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ABSTRACT OF THE THESIS  

 

Investigating the Impacts of Roadway Activities  

on Fine Particle Concentrations Using Emerging Sensor Networks 

 

by  

 

Kyongwon Yoo 

 

Master of Science in Atmospheric and Oceanic Sciences 

University of California, Los Angeles, 2023 

Professor Suzanne E. Paulson, Chair  

 

As car manufacturers have reduced vehicle tailpipe emissions, roadway sources of PM2.5 

(particulate matter with diameters ≤ 2.5 μm) generated by brake wear, tire wear, and resuspended 

dust from the roadway have played an increasingly significant role in near-roadway exposure. In 

this study we used the spatially dense network of low-cost PurpleAir (PA) sensors. 

Approximately 400 sensors are deployed in Los Angeles County, with 22 located within 700 

meters of a major roadway. Plotting the PM2.5 concentrations for each PA sensor located within 

700 meters of a roadway between January 2019 and December 2021 revealed no distance-decay 

trend. We then used the nearby personal weather stations to determine the hourly wind direction 

at each sensor and separated PM values according to whether they were downwind or upwind of 

their respective nearby roadways. The results showed that fine particles (PM2.5) were elevated 
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within 240 meters of the roadway and decayed to the background concentration by 430 meters. 

The concentrations were 16 to 24% higher than the background concentration and were higher in 

periods of higher atmospheric stability and lower wind speeds.  
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CHAPTER 1 

Introduction 

 

Exposure to traffic-related air pollutants has been linked to an increased incidents of 

various adverse health outcomes such as cancer, adverse respiratory effects, asthma, general 

mortality, impaired immune function, type II diabetes, and heart attacks (Pearson et al., 2000; 

Van Der Vliet et al., 1997; Janssen et al., 2003; Hoek et al., 2002; Williams et al., 2009; Puett et 

al., 2011; Brugge et al., 2007). This has raised concerns about the health effects of air pollution. 

Of all the traffic-related air pollutants, particulate matter with aerodynamic diameter smaller than 

2.5 µm (PM2.5) is a significant contributor to the adverse health outcomes associated with 

exposure (Anderson et al., 2012; Pope & Dockery, 2006). In near-roadway environments, motor 

vehicle emissions from combustion, brake wear, tire wear, and resuspended dust by traffic 

movement have been observed to cause elevated concentrations of PM2.5 (McCarthy et al., 2006; 

Jeong et al., 2019; Harrison et al., 2012; Oroumiyeh et al., 2022; Rutter et al., 2011). A 

significant proportion of the US population, (estimates range from 11% to 19%), lives close to 

major roadways (Brugge et al., 2007; Rowangould, 2013). Insufficient pollutant measurement 

monitors near roadways highlight the need for a higher spatiotemporal resolution to understand 

the impact of PM2.5 exposure at the neighborhood scale. 

 To track compliance with the National Ambient Air Quality Standards (NAAQS) and 

safeguard public health, the United States federal and state environmental protection agencies 

utilize standard federal reference methods (FRM) or federal equivalent methods (FEM) to 

measure ambient PM2.5 concentrations (Feenstra et al., 2019). However, the regulatory monitors' 
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ability to provide adequate spatial coverage for reflecting detailed PM2.5 spatial and temporal 

variations near major roadways is limited by the high instrumentation and maintenance expense 

and strict siting criteria (Bi et al., 2020b, Rowangould, 2013). Recent advancements in low-cost 

sensor technology have opened new opportunities for measuring air quality beyond regulatory 

FRM/FEM monitors. Deploying these sensors in large numbers and their high frequency of 

measurement increases the spatiotemporal availability of measurements (Clements et al., 2017; 

Bulot et al., 2020). Although low-cost sensors allow for real-time air pollution monitoring at 

finer spatial and temporal scales, they are associated with significant limitations, primarily due to 

their lower accuracy than FRM/FEM monitors. One of the main challenges associated with low-

cost sensors is their uncontrolled nature of sensor siting. This is because sensors are frequently 

owned and mounted by members of the general public and may not be placed or consistently 

maintained. This is a significant difference compared to the regulatory monitoring stations that 

are carefully sited and maintained. To address the limitations of low-cost sensors and ensure 

their accuracy and reliability in air pollution monitoring, quality control measures are required. 

AQ-SPEC, the South Coast Air Quality Management District Air Quality Sensor Performance 

Evaluation Center, has established standardized testing procedures for low-cost sensors in the 

field and laboratory settings. Through their comprehensive evaluation of multiple commercially 

available low-cost air quality sensors, they have determined that several sensors can perform 

effectively under ambient and controlled conditions (South Coast Air Quality Management 

District, 2022).  

 The PurpleAir-II (PA) sensor is a widely used low-cost sensor capable of providing real-

time measurements for both outdoor and indoor levels of particulate matter (PM). The usage of 

PA has proliferated in the last few years; as of January 2022, more than 12,000 PA sensors are in 



    3 

use worldwide (PurpleAir, 2022). AQ-SPEC conducted a field evaluation of the PA sensors and 

found that it correlates well (GRIMM: 𝑅2 > 0.93; beta attenuation method (BAM): 𝑅2 > 0.86; 

for 1-hr mean) with the FEM reference monitors for PM2.5 measurements in Los Angeles (LA) 

area (AQ-SPEC, 2019). While the PA sensors demonstrate good performance in capturing daily 

and diurnal variations compared to FEM, they tend to overestimate PM2.5 concentrations in a 

high-pollution environments (Gupta et al., 2018). Subsequently, the Environmental Protection 

Agency (EPA) compared PA sensor data and FEM and FRM measurements across 16 states. 

Their analysis revealed that PA sensors tend to overestimate concentrations of PM2.5 by about 

40%, but this discrepancy can be corrected by utilizing an optimized linear regression equation 

(Barkjohn et al., 2021). 

 The Health Effects Institute (HEI) conducted a systematic review to investigate the 

correlation between residential proximity to major roadways and the associated traffic-related air 

pollutants. The review identified a specific exposure zone within 300m to 500m from major 

roadways (HEI, 2010). Previous air pollution studies have often relied on roadway proximity as a 

proxy for elevated levels of transportation-related air pollutants. However, given the limited 

availability of regulatory monitors in certain areas of interest, this approach may not 

comprehensively assess air pollution levels.  

The rate at which pollutants decay around roadways has been the subject of a number of 

studies (Karner et al., 2010; Choi et al., 2012; Hu et al., 2009).The appearance of decay curves 

downwind of roadways is a function of both the strength of the particle source, which controls 

the degree to which the pollutant concentration is elevated at the roadway edge, and the 

concentration of the pollutant in the background air (Choi et al., 2014). If there is a significant 

difference between the two, the pollutant will decay to background within a few hundred to a 
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few thousand meters, while if the two values are similar, the pollutant will decay to the 

background over a short distance (Hu et al., 2009; Choi et al., 2012; Choi et al., 2014). PM2.5 is a 

relatively long-lived pollutant, as the material in the particles stays airborne for around a week. 

As a result, it has a higher background level relative to the traffic source, resulting in a shorter 

decay profile than observed for other traffic related pollutants such as ultrafine particle number 

or nitrogen oxides (Ranasinghe et al., 2019).    

LA county, with a population of over 10 million residents and a population density of 

2,467 people per square mile as of 2020, is the most populous county in the United States (US 

Census Bureau, 2020). The complex network of major roadways and freeways in LA, coupled 

with high traffic congestion results in increased exposure of nearby populations to elevated 

levels of traffic-related air pollution. However, current knowledge gaps and inaccuracies in air 

pollution assessments warrant further investigation. In this study, we employ PA sensors in Los 

Angeles and incorporate meteorological and traffic flow data to comprehensively investigate the 

extent to which PM2.5 concentrations are elevated in the near-roadway environment. This 

research aims to provide a more thorough understanding of the air pollution exposure levels in 

areas proximate to major roadways and freeways, ultimately aiding in developing effective 

mitigation strategies. 



    5 

 

CHAPTER 2 

 

Methods 

 

2.1 Study Region  

 
We delimit our study region to LA county covering an area extending approximately 

from -118.607° to -117.682° in the West-East direction and from 33.688° to 34.323° in the 

South-North direction. From January 1, 2019, to Dec 31, 2021, there were 376 active outdoor PA 

sensors in our study region. However, it is essential to note that not all sensors consistently 

provided accurate measurements throughout the entire study period. 

 

Figure 2.1: The study area of LA county, showing locations of PA sensors.  
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2.2 PurpleAir Sensor Data 

 

2.2.1 PM2.5 Concentrations from the PurpleAir Sensor Network  

 

Each PA sensor contains two Plantower PMS 5003 laser particle counters. PMS 5003 

employs a fan to pull air past a laser beam, and the scattered light is detected at a 90-degree angle 

with a photo-diode detector. The detector converts the scattered light into a voltage pulse, and 

the number of particles in the air is determined by counting the number of pulses from the 

scattering signal (Sayahi et al., 2019). By identifying particles going past by their reflectivity, the 

PMS5003 sensors count suspended particles in sizes of 0.3, 0.5, 1.0, 2.5, 5.0, and 10 µm. The 

instrument has provided measurements of PM1.0, PM2.5, and PM10 mass concentrations (µg 

𝑚−3), a proprietary algorithm that converts the counts to which it reports every 2-minutes. These 

values are reported in two ways, labeled CF=1 and CF=ATM. Additionally, the PA sensor 

contains BME280 environmental to monitor the chamber's inner relative humidity and 

temperature and an ESP8266 microcontroller to communicate with the PMS 5003 sensor and the 

PA server over Wi-Fi. PurpleAir presents the PM concentrations live on the PA map (PurpleAir, 

2022). According to the manufacturer, each PMS5003 sensor has an effective measurement 

range of 𝑃𝑀2.5 concentrations between 0 and 500 µg 𝑚−3, and working temperature and relative 

humidity ranges of -10 to 60 °C and 0 to 99 %, respectively (Yong & Haoxin, 2016). 

 

2.2.2 Quality Assurance and Control for PurpleAir Data 

 

There are several potential sources of error and issues with the quality of the data 

obtained from the PA network. To address this, we implemented quality assurance and quality 

control (QA/QC) per PurpleAir guidelines, as discussed in Connolly et al. (2022). The initial 

QA/QC steps included 1) removing observations for sensors with data from only one channel 
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and 2) removing data with temperature (T) and/or relative humidity (RH) that fall outside the 

PurpleAir acceptable range, 14 °F < T < 140 °F (-10 °C < T < 60 °C) and 0% < RH < 100%, 

respectively. Per the PurpleAir manufacturer's manual (Yong & Haoxin, 2016), we conducted 

further QA/QC on each PA sensor. Removing data with PM2.5 mass concentrations exceeding 

500 µg 𝑚−3, and those for which the difference between the two channel readings exceeded ±10 

µg 𝑚−3 for averaged PM2.5 readings below 100 µg 𝑚−3, or greater than ±10% of the reading for 

averaged PM2.5 readings above 100 µg 𝑚−3. Additionally, we validated the outdoor designation 

of our sensors by creating time-series temperature plots. If the sensors showed a restricted 

temperature range, we inferred that they were actually indoor sensors mislabeled as outdoor and 

excluded them from further analysis. 

To ensure the accuracy of the hourly averages, a 90% data completeness threshold was 

implemented for both channels A and B. Specifically, for measurements taken before May 30, 

2019, which were based on 80-second intervals, an 80-second average was required to have at 

least 90% of the 45 data points available. For measurements taken after May 30, 2019, which 

were based on 120-second intervals, a 120-second average was required to have at least 90% of 

the 30 data points available. This approach aimed to establish reliable hourly averages and 

ensure consistency in data completeness thresholds across both sensor channels. Any data points 

that did not meet these requirements were not included in the calculation of the averages. Finally, 

sensors with more than 25% of total data failing QA/QC tests were removed from further 

analysis. Once cleaned, we obtained each sensor's final PM2.5 mass concentrations by averaging 

measurements from channels A and B.  
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2.3 Meteorology Data 

 

Using personal weather stations (PWS) for meteorological data acquisition has many 

advantages, including the ability to provide high spatial and temporal resolution data, and is 

often in closer proximity to the study area. Several websites, including Weathermap, 

WeatherLink, and Weather Underground, provide access to PWS data. As a result, these 

websites offer many locations for PWS data compared to traditional meteorological monitoring 

systems. In LA county alone, over 250 PWS were available during our study period. Although 

data obtained from PWS offer a high temporal and spatial resolution, it is important to address 

concerns about the quality and accuracy of such measurements. Therefore, we took several initial 

QC/QA measures to ensure that the PWS data used in this study were reliable. Additionally, we 

excluded data from PWS with a low data completeness from the analysis to maintain data 

quality. For our study area, we obtained meteorological data from two sources: the Weather 

Underground (IBM, 2019) and the EPA Air Quality System (AQS) database 

(https://www.epa.gov/air-data). We collected temperature (°F), relative humidity (%), wind 

speed (mph), and wind direction (°) parameters from the Weather Underground PWS at 5-minute 

intervals. In comparison, we found that the AQS database provided wind resultant data at an 

hourly average level consistent with PA PM2.5 measurements. Since the Weather Underground 

data was recorded at a 5-minute resolution, we computed the hourly average of wind direction 

and wind speed using vector calculations. 
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Figure 2.2: Weather Underground PWS and EPA AQS meteorological monitors in LA county.  

 
 

2.3.1 Averaging Hourly Wind Speeds and Directions 

 
To comprehensively represent the hourly wind conditions, we used the average vector 

method to determine the hourly average of wind speed and direction. This method involved 

computing resultant wind speed and direction by averaging each set of 5-minute Weather 

Underground wind speeds and direction measurements for the hour into a single hourly vector. 

As the wind is a vector quantity with both magnitude (wind speed) and direction (wind 

direction), this approach allowed us to capture both aspects of the hourly wind conditions. The 

wind speed vector components 𝑢𝑖  and 𝑣𝑖 for each 5-minute measurement, corresponding to east 

and north, are shown in Equations 2.1 and 2.2, respectively.  
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𝑢𝑖 =  − 𝑠𝑖  ×  sin [2𝜋 × 
𝜃𝑖

360
]                               (2.1)  

                

𝑣𝑖 =  − 𝑠𝑖  ×  cos [2𝜋 × 
𝜃𝑖

360
]                               (2.2)                 

 

𝑤ℎ𝑒𝑟𝑒 𝑠𝑖  and 𝜃𝑖 are the each 5-minute wind speed and direction measurements, 

respectively. Using Equations 2.1 and 2.2, we calculated the wind vector components by 

considering the magnitude of the wind speed (𝑠𝑖). By meteorological convention, wind direction 

is defined as the direction from which the wind is blowing, whereas the vectors indicate the 

direction in which the wind is heading. Therefore, we added a negative sign to negate the 

direction and align with the convention. We averaged the wind speed vector components 𝑢𝑖  and 

𝑣𝑖 over the one-hour averaging period to calculate the vector averages of wind speed. 

 

VE =  
1

N
 ∑ 𝑢𝑖

N

i=1

 

(2.3) 

VN =  
1

N
 ∑ 𝑣𝑖

N

i=1

 

(2.4) 

 

From the sequence of N measurements of 𝑢𝑖 , and 𝑣𝑖 , we calculated the mean east-west 

component of wind, represented by 𝑉𝐸 , and the mean north-south component, represented by 

𝑉𝑁 . To find the resultant vector average wind speed (𝑈̅𝑅𝑉) and direction (𝜃̅𝑅𝑉), we used Equation 

2.5 and 2.6.  

 

 

𝑈𝑅𝑉  =  √𝑉𝐸
2 + 𝑉𝑁

2 

(2.5) 
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𝜃̅𝑅𝑉  =  𝑎𝑟𝑐𝑡𝑎𝑛2( 𝑉𝐸, 𝑉𝑁)  +  180 ° 
 

       (2.6) 

Equation 2.6 assumes that the angle of the arctan2() function returns in degrees. To 

determine the direction of the wind, we used the arctan2() function. We added 180 degrees to 

convert the wind vector to the meteorological convention of the direction from which the wind is 

coming.  

 
 

2.4 Traffic Data 

 

Traffic emissions are an especially ubiquitous source of air pollution in the LA region, 

owing to a vast and complex network of freeways and highways. In this study, we utilized traffic 

flow data to better understand the spatial and temporal factors contributing to PM2.5 sources 

associated with traffic. We acquired traffic flow data from the California Department of 

Transportation's (CalTrans) freeway performance measurement system (PeMS), which supplies 

historical and real-time information on traffic flow and speed through CalTrans vehicle detection 

stations (VDS). We identified the nearest VDS to the PA sensor location on each freeway (in one 

direction only) using OpenStreetMap (OSM). Subsequently, we aggregated the PeMS traffic data 

hourly to match the temporal resolution of PA PM2.5 measurements. 
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CHAPTER 3 

 

Data Analysis 

 

 

3.1 Calibration of PurpleAir 𝐏𝐌𝟐.𝟓 Data 

 
The South Coast AQMD conducted a field evaluation of the PA PM sensor (AQ-SPEC, 

2019) and found that it demonstrates a good correlation with two regulatory monitors, the FEM 

BAM and GRIMM, for hourly PM2.5 mass concentrations, as evidenced by 𝑅2 values of 0.77 

and 0.91, respectively. However, other studies have revealed a tendency for the PA sensors to 

overestimate PM2.5 concentrations at higher relative humidity when compared to regulatory 

monitors (Tryner et al., 2020; Wallace et al., 2021; Magi et al., 2020). We identified PA sensors 

within 50m of active EPA AQS PM2.5 monitoring sites to verify this potential overestimation 

further and refine the data. There were four PA sensors at four unique AQS monitoring sites near 

LA county. 
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Figure 3.1: Comparison of 24h averaged raw PA PM2.5 CF=ATM and FRM/FEM PM2.5 

measurements, with the 1:1 line in black dashed line. (a) - (b) are PA sensors located in Los 

Angeles, CA, (c) is in Riverside, CA, and (d) is Oxnard, CA.  

 

 

Figure 3.2: Comparison of 24h averaged raw PA PM2.5 CF=1 and FRM/FEM PM2.5 

measurements, with the 1:1 line in black dashed line. (a) - (b) are PA sensors located in Los 

Angeles, CA, (c) is in Riverside, CA, and (d) is Oxnard, CA. 
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Figure 3.3: Comparison of 24-hour averaged (a) PM2.5 CF=ATM and (b) PM2.5 CF=1 

measurements between four combined PA sensors and FRM/FEM measurements, with 1:1 line 

shown in black dashed line. Statistics included are the 𝑅2, RMSE, MAE, and the number of 24-

hour data points (N). 

 

Figures 3.1 and 3.2 depict a comparison between 24-hour averaged PA PM2.5 and 

FRM/FEM measurements, both at CF=1 and CF=ATM, for each location with respect to the 

corresponding regulatory monitor. We observed a lower root mean square error (RMSE) for the 

PA PM2.5 with CF=ATM (RMSE = 6.50 µg 𝑚−3) compared to PM2.5 with CF=1 (RMSE = 8.0 

µg 𝑚−3). Figure 3.3 demonstrates that PA CF=ATM and CF=1 exhibits higher PM2.5 

concentrations than the values recorded by the regulatory monitor when the RH is high. 

Therefore, implementing corrections can further improve the accuracy of PA PM2.5 

measurements.  

While prior research has developed a US-wide correction for PM2.5 data (Barkjohn et al., 

2021), our study focuses on the LA area in Southern California, and thus, we aim to utilize a 

collocated dataset in the same geographical region as our study area. We developed a data 

correction model for PA sensors by solely utilizing data reported by the PA sensors collocated 

with reference monitors, treating the 24-hour FRM/FEM PM2.5 measurements as the independent 



    15 

variable. Based on the analysis from Barkjohn et al. (2021), the three models with the lowest 

RMSE were considered. The equations displayed below are three selected models from Barkjohn 

et al. (2021). PA corresponds to the PurpleAir PM2.5 data, while PM2.5 represents to PM2.5 

measurements provided by the collocated FRM/FEM BAM monitors. The variables RH and T 

represent the relative humidity and temperature values measured by the PA sensors. In addition, 

the coefficient 𝑚1 through 𝑚4 are the fitted model coefficients, and b is the fitted model 

intercept. 

 

1. Simple linear regression  

PA =  m1 × PM2.5  +  b     (3.1) 

2. Multilinear with an additive RH term   

PA =  m1 × PM2.5  + m2 × RH +  b    (3.2) 

3. Multilinear with additive and multiplicative terms using RH and T 

PA =  m1 ×  PM2.5  + m2 × RH +  m3 × T + m4 × RH × T +  b        (3.3) 

4. Multilinear with additive and multiplicative terms using RH and PM2.5 

PA =  m1 ×  PM2.5  + m2 × RH +  m3 × RH × PM2.5  +  b   (3.4) 

 

3.1.1 Selecting Models  

 
After applying the correction, we evaluated the effectiveness of the various correction 

models based on their ability to reduce both the RMSE and mean absolute error (MAE). Our 

analysis, as presented in Table 3.1, revealed that PM2.5 CF=1 exhibited lower error than the 

CF=ATM data across all three models evaluated. Therefore, we opted to use the PM2.5 CF=1 
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data to implement the correction to the PM2.5 data, as it resulted in better model performance 

with a lower RMSE and MAE.  

 

 

Figure 3.4: Comparison of 24-hour averaged raw PA PM2.5 CF=1 versus FRM/FEM PM2.5 

measurements (gray) and corrected PA PM2.5 CF=1 versus FRM/FEM PM2.5 measurements 

(blue), with 1:1 line shown in black dashed line. Statistics included are the 𝑅2, RMSE, and 

MAE.             
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Equation 3.3 yielded the lowest RMSE relative to the other correction models, with an 

RMSE of 2.93 µg 𝑚−3. However, it is worth noting that Barkjohn et al. (2021) found the optimal 

option for reducing MAE on a wide range of data was the additive RH model (Equation 3.2). 

Nevertheless, because we are dealing with a specific area, we utilized a multilinear model with 

additive and multiplicative terms incorporating both RH and T factors (Equation 3.3). This 

approach may help account for the specific chemical and optical properties of aerosol in the LA 

area. We generated the following correction model (Equation 3.5) for the entire 1-hour averaged 

PA PM2.5 data, where PA is the average of the A and B channels, T is in degrees Celsius, and 

RH is in percent. 

PM2.5  =  0.602 × PAcf=1 + 0.107 × RH + 0.469 × T  

−0.00922 × RH × T − 4.64            (3.5) 

 

3.2 Data Screening  

 
Accurately quantifying the contribution of traffic-related PM2.5 to the near-road 

increment of PM2.5 is crucial for our study. Nevertheless, a significant challenge in this 

assessment is the consideration of background concentration, which may confound the 

interpretation of near-roadway PM2.5 concentrations. The positive correlation between 

background and near-roadway PM2.5 concentration has been previously demonstrated in 

previous study (Askariyeh et al., 2020). Heightened background concentrations for a prolonged 

period can lead to the overestimation of the near-roadway PM2.5 concentrations, irrespective of 

their proximity to the roadway. 

 During our study period, we observed elevated levels of PM2.5 on July 4, 5, and New 

Year’s Day, which were attributable to fireworks. Moreover, we utilized 9 FRM/FEM monitors 
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located in LA county to calculate a 5-day centered moving average (comprising the preceding 

two days and the following two days) of 24-hour PM2.5 concentrations. We identified days when 

the 5-day moving average deviated significantly from the mean concentration, indicating 

anomalous pollution events. Consequently, these days were excluded from subsequent data 

analysis. The days excluded include the COVID-19 Shut down (03/07/2020 – 05/30/2020), 

Bobcat Fire (09/10/2020 - 09/19/2020) and (10/03/2020 - 10/07/2020), Los Angeles Port shut 

down (11/04/2021 - 11/07/2021), unknown event (12/01/2021 - 12/06/2021), Saddle Ridge Fire 

(10/10/2019 – 10/13/2019) 

 

3.3 Data Visualization  

 

This study investigates how changes in traffic and meteorological conditions, such as 

wind speed and direction, affect PM2.5 concentrations as a function of distance from major 

roadways. We selected 44 of the 376 outdoor PA sensors within 700m of roadways for analysis, 

specifically those within 1000 meters of a PWS. The bearing angle of each PA sensor relative to 

the nearest roadways was calculated using OSM. The angle was perpendicular and at the 

minimum distance to the closest roadways. We categorized the hours as “downwind” when the 

1-hour averaged wind direction was within a ± 45° arc (i.e., a 90° arc in total) perpendicular to 

the roadways and “upwind” when the wind direction was in the opposite direction of the 

roadways. To investigate whether wind direction significantly impacts the increment of near-

road PM2.5 compared to background concentrations, we classified all PM2.5 concentrations and 

their associated wind directions into two classes: downwind and upwind. As depicted in Figure 

3.5, the location of the PA sensor is displayed in proximity to the nearest roadways, along with 

the differentiated “downwind” and “upwind” wind direction categories.  



    19 

 
 

Figure 3.5: Satellite view via Google Map of the near-roadway PA sensor site in Los Angeles, 

CA, with wind direction designation; red indicates angles included as upwind; blue indicates 

downwind. 

 

Table 3.2 summarizes the PA sensors located within 700m of roadways, including the 

number of hours when the wind direction is in the downwind and upwind direction, 𝑁𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑 

and 𝑁𝑈𝑝𝑤𝑖𝑛𝑑. Specific rows in Table 3.2 were highlighted when the corresponding 𝑁𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑, or 

𝑁𝑈𝑝𝑤𝑖𝑛𝑑 was less than 10% of N total, the total observations. It is important to note that some of 

the sensor locations have a prevailing wind direction, which may result in a skewed distribution 

of PM2.5 measurements in either the downwind or upwind direction. As a result, including these 

highlighted sensors when grouping them based on their proximity to each other and their 

distance from the roadways could potentially introduce bias when comparing the PM2.5 

concentrations in the downwind and upwind directions. Moreover, as these sensors are scattered 

throughout the general LA area, where pollution levels can vary widely, an uneven distribution 

of downwind or upwind data could introduce further bias into the dataset. Therefore, to ensure 
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the integrity of our analyses, we chose to exclude these 22 PA sensors from our subsequent 

analyses. 
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3.3.1 K-means Clustering  

 

 

K-means clustering can effectively group sensors based on their proximity to the 

roadways. This approach is beneficial when dealing with large numbers of sensors scattered 

across a wide geographic area. This method can be used to investigate the spatial distribution of 

elevated PM2.5 concentrations in each sensor cluster. Additionally, by averaging data from 

multiple sensors within each cluster, we can minimize the impact of any individual sensors that 

may be affected by local conditions or other factors. This study employed the K-means 

clustering method for 22 PA sensors. These sensors were grouped into four clusters based on 

their proximity to each other and their relative distance to the roadways (Figure 3.6, Table 3.3). 

 

 

 
 

Figure 3.6: K-means clustering of PA sensors into four clusters. Centroids indicate the 

approximate center of each cluster in meters.  
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CHAPTER 4 

 

Result and Discussion 

 

 

4.1 Comparison of AQS monitors 

 

4.1.1 Background Concentration 

 
During our study period, nine AQS monitoring locations in LA county measured PM2.5 

concentrations using either FRM or FEM (Figure 4.1). Among the nine monitoring stations 

located in LA county, we identified three monitors (AQS 1602, 4002, and 4002) located within 

600 meters of a roadway. Thus, they could not represent the background concentration as they 

were potentially affected by nearby emission sources. Two monitors (AQS 1302 and 4004) 

reported relatively elevated background PM2.5 levels compared to the other areas, possibly due to 

local emission sources from oil refineries, railyards, and the Los Angeles Port, and these were 

also excluded. After excluding specific locations influenced by emissions sources, we identified 

four AQS monitoring locations (AQS 0002, 1103, 1201, and 2005) that were not impacted by 

local sources and were, therefore, suitable to represent background concentrations. Table 4.1 

displays the mean 24-hour concentrations of PM2.5 observed at each AQS monitor, along with 

the total number of days (N) used to calculate these means. The highlighted rows in the table 

correspond to four AQS monitoring locations identified as suitable background concentrations 

for subsequent analyses.  
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Figure 4.1: Locations of PA sensors and EPA AQS PM2.5 monitors in LA county, CA. 
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4.1.2  Near-Road PurpleAir Sensor Versus Background 𝐏𝐌𝟐.𝟓 

 
Figure 4.2 presents box plots of PM2.5 concentrations that contain data from 22 PA 

sensors for each group of five to seven PA sensors located in different bins of distance from the 

freeway. The data showed no clear trend with the distance to the nearest roadway. This indicates 

that on average the spatial distribution of PM2.5 is predominantly influenced by factors other than 

proximity to vehicular traffic. Additionally, the mean background concentration of PM2.5 

measured by the AQS monitors (𝜇𝐴𝑄𝑆) and the mean concentration measured by PA sensors 

(𝜇𝑃𝑢𝑟𝑝𝑙𝑒𝐴𝑖𝑟) is nearly identical; 𝜇𝐴𝑄𝑆 of 10.9 µg 𝑚−3 and 𝜇𝑃𝑢𝑟𝑝𝑙𝑒𝐴𝑖𝑟 of 11.4 µg 𝑚−3.  

 

Figure 4.2: Boxplot of PM2.5 concentrations (µg 𝑚−3) with the distance to nearest roadway. The 

median is the horizontal line, the box contains the interquartile range, and the whiskers extend to 

the 10th and 90th percentiles. The mean of each boxplot is a white dot, the corresponding value is 

X̅1- X̅4, and the mean of PA and AQS background is  𝜇𝑃𝑢𝑟𝑝𝑙𝑒𝐴𝑖𝑟 and  𝜇𝐴𝑄𝑆, respectively. 
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4.2 𝐏𝐌𝟐.𝟓 Concentration, Wind Speeds, and Traffic Flow 

 

4.2.1 𝐏𝐌𝟐.𝟓 Concentrations: Downwind and Upwind 

 
To analyze the extent to which downwind PM2.5 concentrations are elevated compared to 

the background concentration, we will refer to upwind PM2.5 concentration as the background 

concentration. The mean background concentration of the PA sensors was 10.6 µg 𝑚−3, with the 

100m centroid group exhibiting a slightly lower upwind concentration of 9.7 µg 𝑚−3 (Figure 

4.3). This difference can be attributed to several of the PA sensors in the group being located in a 

somewhat less polluted region, therefore the upwind PM2.5 concentration was lower compared to 

other groups. The results in Figure 4.3 demonstrate that the mean concentration of PM2.5 

downwind of the 100m centroid group is higher than the background concentration, with a 

difference of 2.5 µg 𝑚−3 (13.1 µg 𝑚−3 and 10.6 µg 𝑚−3 for downwind and background, 

respectively).  

Furthermore, the downwind areas of the 240m centroid group also exhibited higher 

concentrations of PM2.5 when compared to the background concentration, a difference of 1.7 µg 

𝑚−3. Our findings indicate that the level of downwind PM2.5 concentration for both the 430m 

and 610m centroid groups were comparable to the background concentration, with a difference 

of less than 1.0 µg 𝑚−3. This suggests that the increased distance from the roadways may have 

reduced the effects of PM2.5 from traffic-related emissions. Nevertheless, wind speed and traffic 

flow can also influence PM2.5 concentrations, leading to complex concentration patterns that do 

not rely solely on distance from the roadway. 
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Figure 4.3: Boxplot of PM2.5 concentrations (µg 𝑚−3) with the distance to the nearest roadway 

for downwind and upwind cases. Whiskers indicate the range, circles the mean, indents the 

medians, and boxes the interquartile ranges.  

 

4.2.2 Wind Speeds and Traffic Flow 

 
Figure 4.4 presents the diurnal trend of downwind PM2.5 concentrations with wind speed 

and traffic flow. Relatively lower wind speed and higher traffic flow are responsible for the 

observed surge in PM2.5 concentrations during morning rush hours. Low wind speed during this 

period hinders the effective dispersion of PM2.5 emissions, leading to its accumulation in the 

surrounding air. Concurrently, increased traffic flow results in the higher exhaust of PM2.5 being 

released into the atmosphere. However, with increased wind speed, turbulent mixing in the 

mixed layer (ML) increases, causing the ML to thicken as air from high altitudes mixes with the 
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low levels. The ML height is a crucial determinant of pollutant dispersion, including PM2.5. The 

increase in wind speed throughout the day causes the ML to grow and dilutes the concentration 

of PM2.5. This phenomenon is responsible for the observed decrease in PM2.5 concentration 

during the midafternoon, despite high traffic flow. After sunset, the Earth’s surface cools, 

creating a surface temperature lower than the air above it, forming a stable boundary layer (SBL) 

with reduced vertical mixing. Low wind speeds and elevated traffic flow during the evening 

commute result in an observed increase in PM2.5 concentration. 

 

Figure 4.4: Diurnal variations (means) in the downwind PM2.5 mass concentrations with a) 

traffic flow (vehicle/hour) and b) wind speed (mph). 
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4.3 Temporal and Spatial Variation of 𝐏𝐌𝟐.𝟓 Concentrations 

 

Figure 4.5 illustrates the diurnal variation of PM2.5 concentration for different centroid 

groups under downwind and upwind conditions. To highlight the impact of traffic flow on PM2.5 

concentration, we incorporated hourly traffic flow data for each centroid group (Figure 4.5 a–d). 

The findings suggest that the centroid group located 100 meters away consistently recorded 

higher PM2.5 concentration levels than their upwind counterparts for all hours, with an average 

concentration difference of 3.2 µg 𝑚−3. During afternoon peak traffic hours (13:00–15:00), the 

difference in concentration levels peaked at an average of 5.6 µg 𝑚−3. The centroid group 

located 240 meters away also exhibited higher downwind concentrations from midnight to early 

morning (00:00–07:00). However, despite the higher traffic flow during afternoon hours, the 

difference in concentration levels between downwind and upwind was less extent that the 100m 

group.  

The centroid group located 430 meters away generally exhibited comparable 

concentration levels between downwind and upwind. The most significant difference in 

concentration levels between downwind and upwind occurred during the early morning and early 

afternoon (03:00–07:00 and 09:00–15:00) when there was an increase in traffic flow from 

previous hours. The centroid group located 610 meters away showed lower downwind PM2.5 

concentrations for most hours compared to the upwind direction, except during morning and 

evening hours (10:00–12:00 and 20:00–22:00). 
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Figure 4.5: Temporal and spatial variations in the mean PM2.5 mass concentrations of downwind 

and upwind centroid groups with traffic flow (vehicle/hour). 

 

We investigated the difference in PM2.5 concentrations between downwind and 

background under SBL and ML conditions. SBL conditions refer to the period between sunset 

and sunrise (19:00–06:00), whereas ML conditions refer to the period between sunrise and sunset 

(07:00–18:00). The focus of our investigation was to examine the mean differences in PM2.5 

concentrations between the downwind and background and assess the impact of SBL and ML 

conditions on the dispersion of PM2.5 emissions from roadways. In the SBL and ML conditions, 

the PA sensors’ mean upwind background concentrations were 9.6 µg 𝑚−3 and 11.6 µg 𝑚−3, 

respectively. We used Figures 4.6 (a) and 4.6 (b) to illustrate these differences.  

Under the SBL conditions, the 100m and 240m centroid groups had elevated 

concentrations downwind compared to the background concentration. Specifically, the 
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downwind concentrations were 11.6 µg 𝑚−3 and 11.5 µg 𝑚−3 for 100m and 240m centroid 

groups, resulting in mean differences between downwind and background concentrations of 2.0 

µg 𝑚−3 and 1.9 µg 𝑚−3, respectively. The observed differences in PM2.5 concentrations 

between downwind and background can be attributed to the lower wind speeds, reduced 

turbulence, and decreased vertical mixing during SBL conditions. These conditions result in 

PM2.5 accumulation near the roadway, leading to higher concentrations in the downwind region. 

Furthermore, the elevated traffic flow in the 240m centroid group may have contributed to the 

similar level of PM2.5 concentration observed between the 100m and 240m centroid groups, even 

when located further away from the roadway. For the 430m and 610m centroid groups, the 

downwind and background concentrations were comparable, with a difference of less than 0.3 µg 

𝑚−3, suggesting that the traffic-related PM2.5 did not disperse further downwind from the 

roadway under SBL conditions.  

Under ML conditions, the 100m centroid group had the most significant difference in 

downwind and background concentrations, with a difference of 2.1 µg 𝑚−3. This might be 

attributed to the shortest distance from the roadway, which was the most affected by traffic flow. 

The 240m centroid also had elevated PM2.5 concentration relative to the background, with a 

difference of 1.2 µg 𝑚−3. However, despite experiencing high traffic flow relative to the 100m 

centroid group, the impact of traffic flow on PM2.5 levels in the 240m group was not 

significantly greater. For the 430m and 610m centroid groups, the downwind and background 

concentrations were also comparable, with a difference of less than 0.3 µg 𝑚−3, suggesting that 

the traffic-related PM2.5 did not disperse further downwind from the roadway under ML 

conditions.  
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We observed a consistent and linear decrease in downwind PM2.5 concentrations from 

13.7 µg 𝑚−3 to 11.3 µg 𝑚−3 as the distance from the roadway increased from the 100m to the 

610m centroid group. There was a decrease of approximately 1 µg 𝑚−3 between the 100m and 

240m centroid groups and another decrease of 1 µg 𝑚−3 between the 240m and 430m groups, 

indicating a gradual reduction in traffic-related PM2.5 emissions as the distance from the 

roadway increased. The 430m and 610m downwind concentrations were 11.8 µg 𝑚−3 and 11.3 

µg 𝑚−3, respectively, and the decrease between these two groups was only 0.5 µg 𝑚−3. These 

findings suggest that the PM2.5 emissions related to traffic slowly decrease with distance.  

 

Figure 4.6: Boxplot of PM2.5 concentrations (µg 𝑚−3) with the distance to the nearest roadway 

for downwind and upwind cases for (a) stable boundary layer conditions and (b) mixed layer 

conditions.  
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CHAPTER 5 

 

Conclusion 
 

In this paper we present a preliminary investigation into the impact of roadway activities 

on PM2.5 concentrations using low-cost sensor networks in Los Angeles, California. By 

incorporating meteorological and traffic data, we gained insights into the spatial and temporal 

variation of PM2.5 with distance from the roadways. The results indicate that the PM2.5 

concentrations were elevated within 240 meters of the roadway and decayed to the background 

concentration by 430 meters. The concentrations were 24% and 16% higher than the mean 

background concentration for PA sensors in the 100m and 240m centroid groups, respectively. 

During SBL conditions, the concentrations of PM2.5 near roadways led to a 20% increase in 

downwind concentrations compared to the SBL background, extending up to 240 meters from 

the roadways.  

Furthermore, under periods of high atmospheric stability and low wind speeds, high 

traffic flow contributed to the accumulation of PM2.5 near roadways. During ML conditions, the 

downwind concentrations of PM2.5 were 18% and 10% higher than ML background for the 100m 

and 240m centroid groups, respectively. Despite the higher traffic flow observed during ML 

conditions in the 240m group, the elevation in PM2.5 concentration was not more significant than 

that observed during SBL conditions. This finding suggests that high wind speeds and low 

atmospheric stability during ML conditions facilitate the dilution of traffic-related PM2.5.  
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