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Bridging computational, formal and psycholinguistic approaches to language

Shimon Edelman Zach Solan, David Horn, Eytan Ruppin
Department of Psychology Faculty of Exact Sciences
Cornell University Tel Aviv University
Ithaca, NY 14853, USA Tel Aviv, Israel 69978
se37@cornell.edu {zsolan,horn,ruppih@post.tau.ac.il
Abstract quences (syntagms) is the basis for the classical distributional

_ ) .. . theory of language [10], as well as for some modern works
We compare our model of unsupervised learning of linguistic [11]. Likewise, thepattern— the syntagm and thequiva-
structuresADIos [1, 2, 3], to some recent work in computa- o v 1o st complementary-distribution symbols that ma
tional linguistics and in grammar theory. Our approach resem- oo p Ay ; Y/ ] Ly
bles the Construction Grammar in its general philosophy (e.g., appear in its open slot — is the main representational build-
in its reliance on structural generalizations rather than on syn- ing block of our systemabios (for Automatic Dlstillation
tax projected by the lexicon, as in the current generative the- (f Structure).

ories), and the Tree Adjoining Grammar in its computational ; : . _
characteristics (e.g., in its apparent affinity with Mildly Con- Our goal in the present paper is to help bridge statistical

text Sensitive Languages). The representations learned by our and formal approaches to language [12] by placing our work
algorithm are truly emergent from the (unannotated) corpus on the unsupervised learning of structure in the context of

data, whereas those found in published works on cognitive and current research in grammar acquisition in computational lin-

construction grammars and on TAGs are hand-tailored. Thus, ¢ jistics, and at the same time to link it to certain formal theo-
our results complement and extend both the computational and

the more linguistically oriented research into language acqui- '1€S of grammar. Consequently, the following sections outline

sition. We conclude by suggesting how empirical and formal the main computational principles behind theios model,

study of language can be best integrated. and compare these to select approaches from computational
and formal linguistics. The algorithmic details of our ap-

- it proach and accounts of its learning from CHILDES corpora
The empirical problem of language acquisition and performance in various tests appear elsewhere [1, 2, 3].

The acquisition of language by children — a largely unsuperyp, thjs paper, we chose to exert a tight control over the tar-
vised, amazingly fast and almost invariably successful learnget janguage by using a context-free grammar (Figure 1) to

gineers [4, 5, 6] and a daunting enigma for cognitive scien-

tists [7, 8]. Computational models of language acquisition ¢;,  .iu0 | s100 | 2102 ; 235 Delieves | thinks:
“grammar induction” are usually divided into two categories hor: & &2 5. ™ i e wmey
depending on whether they subscribe to the classical gen " m ez | em - Th0: Tehga | A v
. i M 5 . _,-P22: P11 P1Z; P9: is easy | is tough | is eager;

ative theory of syntax, or invoke “general-purpose” statistizi: e | = $7% s asmy | da thebeh

. . f . . P1Z: cat | dog | cow | bird | rabbit | horse; P6: to please | to read;
cal learning mechanisms. We believe that polarization bisz: s ez | exs 28: that;

. .. Fl4: Joe | Beth | Jim | Cindy | Pam | George; FP10: annoys | worries | disturbs | hr:n:h?rs:

tween clas$|cal and statistical approaches to syntax hamp;;g; 718 and pi4 936 | PL4 vi4and B4 W6 ILT: moolde | doven | adoree | worships;
the integration of the stronger aspects of each method int¢=3; =8 =nd e13; E5: Ble.ds Chal ply;

P32: whe P17 P22 | whe P17 P14; Pl: P15 that P18;

common powerful framework. On the one hand, the statist®: - o= = >
cal approach is geared to take advantage of the considerable
progress made to date in the areas of distributed represefigure 1: the context free grammar used to generate the cor-
tation, probabilistic learning, and “connectionist” modeling, pora for the acquisition tests described here.
yet generic connectionist architectures are ill-suited to the ab-
straction and processing of symbolic information. On the
other hand, classical rule-based systems excel in just those The principles behind the AD10S algorithm
tasks, yet are brittle and difficult to train. i ___The representational power abios and its capacity for un-
We are developing an approach to the acquisition of distriy nervised learning rest on three principles: (1) probabilistic

butional information from raw input (€.g., transcribed speechfarence of pattern significance, (2) context-sensitive gener-
corpora) that also supports the distillation of structural reg-

" ~Jalization, and (3) recursive construction of complex patterns.
ularities comparable to those cap_tu_red by Context Sensitive 5oh of these is described briefly below.
Grammars out of the accrued statistical knowledge. In think-
ing about such regularities, we adopt Langacker’s notion oProbabilistic inference of pattern significance.ADIOS rep-
grammar as “simply an inventory of linguistic units” ([9], resents a corpus of sentences as an initially highly redundant
p.63). To detect potentially useful units, we identify and pro-directed graph, in which the vertices are the lexicon entries
cess partially redundant sentences that share the same wadd the paths correspond, prior to running the algorithm, to
sequences. We note that the detection of paradigmatic var¢orpus sentences. The graph can be informally visualized as
ation within a slot in a set of otherwise identical aligned se-a tangle of strands that are partially segregated intadles

345



P84 —» "that" P58 P63

E63 —» E64 P48

E64 —» "Beth" | "Cindy" | "George" | "Jim" | "Joe" | "Pam" | P49 | P51
P48 —» " " "doesn't" "it"

P51 —® “the" E50

P49 —™ "a" E50

E50 — "bird" | "cat" | "cow" | "dog" | "horse" | "rabbit"
P61 — "who" E62

E62 —® "adores" | "loves" | "scolds" | "worships"

E53 —» "Beth" | "Cindy" | "George" | "Jim" | "Joe" | "Pam"
E85 — "annoyes" | "bothers" | "disturbes" | "worries"
P58 —® E60 E64

E60 —™ “flies" | "jumps" | "laughs"

Figure 2: Left: a pattern (presented in a tree form), capturing a long range dependency (equivalence class labels are under-
scored). This and other examples here were distilled from a 400-sentence corpus generated by the grammar drigure 1.
the same pattern recast as a set of rewriting rules that can be seen as a Context Free Grammar fragment.

Each of these consists of some strands clumped together;carrently implemented).

bundle is formed when two or more strands join together and

run in parallel, and is dissolved when more strands leave the Two experiments in grammar induction

bundle than stay in. In a given corpus, there will be many bun-

dles, with each strand (sentence) possibly participating in seVfhe results outlined next focus on the power of #mos
eral. Our algorithm, described in detail elsewhere'[Blen-  aigorithm, which we assessed by examining the (so-called

tifies Significant bundles iteratively, USing a COntext'senSitive‘Weak") genera’[ivity of the representations it learns.
probabilistic criterion defined in terms of local flow quantities

in the graph. The outcome is a set of patterns, each of which

is an abstraction of a bundle of sentences that are identic . . . .
up to variation in one place, where one of several symbol xperiment 1. In the first of the two studies described here,

(the members of the equivalence class associated with tli’ée trainedADloshon 400 é_enteml:esv\r;roc:]uced by the gontext
pattern) may appear (Figure 2). This representation balanc geecgrammafr S ov¥n2|£ igure 1. We then cgngparhg gFCg'
high compression (small size of the pattern lexicon) again US Ctarget OF 3,607, 240 sentences generated by this

0od generalization (the ability to generate new grammaticalVith Up to three levels of recursion) with a corpUig.arned
gentegces from the a(cquired gattegrjns). 9 of 1,916,061 sentences generated by the patterns that had

been learned byblos from the 400-sentence training set. In
Context sensitivity of patterns. Because an equivalence both cases the sentences were generated randomly in batches
class is only defined in the context specified by its parenbf sizel.5-107 and merged until convergence, define@3%
pattern, the generalization afforded by a set of patterns isverlap between new and existing data. With these data, we
inherently safer than in approaches that posit globally validbbtained precision 6f7%, with a recall value 063% (as cus-
categories (“parts of speech”) and rules (“grammar”). Thetomary in computational linguistics, we define recall as the
reliance ofADIOS on many context-sensitive patterns ratherproportion of Cy,,4.¢ SENtENCES appearing @heqrneqd, and
than on traditional rules can be compared to the Construgsrecision as the proportion Gfjcqrneq appearing irCig,get)-

tion Grammar idea (discussed later), and is in line with Landn this demonstration, no attempt was made to optimize the
gacker's conception of grammar as a collection of “patterngwo parameters that control pattern acquisition.

of all intermediate degrees of generality” ([9], p.46).

Hierarchical structure of patterns. The ADIOS graph is . ) .

rewired every time a new pattern is detected, so that a bundfgxPeriment2.  The second experiment involved twoios

of strings subsumed by it is represented by a single new edggn_stances: a teacher and a stu_dent. In each of the four runs,
Following the rewiring, which is context-specific, potentially the téacher was pre-loaded with a ready-made context free
far-apart symbols that used to straddle the newly abstracte@f@mmar (using the straightforward translation of CFG rules
pattern become close neighbors. Patterns thus become Hfifo patterns), then used to generate a series of training cor-
erarchically structured in that their elements may be eithePOra With up to6400 sentences, each with up to seven lev-
terminals (i.e., fully specified strings) or other patterns. The®lS Of recursion. After training in each rur(i = [1...4]),
ability of new patterns and equivalence classes to incorporate student-generated test corpi:i,%()lme o Of size 10000 was

those added previously leads to the emergence of recursive{yseq in conjunction with a test corp@(“ , of the same
arge

structured units that support generalization (by opening pathgi,e produced by the teacher, to calculate precision and re-

that do not exist in the origir_wal corpus). Moreover, patterns.g||. This was done by running the teacher as a parser on
may refer to themselves, which opens the door for true recur: ) and the student — as a parser@ﬁ) The re-

; ; Lo . . D b 4 the s - as rget: :
sion (Figure 3, right; automatic detection of recursion is nmsufflsr,nf)lotted in Figure 4, indicate a substantial capacity for

The relevant publications can be found online atUnsupervised induction of context-free grammars even from
http://kybele.psych.cornell.edu/~edelman/archive.html. very small corpora.
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o1
P210 —» P55P84
BEGIN P55 P84  — BEGIN E56 "thinks" "that" P84 nXL 4> 54
P55 P84 P178 —» P55E75 "thinks" "that* P178 7
[ 34 9 34 34 39 )
$35 35 %38 43 43 135 %38

Beth &
Cindy &
George G
Jim
Joe &
Pam &
believes G
that &
Beth &
Cindy G
George G
Jim ¢
Joe &
Pam &
thinks &
that ¢
Beth &
Cindy o
George G
Jim o
Joe @
Pam &
believes &
that &
Beth &
Cindy &
George G
Jim @
Joe &
Pam &
believes &
that &
Beth &
Cindy &
George G
Jim o
Joe &
Pam &
thinks G
that ¢

Joe thinks that George thinks that Cindy believes that George thinks that Pam thinks that ...

Agreement

Figure 3: Left: becausenDIOs does not rewire all the occurrences of a specific pattern, but only those that share the same
context, its power is comparable to that of Context Sensitive Grammars. In this example, equivalence class #75 is not extended
to subsume the subject position, because that position appears in a different context (e.g., immediately to the right of the
symbol BEGIN). Thus, long-range agreement is enforced and over-generalization prevented. The context-sensitive “rules”
corresponding to pattern #210 appear abovdRight: the ADIOS pattern representation facilitates the detection of recursive
structure, exemplified here by the correspondence between equivalence classes #52 and #54.

100 8 T, e ——T A complete with a pre-specified set of allowed categories). Be-
poomll 1 .- t PR cause of the unique nature of our chosen challenge — finding
0 80 < structure in language rather than imposing it — the follow-
i ing brief survey of grammar induction focuses on contrasts
has and comparisons to approaches that generally stop short of
' . attempting to do what our algorithm does. We distinguish
250 }-‘ below between approaches that are motivated by computa-
0.40 ? tional considerations (Local Grammar and Variable Order
0.30 Markov models, and Tree Adjoining Grammar), and those
0.20 whose main motivation is linguistic and cognitive psycholog-
0,10 ical (Cognitive and Construction grammars).
0.00

0 1000 2000 3000 4000 5000 BOGD OO0

Local Grammar and Markov models. In capturing the
regularities inherent in multiple criss-crossing paths through
Figure 4: the results of Experiment 2; precision (squares) and corpus,ADIOS superficially resembles finite-state Local
recall (diamonds), plotted vs. the size of the training corpusGrammars [14] and Variable Order Markov (VOM) mod-
the error bars are std. dev. computed over four separate traifls [15] that aim to produce a minimum-entropy finite-
ing/testing runs. Note that even the largest training corpu§tate encoding of a corpus. There are, however, crucial
size, 6400 sentences, is a tiny proportion of the approximatel§/ifférences, as explained below. Our pattern significance
1.6 - 108 sentences that can be generated by the target gra riteria [3] involve conditional probabilities of the form

. (enler, ea,€3,...,e,—1), Which does bring to mind an
mar under the chosen depth constraint (7). n'th-order Markov chain, with the (variable) correspond-

ing roughly to the length of the sentences we deal with. The
. . Lo VOM approach starts out by postulating a maximurk’'OM
Related computational and linguistic structure, which is then fitted to the data. The maximum
formalisms and psycholinguistic findings VOM order n, which effectively determines the size of the
window under consideration, is in practice much smaller than
Unlike ADI10s, very few existing algorithms for unsupervised in our approach, because of computational complexity limi-
language acquisition use raw, unannotated corpus data (¢éations of the VOM algorithms. The final parameters of the
opposed, say, to sentences converted into sequences of PSM are set by a maximum likelihood condition, fitting the
tags). The only work described in a recent review [6] as commodel to the training data. Thebios philosophy differs
pletely unsupervised — the GraSp model [13] — does atfrom the VOM approach in several key respeétisst, rather
tempt to induce syntax from raw transcribed speech, yet it ishan fitting a model to the data, we use the data to construct
not completely data-driven in that it makes a prior commit-a (recursively structured) graph. Thus, our algorithm natu-
ment to a particular theory of syntax (Categorial Grammaryally addresses the inference of the graph’s structure, a task
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that is more difficult than the estimation of parameters for aand representation — fit the spirit of the foundations of Cog-
given configurationSecongbecauseDios works from the  nitive Grammar [9]. At the same time, whereas the cognitive
bottom up in a data-driven fashion, it is not hindered by com-grammarians typically face the chore of hand-crafting struc-
plexity issues, and can be used on huge graphs, with verwres that would reflect the logic of language as they perceive
large windows sizes.Third, ADIOS transcends the idea of it, ADIOS discovers the primitives of grammar empirically
VOM structure, in the following sense. Consider a set of patand autonomously. The same is true also for the compari-
terns of the formb; [c1]b2[c2]bs, etc. The equivalence classes son betweemDIOS and the various Construction Grammars
[] may include vertices of the graph (both words and word[17, 24], which are all hand-crafted. A construction gram-
patterns turned into nodes), wild cards (i.e., any node), as wethar consists of elements that differ in their complexity and in
as ambivalent cards (any node or no node). This means thttie degree to which they are specified: an idiom such as “big
the terminal-level length of the string represented by a patdeal” is a fully specified, immutable construction, whereas
tern does not have to be of a fixed length. This goes concephe expression “the X, the Y” — as in “the more, the better”
tually beyond the variable order Markov structutg]cs]bs [25] — is a partially specified template. The patterns learned
do not have to appear in a Markov chain of a finite orderby AbDIOS likewise vary along the dimensions of complex-
[lb2]] + |lc2]| + ||bs]| because the size @] is ill-defined, ity and specificity (e.g., not every pattern has an equivalence
as explained abovd-ourth, as we showed earlier (Figure 3), class)?

ADIOS incorporates both context-sensitive substitution and

recursion. Related computational work on grammar

induction

Tree Adjoining Grammar.  The proper place in the Chom- . T
’f)n natural language processing, a distinction is usually made

sky hierarchy for the class of strings accepted by our model i ; . ,
between Context Free and Context Sensitive Languages. TS WEEN unsupervised learning methods that attempt to find
good structural primitives and those that merely seek good

pattern-based representations employedips have coun- parameter settings for predefined primitivespios, which

terparts for each of the two composition operations, substltuClearly belongs to the first category, is also capable of learn-

tion and adjoining, that characterize a Tree Adjoining Gram'ing from raw data, whereas most other systems start with cor-
mar, or TAG, developed by Joshi and others [16]. Spec'f"pora annotated by part of speech tags [26], of even rely on

cally, both substitution and adjoining are subsumed in the "treebanks, or collections of hand-parsed sentences [4]. Of the
lationships that hold amomgpi0s patterns, such as the mem- ' p: :
many such methods, we can mention here only a few.

bership of one pattern in another. Consider a pat&rand
its equivalence clas§(P;); any other patterrP; € £(P;)
can be seen as substitutablefin Likewise, if P; € £(P;),  Global grammar optimization using tagged data. Stol-
Pr € E(P;) andP, € E(P;), then the patterP; can be  cke and Omohundro (1994) learn structure (the topology of
seen as adjoinable ;. Because of this correspondence be-a Hidden Markov Model, or the productions of a Stochastic
tween the TAG operations and thel0s patterns, we believe Context Free Grammar), by iteratively maximizing the prob-
that the latter represent regularities that are best described lapility of the current approximation to the target grammar,
Mildly Context-Sensitive Language formalism [16]. Impor- given the data. In contrast to this approach, which is global in
tantly, because thepl0s patterns are learned from data, they that all the data contribute to the figure of merit at each itera-
already incorporate the constraints on substitution and adion, ADIOS is local in the sense that its inferences only apply
joining that in the original TAG framework must be specified to the current bundle candidate. Another important difference
manually. is that instead of general-scope rules stated in terms of parts of
speech, we seek context-specific patterns. Perhaps because of

Psychological and linguistic evidence for pattern-based its globality and unrestricted-scope rules, Stolcke and Omo-
representations. Recent advances in understanding thehundro’s method has “difficulties with large-scale natural lan-
psychological role of representations based on what we cafjuage applications” [27]. Similar conclusions are reached by
patterns, orconstructiong{17], focus on the use of statisti- Clark, who observes that POS tags are not enough to learn
cal cues such as conditional probabilities in pattern learningyntax from (“a lot of syntax depends on the idiosyncratic
[18, 19], and on the importance of exemplars and construdProperties of particular words.” [5], p.36). His algorithm at-
tions in children’s language acquisition [20]. Convergingtempts to learn a phrase-structure grammar from tagged text,
evidence for the centrality of pattern-like structures is pro-Py starting with local distributional cues, then filtering spu-
vided by corpus-based studies of the prevalence of “prefabridous non-terminals using a mutual information criterion. In
cated” sequences of words [21], and of the entrenchment dhe final stage, his algorithm clusters the results to achieve a
such sequences in the lexicon [22]. Similar ideas concernMinimum description length (MDL) representation, by start-
ing the ubiquity in syntax of structural peculiarities hitherto ing with maximum likelihood grammar, then greedily select-
marginalized as “exceptions” are now being voiced by lin-ing the candidate for abstraction that would maximally reduce
guists [23, 24]. the description length. In its greedy approach to optimization
(but not in its local search for good patterns or its ability to

Cognitive Grammar: Construction Grammar.  The main deal with untagged data), our approach resembles Clark’s.

methodological tenets oADios — populating the lexicon 2Similarly to constructions, thepios patterns carry semantic,

with “units” of varying complexity and degree of entrench- and not just syntactic, information — an important issue that is out-
ment, and using cognition-general mechanisms for learningide the scope of the present paper.
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Probabilistic treebank-based learning. Bod, whose algo- 123

rithm learns by gathering information about corpus probabil-

ities of potentially complex trees, observes that “[...] the
52 2

knowledge of a speaker-hearer cannot be understood as a

grammar, but as a statistical ensemble of language experi- 1
ences that changes slightly every time a new utterance is 53 83
perceived or produced. The regularities we observe in lan-

guage may be viewed as emergent phenomena, but they can- 2529983 S33T o =
not be summarized into a consistent non-redundant system g 3¢ ge g

that unequivocally defines the structures of new utterances.”

[4], p.145. This memory- or analogy-based language model, ) ]

which is not a typical example of unsupervised learning, isFigure 5: As a token of our intention to account, eventually,

mentioned here mainly because of the parallels between ifor the entire spectrum of English syntax-related phenomena

data representation, Stochastic Tree-Substitution Grammanescribed in the textbooks — agreement, anaphora, auxil-

and some of the formalisms discussed earlier. iaries, wh-questions, passive, control, etc. [30] — we illus-
trate here the manner in whiepios treats tough movement

Split and merge pattern learning. The unsupervised (another phenomenon, long-range agreement, was discussed
structure learning algorithm developed by Wolff betweenin Figure 2). When trained on sentences exemplifying “tough
1970 and 1985 stands out in that it does not need the comovement”,ADIOS forms patterns that represent the correct
pus to be tagged. An excellent survey of his own and earliephrases.(. . is easy to read, is easy to please, is eager to
attempts at unsupervised leaming of language, and of muciead, is eager to please, to read is easy andto please is

relevant behavioral data, can be found in [28]. His repregagyy byt does not over-generalize to the incorrect ones (*
sentations consist of SYN (syntagmatic), PAR (paradlgmatm}ead is eager or *to please is eager)

and M (terminal) elements. Although our patterns and equiv-
alence classes can be seen as analogous to the first two of
these, Wolff's learning criterion is much simpler than that of

ADIOS: in each iteration, the most frequent pair of contigu—fr

ous SYN elements are ioined toaetRétis system however. oM raw data are in principle difficult to test, because any
. are) getn y ’ ' . “gold standard” to which the acquired representation can be
had a unique provision for countering the usual propensity

of unsupervised algorithms for overgeneralization: PAR el compared (such as the Penn Treebank [31]) invariably reflects

. . T -its designers’ preconceptions about language, which may not
ements that did not admit free substitution among all thelrbe valid, and which usually are controversial among linguists

mgnmnbeerrs L'Jr;] %?Hjﬁaiglme\)/(\}o\?f{f?sresri?grlg Lnag ggpgegéﬁgggt'g%hemselves [32]. Moreover a child “... must generalize from
: Y, y he sample to the language without overgeneralizing into the

on unconstrained natural language. area of utterances which are not in the languaybat makes
the problem tricky is that both kinds of generalization, by def-

Summary, prospects and challenges inition, have zero frequency in the child’s experief¢g28],
The Aplos approach to the representation of linguistic p.183, italics in the original). Instead of shifting the onus of
knowledge resembles the Construction Grammar in its genexplanation for this “miracle” onto some unspecified evolu-
eral philosophy (e.g., in its reliance on structural generalizationary processes (which is what the innate grammar hypoth-
tions rather than on syntax projected by the lexicon), an@sis amounts to), we suggest that a system suckDass
the Tree Adjoining Grammar in its computational capacityshould be tested by monitoring its acceptance of massive
(e.g., in its apparent ability to accept Mildly Context Sensi-amounts of human-generated data, and at the same time by
tive Languages). The representations learned byawthes  getting human subjects to evaluate sentences generated by the

algorithm are truly emergent from the (unannotated) corpusystem (note that this makes psycholinguistics a crucial com-
data, whereas those found in published works on cognitiv@onent in the entire undertaking).

and construction grammars and on TAGs are hand-tailored. A purely empirical approach to the evaluation problem

Thus, our results complement and extend both the computggould, however, waste the many valuable insights into the
tional and the more linguistically oriented research into cogregularities of language accrued by the linguists over decades.
nitive/construction grammar. _ Although some empiricists would consider this a fair price
To further the cause of an integrated understanding of lanfor quarantining what they perceive as a runaway theory that
guage, a crucial challenge must be met: a viable approach ot out of touch with psychological and computational real-
the evaluation of performance of an unsupervised languaggy, we believe that searching for a middle way is a better
learner must be developed, allowing testing both (1) neutrgljea, and that the middle way can be found, if the linguists
with respect to the linguistic dogma, and (2) cognizant ofcan be persuaded to try and present their main findings in a
the plethora of phenomena documented by linguists over thgheory-neutral manner. From recent reviews of syntax that do
course of the past half century (see, e.g., Figure 5). attempt to reach out to non-linguists (e.g., [33]), it appears
T that the core issues on which every designer of a language ac-

3An even simpler criterion, that of mere repetition, is employed . . : .
by the related approach of [29], resulting in a rule set that appeargu's't'on system should be focusing are dependencies (such

to grow linearly with the size of the corpus, rather than reaching ar@S co-reference) and constraints (such as islands), especially
asymptote as in our case. as seen in a typological (cross-linguistic) perspective [24].
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