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Middleware for Cooperative Vehicle-Infrastructure Systems 

Christian Manasseh & Raja Sengupta 

Nov. 13, 2007 

Abstract 

Middleware has emerged as an important architectural component in supporting distributed 
applications. The role of middleware is to present a unified programming model to application 
writers and to mask out problems of heterogeneity and distribution. Mobile sensors fall into the 
space of distributed systems that suffer from isolated data sources, heterogeneous 
communication infrastructure and varying application requirements. In this report, we provide a 
middleware architecture that addresses the needs of a distributed system made of mobile sensors 
in general and discuss the implementation of this middleware architecture in a mobile sensor 
network comprised of vehicles and intersections producing traffic related data for traffic safety 
and operations. We conclude our report with some performance measures that relate to the cost 
of overhead incurred from using the middleware which prove it efficient for traffic management 
applications.  
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Executive Summary 
Middleware has emerged as an important architectural component in supporting distributed 
applications. The role of middleware is to present a unified programming model to application 
writers and to mask out problems of heterogeneity and distribution. The importance of the topic 
is reflected in the increasing visibility of standardization activities such as the ISO/ITU-T 
Reference Model for Open Distributed Processing (RM-ODP), OMG’s CORBA, the Java RMI, 

Microsoft’s .NET and the Open Group’s DCE. Mobile sensors fall into the space of distributed 
systems that suffer from isolated data sources, heterogeneous communication infrastructure and 
varying application requirements. In this report, we provide a middleware architecture that 
addresses the needs of a distributed system made of mobile sensors. We then discuss the 
implementation of this middleware architecture in a mobile sensor network comprised of 
vehicles and intersections producing traffic related data for traffic safety and operations. Finally, 
we present performance measures that relate to the cost of overhead from using the middleware.  

Mobile sensor networks have a variety of applications. Examples include traffic monitoring 
which involves vehicle driver and infrastructure, environmental monitoring which involves 
monitoring air soil and water, condition based maintenance, seismic detection, military 
surveillance, inventory tracking, etc. In fact, due to the pervasive nature of micro-sensors and the 
widespread use of wireless communication, mobile sensor networks have the potential to 
revolutionize the way we understand and construct complex physical systems (Estrin, et al. 
1999). Data generated from these sensors varies by type, quality and quantity within the same 
application; the data can travel over a wide range of wireless communication media such as 
WiFi, WiMAX, GPRS, DSRC, etc. and it can serve multiple purposes depending on the user 
needs. An auto-service technician might be interested in the engine reading for a specific vehicle 
as it travels on a section of the roadway and connects to the service warehouse over GPRS; 
whereas, a traffic operations engineer would be interested in the average speed of the thousands 
of vehicles that cross a certain point on the highway during a certain time period and 
communicate over DSRC. In this report we present a middleware layer that interfaces with the 
hardware (sensors and communication media) from one side and presents a single interface to the 
application developer (software) on the other side.  

The middleware offers three main simplifications to the complexity of mobile sensor network 
applications. First it reduces the complexities of the heterogeneous communication layer and 
data sources to a simple standardized services interface allowing the application developer to 
consume whatever data is generated from the sensors. In our implementation we choose web 
services as the middleware interface. Second, it solves sensor discovery problems by providing a 
geo-spatial query interface allowing the data consumer to locate the sensors of choice by 
providing a relational query engine. And third, it offers seamless connectivity between the 
application (data consumer) and the sensors (data source) by hiding the intricate details of the 
several communication standards from the application developer. In our implementation we 
utilize the concept of a message broker to develop the geo-spatial discovery and seamless 
connectivity features of the middleware. As a result, the application developer’s task is reduced 

to just connecting to the middleware services interface and not having to worry about varying 
communication standards, different hardware types and firmware versions on the sensors, 
different representations of sensor data, etc. 
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Middleware for Cooperative Vehicle-
Infrastructure Systems 

Introduction 
In the US, EU and Japan very substantial programs exist for the development and deployment of 
cooperative-vehicle infrastructure systems. In the US, Vehicle Infrastructure Integration (VII) is 
an initiative fostering research and applications development for a series of technologies directly 
linking road vehicles to their physical surroundings, first and foremost in order to improve road 
safety as well as traffic efficiency (US Department of Transportation 2007). At the EU level, the 
Cooperative Vehicle-Infrastructure Systems (CVIS) underlines the importance of intelligence in-
car and roadside systems for improving traffic safety and efficiency and environmental impact 
(Reding 2006). In Japan, the Smartway Project, a national level project, enables communication 
among vehicle, driver and pedestrian with advanced ITS technologies (Setsuo 2007). In this 
report we will briefly present each of those systems and then present a different approach based 
on a service-oriented middleware for handling cooperative vehicle-infrastructure systems.  

Middleware has emerged as an important architectural component in supporting distributed 
applications. The role of middleware is to present a unified programming model to application 
writers and to mask out problems of heterogeneity and distribution. The importance of the topic 
is reflected in the increasing visibility of standardization activities such as the ISO/ITU-T 
Reference Model for Open Distributed Processing (RM-ODP) (Tindale-Biscoe 2002), OMG’s 

CORBA (Raj 1998), the Java RMI (Raj 1998), Microsoft’s .NET and the Open Group’s DCE. 
Traffic safety and traffic monitoring can be considered among the distributed applications that 
can benefit from a middleware-based architecture. Sensor-equipped vehicles and traffic control 
elements (traffic signals, changeable message signs, loop detectors, etc.) fall into the space of 
distributed systems that suffer from isolated data sources, heterogeneous communication 
infrastructure and varying application requirements. Data generated from these sensors varies by 
type, quality and quantity within the same application; the data can travel over a wide range of 
wireless communication media such as WiFi, WiMAX, GPRS, DSRC, etc. and it can serve 
multiple purposes depending on the user needs. A traffic operations engineer would be interested 
in the average speed of the thousands of vehicles that cross a certain point on the highway during 
a certain time period and communicate over DSRC; whereas, an auto-service technician might be 
interested in the engine reading for a specific vehicle as it travels on a section of the roadway and 
connects to the service warehouse over GPRS. 

The middleware offers three main simplifications to the complexity of mobile sensor in a vehicle 
trying to communicate with the infrastructure. First it reduces the complexities of the 
heterogeneous communication layer and data sources to a simple standardized services interface 
allowing the application developer to consume whatever data is generated from the sensors. In 
our implementation we choose web services as the middleware interface. Second, it solves 
sensor discovery problems by providing a geo-spatial query interface allowing the data consumer 
to locate the sensors of choice by providing a relational query engine. And third, it offers 

http://en.wikipedia.org/wiki/Road_safety
http://en.wikipedia.org/wiki/Road_safety
http://en.wikipedia.org/wiki/Road_safety
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seamless connectivity between the application (data consumer) and the sensors (data source) by 
hiding the intricate details of the several communication standards from the application 
developer. In our implementation we utilize the concept of a message broker to develop the geo-
spatial discovery and seamless connectivity features of the middleware. As a result, the 
application developer’s task is reduced to just connecting to the middleware services interface 
and not having to worry about varying communication standards, different hardware types and 
firmware versions on the sensors, different representations of sensor data, etc. 

This report is structured as follows: we first present the various approaches that are being taken 
by several government and private sector entities in the field of cooperative-vehicle 
infrastructure systems, then we present the service-oriented middleware architecture for 
interconnecting vehicle and infrastructure sensors, in this section we introduce service-oriented 
architectures and component-based programming models. In the final section of the paper we 
discuss the details of our implementation of a service-oriented middleware architecture for 
cooperative vehicle infrastructure systems.   

Current efforts for cooperative-vehicle infrastructure systems 

The US VII Program 
The VII Program concept is an outcome of the foreseeable coordinated deployments of 
communication technology in all vehicles by the automotive industry and on all major U.S. 
roadways by the transportation public sector. The U.S. DOT perceives the possibility of major 
improvements in highway safety through crash prevention. The U.S. DOT also envisions VII 
enabling more effective operation of the state and local transportation systems through collection 
of valuable information about the real-time status of the roadways (ITS U.S. DOT 2006). The 
VII coalition is a cooperative venture of the U.S. DOT, the automotive industry, American 
Association of State Highway and Transportation Officials (AASHTO) and State DOTs. Some 
of the preliminary actions taken by the government to induce the VII Program involve the 
Federal Communications Commission (FCC) and the standards development organizations 
licensing and establishing a vehicle-to-vehicle and vehicle-to-roadside communications system 
over Dedicated Short Range Communications (DSRC) at 5.9 GHz (ITS U.S. DOT 2006). 
Vehicle Infrastructure Integration (VII) applications involve the harvesting of data from different 
types of sources with different characteristics. The data of interest represents properties of 
vehicle, driver and/or infrastructure control elements. The source of data can be the vehicle On-
Board Diagnostic (OBD) systems, add-on vehicle sensors that detect vehicle and/or driver 
properties, infrastructure intrusive (loop detectors) or non-intrusive sensors (cameras, radar), 
control elements computer systems such as traffic light controllers(170, 2070), as well as other 
sources of sensors and systems that can portray the characteristics and behavior of the traffic 
stream or need to convey information (safety-related or otherwise) to the driver. The data itself 
can be in the form of messages or files of varying sizes and of varying targeted audiences. 
Furthermore, this data has a varying life span; some might be useful for the few milliseconds or 
seconds in which it originates, and some might be useful in an archived manner that would span 
over several years. The Vehicle Safety Communications (VSC) project which has the U.S. DOT 
and several automakers on its list of members, has analyzed several application scenarios, 43 of 
which 33 are in safety and 10 in non-safety applications will be referenced in this research (The 
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CAMP Vehicle Safety Communications Consortium 2005). In our research we will rely on those 
scenarios as the major requirements for implementing software applications in VII.  

The U.S. DOT, through its ITS Joint Program Office, has come up with a VII Architecture 
document that defines the several components and functional elements of a VII deployment (ITS 
Joint Program Office 2005). The following is a quick description of the components that are of 
interest to our research:  

Road-side unit (RSU): the road-side equipment that would be part of the network infrastructure, 
providing a communication hot spot, storage, internet connectivity and in some cases 
information about a road side control unit such as a traffic light, changeable message sign 
(CMS), pavement senor-read data, etc. Figure 1Error! Reference source not found. shows the 
usual components that compose the RSU. 

 

Figure 1. RSU Logical Layout (ITS Joint Program Office 2005) 

The Roadside Equipment (RSE) is composed of the RSU processor which is in many cases a 
regular computer processor, a GPS receiver to identify position, an Input/Output (I/O) Controller 
that communicates with the several hardware that might exist at an RSU (such as an intersection 
controller or Changeable Message Sign (CMS) processor), and a router to connect to in internet 
backhaul network. The GPS receiver is connected to a GPS antenna to receive GPS data about 
location. The RSE is has a DSRC antenna allowing it to communicate to vehicles in the DSRC 
range.  

On-Board Unit (OBU): this is the equipment installed inside the vehicle and interfaces with the 
vehicle diagnostic board. Data from the vehicle about the vehicle and driver behavior could be 



4 
 

relayed using this unit to the outside world (relative to the vehicle) and could also be stored in 
the local storage component of this unit. Figure 2 shows the usual components that compose the 
OBU. 

 

Figure 2. OBU Logical Layout (ITS Joint Program Office 2005) 

The body chassis systems are a set of sensors feeding into the OBD connector of the vehicle. 
Those would offer their data as vehicle services to the OBU processor, which is in many cases a 
simple computer processor. The Human-Machine Interface (HMI) provides the interface to the 
driver. GPS receiver and antenna provide location of vehicle. Communication devices that rely 
on DSRC, WiFi, Cellular, etc will also be made available in the OBU. 

Dedicated Short Range Communication (DSRC) layer: the DSRC is the government licensed 
bandwidth provided for the use of VII application. It is beyond the scope of this report to address 
the many facets of this technology, but it will be sufficient to say that this research will utilize 
the bandwidth and the different network layers provided by this technology to relay messages 
between the different components of the network. As of yet, no standardized messaging protocol 
has been issued for communicating on this bandwidth and it is the purpose of this research to 
provide a general enough architecture model to allow any type of message to be transmitted on 
the DSRC communication layer. 

The U.S. DOT VII Architecture 
By using the VII components presented earlier, the U.S. DOT has put together the proposed VII 
Architecture for message flow between vehicles and infrastructure elements.  
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Figure 3. U.S. DOT VII Architecture (ITS Joint Program Office 2005) 

Figure 3 is a simplified view of this architecture that shows the basic elements of a VII 
Application. According to this architecture, vehicles would communicate with each other (V-V) 
using DSRC, Cellular, WiFi or other communication media; vehicles would communicate with 
field RSU’s using DSRC. The RSU would connect to the VII Message switch through its 

backhaul connection. Any user or center wishing to consume the data being gathered by the 
RSU’s would have to connect via the VII Message Switch.  

The VII Message Switch is designed to operate in a publish-subscribe method, by which RSU’s 

would publish their data to the message switch inbox and any users, centers or applications 
wishing to make use of that data have to subscribe with the VII Message Switch. The U.S. DOT 
envisions a centralized architecture for the VII Message Switch by which there will be two main 
VII Message Switches to cover the continental United States: one for the West Coast and one for 
the East Coast.  

The EU CVIS Program 
The European ITS project CVIS will bring major functional improvements to road users by 
allowing vehicles to communicate and cooperate directly with others nearby and with the 
roadside infrastructure (Mietzner 2007). CVIS has underway a prototype for a platform 
providing a wide range of functionality for journey support, information and security services 
offered to road operators and drivers.  
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The CVIS technology for vehicle-to-vehicle (V2V) and vehicle-to infrastructure (V2I) 
communication, is based on a multi-channel terminal capable of connecting to a wide range of 
potential carriers, including WLAN/Wi-Fi, Cellular (GPRS, UMTS), DSRC, and Infra-red (IR). 
This is based on the new international Continuous Air interface for Long and Medium range 
(CALM) standard (Figure 4) which will provide full interoperability between different car brands 
and different roadside and infrastructure systems.  It is important to mention that the CALM 
specifications/standards are not a physical piece of equipment. While CALM may indeed operate 
from a "box" designed to achieve its functions, CALM is actually a related set of protocols, 
procedures and management processes (ISO 2007). While it may appear in the vehicle in the 
form of a box, it is just as likely to be incorporated into one of the in-car computing functions. 
CVIS/CALM equipped vehicles will be able to connect and communicate via local ad-hoc 
networks with vehicles and roadside equipment in the vicinity and also with an internet 
connection.  

 

Figure 4. The CALM Concept at the highest level of abstraction (ISO 2007) 

Similar to the 43 application scenarios outlined by the US VII Program, CVIS outlined a number 
of sample applications for various types of road operators. These applications are related to 
(Mietzner 2007): 

 Destination route guidance 
 Congestion control and avoidance 
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 Traffic lights control and coordinating 
 Area-wide Traffic Information Provisioning (traffic speed, congestion “hot spots”, road 

conditions etc.) 
 Truck and vehicle monitoring and (micro) management 
 Parking and loading space management 
 Safety information, collected from rain, fog ice and air quality sensors in vehicles and 

road side units. 
The CVIS architecture, while it contains similar elements to the VII RSU, and OBU it tries to 
address a more challenging set of requirements such as providing a transparent V2V and V2I 
communication layer that requires no application setup and management; confirm to modern 
internet techniques and standards for global usability while adhering to the wide range of 
different possibilities related to data speeds, communication distance, cost and other parameters. 
Another important factor in the CVIS architecture is the capability of organizing the system in a 
decentralized manner. The decentralized element of the CVIS architecture is handled by a set of 
sub-projects such the COMO and FOAM. Figure 5 below outlines the various sub-projects under 
the CVIS project umbrella. We highlight the COMO and FOAM projects as the two main 
projects related to the work we discuss in this report 

 

Figure 5. The CVIS Projects Architecture (CVIS 2007) 

The COMO sub-project aims to develop specifications and prototypes for the collection, 
integration and delivery of extended real-time information on individual and collective vehicle 
movements and on the state of the road network. Its main purpose is for collaborative monitoring 
of vehicle movement (CVIS 2007). The COMO Sub-project is placed as a central basic service 
inside the CVIS framework. COMO will cooperate closely with the application oriented activity 
blocks for urban (CURB), inter-urban (CINT) and fleet & freight (CF&F) applications to capture 
their particular requirements about monitoring of traffic and environmental information. The 
services are based on a consistent set of interfaces, which is applicable throughout the entire 
CVIS platform to control and manage the required transactions and data flows between vehicles, 
roadside infrastructure and back office systems like service or traffic management centers. In 
order to ensure the cooperation between these three entities COMO will provide distributed and 
decentralized data processing components.  
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CVIS will potentially capture far more data, and from more vehicles (since all vehicles will be 
able – through use of standard-based onboard units – to contribute data, not just those 
subscribing to a specific service). While this will provide the highest quality information on the 
real-time status over the entire road network, it will also lead to an enormous growth in data 
communications volume (CVIS 2007). A major challenge therefore for COMO is to create a 
distributed architecture where a maximum of processing can be done locally, in individual or 
amongst groups of vehicles, and where the volume of data transmissions can be moderated 
according to the context and content of the data (so that more data are transmitted that refer to an 
important exception – e.g. traffic incident – than for non-changing or slowly changing traffic 
status). The COMO services will be implemented on the FOAM platform and integrated in the 
local target environment. 

FOAM will define an architecture that connects the in-vehicle systems, roadside infrastructure 
and back-end infrastructure that is necessary for co-operative transport management. The aim is 
to produce an architecture and specification that is implementation-independent, i.e. allows 
different implementations for various client and back-end server technologies. The features of 
FOAM aims are (CVIS 2007): 

 exchanging and updating of service application components at any domain in the CVIS 
architecture  

 product / vendor independence by adaptable middleware components  
 common design of structural elements (e.g. data exchange formats, protocol 

specifications, API’s and run-time environment)  
 common design of secure communication in distributed systems including billing, 

authentication of user data and authorization of users  
 re-usability of components by generalized access of resources. 

 The Japanese Smartway Project 
In Japan, the Smartway Project positioned as a national level project, enables communication 
among vehicle, driver and pedestrian with advanced ITS technologies. The Smartway project 
strategy is focused on reducing deaths at the roads (Setsuo 2007). The Smartway architectural 
components are similar to the US and EU-based programs in which a vehicular OBU and a 
roadside RSU are required. Although the Smartway project has not progressed as much as its 
counterparts in the US and Europe it does pose similar requirements that will face the same 
challenges. The architecture of this project is not yet available; however, several advanced ITS 
efforts are being demonstrated for the purpose of funneling in the Smartway project.  

 

From what has preceded in the description of each of the programs, we realize that the challenge 
of connecting the data sources, be it vehicle sensors or road side units, is being approached from 
a tight coupling approach between the hardware and the software layers. In the US program, this 
tight coupling is clearly obvious by the nature of the communication standards and the 
requirements driving the program, the EU project seems to be more open to a more loosely 
coupled architecture. However, when looking at the details of how the FOAM and COMO layers 
of the CVIS architecture interface with each other and the other elements of the system; we 
realize that the interface is well defined for a certain set of hardware/communication 
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combination. The use of interface API in FOAM make the architecture more open than the US 
VII, but does not offer the loose coupling that we propose in our service-oriented architecture.  

In order to better understand what we mean by loose coupling and service-oriented architecture, 
the following section will provide a quick overview of component-based technologies and the 
evolution of software programming paradigms to arrive at what we now call service-oriented 
architectures (SOA).  

Component-based Technologies 
Having listed the various endeavors in building out vehicle-infrastructure integration, we 
introduce the field of component-based technologies that currently exists in the software 
development industry from which we will develop our perception of interconnecting the vehicle 
and infrastructure. We also provide a brief history of how software architecture evolved to rely 
on services. 

Software Architecture Evolution 
Historically, software programs were written to automate hardware. In those cases, software was 
greatly coupled with the hardware and large mainframes that possessed the required resources to 
run those software programs providing an interface through a terminal for the user to enter input 
and read the output.  

As the hardware became more accessible to the mainstream public, less software was coupled 
with the hardware (mainly operating systems and hardware drivers) and the rest was left in many 
cases for the software application developer to write. Limitations still existed in which the 
software program was greatly tied to the operating system and, in some cases, the hardware it 
was implemented on. This, however, enabled the birth of server-client applications. Server-client 
application have a central hardware resource that handles the heavy computations and storage 
needs (the server) and connects to several user terminals that offer user-facing functionality such 
as the Graphical User Interface (GUI), authentication and permissions, local caching of data, etc. 
(the client).  

With the widespread of the internet, more clients started to connect to larger and online servers 
(servers available publically and around-the-clock). This pushed the envelope for more 
requirements on the functionality provided through those applications for a much larger 
audience. Client-Server applications were purpose-built applications for targeted audiences that 
included hundreds of concurrent users on average. The demand for thousands of concurrent users 
could only be handled by introducing a lighter client and a more accessible server; this lead to 
web servers and internet browser-based applications. In the last twenty years, this architecture 
changed to accommodate for the increasing demands of user functionality, performance and 
availability. The first web applications were written on a web server that rendered HTML pages 
to internet browsers such as Microsoft Internet Explorer ® and Netscape ®. Later on, the internet 
browser started accommodating more functionality through technologies such as JavaScript, 
VBScript, ActiveX Controls and Java Applets. Through those technologies, browsers were able 
to handle more robust GUI functionality, better performing cacheable applications, and more 
secure connections to servers. This gave rise to what was known as Rich Clients or DHTML (D 
for dynamic). This approach was known as a 2-tier web architecture in which for any certain 
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application there were two nodes: the browser and the web server. As websites and web 
applications grew more popular in the commerce world, bottlenecks and performance issues 
started to arise by relying on single logical and physical source for computations (the server). A 
middle logical layer was introduced to separate the processing power from the data management 
and storage layer. The introduction of this middle layer gave rise to 3-tier web application 
architectures in which clients connect to the middle layer that aggregates and consume the 
required data and presents it to the requesting client.  

 

Figure 6. 3-Tier Application Architecture 

This offered a more scalable architecture by which a physical implementation of the logical 
architecture could exist on several machines depending on where the load was expected. N-tier 
architectures which provide extra layers between the middle layer and the data layer for data 
security and encryption and extra layers between the middle layer and client for workflow and 
online-offline functionality presence were also introduced around the same time as 3-tier 
applications. 3-tier and n-tier applications also span the windows application software 
development not just web applications.  
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Figure 7. N-Tier Application Architecture 

What made 3-tier and n-tier architectures possible was the use of object-oriented technologies 
such as Java and C++ that worked well with middleware technologies such as CORBA and 
COM+. The use of a middleware such as CORBA allowed for a Java object to be compiled and 
executed on a certain server or machine and have it reference objects that were compiled and 
executed on another machine (Raj 1998). Although those middleware technologies allowed for a 
distributed application to be implemented they did offer certain limitations that restricted the full 
decoupling between hardware and software. Java objects could only reference other Java objects. 
Objects in COM+ could only communicate if they were in the same network domain that 
controlled security and authentication. Objects could only communicate with specific object 
versions and upgrading certain objects in the distributed application required an upgrade of the 
whole application. The communication between the objects was controlled by the middleware 
technology and was not open to non-middleware or another middleware’s components. Data 

elements were simply encapsulated as Java or C++ objects only accessible through the 
programming language that encapsulated them.  
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Figure 8. Object Oriented Technology 

Figure 8 represents how object oriented programs written in a certain middleware such as 
CORBA would communicate. The interfaces between the objects are dictated by the CORBA 
middleware and the language in which the objects are represented (JAVA, C++). The need to 
incorporate other objects (from outside the JAVA/CORBA) realm was not possible; furthermore 
the capability of consuming objects developed by some other company or team was also not 
possible unless those objects were compile and executed under the same middleware in which 
they were to be consumed. The need to do those tasks was satisfied by introducing services or 
writing programs in a service oriented approach. In a service oriented program the middleware is 
not as restrictive. The middleware only works on transforming the code at run-time into a set of 
well established standards of communications. Those standards, known as SOAP, allow for a 
certain component to consume, as well as, provide its services to any other component that 
converses in SOAP. The two well known middleware technologies that provide this interfacing 
capability are Microsoft.Net and J2EE from Sun. Any component written to interface with either 
of those two middleware can interface with any other component written in either of those two 
middleware or other middleware that expose the SOAP interface. Several languages are 
supported on Microsoft.Net (J#, C#, VB.NET, C++, etc.) as well as Java is supported on J2EE; 
so language/middleware conformance is no longer an issue. Making use of this open 
architecture, services that handle security, authentication, as well as other administrative tasks 
are no longer part of the middleware but are services that can be consumed through the 
middleware. CORBA used to offer it own authentication feature, which all objects in CORBA 
had to use; with J2EE and Microsoft.NET there is no one particular authentication service; 
services can use any authentication service that satisfies their requirements and has a SOAP 
interface.   
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The SOAP Interface 
A lot of the component oriented programming that relies on services relies heavily on the SOAP 
interface. In this section we present this briefly and direct the reader to the referenced material 
for a better understanding of SOAP.  

Simple Object Access Protocol (SOAP) is a lightweight protocol for exchange of information in 
a decentralized, distributed environment. It is an XML-based protocol that consists of three parts: 
an envelope that defines a framework for describing what is in a message and how to process it, 
a set of encoding rules for expressing instances of application-defined data types, and a 
convention for representing remote procedure calls and responses. SOAP can potentially be used 
in combination with a variety of other protocols; however, what is standardized and most 
commonly implemented of SOAP has been in combination with HTTP and the HTTP Extension 
Framework. The encapsulation of service-based components adheres to SOAP standards and 
govern the creation of new service-based components. The SOAP used to define or encapsulate 
service is known as the Web Services Description Language (WSDL). WSDL is an XML format 
for describing network services as a set of endpoints operating on messages containing either 
document-oriented or procedure-oriented information. The operations and messages are 
described abstractly, and then bound to a concrete network protocol and message format to 
define an endpoint. Related concrete endpoints are combined into abstract endpoints (services). 
WSDL is extensible to allow description of endpoints and their messages regardless of what 
message formats or network protocols are used to communicate. WSDL standards are 
incorporated in the interface communications across service-based components. The abstraction 
provided by WSDL and the SOAP binding included in WSDL allow for the encapsulation of 
service-based components.  

The example in Figure 10 is taken from the W3.org WSDL Standard documentation to illustrate 
how WSDL, SOAP and XML are used to produce a service component that queries the trade 
price of a stock ticker.  
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Figure 9. SOAP-WSDL Representation  

You will notice from this example that the interface is written in XML which is the standard 
means of communication between services. The document structure is governed by WSDL that 
contains the binding representation of SOAP to control the interface of this component with any 
other service-based component. 

Service-oriented Middleware for cooperative vehicle-infrastructure 
systems 
While several of the international efforts presented earlier in this report tried to interconnect 
vehicles and infrastructure through a pre-defined closed architecture comprising of a proprietary 
set of communication standards, well-defined application interfaces deeply tied to hardware 
specifications, and dedicated communication channels and bandwidth, we present in this section 
an alternate approach based on open architecture methods, loose coupling between software 
components and software and hardware components that leverages existing hardware and 
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communication media. This approach will be based on service-oriented programs that will prove 
capable of solving several of the concerns addressed in the section on Cooperative Vehicle-
Infrastructure Systems.  

Our proposed architecture for VII can be summarized in Figure 10.  

 

Figure 10. A Service-based Middleware for VII 

In a service-based approach all our programs are written with a SOAP interface. We write 
services in vehicles, intersections as well as applications. We don’t differentiate between an RSU 

and an OBU, the only difference between them is at the hardware level which for our services is 
just another service to interface with. The important logical component of the middleware is the 
VII Broker Service. The VII Broker is a service that allows for information exchange between 
the different services in the architecture. The VII Broker acts similar to a Domain Names Service 
(DNS) in the internet. Services requesting to communicate with other services, query the broker 
for the list of services and how to connect to them. In this relation we define two types of 
services: The consuming service is the service that queries the broker for other services; the 
consumed service is the service that is part of the query result set issued by the broker. From this 
we define two main functionalities for the VII Broker: one is to return the correct result set for 
the consuming service; two is to provide the WSDL files of the consumed services. The 
following example depicts how the consuming and consumed services work in relation with a 
VII Broker.  
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Take, for example, a Bay Bridge Speed Service, a service that averages the speed of vehicles on 
the Bay bridge in a certain direction (Eastbound or Westbound) and returns the result to the user 
(a human or another application). In this example the Bay Bridge Speed Service is the 
“consuming” service. It first queries the VII Broker for a list of vehicles on the westbound of the 

bay bridge. The VII Broker returns the result set of all vehicles that have registered with it with a 
GPS location on the Bay Bridge and a heading that is Westbound. The vehicles that satisfy the 
query are the “consumed” services. Each entry in the VII Broker query result set has a URL 

pointing to the vehicle’s (or consumed service) WSDL file. The consuming service then uses the 
WSDL to get to the data from the vehicle.  

Using the broker structure, all services (vehicles, road side units, intersections, etc.) have to first 
register with the broker to enable other services to consume them. The registration process 
requires each service to provide the current location of its WSDL file; this location is its URL 
and GPS location since the VII Broker queries are geo-spatial and relational queries.  

Since we are using SOAP to communicate across the different services and SOAP relies on 
HTTP, TCP is the means by which the different services connect with each other. TCP can 
communicate over WiFi, Ethernet, GPRS and DSRC; this provides for a seamless 
communication layer that can change based on what is available for the VII network. We have 
also built a UDP-based communication layer that interfaces with the broker service thus allowing 
for a more flexible type of connection with less connection and overhead latencies than TCP. 
The applications that are built to communicate with the VII Broker and the services registered 
with it are seamless to what the underlying communication layer is; it is the broker that provides 
the best communication layer to the service requested.  

In the following section we will present the prototype VII setup that was done at the Richmond 
Field Station – UC Berkeley to demonstrate the feasibility of a service oriented VII middleware. 

Prototyping the Service-Oriented Middleware for Cooperative Vehicle-
Infrastructure Systems 
For our prototype we chose to implement the following scenarios: 

 Capability to monitor vehicles on the road and an intersection from a vehicle on the road (A 
basic step in Intersection Assistance) 

 Capability to monitor vehicles on the road and an intersection from an office (A Traffic 
Management Transaction) 

 Capability to broadcast safety and non-safety related messages over DSRC to vehicles on the 
road (Simulcasting from the roadside for safety and non-safety applications) 

 Capability to communicate between vehicles and road-side control elements (intersection) 
using DSRC and WiFi (Integration of protocols with DSRC) 

 Capability to communicate between two vehicles using ad-hoc WiFi 
 Capability to use different programming languages for different services 

Implementation 
For our prototype we used the following components: 
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 Two PATH vehicles each equipped with a USB GPS sensor connected to a laptop that had 
two WiFi cards and an Ethernet port.  

 Two DSRC DENSO beta radios 
 A 2070 controller connected to a live intersection and interfacing with a Linux machine over 

NTCP and using a sniffer to read the various phase parameters. 
 An office desktop connected to the internet 

The setup was as follows: 

Each vehicle laptop was connected to the GPS sensor through the USB port and had the two 
WiFi cards configured to communicate over two different subnets. A windows service was 
installed on the laptops to read GPS data from the USB/Serial Port every 2sec and store the 
information in XML format in a local light-weight database server on the laptop. Another 
windows service was also installed on the laptop to detect the presence of a broker and if one is 
available (i.e. the vehicle laptop is online and has an IP address) to register the vehicle with the 
broker. The XML in Figure 11 is the message sent by the vehicle’s registration service to the VII 

Broker’s “RegisterMethod” method to register the vehicle. 

 

Figure 11. XML to register vehcile position and WSDL with VII Broker 

The registration process would first query the local database for the most current GPS entry for 
that vehicle and would also query the IP stack for the laptop to figure out the current IP address 
and Port for the laptop’s web service. The registration service would then call to the VII broker 
with the GPS and URL of the WSDL file on the vehicle laptop. The laptop was also setup with a 
local web service that ran on the laptop web server.  

 

Figure 12. Vechcle Webserive available methods 

The web service provides the user with information from the vehicle sensors’ data; in our case 

speed and GPS location. The AllProperties method provides the information in XML, the 
AllPropertiesJSON method provides the same information in JSON which is another XML 
standard used for website JavaScript-based meshing allowing website developers to easily 
incorporate vehicle data into their web applications. 
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One of the vehicles was also equipped with the web service of a VII Broker which allowed other 
vehicles to register with it even if they are not in range with road-side units. This shows that the 
VII Broker-based architecture does not necessarily depend on a single broker but can 
communicate to a variety of brokers that could be in vehicles, road-side units, traffic control 
centers, etc. Borker-to-Broker communication protocols to ensure that brokers in close proximity 
had the same information was not implemented as part of this prototype; instead our services 
registered themselves with all brokers they could communicate with.  

One of the vehicles was also connected to a DSRC radio through its Ethernet port allowing it to 
listen to DSRC broadcasted information on two different channels: one for safety applications 
and the other for commercial messages. 

The intersection was equipped with a DSRC radio and a WiFi radio. The service written at the 
intersection broadcasted its information (cycle length and current phase information) through 
WiFi and DSRC over UDP.  

 

Figure 13. Service-based VII Middleware Prototype Setup 

Figure 13 shows how the different components in the prototype communicated. Once a vehicle 
registration service detected a VII Broker in range (could be a VII Broker in another vehicle or a 
Vehicle Broker in an office) it would issue a RegisterMethod call; this would allow any querying 
application or service to connect to this vehicle. If the querying/consuming application requires 
the data from a certain set of vehicles it would query the VII Broker calling the 
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GetRegisteredVehicles method which would return all registered vehicles that that specific 
broker has. The application or service would then connect directly to those services one-by-one 
and consume their data. In this prototype, the map application inside the vehicle equipped with 
DSRC was able to communicate over WiFi to the adjacent vehicle and get its speed and location 
and communicate over DSRC with the intersection controller and gets its current cycle length 
and phase information. The same application was installed in another vehicle which did not have 
DSRC and that used WiFi to communicate with the other vehicle and the intersection. The 
choice of communication medium was left to the application in this case to choose what to use. 
Another application was installed in the vehicle that communicated only over UDP, this 
application utilized DSRC as the underlying layer for communication to read intersection phase 
information (safety) and some commercial (non-safety) data that was broadcasted by the 
intersection. This application was developed as a C# windows application and not as a service. 
This proves also that different types of applications can be written to the service-based 
middleware; choosing to write them as a service allows other applications to benefit from them, 
choosing to write them as close applications is also possible if the functionality that is being 
coded is to be kept hidden and unexposed to other services.  
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Conclusion 
The implementation presented in this report has proved the main objectives that it was set out to 
deliver. First it reduces the complexities of the heterogeneous communication layer and data 
sources to a simple standardized services interface allowing the application developer to 
consume whatever data is generated from the sensors. In our implementation we choose web 
services as the middleware interface. Second, it solves sensor discovery problems by providing a 
geo-spatial query interface allowing the data consumer to locate the sensors of choice by 
providing a relational query engine. And third, it offers seamless connectivity between the 
application (data consumer) and the sensors (data source) by hiding the intricate details of the 
several communication standards from the application developer. In our implementation we 
utilize the concept of a message broker to develop the geo-spatial discovery and seamless 
connectivity features of the middleware. As a result, the application developer’s task is reduced 

to just connecting to the middleware services. This simplification, however, comes at a certain 
cost incurred by the addition of the middleware layer.  

In order to capture this overhead, we performed a modified setup of the components in the 
prototype with the middleware. The modifications aimed at accomplishing two main tasks: one, 
to isolate our measurements from any network overhead that might arise from network latency 
and congestion; second to increase the  load on the broker to reach saturation stress levels 
allowing us to capture the overhead cost of a stressed broker.  

 

Figure 14. Setup used to measure middleware performance 

The setup shown in Figure 14 was implemented in which a single vehicle sensor registered with 
the broker which existed on the same machine as the vehicle sensor. This eliminated any network 
overhead between the sensor and the broker. Two other machines were utilized as virtual 
application creators. Each machine simulated the existence of about 10 application running 
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simultaneously for a 5 min duration (the first 5 min. of the test were ignored for warming up the 
services, the second 5 min were used for performance measures and the last 10 sec were ignored 
for ramp down tasks). Given the setup in Figure 14 we were able to arrive at the following 
numbers: 

 Number of transactions in 5min: 71,018 

 Rate of transactions per second: 236.727 

 Average response time per transaction: ~122 msec  

o Time spent over TCP and wire: 1.3-2.6 msec  

o Time spent serializing/deserializing SOAP: 47.143* msec  

o Time spent processing request: 72.657 msec  

*Tests done by Microsoft and Sun on SOAP average 50msec 

From the above measures, the 122 msec average response time can be considered as the cost of 
using the middleware. When considering applications such as probe vehicles and real-time traffic 
control systems such as RHODES (Mirchandani 2001) and OPAC (Gartner 1983) the minimum 
transaction update rate is in the order of 20-30 sec which makes our middleware with range for 
such applications. 
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