ong, and Sasitorn Poungparn. Allometry, biomass,

and productivity of mangrove forests: A review. Aquatic Botany, 89(2):128–137,

August 2008.

MA Lefsky, DJ Harding, M Keller, WB Cohen, CC Carabajal, FD Espirito-Santo,

MO Hunter, R de Oliveira, and PB de Camargo. Estimates of forest canopy

height and aboveground biomass using icesat (vol 33, art no l05501, 2006).

Geophysical Research Letters, 33(5):–, 2006.

Michael A Lefsky. A global forest canopy height map from the moderate res-

olution imaging spectroradiometer and the geoscience laser altimeter system.

Geophysical Research Letters, 37(15):L15401, August 2010.

Michael A Lefsky, Michael Keller, Yong Pang, Plinio B De Camargo, and Maria O

Hunter. Revised method for forest canopy height estimation from geoscience

laser altimeter system waveforms. Journal of Applied Remote Sensing, 1:–,

2007.

S O Los, J A B Rosette, N Kljun, P R J North, L Chasmer, J C Suárez, C Hop-
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