UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Multi-scale modeling to elucidate biological network structure and properties

Permalink
https://escholarship.org/uc/item/75m8m4s5

Author
Du, Bin

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/75m8m4s5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO
Multi-scale modeling to elucidate biological network structure and properties

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy
in
Bioengineering
by

Bin Du

Committee in charge:

Professor Bernhard O. Palsson, Chair
Professor Pedro J. Cabrales Arevalo
Professor Jeff Hasty

Professor Christian M. Metallo
Professor Robert K. Naviaux

2019



Copyright
Bin Du, 2019
All rights reserved.



The dissertation of Bin Du is approved, and it is accept-
able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2019

iii



DEDICATION

To my parents and friends who made all this possible

iv



EPIGRAPH

True wisdom s knowing what you do not know.

—Confucius



TABLE OF CONTENTS

Signature Page . . . . . . . L e iii
Dedication . . . . . . . . . e iv
Epigraph . . . . . . e v
Table of Contents . . . . . . . . . . e vi
List of Figures . . . . . . . . . e xi
List of Tables . . . . . . . . . . . e e xiii
Acknowledgements . . . . . ... xiv
Vita . . o e e xvii
Abstract of the Dissertation . . . . . . . . . . .. xix
Chapter 1 Evaluation of rate law approximations in bottom-up kinetic models of
metabolism . . . . .. ... 1
1.1 Abstract . . . . . . . . . 1
1.1.1 Background . . . . . . .. ... 1
1.1.2 Results . ... .. . . . . 2
1.1.3 Conclusions . . . . . . . . . .. e 2
1.2 Background . . . . .. ... 3
1.3 Results. . . . . . . . e 4
1.3.1  Assumptions underlying rate law approximations . . . . . . . . 4
1.3.2 Differences in mathematical behavior between rate laws 7
1.3.3 Construction and general properties of mass action modules for
tenenzymes . . . . . ... ..o oL 9
1.3.4 Construction of approximate rate laws . . . . . ... ... ... 9
1.3.5 Construction of an approximate rate law scaffold model . . . . 11
1.3.6  Designing a simulation-based kinetic analysis workflow . . . . . 12
1.3.7 Numerical comparison of rate laws . . . . . .. ... ... ... 14
1.3.8  Effects of flux and concentration steady-state on network dynamics 16
1.3.9 Dependence of the effect of rate laws approximations on reaction
properties . . . . ... L 19
1.3.10 Evaluating the consistency of effects of single enzyme mechanism
substitutions throughout the network . . . . . ... ... ... 20
1.3.11 Physiological and enzyme activity perturbations . .. .. ... 22
1.4 Discussion . . . . . . . . . . e e e e 23
1.5 Conclusion . . . . . . . . L 26
1.6 Methods . . . . . . . . . 27
1.6.1 Construction of enzyme modules . . . . . . .. ... ... ... 27

1.6.2 Simulation of the network with the incorporated enzyme modules 28

vi



Chapter 2

Chapter 3

1.6.3 Calculation of maximum perturbation and relaxation time . . .
1.6.4 Constructing a model full of enzyme modules . . . . . .. . ..
1.6.5 Enzyme activity simulation . . . . ... ... ... .. ... ..
1.6.6 Iterative substitution of approximate rate laws in place of en-

zymemodules . . . . ... Lo
1.6.7 Single module replacement . . . . ... ... ... ... ...,
1.6.8 Parameter sampling . . . . . . ... ... L L.
1.6.9 Parameter sampling . . . . .. ... ...

Topological and kinetic determinants of the modal matrices of dynamic mod-
els of metabolism . . . . . ... L

2.1
2.2

2.3

24
2.5

Abstract . . . . . . .
Background . . . . ... ...
2.2.1 Linear analysis on dynamic structures of the metabolic network
Results. . . . . . o
2.3.1 Half-reaction equilibria resulting from linearization of bilinear
mass action rate laws are key dynamic features of G . . . . . .
2.3.2 Diagonal dominance and the Gershgorin circle theorem applied
to the Jacobian matrix . . . . . . . . ... ...
2.3.3 Diagonal dominance in the Jacobian matrix underlies simple
mode structures . . . . ...
2.3.4 Dependence of diagonal dominance on the parameters of the
metabolic network . . . . .. ... Lo oo
2.3.5 Power iteration connects mode structure to the structure of the
Jacobian matrix . . ... ..o o oo
2.3.6 A case study on using power iteration to understand complicated
mode structure . . . ... Lo Lo
2.3.7 Complicated mode structure arises from connected reactions
with similar dynamic sensitivitiesin G . . . . . . .. ... ...
2.3.8 Power iteration converges to eigenvector subspaces when eigen-
values are similar in magnitude . . . . . . ... ... ... ...
Discussion . . . . . . . ..
Methods . . . . . . . . . L
2.5.1 Software . . . . . . . . ..
2.5.2 Model simulation and perturbation . . . . . . .. ... ... ..
2.5.3 Mode structure interpretation and dominant mode selection . .
2.5.4 Power iteration and Hotelling’s deflation . . . . . . . .. .. ..

Estimating Metabolic Equilibrium Constants: Progress and Future Chal-

lenges . . . . .o e
3.1 Abstract . . . . . . ..
3.2 How Are Free Energies Estimated? The Fundamentals of Group Con-

3.3

3.4

tribution Theory . . . . . . . . .. .. L
Key Limitations in Thermodynamic Data Available for Group Contri-
bution Model Training . . . . . . .. .. .. . oL L.
Methodological Challenges with Group Contribution Estimation

vii

28
29
29

30
30
31
32

35
35
36
38
40

40
43
44
47
48
51
54
o7
o7
61
61
61

62
63

65
65

66

69
73



Chapter 4

Chapter 5

3.4.1 Completeness of Group Definitions . . . . . .. ... ... ...
3.4.2 Complexity of Group Changes in Reactions . . . . .. .. ...
3.4.3 Validity of the Additivity Assumption . . . . . ... ... ...
3.5 Opportunities for Improvement . . . . . .. ... ... ... ......
3.6 Concluding Remarks . . . . ... ... ... ... .. ... ......

Temperature-dependent estimation of Gibbs energies using an updated group
contribution method . . . . . .. ... L
4.1 Abstract . . . . . ..
4.2 Background . . . .. ..
4.3 Methods . . . . . ..
4.3.1 Workflow for estimation of equilibrium constants . . . . . . ..
4.3.2 Curation of The TUPAC Stability Constants Database . . . . .
4.3.3 Features and data used in regression models to estimate pKig
and AS® Lo
4.3.4 Comparison of regression methods using nested 10-fold cross-
validation . . . . .. ... Lo oL
4.3.5 Lasso regression for estimation of pKy, and AgS° . . . .. ..
4.3.6 Comparison of previous and current group contribution method
4.3.7 Calculation of standard entropy change of formation . . . . . .
4.3.8 Implementation and availability of source code . . . . ... ..
4.4 Results. . . . . . e
4.4.1 Collection and curation of thermodynamic data . . . . . . . ..
4.4.2 Thermodynamic parameters for transformation of A,G'® across
temperature . . . . ... L0 L0 Lo
4.4.3 Estimation of standard entropy change of formation AfS° . . .
4.4.4 Evaluation of temperature-dependent estimation of A,G"
4.4.5 Estimation of unknown magnesium binding constants . . . . .
4.4.6 Estimation of standard Gibbs free energy of reaction . . . . . .
4.5 Discussion . . . . . ... e e e e
4.6 Conclusion . . . . . ... e

Thermodynamic favorability and pathway yield as evolutionary tradeoffs in
biosynthetic pathway choice . . . .. . .. ... .. ... L.
5.1 Abstract . . . . . ..
5.2 Background . . . . .. ..o
53 Results. . . . . .. o
5.3.1 Identifying biosynthetic pathway alternatives found in se-
quenced EENOMES . . . . . o o vt

5.3.2 Alternative pathways in amino acid biosynthesis differ by acyl-
CoA cleavage and show distinct yield differences . . . . . . ..

5.3.3 E. coli uses thermodynamically-favorable but cofactor-use-
inefficient amino acid biosynthetic pathways . . . . . . . .. ..

5.3.4 Distinct acyl-CoA-dependent pathway choices exist among or-
GaNISIMS . . . ... ...

viii

80
80
81
84
84
85

86

86
87
88
89
90
90
90

92
93
96
98
101
102
106

108
108
109
111
111
113

116



Chapter 6

Chapter 7

5.3.5 Trade-off between pathway thermodynamic favorability and ef-
ficiency of cofactor use underlies organisms’ pathway choice for

isoleucine biosynthesis . . . . . .. ... o 000

5.3.6  Lysine biosynthesis in thermophiles shows differential tempera-

ture dependence of thermodynamics . . . ... ... ... ...

5.4 Discussion . . . . . ...
5.5 Methods . . . . . . . .

Adaptive laboratory evolution of Escherichia coli under acid stress .
6.1 Abstract . . . . . . ...
6.2 Background . . . . . ... L Lo
6.3 Results. . . . . . . . . e
6.3.1 Laboratory evolution and acid-adapted endpoint strains . . . .
6.3.2 Genetic mutations of the evolved strains . . . . . ... .. ...
6.3.3 Differential gene expression of the evolved endpoints at different

pPHs . . o o
6.4 Discussion . . . . . . . ..
6.5 Methods . . . . . . .

6.5.1 Culture medium . . . ... ... ... ... ... ...
6.5.2 Adaptive laboratory evolution process . . . . .. ... ... ..
6.5.3 Whole genome sequencing and analysis of genetic mutations . .
6.5.4 RNA sequencing . . . . . . . . .. ...
6.5.5 Analysis of DEGs on RNA sequencing data . . . . . ... ...
6.5.6 Enrichment analysis for COG categories . . . . . . .. ... ..

Mechanistic description of acid stress responses in FEscherichia coli using

genome-scale model of metabolism and gene expression . . . ... .. ...

7.1 Abstract . . . . . ..

7.2 Background . . . . ...

7.3 Results. . . . . . . . . e

7.3.1 Adjustment of F. coli membrane lipid fatty acid composition

under acid stress . . . . . ... Lo

7.3.2 Periplasmic protein stability as a function of pH and periplasmic

chaperone protection . . . . . . . .. ... ... ... ...

7.3.3 Membrane protein activity as a functionof pH . . . . . . . ..

7.3.4 ME-model with integrated mechanisms explains the acid stress

response of . coli . . . . . . .. .. ... ... ... . ...,

7.4 Discussion . . . . . . .. e e e

7.5 Methods . . . . . . ..

7.5.1 ME-Model and simulations . . . ... ... ...........

7.5.2 Stability of periplasmic proteins as a function of pH . . . . . .
7.5.3 Periplasmic chaperone protection by HdeB in the ME-model

7.5.4 Activity of ATP synthesis rate as a function of external pH in

the ME-model . . . . . .. ... ...

7.5.5  Activity of electron transport chain components as a function of

PH . . e

ix

121

124
126
129

130
130
131
133
133
135

137
139
142
142
143
144
144
145
145

147
147
148
151

151

153
157

160
163
166
166
167
168

169



Chapter 8

Bibliography

7.5.6 Comparison of DEGs between ME-model predictions and RNA
sequencing data . . . . . . ... ...



Figure 1.1:
Figure 1.2:
Figure 1.3:

Figure 1.4:
Figure 1.5:

Figure 1.6:

Figure 2.1:
Figure 2.2:

Figure 2.3:

Figure 2.4:
Figure 2.5:

Figure 2.6:

Figure 3.1:
Figure 3.2:

Figure 3.3:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:

Figure 5.1:
Figure 5.2:

Figure 5.3:
Figure 5.4:
Figure 5.5:

Figure 6.1:
Figure 6.2:

LIST OF FIGURES

Comparison of rate laws and their resulting first derivatives . . . . . . . . .. 6
Schematic of the enzyme modules incorporated into the RBC metabolic network 10
Simulation comparison of four simplified rate laws against a reference module

containing detailed enzyme mechanism kinetics (enzyme modules) . . . . . . 13
Iterative replacement of Michaelis-Menten kinetics with measured properties
by mass action kinetics . . . . .. . ... L oL 17

Kinetic properties of models sampled with physiological concentrations and
fluxes compared to models sampled in wider ranges of concentrations and fluxes 18
Reaction properties affecting the impact of reaction rate law approximations 20

PGI enzyme module and its associated matrices . . . . .. .. .. ... . 42
Diagonal dominance in the Jacobian matrix explains simple mode structures
and corresponding eigenvalues with the help of Gershgorin circle theorem . . 45

The power iteration algorithm demonstrates how complicated dynamic struc-
tures arise from topologically connected elements of similar magnitude within

the Jacobian matrix . . . . . . . . . ... ... 50
Analysis of complicated mode structure through power iteration with modified
Jacobian matrix . . . .. ... oL Lo 53
The origin of complicated mode structure associated with G6PDH enzyme
forms demonstrated through the associated matrices . . . . . . . . ... ... 55
Eigenvalue and eigenvector approximations calculated from power iteration in
cases where eigenvalues do not separate well . . . . . .. .. ... ... ... 58

Overview of progress and challenges in estimation of reaction equilibrium con-

stants in metabolism . . . . . . .. ..o oL 68
Quality and coverage issues with thermodynamic data used to parameterize

the group contribution method . . . . . . . .. ... L 0oL 71
Common problems when using group contribution methods to estimate ther-

modynamic properties of compounds and reactions . . . . . . .. ... ... 75
Estimation of reaction equilibrium constants . . . . . .. .. ... ... ... 91
Estimation of standard entropy change of formation (A¢S°) . . . . . . . . .. 95
Evaluation of temperature-dependent estimation of A,G . . .. ... ... 97
Estimation of compound magnesium binding constants (pAng) . . . . . . . . 100
Alternative biosynthetic routes of biomass precursors . . . . .. .. .. ... 112
Thermodynamics and cofactor-use efficiency of alternative biosynthetic path-

waysin F. coli . . . . . . e 117
Alternative amino acid biosynthetic pathways in organisms . . . . . . . . .. 119
Alternative pathways for isoleucine biosynthesis . . . .. .. ... ... ... 122
Alternative pathways for lysine biosynthesis . . . . . . .. .. ... ... ... 125
Adaptive laboratory evolution (ALE) of E. coli under acid stress . . . . . . . 134

Differentially expressed genes (DEGs) of acid-adapted strains at different pHs 138

xi



Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:

Figure 7.5:

Illustrations of three different stress response mechanisms of E. coli under acid

Stress . . . .. L 150
Fatty acid composition of membrane lipids under different pH conditions . . 152
Periplasmic protein stability is reflected in protein folding energies . . . . . . 155
Change in ATP synthesis rate at different external pH values and the effect

on cellular processes simulated using the ME-model . . . . . . ... ... .. 158
Comparison of ME-model simulations, accounting for the three acid stress

mechanisms, against RNA-seq data from F. coli . . . .. ... ... ..... 161

xii



Table 1.1:

Table 6.1:

LIST OF TABLES

General description of the constructed enzyme modules . . . . . . . ... ...

Converged mutations identified in the clones of acid-adapted strains under pH
5 5

xiii



ACKNOWLEDGEMENTS

I have to thank so many people that have helped me tremendously over the course of my
PhD study. Without them, it would have not been possible to get to where I am today.

I would like to first thank Professor Palsson for being a great mentor and role model. His
passion for science and continuous desire to explore the unknown has been a great motivation
for me. He gives me a lot of freedom to explore different opportunities and is always supportive,
whether they are scientific projects, scholarship applications, internship opportunities and job
applications. I am really grateful for all of the help and support from him.

Next I would like to thank Daniel Zielinski for all the help and mentorship. Dan worked
closely with me for almost five years and we had a very productive time together. I still remember
the time when I first joined the lab and was looking around for projects. Dan offered me a lot of
great ideas and patiently guided me through all stages of scientific research. He would left tons
of comments on my manuscript, pointing out what the problems are and letting me figure out
how to address them. It was a painful learning process but I really appreciate it looking back.
We coauthored five publications together and all these are not possible without Dan’s help.

I would like to thank Laurence Yang for all the help and guidance. Laurence is very
knowledgeable and patient at answering all my questions on ME models. He makes everything
looks easy; and big congratulations at starting a faculty position and stepping into a new chapter
of life! T would also like to thank Ke Chen for all the help on ME models, and being a great friend.
I appreciate the help from my peers in the same year: James Yurkovich, Justin Tan, Colton Llyod
and Jared Broddrick. And I want to acknowledge the tremendous help from all the current and
previous members in SBRG, and to name a few: Andreas Drager, Ali Ebrahim, Edward O’Brien,

Erol Kavvas, Zhen Zhang, Kayla Ruggiero, Garri Arzumanyan, Sharon Grubner, Jonathan Monk,

Xiv



Connor Olson, Anand Sastry, Xin Fang, Patrick Phaneuf, Muyao Wu, Richard Szubin, Julia Xu,
Ye Gao, Ying Hefner, Adam Feist, Nathan Mih, David Heckman.

Also many thanks to Aarash Bordbar and Iman Famili for providing me the internship
opportunity at Sinopia Biosciences. It was a great industry experience where I can apply the
skills and trainings from my PhD study. We have worked on several fun projects and I am lucky
to see how a biotech startup operates from day to day.

I would like to thank my committee: Professor Pedro Cabrales Arevalo, Professor Jeff
Hasty, Professor Christian Metallo, Professor Robert Naviaux, for their helpful suggestions and
support. All the work here is not possible without the funding from Novo Nordisk Foundation
(NNF10CC1016517) and National Institute of General Medical Sciences of the National Institutes
of Health (RO1GMO057089). Additionally, I want to thank the Graduate Student Association for
the travel grant that allowed me to visit Denmark for a conference.

Last but not least, I want to say a big thank you to both my parents for all the love and
support. It is a long journey away from home and they are always there for me. I would like to
thank all my friends that are in my life over the years; and especially my best friend Xin Fang,
for all the love and support, and for being with me through the good and bad times in life <3.

Chapter 1 in full is a reprint of material published in: Bin Du, Daniel C. Zielinski, Erol
S. Kavvas, Andreas Dréger, Justin Tan, Zhen Zhang, Kayla E. Ruggiero, Garri A. Arzumanyan,
Bernhard O. Palsson. 2016. “Evaluation of rate law approximations in bottom-up kinetic models
of metabolism.“ BMC' Systems Biology, 10(1), 40. The dissertation author was the primary
author.

Chapter 2 in full is a reprint of material published in: Bin Du*, Daniel C. Zielinski*,

Bernhard O. Palsson. 2017. “Topological and kinetic determinants of the modal matrices of

XV



dynamic models of metabolism.“ PLoS One, 12(12), e0189880. The dissertation author was the
primary author (equally contributing with Daniel Zielinski).

Chapter 3 in full is a reprint of material published in: Bin Du, Daniel C. Zielinski,
Bernhard O. Palsson. 2018. “Estimating metabolic equilibrium constants: progress and future
challenges.“ Trends in Biochemical Sciences, 43(12), 960-969. The dissertation author was the
primary author.

Chapter 4 in full is a reprint of material published in: Bin Du, Zhen Zhang, Sharon
Grubner, James T. Yurkovich, Bernhard O. Palsson, Daniel C. Zielinski. 2018. “Temperature-
dependent estimation of Gibbs energies using an updated group-contribution method.* Biophys-
ical Journal, 114(11), 2691-2702. The dissertation author was the primary author.

Chapter 5 in full is a reprint of material published in: Bin Du, Daniel C. Zielinski,
Jonathan M. Monk, Bernhard O. Palsson. 2018. “Thermodynamic favorability and pathway yield
as evolutionary tradeoffs in biosynthetic pathway choice.“ Proceedings of the National Academy
of Sciences, 115(44), 11339-11344. The dissertation author was the primary author.

Chapter 6 in full is a reprint of the material: Bin Du*, Connor A. Olson*, Anand V.
Sastry, Xin Fang, Patrick V. Phaneuf, Ke Chen, Muyao Wu, Richard Szubin, Julia Xu, Ye
Gao, Ying Hefner, Adam M. Feist, Bernhard O. Palsson. “Adaptive laboratory evolution of
Escherichia coli under acid stress.“ Submitted. The dissertation author was the primary author
(equally contributing with Connor Olson).

Chapter 7 in full is a reprint of the material: Bin Du, Laurence Yang, Colton J. Lloyd,
Xin Fang, Bernhard O. Palsson. “Genome-scale model of metabolism and gene expression pro-
vides a multi-scale description of acid stress responses in FEscherichia coli.“ Submitted. The

dissertation author was the primary author.

xvi



VITA

2013 Bachelor of Science in Bioengineering, Biotechnology, University of Cali-
fornia San Diego

2019 Doctor of Philosophy in Bioengineering, University of California San Diego

PUBLICATIONS

Yongsung Hwang, Samuel Suk, Susan Lin, Matthew Tierney, Bin Du, Timothy Seo, Aaron
Mitchell, Alessandra Sacco, Shyni Varghese. 2013. “Directed in wvitro myogenesis of human
embryonic stem cells and their in vivo engraftment.“ PLoS One, 8(8), €72023.

Yongsung Hwang, Samuel Suk, Yu-Ru Vernon Shih, Timothy Seo, Bin Du, Yun Xie, Ziyang Li
and Shyni Varghese. 2014. “WNT3A promotes myogenesis of human embryonic stem cells and
enhances in vivo engraftment.“ Scientific Reports, 4, 5916.

Laurence Yang, Justin Tan, Edward J. OBrien, Jonathan M. Monk, Donghyuk Kim, Howard J.
Li, Pep Charusanti, Ali Ebrahim, Colton J. Lloyd, James T. Yurkovich, Bin Du, Andreas Dréger,
Alex Thomas, Yuekai Sun, Michael A. Saunders, Bernhard O. Palsson. 2015. “Systems biology
definition of the core proteome of metabolism and expression is consistent with high-throughput
data.“ Proceedings of the National Academy of Sciences, 112(34), 10810-10815.

Bin Du, Daniel C. Zielinski, Erol S. Kavvas, Andreas Drager, Justin Tan, Zhen Zhang, Kayla
E. Ruggiero, Garri A. Arzumanyan, Bernhard O. Palsson. 2016. “Evaluation of rate law approx-
imations in bottom-up kinetic models of metabolism.“ BMC' Systems Biology, 10(1), 40.

Bin Du*, Daniel C. Zielinski*, Bernhard O. Palsson. 2017. “Topological and kinetic determi-
nants of the modal matrices of dynamic models of metabolism.“ PLoS One, 12(12), e0189880.

Ningzi Guan, Bin Du, Jianghua Li, Hyundong Shin, Rachel R. Chen, Guocheng Du, Jian Chen,
Long Liu. 2018. “Comparative genomics and transcriptomics analysisguided metabolic engineer-
ing of Propionibacterium acidipropionici for improved propionic acid production.“ Biotechnology
and Bioengineering, 115(2), 483-494.

Bin Du, Zhen Zhang, Sharon Grubner, James T. Yurkovich, Bernhard O. Palsson, Daniel C.
Zielinski. 2018. “Temperature-dependent estimation of Gibbs energies using an updated group-
contribution method.“ Biophysical Journal, 114(11), 2691-2702.

Bin Du, Daniel C. Zielinski, Bernhard O. Palsson. 2018. “Estimating metabolic equilibrium
constants: progress and future challenges.“ Trends in Biochemical Sciences, 43(12), 960-969.

Bin Du, Daniel C. Zielinski, Jonathan M. Monk, Bernhard O. Palsson. 2018. “Thermody-
namic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway choice.*
Proceedings of the National Academy of Sciences, 115(44), 11339-11344.

Xvii



Xin Fang, Jonathan M. Monk, Nathan Mih, Bin Du, Anand V. Sastry, Erol Kavvas, Yara Seif,
Larry Smarr, Bernhard O. Palsson. 2018. “Escherichia coli B2 strains prevalent in inflammatory

bowel disease patients have distinct metabolic capabilities that enable colonization of intestinal
mucosa.“ BMC Systems Biology, 12(1), 66.

Hao Luo, Anne Sofie L. Hansen, Lei Yang, Konstantin Schneider, Mette Kristensen, Ulla Chris-
tensen, Hanne B. Christensen, Bin Du, Emre zdemir, Adam M. Feist, Jay D. Keasling, Michael
K. Jensen, Markus J. Herrgrd, Bernhard O. Palsson. 2019. “Coupling S-adenosylmethionine-
dependent methylation to growth: Design and uses.“ PLoS Biology, 17(3), €2007050.

Bin Du*, Connor A. Olson*, Anand V. Sastry, Xin Fang, Patrick V. Phaneuf, Ke Chen, Muyao
Wu, Richard Szubin, Julia Xu, Ye Gao, Ying Hefner, Adam M. Feist, Bernhard O. Palsson.
“Adaptive laboratory evolution of Escherichia coli under acid stress.“ Submitted.

Bin Du, Laurence Yang, Colton J. Lloyd, Xin Fang, Bernhard O. Palsson. “Genome-scale model
of metabolism and gene expression provides a multi-scale description of acid stress responses in
Escherichia coli.“ Submitted.

* equal contribution

xviii



ABSTRACT OF THE DISSERTATION

Multi-scale modeling to elucidate biological network structure and properties

by

Bin Du

Doctor of Philosophy in Bioengineering

University of California San Diego, 2019

Professor Bernhard O. Palsson, Chair

Characterization of complex cellular behaviors on a molecular scale requires detailed
understanding of the components and properties of the biological system. With the availability
of genome sequences and high-throughput data, the mathematical and computational modeling
of biological system has made tremendous advances in describing system-level behaviors and
properties. For example, the dynamic analysis on kinetic models of metabolism has contributed
to the understanding of temporal hierarchy of dynamic events, as well as the elucidation of
fundamental dynamic structures of the network. Thermodynamic analysis on the biochemical

reaction networks has revealed the fundamental constraints governing various cellular processes

xix



and interactions. Additionally, constraint-based analysis in the context of genome-scale models
of metabolism and gene expression has been used to compute the optimal metabolic flux state
and proteome allocation for the given phenotype. In this dissertation, I am interested in applying
multi-scale modeling to characterize the biological network structure and components. First, the
dynamic network structures and properties at different timescales are explained through kinetic
modeling of metabolism. Next, the evolutionary tradeoffs due to thermodynamic favorability
and pathway yield in biosynthetic pathway choice of different organisms are revealed through the
combination of thermodynamic analysis and genome-scale metabolic models. Last, the adaptive
response of E. coli under acid stress is examined through laboratory evolution and such response
is characterized through a mechanistic approach using genome-scale model of metabolism and

gene expression.
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Chapter 1

Evaluation of rate law
approximations in bottom-up kinetic

models of metabolism

1.1 Abstract

1.1.1 Background

The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires
specifying the numerical values of a large number of kinetic parameters. The parameterization
challenge is often addressed through the use of simplifying approximations to form reaction
rate laws with reduced numbers of parameters. Whether such simplified models can reproduce

dynamic characteristics of the full system is an important question.



1.1.2 Results

In this work, we compared the local transient response properties of dynamic models
constructed using rate laws with varying levels of approximation. These approximate rate laws
were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten
rate law with approximated parameters, using the convenience kinetics convention, 3) a ther-
modynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical
reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We
utilized in vivo data for the human red blood cell to compare the effect of rate law choices against
the backdrop of physiological flux and concentration differences. We found that the Michaelis-
Menten rate law with measured enzyme parameters yields an excellent approximation of the
full system dynamics, while other assumptions cause greater discrepancies in system dynamic
behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in
a model that retains a high correlation with the true model behavior. Investigating this consis-
tency, we determined that the order of magnitude differences among fluxes and concentrations
in the network were greatly influential on the network dynamics. We further identified reaction
features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric

regulation, which make certain reactions more suitable for rate law approximations.

1.1.3 Conclusions

Overall, our work generally supports the use of approximate rate laws when building large
scale kinetic models, due to the key role that physiologically meaningful flux and concentration
ranges play in determining network dynamics. However, we also showed that detailed mecha-

nistic models show a clear benefit in prediction accuracy when data is available. The work here



should help to provide guidance to future kinetic modeling efforts on the choice of rate law and

parameterization approaches.

1.2 Background

Kinetic models of biochemical networks continue to grow in scope and scale [1-7]. The
promise of these models is to serve as in silico platforms for prediction of complex system be-
havior and corroboration of experimental results. Specifically within metabolism, kinetic models
have the potential to elucidate the control mechanisms underlying metabolic homeostasis and
regulatory responses [8-10], as well as to identify flux bottlenecks impeding optimal performance
of production strains [11]. To date, these models have been used to study such problems as
the systemic effect of enzyme mutations [12, 13], metabolic bistability [10], and the coupling of
signaling between metabolism and transcriptional regulation [3].

The primary challenge in kinetic modeling of metabolism is dealing with the frequent
cases where data to construct detailed kinetic models is lacking [14]. This challenge is commonly
addressed in part by selecting kinetic rate laws with particular approximations that reduce the
number of parameters to be specified [15, 16]. If the assumptions made are valid across the con-
ditions of interest, a consistent and predictive system should be obtainable by fitting parameters
to available data [17]. Established examples of kinetic assumptions applied to enzyme reactions
[5] include the quasi-steady state assumption utilized in Michaelis-Menten-type rate laws [4, 6,
18] and the lin-log approximation [2, 19] rooted in thermodynamic intuition. The degree to
which these types of approximated systems represent the true system is a primary concern when
choosing a modeling approach.

Here, we construct a set of kinetic models of red blood cell (RBC) metabolism using



various approximate rate laws, such that their parameters are equivalent to those of the fully-
described enzyme mechanistic model. We choose the red blood cell due to the large amount
of available data, enabling us to use physiological enzyme kinetic parameters, reaction fluxes,
metabolite concentrations, and reaction equilibrium constants. Thus, we can examine the prac-
tical importance of rate law approximations against the backdrop of a realistic system.

We utilize these models to study the effect of simplifying assumptions to the rate laws on
system dynamics through simulating the network response to small transient perturbations. We
additionally discuss theoretical differences in the kinetic behavior of these rate laws. Finally, we
iteratively replace approximate rate laws with mechanistic enzyme kinetics to examine whether
we can anticipate general dynamic effects of certain types of approximations. We purposefully
chose a simple perturbation approach with mathematical response properties as output metrics,
as opposed to physiological prediction accuracy, in order to simplify the task of understanding

any observed correlations or lack of correlations.

1.3 Results

1.3.1 Assumptions underlying rate law approximations

In preparation for investigating rate law effects through model simulation, we first discuss
the assumptions underlying the different approximate rate laws. Perhaps the most well-known
kinetic assumption is the QSS assumption, normally associated with Michaelis-Menten kinetics
but originated by Briggs and Haldane [20]. This assumption states that all intermediate enzyme
forms do not change concentrations over time (Figure 1.1a middle). Michaelis-Menten kinetics

normally require Michaelis-Menten constants (K,s) and catalytic constants (kcas) to param-



eterize the system, as well as metabolomics data, Keqs of biochemical reactions, and enzyme
concentrations. The conditions for validity of the assumptions underlying this rate law have
been examined in great detail [21-27].

If sufficient kinetic data is lacking, but reproducing enzyme saturation behavior is de-
sired, an additional assumption can be made to approximate the K;s values. Previously it has
been shown experimentally that enzyme K,,s values tend to be similar to the invivo concentra-
tions of corresponding metabolites [28]. To determine whether this trend can be exploited to
fill in unknown parameters, we examined the dynamic effect of using a K;;s = x assumption to
parameterize rate laws. If we additionally lack of knowledge about the enzyme reaction mech-
anism as well, the form of the QSS rate law equation into which parameters will be inserted is
unclear. To deal with this, we can add a further assumption that the reaction follows a rapid
equilibrium random order mechanism [29], following the previously suggested convenience kinet-
ics formalism. We term this rate law with assumed rather than measured enzyme parameters as
a Michaelis-Menten rate law with approximated properties (Figure 1.1a bottom right).

Another way to address cases where enzyme-specific data is lacking is to combine the QSS
assumption with a different assumption that substrates are saturated relative to their binding
constants, while products and inhibitors are of negligible concentration (i.e., Kjus < x for sub-
strates and activators while K,s > x for products and inhibitors). This assumption effectively
removes enzyme-specific parameters from the rate law and leads to a thermodynamics-driven rate
law similar to what has been termed Q-linear kinetics (Figure 1.1a bottom left) [30]. However,
we note that Q-linear kinetics treats the mass action ratio Q as a thermodynamic variable while
we treat the involved metabolites as separate variables. This Q-linear kinetics-like rate law is

fully specified using only metabolomics, fluxomics, and K¢, data.
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Figure 1.1: Comparison of rate laws and their resulting first derivatives. a) Formulation of
Michaelis-Menten kinetics with measured properties, Q-linear kinetics and Michaelis-Menten ki-
netics with approximated properties from the enzyme module with different layers of assumptions
[31]. b) Formulation of mass action kinetics based on the law of mass action for a pure chem-
ical reaction. c) First derivatives (reaction sensitivities) calculated from the four approximate
rate laws. K and K}, are the Michaelis-Menten constants for the substrate and product. T’
is denoted as the mass-action ratio, which is the ratio of product concentrations over reactant
concentrations in a steady state raised to the exponent of their stoichiometric coefficients. Keq
is the equilibrium constant of the reaction. kjat is the enzyme turnover rate constant. k,, as
defined in MASS models, is the pseudo-elementary rate constant in the forward direction.



The benefit of requiring fewer parameters is the major motivation for applying these
simplified rate laws; however, before using them, we carefully examine whether they are able to
accurately capture the dynamics of a model constructed of detailed enzyme modules. We might
expect two general cases where rate law approximations should be successful. First, in cases
where the underlying assumptions are valid, the rate law approximations should show accurate
behavior provided that the assumptions are not violated substantially throughout the simulation.
Second, if the rate laws are not the most important factor determining the dynamic behavior
of the network, we would expect the use of an approximation to have little negative effect. For
example, some of the rate laws may behave similarly near to equilibrium. In the course of
this investigation, we will seek to identify both the degree to which approximate rate laws can

reproduce the behavior of the true model, as well as the causes of this agreement or lack thereof.

1.3.2 Differences in mathematical behavior between rate laws

To place the subsequent results of simulating the various kinetic models in theoretical
context, we briefly discuss differences between the analytical structures of the various rate laws.
We focus on two key points: 1) the ability of the rate law to exhibit the saturation behavior that
is characteristic of enzyme kinetics, and 2) the properties of the first derivative of the rate law,
which defines the local dynamic behavior of the system.

Fach rate law exhibits different behavior as metabolite concentrations approach infinity.
For example, the Michaelis-Menten kinetics with measured properties exhibit the well-known
saturation behavior due to the hyperbolic form, such that v = v, as x approaches infinity. A
mass action enzyme module exhibits the same behavior due to the constant total enzyme, placing

a constraining relationship between the fluxes of individual reaction steps. The manner in which



saturation is achieved between a full mass action enzyme module and the Michaelis-Menten
kinetics is thus mathematically different.

In contrast to Michaelis-Menten kinetics with measured properties and enzyme module
of mass action rate laws, the non-module mass action and Q-linear rate laws do not exhibit
saturation behavior. Mass action kinetics will approach positive or negative infinity as substrate
or product concentrations, respectively, approach infinity. Meanwhile, Q-linear kinetics exhibit
asymmetrical saturation properties. The flux v will correctly have a maximum of vy, if the
substrate concentration is maximized, but will incorrectly have a minimum of negative infinity if
the product concentration is maximized. This asymmetry is known and proponents of the rate
law suggest that the rate law only be used in a range near equilibrium [19], which is not possible
to guarantee in real perturbations. For this reason, it is expected that the Q-linear kinetics
and mass action kinetics will exhibit large deviations from the true mass action module system
when perturbation of the saturation state of the enzyme is an important feature of the dynamic
response.

Examining the first derivatives of the reactions is a straightforward analytical approach
to anticipating dynamic differences between the rate laws (Figure 1.1c). From the analytical
form of the rate law first derivatives, it is clear that the local dynamics between each type of
rate law will be potentially substantially different, with numerical values dominated by different
parameters in each case. The expressions for gradients obtained from the Michaelis-Menten ki-
netics with measured properties are complicated and multiple parameters play a role in affecting
the numerical gradient values. The Michaelis-Menten kinetics with approximated properties and
Q-linear kinetics rate laws have almost the same composition of their first derivatives, determined

by enzyme turnover rate constant, the equilibrium constant and substrate and product concen-



trations. On the other hand, the local dynamic gradient in mass action kinetics is determined

by the pseudo-elementary rate constants and equilibrium constant.

1.3.3 Construction and general properties of mass action modules for ten

enzymes

We first constructed enzyme 'modules,’ consisting of full mass action descriptions of enzy-
matic reaction mechanisms, for ten key enzymes in RBC central metabolism utilizing measured
data for these enzymes (Figure 1.2, Table 1.1). An enzyme module consists of mass action rate
laws for all known reaction steps such as substrate binding, catalytic conversion, and product
release, as well as any activator or inhibitor binding (Figure 1.1a top). An enzyme module
describes the detailed mechanism of enzyme catalysis and characterizes the dynamics of the en-
zymatic reaction subject only to certain basic assumptions such as deterministic behavior and a
well-mixed solution [32]. The enzyme module requires a large number of parameters, including
metabolomics data, equilibrium constants (Keqs), enzyme concentrations, and rate constants of
individual enzymatic reaction steps, to fully describe the dynamics of the system. We used these

ten enzyme modules as a ’gold standard’ for later comparison with approximate rate laws.

1.3.4 Construction of approximate rate laws

In this study, we examined four approximate rate laws to compare to the fully-described
enzyme modules. Those four rate laws are: 1) Michaelis-Menten kinetics based on the quasi-
steady state (QSS) assumption for the true enzyme module with measured enzyme parameters, 2)
an assumed rapid-equilibrium random-order Michaelis-Menten rate law ignoring regulation and

with K, values being approximated as equal to the concentrations of corresponding metabolites,
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Figure 1.2: Schematic of the enzyme modules incorporated into the RBC metabolic network.
The RBC metabolic network is based on a previous reconstruction [33]. The ten modules con-
structed were primarily located in glycolysis and the pentose phosphate pathway. Other pathways
were included as Q-linear kinetics approximations.
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Table 1.1: General description of the constructed enzyme modules

Module size Regulators
Enzyme name (metabolites x (mechanism of
reactions) action)
Phosphogluconate dehydrogenase (GND) 13 x 9 NADPH (PI)
Lactate dehydrogenase (LDH) 10 x 6 N/A
Glucose-6-phosphate dehydrogenase 12 % 7 ATP (CI), NADPH
(G6PDH) (PI)
Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) 20 2T SPG (AI), G3P (AI)
Hexokinase (HEX1) 10 x 6 23DPG (CI)
Pyruvate kinase (PK) 30 x 34 FDP(I(D?AA)’I)ATP
Phosphofructokinase (PFK) 40 x 44 (i]ID)P S;E; (AATi)
Phosphoglycerate kinase (PGK) 13 x9 ($§P2é]211)3’£ P()((j;l)
Adenylate kinase (ADK) 8 x5 N/A
Glucose-6-phosphate isomerase (PGI) 5x 3 N/A

PI product inhibitor, Al allosteric inhibitor, AA allosteric activator, CI competitive inhibitor

to simulate the effect of unknown data, mechanisms, and regulation, 3) a rate law previously,
termed Q-linear kinetics [30], containing only thermodynamic effects that results from a further
metabolite saturation assumption, and 4) a rate law based on the mechanism of chemical mass

action that effectively ignores the role of the enzyme in the reaction [5].

1.3.5 Construction of an approximate rate law scaffold model

We first constructed a cell-scale model of RBC metabolism using approximate Q-linear
rate laws to serve as a scaffold model for analysis. Our approach was to insert the ten con-
structed enzyme modules into this scaffold, and compare this model behavior to that of models
generated with different approximate rate laws substituted into those same ten reactions. The
model was constructed using steady-state metabolite levels from plasma and intracellular ery-

throcyte metabolomics data from a fasting state [33]. The model contains 169 metabolites and
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143 reactions, covering glycolysis, the pentose phosphate pathway, amino acid metabolism, and

other pathways.

1.3.6 Designing a simulation-based kinetic analysis workflow

A straightforward way to estimate the similarity of behavior between different rate laws
is to simulate the response of each model to perturbation. A perturbation in this case denotes
the change of certain metabolite concentrations at time t = 0, after which the system is allowed
to simulate through a long enough time such that the original steady state is once again reached.
For example, we perturbed the concentrations of ATP, ADP and P; at the same time to simulate
the hydrolysis of ATP in the system.

Two key decisions in such an analysis are the choice of perturbation and the choice of
output variable to observe. In this study, we perturbed both metabolites directly involved in as
well as distant from the constructed enzyme modules. The list of perturbations can be found in
Figure 1.3. To define output variables of interest, we created two metrics, the maximum pertur-
bation (MP) and the relaxation time (RT). The MP is largest percent change in concentration
compared to the steady state concentration that occurred during the simulation. Then, to cal-
culate the RT of a metabolite, we identify the last time point at which the deviation from the
steady state concentration is at least 5% of the MP.

One final decision in the simulation workflow is the size of the perturbation to use. As
mentioned previously, the rate laws chosen differ in both saturation properties, which are non-
linear features of the rate laws, and local dynamic properties, which are linear features of the
rate law. It appeared to be a trivial result that saturating and non-saturating rate laws will

exhibit very different behavior for large deviations where non-linear effects play a significant role.
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Figure 1.3: Simulation comparison of four simplified rate laws against a reference module con-
taining detailed enzyme mechanism kinetics (enzyme modules). The responses of metabolites
under different perturbations were compared between four simplified rate laws and the enzyme
module. a) Correlation of metabolite relaxation time. b) Correlation of metabolite maximum
perturbation. ¢) Median percent errors of metabolite relaxation time. d) Median percent errors
of metabolite maximum perturbation. Nine different perturbations labeled from 1 to 9 were
performed. 1, ATP, ADP and P; perturbation; 2, NAD and NADH perturbation; 3, 23DPG
perturbation; 4, 3PG perturbation; 5, PYR perturbation; 6, FDP perturbation; 7, PRPP per-
turbation; 8, MANGP perturbation; 9, R5P perturbation. Spearman’s rho: Spearman’s rank
correlation coefficient. The simulations were performed on the whole-cell kinetic model of ery-
throcyte constructed by Bordbar et al [33].
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However, understanding the origin and nuances of such deviations is complex, and we sought to
achieve a simpler goal as a baseline investigation. To avoid such obvious effects dominating our
findings, we intentionally chose small perturbations to minimize saturation effects and instead

focus on determining the importance of the linear/local differences between rate laws.

1.3.7 Numerical comparison of rate laws

The final workflow was to perform nine different small perturbations on the system with
different rate laws and characterized the response of metabolites in terms of RT and MP (Fig-
ure 1.3a-b). Calculating the Spearman correlation for MP and RT of module metabolites between
rate laws, we found that the Michaelis-Menten kinetics with measured properties behaved sub-
stantially better on both metrics compared to other rate laws. Median percent errors for MP and
RT of module metabolites confirmed this trend (Figure 1.3c-d). Additionally, we found that the
Michaelis-Menten rate law with approximated properties performed no better than the Q-linear
kinetics and mass action kinetics. This indicates that the K, = x assumption (x being the con-
centration of the corresponding ligand) is not sufficiently correct to capture the dynamics of the
original enzyme module. Notably we did not include known regulation of these enzymes in this
approximate rate law, and further investigation of the behavior of models with the addition of
these regulatory events with an analogous Kq = x assumption may be warranted. We note that
these conclusions regarding the suitability of approximate rate laws are not due to the choice of
model underlying the analyses.

We repeated these analyses on a previously published model of the red blood cell, smaller
scale but composed entirely of mechanistic enzyme mechanisms [34]. We iteratively substituted

in different approximate rate laws and verified the identified trends, where Michaelis-Menten with
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measured properties performs substantially better than the other approximations but all approx-
imations retain positive correlation to the true model. We also verified the results using larger
perturbations, suggesting that non-linearity of the perturbation response does not strongly affect
the trends. However, as an exception to the general trends, we did identify rare perturbations
where Michaelis-Menten rate laws with measured enzyme properties performed noticeably worse
than more approximated rate laws. We attribute these cases to slow internal dynamics within
the enzyme module, causing the quasi-steady state assumption to become invalid. However,
these effects were difficult to isolate and we did not investigate these cases further due to their
infrequency.

One key control in the study is to determine whether uncertainty in parameters signifi-
cantly impacts the conclusions of analyses. To address this, we conducted Markov chain Monte
Carlo (MCMC) convex sampling of steady-state fluxes given physiological ranges on metabolite
uptakes and secretions [33]. Similarly, we conducted MCMC sampling of metabolite concentra-
tions subject to a constraint on the feasibility of the concentrations with respect to the 2" law
of thermodynamics [35]. We then combined sampled fluxes and concentrations and calculated
rate constants for mass action rate laws for each reaction. It is found that the variation in rate
constants due to flux and concentration uncertainty is small compared to the variation between
rate constants of different reactions in the majority of cases. We also performed several simula-
tions on models with these sampled rate constants, and found little variation in the RT or MP
of metabolites across sampled models. Thus, it appears that experimental uncertainty in fluxes
and concentrations, and the resulting uncertainty on estimated rate constants for simplified rate
laws, is not a major concern in making claims about the dynamics of the network.

Since the simplified rate laws introduces noticeable discrepancies in dynamic behavior,
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we wanted to determine whether these discrepancies would continue to increase as simplified
rate laws are applied to more reactions until the correlation completely disappears, or whether
the approximate model behavior would stabilize at some positive correlation to the true model.
Based on the previous observation that Michaelis-Menten kinetics with measured properties
closely resembled the true model, we set up a simple test case with as many reactions specified
with Michaelis-Menten kinetics as possible (38 out of 168 reactions [33]) and then iteratively
replaced them with mass action kinetics. We compared the RT and MP of the substrates and
products of these reactions when a random set of reactions had their rate laws changed from
Michaelis-Menten to mass action kinetics. We found that the correlation of RT and MP of
metabolites between Michaelis-Menten and mass action kinetics stabilized as more reactions had
their rate laws substituted (Figure 1.4). Since the discrepancy ceases to grow after a certain
point, it appears likely that models with constructed entirely of simplified rate laws still be

useful approximations of the real system, at least for small perturbations.

1.3.8 Effects of flux and concentration steady-state on network dynamics

We then investigated the source of the positive correlation between fully approximate
models and the true model. As both models share the same initial steady state, in terms of
reaction fluxes, metabolite concentrations, and reaction equilibrium constants, we sought to de-
termine whether these values were essential to the dynamic consistency we observed across rate
laws. The flux and concentration state of the cell play a role in determining the dynamic struc-
ture of the network. For example, large metabolite pools will be changed slowly by small fluxes,
and vice versa, giving some expectation of fast and slow dynamics within the network. We

wanted to investigate the degree to which network dynamics are determined by the initial flux
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Figure 1.4: Iterative replacement of Michaelis-Menten kinetics with measured properties by
mass action kinetics. An increasing number of Michaelis-Menten kinetics rate laws with measured
parameters were replaced by mass action kinetics, and the RT and MP of affected metabolites
were calculated. The correlation of metabolite RT and MP between Michaelis-Menten kinet-
ics and mass action kinetics fluctuated initially but gradually stabilized as more reactions were
replaced with mass action kinetics. The black line is the average correlation of all nine perturba-
tions performed. a) Correlation of metabolite RTs between Michaelis-Menten and mass action
model. b) Correlation of metabolite MPs between Michaelis-Menten and mass action model.
Spearman’s rho: Spearman’s rank correlation coefficient. The simulations were performed on
the whole-cell kinetic model of erythrocyte constructed by Bordbar et al [33].

and concentration state, as opposed to the choice of rate law. To this end, we sampled reaction
fluxes and metabolite concentration within physiological ranges, and then in wider ranges. In
contrast to changing rate laws, we found that widening the sampling range on fluxes and con-
centrations greatly impacted the dynamic response of metabolite throughout the network. For
example, metabolite MP and RT subject to ATP hydrolysis perturbation showed weaker corre-
lations within models sampled with wider concentration and flux ranges compared to those from
models sampled with physiological concentration and flux ranges (Figure 1.5a-b). We also found
that the distribution of metabolite RT and MP under ATP hydrolysis perturbation spanned a
much larger range for models sampled with wider concentration and flux ranges (Figure 1.5¢-d).
Thus, it appears that the origin of the dynamic consistency across rate laws does indeed lie
within the order of magnitude differences across reaction fluxes and metabolite concentrations

throughout the network.
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Figure 1.5: Kinetic properties of models sampled with physiological concentrations and fluxes
compared to models sampled in wider ranges of concentrations and fluxes. First, 63 models were
built with metabolite concentrations and fluxes sampled from physiologically relevant range.
Then, 23 models were constructed with a wider range of metabolite concentrations (10~® to 10°
mM) and fluxes. ATP hydrolysis was chosen as a reference perturbation as the perturbation on
all models and RT and MP of the metabolites was calculated. a) Distribution of pair-wise Pearson
correlation coefficients of metabolite RTs for models sampled with wider concentration and flux
ranges and models sampled with physiologically relevant ranges. b) Distribution of pair-wise
Pearson correlation coefficients of metabolite MPs for models sampled with wider concentration
and flux ranges and models sampled with physiologically relevant ranges. c¢) Distribution of
metabolite RTs for models sampled with wider concentration and flux ranges. d) Distribution
of metabolite MPs for models sampled with wider concentration and flux ranges. The sampling
and simulations were performed on the whole-cell kinetic model of erythrocyte constructed by
Bordbar et al [33].
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1.3.9 Dependence of the effect of rate laws approximations on reaction prop-

erties

We have showed that, while models constructed with approximate rate laws still hold
valuable dynamic information due to the constraining effects of physiological flux and concentra-
tion differences, there is still a substantial increase in model accuracy from inclusion of additional
kinetic information such as in a Michaelis-Menten rate law with measured properties. However,
the question is still open of whether certain reactions are more necessary to model accurately
than others. To probe this question, we began with a fully-defined mechanistic model [34], sub-
stituted each reaction in turn with a mass action approximation, and determined the effect on
network dynamics. Clear trends emerged. First, reactions farther from equilibrium showed a
larger effect from rate law approximation (Figure 1.6a). This is intuitive as irreversible reac-
tions tend to be regulated allosterically, but the trend existed even for non-regulated enzymes.
Second, certain reactions with metabolites that have high concentration tend to show a smaller
effect by substitution of rate law approximation as well. For example, the enzymes DPGASE
and DPGM are thermodynamically in an irreversible state but the high concentration of 23DPG
creates a large slow moving pool that causes the dynamics of the network to be insensitive to
the choice of rate law for these enzymes (Figure 1.6). However, there remain some unexplained
cases, where reactions have one or both of these properties but rate law approximations result
in effects outside of the general trend previously observed. For example, the enzymes PGLASE
and GSSGR are clear outliers. This suggests that additional properties exist, such as network
context given particular perturbations of interest, that may provide additional cases where rate

law approximations work well.
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Figure 1.6: Reaction properties affecting the impact of reaction rate law approximations. a)
Enzyme substitution impact (rank) against reaction thermodynamic irreversibility (Logl0). Re-
action thermodynamic irreversibility is calculated as (reaction equilibrium constant - mass action
ratio) /reaction equilibrium constant. Lower rank score meant less change in dynamic response
when the module is replaced by mass action kinetics. Reactions highlighted in red indicate pres-
ence of regulation. Circled reactions are outliers of the general trends. PGLASE is irreversible
but shows low impact upon reaction rate law approximation. GSSGR has a large substrate con-
centration, yet still shows significant impact upon reaction rate law approximation. b) Enzyme
substitution impact (rank) against largest metabolite concentration in the reaction. Red and
circled reactions are the same as in panel (a). The simulations were performed on the model
constructed based on Mulquiney et al [34].

1.3.10 Evaluating the consistency of effects of single enzyme mechanism sub-

stitutions throughout the network

One natural question to arise is whether it is possible to anticipate the changes to dy-
namic properties that occur when introducing enzyme mechanisms with particular features, such
as allosteric regulation or a location upstream of a metabolite of interest, in place of an approx-
imate rate law. For example, there exist some rules of thumb when dealing with small feedback
networks, such as the role of negative feedback in increasing system response time, that might
be applicable in these networks. However, we did not find such rules of thumbs to be reliable in
the cases we examined.

In the case of the importance of network localization, for the nearby enzymes PK and
PGK, there was no general trend observed in metabolite MPs and RTs under ATP hydrolysis

perturbation following single module addition of PK or PGK. For example, the addition of the
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PGK module slightly decreased the MP of lactate compared to no module while the addition
of the PK module caused an increase in the MP of lactate, while from a structural standpoint
we might expect the lactate node to have similar responses to the introduction of either enzyme
mechanism. Along the same lines, the RT of 23DPG increased when adding the PGK module but
decreased when adding the PK module. In addition to looking at the effect of different enzyme
substitutions for a particular perturbation, we also looked across different perturbations for the
same enzyme substitution. Specifically, we characterized the response of metabolite PYR under
different perturbations upon the addition of the PK module and did not observe any general
trend in the change of response.

As a case study for the effect of adding allosteric regulation, we chose the HEX1 enzyme
module, which contains 23DPG as a feedback inhibitor. We performed multiple perturbations on
HEX1 module with and without regulation and characterized the change in the dynamic response
of the substrates and products of the enzyme. We found that G6P showed an increase in RT
following addition of the feedback inhibitor, indicating that G6P relaxes more slowly following
the addition of the inhibitor. The increase was also observed in metabolites downstream of the
module. Meanwhile, G6P and F6P specifically showed an increase in MP with the addition of
feedback inhibition. These observations appear contrary to the effect of feedback inhibition in
simple feedback loops, where RT and MP decrease due to the effect of the inhibition [36]. This
contradiction might be due to other interactions within the model, where metabolic reactions
are usually nonlinear due to metabolites shared across multiple reactions. We performed the
same analysis on the GAPDH module with 3PG as a feedback inhibitor. However, in this case
we found a decrease in RT on FDP and G3P when the feedback inhibition was added, as well

as a decrease in MP on 3PG and PEP. The two case studies above showed that the feedback
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inhibition can cause quite different responses in different modules and the effect of regulatory
mechanisms should be carefully considered on a case by case basis.

We also analyzed the effect of feedforward activation as an additional example of regula-
tion. The example we studied the PK module with FDP as a feedforward activator. We found
a decrease in RT for PYR in the PK module as well as a few metabolites upstream of the PK
module, such as G6P, F6P, FDP, G3P and 3PG. Those metabolites also had a decrease in the
MP (except 3PG and PYR). Again, this is contrary to the commonly observed effect of a simple
feedforward loop, where RT and MP subsequently increase following addition of a feedforward
activator [36]. Similar to the feedback inhibition, such contradiction may be attributable to more
complex interactions within the metabolic network.

Overall, we showed that module addition can qualitatively affect the dynamics of related
metabolites, but the quantitative effect can vary from case to case, possibly due to associated
reaction and network connectivity properties. Therefore, it is difficult to predict any kind of
consistent change moving from an accurate mechanistic description of enzyme catalyzed reactions

to more approximate rate laws in specific cases.

1.3.11 Physiological and enzyme activity perturbations

Finally, while results so far were generated using perturbations of largely academic pur-
pose, such as spontaneous internal metabolite changes, we sought to verify our results on pertur-
bations of greater physiological meaning. First, we performed several simulations on decreased
enzyme activity, in the form of a lower enzyme concentration or lowered catalytic rate constant,
for the enzymes G6PDH, PGK, and PK, and verified the rate law trends identified thus far (see

Methods). For example, the relative metabolite concentrations across different levels of G6PDH
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activity were the same between enzyme module and Michaelis-Menten rate law with measured
properties, while other rate laws showed noticeable differences. We made similar observations
on relative metabolite level change across PK or PGK activity change, except that in PGK all
rate laws behaved closely to the enzyme module. Then, we mimicked a previous study on an
oxygen deprivation perturbation [37], and found that Michaelis-Menten rate law with measured
properties was able to match exactly the dynamics of enzyme module, outperforming other ap-
proximated rate laws. However, none of the models quantitatively matched the experimental

data well, suggesting confounding parameterization or model scope issues.

1.4 Discussion

In this work, we constructed a kinetic model of RBC metabolism with a mechanistic
description of ten enzymatic reactions and compared the dynamic properties of the mechanistic
model with those of several commonly proposed simplifying assumptions. We found that the
Michaelis-Menten kinetics with measured properties yields a consistently good approximation of
the full system, while the Q-linear kinetics and mass action kinetics can show substantial discrep-
ancies. Furthermore, we formulated another Michaelis-Menten-type rate law in an attempt to
simplify the Michaelis-Menten kinetics given limited data available, based on a K, = x¢ assump-
tion with a rapid-equilibrium random order binding reaction scheme. However, this approach
failed to show improved agreement in dynamics with the enzyme modules over other approxima-
tions. We attribute the positive correlation of even the most approximate rate laws with the true
model as due to the important effect that reaction flux and metabolite concentration differences
play in the network dynamics.

Obtaining enzyme kinetic parameters continues to be a core issue hindering the devel-
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opment of practical large-scale kinetic models of metabolism. Databases such as BRENDA [38]
continue to aggregate studies on the kinetic properties of enzymes for various organisms. How-
ever, not only are the collections of the most common kinetic parameters (Ky,s and kcags) often
incomplete and measured under non-physiological conditions, but there is a separate issue with
the additional parameters that are required to parameterize a mass action mechanistic descrip-
tion of a reaction (which we term an enzyme module). Full specification of kinetic parameters is
experimentally intensive but theoretically possible, and some enzymes such as PFK have been
characterized in great detail in particular organisms, including pH and temperature dependence
of parameters. However, the difficulty in determining these parameters and uncertain immediate
value of the data, evidenced by lack of practical applications of resulting kinetic models, is likely
the main reason these data are not routinely being generated. In this study, we show both the
value of fully-defined enzyme mechanism as well as rate law approximations, and thus it appears
that the appropriate rate law to use should continue to be determined by the goals of the modeler.

On the note of the design of this study, we note that kinetic models can be analyzed
from numerous angles. Much work thus far has focus on the dynamic control of metabolic
states. This goal is of great importance, but due to the non-linear and complex nature of such
control, we targeted our investigation on a simpler task of understanding transient responses to
small perturbations in the metabolic network. Experimentally measuring such transients, i.e.,
dynamics of metabolite concentrations, is challenging and fundamentally limited by sampling
frequency and metabolism quenching time. However, we chose to focus on these perturbations
as they are the most simple to understand mathematically. Further studies looking at the effect
of rate law approximations on more intricate dynamic properties, such as the non-linear control

of steady-state changes following enzyme inactivation, are extremely desirable if they can be
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conducted in a rigorous way.

In our comparison of rate laws, we showed that the Michaelis-Menten kinetics with mea-
sured properties gives a good approximate of the full system when comparing the relaxation time
and maximum perturbation of the metabolites. Thus, discrepancies due to ignoring dynamics of
individual enzyme forms do not appear to be a significant issue. This success in approximation
is likely due to the combination of the small concentrations of most enzyme forms relative to
metabolite concentrations, a requirement for the validity of the QSS assumption [21], as well as
the relatively large rate constants for reactions involved in enzyme regulation (effector binding)
and structural transitions. For enzymes with larger concentrations and slow regulatory enzyme
motions, there would likely be substantial discrepancies from using a QSS assumption. We also
found that additional approximations from assuming saturation or neglecting enzyme behavior
entirely cause substantial dynamic and structural issues. While these methods are attractive
due to obviating the need for enzyme-specific parameters, the potential drawbacks may preclude
their use. As an alternative, assumptions about enzyme parameters can be made in place of
assumptions about rate laws. For example, one study has shown that metabolite concentrations
tend to hover around the K,s for corresponding enzymes [28], which could be a useful assump-
tion for modeling in lieu of sufficient data. However, in practice, we found this assumption to
be insufficient to recapitulate enzyme kinetic behavior, as deviations of the real data from this
assumption were sufficiently large to induce substantial differences in behavior.

We showed that adding a module can bring qualitative effects to the dynamics of related
metabolites. However, the quantitative effects have to be examined in a context specific manner,
possibly due to the associated reaction property or network connectivity. We also showed that

the addition of regulations, such as feedback inhibition and feedforward activation, can cause
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dynamic behavioral changes different from those of simple genetic circuits. Taken together, we
would advise a detailed mechanistic description for enzyme catalyzed reaction is likely a necessity
for predicting system dynamics with reasonable accuracy.

There are two additional possible issues associated with modeling enzyme kinetics using
an enzymatic mass action approach. The first is the estimation of kinetic parameters within the
module. The current available experimental data on the enzyme include K8, vinax and Kgs.
However, those data are not sufficient to solve for the rate constants of specific enzymatic steps
in the module. Thus, a good fitting approach is necessary to obtain a set of rate constants that
accurately recapitulate the existing experimental data. The second problem is associated with
the simulation of the system containing multiple modules. A possible stiffness issue can occur
when integrating the ODE equations during dynamic simulations. This might be due to the large
difference in orders of magnitude between metabolite concentrations and enzyme intermediate
concentrations. In this case, we would advise normalizing the enzyme concentrations to the
same level as metabolite concentrations and adjust the corresponding rate constants. However,
one needs to be careful with the magnitude of change in enzyme concentrations as we found
that different changes can cause different dynamic responses. Looking forward, addressing these
issues will be essential to make progress toward bottom-up construction of kinetic models of

metabolism.

1.5 Conclusion

The work here explored the validity of using approximate rate laws with varying levels
of assumptions in the context of a cell-scale RBC kinetic model. We found that the Michaelis-

Menten rate law based on quasi-steady state assumption was able to recapitulate the dynamic
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behaviors of the mechanistic model consistently as long as measured parameters were used. Rate
laws that are derived from further approximations on Michaelis-Menten kinetics or ignore the role
of the enzyme showed substantial discrepancies in dynamic behaviors compared to the mechanis-
tic model. However, we found that the errors associated in these approximate models appeared
to stabilize as more reactions were replaced by approximate rate laws, suggesting that even fully
approximate models can contain useful information. This appears to be due to the dominant
effect that the order of magnitude differences in reaction fluxes and metabolite concentrations
have on the dynamic structure of the network. Still, we also found that replacing approximate
models with the detailed mechanistic enzyme module can bring unpredictable quantitative ef-
fects to the system, suggesting a clear benefit of constructing mechanistically detailed enzyme
modules when possible. The work here should aid the choice of rate laws and parameterization

approaches in future kinetic modeling efforts.

1.6 Methods

All work was done in Mathematica. We used the MASS Toolbox kinetic modeling package
(https://github.com/opencobra/MASS-Toolbox) for model construction and simulation. The
RBC metabolic network with enzyme modules incorporated is available in Mathematica file

format.

1.6.1 Construction of enzyme modules

The mass action rate law was used for reactions in enzyme modules, and the formulation
can be found in Jamshidi et al.[5]. The steps for constructing enzyme modules are as follows: 1)

Define elementary reactions and obtain their equilibrium constants from literature; 2) Formulate
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the steady state mass balances for enzyme forms and solve them symbolically in terms of param-
eters of the reactions; 3) Substitute the symbolic enzyme forms into the equation of total enzyme
concentration and approximate the rate constants of the reactions given a particular flux state;
4) Calculate concentrations of individual enzyme forms given the estimated rate constants.

For enzyme module with regulation, an additional enzymatic step was added in which

the effector molecule (activator or inhibitor) is bound to a particular enzyme form.

1.6.2 Simulation of the network with the incorporated enzyme modules

The constructed modules were added into the RBC metabolic network [33] for further
analysis. For incorporation of a specific module (e.g., PFK module), all the reactions in the mod-
ule were added into the metabolic network and the original metabolic reaction (PFK reaction)
was removed.

Before dynamic simulations, the steady state metabolite concentrations were set as the
initial conditions of the system. For a particular perturbation, a change on certain metabolite
concentrations were applied at time 0 and the subsequent simulation was conducted through
numerical integration of the ODE equations. The system was allowed to simulate to over 100,000

h to regain the steady state concentrations.

1.6.3 Calculation of maximum perturbation and relaxation time

Given a concentration profile from simulation, the maximum perturbation is the largest
percent change in concentration compared to the steady state concentration for a particular
metabolite. The relaxation time is defined as the last time point at which the deviation from the

steady state concentration is 5% of the maximum perturbation. Specifically, when calculating
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the relaxation time, we traced backwards by starting from the concentration at a ’long enough’
time (e.g., 100,000 h) and calculated the difference between the concentration at a particular

time and the steady state concentration until the relaxation time was identified.

1.6.4 Constructing a model full of enzyme modules

We used the scope (Mulquiney et al [34] Scheme 1) and kinetic data (Mulquiney et al
[34] Appendix) to construct a model full of enzyme modules. Specifically, the model contains
22 modules, mainly falling in glycolysis and pentose phosphate pathway. The enzyme mod-
ules were constructed based on the method previously described. We also added in the enzyme
module for hemoglobin, which can be loaded from MASS Toolbox kinetic modeling package
(https://github.com/opencobra/MASS-Toolbox). There are extra 13 reactions in the model
that we did not build enzyme modules for. They are export/import reactions, generic metabolic
reaction without specific reference to an enzyme and reactions with zero flux. Specifically, they
are AMP export reaction, AMP import reaction, CO2 export reaction, glucose import reaction,
proton export reaction, water export reaction, lactate export reaction, O2 export reaction, pyru-
vate export reaction, ATP hydrolysis reaction, glutathione redox reaction, NADH redox reaction,

adenylate kinase reaction.

1.6.5 Enzyme activity simulation

The metabolic state of the system was simulated with different levels of enzyme activities,
for the three enzymes PK, PGK and G6PDH. To simulate changing activity in the enzyme mod-
ule, the total enzyme concentration was multiplied by a certain fraction. To simulate changing

enzyme activity in simplified rate laws, the rate law equation was multiplied by a certain fraction.
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After changing enzyme activities, the new steady state was obtained by simulating the system
for a long enough time. The metabolite concentrations and associated metabolic states (e.g.,
inhibited hemoglobin level) were compared across rate laws and verified against physiological

studies. All simulations were performed on the model constructed based on Mulquiney et al [34].

1.6.6 Iterative substitution of approximate rate laws in place of enzyme mod-

ules

We started with the model constructed based on Mulquiney et al [34] (containing 22
enzyme modules) and iteratively replaced the modules with four different simplified rate laws. We
iteratively increased the number of modules replaced by rate laws, at intervals of 1, 2, 3, 6, 9, 12,
15, 18 and 22. Together with the original model consisting entirely of enzyme modules, we built a
total of 37 models with different rate laws. We then performed 18 different perturbations on those
models. The perturbations fell into three main categories: local metabolite perturbations where
change of metabolite concentration is less than 10%, non-linear metabolite perturbations where
change of metabolite concentration is greater than 10%, perturbations through rate constant
where the rate constant of a particular reaction was altered. Models with replaced rate laws were
compared against model containing all enzyme modules through correlation and percent error in

metabolite RT and MP.

1.6.7 Single module replacement

To test the effect of replacing single module on the network dynamics, we started with
the model constructed based on Mulquiney et al [34] (containing 22 enzyme modules) and built

22 different models by replacing each of the enzyme modules with mass action kinetics in a single
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model. We then compared those 22 models against the original model consisting entirely of en-
zyme modules through correlation of metabolite RT across 18 different perturbations. We ranked
each model based on its metabolite RT correlation with the original model in a perturbation.
We then summed up the rank scores for each model across 18 different perturbations to obtain
their final rank score. Lower rank score meant less change in dynamic response when the module
is replaced with mass action kinetics. We compared the final rank against two factors that could
determine the impact of simplified rate law replacing the enzyme module. One factor is reaction
thermodynamic irreversibility, which is calculated as (reaction equilibrium constant - mass action
ratio) /reaction equilibrium constant. The other is the largest metabolite concentration in the

reaction.

1.6.8 Parameter sampling

We used the model constructed by Bordbar et al [33] for parameter sampling. The
range of metabolite concentrations were based on the physiologically measured concentrations
from 24 healthy individuals [33]. For unmeasured metabolites whose concentrations were taken
from literature, their range was set based on the average standard error of measured metabolite
concentrations. The sampled metabolite concentrations were constrained by the second law of
thermodynamics, where equilibrium constants of the reaction were derived from eQuilibrator [39,
40]. We then used gpSampler in cobratoolbox to obtain 1000 sets of metabolite concentrations
that fell in the physiologically relevant range and satisfied the thermodynamic constraint [35,
41]. The sampled fluxes of the model were obtained directly from Bordbar et al [33]. The rate
constants of the reactions were then calculated from equilibrium constants, sampled metabolite

concentrations and sampled fluxes. As a result, a total of 300 models were constructed from the
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sampled parameters, concentrations and fluxes.

To compare the dynamic behavior of models with different sets of parameters, concen-
trations and fluxes, we performed three different perturbations on the 300 sampled models. The
three perturbations were: changing ATP, ADP, P; concentrations, changing NAD/NADH con-
centrations and changing FDP concentration. It was worth noting that only 63 models were able
to achieve stable steady states after the perturbations. The RT and MP of the metabolites in
those models were calculated from the perturbation profiles. We then selected metabolites with

MP over 5% and compared the dynamic response across models.

1.6.9 Parameter sampling

We used the model constructed based on Mulquiney et al [34] (containing 22 enzyme
modules) for physiological simulation. The physiological condition we chose was the hypoxia
state of erythrocytes, and we simulated such a state by changing the external concentration
of oxygen to 30% of its original level. Due to the known role of Band III (BIII) protein in
erythrocytes under hypoxia condition, we added binding reactions of BIII to hemoglobin, PFK,
GAPDH and ALD [37]. We replaced the rest of the modules with different approximate rate
laws, simulated the models under hypoxia condition for long enough time until steady state was

reached, and compared the time profiles of metabolites across rate laws.
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Chapter 2

Topological and kinetic determinants
of the modal matrices of dynamic

models of metabolism

2.1 Abstract

Large-scale kinetic models of metabolism are becoming increasingly comprehensive and
accurate. A key challenge is to understand the biochemical basis of the dynamic properties of
these models. Linear analysis methods are well-established as useful tools for characterizing the
dynamic response of metabolic networks. Central to linear analysis methods are two key matrices:
the Jacobian matrix (J ) and the modal matrix (M~! ) arising from its eigendecomposition.
The modal matrix M~! contains dynamically independent motions of the kinetic model near

a reference state, and it is sparse in practice for metabolic networks. However, connecting the
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structure of M~ to the kinetic properties of the underlying reactions is non-trivial. In this study,
we analyze the relationship between J , M~! | and the kinetic properties of the underlying network
for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure
based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix
G . First, we show that due to the scaling of kinetic parameters in real networks, diagonal
dominance occurs in a substantial fraction of the rows of J , resulting in simple modal structures
with clear biological interpretations. Then, we show that more complicated modes originate from
topologically-connected reactions that have similar reaction elasticities in G . These elasticities
represent dynamic equilibrium balances within reactions and are key determinants of modal
structure. The work presented should prove useful towards obtaining an understanding of the
dynamics of kinetic models of metabolism, which are rooted in the network structure and the

kinetic properties of reactions.

2.2 Background

In recent years, kinetic models of metabolism have become increasingly detailed, compre-
hensive, and consistent with the underlying biochemistry and genetics [1, 2, 5, 6, 33, 42]. These
models can address a number of questions that are difficult to analyze directly with constraint-
based or statistical models [43-45]. For example, kinetic models have shown utility in the study
of: 1) regulatory mechanisms controlling the cellular metabolic network [9, 10], 2) complex dy-
namic behavior such as bistability [46], 3) intracellular signal transduction [47], and 4) the effect
of enzyme mutations on a network scale [12, 13]. Furthermore, predictive kinetic models are de-
sirable in metabolic engineering to improve production, substrate utilization, and product quality

14, 48].
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A grand challenge moving forward is to analyze the dynamic properties of these models to
obtain a deeper understanding of the structure and function of the metabolic network. A number
of studies have made theoretical and practical headway in this regard by analyzing the linear
properties of the dynamic system around a steady state. These linear analysis methods have
helped to provide insight into metabolic flux control [49, 50], elucidate the temporal hierarchy of
dynamic events [51], and describe the fundamental dynamic structure of the network [52].

At the core of these linear analysis methods is the modal matrix (M~! ) resulting from
the Jacobian matrix (J ) of the mass balance equation. The modal matrix contains dynami-
cally decoupled motions of the metabolic network, called modes. For real metabolic networks,
the modal matrix has a sparse structure [51], the interpretation of which can yield biological
insight into dynamics occurring on particular time scales. However, while M~! is a numerically-
calculated matrix, J can be represented symbolically in terms of derivatives of the reaction rate
laws (dv/dx ) in the network. Thus, obtaining an understanding of the structure of M1 in
terms of the structure of J would allow us to connect the dynamics of the network to the kinetic
properties of single reactions, providing insight into the origin of the network dynamic structure.
Linear analysis is well-known in classical chemical reaction kinetics literature and has been ap-
plied to metabolic networks specifically in the form of metabolic control analysis (MCA) [53],
which focuses on a scaled gradient (dv/dx ) matrix G . However, less work has been performed
on modal (M~! ) analysis of metabolic networks, and specifically very little has been discussed
about why the modes of metabolic networks have particular sparsity structures.

In this study, we present results on the biochemical origin of the modal sparsity structure
of kinetic models of metabolism, using the metabolic network of the human red blood cell (RBC)

[54]. This model consists of ten enzyme mechanisms represented by mass action kinetics inserted
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in a background of 133 approximated rate law reactions [5, 30], parameterized with measured
metabolite concentrations and enzyme kinetic constants. It is essential that this analysis be
performed on a real metabolic network rather than toy models, because the metabolic network
topology as well as order of magnitude differences in reaction fluxes, metabolite concentrations,
and reaction rate constants are essential features in determining the dynamics of the network
[54].

Using both numerical and theoretical arguments, we demonstrate how the dynamic struc-
ture of the modal matrix M~! forms due to specific properties of the Jacobian J matrix. Using
Gershgorin circle theorem, we first show that simple dynamic structures often emerge due to
the kinetic parameter scaling in metabolic networks. Then, we use the matrix power iteration
algorithm to show how modes with more complicated sparsity structures arise from topologically
connected elements of J that have similar magnitude. Furthermore, we describe how such com-
plicated mode structures arise due to similar dynamic equilibrium ratios of connected reactions.

We focus on demonstrating general principles through a set of case studies on the con-
centration Jacobian matrix and the mode structures associated with metabolite groups. These
principles also apply to the flux Jacobian matrix and the relate flux modal structures, which are
characterized in terms of the flux variables and describe the dynamic properties of the reaction

groups [55].

2.2.1 Linear analysis on dynamic structures of the metabolic network

We first briefly introduce the basic established theory for linear analysis of metabolic
networks. In a biochemical reaction network, the dynamic mass balances for all m concentrations

X are given in the form of a matrix equation:
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dx/dt =S - v(x,k) (2.1)

where S is the m X n stoichiometric matrix, x is the m x 1 vector of metabolite concentrations,
and v is the n x 1 vector of reaction fluxes. The formulation of v depends on the reaction rate
law used and the mass action rate law is expressed as a function of the concentrations x and
kinetic parameters k.

Linearizing around a particular steady state xg (i.e., S - v(xp, k) = 0 yields,

dx'/dt =J - x' (2.2)

where x’ = x — x( are the concentration deviation variables from the steady state and J =S -G
is the concentration Jacobian matrix [51]. G (= dv/dx ) is the gradient matrix obtained from
linearization of the reaction rates [30]. It is the same matrix as the non-normalized elasticity
matrix from metabolic control analysis [50, 56].

An eigen-decomposition of the Jacobian matrix yields a different representation of the
same linearized system, with dynamically independent motions of metabolites grouped into modes

within the modal matrix [51].

J=M-A-M! (2.3)

where M~! is the modal matrix and A is the diagonal matrix of eigenvalues. During eigen-
decomposition, we can append the left null space vectors of the Jacobian matrix to the modal
matrix and assign those vectors zero eigenvalues. This operation makes both modal matrices

full rank since a rank deficient matrix is not invertible. The modes are defined as m = M1 - x.
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Substituting Eq 2.3 into Eq 2.2, and based on the mode definitions, we have,

dm/dt = Am (2.4)

As defined in Eq 2.4, the eigenvalues and modes give information on the dynamically independent
motions of metabolite groups [51].

The rows of the modal matrix, which correspond to modes, are left eigenvectors of J
(uJ = Au). Each mode is associated with an eigenvalue and represents the dynamic motion in a
characteristic time scale defined by the eigenvalue. These characteristic time scales describe the
approximate time it takes for the mode to relax (return near its original reference state) when the
system is perturbed from steady state. Our focus in this work is to examine the sparsity structure

of the modes and determine how this structure is connected to properties of the Jacobian matrix.

2.3 Results

2.3.1 Half-reaction equilibria resulting from linearization of bilinear mass ac-

tion rate laws are key dynamic features of G

To aid in later discussions on mode sparsity structure, we first introduce the key concept
of half-reaction equilibria, which appear in G due to linearization of mass action reactions. For
mass action reactions, the dv/dx derivatives comprising the gradient matrix G (= dv/dx ) have
a specific mathematical form and biochemical interpretation (Figure 2.1). The form of the mass
action rate law for an example bilinear reaction between metabolite A and enzyme form E where
A+E + EAisv = k1[A][E]—k~[EA], and the three resulting dv/dx terms in G for the reaction

are kT[A], k*[E], —k~. From these three terms, we can see that certain reactant/product terms
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are eliminated when calculating the reaction sensitivities (derivatives in the form of dv/dx ) in
G . This mathematical operation can be interpreted as splitting the original reaction into half
reactions in a biochemical context. In the case of bilinear kinetics of enzymatic binding/release
reactions, the half reaction describes the binding/release process for one reactant, which is held
constant.

For a full reaction, the distance from equilibrium is defined as I'/K¢4, where I' is the
mass action ratio and K, is the equilibrium constant. Thus, for the example bilinear reaction
mentioned above, its distance from equilibrium can be expressed as k~[EA]/kT[A][E]. Similarly,
the distance from equilibrium for the half reaction associated with binding/release of A can be
expressed as the ratio between the reaction sensitivities of E (k*[A]) and EA (k7). This ratio can
be simplified into [A]/Kq a, where Kq a equals k= /k™ and represents the dissociation constant for
binding/release of A. In cases where there is only one reactant on both sides of the reaction, the
half-reaction equilibrium is equivalent to the equilibrium of the reaction itself (since the resulting
dynamic ratio is k*/k7).

As a specific example, we present a case study on the glucose 6-phosphate isomerase (PGI)
enzyme module (Figure 2.1a) from a whole-cell kinetic model of RBC metabolism [54]. An enzyme
module describes the individual reaction steps of an enzyme-catalyzed biochemical reaction, and
each step is represented by a mass action rate law. Using PGI1 reaction as an example, the half
reaction of interest is the binding/release of glucose 6-phosphate (G6P) (Figure 2.1b red). The
comparison of the sensitivities of PGI (G6Pkp;,) with PGI&G6P (—kpqpy) (& denotes PGI
bound with metabolite G6P) in magnitude is equivalent to the comparison of G6P concentration
with 1/Keq pari- This comparison effectively results in determining the distance from equilibrium

for G6P binding/release half reaction. It is worth noting that the full equilibrium ratio would
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Figure 2.1: PGI enzyme module and its associated matrices. a) A schematic diagram of
individual reaction steps associated with PGI enzyme module and its stoichiometric matrix.
The enzyme form PGI is in italic. We use an ”&” notation to denote that the enzyme form
is bound with metabolite(s). b) Graphical representation of the concept of half reaction. Here
we demonstrate the half reaction associated with the binding/release process of G6P, which is
held constant. To determine the equilibrium state of this half reaction, we are comparing the
sensitivities associated with PGI (G6Pk};,) and PGI&G6P (—kpqp,). ¢) The gradient matrix
of the PGI enzyme module. The gradient matrix (= dv/dx ) is obtained from linearization
of the reaction rates and represents reaction sensitivities to metabolite concentrations. d) The
cause of diagonal dominance demonstrated through the symbolic concentration Jacobian matrix
of the PGI enzyme module. Using row 5 as a case study, we observe that, in the case of mass
action rate law, diagonal dominance is determined by the distance from half-reaction equilibrium
for individual half-reactions. When comparing the terms associated with PGI1 reaction between
diagonal and off-diagonal positions, we are comparing the sensitivity of G6P (PGI k;GH) and
sensitivity of PGI (G6Pkp;,) with that of PGI&G6P (—kpg;,). In the current case, we can
see that the absolute sum of off-diagonal elements in a column is always at least as large as the
absolute diagonal element, meaning that diagonal dominance does not occur across columns.
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include the enzyme forms that have been removed by differentiation and therefore do not influence
the above comparison; thus, the distinct definition of a half-reaction equilibrium ratio is helpful.

As we will show later, the sparsity of a mode is dependent on the distance from equilibrium
of connected half reactions defined by these sensitivities in G . Half reactions that are far from
equilibrium result in simple mode structures while those near equilibrium together form complex

modes.

2.3.2 Diagonal dominance and the Gershgorin circle theorem applied to the

Jacobian matrix

Now that basic definitions have been established, we can begin to examine the sparsity

structure of the dynamic modes of kinetic models of metabolism. The modes are defined by

m; =< ui|x > (2.5)

where u; is the left eigenvector and x is the steady state concentration vector. The bracket
notations refer to the inner product of two vectors. The relative magnitudes of the elements
of u; determine the effective sparsity of a mode when low contributing elements are truncated.
However, since the modes are calculated through a numerical algorithm, it is usually not straight-
forward to link a mode composition to particular elements of the Jacobian matrix, unless the
Jacobian matrix has certain structural properties. One such property is diagonal dominance of
the rows or columns of the Jacobian, which occurs when the magnitude of a diagonal element is
greater than the sum of the magnitudes of off-diagonal elements in the same row (in the case of

row dominance)
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| Jii| > Z | Jik| (2.6)
ki

or column (column dominance), see Figure 2.2a. We focus on row dominance in this work, as
column dominance does not occur in the concentration Jacobian matrix due to the structure of
the mass action rate law, as demonstrated in Figure 2.1d.

The degree of diagonal dominance of a row number i can be quantitatively described by
a metric we term the diagonal fraction, defined as the ratio between the sum of the absolute

values of off-diagonal elements and the absolute value of the diagonal element:

ki ikl

f; = i (2.7)

Diagonal dominance of a row of the Jacobian matrix gives information about its corresponding
eigenvalue. This relationship is made clear using Gershgorins circle theorem [57], which constrains
an eigenvalue to be within a certain radius, based on the sum of the off-diagonal elements in a
particular row/column, of the diagonal element. The theorem is particularly useful in confining
eigenvalues within Gershgorin circles when strong diagonal dominance (a small f; value) occurs,

as the eigenvalue will be close to the diagonal element of the dominant row.

2.3.3 Diagonal dominance in the Jacobian matrix underlies simple mode

structures

To investigate the occurrence and impact of diagonal dominance in a real metabolic
network, we use the RBC kinetic model mentioned earlier to draw the Gershgorin circles and the

eigenvalues from J (Figure 2.2b along x-axis). As highlighted in Figure 2.2b, for the selected set
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Figure 2.2: Diagonal dominance in the Jacobian matrix explains simple mode structures and
corresponding eigenvalues with the help of Gershgorin circle theorem. a) Example Jacobian
matrix of the RBC metabolic network [54] with different degrees of diagonal dominance. The
Jacobian matrix of the metabolic network has a sparse structure, and the diagonal elements
of the matrix are always negative due to the structure of the rate laws used. The matrix was
extracted from the full concentration Jacobian matrix for illustrative purposes. b) The entire
set of eigenvalues of the Jacobian matrix is shown in the larger plot, with x-axis denoting the
inverse of absolute eigenvalues at the logl0 scale. In the inset, selected Gershgorin circles of the
Jacobian matrix with circle centers ranging from -27 to -5 are shown for illustrative purposes.
Eigenvalues greater than -27 are drawn together with the selected circles. The Gershgorin circles
from rows with strong diagonal dominance have centers at -26.2 and -5.26 as shown, and the
eigenvalues inside are -26.3 and -5.33. All eigenvalues are negative as the system is dynamically
stable. The imaginary components of the eigenvalues are small and therefore are neglected.
¢) The dynamic response of GAPDH T, XMP, 5SMDRU1P, compared to the respective modes
dominated by these metabolites/enzymes, under an ATP hydrolysis perturbation. The dynamics
of the mode dominated by a single metabolite coincide with the dynamics of that metabolite.
These modes occur at fast, intermediate and slow timescales, showing that diagonal dominance
can occur at any time as long as the structural properties of the Jacobian matrix allow.
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of Gershgorin circles, there are two cases where the circle resulting from the strongly diagonally
dominant row is very constrained and a unique eigenvalue falls inside the circle. In those cases,
the eigenvalue is very closely approximated by the diagonal element.

In addition to providing information about the eigenvalues, diagonal dominance in J
also causes a simple sparsity structure within modes corresponding to these eigenvalues. When
a row has strong diagonal dominance (f < 0.1), the diagonal metabolite usually is the only
significant non-zero element in the mode. For example, the enzyme form GAPDH_T (glyceralde-
hyde 3-phosphate dehydrogenase at tense state) has a very small diagonal fraction value, and
is the only element in the mode at its corresponding time scale. The underlying reaction that
causes its dominance is the transition step from enzyme form GAPDH at relaxed state to tense
state GAPDH «» GAPDH_T, where the sensitivity of GAPDH.-T (—kgapp_transition_step)
contributes the most to its diagonal element in J . When a mode contains only the diagonally
dominant metabolite, the dynamic motion of the mode drives that metabolite back to its ref-
erence state on a timescale determined by the eigenvalue. For example, under ATP hydrolysis
perturbation, the dynamics of GAPDH_T match closely with the dynamics of the mode in which
GAPDH_T is dominant (Figure 2.2c). When diagonal dominance becomes weaker (f > 0.1), the
diagonally dominant metabolite shares modes with other metabolites. In those cases, the ratio
between those metabolites in the mode is similar to that in the diagonally dominant row of the
Jacobian matrix. Overall, in the RBC metabolic model used in this work, the structure of 38
out of 244 (15.6%) concentration modes can be explained by diagonally dominant metabolites.

As another effect of diagonal dominance, there exists an important relationship between
diagonal dominance in J and system dynamic stability, which is characterized by the sign of

eigenvalues of J in that any positive eigenvalues result in the steady state being unstable. Negative
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diagonal elements in J strongly support system stability, and this effect is further magnified by

diagonal dominance.

2.3.4 Dependence of diagonal dominance on the parameters of the metabolic

network

Having established that diagonal dominance is an important property of kinetic models of
metabolism for real networks, we now describe the origin of diagonal dominance in terms of the
kinetic and physiological parameters of the system. To understand how diagonal dominance in
J is manifested through reaction properties, we can examine the association of elements between
J and G . We can see that for each diagonally dominant metabolite (diagonal fraction < 1),
its diagonal element in J can be matched with a specific reaction sensitivity element for that
metabolite similar in absolute value in G . Such an element is the largest in absolute value for
the flux-concentration derivatives (dv/dx ) associated with that metabolite. Therefore, a single
term in G dominates the resulting diagonal term in J . Furthermore, single reaction sensitivities
in the form of dv/dx in G can determine the dynamic behavior of the system in terms of the
resulting eigenvalues when diagonal dominance occurs. This correspondence can also be extended
to metabolites with non-diagonal dominance, indicating the interpretable connection between J
and G .

As a case study, we examine the cause of diagonal dominance in J of the PGI enzyme
module. We see that, in the enzyme module, diagonal dominance in J is determined by a
particular half-reaction equilibrium ratio, as defined above. We demonstrate this by examining
the enzyme form PGI&GG6P in the 5" row of J (Figure 2.1d). The diagonal term of J for

PGI&G6P shows that the enzyme form is associated with two reactions, PGI1 and PGI2.
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Specifically, reaction PGI1 can be split into two half reactions, related to G6P binding/release
and PGI binding/release processes. The comparison of the diagonal term (—kp ;) with the off-
diagonal terms (GGPI{:}FG 71 and PGI k‘;G ;1) related to PGI1 reaction is effectively examining the
associated half-reaction equilibrium ratios, which are G6P/Kq pgr1 and PGI /Kq pari(Kg,pari =
kpari/ kztG 71)- The term G6Pk;G 71 is smaller than —kp,~;, on the diagonal position in magnitude
while PGI k:ng 71 term is negligible compared to —kp;,, due to the small concentration of the
PGI enzyme form. For reaction PGI2, the term k:ng 1o at the diagonal position is much greater
than kp o, with the consumption of PGI&G6P favored. As a result, the diagonal term of J for
PGI&G6P is greater than the sum of off-diagonal terms in the same row, resulting in diagonal
dominance.

To summarize, diagonal dominance can be understood based on the distance from half-
reaction equilibrium, by comparing metabolite concentrations to the reaction equilibrium con-
stant. In the case of a single reactant on each side of the reaction, the equilibrium constant
alone affects the degree of diagonal dominance. This type of analysis can also be applied to other

enzyme forms in J .

2.3.5 Power iteration connects mode structure to the structure of the Jaco-

bian matrix

Diagonal dominance explains the structure of most of the highly sparse modes, but cannot
address mode structures that are complicated by more than one or two significant elements. We
now show how more complicated mode structures form mathematically from specific elements of
the Jacobian matrix. We demonstrate that examining the modes of the Jacobian matrix from the

perspective of the matrix power iteration algorithm is illustrative in describing how complicated

48



mode structures arise.

Matrix power iteration is an algorithm to calculate the leading eigenvalue and eigenvector
of a matrix (or left eigenvectors in the case of the modes) [58]. In the power iteration algorithm,
the Jacobian matrix is left multiplied by a random vector (u;), the resulting vector is normalized,
and this process is repeated until the vector converges (Figure 2.3a). If the eigenvalue with the
largest magnitude is well separated from the other eigenvalues, the final vector will converge to
the corresponding leading eigenvector. The Euclidean norm of wJ in the last iteration will be the
associated leading eigenvalue A\, where uJ = Au. During the iteration process, the elements of the
Jacobian matrix that contribute to the modes will stretch the vector through multiplication in the
direction of the leading eigenvector. The advantage of using this algorithm is that when run for
a restricted number of iterations, the power iteration algorithm gives a simple approximation of
the modes that enables the identification of mode-determining elements of the Jacobian matrix.
Given the fact that the Jacobian matrix is sparse, the power iteration algorithm can help us
understand eigenvector structure by inspecting how the Jacobian elements stretch the vector to
ultimately result in the eigenvector.

To illustrate the process of vectors converging to the leading eigenvector through power
iteration, we perform power iteration algorithms on 1000 random starting vectors using the full
Jacobian matrix (292 x 292). We then perform principal component analysis (PCA) on all the
iteration vectors (Figure 2.3c). The random starting vectors quickly converge in the dimension of
the first principal component (71.2% contribution), representing the eigenvector, and stabilize in
the dimension of the rest of components (second principal component shown only, contributing
a very minor percentage) after around 10 to 20 iterations.

As a technical detail of the implementation, a limitation of the power iteration algorithm
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Figure 2.3: The power iteration algorithm demonstrates how complicated dynamic structures
arise from topologically connected elements of similar magnitude within the Jacobian matrix. a)
Power iteration can be used to calculate the dominant left eigenvector of the Jacobian matrix.
The left eigenvectors are the modes of the metabolic network. The algorithm left multiplies the
Jacobian matrix by a random vector (u;), normalizes the resulting vector and repeats the process
until the vector converges to the eigenvector. b) Topologically connected Jacobian elements of
similar magnitude determine complicated eigenvector structure. In this case study, we extracted
a submatrix of J that corresponds to the nonzero elements of a certain eigenvector, which contains
G6PDH enzyme forms. The four Jacobian elements (also the largest) that are key in determining
this eigenvector structure are located in the 2°¢ and 4*" rows, circled in black. c) Principal
component analysis on all power iteration vectors starting with 1000 different random vectors.
We randomly picked 1000 starting vectors and multiplied them with the full Jacobian matrix (292
x 292). The starting vector is multiplied through several iterations (10 to 20) until it converges
to the eigenvector (the dot product of the ending vector and the eigenvector is no greater than
1.0001 and no less than 0.9999). We then performed principal component analysis on all iteration
vectors (including the starting vectors) and plotted each vector in terms of the contribution from
the first two principal components. The first principal component corresponds to the leading
eigenvector of the Jacobian matrix while the rest of components (less than 1% contribution each,
only component 2 shown here) together explain the variation of the vector from the eigenvector.
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is that it only calculates the leading eigenvalue and eigenvector. To calculate the next largest
eigenvalue and the associated eigenvector, we must modify J to eliminate the impact of the
previous eigenvector and eigenvalue at each step. Such elimination can be accomplished with the
Hotelling deflation method [59], which returns a modified J , with the leading eigenvector and
eigenvalue removed, that can be used for a new round of eigenvector and eigenvalue calculations

using power iteration (see Methods).

2.3.6 A case study on using power iteration to understand complicated mode

structure

We now use the power iteration method to demonstrate how the eigenvectors with more
complicated structures form in a set of specific numerical examples on the RBC metabolic net-
work. In this section, we show that that the topological connection of elements of similar orders
of magnitude in J is critical in determining the sparsity structure of the eigenvectors. This similar
order of magnitude tends to lie around the eigenvalue (Figure 2.3b).

As a case study, we extract a submatrix of J (4 x 4) corresponding to the positions of
nonzero elements (see Methods for cutoff) of a particular eigenvector, which is associated with
G6PDH enzyme forms of the RBC metabolic network. When J is pre-multiplied by a pseudo-
random starting row vector, we see that the ending vector matches closely with the actual
eigenvector (Figure 2.3b). It is clear upon inspection that the largest values in the submatrix

are also the largest values in the mode. The four key J elements (also largest in the submatrix)

2nd 4th

determining eigenvector formation are located in the and 4" rows (Figure 2.3b black circles).
These rows both have similar structures to the eigenvector, where the ratio between the 274

and 4" elements in the row is the same as that in the eigenvector. This shows that the matrix
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structure is reflected in the eigenvector structure.

2nd 4th

To explore how the and rows both contribute to eigenvector formation, we can
perturb the starting vector such that it interacts with these rows specifically, such as (0, -1, 0,
0) and (0, 0, 0, 1), to examine each rows effect individually. As a result, starting from either
vector leads to a structure similar to the original eigenvector. Thus, it seems that both rows have
similar contributions to the structure of the eigenvector in this case, although their magnitude
is different. Together, the four elements in those two rows (Figure 2.3b black circles) form
a topologically connected structure and interact with each other symmetrically to determine
the eigenvector structure. The other large element at position (4, 3) is not involved with this
symmetric interaction and thus has a smaller contribution to eigenvector formation.

Next, to demonstrate the interplay of the submatrix elements, we show how modifying
the four key elements of the sub-matrix changes the eigenvector. First, to examine the impact of
the largest diagonal element in the submatrix at position (2, 2), we modify the diagonal element
at position (4, 4) to have the same value as the element at (2, 2) (Figure 2.4b). The resulting
vector has a different ratio between its elements compared to the original J eigenvector, with a
larger value in the 4" element, reflecting the larger value in the (4, 4) position of the submatrix.
We then further change the off-diagonal element of J at (2, 4) to be the same as the element
at (4, 2) to create a more symmetric structure (Figure 2.4c). The resulting vector now has the
same value on both the 2 and 4" positions, showing that the off-diagonal elements modify the
weightings on the eigenvector, and a fully symmetric Jacobian structure will result in an equally
weighted eigenvector structure. These perturbations show that how the relative values of the

dominant elements in a submatrix are clearly reflected in the corresponding mode structure.

The power iteration algorithm is a useful tool to analytically understand the structure
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of complicated eigenvectors of a real system. We have demonstrated that the modes form from
a network of topologically connected values of similar magnitude in the Jacobian matrix, and
the relative ratio between these values influences the structure of the eigenvector. These trends,
where an eigenvector can be linked to particular topologically-connected elements of J of similar
magnitude, are generally applicable beyond this case study. The Jacobian modifications demon-
strate that the eigenvector of the matrix can be altered in a predictable manner by changing

either diagonal or off-diagonal Jacobian elements along the same order of magnitude.

2.3.7 Complicated mode structure arises from connected reactions with sim-

ilar dynamic sensitivities in G

Power iteration helps to show numerically how complicated modes arise due to particular
structures in J . For metabolic networks constructed with mass action rate laws, these numerical
values have clear biological interpretations. Next, we describe the origin of complicated mode
structure in terms of specific metabolite and reaction properties of the system. The goal of this
section is to obtain a biochemical interpretation of the numerical results obtained in the previous
section.

We use the same case study presented in the previous section, regarding the mode and
submatrix of J for G6PDH enzyme forms. The mode contains four G6PDH enzyme forms
(red circles in Figure 2.5a), with G6PDH &6PGL and G6PDH&NADPH&6PGL being the most
dominant elements. The mode structure is largely determined by the sensitivities of reaction
6 in G (k§, NADPHkg ) (Figure 2.5c). This reaction releases NAPDH and its elements in G
dominate the topologically connected J elements at positions (2,2), (2,4), (4,2) and (4,4) (Fig-

ure 2.5d). The two most dominant mode elements mentioned above are associated with reaction
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Figure 2.5: The origin of complicated mode structure associated with G6PDH enzyme forms
demonstrated through the associated matrices. a) The reaction steps for the biochemical reaction
catalyzed by G6PDH enzyme. b) The stoichiometric matrix S for the four enzyme forms in the
mode and their associated reactions. The S matrix describes the network topology of the enzyme
forms and determines how they interact in the Jacobian matrix. ¢) The symbolic and numerical
gradient matrix G for the four enzyme forms in the mode and their associated reactions. The
key reaction sensitivities determining the two largest elements in the mode are associated with
reaction 6 and its corresponding enzyme forms. d) The symbolic and numerical Jacobian matrix
J for the four enzyme forms in the mode. We found that the elements of reaction 6 in G
dominate the topologically connected Jacobian elements that determine the mode structure.
These elements are located at positions (2,2), (2,4), (4,2) and (4,4). Reaction 6 is connected to
reaction 4 and 7, whose reaction sensitivities are much smaller in magnitude compared to that of
reaction 6, resulting in very small coefficient for their associated elements in the mode (G6PDH
and G6PDH&NADP&GEP).
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6. Their corresponding J elements contain k; and NADPHkg , which are close numerically,
meaning that NADPH concentration is similar to the equilibrium constant of the half reac-
tion for NAPDH binding/release, where the term ’half reaction’ is used as defined above. The
ratio between NADPHE; and kgL (NADPH/Kq, where Kgg = Keq) defines a half-reaction
equilibrium ratio that is the key in determining the eigenvector structure. If NADPH concen-
tration is higher, reaction 6 will become more sensitive to the concentration of the released form
G6PDH &6PGL, compared to that of bound form G6PDH&NADPH&6PGL. This change will
cause enzyme form G6PDH&6PGL to become more dominant in the mode, due to its greater
diagonal dominance in J. Additionally, reaction 7 has the same order of magnitude sensitivity
in the forward direction (k) as reaction 6, but has a much smaller sensitivity when interacting
with G6PDH&NADP&G6P in the reverse direction, thus resulting in a much smaller contribu-
tion to this enzyme form in the mode. Finally, the unbound G6PDH enzyme form, although
topologically connected to other enzyme forms through reaction 4, is not prominently featured
in the mode, since its sensitivities in G are at a smaller order of magnitude.

Overall, only a few reaction sensitivities in G contribute to the mode structure in this
case study, thus allowing us to determine the specific reactions that control the dynamics of the
mode. For significant elements in the complicated mode structure, the associated half-reaction
equilibrium constant is close to the metabolite concentration, thus creating dynamic interplay
between multiple elements in the reactions. On the other hand, in the case of simple mode
structure governed by diagonal dominance, the half-reaction equilibrium ratio associated with
the diagonal metabolite is usually far from equilibrium. The analysis approach presented exploits
the fact that dynamic features in J are an integration of the features in S and G , thus allowing us

to understand modal structure in terms of both reaction sensitivities in G and network topology
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2.3.8 Power iteration converges to eigenvector subspaces when eigenvalues

are similar in magnitude

As an important technical aside, we note that the power iteration procedure works well
when the eigenvalue is much larger in magnitude than the others; however, special behaviors arise
when eigenvalues do not separate well. Specifically, when we reach modes where eigenvalues are
close in magnitude, the power iteration algorithm converges to different ending vectors depending
on the starting vectors. In this case, the starting vector is influenced by multiple eigenvectors
comprising a subspace of dynamics active around this time scale, making the ending vector
difficult to predict. The ending vectors overlap significantly with an ”eigenvector subspace”
(Figure 2.6a), as these vectors are influenced by multiple eigenvectors simultaneously. Also, the
approximated eigenvalues overlap significantly with the actual eigenvalue cluster (Figure 2.6b),
showing that the approximated eigenvalues settle in the range of the set of similarly leading
eigenvalues. Overall, this analysis demonstrates how multiple eigenvectors influence dynamic

response for time scales that are associated with multiple eigenvalues at similar magnitude.

2.4 Discussion

In this study, we developed an understanding of how the sparsity structures of the dy-
namic modes of kinetic models of metabolism are linked to specific properties of mass action
reaction rate laws. 1) We showed that the diagonal dominance in rows of the Jacobian matrix
is a common occurrence due to the order-of-magnitude scaling of kinetic constants, metabolite

concentrations, and reaction fluxes. This diagonal dominance results in simple mode structures
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Figure 2.6: Eigenvalue and eigenvector approximations calculated from power iteration in cases
where eigenvalues do not separate well. We selected a cluster of close eigenvalues (with a time
scale around 0.016 milliseconds), reduced J using Hotelling’s deflation method until this time
scale was reached (see Methods), and calculated approximated eigenvalues and eigenvectors us-
ing power iteration with different starting vectors. a) Eigenvector approximations calculated
during power iteration from different starting vectors, compared to the actual eigenvectors with
eigenvalues in the selected range. We calculated the approximated 100 eigenvectors from 100
different random vectors with 100 iterations each and obtained vectors that are linearly inde-
pendent with each other (see Methods). The left part of the matrix shown is the eigenvector
approximations while the right part of the matrix shown is the actual eigenvectors, separately by
the black bold vertical line. We found that the subspace formed by eigenvector approximations
overlaps significantly with the actual eigenvector subspace. b) The selected eigenvalue cluster is
compared to the eigenvalue approximations calculated from power iteration. The selected eigen-
values and eigenvalue approximations are shown in the inset plot. We obtained the eigenvalue
approximations from the same set of power iterations performed in panel A. The cluster of eigen-
value approximations overlaps significantly with the cluster of actual eigenvalues, showing that
the eigenvalue approximations settle in the range of the set of similarly dominant eigenvalues.
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where single metabolites relax back to their references states driven by particular eigenvalues.
2) For more complicated mode structures, we used the power iteration algorithm to show that
these complicated mode structures form from topologically connected values of similar orders of
magnitude in the Jacobian matrix. 3) We showed that a key feature underlying mode structure
is the reaction sensitivities in the gradient matrix G , which can be interpreted as the distance
from equilibrium of half reactions defined by linearization of bilinear mass action equations.

Diagonal dominance of the Jacobian matrix as described by Gershgorin circle theorem
gives information about certain eigenvalues. This property results in simple mode structures,
which can occur on time scales that span different orders of magnitude. A simple structure
dominated by a single element indicates that the concentration variable relaxes to its reference
state after its characteristic timescale and does not interact with others on this timescale. Thus,
if rows of the Jacobian are diagonally dominated, there are fewer dynamic connections in the
resulting modes, since these modes will have few nonzero elements. As these non-zero elements
will correspond to the diagonally dominant metabolites, the dynamics on those timescales are
"local’ or heavily influenced by local equilibria. The degree of diagonal dominance that we observe
in a real metabolic Jacobian matrix indicates that these local dynamics are prevalent, and thus
metabolism has a relatively disconnected dynamic structure on many timescales. This modular
structure should simplify the challenge of predicting the dynamic behavior of the entire system.
We note that the core theorem used in this analysis, Gershgorin circle theorem, is well-known in
classical engineering applications, and also has previously been applied to the Jacobian matrix
of metabolic networks to analyze system stability [60, 61].

We have shown that topologically connected elements of the Jacobian matrix at similar

magnitude underlie complex mode structures. Here we used the power iteration algorithm to
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demonstrate how eigenvectors arise from certain elements of the Jacobian matrix. The power
iteration algorithm gives a sparse approximation of the modes that enables the identification
of mode-determining elements of the Jacobian matrix. This contrasts to the more standard
eigenvector calculation algorithms such as QR decomposition. While other algorithms also yield
the eigenvalues and eigenvectors, often in a numerically more efficient manner, our goal was to
understand how the elements of the Jacobian determine the eigenvectors. For this purpose, we
found that the power iteration algorithm is well-suited to suits our needs. Using power iteration,
it is possible to observe how particular elements of the Jacobian matrix influence a random
vector and 'move’ it in the direction of the eigenvector. This process is how we connect the
structure of the Jacobian matrix to the structure of its modes, i.e. the left eigenvectors of the
Jacobian matrix. Examining key Jacobian elements that determine eigenvector structure shows
that they originate from a few reaction sensitivities of topologically connected reactions. These
reaction sensitivities are at different orders of magnitude, resulting in well-separated dynamics
for the metabolites/enzyme forms involved. In a physiologically relevant perturbation, these fast
dynamics are not likely to be excited, leaving the slow ones to be main interest of study.

It would be remiss in any work on the linearized dynamics of metabolic networks to fail
to mention the relation of the work to the foundational body of theory in Metabolic Control
Analysis (MCA) [53]. The gradient matrix G (dv/dx ) that we use to calculate the Jacobian
matrix J is the same matrix that appears in MCA as the unscaled elasticity matrix [56]. However,
the majority of MCA relationships involve the use of scaled matrices, the properties of which we
have not yet examined in the context of the dynamic modes of the system. Additionally, frequent
questions arising in MCA include the control and parameter sensitivity of the system fluxes. As

they are rooted in the same matrices and dynamic properties of the reactions, it is likely that
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the modal structure of the system is intricately connected to the local control properties of the
system.

When examining the origin of mode structure, we have introduced a concept of a half
reaction, which involves only a subset of the substrates and products of a particular reaction that
dynamically respond on a particular timescale. We showed that the distance from equilibrium of
topologically-connected half reactions is a determinant of the complexity of the mode structure.
The half reaction definition arises from linearization of the mass balance equation, where certain
reactant /product term has been removed due to differentiation. In a bilinear enzymatic reaction,
the reaction sensitivities associated with the substrates/products are often at different orders of
magnitude, resulting in half of the reaction responds at a particular time scale while the other
half relaxes. This phenomenon is a key feature for the bilinear kinetics occurring in metabolic

networks.

2.5 Methods

2.5.1 Software

All work was done in Mathematica 10. We used a package called the MASS Toolbox
(https://github.com/opencobra/MASS-Toolbox) for model simulation and analysis. The models
are available in SBML and Mathematica formats and can be found in online Supporting Materials

(https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189880).

2.5.2 Model simulation and perturbation

The model used in this study is a whole-cell kinetic model of red blood cell (RBC)

metabolism consisting of 133 mass action reactions with 10 enzyme modules incorporated [54]. An
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enzyme module describes the detailed reaction steps of an enzyme-catalyzed reaction, including
substrate binding, catalytic conversion, product release and regulatory actions. The 10 enzyme
modules are mainly located in glycolysis and the pentose phosphate pathway.

We used measured steady state metabolite concentrations as the starting state of the
system before the perturbation. The perturbation used in this study was to simulate ATP hy-
drolysis in RBC. At time 0, the ATP concentration was decreased by 0.1 mmol /L while ADP and
Pi concentrations were increased by 0.1 mmol/L. We then simulated the subsequent concentra-
tion and flux changes through numerical integration of the ODE equations. We gave the system
enough time (10° hours) to regain the steady state concentrations. The dynamic response of a
specific metabolite or a combination of metabolites over time was visualized using the plotting

functions in MASS Toolbox.

2.5.3 Mode structure interpretation and dominant mode selection

To simplify the mode structure for interpretation, we neglected metabolites whose ab-
solute coefficient values are less than 5% of the maximum absolute coefficient. We found that
generally metabolites with small coefficients do not substantially contribute to the dynamic re-
sponse of the mode, and 5% serves as a useful cutoff value for purposes of analysis.

When selecting modes that can be explained by diagonal dominance alone, we applied
the following criteria to both concentration modes and flux modes. When examining a particular
mode, we first neglected elements whose absolute coefficient values are less than 5% of the
maximum absolute coefficient. If there is only one element left in the mode and it is diagonally
dominant, the mode is explained by diagonal dominance. For modes with multiple elements,

we selected the mode where its largest coefficient is at least twice as large as the next one and
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corresponds to the most diagonally dominant element in the mode.

2.5.4 Power iteration and Hotelling’s deflation

Since the modes are left eigenvectors of the Jacobian matrix, we left multiplied the Jaco-
bian matrix by the vector during power iteration. We started with a random vector, obtained a
new vector after matrix multiplication and normalized against the Euclidean norm. We kept run-
ning this iteration until the length of the ending vector converges. The algorithm is demonstrated
as follows,
u; - J

Uip1 = (2.8)
T - T

where ¢ is the number of iterations, u; is the starting vector and w;41 is the ending vector in each
iteration.

Since power iteration only calculates the leading eigenvalue and eigenvector of the Jaco-
bian matrix, we used Hotelling’s deflation to remove the impact of the leading eigenvector and

calculated the next leading eigenvector [59]. The algorithm thus results

Jt+1 = Jt - ututTJtututT (29)

where J;y1 is the Jacobian matrix after the leading eigenvector u; of the previous Jacobian matrix
J; is removed.

In cases where the eigenvalues are clustered together, different starting vectors will result
in different eigenvectors at the end of iteration. To compare the approximated eigenvectors

from power iteration with the actual eigenvectors, we picked the eigenvalue cluster with time
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scale around 0.016 milliseconds and reduced J using Hotelling’s deflation method until this time
scale was reached. We started with 100 random vectors and multiplied them by J through 100
iterations, which we found to be large enough for the vector to converge in practical cases. To
obtain the set of linearly independent vectors out of the 10* vectors, we started with one of
the vectors, added another vector (from the 10* vectors), and calculated the rank of the matrix
formed by the current vector space. We kept adding the vector one at a time for all the ones
we calculated. If the matrix rank increases, the added vector is linearly independent with the
earlier vectors and will be kept in the final vector set. Otherwise, it will not be included. We also
calculated the norms of all vectors during iterations as eigenvalue approximations for comparison

with the eigenvalue cluster.
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Chapter 3

Estimating Metabolic Equilibrium
Constants: Progress and Future

Challenges

3.1 Abstract

Reaction equilibrium constants (Keqs) are key parameters that impose thermodynamic
constraints on the function of a metabolic network. An important approach for K¢y estimation
is the group contribution method, which utilizes chemical moiety-based estimates of compound
formation energies. In this Opinion, we delineate a number of current challenges with the group
contribution method, specifically: (i) problems related to the completeness and quality of data
necessary for reliable estimation; and (ii) inadequacies of the method to represent the physical

properties of compounds. We then highlight a number of promising approaches to deal with
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the limitations of group contribution methods. Further advancements should lead to more ac-
curate prediction of equilibrium constants and a better representation of cellular function under

biophysical constraints.

3.2 How Are Free Energies Estimated? The Fundamentals of

Group Contribution Theory

Thermodynamics plays an essential role in the function of metabolic networks and puts
constraints on cellular functions. A wide variety of thermodynamic analyses of the metabolic
network have been explored, including examining pathway choices due to the thermodynamic
efficiency of the proteome [62], analyzing the feasibility of network flux states [63, 64], and deter-
mining the thermodynamic feasibility of measurements of quantitative metabolite concentrations
[28, 65]. Reaction equilibrium constants (Keqs) are important parameters for thermodynamic
analysis. The Keq of a reaction can be measured experimentally by adding the active enzyme
and the substrates or products to a solution and allowing the reaction to proceed to equilib-
rium; at which point the substrate and product concentrations are measured. A large number
of reactions have been studied in this manner, and the resulting data have been collected in
databases such as the National Institute of Standards and Technology (NIST) Thermodynamics
of Enzyme-catalyzed Reactions database (TECRdb).

However, K¢qs for the majority of biochemical reactions have not been experimentally
measured. The existing set of measured Keqs can be used to calculate unmeasured reactions using
the standard Gibbs free energies of formation of the compounds (A;G° ) instead. The standard

Gibbs free energy of reaction (A;G° ) and its involved compounds have a simple relationship
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AGE =) siAGS (3.1)

where s; is the stoichiometric coefficient of the corresponding compound. The A¢G° of com-
pounds can be inferred indirectly by forming complete reaction cycles and utilizing principles
from the First Law of Thermodynamics to set up a system of equations and solve for A¢G° .
This procedure, also known as reactant contribution, has been performed on existing data and
tabulations of resulting A¢G° data have been assembled [66, 67]. However, AyG° values for the
majority of compounds still cannot be inferred from available K¢, data due to lack of sufficient
data coverage, making computational estimation necessary.

The primary approach to estimate unknown A¢G° in cases where data are insufficient for
reactant contribution is through the group contribution method. Group contribution, based on
the principle of additivity, approximates the compound energy as the sum of the energies of the

chemical moieties (groups) comprising the compound.

AfG° =) 6iAG (3.2)

Here, AzG7 is the group energy and ¢; is the number of each group present in the compound.
Given a set of measured Keqs, AgG° can be estimated by regression and used to predict Kegs
of unmeasured reactions, as long as their involved compounds can be decomposed into the same
sets of groups. Since the original application of group contribution to estimate Keqs in aqueous
solutions [68], a number of developments have been made, including increasing the scope of predic-
tions, handling pH and temperature consistently and globally across reactions, and incorporating

the First Law constraints from reactant contribution into estimations [69-72] (Figure 3.1a).
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Figure 3.1: Overview of progress and challenges in estimation of reaction equilibrium constants
in metabolism. a) Root mean square error (RMSE) of group contribution methods developed
for aqueous biochemical reactions over time. The major improvements of each updated method
are summarized below the timeline. b) Current issues associated with the group contribution
method. They mainly include (i) accuracy issues where the values of A,G° data and their
errors fall in the same order of magnitudes based on the latest method; (ii) data issues including
inconsistent data with large variations for the same reaction and limited coverage of data in
metabolic networks; and (iii) methodology issues including nondecomposable compounds due
to insufficient coverage of compound groups, the complexity of group changes in reactions, and
the inability to differentiate reactions with the same group change but different Gibbs reaction

energies. See also [68-73].
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Despite their extensive use, it has become clear that group contribution methods have a
number of substantial challenges that have persisted throughout their development (Figure 3.1b).
While accuracy continues to improve (Figure 3.1a; root mean square error of A,G° now at
2.3 kJ/mol), the error in estimating A,G° in the worst cases can be as large as 30 kJ/mol,
corresponding to a 10°-fold range in possible Keq values. In this Opinion, we cover several issues
that limit the accuracy of group contribution estimates. We further discuss recent progress that

may help to overcome these limitations, focusing on the advancements in the last 5 years.

3.3 Key Limitations in Thermodynamic Data Available for

Group Contribution Model Training

Assessing the thermodynamic data available to train group contribution estimates, we
identify four primary issues related to the data consistency, data depth, data coverage, and
variation in experimental conditions.

Data inconsistency refers to the variation in A;G° of the same reaction from different
studies. This inconsistency can become a bottleneck in improving the accuracy of A,G° estima-
tion. Utilizing TECRdb, we examined the agreement of A.G° values calculated from measured
Kegs of the same reaction across different studies. Ideally, these A.G° values should be identical.
While most reactions have data that agree reasonably well, a number of reactions (5%) have
greater than 10-kJ/mol variations in A,G° (56-fold change in K¢q ) (Figure 3.2a). A case study
on the creatine kinase reaction from different studies (Figure 3.2b) shows that the source of dis-
crepancies in this particular case is the large range of total magnesium and calcium concentrations

reported. The interactions of these ions with the compounds in reaction can significantly affect
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the measured Kcqs and have not yet been accounted for accurately [72]. Additionally, we found
that a number of AfG° values (calculated from experimental A,G° ) of the same compounds
from different sources [66, 67] vary by more than 10 kJ/mol (Figure 3.2a).

Data depth refers to the issue where particular chemical moieties have poor data coverage,
thus having high uncertainties in energy estimates. We thus examined the set of reactions with
measured data in the TECRdb and resulting coverage of decomposed compound groups. Groups
with a breadth of measured reactions give high confidence in their A;G° estimates. We found that
a quarter of groups within TECRdb reactions only appear in a limited number of reactions (<3)
(Figure 3.2c). As demonstrated by a bootstrapping analysis, groups appearing in fewer reactions
(<3) tend to have substantially larger uncertainties in A,G° than those appearing in more
reactions (>3) (average median absolute deviation of 4.4 kJ/mol vs 2.6 kJ/mol) (Figure 3.2d).
Therefore, when studying a reaction of interest, one should understand the coverage of the
involved groups in TECRdb reactions and evaluate the uncertainties accordingly. Encouragingly,
these types of uncertainty calculations are now commonly coupled to group contribution efforts
[71, 72].

Data coverage is related to the availability of data for real metabolic networks. As a test
case, we assessed the coverage of group contribution on the latest Fscherichia coli genome-scale
metabolic reconstruction iML1515 [74] (Figure 3.2e). We found that 78 of 88 groups that change
in all iML1515 reactions are covered by TECRdb reactions, with the majority of the covered
groups (83%) appearing in more than three unique TECRdb reactions. Assessing the coverage
on iML1515 reactions based on metabolic functions, lipid metabolism and cofactor metabolism
are clearly the most poorly covered. Compounding this problem, when looking at measured

data in TECRdb directly, lipid metabolism is almost entirely unmeasured, indicating that A;G°
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Figure 3.2: Quality and coverage issues with thermodynamic data used to parameterize the
group contribution method. a) Consistency of thermodynamic data between studies and data
collections. b) Distribution of A;G° data from the same literature for creatine kinase reaction.
The large variation in one study (30-65 kJ/mol) is primarily due to the large range of total
magnesium and calcium concentrations utilized in the study, which are not accounted for by the
current group contribution method. ¢) Distribution of group changes in reactions from TECRdb.
A large number of groups only appear in limited number of reactions (<10). d) Variation in group
energies calculated from bootstrap sampling. We found that groups with fewer appearances in
reactions tend to have larger uncertainties. e) Coverage of the current group contribution method
on the latest Escherichia coli metabolic model iML1515. f) Comparison of group appearance in
reactions for TECRdb and iML1515. We divide the plot into two areas, one on groups with low
appearance in TECRdb but high in iML1515 and another on groups with high appearance in
TECRdb but low in iML1515.
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of groups comprising lipids are mostly parameterized based on estimates of nonlipid reactions.
Such uncertainty around lipid energies is especially problematic as lipids dissolved in the cellular
membrane likely have substantially different thermodynamic properties than metabolites in the
aqueous phase.

To identify promising targets for future experimental measurement to maximize benefit to
group contribution estimates, we compared the group appearance in reactions between TECRdb
and iML1515 and identified groups poorly covered in TECRdb measurements but appearing fre-
quently in IML1515 reactions (Figure 3.2f top left area). Reactions containing undermeasured
groups were diverse, including fumarate reductase, murein polymerizing transglycosylase, and
imidazole-glycerol-3-phosphate synthase. Experimental measurements of Keqs of reactions con-
taining these groups would be high priority for reducing uncertainties and improving coverage.

Variations in experimental conditions also affect group contribution estimations in ways
that are not yet fully accounted for by current implementations. The estimation of A;G° us-
ing reaction data requires all A,G° values to be transformed to standard conditions. Thus, the
transformations of K¢ys measured under different conditions to standard conditions A,G° need
to be accurate and complete. Condition-dependent effects that are not accounted for by cur-
rent methods include the following. (i) Ionic strength. Recent work has accounted for the
activities of the reactants in dilute aqueous solutions in the presence of ions using the extended
Debye-Hiickel equation [70-72]. However, a more complete description accounting for specific
ionic interactions and higher ionic strength has not been implemented due to parameterization
challenges [75, 76]. Additionally, corrections of neutral compound activities due to ionic strength
have not been included [77]. (ii) Metal concentration. A theory has been developed to correct

Keq at different metal concentrations [66], but metal binding constants as the key parameters
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are not available broadly. (iii) Macromolecular environment. Nonspecific interactions of the
reactants and products with their surroundings in living cells can significantly affect Keqs [78].
For example, handling of the activity change with solutes in concentrated protein solutions [79]
could become relevant to in vivo estimation. Given these numerous effects, one should take the
in vivo conditions into account and evaluate the possible variations in K¢q values accordingly

when using Keqs measured in vitro.

3.4 Methodological Challenges with Group Contribution Esti-

mation

Beyond data issues, several fundamental issues with the group contribution method itself
have persisted that may become the bottlenecks for further improvement in prediction accuracy.
These issues are related to: (i) the completeness of the group definitions; (ii) the complexity of
group changes in reactions; and (iii) the validity of the additivity assumptions underlying group
contribution. While the specific observations shown here depend on the exact group definitions
from the latest group contribution framework and might differ in different contexts, the issues

identified should be applicable across different frameworks using the method.

3.4.1 Completeness of Group Definitions

Due to limitations in the representation of chemical moieties, the group contribution
method fails to decompose the chemical structures of a substantial number of metabolites in
iML1515 (87) (Figure 3.3a). Besides those containing undefined R groups, the metabolites that
cannot be decomposed contain certain groups not covered by the current method (e.g., aromatic

carbon atom with double bond) (Figure 3.3b). Therefore, continued efforts to include new group
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definitions are important to make the method comprehensive. In addition, current methods
define inorganic small molecules as individual groups (e.g., ammonia, phosphate, and oxygen)
and directly set their energies based on existing data due to accuracy issues with their group-
based estimations. While these compounds cover the most commonly seen cases, the properties
of other inorganic compounds not covered by the framework (e.g., inorganic triphosphate) cannot
be estimated accurately. Additionally, cofactors such as NAD/NADH can either be broken down
explicitly or treated as individual groups. The former approach ensures consistency in group
breakdowns across reactions including those synthesizing the specific cofactor, while the latter
approach enforces more accurate redox potentials even if group energies would not accurately

predict the cofactor energies.

3.4.2 Complexity of Group Changes in Reactions

The success of group contribution lies in the principle that for each substrate of a reac-
tion, only a few reacting chemical groups change, the energies of which can then be determined
through regression against measured data. To prevent this regression problem from being highly
underdetermined, the number of groups changing in a reaction should be comparable to the num-
ber of reactions containing these groups with measured data. However, using the current group
definitions, we observe that a subset of reactions have a large number of changing groups (26
reactions with >10 group changes) (Figure 3.3c). For example, reactions containing many com-
pounds or involving formation and alteration on rings (e.g., dihydroorotase and cyclohydrolase)
can result in a large number of group change. Due to overfitting, the uncertainties in estimating

AgG° of a large number of groups based on few A.G° values can be significant.
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Figure 3.3: Common problems when using group contribution methods to estimate thermody-
namic properties of compounds and reactions. a) Inadequacy of the group contribution method
to decompose metabolites in a real metabolic network. A number of metabolites in the latest
Escherichia coli metabolic model iML1515 cannot be decomposed by the current group contri-
bution method. b) Examples of metabolites that cannot be decomposed due to groups that are
undefined or not currently included in the method. ¢) Complex reactions with large number of
group change exist and introduce difficulty in determining group energies accurately. d) Distri-
bution in A.G° for reactions with the same group change. While for several reaction categories
A,G° values are consistent (transferase and isomerase), a number of them show large variations
in A;G° (e.g., dehydrogenase and amidase). e) Reaction types with no group change. Theo-
retically, such reactions should have zero A.G° . However, we found A,G° of several reaction
classes (e.g. isomerase, kinase, and transaminase) to deviate significantly from 0. f) Examples of
reactions, for a set of carbohydrate isomerases, with no group change but nonzero A,G° . Group
contribution would predict a K¢q of 1 for each reaction, not taking into account small differences
in physical properties between the reactants and products in each case.
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3.4.3 Validity of the Additivity Assumption

According to the additivity principle, groups should have a constant energy regardless
of structural context, and thus reactions with the same group change should have the same
energies while those reactions with no group change should have zero A,G° . However, in many
cases, the available data tells a different story. Specifically, a number of reactions with the same
group change have large variations in A,G° values (up to 40 kJ/mol) based on measured data,
most notably within the dehydrogenase, amidase, and adenylation reaction classes (Figure 3.3d).
Taking reactions catalyzed by dehydrogenases for example, the variation in A,G° values can
likely be attributed to other chemical attributes of the reacting moiety (e.g., alcohol, carboxylic
acid, or fatty acid) oxidized /reduced in different reactions.

As another telling example, several reactions with no group change have substantially
nonzero A,G° values, notably within isomerase, kinase, and transaminase reaction classes (Fig-
ure 3.3e). A closer look at those reactions shows that other molecular properties are clearly con-
tributing to the differences in compound energies, for example, different geometric conformations
for structural isomers of sugar molecules (Figure 3.3f) [80]. Furthermore, different tautomers of
the compounds exist and have not been accounted for by current methods. These cases demon-
strate how group contribution often fails to consider more nuanced molecular interactions that

can drive the difference in energy between reactants and products.

3.5 Opportunities for Improvement

Recent developments promise to address many of the challenges outlined above. To
improve data quality, further curation and processing of existing data are needed [72]. Specifically,

calculation of free metal ion concentrations, rather than the more commonly reported total
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concentrations, and a better model to estimate metal binding constants may enable more accurate
correction of Keqs at different metal concentrations [72]. Furthermore, developing more detailed
representations of ionic interactions and nonionic effects may yield better estimates for complex
ionic solutions [81-83].

To improve data coverage, additional thermodynamic data can be incorporated. While
significant experimental efforts are necessary to obtain more K¢q measurements, it is possible to
use other types of data with certain adaptations. For example, gas phase thermodynamic data
(AtG°(g)) (https://webbook.nist.gov/chemistry/) and the compound hydration energies (ALG°)

from various sources and estimates [84, 85] can be used to calculate aqueous A¢G° [86].

AGP(agq) = AG2(g) + ALG® (3.3)

Also, to address the lack of data around reactions in the lipid phase, existing information on
compound lipid partition coefficients or distribution coefficients (LogP, LogD) might be used
to estimate the aqueouslipid solvation energy (Agoi—1ipidG°) [87, 88], which relates to the Gibbs

formation energy in the lipid phase [89].

AfG°(lipid) = AtG°(aq) + Asol_hpidGo (3.4)

Additionally, computational models of the lipid membrane have been developed that could lead
to inroads here [90, 91].

Possible solutions to handle reactions with many changing groups could involve manually
adjusting group decompositions for these reactions or redefining the group decomposition rules

more generally. Additionally, algorithmic improvements to the statistical models used in group
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contribution may also be fruitful. For example, we have found that linear regression with L2
regularization can result in reduced cross-validation errors for A,G° estimation. The underlying
rationale here is that group energies are unlikely to be very large, and this type of regularization
prevents unrealistically large values being estimated for groups with little presence in the training
reaction data. Additionally, recent developments on estimating A,G° based on reaction similarity
[92] and by combining reactant contribution and group contribution [71] are further examples of
promising algorithmic variants of the method.

To address issues related to the validity of the additivity assumption in group con-
tribution, more sophisticated approaches are necessary. One promising approach is to in-
corporate additional molecular properties such as polarity or partial charge into the estima-
tion workflow, as commonly performed in quantitative structureproperty relationship (QSPR)
modeling [93, 94]. Such properties can be estimated with cheminformatics software, in-
cluding ChemAxon (http://www.chemaxon.com), RDkit (http://www.rdkit.org) and Dragon
(http://www.talete.mi.it). Increasing the complexity further, molecular dynamics simulations
of the compound can be used either to estimate compound thermodynamic properties directly
[95, 96] or to calculate other molecular properties that will later be incorporated into QSPR

models [97, 98].

3.6 Concluding Remarks

Thermodynamic analysis of metabolic networks is a burgeoning area of research empow-
ered by genome-scale estimations of reaction Keqs. While group contribution has been steadily
improving our ability to estimate K¢q with greater scope and accuracy, there remains a variety

of challenges in data and methodology that can be addressed to advance the field. As outlined
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above, new and more sophisticated approaches are on the horizon that may mitigate the most
prominent shortcomings of current implementation of group contribution methods. While sub-
stantial challenges remain (see Outstanding Questions), this open discussion of limitations of
current methods should spur further development in parameter estimation for thermodynamic

modeling in metabolism.
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Chapter 4

Temperature-dependent estimation
of Gibbs energies using an updated

group contribution method

4.1 Abstract

Response to acid stress is critical for Escherichia coli to successfully complete its life-
cycle by passing through the stomach to colonize the digestive tract. To develop a fundamental
understanding of this response, we established a molecular mechanistic description of acid stress
mitigation responses in F. coli and integrated them with a genome-scale model of its metabolism
and macromolecular expression (ME-model). We considered three known mechanisms of acid
stress mitigation: 1) change in membrane lipid fatty acid composition, 2) change in periplas-

mic protein stability over external pH and periplasmic chaperone protection mechanisms, and 3)
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change in the activities of membrane proteins. After integrating these mechanisms into an estab-
lished ME-model, we could simulate their responses in the context of other cellular processes. We
validated these simulations using RNA sequencing data obtained from five E. coli strains grown
under external pH ranging from 5.5 to 7.0. We found: i) that for the differentially expressed
genes accounted for in the ME-model, 80% of the upregulated genes were correctly predicted
by the ME-model, and ii) that these genes are mainly involved in translation processes (45% of
genes), membrane proteins and related processes (18% of genes), amino acid metabolism (12%
of genes), and cofactor and prosthetic group biosynthesis (8% of genes). We thus established a
quantitative framework that describes, on a genome-scale, the acid stress mitigation response of

E. coli that has both scientific and practical uses.

4.2 Background

The First and Second Laws of Thermodynamics connect reaction flux directions, metabo-
lite concentrations, and reaction equilibrium constants. An increasing number of systems biology
methods have begun to take advantage of the intimate connection between thermodynamics and
metabolism to obtain insights into the function of metabolic networks. These methods have been
used in a number of applications including the calculation of thermodynamically-feasible optimal
states [99, 100], the identification of thermodynamic bottlenecks in metabolism [101, 102], and
the constraint of kinetic constants via Haldane relationships [103].

To perform thermodynamic analyses on metabolic networks, it is necessary to have val-
ues for the equilibrium constants of reactions carrying flux in the network. Experimentally,
the equilibrium constant of a reaction is determined by calculating the mass action ratio (the

ratio of product to substrate concentrations), also called the reaction quotient, when the reac-
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tion is at equilibrium. A collection of experimentally measured equilibrium constants for over
600 reactions has been published in the NIST Thermodynamics of Enzyme-Catalyzed Reac-
tions database (TECRdb) [104]. However, the equilibrium constants of the majority of known
metabolic reactions are still unmeasured, making computational estimation necessary. The most
commonly-used approach for estimating thermodynamic constants in aqueous solutions is the
group contribution method [69, 105]. This method is based on the simplifying assumptions that
the Gibbs energy of formation (AfG°) of a compound is based on the sum of the contributions
of its composing functional groups, which are independent of each other. The contribution of
each group can be estimated through linear regression, using existing data on A¢G° and Gibbs
energies of reactions (A,G°).

Recent iterations of group contribution methods for reactions in aqueous solutions have
incorporated pH corrections into estimations of equilibrium constants [106] and improved accu-
racy by taking advantage of fully-defined reaction stoichiometric loops forming First Law energy
conservation relationships within the training data [107]. These methods also have begun to take
advantage of computational chemistry software to estimate the pK,s of compounds as part of
thermodynamic parameter estimation. However, a number of issues remain for thermodynamic
estimation of reaction equilibrium constants in metabolic networks, including: 1) significant es-
timation errors in many cases, which may be attributed to a number of factors including missing
or erroneous reaction conditions, and 2) the lack of an established method to handle correction
of thermodynamic data with respect to temperature changes across conditions. Additionally, ex-
isting group contribution methods have not taken into account the substantial metal ion binding
of many metabolites at physiological ion concentrations, although established theory exists to

correct reaction equilibrium constants for metal ion binding when ion dissociation constants are
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available [66].

The geochemistry field has developed sophisticated theory to handle thermodynamic
variables as a function of temperature for a wide variety of compounds in aqueous solutions [108—
114]. The parameters used to calculate thermodynamic transformation across temperature are
specific for different compounds. However, the available literature only covers less than half of the
compounds in NIST TECRdb. Therefore, the estimation of a large number of compound-specific
parameters is required. It is possible to use a group contribution approach by incorporating
these parameters into the formulation of A,G’ and fitting them against experimental data at
different temperatures. However, due to the lack of data in necessary depth and resolution, the
parameter estimation procedure on the fully-parameterized thermodynamic model can suffer large
errors from overfitting of parameters. Therefore, a simplified approach with fewer parameters to
transform A,G’° across temperature is desirable.

In this study, we extend the capabilities of computational estimation of reaction equilib-
rium constants for metabolic networks. We first curate the NIST TECRdb of reaction equilibrium
constants to obtain missing reaction conditions and correct any other errors. We further incor-
porate additional thermodynamic data, including A¢G° and data related to proton and metal
ion binding, from a number of other sources [66, 115-119]. The equilibrium constants and A¢G°
values are commonly used as the training data for group contribution. The proton and metal
ion binding data are required to transform A,G’® across different pH and metal ion concentra-
tions. To enable calculation of equilibrium constants as a function of temperature, we adapt
the thermodynamic theory from the geochemistry literature [108-114] given certain simplifying
assumptions. The thermodynamic parameters required for such calculation, A¢S° of aqueous

species, are estimated through the regression model using various molecular descriptors. Next,
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to fill gaps in magnesium binding correction of equilibrium constants, we estimate magnesium
binding constants for 618 compounds using molecular descriptors and magnesium binding groups
defined based on known magnesium binding compounds. Finally, we incorporate these new data
and functionalities into the most recently published group contribution framework, termed the
component contribution [107], to obtain a new group contribution estimator for reaction equilib-

rium constants with expanded capabilities.

4.3 Methods

4.3.1 Workflow for estimation of equilibrium constants

We first introduce the workflow for estimation of equilibrium constants illustrated in
Figure 4.1a. The following sections expand upon the workflow in greater detail. We collected
and curated 4298 equilibrium constants (K’) for 617 unique reactions measured under different
conditions (temperature, pH, ionic strength, metal ion concentrations) as the training data set
for the current group contribution method (Figure 4.1b). We also collected A;G° values from
multiple sources as the training data [66, 115, 116]. We collected and curated stability con-
stants of metal-ion complexes from The IUPAC Stability Constants Database and A¢S° from
various literature sources and online databases [66, 115, 116] (Figure 4.1c). To complete the
necessary thermodynamic transformations to reference conditions, we estimated different ther-
modynamic properties for compounds where data were not available. We estimated pK, values
using ChemAxon (http://www.chemaxon.com). We used regression models to estimate magne-
sium binding constants (pKng) and AsS° based on collected data.

First of all, we transformed all measurements to the same reference conditions at 298.15
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K, pH 7, 0 M ionic strength and no metal concentration. We applied a Legendre transform
to account for the different ion binding states of each compound as in the previous component
contribution method [107]. The transformation of Gibbs free energy of reaction across pH and
ionic strength is also based on the previous method. However, we used the Davies equation rather
than the extended Debye-Hiickel equation to calculate activity coefficients of electrolyte solutions,
as the Davies equation was used in the previous work for thermodynamic transformations across
temperature [108-111]. The transformation of Gibbs free energy of reaction across different metal
concentrations is based on the formulation described by Alberty [66, 120]. The transformation
of Gibbs free energy of reaction across temperature is based on adapted thermodynamic theory
from the geochemistry literature [108-111] with simplifying assumptions.

Using A;G° and AfG° data at reference conditions, we applied the component contribu-
tion method by Noor et al [107] and obtained estimates of A,G° and A¢G® at reference conditions.
Using these values, as well as the estimated A;S° to transform A,G’® across temperature (more
details in Results) and other thermodynamic transformations applied in the previous work [107],
we are able to calculate the equilibrium constant of a given reaction at defined temperature, pH

and ionic strength.

4.3.2 Curation of The IUPAC Stability Constants Database

The TUPAC Stability Constants Database (SC-database) contains ion binding data, i.e.
dissociation/binding/stability constants, under various conditions from primary literature. Addi-
tionally, the database contains several different annotations for binding of protons and metal ions
to specific aqueous species. When the ligand is a proton, the related dissociation constant is a

pK, constant, while when the ligand is a metal ion such as magnesium, the dissociation constant
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is a pKng (modified to the specific ion) constant. For each compound of interest, we categorized
the available binding data specific to each ion bound state. We then corrected binding data to
0 M ionic strength using the Davies equation [121]. For each ion binding reaction, we calculated

the median of all available binding data as the value utilized in the fitting.

4.3.3 Features and data used in regression models to estimate pKy;, and A¢S°

For estimation of pK\g, we included a total of 140 data points and 128 molecular descrip-
tors as features for regression models. The molecular descriptors included magnesium binding
groups identified from existing pKyj, data, the charge of the compound excluding any mag-
nesium binding groups, sums of partial charge and numbers of different types of atoms, and
several additional molecular descriptors from ChemAxon and RDkit. For estimation of A¢S°,
we included 762 data points and 195 features including group decompositions, sums of partial
charge and numbers of different types of atoms, and molecular descriptors from ChemAxon and
RDkit. The molecular descriptors of compound were estimated with Calculator Plugins, Marvin
16.11.21, 2016, ChemAxon (http://www.chemaxon.com) and RDKit: Open-source cheminfor-

matics (http://www.rdkit.org).

4.3.4 Comparison of regression methods using nested 10-fold cross-validation

We tested six different regression methods to estimate pKyie and ApS°. These methods
are ridge regression, lasso regression, elastic net regularization, random forests, extra trees and
gradient boosting. We applied nested 10-fold cross-validation to compare the performance of
these regression methods. The specific implementation of nested 10-fold cross-validation involves

generating an outer loop and inner loop of cross-validation. The outer loop separates the whole

86



dataset into 10 folds, with one fold for testing and the rest for training in each iteration. The
training data in each iteration is further separated into 10-folds, and cross-validation is performed
in the inner loop to select the optimal model hyperparameters through grid search. We repeated
the nested 10-fold cross-validation on each regression method five different times by splitting the
data into different subdivisions.

We then assessed model performance through the median absolute residual of testing
errors calculated from the outer loop, for a total of 50 folds (10 folds x 5 repetitions). The
testing errors calculated here also reflect how well the model generalizes on unseen data and
are thus used as a metric to evaluate model performance. We also evaluated model stability by
calculating the relative standard deviation (RSD = standard deviation/mean) of hyperparameters
selected by the inner loop, for a total of 50 folds (10 folds x 5 repetitions). We evaluated both
testing error and RSD of hyperparameters when selecting the final regression model to use. For
every fitting procedure, we applied standardization on both the training and testing set using
the mean and standard deviation of features calculated from the training set.

The regression models, including linear models, tree-based methods and gradient boost-

ing, were implemented using the python package scikit-learn 0.19.1 [122].

4.3.5 Lasso regression for estimation of pKy,, and A¢S°

Based on the evaluation of different regression methods through nested 10-fold cross-
validation (more details in Results), we used lasso regression as the model to estimate pKyrg and

A¢S°. Specifically, the objective function to minimize is

. 1 2
min—— ||y — Xw||* + a||w 4.1
g lly = XulP +aull, (11)
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where y is the vector of data with length ngymples, X is the matrix with features in the row
corresponding to each data point, w is the vector of coefficients of the model, and « is a constant
that tunes the degree of the [y penalty.

We repeated 10-fold cross-validation 100 times on pKyig and ArS° datasets respectively
to find the optimal « values that lead to the lowest testing errors. We then constructed a lasso
regression-based estimator for each pKy and ArS°® dataset, using the selected a value and

applying standardization on the dataset.

4.3.6 Comparison of previous and current group contribution method

We compared how the previous [107] and the current group contribution method per-
form at different temperatures. Since the previous group contribution method does not involve
an explicit term to correct for A.G’° at different temperatures, we were only able to substitute
different temperatures in thermodynamic transformations and Legendre transform as the tem-
perature transformation on A,G’° . On the other hand, the current method includes an explicit
term (A;S°) besides the RT term to calculate A,G’ at different temperatures. Using the two
methods, we calculated A,G’° values of all the TECRdb data measured at different temperatures
and the absolute residual of the estimated A,G’® values against experimental data.

We then performed 10-fold cross-validation on the 432 reactions that overlapped between
the previous and the current group contribution method. Specifically, we first transformed exper-
imentally measured A,G’° data to the reference state A,G° (298.15 K, pH 7, 0 M ionic strength),
with different sequential modifications on this procedure (based on the previous method). These
modifications include updated media conditions, the Davies equation to correct for the effect of

ionic strength, new compound groups, temperature correction and metal correction. For each

88



set of A,G° values obtained, we calculated the median A,G° of all data points in each unique
reaction, and performed 10-fold cross-validation on those 432 A.G° values. We repeated this
procedure 100 times by splitting the data into different subdivisions. We then calculated the
median absolute residual of 100 repetitions for each reaction.

Additionally, we also compared how well the two methods perform on the 185 new reac-
tions collected in this work. The first method is based on the previous work by Noor et al [107],
while the second method in current work is similar to the first but has several modifications,
including updated media conditions, the Davies equation, new compound groups and the tem-
perature correction. We fit the group contribution model using both methods with A;G° values
of the original 432 overlapping reactions as training data, and calculated the absolute residual in

predicting A;G° for the 185 new reactions as the testing set.

4.3.7 Calculation of standard entropy change of formation

The standard entropy change of formation (AfS°) of the compound is not directly avail-
able. Given the type of data available, it can be calculated either from A¢G° and the standard

enthalpy of formation (AfH®) of the compound

AtS° = (AfH® — AyG°)/T (4.2)

or from the standard molar entropy (S°) of the compound

Ne
ApS° =5 =) n.Se (4.3)
i=1

where S¢ is the standard molar entropy of the element N, composing the compound and n. is
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the number of atoms for the element N,.

4.3.8 Implementation and availability of source code

The updated group contribution method has been implemented in python 2.7.6. The
source code is available on GitHub (https://github.com/bdu91/group-contribution), together

with detailed instructions on how to install and examples using the package.

4.4 Results

4.4.1 Collection and curation of thermodynamic data

The workflow for estimating reaction equilibrium constants under given pH, tempera-
ture, ionic strength and metal ion concentrations is demonstrated in Figure 4.1a (Methods). To
obtain the necessary data for this estimation, we curated a number of databases and primary
literature sources. First of all, from the NIST TECRdb (https://randr.nist.gov/enzyme) [104],
we obtained measured equilibrium constants (K’) and enthalpies of reactions (A,H') for 617
and 207 unique reactions, respectively. Noticing a number of gaps in experimental conditions
and other minor issues, we curated a total of 4298 measured K’ data from NIST TECRdb. This
curation effort resulted in 48.9% corrected data entries, including updated experimental media
conditions (35.78%), addition of new data (5.12%), correction of K’ values (3.49%), removal of
problematic data (3.33%) and correction of reaction formulae (1.14%) (Figure 4.1b).

Next, we collected data on standard Gibbs free energies of formation (A¢G°), standard
enthalpies of formation (A¢H°) and standard entropy of formation changes (A¢S°) for 312, 254
and 499 unique compounds, respectively (Figure 4.1c). AfS° data are usually not directly mea-

sured but instead are calculated from either A¢G°® and AfH® data or standard molar entropy
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Figure 4.1: Estimation of reaction equilibrium constants. a) Workflow of data curation and
parameter fitting for equilibrium constant estimation. b) The results of curation of equilibrium
constants from the NIST Thermodynamics of enzyme-catalyzed reactions database (TECRdb).
¢) New thermodynamic properties generated, either collected from sources shown or computation-
ally estimated. d) Comparison between curated pK, data from The ITUPAC Stability Constants
Database (SC-database) as well as literature with computationally estimated pK, values from
ChemAxon.
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(S°) of the compound (Methods). The above data are from multiple sources: Thermodynam-
ics of Biochemical Reactions by Alberty [66], the SUPCRT92 database [115] and the Organic
Compounds Hydration Properties Database [116].

Lastly, we collected and curated pK, data for 341 compounds, magnesium binding con-
stants for 126 compounds, and other metal type binding constants for 214 compounds (including
cobalt, iron, zinc, sodium, potassium, manganese, calcium, lithium) from The ITUPAC Stability
Constants Database (SC-database) and primary literature [117-119] (Figure 4.1c). We also pre-
dicted pK, data for 835 compounds using ChemAxon (http://www.chemaxon.com) (Figure 4.1c).
We compared the collected pK, data and the predicted values from ChemAxon for the same com-
pounds (Figure 4.1d). We found that the differences between the collected and predicted pK,
values can be as large as 5.84 (unitless), with a median of 0.42 (unitless). This error is a large
enough difference to substantially alter the major protonation states for metabolites containing
groups with pK,s around physiological pH. We examined the specific cause of the largest dis-
crepancies and found that they are due to issues such as assignment of the pK, value to the
wrong charged form by ChemAxon (e.g. 4-oxo-L-proline) or error in calculating pK,s related to
particular molecular moieties, such as nitrogenous bases and nitrogen atoms on unsaturated rings
(e.g. 2-deoxyguanosine 5'-monophosphate, xanthine-8-carboxylate, deaminocozymase). We thus

used measured pK, data when available.

4.4.2 Thermodynamic parameters for transformation of A.G’° across temper-

ature

We then sought to develop the capability to calculate standard transformed Gibbs energy

of reaction (A,G’° ) as a function of temperature. Specifically, we adapted theory from the
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geochemistry literature under constant enthalpy and entropy assumptions [108-111], as well as the
assumption that the contribution of heat capacity to change in Gibbs energy over temperature is
negligible compared to the contribution of entropy. Thus, we obtained a simple linear formulation
of A,G’° at a given temperature T' using the standard entropy change of reaction A,S° at a

reference T, (298.15 K):

AGE = MG — (T — To)ASS, (4.4)

As ArS%r (we use A,S° in later references since 7T, is the only condition of interest, same
for AfS®) of reactions can be calculated from AgS° of the compounds involved, we sought to
construct a regression model to estimate A¢S° values. Besides collecting 669 A¢S° values for 499
compounds at different protonation states as training data, we also collected A;S° values from
multiple sources. These A.S° values are effectively linear combinations of AfS° values and can
also be used as training data for A¢S° estimation. From NIST TECRdb, we selected reactions
with K’ data measured under at least 4 different temperatures. We then calculated A,S° of
each reaction using the A,G’® of the reaction at different temperatures based on Equation 4.4,
obtaining 51 A, S° values. Next, we picked reactions in NIST TECRdb with both A,G° and A, H°
data available and calculated their A,S° values, obtaining 41 additional data points. Together,

we obtained a total of 762 data points for A¢S° estimation.

4.4.3 Estimation of standard entropy change of formation A;S°

We found that simple molecular descriptors, notably the number of atoms in the com-
pound and the compound charge, were highly useful as predictors for A¢S°. Specifically, we found

A¢S° data to be highly correlated simply with the total numbers of atoms in the compound, with
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an R? of 0.89 (Figure 4.2a). The ApS° data as a function of atom number are separated into
two main clusters, one of which contains aqueous species with large atom numbers and large
absolute A¢S° values (NAD, NADH, NADP, NADPH). The other cluster contains a wide variety
of aqueous species, with a few categories labeled in Figure 4.2a. We noticed clear separations
among aqueous species with -5, -4, -3 and -2 charge, but less so for those with -1, 0 and +1 charge
(Figure 4.2a). We found the trend between A¢S° and number of atoms exists even more strongly
among compounds within the same homologous series, where the compound structures differ
only by the number of CHy units in the main carbon chain. Specifically, A¢S° value decreases
by approximately 0.11 kJ/K/mol with every additional CHy unit. This trend was observed in
a number of homologous series including alkanes, alkenes, alkynes, aldehydes, single carboxylic
acids, amines, amides, and thiols. However, the change in A¢S° with respect to number of atoms
across different homologous series is inconsistent, thus requiring additional molecular descriptors.

As an additional descriptor, we found that partial charge of atoms can help distinguish
A¢S° from different homologous series. For example, the carbon atoms in glycerol (alcohol
containing multiple hydroxyl groups) have larger partial charges than those in methanol (alcohol
containing a single group). The prediction of glycerol A¢S® from methanol A¢S° based on their
difference in atom numbers yielded a smaller absolute A¢S° value than the actual glycerol data
(Figure 4.2b). The correlation of larger partial charges of carbon atoms with larger absolute A¢S®
is also observed in other pairs in Figure 4.2b (deoxyribose vs. ribose, methanol + formic acid
vs. glycolic acid, benzene + formic acid vs. benzoic acid). Besides carbon atoms, we also found
differences in partial charges of oxygen atoms to be associated with A¢S° differences, as shown
between formic acid and oxalic acid (Figure 4.2b). Following these observations, we included the

sums of absolute partial charge of each type of atom as molecular descriptors for the regression
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model.

In addition to partial charge, we also considered a number of other molecular descriptors
from ChemAxon and RDkit (Methods). We obtained a total of 195 features and 762 AfS°
data for regression models. We performed nested 10-fold cross-validation to compare between
multiple regression models (Figure 4.2c). We selected lasso regression as the final model to
use since it has significantly smaller testing errors compared to more complex methods and the
least variation in parameters selected from cross-validation compared to other linear regression
methods (Figure 4.2c). Using parameters selected from cross-validation on the entire ApS°
dataset (Figure 4.2d), we constructed a lasso regression model and predicted 672 A¢S° values.
We obtained 121 predictive variables from the final lasso model, including the number of carbon,
hydrogen and oxygen atoms, the partial charge of hydrogen and oxygen atoms, the formal charge
of the compound, the presence of phosphate groups, and the solvent accessible surface area. The
median absolute residual of the lasso regression model for A;S° estimation is 0.013 kJ/K/mol
(Figure 4.2c). Since A,S° values are linear combinations of A¢S° values, we used the final lasso

regression model to estimate the A, S° values for all 617 reactions in TECRdb.

4.4.4 Evaluation of temperature-dependent estimation of A ,G"

We next evaluated the performance of our method in estimating A,G’° at different tem-
peratures. We calculated A,G’° values of all the K’ data measured at different temperatures in
TECRJD, using the current method with estimated A¢S° values and the previous group contri-
bution method [107]. We calculated the absolute residuals of A,G’® estimation and compared
the two methods across temperature. We found that our method resulted in smaller residuals

than the previous method in all temperature ranges (Figure 4.3a). This result is also confirmed
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Figure 4.3: Evaluation of temperature-dependent estimation of A;G’® . a) Comparison of ab-
solute residuals on estimating A,G’ at different temperatures between the previous group con-
tribution method [107] and the current method. For all the TECRdb data measured at different
temperatures, we estimated the A,G’° values using the previous method and the current methods
and calculated the absolute residual against experimental data. For clarity in comparison, we
divided the entire temperature range into windows with 5K difference. b) Estimated A, G’ val-
ues for fumarate hydratase reaction at different temperatures using the previous method and the
current method. ¢) Estimated A.G’® values for 1-piperidine-2-carboxylate reductase reaction at
different temperatures using the previous method and the current method. d) Estimated A,G"
values for xylose isomerase reaction at different temperatures using the previous method and the
current method.
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in different reactions where we identified series of K’ data measured at different temperatures. In
all those cases, our estimated A.G’® across temperature agreed well with the experimental data,
in contrast to the estimations by the previous method (Figure 4.3b-d). Additionally, we found
the temperature-dependent estimation of A.G’ to be quite robust in the temperature range
of available data in TECRdb (0 - 90°C), which covers the living conditions of most organisms.
Examining reactions whose A,G° values are predicted to be sensitive to change in temperature
(large A;S°/AG° ratio), a number of interesting cases in central metabolism were identified,

including malate dehydrogenase, amino acid transaminase and transketolase.

4.4.5 Estimation of unknown magnesium binding constants

In addition its dependence on temperature, the standard transformed Gibbs free energy
of the compound (A¢G’®) can also depend on pH and the concentrations of metal ions, due to
the presence of different protonation states and various metal bound species. Specifically, A¢G’
can be calculated based on the standard transformed Gibbs energies of its different ion bound

states (ArGY, A¢GY, etc) through Legendre transform [66].

N.
180 AfG/O
o __ _ 3
A¢G" = —RT'In {;exp [ A ] } (4.5)

The equation can be rewritten as

/o __ /o /o __ /0

where A¢GY is the Gibbs energy of a particular ion bound state (typically with the least hydrogens
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and metal ions bound). The Gibbs energy of a specific ion bound state (A¢G/) can then be

written in terms of AfGY and the binding polynomial P;

AfGP = A¢GY — RT'In P; (4.7)

where P; is expressed in terms of the proton concentration and metal ion concentration, as well
as the binding constants of successive proton and metal ion binding steps to obtain the i ion
bound state [66]. Therefore, metal binding constants are important parameters that affect A¢G’
and subsequently reaction equilibrium constants.

We focused on magnesium binding since the magnesium ion is well known to bind to
various metabolites, and its binding to ATP and other phosphate-containing compounds has
been characterized experimentally [123, 124]. However, magnesium binding data is still lacking
for a large number of compounds that contain similar structural groups to those known to bind
magnesium, suggesting that many more compounds may have substantial magnesium binding
than have been measured.

Based on the structures of compounds with known magnesium binding, we determined 31
magnesium binding groups, most of which are phosphate and carboxyl groups. We were unable to
determine the specific binding groups for certain categories of compounds that were measured to
complex with magnesium, including nucleobases, ribonucleosides, and purine derivatives. To try
to capture metabolite properties responsible for Mg binding in these cases, we added molecular
properties (Methods) as additional descriptors. Together we used 128 features and 140 measured
magnesium binding constants to construct several candidate regression models for the prediction
of magnesium dissociation constants. We performed nested 10-fold cross-validation to compare

between multiple regression models. We selected lasso regression as the best predictor due to its
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Figure 4.4: Estimation of compound magnesium binding constants (pKug). a) Selection of
parameters in the lasso regression using 10-fold cross-validation on all pKye data. We repeated
10-fold cross-validation 100 times and calculated training (blue) and testing (red) errors at o
from 1073 to 10~!. The mean training and testing errors are shown in dashed and solid black
lines. The selected a at the lowest mean testing error is 0.0105 (unitless). b) Comparison of 140
measured pK\jg training data vs predicted pKyig values from the final lasso regression model.

superior generalizability compared to more complex methods and stable model parameters across
cross-validation replicates compared to other linear methods. Using 140 measured magnesium
binding constants as training data, we constructed a lasso regression model with parameters
tuned through cross-validation (Figure 4.4a) and predicted 1707 magnesium binding constants
for aqueous species from 618 compounds. We obtained 35 predictive variables from the final lasso
model, including the formal charge, the solvent accessible surface area, the presence of various
phosphate groups for magnesium binding, the partial charge of nitrogen atoms, the compound
charge excluding its magnesium binding groups and dipole moment of the molecule. We found 34
of the 618 compounds are predicted to bind to magnesium at physiological concentrations (2 to
3 mM) [125]. The median absolute residual of the lasso regression model for magnesium binding

constant estimation is 0.39 (unitless), as calculated by the nested 10-fold cross-validation.
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4.4.6 Estimation of standard Gibbs free energy of reaction

Utilizing the curated and estimated datasets mentioned above, as well as the estima-
tion of A,S°, we adapted the most recent group contribution-based method, termed component
contribution [107], to calculate reaction equilibrium constants for a set of 617 unique reactions
in NIST TECRdb. Besides the addition of transformation of A,G’° across temperature, we
also included 17 novel group definitions to account for compounds with new functional groups
not covered by the previous component contribution method. Additionally, we used the Davies
equation [121] rather than the extended Debye-Hiickel equation (used in the previous component
contribution method [107]) to correct for the effect of ionic strength, as the Davies equation was
used in the previous work on temperature-dependent thermodynamic calculations [108-111]. We
also showed that the Davies equation was slightly more effective in correcting data at high ionic
strength compared to the extended Debye-Hiickel equation. On top of the new functionalities,
we also added additional A,G° values for 185 reactions and A¢G° values for 178 compounds over
the dataset used in the previous method.

We compared the accuracy of the updated component contribution method with the
previous work using repeated 10-fold cross-validation (Methods) for a set of 432 overlapping
reactions [107]. We applied the modifications mentioned above sequentially on the framework
to examine how each new functionality affects the estimation error globally. We first noted that
the updated media conditions increased the median absolute residual of A,G° estimation (6.21
kJ/mol), which we found to be due to the addition of data at high ionic strength (> 0.5M, beyond
the working range of the Davies equation). Removal of those data resulted in similar errors as
in the previous work (5.95 kJ/mol). We found modest decrease in median absolute residual

with the additional group definitions (5.82 kJ/mol) and capability to transform Gibbs energy
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of reaction across temperature (5.71 kJ/mol). Surprisingly, we observed a considerable increase
in error (6.47 kJ/mol) after applying the correction on magnesium concentration globally. We
investigated this issue in detail and found that problems related to inconsistency in measured K’
data (involving magnesium binding) and report of total magnesium concentration can be major
sources of error, even though the correction works with well curated data. Therefore, we proceed
by omitting the global correction on magnesium concentration from our procedure.

Additionally, we compared our method to the most recent method by predicting A,G° for
185 new reactions collected in this work, using the 432 overlapping previous reactions as training
data. We found the median absolute residual from the current method (8.17 kJ/mol) is notably
smaller than that from the previous work (11.47 kJ/mol).

To summarize, we included the Davies equation, new group definitions and temperature
transformation capabilities, but not the magnesium correction, in our final group contribution
framework. We used the equilibrium constants from TECRdb and the collected A¢G° values
as the training data. Additionally, we used the collected pK, data from the SC-database when
possible and estimated the rest using ChemAxon. Overall, our method led to improved perfor-
mance compared to the most recent group contribution method, while adding the capability to
correct equilibrium constants with respect to temperature and substantially expanding the scope

of predictions and thermodynamic datasets used in estimation.

4.5 Discussion

In this work, we expanded the scope of thermodynamic calculations to more compounds
and reactions with both curated and estimated data, and also extended the group contribution

methods for estimating reaction equilibrium constants to account for variations in temperature.
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We first collected and curated thermodynamic data, including K', A H'®, A¢G°, A¢tH®, A¢S°
and various ion binding constants, from a number of databases. We then applied existing ther-
modynamic theory with simplifying assumptions to enable the calculation of Gibbs free energy
of reaction across temperature and estimated the necessary parameters (AfS°) using a linear
regression model. We also estimated magnesium binding constants for 618 compounds using
molecular descriptors and magnesium binding groups based on existing binding data. With
new capabilities and new data, we utilized an updated group contribution method to calculate
equilibrium constants with improved accuracy over previous work.

The curation of NIST TECRdDb revealed that fully-specified media conditions, which influ-
ence the ionic strength and metal ion concentration corrections, were often lacking. Surprisingly,
curating the literature and filling in media conditions did not improve the resulting fit on the
estimation of equilibrium constants, with one possible cause that we added data at high ionic
strengths that exceed the intended range of the Davies and Debye-Hiickel models for chemical
activity. Another possible source of error could be related to the relatively simple model used
to account for the effect of ionic strength on activity coefficients of aqueous electrolytes. The
Davies equation fails to account for specific interactions between various ions present in solution
and is unable to calculate activity coeflicients at temperatures other than 298.15 K. Equations
with a more comprehensive handling of these thermodynamic theories are established [75, 76,
108-111], but require substantially more data than is currently available for the vast majority of
compounds.

Utilizing reasonable assumptions of constant enthalpy and entropy over the range of bio-
logical interest, we formulated a simplified approach to calculate temperature transformation of

Gibbs energy of reaction and reduced the number of parameters needed for estimation drastically.
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With the incorporation of temperature transformation capabilities, we obtained similar errors in
estimating A,G° compared to the previous method [107]. Such similar errors seem to be largely
due to the fact that most of the data were measured not far from 298.15 K (83.5% of the data
were measured under 295.15 K to 313.15 K), resulting in minor change in correction of K’ to
the reference conditions. However, we do predict large change in Gibbs energy of many reac-
tions at high temperatures (approaching 373 K), which thus may be significant for high-interest
thermophilic organisms such as those living in hot springs and hydrothermal vents.

The compound-specific parameters required for temperature transformation in our sim-
plified model is A¢S°, which is missing for a large number of compounds in TECRdb. Using
a regression model, we predicted ApS° of a comprehensive collection of compounds with high
accuracy by identifying key chemical properties such as number of atoms and partial charge.
The linear correlation of other thermodynamic properties (e.g. standard molar entropy, stan-
dard partial molal volume, A¢G°) with number of atoms has been demonstrated in previous work
[126-129], but only for compounds in the same homologous series. We found the partial charge of
atoms to be useful to distinguish A;S° from different homologous series, possibly due to the fact
that the partial charge of atoms of the aqueous species influence its interaction with surrounding
water molecules. The regression model was unable to clearly differentiate A¢S° of compounds
within certain categories, however, such as monosaccharides and disaccharides. For example, the
differences in A¢S°® for fructose, mannose and sorbose are around 10 to 20 J/K/mol, while the
model only predicts up to 5 J/K/mol difference, due to their similar chemical properties. Such
error is not evident when evaluating the accuracy of A¢S° estimation, as AfS° of monosaccha-
rides are around 1000 J/K/mol. However, when calculating A,;S° of the isomerization reaction

between monosaccharides, we found that the errors of A¢S° prediction, though small compared
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to A¢S° values, are significant compared to the calculated A;S° values. We observed this issue to
be prevalent for a number of reactions in NIST TECRdb. Thus, identification of new molecular
properties or additional features describing group interactions to more accurately differentiate
these complex carbohydrates can be a productive next step to improve A;S° estimation. Ad-
ditionally, the error in A¢S®° estimation can be incorporated into the calculation of confidence
intervals developed by the previous method [107], offering the capability to assess the error in
estimating A,G’° at different temperatures.

We demonstrated that magnesium binding groups (specifically the phosphate groups) that
could be identified from known magnesium binding compounds are useful features to estimate
magnesium binding constants with good accuracy. However, we found a number of compounds
that complex with magnesium do not contain the binding groups we defined. These compounds
include nucleobases, ribonucleosides, deoxyribonucleosides, purine derivatives and small chemi-
cals such as ammonia, thiocyanate and urea. Currently, we use molecular properties to describe
their binding to magnesium. Such issue in identifying the chemical moiety responsible for magne-
sium binding can still make it difficult to extend our predictions to new compounds with similar
structures as the compounds described above. The approach of estimating magnesium binding
constants can also be applied to other metals. However, we did not perform such predictions
here due to the scarcity of binding data available for other metals.

We found the overall errors in estimating A,G° increase with the incorporation of magne-
sium correction using curated and predicted magnesium binding data. We identified inconsistency
in K’ data (with magnesium binding involved) to be one primary source of error. Another source
of error can be due to the uncertainty in estimation of magnesium binding constants and miss-

ing binding data for other metals. Additionally, most measurements only reported total metal
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ion concentrations, while the metal correction formulation uses free metal ion concentrations.
Therefore, additional effort is necessary to calculate free metal ion concentrations from measured
data. Due to the lack of binding data and uncertainty in estimated data, an iterative approach
might be taken where free metal ion concentrations calculated using the current binding data
are applied to optimize the binding data, which are then fed into calculation of free metal ion
concentrations.

The current work expands opportunities toward an understanding of thermodynamic fac-
tors underlying metabolic network and function in biological systems. This area has generated
a number of exciting results, such as the discovery that amino acid biosynthesis, which is en-
dergonic at surface conditions, is exergonic under the conditions of life in hydrothermal vents
[130]. Another recent effort proposed proteomic constraints due to thermodynamic bottlenecks
as a critical factor underlying metabolic pathway choice [102]. As methods for estimating the
thermodynamic properties of metabolic networks continue to improve, these efforts are likely to
be increasingly fruitful in uncovering the physical constraints driving the function and evolution

of metabolic networks.

4.6 Conclusion

The work here provides an updated group contribution method with an expanded set of
thermodynamic data and extended capabilities to calculate equilibrium constants as a function
of temperature. We collected and curated thermodynamic data for compounds and reactions
from a number of databases and primary literature sources. We established a simple yet well-
justified framework, which included formulations derived from existing theory and the necessary

parameters (AgS°), to calculate equilibrium constants as a function of temperature. We also
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used molecular properties and magnesium binding groups defined from existing data to estimate
magnesium binding constants for 618 compounds through a linear regression model. Taken
together, this work fills a gap in previous group contribution methods to calculate equilibrium
constants to temperature conditions and better correct for magnesium ion binding. These efforts
should facilitate the growing number of applications to apply thermodynamic principles to better

understand cell metabolism.
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Chapter 5

Thermodynamic favorability and
pathway yield as evolutionary
tradeoffs in biosynthetic pathway

choice

5.1 Abstract

The structure of the metabolic network contains myriad organism-specific variations
across the tree of life, but the selection basis for pathway choices in different organisms is not
well understood. Here, we examined the metabolic capabilities with respect to cofactor use
and pathway thermodynamics of all sequenced organisms in the Kyoto Encyclopedia of Genes

and Genomes Database. We found that (i) many biomass precursors have alternate synthesis
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routes that vary substantially in thermodynamic favorability and energy cost, creating trade-
offs that may be subject to selection pressure; (i) alternative pathways in amino acid synthesis
are characteristically distinguished by the use of biosynthetically unnecessary acyl-CoA cleav-
age; (#41) distinct choices preferring thermodynamic-favorable or cofactor-useefficient pathways
exist widely among organisms; (iv) cofactor-useefficient pathways tend to have a greater yield
advantage under anaerobic conditions specifically; and (v) lysine biosynthesis in particular ex-
hibits temperature-dependent thermodynamics and corresponding differential pathway choice by
thermophiles. These findings present a view on the evolution of metabolic network structure
that highlights a key role of pathway thermodynamics and cofactor use in determining organism

pathway choices.

5.2 Background

Metabolism has historically been viewed as a highly conserved network across all branches
of life [131]. However, as a greater number of organisms are sequenced and characterized [132],
there is an increasing appreciation of the diversity of organism-specific metabolic differences
[133-135]. Diverse organism living conditions, including nutrient availability, electron acceptors,
temperature, pH, pressure, and salt concentrations [136], can create environmental niches that
have specific metabolic requirements [137-139]. How these environmental conditions impact
metabolic diversity remains an important question [136].

Metabolic network reconstructions are highly curated knowledge bases of metabolic func-
tion that provide a way to systematically investigate the differences in metabolic capabilities
among various organisms [140, 141]. Metabolic network models, derived from metabolic recon-

structions, are mathematical representations of the metabolic capabilities of an organism that can
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be used to compute organism phenotypes. Recent efforts reconstructing genome-scale metabolic
networks for various organisms have offered a quantitative route to begin to understand the
principles underlying metabolic diversity across the tree of life [142, 143].

Metabolic network reconstructions enable a number of powerful computational analyses.
First, flux balance analysis (FBA) of metabolic models can calculate the flow of metabolites
through the metabolic network by utilizing optimization principles [144]. FBA can be used for
a number of calculations such as product yields and substrate utilization efficiency at a network
level [145, 146]. Second, FBA can be integrated with thermodynamic equilibrium constants to
calculate additional network properties such as thermodynamically feasible optimal states [99]
and thermodynamic bottlenecks [102]. These methods thus allow us to evaluate the properties of
metabolic pathways in an organism-specific context and provide the basis toward understanding
pathway choice among various organisms.

In this study, we utilized metabolic network analysis to evaluate alternative pathway
choice in terms of the underlying physicochemical properties of pathways in organisms with di-
verse lifestyles. We first collected all available information on de novo biosynthesis pathways
for biomass precursors and identified organisms containing these pathways. We focused on the
biosynthetic pathways for five amino acids with differential use of acyl-CoA cleavage (lysine,
arginine, cysteine, isoleucine, and methionine). We examined the basis for preference of Es-
cherichia coli for alternative pathway choice in amino acid biosynthesis using in vivo metabolite
and protein concentration measurements. We also identified clusters of organisms with distinct
pathway choices related to a tradeoff between thermodynamic favorability and cofactor-use effi-
ciency. Lastly, we focused on two specific cases, isoleucine and lysine biosynthesis, to investigate

how organisms lifestyles relate to the choice of biosynthetic pathways.
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5.3 Results

5.3.1 Identifying biosynthetic pathway alternatives found in sequenced

genomes

First, we collected the gene content of 5,203 organisms from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) Database of genome annotations [147]. The organisms spanned
three domains of life, with major phyla including Proteobacteria (n = 2,167), Firmicutes (n =
908), Actinobacteria (n = 575), Bacteroidetes (n = 234), Euryarchaeota (n = 179), Tenericutes
(n = 134), Chlamydiae (n = 118), Chordata (n = 108), and Cyanobacteria (n = 102). Based
on the available genome annotations in KEGG, we obtained a total of 8,247 genes with KEGG
orthology identifiers from all organisms. The list of genes corresponds to specific Enzyme Com-
mission numbers and includes both metabolic functions and cellular processes such as assembly
of macromolecules, signal transduction, etc. We found that organisms cluster by relationship on
the phylogenetic tree based on their gene content (Figure 5.1a). For example, organisms in the
Archaea and Eukaryota domains each belong to individual clusters, while organisms in the major
phyla of the Bacteria domain (Proteobacteria, Actinobacteria, and Firmicutes) fall into separate
clusters.

We then identified alternative pathways for de novo synthesis of biomass precursors using
the KEGG PATHWAY and MetaCyc databases [147, 148]. The list of biomass precursors exam-
ined included amino acids, nucleotides, lipids, and certain small molecules such as vitamins and
polyamines. We classified the precursors based on the types of alternative biosynthetic pathways
present (Figure 5.1b). Specifically, the pathways either (i) have only one biosynthetic route for

the precursor, (ii) start from the same metabolite and use the same cofactors but with different

111



A

KEGG organism whole gene content

Actinobacteria Firmicutes
Eukaryota,_[

Proteobacteria

Alternative routes to de novo synthesis
of biomass precursors

E S.iigl__eopftgway ) MUltlple./ D|fferent\

Leu, Trp, Val, Thr, Ser
Cofactor: CoA, Riboflavin

10-formyl-THF, THF

Amino acid: Asp, GIn, His, |

pathways \cofactorS/

IAmmo acid: Lys, Arg, lle,
l Cys, Met, Pro, Asn
! Lipid: Cardiolipin,

8 Lipid: E’rlo_th?t_'d}’ IQIZC_GEOI_I Phosphatidylinositol
3 2= 2) Multiple /°Same . | Coenzyme: Biotin,
. pathways.\cofactors/vO 1 TPP, CoM, PLP
. ] @@ 1 Nucleotide: IMP, UMP
i = Amino acid: Phe, 1 Others: TMG, PTRC,
____ANaCluTyr ___ ' Choline, SPMD
O>0—>==>0, & o o o o e e e
4) Multiple Different starty |~ "' o 5= 2~ - -
pathways metabolite ~ 1 )
Ami _d°é|0-’_'"-’0 1 O Intermediate
Il Gene present [] Gene absent mino acid: Glycine ! ;
Cofactor- NAD : O Biomass precursor
Amino acids with acyl-CoA dependent Product yield change with the addition of
biosynthetic pathways acyl-CoA cleavage in biosynthetic pathways
A
° Y °| 12 Precursor biosynthesis elle
g lesteme S dependent on acyl-CoA
Lvsi i/ o _ Precursor biosynthesis
ysine 2210 independent of acyl-CoA
©
° o °o! ® e &;“ Isoleucine 38 Met
o o0 o o0 o I 5 g 8 °
o o o o o 0 o [&]
__________ 1 4 o om0 @ O _,OmO gg o Ser
S =R \~7 =34
o 0 o
. 1 |- 2 Ihr
Arginine  © ° °© Methionine 8% |pTRc Val cys Pro
C O 417 [ ] .y ] Arg
—C o o =y Leu °
i 53 UMP ®  Hise _oLVS
3 10-formyl- ' Hise op P
© 2| THFe PLP o °
* SPMD®  migbaavint Tip
@ Start metabolite @ Intermediate Riboflavin >
O Aminoacid wm Highlighted alternative pathway 2 4 9y 8 10

Figure 5.1: Alternative biosynthetic routes of biomass precursors.
on 5,203 KEGG organisms, with 8,247 genes having Enzyme Commission annotations. b) Cat-
egories of alternative routes to de novo biosynthesis of biomass precursors. For amino acids, we
acyl-CoAdependent alterna-
tive biosynthetic pathways. d) Product yield change due to the addition of acyl-CoA cleavage in
biosynthetic pathways of biomass precursors. 10-formyl-THF, 10-formyltetrahydrofolate; CoM,
coenzyme M; PLP, pyridoxal phosphate; PTRC, putrescine; SPMD,

provided their three letter codes for simplicity. ¢) Amino acids with

drofolate; TMG, trimethylglycine; TPP, thiamine diphosphate.

112

a) Hierarchical clustering

spermidine; THF, tetrahy-



intermediate metabolites, (i) start from the same metabolite and use different cofactors, or (iv)
start from different metabolites and use different cofactors. For precursors with multiple alterna-
tive routes, we attempted to trace the pathways back until they intersect at a common starting
metabolite. However, for alternative routes that reach central metabolic pathways (e.g., glycol-
ysis and TCA cycle) but have not converged to a common starting metabolite, we considered
them as having different starting points.

We found that while some biomass precursors have only a single de novo biosynthetic path-
way, a large number display multiple pathways (Figure 5.1b). We distinguished between path-
ways that share common starting metabolites and pathways that start from different metabolites.
Pathways that start from the same metabolite but have alternate routes with different cofactor
usage include those for a number of amino acids (arginine, asparagine, cysteine, lysine, and
methionine), nucleotides (IMP and UMP), and essential small metabolites (biotin, putrescine,
spermidine, and thiamine diphosphate). These alternative pathways allowed us to control for any
possible factors associated with concentrations or thermodynamics of the starting metabolites
themselves when evaluating alternatives. Lastly, pathways starting from alternate metabolites
were those for glycine (from 3-phosphoglycerate, glyoxylate, or oxaloacetate via threonine) and

NAD (from tryptophan or aspartate).

5.3.2 Alternative pathways in amino acid biosynthesis differ by acyl-CoA

cleavage and show distinct yield differences

We examined the thermodynamics [72] and cofactor use of the alternative biosynthetic
pathways for biomass precursors. Pathways with lower standard transformed reaction Gibbs en-

ergies (A;G" ) are considered more thermodynamically favorable than those with higher energies.
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We found that alternative pathways can vary substantially in thermodynamic favorability due to
their differences in cofactor use. Examining the common cofactors involved, we found that cer-
tain cofactor pairs are prevalent in biosynthetic pathways, including those providing energy (ATP
hydrolysis), those serving as the oxidizing/reducing agent (NADH/NAD and NADPH/NADP),
and those donating the amino group (glutamate/a-ketoglutarate and glutamine/glutamate).

However, the use of acyl-CoA cleavage to drive biosynthetic pathways is present for only
a subset of amino acids, including lysine, arginine, cysteine, isoleucine, and methionine (Fig-
ure 5.1c). Interestingly, these five amino acids have both acyl-CoA-dependent and -independent
pathways present. We found the acyl-CoA-dependent pathways of these amino acids to be iden-
tical with the other alternatives in cofactor use, except for the additional acyl-CoA cleavage,
which for lysine, arginine, and cysteine results in more favorable pathway thermodynamics. On
the other hand, the acyl-CoA-independent pathway in isoleucine biosynthesis through threonine
has lower energy than the acyl-CoA-dependent route, because it is coupled to a greater energetic
cost of hydrolysis of three ATP molecules and oxidation of three equivalent NADH molecules per
isoleucine produced.

We then investigated why these five amino acids have alternative biosynthetic pathways
that differ by acyl-CoA use while the other biomass precursors have only acyl-CoA-independent
pathways. We identified two factors contributing to the presence of acyl-CoA-dependent path-
ways: the pathway length in terms of reaction number and the change in precursor yield from
using pathways with the additional acyl-CoA cleavage. First of all, alternative pathways are
unlikely to arise when the production of the precursor takes very few steps (e.g., a single step
for alanine, aspartate, glutamate, and glutamine synthesis). Additionally, a large difference in

precursor yield due to the additional acyl-CoA cleavage in the pathway may benefit organisms
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with certain lifestyles, thus motivating the presence of alternative pathways differing in acyl-CoA
use.

We obtained biosynthetic pathway length for all biomass precursors (Figure 5.1b) from
the MetaCyc database and calculated the median length for precursors with multiple alternative
routes. We also compared the difference in precursor yield due to the use of acyl-CoA-dependent
versus acyl-CoA-independent pathways, through simulations with organism-specific genome-scale
metabolic networks (Methods). For precursors without acyl-CoA-dependent pathways present,
we created pseudo pathways similar to their original pathways but with the additional acyl-CoA
cleavage. Taking E. coli grown on acetate aerobically, for example (Figure 5.1d), we found that
the five amino acids (brown dots) with acyl-CoA-dependent pathways present generally have
longer pathway length and larger yield change from using the acyl-CoA-dependent pathways,
with isoleucine and methionine showing the largest yield change. This trend can also be extended
to a number of organisms [149] under different conditions, for which we found the yield change
for the five amino acids to be significantly higher than other precursors in 24 of 43 conditions
examined (P < 0.05). Notably, for organisms grown on acetate, we found a significant difference
in 11 of 13 conditions examined. In contrast, when examining yield change in pathways differing
by the use of ATP hydrolysis, we found only 6 of 43 conditions to have a significantly higher
yield change for precursors with ATP-dependent alternative routes compared to those without
such alternates (P < 0.05). Therefore, we demonstrate that alternative pathways differing by

the use of acyl-CoA show significant yield differences, as is the case for the five amino acids.
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5.3.3 FE. coli uses thermodynamically-favorable but cofactor-use-inefficient

amino acid biosynthetic pathways

We sought to further compare the acyl-CoA-dependent and -independent alternative
pathways for the five amino acids using F. coli , taking advantage of its well-curated metabolic
network and abundant quantitative physiological data available. Specifically, we focused on two
aspects: pathway thermodynamic favorability and cofactor-use efficiency. E. coli uses acyl-CoA-
dependent pathways for biosynthesis of four of the five targeted amino acids, with the exception
being isoleucine. Compared with pathways that are not present in E. coli , we found that the
pathways used by E. coli are thermodynamically more favorable in each case in terms of intrinsic
pathway energy (i.e., lower standard Gibbs energy, A,G’ , which does not take into account
metabolite concentrations). We then calculated transformed Gibbs energy (A,G’ ) values for
each pathway using measured quantitative metabolomics data of E. coli [28, 150, 151] and veri-
fied that these pathways are indeed substantially further from equilibrium (more negative A,G’
) (Figure 5.2a).

We next calculated the ATP equivalent cost of the pathways to evaluate the cofactor-use
efficiency of the pathways (Methods). A high ATP cost of the pathway corresponds to a low
efficiency in cofactor use. We found that the ATP equivalent costs of the pathways used by E.
coli (using glucose aerobically) are greater than those of the alternative pathways in four of five
cases (Figure 5.2b), indicating that E. coli uses cofactor-use-inefficient pathways. This result
was further confirmed by the fact that pathways present in E. coli have lower product yield than
those not present in E. coli (Figure 5.2c).

Thermodynamically favorable pathways can be beneficial in terms of protein cost, as the

enzyme level required to achieve a given flux can increase dramatically for reactions near equi-
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librium [102]. Therefore, it is possible that organisms already with significant resources invested
in synthesizing pathway proteins select the thermodynamically favorable routes for efficiency in
protein use. We found evidence supporting this hypothesis using E. coli proteomics data [152],
wherein the proteins required for biosynthesis of each of the five amino acids occupy a higher
fraction of the whole E. coli proteome by mass compared to gene number (Figure 5.2d). To-
gether, the proteins from all five amino acid biosynthesis pathways occupy 10% of the proteome
by mass, while only 2% by number of genes.

To summarize, we found that tradeoffs between thermodynamic favorability and cofactor-
use efficiency exist in pathway alternatives. In the case of E. coli , the use of thermodynamically

more favorable pathways may improve the efficiency of pathway protein use.

5.3.4 Distinct acyl-CoA-dependent pathway choices exist among organisms

To understand the underlying factors for alternative pathway choice, we first clustered the
organisms based on their presence/absence information of alternative pathways for the five amino
acids. We found that the organism clusters did not separate cleanly by phylogeny (Figure 5.3a),
suggesting that factors other than phylogenetics may underlie the choice of alternative pathways.
However, we observed interesting patterns when examining the use of acyl-CoA-dependent path-
ways for the five amino acids among organisms. For each amino acid, we separated the KEGG
organisms into three categories: (i) those containing only acyl-CoA-dependent pathway(s); (i)
those containing only acyl-CoA-independent pathway(s); and (7) those containing both acyl-
CoA-dependent and -independent pathways. For methionine biosynthesis, we labeled the path-
way using two acyl-CoA molecules as acyl-CoA dependent, and the pathways using only one as

acyl-CoA independent.
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Figure 5.3: Alternative amino acid biosynthetic pathways in organisms. a) Hierarchical clus-
tering on 5,203 KEGG organisms based on the presence of alternative biosynthetic pathways
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acyl-CoA-dependent pathways. We show two clusters of organisms: one mostly uses thermody-
namically favorable pathways (yellow dashed box), and the other mostly uses cofactor-efficient
pathways (green dashed box). (C) Change in precursor yield using the acyl-CoA-dependent and
-independent alternative pathways under different conditions for the five amino acids. We pre-
dicted the product yield change across 22 organisms, using their available genome-scale metabolic
models.
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Examining patterns of pathway use within organisms, we did not find any organism
choosing acyl-CoA-dependent pathways for all five amino acid biosynthesis pathways, but for
only a selection of them. As we clustered the organisms based on the type of acyl-CoA pathways
used for the five amino acids, we found that the pathway choice did not break down cleanly by
phylogeny. Further analysis on the metabolic genes related to the use of acyl-CoA pathways also
shows complex traits in metabolic functions, indicating that nonspecific factors, such as lifestyle
or organism history, may underlie the acyl-CoA pathway use broadly.

On the other hand, we identified groups of organisms with distinct pathway choices. We
found one cluster containing E. coli and other Gammaproteobacteria (Figure 5.3b, yellow box)
for which the choice of acyl-CoA-dependent pathways is the same as in E. coli . This cluster
represents a set of organisms choosing thermodynamically favorable pathways. We also identi-
fied a different cluster of organisms that select cofactor-use-efficient pathways instead, including
Geobacter metallireducens, the methanogen Methanosarcina barkeri, and the cyanobacterium
[Synechococcus elongatus (Figure 5.3b, green box)]. These two opposing clusters indicate that
tradeoffs between efficiency in product yield and proteome cost in biosynthesis may widely exist
in organisms’ pathway choice, perhaps with similar underlying principles to the recent observa-
tion that cellular overflow metabolism results from the balance between efficient pathway yield
and efficient protein use [153].

A closer look at the lifestyles of these two organism clusters shows that organisms favoring
thermodynamic-favorable pathways generally depend on complex carbon sources with aerobic
respiration, while organisms favoring cofactor-use-efficient pathways depend on simple carbon
sources with anaerobic respiration. To understand how different lifestyles affect the product

yield, we attempted to compare the yield change from using the alternative acyl-CoA-dependent
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pathways under four growth conditions: glucose aerobic, glucose anaerobic, acetate aerobic, and
acetate anaerobic. We used the curated genome-scale metabolic models of a total of 22 organisms
for simulations [149, 154, 155]. It is worth noting that not all 22 organisms examined here fall
into the two organism clusters identified above. We found that anaerobic respiration results in
the most significant change in precursor yield for all five amino acids (Figure 5.3c), possibly due
to the different cofactor cost and availability under different respirations. On the other hand,

the carbon sources do not seem to significantly affect the product yield change.

5.3.5 Trade-off between pathway thermodynamic favorability and efficiency of
cofactor use underlies organisms’ pathway choice for isoleucine biosyn-

thesis

To understand the choice of alternative isoleucine biosynthesis pathways among various
organisms, we focused on two alternative pathways and compared their properties in terms
of thermodynamic favorability and cofactor-use efficiency. The first pathway uses threonine
as the intermediate (Figure 5.4a, green) and is present in a large number of organisms from
the Bacteria and Eukarya domains. The second pathway uses citramalate as the intermediate
(Figure 5.4a, red) and is typically present in Archaea but is also found in bacteria from the
Spirochaetes phylum [156, 157]. A recent study showed that both pathways are present in
Geobacter spp., which primarily uses the one through citramalate [158]. We selected organisms
from each category described above, including F. coli (contains pathway through threonine), M.
barkeri and Methanosarcina acetivorans (contain pathway through citramalate), and Geobacter
sulfurreducens and G. metallireducens (contain both pathways but mainly use the one through

citramalate).
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Figure 5.4: Alternative pathways for isoleucine biosynthesis. a) Sketches of four alternative
isoleucine biosynthetic pathways with their cofactor usage. We also included the Gibbs energies
(A;G" ), considering metabolite concentrations for each reaction step in the pathways through
threonine and citramalate. b) Cofactor use in terms of ATP cost for ” Through threonine” and
”Through citramalate” pathways in different organisms. The organism name, the substrate
used, and the respiration type are labeled for each simulated organism condition. c) Increase in
isoleucine yield using the ”Through citramalate” pathway compared with " Through threonine”
for different organisms. ac, acetate; ae, aerobic; an, anaerobic; CO, carbon monoxide; glc, glucose;
Glu/a-KG, glutamate/a-ketoglutarate.
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Although the standard energies (A;G° ) of the pathway through threonine are signifi-
cantly lower than those of the citramalate pathway across different conditions, we further com-
pared the A,G’ of both pathways by taking metabolite concentrations into account. Using the
quantitative metabolomics data of E. coli [28, 150, 151], we calculated the reactionwise energy
profile for each pathway (Methods) and confirmed that the overall A;G’ of the pathway through
threonine is much lower than that through citramalate (Figure 5.4a).

Using the available genome-scale metabolic models [74, 154, 155, 159, 160], we calculated
the ATP equivalent cost of the two pathways for five organisms with their respective carbon
sources and types of respiration (Figure 5.4b) (Methods). We used both glucose and acetate as
the substrates for E. coli ; the latter is a common carbon source for the other four organisms.
We also allowed both aerobic and anaerobic respirations for E. coli , although only the latter is
possible for the other four organisms. We found that the pathway through threonine is always
more costly in cofactor use compared with the one through citramalate (Figure 5.4b), while being
thermodynamically more favorable.

To examine the possible benefit of using the cofactor-efficient pathway in F. coli , we
inserted the citramalate pathway into the E. coli metabolic model. We observed marginal im-
provement (3.6%) in isoleucine yield per mole of glucose when comparing the two pathways for E.
coli (Figure 5.4c). On the other hand, we observed a relatively large improvement in isoleucine
yield using the citramalate pathway for organisms dependent on simple carbon sources (such as
acetate) and grown anaerobically (Geobacter spp., 43.2% and 43.4%; methanogens, 23.9% and
76.2%) (Figure 5.4c). To examine whether the carbon source or anaerobic respiration contributes
the most to such a large difference in yield change between E. coli and the other four organisms,

we performed the same calculations on F. coli grown on acetate aerobically, glucose anaerobi-
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cally, glucose using the electron transport chain (ETC) from Geobacter spp., and acetate using
the ETC from Geobacter. We found the yield change to be most significant under anaerobic
respiration (34.7% for E. coli glucose anaerobic). Interestingly, the isoleucine yield change is
almost identical for F. coli with the Geobacter ETC and grown on acetate. We obtained similar
results for a larger set of organisms shown in Figure 5.3c, whereby under anaerobic respiration,
the product yield changes the most between acyl-CoA-dependent and -independent pathways.
Thus, the citramalate pathway is more beneficial for organisms under anaerobic respira-
tion and leads to much greater isoleucine yield. In contrast, for F. coli that can utilize aerobic
respiration, the threonine pathway with greater thermodynamic favorability is selected over the

citramalate pathway, which brings marginal benefit in terms of product yield.

5.3.6 Lysine biosynthesis in thermophiles shows differential temperature de-

pendence of thermodynamics

Examining the change of pathway thermodynamics with respect to temperature, we found
that A,G’® values of the diaminopimelate pathways (M00016, M00525, M00526, and M00527)
generally increase with temperature, while A,G’° values of the 2-aminoadipate pathways (M00030
and MO00031) decrease with respect to temperature (Figure 5.5b). These trends lead to the
intersection of A,G’® values at high temperature between pathway M00031 and pathways M00016
and M00526. Notably, organisms with pathway M00031 have culture temperature around the
crossing point (80 to 100 °C) (Figure 5.5¢), at which the thermodynamics between the three
lysine biosynthesis branches are almost equivalent. These organisms living at high temperature
are called thermophiles. In contrast, organisms with pathways M00016 and M00526 have much

lower culture temperature and are typically termed mesophiles (Figure 5.5¢). We also note that
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the organisms containing these three pathways did not show an appreciable difference in culture
pH, with medians around pH 7. Therefore, at high temperature, pathway M00031 might become
less disadvantageous in terms of thermodynamics compared with the other pathways and more
likely to be selected by thermophiles. On the other hand, mesophiles still favor pathways with
greater thermodynamic favorability, such as M00016 and M00526.

Interestingly, we found that organisms in the same phylum select different lysine biosyn-
thesis pathways, and such choice is correlated with organism culture temperature. Specifically,
for organisms in the Chloroflexi phylum, those from the Chloroflexia class are thermophiles with
the M00031 pathway, while those from the Dehalococcoidia class are mesophiles with the M00527
pathway (Figure 5.5d). We found that these two pathways have relatively similar thermodynam-
ics at low temperature, but the M00031 pathway is much more favorable at high temperature
than the M00527 pathway (Figure 5.5b). This difference in thermodynamic favorability may
explain the choice of thermophiles and mesophiles between these two pathways. Additionally,
the results demonstrate how factors other than phylogeny can affect pathway choice, whereby
organisms that are close in phylogenetic distance select different lysine biosynthesis pathways

due to their different environmental conditions.

5.4 Discussion

In this work, we examined the basis for the presence of alternative biosynthetic routes for
biomass precursors. We showed that acyl-CoA-dependent biosynthetic pathways are only present
for five amino acids and investigated the possible factors related to the presence of acyl-CoA-
dependent alternative routes. We evaluated the tradeoff between thermodynamic favorability

and cofactor-use efficiency of the biosynthetic pathways and identified two clusters of organisms
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with distinct pathway choices. We found that organism living environment, rather than inherent
metabolic capabilities, was the driving factor for alternative pathway choice. Specifically, or-
ganisms normally under aerobic respiration benefit from the thermodynamically more favorable
routes, while organisms under anaerobic respiration benefit from cofactor-efficient routes, which
are usually more advantageous in product yield. Additionally, we showed that organisms living
at different temperatures can select alternative lysine biosynthesis pathways.

Examination of the thermodynamics of alternative pathways revealed that many path-
ways show high- and low-energy routes that are both prevalent among organism genomes. It
may be argued that these pathways could have come about through evolution with insufficient
selection to distinguish between these energetic alternatives. However, the presence of high-
and low-energy alternatives with consistent cofactor structure (e.g., using acyl-CoA cleavage in
amino acid biosynthesis), would suggest that these energetic alternatives may exist by selection.
Because studies have demonstrated the advantage of thermodynamic favorability in increasing
efficiency in protein use [102], a hypothesis emerges for why this might be the case. Presum-
ably, the cell can choose to ”waste” additional cofactor for higher thermodynamic favorability,
reducing the downstream resources allocated for unnecessary pathway protein synthesis. While
the current study examined only E. coli due to the limited organism-specific proteomics data
available, more quantitative proteomics data across organisms and conditions may be used to
probe this hypothesis.

We have found that organism lifestyle, such as type of respiration and temperature, can
affect the alternative pathway choice for amino acid biosynthesis. Organisms in poor/anaerobic
environments often choose cofactor-use-efficient pathways, which lead to significant yield im-

provement under those conditions. While those pathways may or may not depend on acyl-CoA
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cleavage, it is interesting to note that acyl-CoA is the distinguishing cofactor between the path-
way alternatives. The underlying reason might be related to the cost of acyl-CoA under different
conditions. Furthermore, while the improvement in growth rate can be small when using the
cofactor-use-efficient pathways, such a benefit may not be relevant to organisms living under
nutrient-poor and anaerobic conditions. For example, Geobacter spp. may rarely encounter
favorable conditions to achieve maximum growth rate and, thus, would not select thermody-
namically favorable routes to achieve better efficiency in protein use. In another specific case,
thermophiles select pathways that become thermodynamically favorable at higher temperature
in lysine biosynthesis. This observation suggests the possibility that certain alternatives may
become viable when they become thermodynamically equivalent to other pathways under certain
environmental conditions. This work complements known adaptations to high temperature, such
as increase in protein stability [161] and alteration in membrane compositions [162].

Together, these results show how alternative pathway choice can be related to organism
lifestyle, due to the tradeoff in thermodynamic favorability and cofactor-use efficiency. This study
is one of a number of recent efforts aimed at discovering connections between thermodynamics
and constraints on metabolic pathways. For example, one study showed that autotrophic amino
acid synthesis was exergonic under the conditions in hydrothermal vents, rather than endergonic
at surface conditions [130]. Another recent effort looked at thermodynamic bottlenecks and
proteomic constraints underlying the use of the Entner-Doudoroff pathway [102], indicating that
similar tradeoffs in protein efficiency can be observed in central metabolism. As methods for
estimating the thermodynamic properties of metabolic networks continue to be refined and as
genome annotations continue to improve, these efforts are likely to continue to reveal the physical

constraints underlying the adaptation and evolution of metabolic networks to meet organisms’
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lifestyles.

5.5 Methods

The specific procedure for collecting the information of KEGG organisms and alterna-
tive biosynthetic pathways is described in online SI Appendix, Supplementary Information Text
(https://www.pnas.org/content/115/44/11339). The workflow for calculation of pathway ther-
modynamics and product yield using metabolic network reconstructions can also be found in

online ST Appendix, Supplementary Information Text.
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Chapter 6

Adaptive laboratory evolution of

FEscherichia colt under acid stress

6.1 Abstract

The ability of Escherichia coli to tolerate acid stress is important for its survival and
colonization in the human digestive tract. Here, we performed adaptive laboratory evolution of
the laboratory strain E. coli K-12 MG1655 at pH 5.5 in glucose minimal medium. By 800 gen-
erations, six independent populations under evolution reached 18.0% higher growth rates than
their starting strain at pH 5.5, while maintaining comparable growth rates to the starting strain
at pH 7. We characterized the evolved strains to find that: (1) whole genome sequencing of
isolated clones from each evolved population revealed mutations in rpoC' appearing in 5 of 6 se-
quenced clones; (2) gene expression profiles, using RNA-seq on two selected acid-adapted strains,
revealed different strategies to mitigate acid stress, that are related to amino acid metabolism

and energy production and conversion; Thus, a combination of adaptive laboratory evolution,
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genome resequencing, and expression profiling reveals, on a genome-scale, the strategies that E.

coli deploys to mitigate acid stress.

6.2 Background

As a commonly found enteric bacteria species in the human digestive tract, Escherichia
coli is known to withstand various levels of acid stress [163-168]. For example, E. coli can survive
several hours under pH 2 [163], which is within the range of the extremely acidic stomach (pH 1.5
to 3) that serves as the barrier against most bacteria [169]. Additionally, E. coli has been shown
to grow under mild acid stress [166—168], which is typically found in the human intestinal tract
[169, 170]. Such adaptability to low pH environments has raised wide interest in understanding
the underlying mechanisms that protect E. coli from acid stress. Furthermore, studying the acid
resistance mechanisms of E. coli has important implications in the food and health care industry.
For example, treatment strategies can be developed to target specific acid resistance mechanisms
in the case of a pathogenic FE. coli infection.

The acid resistance mechanisms of E. coli have been studied extensively. To maintain
the intracellular pH homeostasis, E. coli has developed various strategies including cytoplasmic
buffering [171], proton-consuming systems [172-175], adjustment of cellular metabolism [176,
177], and physiological responses [178-182]. The buffering capacity of the cytoplasm mainly
comes from inorganic phosphates, amino acid side chains, polyphosphates, and polyamines [171].
The proton-consuming systems include four types of amino acid decarboxylase systems that
function under different pHs and formate hydrogen lyase that is active under anaerobic conditions
[183]. The metabolic responses under acid stress include the up-regulation of components in the

electron transport chain and metabolism of sugar derivatives that have decreased acid production
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compared to glucose [176, 177]. The physiological responses include the activation of periplasmic
chaperones HdeA and HdeB [178], adjustment of membrane lipid compositions [179, 180], and
blockage of outer membrane porins [181, 182].

Adaptive laboratory evolution (ALE) is an important scientific approach for understand-
ing the adaptive response of microorganisms under particular environments or after specific
perturbations [184]. During an ALE experiment, the microorganism is cultured under defined
conditions for an extended period of time. ALE allows the selection of improved phenotypes,
typically the growth rates, under certain growth environments. Furthermore, the advancement
of next-generation sequencing technology makes it convenient to obtain the genotypes underly-
ing the favorable traits over the course of evolution [185]. A previous study also investigated
the adaptive evolution of E. coli under acid stress, where E. coli K-12 W3110 was evolved in
a nutrient rich environment (LBK medium) buffered at pH range 4.6 - 4.8 for 2000 generations
[186, 187]. Here, we are interested in the adaptive evolution of E. coli under acid stress in a
nutrient limited environment, where glucose is the only carbon source.

In this study, we perform ALE on E. coli at pH 5.5 in glucose minimal medium. For the
evolved strains, we use whole genome sequencing to identify genetic mutations that arise over
the course of evolution. Additionally, to examine the change in gene activity after evolution,
we perform RNA-seq to characterize the gene expression profile of the evolved endpoints when
growing under different pHs. We then identify the differentially expressed genes (DEGs) of the
evolved endpoints at different pHs. We also uncover new cellular processes that emerge over the
adaptive evolution under acid stress, using DEGs identified in the starting strain across pH as a

reference.
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6.3 Results

6.3.1 Laboratory evolution and acid-adapted endpoint strains

We used wild-type Escherichia coli K-12 MG1655 that had been previously evolved on M9
glucose minimal medium as the starting strain for evolution and refer to it as GLU strain [188].
We used GLU as the starting strain to isolate changes due to adaptation to acid stress from those
caused by adaptation to the culture medium. The genetic mutations of the GLU strain against F.
coli K-12 MG1655 is also documented in ALEdb (aledb.org) under the experiment name GLU.
Six independent cultures were established under pH 5.5 in glucose minimal medium, buffered
with 150 mM 2-(N-morpholino) ethanesulfonic acid (MES) (pKa = 6.1) [189]. In addition, we
lowered magnesium (Mg) concentration in the media to 0.2 mM to minimize precipitations. We
refer to six acid-adapted strains as AA1 to AAG, respectively. To account for the possible effects
due to changes in media composition, we also set up two independent cultures under pH 7 with
150 mM MES buffer (MES1, MES2) and lowered Mg concentration (LM1, LM2), respectively.
All of the strains used in this study and their relationships can be found in Figure 6.1a.

We performed ALE using an automated system, which tracked culture growth rates and
passed the cells to fresh media when OD600 measurements reached 0.3 to ensure selection at
exponential-phase growth. Additionally, we periodically measured the pH of the clean media
and recently passaged cultures to ensure proper buffering. The culture pH remained relatively
stable for strains evolved in MES buffer under pH 5.5 and 7. For strains evolved under lowered
Mg concentration and with only phosphate buffers (pK, = 7.2) in glucose minimal medium, the
culture pH dropped significantly at the end of the culture, likely due to the secretion of organic

acids during growth. The laboratory evolution process lasted 35 days for strains AA1 to AA6

133



Adaptive laboratory evolution Fitness trajectory
AA1 0.94
pH7 MES1
& AA2  pH55 MES buffer 0.2l
MES buffer
+ MES2
& AA3  Low Mg? 0.90
AA4 h GLU: pre- Control ~—~
& evolved ﬂ . ﬂ strains _E 0.88
AA5 7\ onglucose °
A A il
& AAG & LM1 i
s 0841
i pH 7 2
Acid-adapted Low Mg* & M2 o —AA1
strains 0.821 AA2
RNA-sequencing ——AA3
AN AN T AT T T AT T T A 0.80 —AA4
4/ & 1 078k ——AA5 | |
1 AAB GLU MES1 LM2 1 : / AAG
L e o e e e e e e e e e e e e e e e e e e e e e e e 1
) ‘ pH 7 0.76 : s - :
0 0.5 1 1.5 2 2.5
—— —— o — Cumulative Cell Divisions (10'? CCDs)

Figure 6.1: Adaptive laboratory evolution (ALE) of E. coli under acid stress. a) Schematic for
ALE process and strains used for RNA-sequencing. Starting from the GLU strain, we performed
ALE under pH 5.5 to obtain six acid-adapted (AA) strains and under pH 7 to obtain four control
strains. Using RNA sequencing, we obtained the gene expression profiles of five selected strains
under pH 5.5 and 7. b) Smoothed fitness trajectories of six acid-adapted strains. We show here
the change of growth rate over cumulative cell divisions through the evolution process. The
average growth rate improvement is 18%.

under pH 5.5, corresponding to 800 generations and 2.1 x 10'2 cumulative cell divisions (CCD).
The fitness trajectories of the evolved strains are shown in Figure 6.1b. We observed the growth
rates to continuously improve over CCDs and approach stable values at the end of the evolution.
Overall, we found the evolved endpoints to have an average of 18.0% improvement in growth rate
(from 0.77 £ 0.01 hour—! to 0.91 4 0.01 hour™!) over their starting strain.

To evaluate the fitness of acid-adapted strains against the starting GLU strain, we ob-
tained the growth rates of the strains under pH 5.5 and 7 in a separate experiment. We found
the acid-adapted strains to have increased fitness under pH 5.5, with growth rate at 0.83 4+ 0.01
hour™! compared to the growth rate at 0.67 4 0.02 hour™! of the GLU strain. We also found
the growth rates under pH 7 for acid-adapted strains to be 1.00 & 0.01 hour™!, slightly higher

than that of the GLU strain at 0.94 + 0.03 hour—!.
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Table 6.1: Converged mutations identified in the clones of acid-adapted strains under pH 5.5

Gene | Mutation Protein change Flask 1y 1) AA2l AA3| AA4| AAS| AAG
number

rho C—A R102S (CGC—AGCQC) 87 X

rho C—T R102C (CGC—TGO) 111 X

rpoC | C—A A397E (GCG—GAG) 111 X

rpoC | G—C G444A (GGT—GCT) 88,118 X

rpoC | AT bp coding (4106-4112 nt) 113 X

rpoC | Al bp coding (4111 nt) 111 X

mpoC | C—T S530F (ICTTTT) 111 X

nagA| G—C S90* (TCA—TGA) 84 X

nagA| C—T | RI49H (CGT—CAT) 83 X

6.3.2 Genetic mutations of the evolved strains

To understand the genetic basis of the observed phenotypic change, we performed whole
genome sequencing on individual clones picked from acid-adapted strains AA1 to AAG, as well
as the control strains MES1, MES2, LM1, and LM2. We identified the genetic mutations of
the evolved strains by comparing them to the reference genome using breseq computational
pipeline v0.33 (Methods) [190]. We reported the converged mutations of acid-adapted strains
in Table 6.1. Converged mutations are mutations on the same gene identified across multiple
strains from independent cultures.

Overall, we found a total of 22 mutations in all acid-adapted strains, including those
of clones picked from the endpoints (Table 6.1 bold flask number) and midpoints of the evo-
lution (Table 6.1). Notably, we observed mutations in rpoC' to appear in 5 of the 6 endpoint
clones. The gene product of rpoC' is a subunit of RNA polymerase, which is known to act as a
global regulator for gene expressions [191, 192]. The mutations on rpoC include both SNPs and
deletions. We found these mutations to be located on the interaction interfaces of the protein
product. Specifically, mutation with protein change A397E (Table 6.1) is located at the exit gate

of the newly synthesized RNA strand. The region with mutation G444A interacts with rpoB
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subunit and the region with mutation S539F interacts with rpoA subunit (Table 6.1). The two
deletion mutations are located at the interaction interface with rpoZ subunit (Table 6.1). Muta-
tions in rpoC in E. coli have been found in several previous ALE experiments, covering a variety
of experimental conditions or perturbations, e.g. high temperature, alternating substrate, gene
knockouts [193-195]. Several studies have suggested mutations in rpoC to be mainly associated
with improvement in metabolic efficiency and growth rate [196-198].

The other converged mutations are found in rho (transcription regulation) and nagA
(metabolism of N-acetyl-D-glucosamine) (Table 6.1). The mutations on these two genes are all
SNPs. Unlike rpoC where mutations are found in endpoint clones, mutations in rho appear in
the midpoint clone of strain AA1 and endpoint clone of strain AA6. Mutations in nagA appear
in midpoint clones of strain AA4 and AA6 and are not found in the endpoint clones of these two
strains. For the rest of the mutations observed in acid-adapted strains, each of them appear only
in a single strain. These mutations appeared in both the coding regions and intergenic regions.
The types of mutations include SNPs, deletions, and insertion elements.

We found distinct patterns when examining mutations in control strains evolved under
different conditions. We discovered SNPs on ozyR gene to be the converged mutations in strains
LM1 and LM2. On the other hand, the converged mutations for strains MES1 and MES2 are
found in the intergenic region of ilvL and #/vX. Notably, the exact same mutation between #lvL
and ilvX is also found in the endpoint clone of acid-adapted strain AA5, confirming the possible

effect of the MES buffer during the evolution process.
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6.3.3 Differential gene expression of the evolved endpoints at different pHs

To understand how the mutations can affect gene products in evolved strains, we used
RNA-seq to examine the gene expressions of ALE endpoints. We selected two acid-adapted
strains for RNA-seq, strain AA2 which has a single mutation in rpoC and strain AA6 which
has the most number of mutations among all AA strains (Table 6.1). We selected strains MES1
and LM2 for different control conditions. We performed RNA-seq and obtained gene expression
profiles of the selected strains as well as the starting GLU strain grown under pH 7 and pH 5.5
(Figure 6.1a; Methods). We then analyzed the expression profiles on the level of individual genes
and their related cellular processes. Specifically, we performed statistical tests to identify the
DEGs of the same strain growing under pH 5.5 compared to pH 7 (Methods).

To ensure the DEGs identified for acid-adapted strains across pH are only due to the
effect of adaptive evolution under acid stress, we first need to understand the response to acid
stress of the starting strain and also control for possible variations in culture medium during
the evolution process. Therefore, we examined the DEGs across pH for the GLU strain, as well
as the MESI strain and LM2 strain to account for the possible effects due to MES buffer and
lowered magnesium concentration. We found significant overlap of upregulated genes involved in
cell wall/membrane biogenesis and translation processes among the acid-adapted strains and the
control strains, implicating these two cellular processes as the common acid resistance mechanisms
in E. coli .

We then examined DEGs in the acid-adapted strains under pH 5.5 compared to pH 7,
after removing DEGs also found in GLU and the control strains. We found 183 genes to be
differentially expressed for strain AA2 (111 upregulated and 72 downregulated) and 40 genes for

strain AA6 (38 upregulated and 2 downregulated). Of those genes, we found 14 upregulated
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Figure 6.2: Differentially expressed genes (DEGs) of acid-adapted strains at different pHs. The
DEGs are calculated for the same strain by comparing its gene expression profiles when growing
under pH 5.5 and pH 7. a) Number of upregulated (top panel) and downregulated genes (bottom
panel) in acid-adapted strains AA2 and AA6. We found AA2 and AAG6 to share 14 upregulated
genes. b) COG categories in the upregulated and downregulated genes in acid-adapted strains.
The asterisk sign on top of the bar means that the COG category is enriched, as calculated using
a hypergeometric test (Methods). We did not show the COG categories for downregulated genes
in strain AAG since there are only two of them.

genes that appeared in both acid-adapted strains (Figure 6.2a). Based on cluster of orthologous
group (COG) annotation, the 14 genes were found to be mainly involved in energy production
and conversion (e.g., TCA cycle, respiratory chain, ATP synthase) and amino acid transport and
metabolism (e.g., biosynthesis of glutamate).

We next examined the specific COG categories of the DEGs across pH in each acid-
adapted strain. For strain AA2, the upregulated genes are associated with more than ten
COG categories (Figure 6.2b), with the largest number of genes on amino acid transport and
metabolism (e.g., biosynthesis of histidine, threonine), energy production and conversion (e.g.,
nitrite/nitrate reductase, succinate dehydrogenase, TCA cycle, etc.), carbohydrate transport
and metabolism (e.g., glycolysis), and inorganic ion transport and metabolism (e.g., transport of

iron, zinc, nitrite, nitrate). Among the processes identified, the upregulated genes are enriched
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in amino acid transport and metabolism and energy production and conversion based on a hy-
pergeometric test (Figure 6.2b stars) (Methods). The downregulated genes of strain AA2 are
found mostly in carbohydrate transport and metabolism (e.g., secondary carbon sources such
as xylose, arabinose) and transcription. No COG categories are found to be enriched in those
downregulated genes. For the other acid-adapted strain, AA6, the upregulated genes are mainly
enriched in amino acid transport and metabolism (e.g., biosynthesis of glutamate, arginine) and
energy production and conversion (e.g., TCA cycle, respiratory chain, ATP synthase) based on a
hypergeometric test (Figure 6.2b stars). Again, no COG categories are enriched in downregulated
genes in strain AAG.

Overall, we observed the DEGs to be enriched in similar general COG categories for two
acid-adapted strains, AA2 and AA6. However, the specific underlying cellular processes still
differ, indicating different strategies developed by FE. coli over the course of evolution under acid
stress. Such differences cover different processes that are upregulated in amino acid biosynthesis
(e.g., histidine for AA2 and glutamate for AA6) and energy production and conversion (e.g.,
anaerobic respiration found in AA2 but not AA6) between two acid-adapted strains. Additionally,
we found the downregulated genes to be involved in different COG processes between these two

strains.

6.4 Discussion

In this work, we used ALE to study the adaptation of E. coli K-12 MG1655 under acid
stress in glucose minimal medium. Using whole genome sequencing, we identified mutations
on rpoC , rho, and nagA to be the converged mutations in acid-adapted strains. We then used

RNA-seq to examine the gene expression profiles of acid-adapted strains across pH and compared
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them to those of the starting GLU strain and the control strains. Through analysis of DEGs, we
identified cellular processes acquired by F. coli through the adaptive evolution under acid stress.

We found five of the six acid-adapted strains to have mutations in rpoC , which functions
as a subunit of RNA polymerase. The specific mutations include substitutions that change the
encoded amino acids (AA2, AA3, and AAG) and deletions in the coding region that lead to shifts
in reading frame (AA4 and AA5). Based on the Pfam database, the substitutions occurred in
the protein domains that contain the active site and the pore region that allows the entrance
of nucleotides to the active site [199-201]. It is worth noting that the deletions occurred at the
end of mpoC' gene (base pair 4106 and 4111 out of 4224 base pairs) and likely did not result in
significant disruption of the gene function. A previous study on the evolution of E. coli under
acid stress by Harden et al. also observed missense mutations in subunits of RNA polymerase
(rpoBCD) for all of the acid-adapted strains [186]. The authors in that study proposed several
mechanisms to explain how mutations on the RNA polymerase complex might enhance fitness
under acid stress. Here, however, we consider the mutations on rpoC' to be associated with
inducing faster growth rather than acid resistance. A comprehensive analysis on the 278 gene
expression datasets of E. coli across diverse conditions has revealed that mutations on genes
related to RNA polymerase typically lead to improved growth rate and reduced stress-related
gene expression [202].

Other mutations found cover a range of cellular processes. However, none of the processes
are directly related to the commonly known acid resistance mechanisms. A previous study by
Harden et al. identified mutations in genes related to the amino acid decarboxylase systems,
and these mutations result in loss or downregulation of amino-acid decarboxylase activities [186].

The different mutations observed from the two studies are likely due to the different culture
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media in which the evolution took place. The culture medium used by Harden et al. is LBK
medium, which is rich in amino acids. The activation of the amino acid decarboxylase systems
require the presence of amino acids in the medium [172-175]. According to Harden et al.,
amino acid decarboxylase systems protect E. coli from acid stress upon early exposure to the
acidic environment, but incur fitness costs over the long term, where E. coli has developed
other strategies to maintain the non-stress physiology. In our study, the culture medium is
glucose minimal medium, where the sole carbon source is glucose. Therefore, the amino acid
decarboxylase systems are never activated under this condition. Rather, we see mutations in genes
that might be related to general cellular responses under stress conditions, e.g., transcription
regulation (rho) and cellular physiology (csgD/csgB, yiaA).

For the two acid-adapted strains with gene expression profiles available, they share several
common general COG categories for upregulated genes under acid stress. However, besides
sharing 14 DEGs in processes such as TCA cycle, respiratory chain, ATP synthase, and glutamate
biosynthesis, the two strains have a number of DEGs with different cellular functions (Figure 6.2).
Both strains have SNPs in the rpoC' gene, but in different protein domains according to Pfam
database as mentioned earlier. Additionally, mutations on other genes in strain AA6 can possibly
contribute to the different strategies used by E. coli under acid stress to adjust the level of gene
transcripts. Similarly, Harden et al. also observed different patterns of gene expression across four
acid-adapted strains [186]. These two studies together demonstrate that regardless of the level of
acid stress (pH 4.6 - 4.8 by Harden et al. and pH 5.5 in this study) and nutrient availability (LBK
medium and glucose minimal medium), the evolutionary pressure can drive E. coli to develop
different strategies against acid stress.

Overall, we studied the adaptive evolution of E. coli under acid stress, linking the im-
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proved phenotype to the underlying genotypes and levels of gene expression. The study here
provides a novel perspective on acid resistance mechanisms, as the commonly known acid re-
sistance systems depend on rich medium or specific amino acids [203, 204]. In addition to the
analysis of genetic mutations and DEGs, further analysis can be performed to understand the
change in regulatory actions using a recently developed approach [202]. Such analysis can be
helpful in understanding the response to acid stress at the level of transcriptional regulation and

revealing potential drivers behind the global adjustment of cellular response against acid stress.

6.5 Methods

6.5.1 Culture medium

The M9 glucose minimal medium was prepared by adding the following to Milli-QQ water:
0.1mM CaClg, 0.2 mM MgSQOy, 1X trace elements solution, 1X M9 salt solution, and 4 g/L D-
glucose. Trace elements solution (4000X) was prepared in concentrated HCl with 27 g/L FeCls
- 6H20, 1.3 g/L ZnCly, 2g/L CoCly - 6H20, 2 g/L NagMoO4 - 2H20, 0.75 g/L CaCly, 0.91
g/L CuCly - 2H0, and 0.5 g/L H3BO3. M9 salt solution (10X) was prepared by dissolving 68
g/L NagHPOq, 30 g/L KHoPOy, 5 g/L NaCl, and 10 g/L NH4Cl in Milli-Q water. It is worth
mentioning that the concentration of MgSOy is 10 times lower than used previously [188], as
higher concentration of magnesium ion led to precipitation issues. To maintain the pH around
5.5 during cell culture, the culture medium was supplemented with 150 mM MES buffer from a
500 mM stock prepared in Milli-QQ water. After mixing all components of the medium, the pH
was adjusted using 2 M HsSO4 and 4 M KOH. All stock solutions as well as the final medium

were sterile filtered through a 0.22 yM PVDF membrane.
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6.5.2 Adaptive laboratory evolution process

Cultures were initiated from isolated colonies of an Escherichia coli K-12 MG1655 strain
(ATCC 47076), which had previously been evolved for approximately 1013 CCDs on M9 minimal
medium supplemented with 4 g/L of glucose [188]. The cultures were first grown overnight and
then placed in tubes on a platform that performed passage automatically. The working culture
volume was 15 mL, and the culture temperature was maintained at 37 °C. The culture medium
was magnetically stirred at 1100 rpm to ensure a well mixed and aerobic growth environment.

From the start of the culture to the next passage, on average 4 samples of 100 uL culture
medium were taken and the optical density measurements at a wavelength of 600 nM (OD600)
were performed in a spectrophotometer (Tecan Sunrise). To maintain the cells in exponential
growth phase, the culture medium containing E. coli (100 uL) was passaged to a tube containing
fresh medium when OD600 of the original medium approached 0.3. The growth rate was deter-
mined for each culture using a least-squares fit on In(OD600) versus time. Growth trajectories
were generated by fitting a monotonically increasing cubic-interpolating-spline to the calculated
growth rate values versus CCDs, as described previously [188]. Glycerol stocks of the cultures
were taken periodically by mixing 800 uL of sterile 50% glycerol with 800 uL of culture and
storing at -80 °C.

Throughout the course of the evolution, the culture medium pH was constantly measured
to ensure proper buffering. Specifically, the pH values of the fresh medium and the culture
medium before the next passage were measured. The culture medium was filtered through 0.22
#M membranes, and the pH was measured using a meter (Fisher Scientific Accumet AB15).
Additionally, OD600 measurements of the culture medium were taken before the next passage

to assess the possible effect of cell density on culture medium pH.
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6.5.3 Whole genome sequencing and analysis of genetic mutations

Genomic DNA was isolated using bead agitation as described previously in Marotz et al.
[205]. Whole genome DNA sequencing libraries were generated using a Kapa HyperPlus library
prep kit (Kapa Biosystems). The libraries were then run on an Illumina HiSeq 4000 platform with
a HiSeq SBS kit and 150/150 paired-end reads. The raw DNA sequencing reads in fastq format
were processed using the breseq computational pipeline v0.33 [190]. Specifically, the workflow
includes quality control [206], alignment to the E. coli genome (NCBI accession NC_000913.3) to
identify mutations and annotation of the mutations. It is worth mentioning that genomic DNA
was extracted for individual clones taken at different CCDs of the evolution and at the end of
the evolution. The mutations identified in the clones at the end of the evolution were reported
and those found at earlier stages were used to track how different mutations emerge or disappear

throughout the course of the evolution.

6.5.4 RNA sequencing

RNA-sequencing data were generated from cell cultures under exponential growth phase
at pH 5.5 and pH 7. The culture conditions at the specific pH were the same as used in ALE
experiments mentioned above. Cells were stabilized with Qiagen RNA-protect Bacteria Reagent.
Cell pellets were stored at -80 °C before RNA extraction. Then, frozen cell pellets were thawed
and incubated with lysozyme, protease K, SuperaseIN, and 20% sodium dodecyl sulfate for 30
minutes at 4 °C. Total RNA was isolated and purified using Qiagen’s RNeasy Plus Mini Kit
based on the manufacturer protocol. The total RNA quality was checked using the RNA 6000
Nano kit from Agilent Bioanalyzer. For gram-negative bacteria, ribosomal RNA was removed

using Ribo-Zero rRNA removal kit from Epicentre. Single-end, strand-specific RNA-seq libraries
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were generated using KAPA RNA HyperPrep Kit from Kapa Biosystem. RNA-seq libraries were

run on an illumina NextSeq platform using a 75 cycle mid-output kit.

6.5.5 Analysis of DEGs on RNA sequencing data

Raw sequencing reads in fastq format were first mapped to the reference genome (NCBI
accession NC_000913.3) using bowtie v1.2.2 [207]. The abundance of the transcript was obtained
using the summarizeOverlaps function from the GenomicAlignments package in R [208]. From
the transcript abundance, the DEGs between two conditions were identified through the DESeq2
package in Bioconductor [209]. The output for the DEGs include log2(fold change) and the
corresponding p-values (FDR-adjusted). DEGs with log2(fold change) greater than 1 and p-
value smaller than 0.01 were considered to be significantly changed between the two conditions
compared. The RNA-seq data is available in the Gene Expression Omnibus (GEO) database

with accession number.

6.5.6 Enrichment analysis for COG categories

The set of DEGs between two different conditions were annotated using COG categories.
The hypergeometric test was then performed for the set of upregulated genes and downregulated
genes, respectively. To calculate the enrichment of each COG category in the gene set, four
values were obtained to perform the test: the total number of genes mapped in RNA-seq data,
the number of genes in the current set, the number of genes with the current COG category out
of all genes, the number of genes with the COG category out of the current gene set. The FDR
correction was applied on the p-values of the COG categories in the gene set. COG category

with corrected p-value smaller than 0.05 was considered enriched in the gene set.

145



Acknowledgments

We would like to thank Laurence Yang for valuable discussions. This work was supported
by National Institute of General Medical Sciences of the National Institutes of Health Grant
R01GMO057089 and Novo Nordisk Foundation Grant NNF10CC1016517.

Chapter 6 in full is a reprint of the material: Bin Du*, Connor A. Olson*, Anand V.
Sastry, Xin Fang, Patrick V. Phaneuf, Ke Chen, Muyao Wu, Richard Szubin, Julia Xu, Ye
Gao, Ying Hefner, Adam M. Feist, Bernhard O. Palsson. “Adaptive laboratory evolution of
Escherichia coli under acid stress.“ Submitted. The dissertation author was the primary author

(equally contributing with Connor Olson).

146



Chapter 7

Mechanistic description of acid stress
responses in Escherichia coli using
genome-scale model of metabolism

and gene expression

7.1 Abstract

Response to acid stress is critical for Escherichia coli to successfully complete its life-
cycle by passing through the stomach to colonize the digestive tract. To develop a fundamental
understanding of this response, we established a molecular mechanistic description of acid stress
mitigation responses in F. coli and integrated them with a genome-scale model of its metabolism

and macromolecular expression (ME-model). We considered three known mechanisms of acid
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stress mitigation: 1) change in membrane lipid fatty acid composition, 2) change in periplas-
mic protein stability over external pH and periplasmic chaperone protection mechanisms, and 3)
change in the activities of membrane proteins. After integrating these mechanisms into an estab-
lished ME-model, we could simulate their responses in the context of other cellular processes. We
validated these simulations using RNA sequencing data obtained from five E. coli strains grown
under external pH ranging from 5.5 to 7.0. We found: i) that for the differentially expressed
genes accounted for in the ME-model, 80% of the upregulated genes were correctly predicted
by the ME-model, and ii) that these genes are mainly involved in translation processes (45% of
genes), membrane proteins and related processes (18% of genes), amino acid metabolism (12%
of genes), and cofactor and prosthetic group biosynthesis (8% of genes). We thus established a
quantitative framework that describes, on a genome-scale, the acid stress mitigation response of

E. coli that has both scientific and practical uses.

7.2 Background

Multiple studies have focused on the ability of Fscherichia coli to tolerate acid stress
[163-168]. E. coli has been shown to survive under extreme acid stress at pH 2 for several hours
and to grow under acid stress above pH 4.5 [163, 166-168]. The ability to tolerate acid stress is
critical for E. coli to complete its life cycle as an enteric bacteria. For colonization in the human
digestive tract, it has to pass through the stomach with pH 1.5 to 3, and then metabolize and
proliferate at around pH 5 to 6 in the intestinal tract [169, 170]. A fundamental understanding
of the acid resistance mechanisms of E. coli thus has important implications in the food and
health care industry, e.g., the development of effective strategies against pathogenic F. coli by

targeting specific acid resistance mechanisms.
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Various acid resistance mechanisms exist that protect E. coli under acid stress and are
found across different cellular compartments. In the cytoplasm, mechanisms that actively con-
sume protons include four types of amino acid decarboxylase systems and formate hydrogen lyase
[172-175, 183]. Metabolism of secondary carbon sources and sugar derivatives are upregulated
as these carbon sources produce fewer acids compared to glucose when metabolized [176, 177].
Additionally, cytoplasmic buffering from inorganic phosphates, amino acid side chains, polyphos-
phates and polyamines helps to maintain intracellular pH homeostasis [171]. When cytoplasmic
pH drops under extreme acid stress, cytoplasmic chaperones such as Hsp31 bind and protect
unfolded protein intermediates; DNA-binding proteins bind and protect DNA [210-212]. On
the inner membrane, activities of electron transport chain components and composition of mem-
brane lipids change under acid stress [176, 177, 179, 180]. In the periplasmic space, periplasmic
chaperones HdeA and HdeB are activated under acid stress to bind and protect unfolded protein
intermediates [178]. Lastly, outer membrane porins are bound by polyphosphate or cadaverine
to reduce proton influx [181, 182].

While there have been extensive studies describing the response of F. coli under acid
stress, research to elucidate how different acid resistance mechanisms function together to pro-
tect F. coli against low pH environment is lacking. Such an explanation will require a detailed
characterization of different acid resistance mechanisms of E. coli . The genome-scale metabolic
model (M-model) of E. coli provides a mathematical representation of its metabolic capabilities
and serves as an ideal framework to describe the acid stress response of E. coli [74]. Recently,
M-models have been extended to include the synthesis of the gene expression machinery (called
ME-models) [213, 214]. In addition to computing the optimal metabolic flux state of the or-

ganism, ME-model computes the optimal proteome allocation for a given phenotype [214, 215],
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Figure 7.1: Illustrations of three different stress response mechanisms of F. coli under acid
stress. a) Adjustment of membrane lipid fatty acid composition. b) Change in periplasmic
protein stability and periplasmic chaperone protection. ¢) Activity change of membrane proteins.

thus providing additional information on the cellular processes as a whole. Furthermore, the
calculation on proteome allocation can be validated with RNA sequencing data, which can be
conveniently obtained with the advancement of next-generation sequencing technology.

In this work, we characterize the growth of F. coli under mild acid stress using the ME-
model framework (Figure 7.1). Mild acid stress can be found under a variety of conditions,
including the intestinal tract and fermented food, where the pH is around 5 to 6 [169, 216]. We
first incorporate the change in fatty acid composition of membrane lipids into the ME-model,
based on experimental measurements under mild acid stress. Next, we model the change in
periplasmic proteins under acid stress, specifically on protein stability and periplasmic chaperone

protection. We also model the change in activity for proteins located in the inner membrane of
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E. coli , including ATP synthase, electron transport chain components, and transporters. We
integrate all these modifications into the ME-model and compare the simulations with RNA
sequencing data of E. coli grown under neutral pH and mild acid stress. Specifically, we examine
the upregulated and downregulated genes, as well as the change in cellular processes based on

cluster of orthologous group (COG) annotation [217].

7.3 Results

7.3.1 Adjustment of E. coli membrane lipid fatty acid composition under

acid stress

The E. coli membrane serves as a barrier between the intracellular space and the external
environment by controlling the entry and exit of ions and molecules of different sizes. The com-
ponents of the membrane have been shown to actively respond to changes in the external environ-
ment [218]. Specifically, membrane lipids are important components in maintaining membrane
function and integrity under environmental perturbations. Several studies have demonstrated
that the membrane lipid composition of E. coli changes under acid stress, resulting in the change
of membrane fluidity that potentially reduces the leakage of protons into the cytoplasm [179, 180,
219]. Here, we will recapitulate this response in the context of the E. coli ME-model framework.

The current ME-model provides a detailed description of the proteins and lipids that
constitute the inner and outer membranes of E. coli [214]. However, it does not include the con-
straint that the membrane surface area is completely occupied by proteins and lipids. Therefore,
we need to add this constraint into the current ME-model to describe this acid stress response.

Our incorporation of the membrane area constraint was able to reproduce the results of similar
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Figure 7.2: Fatty acid composition of membrane lipids under different pH conditions. a) Com-
parison of calculated acid-adapted (AA) against non-adapted (NA) fatty acid composition profiles
for different E. coli strains. The fatty acid composition profiles are calculated based on published
data [179]. b) Comparison of simulated E. coli growth rates with different fatty acid composition
profiles incorporated into the ME-model. The use of the experimentally determined changes in
membrane composition under acid stress leads to around 6% decrease in the computed growth
rate.

earlier work [220].

Earlier study showed that the composition of fatty acid tails on the membrane lipids
of E. coli changes during adaptation to acid stress [179]. Specifically, the mole fraction of
monounsaturated fatty acids decreased during adaptation, while the proportion in saturated
fatty acids and cyclopropane fatty acids increased. This trend is consistently observed across
all five E. coli strains examined. Notably, the composition in cyclopropane fatty acids increased
significantly (from an average of 1.57% to 19.6% out of the total fatty acid content) during acid
adaptation. We obtained a total of 11 profiles of membrane lipid fatty acid composition of F.
coli strains from the study by Brown et al. [179] and the existing M-model reconstruction [74].
We grouped the profiles into two categories: the group with an acid-adapted profile where E. coli
was grown under acidic pH and the group with a non-adapted profile where E. coli was grown
under neutral pH ((Figure 7.2a).

We incorporated the change in membrane lipid fatty acid composition into the E. coli
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ME-model, while maintaining consistency on the biomass composition and membrane surface
area constraints [73, 220]. Specifically, the mole fractions of membrane lipids with different fatty
acid tails are transformed to their relative fractions in biomass following the procedures in a
previous work [73], with units in millimole per gram dry weight of biomass. The calculated
lipid biomass fractions are used as the coefficients of lipids in the ME-model reaction on biomass
function [214]. The ME-model predicted the group with the acid-adapted profile to have lower
relative growth rates (0.94 4+ 0.01) compared to the group with the non-adapted profile (1.00 +
0.01) (p-value 5.93 x 1079) (Figure 7.2b).

Based on model simulation, we found the cfa gene to have the largest change in expression
level between the acid-adapted profile and the non-adapted profile. The product of the cfa
gene, cyclopropane fatty acyl phospholipid synthase, catalyzes the transfer of the methyl group
from S-adenosyl-L-methionine to convert unsaturated fatty acids to cyclopropane fatty acids.
The other genes with the largest computed change in expression levels are mainly associated
with the recycling of S-adenosyl-L-methionine and cover a variety of cellular processes including
methionine metabolism (luzS, metK, metE), nucleotide metabolism (purN, deoD), and folate

metabolism (metF, folD).

7.3.2 Periplasmic protein stability as a function of pH and periplasmic chap-

erone protection

Under mild acid stress, E. coli maintains intracellular pH within a narrow range (7.4 -
7.6) [171, 221]. However, the pH of the periplasm is close to the external pH when E. coli is
exposed to an acidic environment [222]. The acidic pH in the periplasm poses a challenge to

the periplasmic proteins. E. coli has developed strategies to protect periplasmic proteins from
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acid-induced damage, using molecular chaperones HdeA and HdeB that bind to native substrates
to reduce protein denaturation and aggregation [178]. Here, we focus on modeling the change in
periplasmic protein stability and the protection by molecular chaperones on periplasmic proteins
under acid stress.

Protein stability as a function of pH depends on the pK, and protonation states of the
amino acid side chains of the protein [223-226]. Specifically, protein stability can be described
using folding energy (AGfoding ), which is the difference between the folded state and unfolded
state of the protein. For the same protein, a more negative folding energy indicates greater
stability. An empirical approach has been developed that calculates AGfqqing based on the
number of amino acids of the protein [223, 227]. To account for the change in AG foging as a

function of pH, Ghosh and Dill [223] expressed AG foing as the sum of two terms,

ACTonlding = Aaneutral + AGelectric (71)

where AGpeytrar 18 the energy term that does not consider any charge effect and AGeectric
accounts for electrostatic interactions and is a function of pH. The term AGgeciric 1S protein-
specific and depends on the charge and radius of gyration of the folded and unfolded states
(Methods).

We calculated the profiles of AG fy4ing as a function of pH for 86 of 93 periplasmic
proteins in the ME-model. Folding energies of the other 7 proteins could not be calculated due
to issues associated with protein charge calculation (Methods). We also compared the folding
energies of the periplasmic proteins under pH 7 and pH 5.5. We found that proteins under pH 7
generally have lower AG foding than those under pH 5.5 (Figure 7.3a), indicating greater stability

for proteins under neutral pH. Notably, all periplasmic proteins examined are favorable towards
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Figure 7.3: Periplasmic protein stability is reflected in protein folding energies. a) Comparison
of calculated folding energies of E. coli periplasmic proteins at external pH 7.0 and pH 5.5.
Proteins with lower folding energies are generally more stable. Therefore, the periplasmic proteins
are found to be more stable at external pH 7 compared to pH 5.5. b) ME-model simulations on
relative growth rate and HdeB mass fraction at different external pH conditions. We calculated
the folding energies of periplasmic proteins as a function of pH and modeled the relative ratio
of folded and unfolded states of each protein in the ME-model (Methods). We also included
the binding of HdeB chaperone to the unfolded states. We then simulated the change in E. coli
growth rate due to change in protein stability under different external pH conditions. We also
showed the change of HdeB mass fraction of the total proteome as a function of external pH.

folding under pH 7 (Figure 7.3a). We also determined the optimal pH for each protein under
study, where AG fding is the lowest and the protein is most stable under the optimal pH. We
found that while most proteins have optimal pH around 7, a large number of them have optimal
pH around 12 and some have optimal pH around 3. Interestingly, we found a few proteins with
increased expression levels under their optimal pH, e.g., FodG (optimal pH 3.5), Slt (optimal
pH 13), PotD and HisJ (optimal pH 11.5) [177], indicating that protein stability might be an
underlying factor that influences the protein expression in the periplasm.

We describe the relationship between the folded and unfolded states of the protein in the
form of a ME-model reaction, similar to the approach in the previous work [228]. Specifically,

the ratio between the folded and unfolded states of the protein can be calculated from

AGfoding = —RTn([Folded]/[Unfolded]) (7.2)

155



where R is the ideal gas constant, T is the temperature, [Folded] and [Unfolded] are the con-
centrations of the folded and unfolded peptide states. The ratio is expressed as the metabolite
coefficient in the ME-model reaction, connecting the folded and unfolded states of the protein
(Methods). Next, to model periplasmic chaperone protection, we focus on the mechanisms of
HdeB, since HdeB has an optimal activation pH from 4 to 5, while HdeA is most active under pH
2 to 3 [229]. We described HdeB protection on the protein in the form of a ME-model reaction,
in which the HdeB protein binds to the unfolded state of the protein to form a chaperone-protein
complex (Methods).

Incorporating the description on periplasmic protein stability and HdeB protection in
the ME-model, we simulated the response of E. coli under different external pH conditions. We
found the relative growth rate to decrease slowly as pH decreases from 7 to 5.5, but drops quickly
when pH decreases beyond 5.5 (Figure 7.3b). Similarly, we observed the mass fraction of HdeB of
the total proteome to change slowly before pH decreases to 5.5 and increases significantly as pH
decreases from 5.5 to 5. The stability change of LptA protein was found to be the major factor
causing the drop in growth rate and increase in HdeB mass fraction. LptA protein is involved in
the transport of (KDO)2-lipid IVA, which contributes to E. coli biomass [230]. Based on ME-
model simulations, genes with the largest change in expression levels as a result of decreasing
pH are hdeB (periplasmic chaperone), IptA (lipopolysaccharide Biosynthesis), rpoE (transcrip-
tion), and secBDEFGY (Sec translocation processes). The Sec complexes are responsible for

translocating the LptA protein from the cytoplasm into the periplasmic space [220].
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7.3.3 Membrane protein activity as a function of pH

Under mild acid stress, E. coli maintains pH homeostasis in the cytoplasm (pH around
7.4) while its periplasmic pH is close to that of the external acidic environment [171, 221, 222].
Thus, the difference in proton concentration across the inner membrane results in a large proton
motive force [203, 231]. For membrane proteins involved in proton import/export processes, their
activities can be significantly affected by the change in proton motive force at different external
pH conditions. These proteins include ATP synthase, electron transport chain components and
various membrane transporters. Here, we model the change of their activities under mild acid
stress and integrate these changes into ME-model simulations.

We first model the activity change of ATP synthase under mild acid stress using an
existing kinetic model [232]. Specifically, the model consists of a series of elementary reactions
that describes the proton transport and the rotation of the rotor subunit in ATP synthase.
The rate of ATP synthesis is expressed in terms of the proton concentrations in the cytoplasm
and periplasm, as well as the kinetic parameters of the elementary reactions (Methods). It is
worth mentioning that ATP synthesis rate also depends on the membrane potential [232, 233]
and different sets of kinetic parameters are needed when the membrane potential changes under
different external pH values. Thus, we fitted the experimental data by Fischer and Gréaber
[233] on ATP synthesis rate as a function of transmembrane pH difference at three different
transmembrane potentials and obtained three parameter sets for rate calculation. The calculated
ATP synthesis rates at different external pH values can be found in Figure 7.4a.

Next, we examined the activity change of the electron transport chain components and
various membrane transporters. There is not much evidence available on these reaction mecha-

nisms in terms of the detailed elementary steps. Thus, we modeled their reaction rates based on
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the theory of nonequilibrium thermodynamics [234]. Specifically, the rate is expressed in terms
of the reaction energy, the membrane potential, periplasmic and cytoplasmic proton concentra-
tions, as well as the concentrations of metabolites involved (Methods). The calculations on the
electron transport chain components show that their rates remain almost unchanged from neu-
tral pH to acidic pH. We were unable to calculate the reaction rates for most of the membrane
transporters, due to missing metabolite concentration data. However, we found that the change
of their activities had minimal impact on cellular growth rate and processes (j1%) through the
sensitivity analysis using the ME-model.

Based on the analysis on the activity change of different membrane proteins across pH,
we modeled the change of ATP synthesis rate at different external pH values by modifying the
effective turnover rate (kesyr) of the reaction catalyzed by ATP synthase in the ME-model [214]
(Methods). Considering possible errors due to parameter fitting, we performed sensitivity analysis
and found the change in cellular processes at different ATP synthesis rates to be similar. Using
the calculated ATP synthesis rate at pH 5.5 as an example (Figure 7.4a), the top 50 genes with
the largest change in expression levels are mainly involved in carbohydrate metabolism (e.g., citric
acid cycle, glycolysis/gluconeogenesis, pentose phosphate pathway) and energy production and
conversion (oxidative phosphorylation related to ATP synthase) (Figure 7.4b). We also showed
the genes with the largest change in carbohydrate metabolism in the context of a metabolic

network map (Figure 7.4c).
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7.3.4 ME-model with integrated mechanisms explains the acid stress response

of FE. colz

We integrated the description of the three pH stress mitigation mechanisms (membrane
lipid fatty acid composition, periplasmic protein stability and periplasmic chaperone protection,
and the activity change of membrane proteins) into the ME-model, and then simulated its re-
sponse under neutral pH and mild acid stress (pH 5.5). We compared the simulations to RNA
sequencing data of K-12 MG1655 F. coli strains grown under pH 7 and pH 5.5 in glucose minimal
medium from a previous study [235]. The E. coli strains from which the RNA-seq data were
obtained include: 1) the wild type strain, 2) two strains adapted to pH 5.5 through adaptive
laboratory evolution [184], and 3) two control strains adapted to specific media conditions. Since
the acid-adapted strains were evolved in glucose minimal medium with lowered magnesium con-
centration and MES buffer, the two control strains (one for lowered magnesium concentration
and one for MES) were necessary to account for the possible effects due to these two changes in
media composition.

We compared ME-model simulations and RNA-seq data in terms of the differentially
expressed genes (DEGs) due to acid stress (growth under pH 5.5 versus pH 7). We grouped
the DEGs found in RNA-seq data into three categories: 1) DEGs currently not active in the
ME-model, 2) DEGs correctly predicted by the ME-model, and 3) DEGs incorrectly predicted
by the ME-model.

We found a large number of genes in the first category to be associated with membrane
proteins and transporters and their related cellular processes. For example, one of the reported
acid stress responses involves the blockage of outer membrane porins by secreted cadaverine [236].

Therefore, these DEGs are currently outside the ME-model’s predictive capabilities. To include
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such descriptions in the ME-model, quantitative measurements on cadaverine binding to outer
membrane porin and the corresponding change under acid stress is required.

For genes in the second category, we found that, on average, 80% of the upregulated
genes in the RNA-seq data to be correctly predicted. These correctly predicted DEGs are mainly
involved in the translation process (45% of genes), membrane proteins and related processes (18%
of genes), amino acid metabolism (12% of genes), and cofactor and prosthetic group biosynthesis
(8% of genes). Additionally, we found a limited number of downregulated genes to be active
in the ME-model, as shown in Figure 7.5a. For genes in the third category, those found to be
upregulated in the data but predicted to be downregulated in the ME-model are grouped by
COG categories and shown in Figure 7.5b. Genes found to be downregulated in the data but
predicted to be upregulated by the ME-model are discussed in more detail below.

We grouped the correctly predicted DEGs by COG categories (Methods) and summarized
them by the underlying mechanisms in Figure 7.5a. We found a large number of upregulated
genes to be related to the translation process (Figure 7.5b red). Additionally, we found up-
regulated expression for a number of proteins on the inner and outer membranes of E. coli .
These proteins include the electron transport chain components, transporters (uptake of sugar,
lysophospholipid), Sec translocase, and BAM complex responsible for outer membrane assembly.
Furthermore, the DEGs in amino acid metabolism cover processes related to cysteine, threonine,
lysine, glutamate, and aromatic amino acids (tryptophan, tyrosine, phenylalanine). We found
cofactor and prosthetic group biosynthesis to be another major category with a number of upreg-
ulated genes. Lastly, due to changes in membrane lipid fatty acid composition and periplasmic
proteome predicted by the ME-model, we found upregulated genes in RNA-seq data to be re-

lated to membrane lipid metabolism, lipopolysaccharide biosynthesis, and glycerophospholipid
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metabolism.

We then examined the incorrectly predicted DEGs. We found a few genes to be down-
regulated in the RNA-seq data but predicted to be upregulated (rimC, gleD, hisl, erpA, nadB).
Upon examining the reactions catalyzed by these gene products, we found proton generation to
be involved in three reactions, with the corresponding genes being rimC, hisl, nadB. The proton
generation in the reaction explains the downregulation of these genes, as F. coli tends to minimize
proton production under acid stress. Genes found to be upregulated in the data but downregu-
lated in ME-model predictions were grouped based on the COG categories (Figure 5B). These
incorrectly predicted DEGs suggest ways to further develop the modeling of acid stress response.
For example, the arginine-dependent acid resistance system has been shown to play a role under
acid stress [174], but the corresponding genes were not correctly predicted by the ME-model. A
possible way to improve model predictions is to fine-tune model parameters related to arginine
metabolism based on RNA-seq data. We also found genes related to cytoplasmic chaperones to
be upregulated in RNA-seq data but not predicted by the ME-model. A previous reconstruction
of the cytoplasmic chaperone network in the ME-model exists [228] and its incorporation can

potentially improve predictions of the use of chaperone related processes.

7.4 Discussion

In this study, we described the response of E. coli under acid stress using the ME-model
framework. We first modified the membrane lipid fatty acid composition based on experimental
data, with the addition of the constraint on total membrane surface area. Second, we modeled the
pH-dependent periplasmic protein stability and periplasmic chaperone protection mechanisms.

Third, we characterized the activities of membrane proteins under low pH. Lastly, we integrated

163



these descriptions of stress mitigation mechanisms into the ME-model and compared the simula-
tions of the integrated model with measured RNA sequencing data. We demonstrated that the
ME-model was able to recapitulate DEGs under acid stress in a number of cellular processes,
including amino acid metabolism, cofactor and prosthetic group biosynthesis, processes related
to membrane proteins, and translation process. The effects of acid stress mitigation on these
cellular processes can now be understood at the systems level and quantitatively computed. We
also suggested a few areas for further model development, based on model predictions that were
inconsistent with the RNA-seq data.

The work here describes the change in the cellular state of E. coli between two distinct
conditions, the mild acidic condition and the neutral condition. A continuous profile of the change
in cellular processes as the pH decreases from neutral to acidic can provide more insights into
how E. coli adjusts its cellular resource allocation when facing increased acid stress. However,
such an effort is currently limited due to the lack of relevant experimental data. For example, the
current data on fatty acid composition of membrane lipids of F. coli are only measured under pH
5 and 7. Possible steps forward include acquiring more experimental data at the intermediate pH
values between 5 and 7 or making simplifying assumptions about how the fatty acid composition
profile changes over pH.

ME-model simulations predicted only a few of the periplasmic proteins to be active. The
main reason for the inactivation of other proteins is the lack of description of their downstream
processes or metabolic reactions they catalyze in the ME-model. The addition of relevant pro-
cesses could help provide a more complete picture of the periplasmic protein response under acid
stress, as the stability profiles for most of the periplasmic proteins are available from this work.

Furthermore, adding these descriptions can uncover more periplasmic proteins that significantly
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affect the growth rate and cellular processes, and potentially improve the predictions on acid
stress response.

After integrating the three acid stress mitigation mechanisms considered into the ME-
model framework and performing the simulations, we revealed changes in cellular processes of
E. coli under mild acid stress. There are several known acid resistance mechanisms that were
not activated in the ME-model framework. First, although various amino acid decarboxylase
systems play important roles in maintaining pH homeostasis, we did not model the change of
their activities due to the context of acid stress response described here. We used the ME-model
to describe the adapted response of E. coli under mild acid stress. On the other hand, the
optimal activities of decarboxylases were shown to occur below neutral pH, indicating that the
decarboxylases are typically active when there is a large influx of proton into the cytoplasmic
space or when F. coli is under extreme acid stress when the intracellular pH drops to around 4
to 5 [183]. Another related acid resistance mechanism is cytoplasmic buffering. The description
of this mechanism requires a detailed characterization of the metabolites and amino acid side
chains at different protonation states, which is currently out of the model’s scope and can be an
area of further ME-model development. Additionally, the descriptions of DNA-binding proteins
and HdeA activation are not currently included in the ME-model, but will be more relevant in
terms of the response under extreme acid stress [183].

The ME-model framework here enables predictions of how different interventions affect
the acid stress tolerance of E. coli . For example, we can design intervention strategies on
the recycling of S-adenosyl-L-methionine, which is an important cofactor responsible for the
adjustment of membrane lipid fatty acid composition under acid stress. As another example, the

effect of hdeB knockout can be simulated using the ME-model and compared with experimental
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data. Discrepancies between model simulations and the data can potentially lead to discoveries
of novel periplasmic chaperone protection mechanisms [237].

Taken together, the work here describes acid stress mitigation responses in F. coli through
a mechanistic approach and provides insights into the resulting changes to its cellular processes.
It is worth noting that the current description focuses on the acid stress response of E. coli
under the aerobic growth condition with glucose as the sole carbon source. In practice, E. coli
faces more complicated nutrient environments and can be subjected to anaerobic respiration.
The response to acid stress differs due to different environmental conditions (e.g., activation of
formate hydrogen lyase under anaecrobic acid stress [183]). Thus, descriptions of additional acid
resistance mechanisms can be added to expand the scope of ME-model predictions. The study
here is a first step towards a complete characterization of the wide array of acid stress responses

of E. coli .

7.5 Methods

7.5.1 ME-Model and simulations

The ME-model framework is based on the work by Lloyd et al [214], with no change on
the parameters used other than the inclusion of acid stress mitigation responses described in the
text. A quad-precision NLP solver was used to obtain the ME-model solutions [238]. The source
code for model construction and integration of the acid stress mitigation mechanisms is available
on GitHub (https://github.com/bdu91/acidify-ME). All work here is in implemented in Python

2.7.6.
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7.5.2 Stability of periplasmic proteins as a function of pH

As mentioned in the main text, protein stability can be quantified by the folding energy
AG folding » which is the sum of AG cyirar and AGectric based on equation 7.1. The change in

pH affects the value of AGgjeetric, which can be expressed as

(7.3)

AG toeiric = kT ( QFotdedls Qiin foldedld )

2R fotded(1 + KR folded)  2Runfolded(1 + K Runfolded)

where Q foided and Qun foldea are the protein charges in the folded and unfolded states, Rfo40q and
Rynfolded are radius of gyration of the folded and unfolded states, % is the Boltzmann constant,
T is the temperature, [, is the Bjerrum length and x = 2¢l; (¢ as the salt concentration, set as
0.25 M here) [223].

The charge of the unfolded state of the given protein can be calculated based on the
pKas and charges of the individual amino acid side chains. The charge of the folded state can be
obtained through a method called multi-conformation continuum electrostatics (MCCE), which
calculates the pK,s and charges of the amino acid side chains of the folded state [239]. The
MCCE method requires the PDB structures of the folded proteins, which were obtained from the
latest genome-scale metabolic network reconstruction of E. coli [74]. It is worth mentioning that
the charge of 7 periplasmic proteins cannot be calculated due to failed delphi runs in the MCCE
method. The radius of gyration of the folded protein Ry4eq is calculated through the Bio3d
package in R [240], using the PDB structure of the folded protein. The radius of gyration of the
unfolded protein R, foideq is obtained by fitting empirical data and the relationship between the

number of amino acid residues N and Ryp foided, Where Ryp foided < N 0-588 1241].
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Finally, as AG to14ing at neutral pH can be calculated based on the number of amino acids
of the protein [223, 227], AG fo1ding at different pH values can be obtained from the change of

AG jectric over pH using equation 7.3.

7.5.3 Periplasmic chaperone protection by HdeB in the ME-model

We first modeled the formation of HdeB protein, including steps on transcription, trans-
lation, translocation from the cytoplasm to the periplasm and formation of HdeB dimer [229].
The details of each step have been defined in the COBRAme framework by Lloyd et al [214]. We
then modeled the protection of HdeB on unfolded proteins. We defined a spontaneous folding
reaction for each periplasmic protein, using the coupling constraint defined by Ke et al [228].

Specifically, we have

K[HdeB]+ (14+ K + p1/k foiding) [Un folded] <+ K[HdeB —un folded — complex] + [Folded] (7.4)

where [HdeB] is the HdeB protein, [Un folded] and [Folded] are the folded and unfolded states of
the protein, [HdeB —un folded — complex] is the complex formed by HdeB bound to the unfolded
state, K is the ratio between the unfolded state and the folded state and can be obtained from
Gfolding under the given pH, p is the growth rate in the ME-model, kf44ing is the kinetic folding
rate and can be calculated based on the work by Gromiha et al [242]. For proteins where AG fo1ding
cannot be obtained, we assume the protein is favorable towards folding under all conditions and

set AG foiding to -100 kJ/mol.
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7.5.4 Activity of ATP synthesis rate as a function of external pH in the ME-

model

We used the kinetic model by Jain and Nath [232] to describe the mechanism of ATP
synthase through a list of elementary steps, including proton transport and rotor rotation. The
rate of ATP synthesis can be expressed in terms of the cytoplasmic and periplasmic proton

concentrations, as well as the kinetic parameters.

k1
v= — (7.5)
1 + kQHcytoplasm + k3
T ¥
periplasm periplasm

It is worth mentioning that parameters ki, k3 and k3 are composite terms. Each term
consists of various kinetic parameters of the elementary steps.

We used the experimental data from Fischer and Gréber [233], where the rate of E. coli
ATP synthase was measured as a function of transmembrane pH difference at three different
transmembrane potentials (80 mV, 108 mV, 152 mV). Based on equation 7.5, we obtained three
sets of kinetic parameters at different membrane potentials by fitting the experimental data
through a non-linear least-squares minimization procedure [243].

To calculate the rate of ATP synthesis under a specific external pH, we first calculated the
cytoplasmic pH, using the relationship between the cytoplasmic pH and the external pH derived
by Slonczewski et al [221]. We next calculated the membrane potential of E. coli under the given
external pH based on the experimental measurements by Felle et al [244]. From the three fitted
parameter sets at different membrane potentials, we selected the set with the closest membrane
potential. Using the selected parameter set and the calculated pH values, we calculated the rate

of ATP synthesis under different external pH conditions. To standardize the calculated rates, we

169



defined the rate under pH 7 as 1 and expressed the rates under other pH values as the fold change
relative to it. To incorporate the change in ATP synthesis rate under the specific external pH in
the ME-model, we adjusted the effective turnover rate (k.rs) of ATP synthase in the ME-model

according to the calculated fold change under the given external pH [214].

7.5.5 Activity of electron transport chain components as a function of pH

For electron transport chain components, we described the rate as a function of pH using
the derivation by Jin and Bethke [234], based on the theory of nonequilibrium thermodynamics.

Specifically, the rate is expressed as,

1, Jm[D]p[AJea

cytoplasm

-n ° m ];I—i;ripasmml)Jr Yot [AT ]
U:U+<1_6Xp( FAER; FA¢><[p tasm) " [D*]'P+ [A7] >> 76)

where vy is the forward reaction flux, n is the number of electrons transferred, AE® is
the difference in standard redox potential between the donating and accepting half-reactions,
m is the number of protons transported across the membrane, At is the membrane potential,
F is Faraday’s constant, R is the ideal gas constant, T is the temperature, [D] and [D] are
the concentrations of the oxidized and reduced forms of the electron-donating half reaction, [A]
and [A™] are the concentrations of the oxidized and reduced form of the electron-accepting half
reaction. Since we were only interested in the relative change of activity for the electron transport
chain components, we focused on calculating the term after v, in equation 7.6. The difference
in standard redox potential as termed AFE° is calculated based on the standard redox potential
of the half-reactions from multiple sources [71, 245, 246]. The membrane potential At at the

specific external pH is calculated based on the experimental measurements by Felle et al [244].
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The concentrations of the electron donors and acceptors are obtained from the experimental

measurements by Bennett et al [28].

7.5.6 Comparison of DEGs between ME-model predictions and RNA se-

quencing data

We computed the amount of individual proteins expressed in the ME-model and deter-
mined the relative change of each protein expression from neutral pH to acidic pH. We compared
the change in protein expression to the DEGs in the RNA sequencing data in terms of the di-
rection of change. For a more systematic comparison of DEGs, we grouped the E. coli genes
into cellular processes based on COG annotation. Different E. coli strains have different sets
of DEGs under acid stress in the RNA-seq data, with a small set of DEGs overlapping. Thus,
we compared the DEGs found in each strain against the DEGs predicted by the ME-model and
grouped the correctly and incorrectly predicted DEGs by COG categories. To obtain the set
of genes consistent between model predictions and RNA-seq data, we obtained the list of COG
categories commonly found across all five E. coli strains in which the correctly predicted genes
fall. For each COG category, we then summarized the list of correctly predicted genes from all

five E. coli strains.
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Chapter 8

Conclusion

In this dissertation, I have demonstrated the application of multi-scale modeling to ad-
dress biological problems from different angles. Using kinetic models, we are able to interpret the
dynamic motions of different components over time. The use of thermodynamics in the context
of genome-scale models provide an interesting view towards the evolution of metabolic network
structure in different organisms. Furthermore, the detailed description of macromolecular com-
ponents by ME-models allows us to characterize the response of E. coli under acid stress at the
molecular level. I would like to expand a bit further on some possible future work regarding the
different types of multi-scale modeling techniques mentioned above.

In terms of the work on dynamic analysis of kinetic models, we mainly focused on the
analysis of concentration Jacobian matrix (chapter 2). In fact, the metabolic network is composed
of both the concentration and flux components. Thus, the analysis on the flux Jacobian matrix
will lead to similar results as on the concentration Jacobian matrix. It is interesting to explore
how the concentration mode and flux mode connect at the specific timescale. The analysis

of concentration Jacobian matrix and flux Jacobian matrix together can be used to interpret
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the dynamics of more eigenvalues than would be possible with either variable set alone, thus
simplifying the overall interpretation of the dynamics of the system.

Thermodynamic analysis on metabolic network benefits from accurate measurement or
estimation of equilibrium constants. While more measurements of equilibrium constants are un-
derway, the accurate estimation of equilibrium constants should also be emphasized and actively
developed. We have discussed several existing issues in chapter 3. To address them, we can
focus on various aspects including improving data quality, expanding the scope of available data,
developing more detailed modeling for ion interactions, adding more features (e.g. molecular
properties) to train for machine learning models, or even developing novel approaches other than
the group contribution method (e.g. quantum thermodynamics). A lot of exciting work to be
done in this field.

While ME-models are capable of recapitulating the macromolecular machinery and
metabolic flux state, existing ME-models are still in great need of development, as 40% of the
proteome in mass are not accounted for in the current E. coli ME-model. One such area that
needs improvement is the description of cellular processes in the periplasmic space. Only a lim-
ited number of periplasmic proteins are actively expressed based on the current F. coli ME-model
simulations. The other periplasmic proteins are never active due to the lack of description of the
downstream processes or metabolic reactions they catalyze. As periplasmic space serves as the
buffer layer between the cell and the environment, the characterization of related processes can
provide useful insights into the interaction of the cell with the environment, especially in cases
where conditions deviate from normal growth environments, e.g. acid stress, high pH stress,

oxidative stress, osmotic shock, etc.
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