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Anti-angiogenic therapies in the management of glioblastoma
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Abstract

Angiogenesis is a central feature of glioblastoma (GBM), with contribution from several
mechanisms and signaling pathways to produce an irregular, poorly constructed, and poorly
connected tumor vasculature. Targeting angiogenesis has been efficacious for disease control in
other cancers, and given the (1) highly vascularized environment in GBM and (I1) correlation
between glioma grade and prognosis, angiogenesis became a prime target of therapy in GBM

as well. Here, we discuss the therapies developed to target these pathways including vascular
endothelial growth factor (VEGF) signaling, mechanisms of tumor resistance to these drugs in the
context of disease progression, and the evolving role of anti-angiogenic therapy in GBM.
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Glioblastoma (GBM) is the most aggressive and unfortunately most common, malignant
primary brain tumor, with a median survival of 10-31 months depending on age

at diagnosis, extent of resection, treatment and molecular prognostic factors (1-4).
Angiogenesis is a central feature of GBM, with microvascular glomeruloid proliferation
requisite for histological diagnosis (5,6). Endothelial cells comprise the tumor blood vessels,
facilitating delivery of nutrients and oxygen. In addition, endothelial cells directly support
glioma progenitor cell proliferation through intercellular signaling pathways, contributing to
tumor growth and resilience (7).
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Mechanisms of angiogenesis

Angiogenesis in gliomas involves various mechanisms: co-option of preexisting vessels
(8); de novo angiogenesis through extension of nearby vessels (9); differentiation of bone
marrow-derived endothelial progenitors (10); multiplication of vessels through splitting of
existing vessels (also known as intussusception) (11); and vascular mimicry by glioma stem
cells that form luminal cylinders resembling vessels (12-15).

Angiogenesis is regulated by intricate and overlapping signaling pathways, which involve
both hypoxia-dependent and -independent processes. In hypoxic environments, hypoxia
inducible factor 1 subunit alpha (H/F~1a) is upregulated, driving expression of pro-
angiogenic genes such as vascular endothelial growth factor (VEGF). VEGF protein

binds to its receptor VEGFR and activates additional growth factors that mediate
endothelial sprouting, migration, and endovascular permeability. Hypoxia also induces
matrix metalloproteinase (MMP) production that mediates stromal disintegration and
endothelial migration (16,17). Angiopoietin 1 (ANGI1) and ANGZ have a complicated
interplay, but work together to help formalize these primitive vessels. ANG1 protein
stabilizes vessels by facilitating cell interactions that support vasculature integrity (18).

The role of ANG2 depends on the presence or absence of VEGF. When VEGF is present,
ANG?2 acts via tyrosine kinase with immunoglobulin-like and EGF-like 1 (TIEL) receptors
to promote angiogenesis and stimulate the migration and differentiation of endothelial cells,
through Notch and ephrin-A2 signaling, respectively (19-22). When VEGF is absent, ANG2
acts via TIE2 receptors to destabilize blood vessels, causing endothelial apoptosis and
vessel regression (19). In low nutrient environments, VEGF can be upregulated through
peroxisome-proliferator-activated receptor-y coactivator-la (PGC-1-a) independently of
hypoxia (23). In addition, several different gene mutations that are common in gliomas,
including platelet-derived growth factor (PDGF), epithelial growth factor receptor (EGFR),
p53 (7P53), RB transcriptional corepressor 1 (RBI), von Hippel-Lindau tumor suppressor
(VHL) and phosphate and tensin homolog (P7EN), all stabilize HIF-1a causing subsequent
upregulation of VEGF (24,25).

In addition to VEGFrelated actions on angiogenesis, stromal cell-derived factor 1 protein
(SDF-1, also known as C-X-C motif chemokine ligand 2, CXCL2), and its receptor
CXCR4 (C-X-C motif chemokine receptor 4), also recruit bone marrow-derived progenitors
from the circulation into the tumor that subsequently differentiate into endothelial cells

and pericytes (26-28). Other growth factor pathways including fibroblast growth factor
(FGF), phosphoinositide 3-kinase (P/K3), PDGF, and transforming growth factor p1
(TGFB1), mediate angiogenesis through a combination of mechanisms that regulate VEGF
expression, stimulate endothelial cell proliferation, and regulate expression of proteases
implicated in vessel dissolution and migration (29-32). As these processes unfold, the
tumor vasculature manifests as irregular, poorly constructed, and poorly connected vessels
(33). This disorganized and leaky system creates spatiotemporal heterogeneity in tumor
oxygenation that may impact the development and expansion of the tumor’s genetic
subclone populations.

Chin Clin Oncol. Author manuscript; available in PMC 2023 November 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Schulte et al. Page 3

Therapeutic strategies targeting angiogenesis

Targeting angiogenesis through VEGF blockade and other mechanisms has been efficacious
in other cancers. In addition to triggering tumor cell death via deprivation of oxygen

and nutrients, targeting angiogenesis may lead to the transient normalization of the

tumor vasculature and improved uptake of cytotoxic chemotherapy (34). In addition to
observations that GBM is a highly vascularized tumor, several studies correlated VEGF
expression with glioma grade and prognosis (16,35,36). Thus, angiogenesis became a prime
target of therapy in GBM as well.

While there are many inhibitors targeting different parts of the angiogenesis cascade,

the only approved treatment in the United States (US) is bevacizumab, a recombinant
human monoclonal antibody that binds to and sequesters VEGF, preventing activation of its
receptors. In 2004, it was first FDA-approved for treatment of advanced colorectal cancer,
where it reduced microvascular density and blood perfusion (37). The first clinical trials

of bevacizumab in GBM were in recurrent disease in the “AVF3708g/BRAIN” and “NCI 06-
C-0064E” phase Il trials. In these trials, bevacizumab monotherapy or combination therapy
with irinotecan, demonstrated objective response rates (28—-40%) and progression-free
survival at 6 months (PFS6) of 40-50% that were markedly improved compared to higher
historical controls, but no improvement in overall survival (OS) (38-40). These studies

led to conditional accelerated FDA approval of bevacizumab in recurrent GBM in 2009,
approved as monotherapy given the added toxicity in the combination arm (38,39). The
phase 111 European Organization of Research and Treatment of Cancer (EORTC) 26101 trial
in recurrent GBM investigated lomustine with or without bevacizumab, and combination
therapy also demonstrated improvement in PFS (1.5 to 4.2 months) but no change in

OS (41). Both the AVF3708g and EORTC 26101 trials demonstrated reduced reliance on
steroids. In EORTC 26101, more patients on bevacizumab were able to completely stop
steroids than patients in the control arm (23% vs. 12%). Based on the results of this trial,
bevacizumab received full approval for treatment of recurrent GBM in 2017.

Bevacizumab was also investigated in newly diagnosed GBM in two large randomized,
double-blinded, phase 11 trials—Radiation Therapy Oncology Group (RTOG) 0825 and
AVAglio. Both trials demonstrated an improvement in PFS by 3.4-4.4 months with addition
of bevacizumab to standard temozolomide and radiation, but no improvement in OS (42,43).

Aflibercept, also known as VEGF trap, is a recombinant fusion protein that binds to
circulating VEGF-A and VEGF-B, as well as placenta growth factor (PGF), and inhibits
binding to VEGF receptors and downstream signaling. A phase 1 trial in recurrent
malignant glioma demonstrated PFS6 of 7.7% in GBM, however the study was notable
for high dropout attributed to significant toxicities (44).

Tyrosine kinase inhibitors (TKIs) are small molecules that target one or many tyrosine
kinase receptors, including VEGFR, EGFR, PDGFR, and FGFR. Sunitinib and sorafenib
both target VEGFR in addition to c-Kit and PDGFR, and are shown to improve survival

in other cancers including metastatic renal and hepatic cell carcinoma (45,46). However, a
phase Il trial looking at sunitinib monotherapy in bevacizumab-naive and -resistant recurrent

Chin Clin Oncol. Author manuscript; available in PMC 2023 November 08.
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GBM demonstrated no improvement in PFS or OS (47). Sorafenib was tested in a phase |
trial of recurrent GBM with modest effect on outcomes (median PFS 7.9 months and OS
17.8 months), but several dose-limiting toxicities (48). Phase I11 trial of cediranib, another
inhibitor of VEGFR, c-Kit and PDGFR, versus lomustine versus combination failed to

meet its primary endpoint of PFS in recurrent GBM (49). Enzastaurin, which targets the
protein kinase C and PI3K/AKT serine/threonine 1 pathways, also failed to meet its primary
endpoint of improvement in PFS or OS in a phase 111 trial in recurrent GBM comparing
enzastaurin versus lomustine (50).

Unfortunately, targeting other components of angiogenesis has also demonstrated limited
efficacy. Trebananib (AMG386), a peptide fused to the Fc immunoglobulin protein,
inhibits ANG1 and ANG2 ligands from interacting with the TIE2 receptor. Phase |1

study of trebananib versus combination with bevacizumab in recurrent GBM showed no
improvement compared to historical OS of bevacizumab monotherapy (51). Cilengitide, an
antagonist of integrins avp3 and avp5 that mediate vascular stability, did not improve PFS
or OS in combination with standard therapy for newly diagnosed GBM (52). In addition to
the treatments discussed above, there are many additional clinical trials using medications
targeted toward angiogenesis, in different phases of development (Table 1).

Pathways of resistance

Despite the biologic rationale and early promise of anti-angiogenic therapies, no agent

in isolation or in combination has yet demonstrated an improvement in survival in

GBM. Mechanisms of resistance are multifactorial and involve (1) upregulation of VEGF~
independent angiogenesis; alternative methods of vasculogenesis including (I1) recruitment
of bone marrow-derived progenitors, (111) vascular mimicry and (1V) vessel co-option; (V)
tumor cell autophagy; and (V1) tumor cell migration away from the tumor center and
invasion into surrounding brain tissue (Figure 1). In addition to these pathways, there is
some data that tumors treated with TKIs may acquire mutations in tyrosine kinase domain
that dampen the response to TKIs, as seen with EGFR inhibitors gefitinib and erlotinib (90).

Downregulation of VEGF leads to upregulation of other proangiogenic pathways, including
PDGF, FGF, phosphatidylinositol glycan anchor biosynthesis class F (P/GF), hepatic growth
factor (HGF)/ c-MET protooncogene, ANG1, ANGZ, deltad-notch (DLL4-Notch), and
interleukins (12,91,92). Hypoxia resulting from treatment with VEGF inhibitors upregulates
HIF-1a, which in turn increases expression of ANGZ2(93). FGF, which is involved in
developmental and oncologic angiogenesis, may mediate resistance to VEGF inhibitors such
as cediranib (94,95). In addition to regulation of FGFand ephrin signaling pathways, the

DL L 4-Notch pathway may also mediate resistance to VEGF inhibition by stabilization of
larger vessels (96).

Blockade of VEGF/VEGFR signaling drives compensatory mechanisms of tumor
vasculogenesis. Increased vascular co-option was seen in H/F-1a transgenic knockout mice,
as well as GBM mouse xenograft models treated with a neutralizing VEGF antibody
(10,97). In humans, co-option was observed in resected tumor samples after pre-surgery
exposure to bevacizumab or cediranib (98,99). VEGF/VEGFR blockade also leads to

Chin Clin Oncol. Author manuscript; available in PMC 2023 November 08.
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de novo blood vessel formation and stabilization via the VEG~independent pathways
described above (10,99-106).

Independent of increasing angiogenesis, disease resistance to anti-angiogenic agents may
be mediated by other mechanisms of tumor perseverance. The hypoxia-induced pathways
above also drive tumor progression through expansion of a H//~regulated tumor progenitor
population (107). Tumor cells under hypoxic stress may also evade immediate cell death
with autophagy-driven sequestering of damaged cell components, mediated by HIF-1a and
B-cell CLL/lymphoma 2 (BCL2)-interacting protein 3 (BN/P3) (100). In addition to /n
situresilience, tumor cells treated with anti-angiogenic agents migrate and invade away
from hypoxic areas, demonstrated both in mouse models of GBM (108,109) and in humans
(110,111). This invasion is often perivascular in nature along blood vessels remaining

after anti-angiogenic treatment, with tumor cells co-opting pre-existing vessels in a VEGF
independent manner (97). This invasion is seen on MRI as non-enhancing disease and can
be multifocal and thus more difficult to address with focal treatments (surgery, radiation,
etc.) at the time of recurrence (26,101,108). This invasive phenotype may be mediated
through upregulation of genes that facilitate cellular motility as well as proteins that allow
invasion of cells through the extracellular matrix including MMPs -2, -9, and -12; and
secreted protein acidic and rich in cysteine (SPARC) (112). Among other pro-migratory
mechanisms, tumor cells may transition to a mesenchymal phenotype mediated via PDGF
and HGF-dependent MET signaling (105,113). This was demonstrated after exposure

to either bevacizumab or cediranib (99,114), and led to interest in targeting the MET
pathway in conjunction with VEGF manipulation, as MET may also contribute to tumor
growth. Although a phase Il trial evaluating bevacizumab with or without onartuzumab,

a monovalent MET inhibitor, failed to improve PFS or OS (115), trials of other c-MET
inhibitors are in progress (NCT02386826, NCT02270034).

Evolving use of anti-angiogenic therapy

Though anti-angiogenic therapies to date have failed to extend survival in new or recurrent
GBM, their contribution to PFS suggests some degree of benefit, possibly through
alleviation of peritumoral edema (116). Corticosteroids are first line therapy for peritumoral
edema, but have a broad and high-frequency side effect profile particularly in the setting of
prolonged use, including myopathy, hyperglycemia, weight gain, hypertension, osteoporosis,
insomnia, anxiety, and rarely avascular necrosis among other toxicities (117). Bevacizumab
carries a distinct range of side effects, including hypertension and poor wound healing, but
also rare risks of thromboembolism, hemorrhage, gastrointestinal perforation and nephrotic
syndrome (118). Several clinical trials suggested that bevacizumab can reduce reliance

on corticosteroids in GBM patients. These observations emerged from the AVF3708g

trial, EORTC26101 trial, and other observational studies (38,39,119). Likewise, use of
cediranib and cabozantinib (which inhibits VEGF2, MET, AXL tyrosine kinase, and ret
protooncogene RET) also correlated with reduced corticosteroid use over time (60,94). In
regards to quality-of-life and symptom control, there is conflicting evidence as to whether
bevacizumab is beneficial. The AVAglio trial in newly diagnosed GBM noted delayed
deterioration of quality-of-life metrics (including global health status, cognitive, emotional,
and social functioning, and ability to communicate) with bevacizumab compared to control,

Chin Clin Oncol. Author manuscript; available in PMC 2023 November 08.
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and stable Mini Mental Status Examination (43). However, the RTOG0825 study reported
decreased quality-of-life measures (symptom control and neurocognitive function) with
bevacizumab compared to placebo (42).

Bevacizumab is also used to treat the clinical and radiographic changes associated with
radiation necrosis in the brain. Radiation may underlie short- and long-term changes to

the vasculature including increased vascular permeability, vasculopathy, ischemia, necrosis,
and resultant edema (120). These pathological changes underlie MRI findings including
increased contrast enhancement and edema that are often difficult to distinguish from tumor
progression. Radiation necrosis can be symptomatic with focal deficits including weakness
and aphasia, headaches, and seizures. Recent studies demonstrated bevacizumab to be a
powerful tool for managing radiation-associated edema (121,122). There is an ongoing
phase I clinical trial comparing corticosteroids plus bevacizumab versus placebo for the
treatment of radiation necrosis in brain metastasis (NCT02490878).

In addition to symptomatic treatment, there is still hope that anti-VEGF agents may be
helpful in combination with other therapies, including cytotoxic chemotherapy, TKIs, and
immunotherapy, in improving survival in GBM. Many of these combinatorial strategies rely
on the recent mechanistic understanding that anti-VEGF therapies may act to normalize the
blood vasculature, improving spatial and temporal delivery of therapeutic agents across the
tumor (34,123). Improved efficacy of combinatory treatment may require specific timing of
anti-VEGF agents with cytotoxic/cytostatic agents. For example, a phase 1l trial looking at
cediranib demonstrated vascular normalization occurs day 1 to 28 after drug dosage (94).
Experiments looking at the time frame for vascular normalization after bevacizumab have
yet to be been done in GBM, but mouse models suggest it starts as early as 1 day after
infusion and clinical trials in rectal carcinoma suggest half of the tumor vasculature is
normalized by day 12 (124). The dosing of bevacizumab may influence response as well,
with some studies suggesting that a reduced dose may be more efficacious (125,126).

The interaction of VEGF signaling and the immune system is of particular interest given
the impact of immunotherapies in several cancers. VEGF signaling inhibits differentiation
of circulating hemopoietic progenitor cells, dendritic cells, and T cells through nuclear
factor kappa B (NVFxB) signaling (127,128). Aflibercept also increases the mature dendritic
cell population in solid tumors (129). In a study of colorectal cancer, bevacizumab
increased CD4+ and CD8+ T cells, as well as CD20+ B cells in peripheral blood (130).
However, these studies suggesting that VEGF inhibition may alleviate VEGF-mediated
immunosuppression was countered by a study in which VEGF inhibition was tied to
impaired lymphocyte recruitment (131). A better understanding of the role of VEGF in
regulating the brain immune niche and GBM tumor microenvironment is clearly needed.

Conclusions

Angiogenesis is a hallmark feature of GBM and the role of anti-angiogenic agents in GBM
treatment has evolved over time. While initial trials were promising that these agents could
impact prognosis, many agents including anti-VEGF antibody failed to prolong survival

in both newly diagnosed and recurrent GBM, either as monotherapy or in combination

Chin Clin Oncol. Author manuscript; available in PMC 2023 November 08.
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with traditional chemotherapies and other targeted agents. Despite these challenges, anti-

an

giogenic agents still have utility for managing vasogenic and radiation-related edema,

being used in combination to target multiple angiogenic pathways, and to promote the
intratumoral uptake of other chemotherapies.
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Figure 1.
Mechanisms of resistance to anti-VEGF therapy. Resistance to VEGF targeted therapy is

multifactorial, involving initial non-responsiveness of tumor cells to anti-VEGF therapy, as
well as later acquired resistance via several mechanisms. [1] Upregulation of angiogenesis
through VEGF-independent pathways, including FGF, PIGF, HGF, c-MET, ANG1, ANG2,
and interleukins. [2] Increased recruitment of bone-marrow derived progenitors, including
mesenchymal stem cells and endothelial progenitor cells, which differentiate into pericytes
and endothelial cells, respectively, to populate new blood vessels. [3] Tumor cells under
hypoxic stress sequester damaged cell components, in a process called “autophagy”, which
delays cellular apoptosis. [4] Tumor cells treated with anti-angiogenic agents migrate and
invade away from hypoxic areas, making treatment with surgery and radiation more difficult.
[5] Tumor cells in hypoxic environments will migrate toward blood vessels in the nearby
normal brain, and “co-opt” these vessels for their supply of oxygen and nutrients. [6]

Tumor cells can change their shape to resemble endothelial cells, and will aggregate with
normal endothelial cells to create cylindrical structures with lumen, which behave as blood
vessels. Adapted from Chandra et al. (89). ANG1/2, angiopoietin 1/2; bFGF, basic fibroblast
growth factor; BNIP3, B-cell CLL/lymphoma 2 (BCL2)-interacting protein 3; c-MET,
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c-MET proto-oncogene; HIF-1a., hypoxia inducible factor 1 subunit alpha; HGF, hepatic
growth factor; IL-8, interleukin-8; PDGF, platelet-derived growth factor; PIGF, placental
growth factor; VEGF, vascular endothelial growth factor; MMP, matrix metalloproteinase;
VE-cadherin, vascular endothelial cadherin.
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