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ARTICLE OPEN

Exome sequencing of 457 autism families recruited online
provides evidence for autism risk genes
Pamela Feliciano1, Xueya Zhou 2, Irina Astrovskaya 1, Tychele N. Turner 3, Tianyun Wang3, Leo Brueggeman4, Rebecca Barnard5,
Alexander Hsieh 2, LeeAnne Green Snyder1, Donna M. Muzny6, Aniko Sabo6, The SPARK Consortium, Richard A. Gibbs6,
Evan E. Eichler 3,7, Brian J. O’Roak 5, Jacob J. Michaelson 4, Natalia Volfovsky1, Yufeng Shen 2 and Wendy K. Chung1,8

Autism spectrum disorder (ASD) is a genetically heterogeneous condition, caused by a combination of rare de novo and inherited
variants as well as common variants in at least several hundred genes. However, significantly larger sample sizes are needed to
identify the complete set of genetic risk factors. We conducted a pilot study for SPARK (SPARKForAutism.org) of 457 families with
ASD, all consented online. Whole exome sequencing (WES) and genotyping data were generated for each family using DNA from
saliva. We identified variants in genes and loci that are clinically recognized causes or significant contributors to ASD in 10.4% of
families without previous genetic findings. In addition, we identified variants that are possibly associated with ASD in an additional
3.4% of families. A meta-analysis using the TADA framework at a false discovery rate (FDR) of 0.1 provides statistical support for 26
ASD risk genes. While most of these genes are already known ASD risk genes, BRSK2 has the strongest statistical support and
reaches genome-wide significance as a risk gene for ASD (p-value= 2.3e−06). Future studies leveraging the thousands of
individuals with ASD who have enrolled in SPARK are likely to further clarify the genetic risk factors associated with ASD as well as
allow accelerate ASD research that incorporates genetic etiology.

npj Genomic Medicine            (2019) 4:19 ; https://doi.org/10.1038/s41525-019-0093-8

INTRODUCTION
Autism spectrum disorder (ASD) is an extremely variable condition
characterized by deficits in social interactions and restrictive,
repetitive behaviors. Currently, there are no FDA approved
medications that address these core symptoms, despite the life-
long morbidity and increased mortality in adults with ASD.1

Despite the significant clinical heterogeneity of this condition,
many studies have shown that ASD is highly heritable, with
genetic risk factors thought to explain the majority of the risk for
ASD.2 Over the past decade, genomic studies focused on de novo,
likely gene disrupting (dnLGD) variants (stopgain, frameshift, and
essential splice site) have identified ~100 high-confidence ASD risk
genes or loci.3,4 Previous studies have identified molecular
diagnoses in 6–37% of individuals with ASD, with higher yields
in individuals with additional co-morbidities that include intellec-
tual disabilities, seizures, and other medical features.5

Here we describe the results of a pilot study that genetically
characterized 457 families with one or more members affected
with ASD enrolled online in SPARK.6 SPARK’s mission is to create
the largest recontactable research cohort of at least 50,000
families affected with ASD in the United States for longitudinal
phenotypic and genomic characterization who are available to
participate in research studies. Using exome sequencing and
genome-wide single nucleotide polymorphism (SNP) genotyping

arrays, we identified variants that are the likely primary genetic
cause of ASD in 14% of families. We also demonstrated that the
genetic architecture in this self-reported cohort is similar to
published, clinically confirmed ASD cohorts.3,4,7 Combining the
SPARK data with prior studies, our analyses provide strong
evidence that BRSK2 is a high-confidence ASD risk gene (FDR q-
value= 0.0015) and provide evidence that strengthens the
association of additional genes (FEZF2, ITSN1, PAX5, DMWD, and
CPZ) in ASD.

RESULTS
Variant discovery
We report the exome sequencing and genotyping results of 1379
individuals in 457 families with at least one offspring affected with
ASD, including 418 simplex and 39 multiplex families (Supple-
mentary Fig. 1). Over 80% of participants are predicted to have
European ancestry based on principal component analysis of
common SNP genotypes (Supplementary Fig. 2). The male to
female ratio is 4.4:1 among 418 offspring cases in simplex families,
and 2.9:1 among 47 offspring cases in multiplex families. Of the
465 offspring affected with ASD, 25.6% also reported intellectual
disability (Table 1). We identified 647 rare (allele frequency (AF)
<0.001 in ExAC v0.3) de novo single nucleotide variants (SNVs) and
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indels (Supplementary Data 1) in coding regions and splice sites
(1.4/offspring), including 85 likely gene disrupting (LGD) variants
and 390 missense variants. Similar to the de novo variants
identified from 4773 clinically ascertained ASD trios from previous
studies,3–8 the frequency of dnLGD variants in the 465 affected
offspring in SPARK (0.18/offspring) is 1.76-fold higher than the
baseline expectation calculated by a previously published muta-
tion rate model9 (p-value= 1.2 × 10−6 by one-sided exact Poisson
test) (“Methods”; Supplementary Data 2).
To identify de novo missense variants that are likely damaging,

we applied two deleterious missense (D-mis) prediction algo-
rithms on published ASD and SPARK de novo variants. Among the
390 de novo missense variants in affected offspring, 43.6% are
predicted to be deleterious using CADD score ≥2510 and show
1.28-fold enrichment compared with baseline expectation in the
general population (p-value= 6.6 × 10−4 by one-sided exact
Poisson test). Using a more strict D-mis prediction algorithm with
MPC score ≥2,11 8% of de novo missense variants are predicted as
deleterious and are enriched 1.88-fold in affected offspring which
is comparable with the enrichment of dnLGD variants (p-value=
9.9 × 10−4 by one-sided exact Poisson test). The overall burden of
de novo D-mis variants is similar to published studies (Supple-
mentary Data 2).
Variants in constrained genes (pLI ≥ 0.5)12 explain most of the

burden of dnLGD variants and de novo D-mis variants (defined by
an MPC score ≥2) in the affected offspring in our study
(Supplementary Data 2,b). Consistent with previous findings
supporting the female protective model,13 we observed a
nonsignificant trend toward a higher frequency of dnLGD variants
in constrained genes in female cases compared with males (0.135/
female vs 0.096/male), as well as higher frequency of de novo D-
mis variants in female cases (CADD ≥25: 0.416/female vs 0.354/
male, MPC ≥2: 0.09/female vs 0.066/male).
We also investigated deleterious inherited SNV/indel variants

and found a modest excess of transmitted, rare LGD (AF < 0.001 in
ExAC v0.3) variants observed only once among parents in our
cohort (singletons) in constrained genes with pLI ≥ 0.5 (464
transmitted vs. 402 nontransmitted; rate ratio (RR)= 1.15, p-
value= 0.038 by binomial test). Over-transmission of rare
singleton LGD variants was not observed in genes that are not
constrained (RR= 1.03, p-value= 0.31 by binomial test). The
excess of transmitted singleton LGD variants in constrained genes
increased after removing variants observed in the ExAC database
(303 transmitted vs. 242 untransmitted; RR= 1.25, p-value= 0.010
by binomial test). These results provide further evidence that rare,
inherited LGD variants in constrained genes confer increased risk
for ASD.14,15 We then searched for known haploinsufficient ASD or
neurodevelopmental disorder (NDD) genes (SFARI Gene score 1 or
2 or listed in DDG2P and associated with a neurological
phenotype16) that are disrupted by the rare singleton LGD
variants and are transmitted. We found 13 such variants (2 of
them on the X chromosome), as compared with 10 variants that
are not transmitted (including one on the X chromosome)
(Supplementary Data 3). Manual review of these variants revealed
that most of them are not likely pathogenic because they either
affect only a subset of transcripts that are not expressed in the
majority of tissues,17 are located close to the 3′ end of the
transcript (last 5% of the coding sequence) or are indels that
overlap but do not change the sequence of essential splice sites.
The results suggest that the rare LGD variants in known ASD/NDD
genes have only limited contribution to the overall transmission
disequilibrium in this class of variants.
By integrating exome sequence read depth and SNP microarray

signal intensity data, we identified 273 rare CNVs (occurring with a
carrier frequency of ≤1% of the 1379 individuals in the analysis
and also appear <1% in 1000 Genomes population and healthy
controls18) in 206 affected offspring. Of these, 253 CNVs were
inherited (0.544/affected offspring) and were on average 194 kb. Ta
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These inherited CNVs contained an average of 3.7 genes, which
reduces to an average of 0.7 genes that are constrained (pLI ≥ 0.5)
(Supplementary Data 4). Similar to the frequency observed in
previous studies8,19 (~5% within a cohort of affected individuals),
we identified 20 de novo CNVs (dnCNVs) (0.043/affected offspring)
(Supplementary Data 5). On average, dnCNVs were larger (1.6 Mb)
and contained more total and constrained genes (19 genes, 5.5
constrained genes with a pLI ≥ 0.5).
Despite the fact we were underpowered to detect statistically

significant burden differences between sexes, we observed a
trend toward a 1.8-fold higher burden of dnCNVs in ASD females
(0.067/female vs 0.037/male, respectively). In contrast, the
frequency of rare, inherited CNVs in ASD females and males were
similar (0.551/female vs 0.543/male, respectively). Similar to
Sanders et al.8 dnCNVs in female cases also affect more genes
than dnCNVs in males (2.3 vs 0.47 genes in dnCNVs per female
proband vs per male proband, respectively; p-value= 0.013,
Kruskal–Wallis test).
Of the CNVs detected, six mapped to the chromosome 16p11.2

region (three de novo and three inherited in five families). Four of
the six 16p11.2 CNVs occurred at the most common breakpoints
(BP4-BP5), occurring in 0.9% of affected offspring, consistent with
the expected ASD prevalence.20 Together, the results suggest that
the saliva-derived DNA collected in SPARK should provide
comparable CNV data to previous studies using DNA derived
from whole blood. We also used read-depth and SNP genotypes
to identify several chromosomal aneuploidies (Supplementary Fig.
1), including one case of trisomy 21 (47, XY+ 21), one case of
Klinefelter syndrome (47, XXY), one case of Turner syndrome (45,
X), and one case of uniparental iso-disomy of chromosome 6
(UPiD6).
Given their emerging role in genetic risk for ASD and other

NDDs, we also assessed postzygotic mosaic mutations21,22 in the
SPARK cohort. In parallel, we utilized a previously established
method23 and a novel approach to identify likely mosaic SNVs
(Methods, Supplementary Figs. 3–8). We identified 65 likely mosaic
mutations (0.142/offspring) (Supplementary Data 6). The majority
of these mutations were unique to the mosaic call set; however,
18 were also identified in the main de novo SNV call set with an
average alternative allele fraction of 25.4% (Supplementary Data
6), suggesting that these mutations are likely to have occurred
after fertilization. These results indicate that ~10% (65/652) of the
total de novo SNVs in the SPARK pilot are of postzygotic origin.
Comparing these data to a similar mosaic set from the Simons
Simplex Collection (SSC),23 we found similar mosaic mutation
characteristics, despite the fact that different DNA sources, capture
reagents, and sequencing instruments were used (Supplementary
Fig. 7). Due to the limited number of mosaic calls, we did not
attempt to evaluate mosaic mutation burden. However, we
observed that a number of potentially mosaic mutations were in
known ASD/NDD genes or genes that are constrained (Supple-
mentary Data 6). For example, we identified a potential mosaic
LGD variant in MACF1, which is highly constrained (pLI= 1), plays
essential roles in neurodevelopment, functions through the
previously implicated Wnt signaling pathway,24 and has been
recently suggested as a candidate gene based on a dnLGD variant
in a Japanese ASD cohort.25 In CREBBP, which reached genome-
wide significance in a recent NDD meta-analysis,16 we identified a
potential mosaic missense variant, in addition to two other
germline de novo missense variants in SPARK, adding to the
evidence that it is an ASD/NDD risk factor. Future work will help
determine the contribution of mosaic mutations in such genes
to ASD.

Genes with a higher mutational burden
We assessed genes with multiple dnLGD variants in the SPARK
cohort and identified four genes with more than one dnLGD
variant (CHD8, FOXP1, SHANK3, and BRSK2). BRSK2 is the only gene
with multiple dnLGD variants in SPARK that reached genome-wide
significance (p-value= 2.3 × 10−6 by one-sided exact Poisson test,
<0.05/20,000 genes), although there was one individual in the
Autism Sequencing Consortium (ASC) cohort7 with a dnLGD
variant in BRSK2 (Table 2).
To increase the statistical power to identify new ASD genes, we

performed a meta-analysis of de novo variants in 4773 published
ASD trios3,4,7,8 and 465 SPARK trios using TADA26 (Methods). In this
analysis, we included dnLGD variants and de novo D-mis variants,
which we defined as those that have a CADD score ≥25.10 The
TADA analysis presumes a model of genetic architecture
compatible with the observed burden and recurrence of de novo
damaging variants and assigns a false discovery rate (FDR) q-value
for each gene based on the number of damaging variants and
baseline mutation rates. We identified 67 genes with an FDR
threshold of ≤0.1. Of these, there are 26 genes that also harbored
a damaging variant in SPARK, most of which are already known
ASD/NDD genes. There are six genes (BRSK2, ITSN1, PAX5, FEZF2,
DMWD, and CPZ) that reached an FDR threshold of 0.1 only after
the inclusion of de novo variants from SPARK (Fig. 1). The
association signal for DMWD was driven by two LGD variants but
the gene is not constrained (pLI= 0), so this gene may be a false
positive.
Of the 34 genes listed in Fig. 1, only BRSK2 meets genome-wide

significance as a new ASD risk gene. All four individuals in SPARK,
ASC and the SSC with de novo functional variants in BRSK2 are
males with cognitive impairment and severe speech delay (Table
2). MBD5 and IRF2BPL reached an FDR value of ≤0.1 in a previous
meta-analysis but not significant in our analysis of published de
novo variants,8 because the previous study also included evidence
from de novo CNVs and deleterious variants of unknown
inheritance from a case-control sample in that analysis. MBD5, as
well as QRICH1, SLC6A8, and RERE are known NDD risk genes in the
latest DDG2P database.16

In our TADA results, we further broadened our focus on genes
that harbored damaging variants in the SPARK data and those that
had a FDR ≤ 0.2 (Supplementary Data 7). When the TADA analysis
is restricted to genes harboring damaging variants in SPARK with
an FDR ≤ 0.2, we identified 34 genes (Fig. 1), of which 21 have a
known role in ASD or NDDs. We also incorporated inherited
variants and CNVs from the SPARK families into the TADA analysis,
but did not find additional newly significant genes.
We then searched for additional supporting evidence for a role

of these genes in ASD and NDDs, including other deleterious
variants in previous studies and case reports not included in the
meta-analysis, membership in gene sets previously associated
with ASD,3,4,7,8 and published functional studies (Supplementary
Data 8). Recent studies have reported additional individuals with
ASD and/or NDD with de novo damaging variants in these genes
including BRSK2,27 PAX5,4,28 NR4A2,29,30 RALGAPB,7,31,32 and
DPP6.5,33,34

In addition to multiple deleterious variants in these candidate
ASD risk genes, we also found evidence that they function in
biological pathways previously linked to ASD. For example, mRNA
translation of BRSK2, ITSN1, and RALGAPB in neurons is predicted
to be regulated by FMR1 protein.35 In addition, ITSN1 and DPP6 are
part of the postsynaptic density components in human neocor-
tex.36 PAX5 and FEZF2 are involved in transcription regulation
during central nervous system development.4,24,37 KDM1B is a
known chromatin modifier, and EGR3 has been implicated in
neurodevelopment.38,39

We also searched rare singleton inherited LGD variants of these
newly significant genes in SPARK and published SSC data, and
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identified five additional cases (three in SSC, two in SPARK)
carrying inherited LGD variants of ITSN1 that likely cause loss of
gene function. Interestingly, of the six ASD cases with LGD variants
in ITSN1, five do not have intellectual disability (Table 2). The less
severe phenotype and inheritance from unaffected parents are
consistent with the modest effect size, although future studies will
help determine if ITSN1 is a bona fide ASD risk gene. Furthermore,
in ASC case-control samples,7 LGD variants in ITSN1 were also
identified in the controls (three in 5397 ASC controls and
comparable with the cumulative AF of 2.5e−4 in gnomAD v2.1),
although they were still overrepresented in cases (two in 1601
cases).

Functional network analysis and gene expression patterns in
candidate ASD risk genes
To relate the candidate ASD risk genes identified in our TADA
analysis to previous knowledge of integrated gene networks in
ASD, we scored genes with a TADA FDR ≤ 0.2 and not currently
listed in SFARI Gene using forecASD, a new ensemble classifier
that integrates spatiotemporal gene expression, heterogeneous
network data, and previous gene-level predictors of ASD
association.40 Using forecASD, we derived a single score that
ranks the evidence for each gene to be involved in ASD risk. Using
this approach, we identified ten genes (RNF25, DMWD, CLCN4,
ITSN1, CPZ, SH3RF3, EGR3, RALGAPB, KDM1B, and BRSK2) that have
a TADA FDR ≤ 0.2 and were not listed in the SFARI Gene database.
These genes have significantly elevated forecASD scores
(p-value= 0.007, Z-test in logistic regression model controlling
for contribution of previous TADA scores; Supplementary Fig. 9).
Furthermore, two predictive features in forecASD that summarize
brain expression support and network support are also found to

be significantly elevated over the genome background in the set
of these ten genes (p-value= 0.015 and p-value= 0.03, respec-
tively, Wilcoxon test; see Supplementary Fig. 9). Importantly,
neither of these metrics uses genetic data directly, so these genes
collectively have support across the three independent and
distinct domains of genetic, network, and brain expression
evidence. These statistical associations are conservative estimates
because they compare the distribution of evidence scores among
the candidate genes described here to the remainder of the
genome, which includes well-established ASD genes. Eight of
these genes, BRSK2, KDM1B, RALGAPB, EGR3, SH3RF3, CPZ, ITSN1,
and CLCN4 fall in the top decile of forecASD scores (the top decile
being a recommended cutoff used to define probable ASD risk
genes), supporting these genes as having similar properties
overall compared with known ASD risk genes.
To illustrate the network context of these eight candidate ASD

risk genes, we clustered them along with genes scoring within the
top decile of forecASD (Fig. 2a). Network analysis yielded ten
tightly connected clusters with distinct biological functions
(Supplementary Data 9). Several genes were assigned to clusters
that showed enrichment for gene sets consistent with their known
functions, including KDM1B,41 BRSK2,42 and ITSN143 consistent
with published functional evidence (Supplementary Data 8). In a
subsequent analysis, the interactions between known and novel
ASD candidate risk genes were visualized (Fig. 2b). This subnet-
work was significantly interconnected (p-value= 5.0 × 10−179 by
hypergeometric test), with novel genes showing significantly
more functional associations with known ASD candidate risk
genes than expected by chance (p-value= 0.005 by hypergeo-
metric test).
Using coexpression networks seeded by high-confidence ASD

risk genes, a previous study found that cortical projection neurons

Fig. 1 Meta-analysis using the TADA framework identifies 34 genes with a false discovery rate (FDR) of ≤0.2. Known ASD genes are defined as
those with SFARI Gene105 score ≤2 or implicated in a previous TADA meta-analysis (FDR ≤ 0.1)8 and known NDD genes are those listed in the
DDG2P database16 and are colored orange. Deleterious missense (D-mis) variants are defined by CADD score ≥25. A total of 34 genes with at
least one de novo damaging variant observed in SPARK pilot trios achieve an FDR ≤ 0.2 after meta-analysis with published trios (total n= 5238).
Fourteen genes are not classified as known ASD or NDD genes. Six genes (BRSK2, ITSN1, FEZF2, PAX5, DMWD, and CPZ) that have an FDR ≤ 0.1
only after inclusion of SPARK de novo variants are highlighted. The asterisk symbol indicates genes that are not constrained (pLI < 0.5)
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in layers V and VI of the human midfetal prefrontal and primary
motor-somatosensory cortex are a key point of convergence for
ASD risk genes.44 Another study also showed that unbiased gene
co-expression networks overrepresented with candidate ASD risk
genes are more highly expressed in the cortical plate and subplate
laminae of the developing human cortex, which will go on to form
mature layers II–VI of the cerebral cortex.45 One of the newly
statistically significant genes we identified, FEZF2, is a powerful
master regulator gene critical for establishing corticospinal
neurons,46 which connect layer Vb of the cortex to the spinal
cord, and is known to be expressed in the putative layer V in the
late mid-fetal human cortex.47

We evaluated gene expression of the candidate ASD risk genes
identified by either the TADA meta-analysis and forecASD with
regard to cortical layer specificity in the human developing
brain.48 Ten of these genes (BRSK2, ITSN1, FEZF2, RALGAPB, NR4A2,
EGR3, DPP6, CPZ, SH3RF3, and CLCN4) have expression data in
developing fetal human cortex, and similar to Parikshak et al.45

they show a trend of increased expression at postconceptual week
(PCW) 15–16 (Fig. 2c) and PCW 21 (Supplementary Fig. 10) in the
cortical plate and subplate laminae, which will form layers II–VI of
the mature cerebral cortex. The mean of t-statistics of these ten
genes in the inner cortical plate (CPi) and subplate (SP) are greater
than two standard deviations (SD) from the mean of randomly
selected genes matched for gene length and GC content (P < 0.01
by simulation).
We further evaluated cell-type specificity using recently

published single-cell RNA-seq data from fetal and adult mouse
and human brains49 (Supplementary Figs. 11 and 12), and found
the expression specificity of these candidate ASD risk genes is

highest in pyramidal neurons in the mouse hippocampus CA1
region with an enrichment of 3.4 SD from the bootstrapped mean
(p-value= 9.6e−3 by simulations controlling gene length and GC
content, Supplementary Fig. 11). The enrichment in pyramidal
neurons is also observed in the hippocampus CA1 region in
human (2.4 SD above the bootstrapped mean, p-value= 0.02 by
simulation) using recently published human single nucleus RNA-
seq data.50 These results are consistent with a previous study
showing that ASD protein–protein interaction networks related to
the 16p11.2 CNV display significantly enriched expression during
mid-fetal development as well as early childhood in cerebral
cortex.51 Taken together, we find that the candidate ASD risk
genes identified in this study demonstrate differential expression
patterns similar to that of known ASD risk genes, providing further
support that these genes function in similar biological pathways
and mechanisms as known ASD risk genes.

Diagnostic yield in SPARK
Families in the pilot study were selected without regard to genetic
diagnosis. Thirteen of the 457 families self-reported a genetic
diagnosis, and all were confirmed by our analyses and serve as
positive controls to validate our genomic analyses (Supplementary
Data 10). For the remaining 444 families, we identified 50 (10.4%)
deleterious genetic variants (8 dnCNVs, 14 inherited CNVs, 23 de
novo SNVs or indels, 3 inherited LGD variants and 2 chromosomal
aneuploidies) in known ASD risk genes or loci in 49 affected
individuals (Supplementary Data 10). We also identified an
additional 19 likely deleterious genetic variants (1 dnCNV, 1
inherited CNV, 14 de novo SNVs and 3 inherited SNVs) in possible

a

b c

Fig. 2 Network analysis and gene expression of candidate ASD risk genes. a STRING networks of forecASD genes, b STRING networks of
known ASD genes, and c gene expression of human fetal cortex at postconceptual weeks (PCW) 15–16. Known ASD genes are defined as
those with a SFARI Gene scores104 ≤2 (84 genes, indicated as SFARI) or implicated in a previous TADA meta-analysis8 at an FDR ≤ 0.1 (65 genes,
indicated as TADA). The enrichment for each gene was measured by the t-statistics comparing the expression level in each layer against all
other layers. The enrichment of a gene set is the mean of t-statistics of its genes. Two candidate ASD risk genes (PAX5 and KDM1B) are not
shown due to the low expression levels in human developing cortex (RPKM <1 for at least 20% available neocortical samples in BrainSpan48).
Data were extracted from Supplementary Tables of Parikshak et al.45 Laminae abbreviations: marginal zone (MZ), outer/inner cortical plate
(CPo/CPi), subplate (SP), intermediate zone (IZ), outer/inner subventricular zone (SZo/SZi), ventricular zone (VZ)
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ASD risk genes or loci in an additional 14 individuals (3.4%). For all
cases, we defined deleterious ASD-associated variants as those
meeting likely pathogenic or pathogenic criteria according to
ACMG standards.52 We defined possible ASD-associated variants
as either SNVs that are de novo missense variants that affect
known NDD or ASD genes and have an MPC score11 ≥2, loss-of-
function variants that disrupt possible NDD or ASD genes, or CNVs
that delete one or more possible NDD or ASD genes or duplicate
known ASD or NDD loci. Possible ASD genes include those that are
newly significant in this study (FDR ≤ 0.2) with independent
evidence from literature, or genes implicated by other studies
with multiple LGD variants found in affected ASD and NDD cases
(summarized Supplementary Data 8). We did not search for or
discover any incidental findings unrelated to ASD in these families.
When DNA was available, ASD-associated genetic findings were
confirmed by Sanger sequencing or chromosome microarray, and
genetic results were returned to the families (n= 28).

DISCUSSION
Overall, the genomic characterization of 457 ASD families
(418 simplex and 39 multiplex) in SPARK implicates a number of
candidate risk genes in ASD that converge on similar biological
networks as known ASD risk genes. We identified a returnable
genetic result related to ASD in 10.4% of affected offspring and
have begun returning individual genetic results to the families
after confirming results in a clinical laboratory. Not surprisingly,
our diagnostic yield was highest in affected individuals who also
report presence of seizures (27%). The yield in individuals who
also report intellectual disability was also higher (20%) than the
overall cohort.
In our analysis, our diagnostic yield in affected offspring in

multiplex families (15.2%) was slightly higher than affected
offspring in simplex families (10.1%). Interestingly, the genetic
findings in multiplex families rarely explained ASD in all affected
family members (Supplementary Fig. 13), similar to previous
studies that have also found affected siblings with discordant
mutations.53,54 For example, in a family with an affected father and
three affected children, the most severely affected child harbored
a dnLGD in ADNP. No other family member carried this variant or
any other identifiable contributing variant. In another pedigree, an
affected male child with an affected father inherited a 15q11.2
BP1-BP2 deletion from a mother who does not report an ASD
diagnosis, but we found no contributing variant in the affected
father. We also identified eight families in which there was greater
than one contributing variant, even in families in which we were
unable to identify contributing variants in all affected offspring. In
one family with two affected children, the female child inherited a
1q21.1 CNV from an unaffected mother and also harbored a
dnLGD in RALGAPB. However, the affected male child did not
harbor either of these variants and the CNV identified, like many
potentially pathogenic variants, is known to be variably expres-
sive. Future studies with larger sample sizes will allow for a more
robust comparison of the genetic architecture of ASD in simplex
vs. multiplex families.
Over time, we expect the diagnostic yield in SPARK to increase

as more individuals with ASD are studied and as additional genetic
risk factors are identified. For example, we identified LGD variants
in MEIS2 and AKAP10 and deletions of the NFIB, DLL1, and HNRNPD
genes. Although these genes did not reach statistical significance
in our TADA meta-analysis, their role in ASD is supported by
multiple mutations in the literature, and they likely represent
other candidate ASD risk genes (Supplementary Data 8). We
interpreted those variants as possible contributors to ASD in those
individuals. The genetic findings in those cases will be confirmed
and returned in the future if and when these genes are
established as ASD risk genes.

Using a systems biology approach, we demonstrated that the
newly statistically significant and candidate ASD risk genes
identified in this analysis are well-supported beyond genetic
association and are predicted to be ASD risk genes based on a
variety of functional properties, including patterns of spatiotem-
poral gene expression in the brain and protein network
connectivity. BRSK2 and seven of the candidate ASD risk genes
scored in the top decile of forecASD, an integrator of published
functional evidence for ASD risk genes (Supplementary Fig. 9). The
genes localized to network clusters representing processes critical
for neurodevelopment (Fig. 2), including chromatin modification
(KDM1B), neuronal polarity55 (BRSK2), and neuronal migration of
pyramidal neurons56 (ITSN1). The candidate ASD risk genes also
showed significant over-connectivity to known ASD risk genes (p-
value= 0.005 by hypergeometric test, Fig. 2b). Together, the TADA
genetic association analysis coupled with the supporting func-
tional and network-level data triangulate these genes as being
robust and biologically plausible contributors to ASD risk.
Despite the limited sample size in this pilot study, we were able

to identify four newly statistically significant ASD genes. Power
analysis using a simulation-based approach confirmed that the
observed yield is expected given the presumed genetic archi-
tecture in the TADA analysis (Supplementary Table 1). We expect
to identify ~70–75% of all ASD risk genes in the future that meet a
similar FDR threshold (0.1–0.2) when we reach SPARK’s goal of
sequencing 50,000 complete trios (Supplementary Table 1). Other
analyses of large cohorts in ASD are underway, including a recent
analysis of ~12,000 individuals with ASD.57 This study, which used
a mixture of family-based and case-control data, found statistical
support for 99 ASD risk genes, increasing the number of ASD risk
genes from 65.8 Future meta-analyses of both SPARK data and
other ASD cohort data are planned to maximize ASD risk gene
discovery.
For many genes identified with de novo damaging variants,

inherited loss-of-function variants in affected individuals were not
found (Kosmicki et al. 15 and this study), suggesting our current
knowledge about ASD risk genes is biased toward those with high
penetrance. Future studies with larger sample sizes will be needed
to identify and validate additional risk genes of lower penetrance
that confer inherited ASD risk.
Altogether, these data suggest that the methods used to

ascertain individuals with ASD, saliva collection, and genomic data
are of high quality, and future analysis of the tens of thousands of
families enrolling in SPARK will significantly contribute to our
understanding of the genetic basis of ASD. By returning genetic
results to participants, we expect to increase engagement and
increase the number of recontactable participants for genetically
targeted clinical research and trials.

METHODS
Participant recruitment, phenotyping, and DNA sequencing
All participants were recruited to SPARK under a centralized IRB protocol
(Western IRB Protocol #20151664). All participants provided written
informed consent to take part in the study. Written informed consent
was obtained from all legal guardians or parents for all participants age 18
and younger and all participants age 18 and older who have a legal
guardian. Assent was also obtained from dependent participants age 10
and older. Participants are asked to fill out questionnaires online as
described here: https://www.sfari.org/spark-phenotypic-measures/.
Families are classified as multiplex if the initial individual with ASD
registered in the study has a first-degree family member with ASD, as
indicated either by enrollment or survey report.
Essential phenotypic information was curated across language and

motor development, co-morbidities, and Repetitive Behavior Scale-
Revised,58 Social Communication Questionnaire-Lifetime59 and Develop-
mental Coordination Disorder Questionnaire score60 (Table 2). In SSC, all
phenotype details were determined through clinic evaluation and inter-
view; specifically, language delay was defined by Autism Diagnostic
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Observation Schedule module (1–4) per age,61 and regression was
determined from the Autism Diagnostic Interview-Revised.62 For SPARK,
all variables were taken from parent report. It was noted that rates of
language disorder and psychiatric co-morbidities are lower in SSC likely
due to DSM-IV diagnostic practice at the time.
Saliva was collected using the OGD-500 kit (DNA Genotek) and DNA was

extracted in a CLIA-certified laboratory at the Baylor Miraca Genetics
Laboratories (Houston, TX) or PreventionGenetics (Marshfield, WI). Exome
capture was performed using VCRome and the spike-in probe set PKv2 at
the Baylor College of Medicine Human Genome Sequencing Center
(Houston, TX). Captured exome libraries were sequenced using the Illumina
HiSeq platform in 100 bp paired end reads. Samples were sequenced to a
minimum standard of >85% of target covered at 20×, and on average, 96%
of the target was sequenced to 20×. The Illumina HumanCoreExome (550K
SNP sites) array was used for genotyping.

Read alignment and QC
Postsequencing reads were aligned to build 37 of the human genome
using bwa version 0.6.2-r126,63 duplicates were marked using Picard
version 1.93 MarkDuplicates, and indels were realigned using GATK64

version 2.5-2-gf57256b IndelRealigner. Quality checks were performed on
the BAM files using SAMTools65 version 1.3.1 flagstat and Picard version
2.5.0 CalculateHsMetrics. Overall, 98 ± 1.8% of the reads mapped to the
genome, 96 ± 2.3% of the reads were properly paired reads, and 87 ± 15%
of targeted regions had ≥10× coverage.
KING66 was used for relatedness inference based on the genotype of

exome SNPs (MAF >0.01). Estimated kinship coefficient and number of SNPs
with zero shared alleles (IBS0) between a pair of individuals were plotted.
Parent–offspring, sibling pairs, and unrelated pairs can be distinguished as
separate clusters on the scatterplot (Supplementary Fig 1). One outlier
parent–offspring pair (SP0002452 and mother) showed higher than expected
IBS0 and was caused by parental chr6 iso-UPD. Pairwise scatterplots of
heterozygotes to homozygotes (het/hom) ratio of chromosome X, sequencing
depth of chromosome X and Y normalized by the mean depth of autosomes
were used for sex check. Two samples with sex chromosome aneuploidy were
identified as outliers in the scatterplot (Supplementary Fig. 2).

Variant calling
De novo SNV/indel detection. De novo sequence variants were called by
three groups—University of Washington (UW), Simons Foundation (SF),
Columbia University Medical Center (CUMC)—according to the
methods below.

UW. Variants were called from whole exome sequence (WES) using
FreeBayes67 and GATK.64 FreeBayes version v1.1.0-3-g961e5f3 was used with
the following parameters: –use-best-n-alleles 4 -C 2 -m 20 -q 20; and GATK
version 3.7 HaplotypeCaller was used with the following parameters: -A
AlleleBalanceBySample -A DepthPerAlleleBySample -A MappingQualityZero-
BySample -A StrandBiasBySample -A Coverage -A FisherStrand -A Haplotype-
Score -A MappingQualityRankSumTest -A MappingQualityZero -A
QualByDepth -A RMSMappingQuality -A ReadPosRankSumTest -A VariantType.
Postcalling bcftools68 version 1.3.1 norm was used with the following
parameters -c e -O z -s -m –both. We identified candidate de novo calls based
on the intersection of FreeBayes and GATK VCF files and identifying variants
present in offspring but not in parents. We required a minimum of ten
sequence reads in all members of the parent–offspring trio; an allele balance
>0.25 and a PHRED quality >20 for both FreeBayes and GATK variants.

SF. Sequence data were preprocessed using GATK best practices and
variant calls were predicted using three variant callers: GATK v3.6,69

FreeBayes v1.1.0-441, and Platypus v0.8.1-0.70 GATK: gVCF files were
generated for each sample with GATK HaplotypeCaller (minimum
confidence thresholds for calling and emitting was set to 30 and 10,
respectively); joint variant calls were performed using GATK Genoty-
peGVCFs with the recommended default hard filters. For SNPs, we filtered
out: QD <2.0 || FS >60.0 || MQ <40.0 || MQRankSum <−12.5 ||
ReadPosRankSum <−8.0. For indels, we filtered out: QD <2.0 || FS
>200.0 || ReadPosRankSum <−20.0. FreeBayes: variants were called with
default settings for optimal genotyping of indels in lower-complexity
sequence. The final data set included candidate calls with a quality of 5 or
greater. Platypus: variant calling was performed with local assembly
analysis when at most ten haplotypes were allowed. Variants were filtered
out for allele bias (p-value < 0.0001), bad reads (>0.9), sequence complexity

(>0.99) and RMSMQ (<20); other filters were applied on estimated
haplotype population frequency (FR), total coverage at the locus (TC)
and phred-scaled quality of reference allele (QUAL): (FR[0] <= 0.5 and TC
< 4 and QUAL < 20),or (TC < 13 and QUAL < 10),or (FR[0] > 0.5 and TC < 4
and QUAL < 50). For each variant caller, a variant was identified as a
candidate de novo variant if the variant was called in the proband and it
occurred only once in the cohort, with an alternative allele fraction
between 0.2 and 0.8. Both parents were required to have the homozygous
reference genotype at the de novo locus. Read coverage of the variant
locus had to be at least ten reads in each sample in the trio. De novo
candidate variants were classified by DNMFilter algorithm71 that was
retrained with the SSC data set3,14: 1800 de novo mutations identified by
both Iossifov et al.3 and Krumm et al.,14 1104 validated SNVs and indels
from both studies and 400 variants that failed validation. We also randomly
selected ~3000 negative examples from the pool of all SSC variants that
were not confirmed to be de novo. After merging de novo candidate
variants from three variant callers, candidate de novos were considered if
they occurred only once in the cohort, passed hard filters, and had
assigned de novo probability greater than 0.88 for SNVs and greater than
0.0045 for small indels. In the latter case, the total parental alternative allele
count <3 reads.

CUMC. Variants were called from aligned sequence data using GATK
HaplotyperCaller to generate individual level gVCF files. All samples in the
cohort were then jointly genotyped and have variant quality recalibrated
by GATK v3.8.64 A variant present in the offspring with homozygous
reference genotypes in both parents was considered to be a potential de
novo variant. We used a series of filters to identify de novo variants. Briefly,
we included variants that passed VQSR filter (tranche ≤ 99.7 for SNVs and
≤99.0 for indels) and had GATK’s Fisher Strand ≤ 25, quality by depth ≥2.
We required the candidate de novo variants in probands to have ≥5 reads
supporting the alternative allele, ≥20% alternative allele fraction, Phred-
scaled genotype likelihood ≥60 (GQ), and population AF ≤0.1% in ExAC;
and required both parents to have ≥10 reference reads, <5% alternative
allele fraction, and GQ ≥ 30.

De novo SNV/indel consensus call set and annotation. De novo variants
were independently called by three centers—UW, SF, CUMC. De novo
variants called by all three groups were included in the final list by default.
Those called by one or two groups were manually evaluated and included
in the final list if consensus was reached among all groups after discussion
and manual inspection with IGV plots. Variants were annotated by
ANNOVAR72 based on GENCODE Basic v19.73 Candidate variants in the
ACMG secondary findings v2 59 gene list74 (except PTEN, TSC1, and TSC2)
were excluded. Coding de novo variants—nonsense, missense, or
synonymous SNVs, frameshift or nonframeshift indels, and splicing site
variants—were annotated. De novo variants were also annotated with
snpEff version 4.1g75 (reference GRCh37.75), SFARI Gene scores (version q1,
2018, https://gene.sfari.org/database/gene-scoring/), CADD,10 MPC11 and
findings from Deciphering Developmental Disorders project
(gene2phenotype).16

Inherited singleton variants. We first performed following filtering on
individual genotypes. We required minimal read-depth ≥10 and GQ ≥30,
required allelic balance <0.1 for homozygotes reference, >0.9 for
homozygotes alternative, and 0.3–0.7 for heterozygotes SNVs (0.25–0.75
for heterozygotes indels). Genotype calls not passing those criteria were
set to missing. Then we removed variants having missing genotypes in
>25% of founders. We focused analysis on singleton variants in which the
alternative allele was only seen in one parent in the data. We calibrated
GATK’s VQS LOD score for SNV and indels separately such that
synonymous singleton SNVs and nonframeshift singleton indels were
transmitted 50% of the time (Supplementary Fig. 14) The resulting VQS
LOD score cutoffs are −1.85 for SNVs and −1.51 for indels. As mentioned
in the Results section, inherited LGD variants are less likely to cause a
complete loss of function to the gene. To prioritize inherited LGD variants,
we require the variant to be annotated as HC (high-confidence) by LOFTEE
v0.312 using default parameters in >60% of the GENCODE transcripts.

Identification of mosaic mutations. Mosaic SNVs were independently
called by two centers—Oregon Health & Science University (OHSU) and
CUMC. The OHSU approach was previously published23 and utilized a
binomial deviation and logistic regression model to score candidate
mosaic variants. The CUMC approach used a novel approach that was
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based on a beta-binomial deviation and an FDR based approach to
determine per site thresholds.

OHSU. SNVs were called as previously described.23 In brief, pileups were
generated using SAMtools (v 1.1) with BAQ disabled and mapQ 29
(samtools mpileup –B –q 29 –d 1500) on processed BAMs. Variants were
called on individual samples using VarScan 2.3.2, LoFreq 2.1.1 and an in-
house mpileup parsing script (mPUP). Additional parameters for Varscan
included: –min-var-freq 1 × 10−15 –p-value 0.1. Per sample caller outputs
were combined and annotated using ANNOVAR (03/22/15 release) with
databases: Refseq genes (obtained 03/2017), segmental duplications
(UCSC track genomicSuperDups, obtained 03/25/2015), repetitive regions
(UCSC track simpleRepeat and hg19_rmsk, obtained 03/25/2015), Exome
Aggregation Consortium (ExAC) release 0.3 (obtained 11/29/2015), Exome
Sequencing Project (ESP) 6500 (obtained 12/22/2014), and 1000 Genomes
Phase 3 version 5 (obtained 12-16-2014).
Variants were filtered based on the best practices established in Krupp

et al.:23 (1) variant must be exonic or disrupt a canonical splice site, (2) have
a population frequency of ≤0.5%, (3) have at least five alternative reads, (4)
not be in a known segmental duplication or repetitive regions (SDTRF), (5)
called by at least two variant callers, (6) SPARK cohort count ≤1 and SSC
cohort count ≤2, (7) variant read mismatch ≤3, and (8) allele fraction upper
90% confidence interval ≤0.05. For a variant to be considered de novo,
parental alternative allele count must be ≤4 reads. De novo variants were
considered to be candidate mosaic variants if: (1) the probability the allele
fraction significantly deviated from heterozygous (PHET) was ≤0.001, (2)
the allele fraction upper 90% confidence interval was <0.4, and (3) a
logistic regression model score was ≥0.518.

CUMC. SNVs were called on a per-trio basis using SAMtools (v1.3.1-42)
and BCFtools (v1.3.1–174). We generated trio VCF files using samtools
‘mpileup’ command with options ‘–q 20 –Q 13’ corresponding to mapQ
and baseQ thresholds of 20 and 13 respectively, followed by bcftools
‘call’ with option ‘–p 1.1’ to expand the set of variant positions to be
evaluated for mosaicism. In contrast to the OHSU pipeline, BAQ was
used to potentially reduce false positive SNV calls caused by
misalignments.76 To identify de novo variants from trio VCF files, we
selected for sites with (i) a minimum of six reads supporting the
alternate allele in the proband and (ii) for parents, a minimum depth of
ten reads and 0 alternate allele read support. Variants were then
annotated using ANNOVAR (v2017-07-17) to include information from
refGene, gnomAD (March 2017), 1000 Genomes (August 2015), ExAC,
genomicSuperDups, COSMIC (v70), and dbSNP (v147) databases.
CADD,10 MPC11 were used to annotate variant functional consequence.

Preprocessing and QC. To reduce the noise introduced by our variant
calling approach, we preprocessed our variants using a set of filters. Since
our method is allelic depth-dependent, we took a conservative filtering
approach to reduce the impact of false positives on model parameter
estimation. We first filtered our variant call set for rare heterozygous
coding variants (MAF ≤ 1 × 10−4 across all populations represented in
gnomAD and ExAC databases). To account for regions in the reference
genome that are more challenging to resolve, we removed variant sites
found in regions of nonunique mappability (score <1; 300 bp), likely
segmental duplication (score >0.95), and known low complexity.77 We
then excluded sites located in MUC and HLA genes and imposed a
maximum variant read depth threshold of 500. To account for common
technical artifacts, we used SAMtools PV4 p-values with a threshold of 1 ×
10−3 to exclude sites with evidence of baseQ bias, mapQ bias, and tail
distance bias. To account for potential strand bias, we used an in-house
script to flag sites that have either (1) 0 alternate allele read support on
either the forward or reverse strand or (2) p < 1 × 10−3 and OR < 0.33 or OR
> 3 when applying Fisher’s method to compare strand based reference or
alternative allele counts. Finally, we excluded sites with frequency >1% in
the SPARK pilot, as well as sites belonging to outlier samples (with
abnormally high de novo SNV counts, cutoff= 7) and complex variants
(defined as sites with neighboring de novo SNVs within 10 bp).

IGV visualization of low allele fraction de novo SNVs. To identify likely false
positives among our low allele fraction (VAF <0.3) de novo SNVs, we
used Integrative Genomics Viewer (IGV v2.3.97) to visualize the local
read pileup at each variant across all members of a given trio. We
focused on the allele fraction range 0.0–0.3 since this range captures
the majority of the technical artifacts that will negatively impact
downstream parameter estimation. Sites were filtered out if (1) there

were inconsistent mismatches in the reads supporting the mosaic allele,
(2) the site overlapped or was adjacent to an indel, (3) the site had low
MAPQ or was not primary alignment, (4) there was evidence of technical
bias (strand, read position, tail distance), or (5) the site was mainly
supported by soft-clipped reads.

Empirical bayes postzygotic mutation detection model. To distinguish
variant sites that show evidence of mosaicism from germline heterozygous
sites, we modeled the number of reads supporting the variant allele (Nalt)
as a function of the total site depth (N). In the typical case, Nalt follows a
binomial model with parameters N= site depth and p-value=mean VAF.
However, we observed notable overdispersion78,79 in the distribution of
variant allele fraction compared with the expectations under this binomial
model. To account for this overdispersion, we instead modeled Nalt using a
beta-binomial distribution. We estimated an overdispersion parameter θ
for our model whereby for site depth values N in the range 1–500, we (1)
bin variants by identifying all sites with depth N, (2) calculate a maximum-
likelihood estimate θ value using N and all Nalt values for variants in a given
bin, and (3) estimate a global θ value by taking the average of θ values
across all bins, weighted by the number of variants in each bin.
We used an expectation-maximization (EM) algorithm to jointly estimate

the fraction of mosaics among apparent de novo mutations and the FDR of
candidate mosaics. This initial mosaic fraction estimate gives a prior
probability of mosaicism independent of sequencing depth or variant
caller and allows us to calculate, for each variant in our input set, the
posterior odds that a given site is mosaic rather than germline.

Finalized union mosaic call set and validation selection: The high
confidence call sets from the two parallel mosaic determination
approaches were combined, and all candidate mosaic variants were then
inspected manually in IGV. Variants in regions with multiple mismatches or
poor mapping quality were removed, and the remaining mosaics
comprised the high confidence mosaic call set. For calls that were unique
to one approach, the variant was annotated with which quality filter it
initially failed. Variants that were flagged as low confidence germline by
CUMC approach but mosaic by OHSU approach had posterior odds >1 and
were thus retained in the union call set.

CNV detection: De novo and rare inherited CNVs were independently
called by two centers—UW and SF. The final CNV list included all
autosomal CNVs that were called by both SF and UW pipelines either with
reciprocal overlap of at least 50% or when the CNV from one pipeline was
completely within the CNV from the other pipeline. In both cases, the
overlapping region was reported as the final region and annotated as
described below. CNVs called only by one pipeline were considered as
high confidence CNVs if they were called by at least two tools or if they
were de novo CNVs confirmed by manual inspection of plots on exome
data. High confidence CNVs were also included in the final list after
discussion and manual inspection of plots on exome data. De novo CNVs
were additionally inspected on BAF and LRR plots on genotyping data.
CNVs that had at least 75% overlap with known segmental duplications
(segDups track for hg19 from UCSC browser) were excluded. All CNVs were
annotated with the list of RefSeq HG19 genes, OMIM genes, brain
embryonically expressed genes,3 brain critical genes,19 ASD significant,80

and ASD related genes8,14 that have their coding regions overlapping with
the CNV. CNVs greater than or equal to 50 kbp in size were annotated with
morbidity map81 case and control frequencies using a 50% reciprocal
overlap while CNVs < 50 kbp were annotated with their frequency in the
1000 genomes project82 using a 50% reciprocal overlap. We do note that it
is possible some events may be missed with this annotation because of
different platforms (e.g. exome, array, and genome), but the two analyses
provide reasonable insight into the population prevalence of large and
smaller CNVs in the general population. In addition, each found gene was
annotated with pLI (ExAC release 0.3, http://exac.broadinstitute.org/
downloads), ASD,83 RVIS,84 LGD,85 and SFARI Gene scores (version q1,
2018, https://gene.sfari.org/database/gene-scoring/). dnCNVs that affect
DUSP22 and olfactory genes were excluded due to high variability in copy
number of those regions among individuals.86

UW, detection using XHMM and CoNIFER. CNVs from WES were called
using CoNIFER and87 XHMM.88 CoNIFER version v0.2.2 was used with the S
value, –svd 7, set as a threshold as suggested by the scree plot. XHMM
version statgen-xhmm-3c57d886bc96 was used with the following
parameters –minTargetSize 10 –maxTargetSize 10000 –minMeanTargetRD
10 –maxMeanTargetRD 500 –minMeanSampleRD 25 –maxMeanSampleRD
200 –maxSdSampleRD 150 to filter samples and targets, and then to mean-
center the targets; PVE_mean –PVE_mean_factor 0.7 was used to
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normalize mean-centered data using PCA information; –maxSdTargetRD
30 was used to filter and z-score centers (by sample) the PCA normalized
data; and then to discover CNVs in all samples. Calls from CoNIFER and
XHMM were merged in a VCF file using https://github.com/zeeev/
mergeSVcallers with the following parameters -t xhmm,conifer -r 0.5 -s
50000, then merged VCF was sorted by Picard version v2.5.0, and zipped
and indexed with Tabix version v0.2.6. We re-genotyped each XHMM and
CoNIFER CNV event by assessing the RPKM values from the CoNIFER
workflow on an individual. Probands were considered to have a deletion if
their average RPKM value was less than −1.5 s.d and have a duplication if
their average RPKM value was greater than 1.5 s.d. For an event to be
considered as variant in a parent, we required an average ZRPKM less than
−1.3 or greater than 1.3 for deletions and duplications, respectively.

UW, CNV validation using SNP microarray. We generated an independent
CNV callset for validation purpose using SNP microarray genotyping data
generated from Illumina InfiniumCoreExome-24_v1.1, where IDATs (n=
1,421) were processed using Illumina Genome Studio Software. CNV
analysis was performed using the Illumina CNVpartition algorithm version
v3.2.0. Log R Ratio data for all samples and probes was exported.
PennCNV89 version v1.0.4 was used to detect CNVs with the following
parameters -test –hmm -pfb all.pfb –gcmodelfile –confidence. We
determined the maximum and minimum overlap of SNP microarray CNVs
based on the presence of WES probes to make the array calls more similar
to the exome calls and considered an event to have support by PennCNV
or CNVpartition if there was at least 50% reciprocal overlap. We also
generated per probe copy number estimates using CRLMM90,91 version
1.38.0 as previously described14 and genotyped each candidate WES CNV.
Deletions were considered variant if they had a p-value less than 0.05 and
a mean percentile rank less than 30. Duplications were considered variant
if they had a p-value less than 0.05 and a percentile rank of mean greater
than 70. CNVs passing the RPKM genotyping were combined with the CNV
data from CRLMM, PennCNV, and CNVPartition. We considered WES CNVs
as valid if there was support for gain or loss from the PennCNV,
CNVpartition, or CRLMM approaches described above. We assessed
inheritance using both SNP and WES data and preferentially scored
inherited events over de novo CNVs.

SF. CNVs were called with two tools - xHMM v 1.092 and CLAMMS v 1.1.93

xHMM: CNVs were called with default settings (except not filtering on the
maximum target size), including filtering low complexity and GC extreme
targets. CLAMMS: CNVs were called with INSERT_SIZE= 390 bp and
training per-sample-models on sample specific reference panels due to
the observed batch effect in the data; CLAMMS calls were filtered for all
CNVs with Q_EXACT less than 0, or Q_SOME less than 100, or CNVs that
were in samples with more than 70 predicted CNVs of the size at least 10
Kb and of quality score Q_SCORE at least 300. The inheritance status of the
autosomal CNVs was determined by default xHMM protocol for de novo
CNVs identification with plink 1.0794 and Plink/Seq 0.10 [https://atgu.mgh.
harvard.edu/plinkseq/]. Similar protocol was implemented in java for
CLAMMS analysis. For each tool, two tiers of CNV calls—the most confident
calls (tier 1) and less confident calls (tier 2)—were defined, based on de
novo and transmission rates for different cuts on quality scores: SQ (phred-
scaled quality of some CNV event in the interval) and NQ (phred-scaled
quality of not being diploid, i.e., DEL or DUP event in the interval) in xHMM
and Q_SOME (phred-scaled quality of any CNV being in this interval) in
CLAMMS. xHMM tier1 included all autosomal CNVs with both SQ and NQ
quality scores of at least 60, and tier2—all autosomal CNV calls with quality
scores between 30 and 60. Samples with more than 10 de novo CNVs in
xHMM tier1 of size at least 10 kb were excluded. CLAMMS tier1 included all
predictions with quality score 999, except predictions for 25 probands that
have CNVs of size greater than 500 kb with quality score 999 or predictions,
which region was partially inherited and partially de novo; tier 2 included
those excluded from tier 1 predictions as well as all CNVs with quality score
Q_SOME at least 400 and less than 999. Predictions by both methods that
had less than 3 exons or at least 75% overlap with known segmental
duplications (segDups track for hg19 from UCSC browser) were removed
from the list. The final list of CNV predictions included all CNVs from tier 1
predicted by either xHMM or CLAMMS and “intersection” of tier 2 sets from
both tools, that is, CNVs that were confirmed by two tools with reciprocal
or cumulative reciprocal overlap of at least 50%. In the latter case, CNV
predicted by one tool is covered by a set of CNVs predicted by the other
tool. If a CNV from xHMM or CLAMMS was confirmed by the other tool, the
overlapping region was reported as the final region. CNVs were removed
from the analysis if it had more than half of its length overlapping with the

ACMG secondary findings v2 gene74 (except PTEN, TSC1, and TSC2). If such
gene covers less than 50% of CNV, the part of CNV without the gene was
kept if it has at least 25% of its length not covered by segmental
duplications. To identify higher confidence CNV predictions, xHMM and
CLAMMS plots were manually investigated for each CNV in the final SF list.
In addition, SF predictions were compared with PennCNV89,95,96 calls from
array data, which have confidence score of at least 100. All reciprocal
overlaps of at least 50% were treated as additional evidence for CNV
support.

UW, chromosome aneuploidy assessment. We also assessed evidence of
chromosomal aneuploidy by calculating sequence read depth using
SAMTools10 version 1.4 on a per chromosome basis normalizing by the
relative density of WES probes and comparing the normalized value for
each chromosome to the normalized value on chromosome 1 (assumed to
be diploid). For autosomes, we multiplied this number by two to get the
estimate of chromosomal copy number. We did not multiply by two for the
X or Y chromosomes. To further assess the chromosomal copy number, the
heterozygosity was calculated for all SNPs and indels. For heterozygous
sites, the absolute mean deviation from 0.5 was also calculated. We
assessed both metrics to identify outliers. Aneuploidies were required to
have support from both the read depth and SNP/indel metrics.

Burden of de novo variants
Baseline mutation rates for different classes of de novo variants in each
GENCODE coding gene were calculated using a previously described
mutation model.9 Briefly, the trinucleotide sequencec context was used to
determine the probability of each base mutating to each other possible
base. Then the mutation rate of each functional class of point mutations in
a gene was calculated by adding up the mutation rate of each nucleotide
in the longest transcript. The rate of frameshift indels was presumed to be
1.1 times the rate of nonsense point mutations. The expected number of
variants in different gene sets were calculated by summing up the class-
specific variant rate in each gene in the gene set multiplied by twice the
number of patients (and if on chromosome X, further adjusted for female-
to-male ratio97).
The observed number of variants in each gene set and case group was

then compared with the baseline expectation using a Poisson test. In all
analyses, constrained genes were defined by a pLI score of ≥0.5. To
compare with previously published ASD studies, we collected published de
novo variants identified in 4773 simplex trios from three largest ASD
studies to date.3,4,7 To account for platform differences, the baseline
mutation rate of each gene was scaled so that the exome-wide expected
number of silent variants matches the observed count.

TADA analysis
To perform TADA analysis of de novo variants, we assumed the fraction of
disease genes is 5% as estimated by previous studies.26,98 The prior relative
risk for LGD variants and D-mis (defined by CADD >= 25) were specified as
Gamma (18,1) and Gamma (6,1). The prior mean relative risks were
determined using the relationship between burden and relative risk as
described previously.26 The baseline mutation rate of each gene was the
same as used in burden analysis. The analysis was performed on de novo
variants of 4773 published trios and after combing de novo variants
identified from SPARK pilot trios.

Laminal layer and cell type enrichment
To evaluate the expression specificity of laminal layer of human
developing cortex, we analyzed RNA-seq data of neocortical samples of
BrainSpan48 following the method of Parikshak et al.45 The expression
specificity was measured by a t-statistic comparing the expression level in
each layer against all other layers. Two candidate ASD risk genes (PAX5,
KDM1B) were not included in the analysis due to the low expression levels
(RPKM <1 for at least 20% available neocortical samples). To evaluate cell-
type specificity, we used published data of mouse neuronal cell types
inferred from analyzing single cell RNA-seq data of fetal and adult mouse
brains generated by the Karolinska Institutet (KI),99 and human CNS cell
types inferred from a single nucleus RNA-seq data.50 The mouse orthologs
of human genes were retrieved from MGI database.100 The cell-type
specificity was measured by a specificity index which is the mean
expression level in one cell type over the summation of mean expression
level across all cell types.101 To analyze the overall trend of specificity of a
gene set, the mean specificity measure of its genes was compared with
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10,000 sets of randomly drawn genes matched for the transcript length
and GC content and the enrichment is measured by the standard deviation
from the mean specificity of random gene sets.101

Network and functional analysis
The network depicted in Fig. 2a was constructed using the top decile of
forecASD genes, SFARI Genes scoring 1 or 2, and SPARK newly implicated
genes (6 in total). These genes were projected onto the STRING network102

(v10) using the igraph R package (1708 genes). Edges within the STRING
network were thresholded at 0.4, according to the authors’ recommenda-
tion. The largest connected subcomponent (1664 genes) was then
extracted as the basis for further network analysis. Clustering was
performed on the fully connected network using the fastgreedy
community function available within the igraph package. Clusters with
fewer than 30 genes were not considered for further analysis (none of
these clusters contained the six genes highlighted here). Following the first
round of clustering, clusters with >150 genes were subject to an additional
round of clustering, with the goal of separating broad functions of genes
into more specific subcomponents. This process resulted in ten clusters.
Each cluster was assessed for functional enrichment using the Gene
Ontology103 as accessed through the clusterProfiler package within R.
During the functional analysis the background gene universe was always
set to the full set of genes represented among the ten clusters.
Visualization of this network analysis was performed in Cytoscape.104

The top five most significant GO terms associated with each cluster are
available in the Supplementary Data 9. Cluster labels in Fig. 2 were chosen
as the most representative among the top terms for each cluster. Figure 2b
was constructed using the subset of the larger network (Fig. 2a),
corresponding to SPARK newly implicated genes and SFARI Gene genes
scoring 1 or 2 (88 genes). These genes were projected onto the STRING
network within Cytoscape using the STRINGapp. All nonzero-weighted
edges were considered. The fully connected component was visualized,
which resulted in two genes being dropped (DEAF1 and RANBP17). Edges
adjacent to newly implicated genes with a STRING interaction score of ≥0.4
are highlighted.

ForecASD analysis. We used a recently developed method, forecASD40

that indexes support for a gene being related to ASD by integrating
genetic, expression, and network evidence through machine learning. We
examined the forecASD scores of candidate ASD risk genes from the TADA
analysis and compared them to the remainder of the genome using a
Wilcoxon rank-sum test. We similarly used the Wilcoxon test and employed
two predictive features used by forecASD (BrainSpan_score and STRING_-
score) to assess whether the new genes showed similarity to known ASD
risk genes in terms of brain expression patterns and network connectivity.
Importantly, because forecASD uses previously published TADA scores
among its predictive features, which are strongly correlated with updated
TADA scores, we investigated whether the elevated forecASD scores in our
candidate genes could be explained solely by the previous TADA scores.
Specifically, we fit a logistic regression model with the candidate ASD risk
genes labeled as ‘1’ and 500 size-matched background genes (not listed in
the SFARI gene database) labeled as ‘0’ in the dependent variable (Y).
Separate models were fit using either forecASD or TADA8 scores as
predictors, or both together in a full model. Both TADA and forecASD were
significantly associated with the “new gene” indicator when considered in
isolation (P <0.001 for both, Z-test on logistic regression coefficients).
However, when included together in a model of Y, forecASD remained
significantly associated (p-value= 0.00012, Z-test on logistic regression
coefficients) while TADA lost significance (p-value= 0.41, Z-test on logistic
regression coefficients). The Akaike information criterion (AIC) indicated
that the forecASD-only model was a more optimal fit compared with either
the TADA-only or TADA+ forecASD fit. This analysis suggests that the
elevated forecASD scores observed in the ten new genes cannot be fully
explained by the use of TADA as a predictor in forecASD.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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