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Abstract

Many evaluations of cognitive models rely on data
that have been averaged or aggregated across all ex-
perimental subjects, and so fail to consider the possi-
bility that there are important individual differences
between subjects. Other evaluations are done at the
single-subject level, and so fail to benefit from the
reduction of noise that data averaging or aggrega-
tion potentially provides. To overcome these weak-
nesses, we develop a general approach to modeling
individual differences using families of cognitive mod-
els, where different groups of subjects are identified
as having different psychological behavior. Separate
models with separate parameterizations are applied
to each group of subjects, and Bayesian model selec-
tion is used to determine the appropriate number of
groups. We demonstrate the general approach in a
concrete and detailed way using the ALCOVE model
of category learning and data from four previously
analysed category learning experiments. Meaningful
individual differences are found for three of the four
experiments, and ALCOVE is able to account for this
variation through psychologically interpretable differ-
ences in parameterization. The results highlight the
potential of extending cognitive models to consider in-
dividual differences.

Introduction

Much of cognitive psychology, as with other empiri-
cal sciences, involves the development and evaluation
of models. Models provide formal accounts of the ex-
planations proposed by theories, and have been de-
veloped to address diverse cognitive phenomena rang-
ing from stimulus representation (e.g., Shepard 1980),
to memory retention (e.g., Anderson & Schooler 1991;
Estes 1997), to category learning (e.g., Ashby & Per-
rin 1988; Berretty, Todd, & Martignon 1999; Kruschke
1992; Tenenbaum 1999). One recurrent shortcoming of
these models, however, is that (whether intentionally,
or as an unintended consequence of methodology) hu-
mans are usually modeled as ‘invariants’, and not as
‘individuals’. This occurs because, most often, mod-
els are evaluated against data that have been averaged
or aggregated across subjects, and so the modeling as-
sumes that there are no individual differences between
subjects.

The potential benefit of averaging data is that, if the
performance of subjects really is the same except for
‘noise’ (i.e., variation the model is not attempting to
explain), the averaging process will tend to remove the
noise, and the resultant data will more accurately re-
flect the underlying psychological phenomenon. When
the performance of subjects has genuine differences,
however, it is well known (e.g., Estes 1956; Myung,
Kim, & Pitt 2000) that averaging produces data that
do not accurately represent the behavior of individuals,
and provide a misleading basis for modeling.

Even more fundamentally, the practice of averaging
data restricts the focus of cognitive modeling to issues
of how people are the same. While modeling invariants
is fundamental, it is also important to ask how people
are different. Experimental data reveal individual dif-
ferences in cognitive processes, and in the psychological
variables that control those processes, that also need
to be modeled.

Cognitive modeling that attempts to accommodate
individual differences usually assumes that each sub-
ject behaves in accordance with a different parame-
terization of the same basic model, and so the model
is evaluated against the data from each subject sep-
arately (e.g, Ashby, Maddox, & Lee 1994; Nosofsky
1986; Wixted & Ebbesen 1997). Although this avoids
the problem of corrupting the underlying pattern of
the data, it also foregoes the potential benefits of aver-
aging, and guarantees that models are fit to all of the
noise in the data.

Another problem with individual subject analysis,
from a model theoretic perspective, is that fitting each
additional subject requires an extra set of free parame-
ters, and so leads to a progressively more complicated
accounts of the data as a whole. As has been pointed
out repeatedly in the psychological literature recently
(e.g., Myung & Pitt 1997; Pitt, Myung, & Zhang
2002), it is important both to maximize goodness-of-
fit and minimize model complexity to achieve the basic
goals of modeling. Unnecessarily complicated models
that “over-fit” data often do not provide any insight
or explanation of the cognitive processes they address,
and are less capable of making accurate predictions
when generalizing to new or different situations.
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A better approach, therefore, is to partition subjects
according to their individual differences, and model the
averaged or aggregated data from each group. Under
this approach, data are addressed by a set of models,
called a model family, where a different parameteriza-
tion is applied to each group of subjects. Where av-
eraging is appropriate, within groups of subjects, it is
applied. Where averaging is not appropriate, between
groups of subjects, it is not applied.

In this paper, we apply these ideas to model individ-
ual differences in category learning, using Kruschke’s
(1992) well known, empirically successful, and widely
used ALCOVE model. Our basic approach, however,
is applicable to any model of category learning or, in-
deed, models of other cognitive phenomena.

Modeling Individual Differences in

Category Learning

Formally, a model family M partitions the subjects
S into G groups S → {S1, . . . , SG}, and so parti-
tions the complete data D into G averaged data sets
D → {D1, . . . , DG}. For the ith data set, a model fam-
ily also specifies a model parameterization θi. Any pos-
sible partitioning of subjects can be considered, includ-
ing the possibility that all subjects are in the same par-
tition (corresponding to aggregating across subjects),
or that each has their own partition (corresponding to
a complete individual analysis). Differences in the cat-
egory learning processes between groups are revealed
by differences in the parameter values they use.

Because of the enormous flexibility allowed by model
families, they can be made almost arbitrarily compli-
cated, and could potentially fit any data set perfectly
by adding new models, with extra parameters, to ac-
count for any remaining unexplained variation in data.
It is necessary, therefore, for model fitting methods to
use model selection criteria that balance goodness-of-
fit and model complexity. The application of Bayesian
model selection criteria (e.g., Pitt et al. 2002) is most
easily pursued by specifying a probabilistic account,
in the form of a likelihood function, of the relationship
between a parameterized model family and empirical
data.

To develop a likelihood function for category learn-
ing, suppose, under a proposed partitioning of sub-
jects, the ith partition has ki subjects, and that the
n category learning trials are divided into blocks, with
the jth block having bj trials. Choosing one block with
b1 = n corresponds to an analysis of the average re-
sponse probabilities over all trials. Choosing n blocks
with all bj = 1 corresponds to a trial-by-trial analysis.

In a two category learning experiment, the data take
the form of counts, dij , of the number of correct re-
sponses made by all of the subjects in the ith par-
tition on the jth block of learning trials. Suppose
also that a category learning model M , with its pa-

rameterization θi, predicts a correct response proba-
bility of γij at the ith group of subjects on the jth
block. Then the likelihood of the data arising un-
der the model is given by the binomial distribution:
p (dij | Mi, θi) =

(bjki

dij

)
γ

dij

ij (1 − γij)
bjki−dij . The like-

lihood of a model family simply extends this result to
consider every block of trials and every partition, so
that

p (D | M) =
∏

i

∏

j

(
bjki

dij

)
γ

dij

ij (1 − γij)
bjki−dij . (1)

The extension of this likelihood function to more gen-
eral category learning experiments with more than two
possible category responses, using a multinomial dis-
tribution, is straightforward.

Having defined the likelihood function, the Bayesian
Information Criterion (BIC: Schwarz 1978) can be ap-
plied to balance goodness-of-fit with the complexity of
a model family. The BIC is given by:

BIC = −2 ln p (D | θ∗) + P ln N, (2)

where P is the number of parameters in the model
family (i.e., the sum of all the parameters used by the
models for each group), N is the total number of data,
and θ∗ is the maximum likelihood parameterization
over all the models. Different possible model families,
corresponding to different groupings of subjects, can be
compared in terms of their BIC values, with the mini-
mum BIC corresponding to the most likely account of
the data.

Demonstration Using ALCOVE

Kruschke’s (1993) Study
ALCOVE is a model of category learning that uses
an exemplar-based stimulus representation, similarity-
based generalization that is mediated by selective at-
tention, and error-based learning from external feed-
back. The standard ALCOVE model Kruschke (1992)
uses four free parameters. These control the rate of
learning for attention weights (λa), the rate of learning
for the associations between stimulus representations
and category responses (λw), the gradient of the gen-
eralization function that measures stimulus similarity
(c), and the way in which different levels of evidence for
category alternatives are mapped onto response prob-
abilities (φ).

Kruschke (1993) considered the ability of ALCOVE
to model human category learning for filtration and
condensation Categorization tasks (Garner 1974). The
results of four separate experiments were reported,
covering two filtration tasks (called position-relevant
and height-relevant, due to the nature of the stimuli)
and two condensation tasks (called condensation A and
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Figure 1: The application of the heuristic for partition-
ing subjects to find two groups for the position-relevant
filtration data.

condensation B). The data involved a total of 160 sub-
jects, with 40 completing each task. Kruschke (1993)
fit ALCOVE to all four sets of experimental results
simultaneously, using trial-by-trial data formed by av-
eraging across all 40 subjects. An examination of the
individual learning curves in the raw data, however,
reveals a large degree of variation between subjects
within each experiment, and raises the possibility that
there are psychologically meaningful individual differ-
ences in category learning.

Heuristic for Partitioning Subjects

In classification and clustering, an essential require-
ment for the determination of homogenous classes is a
calculable similarity or distance measure between ob-
jects being compared (Gordon 1999). For category
learning, the objects are the individual experimen-
tal observations for each subject, (i.e., each subject’s
learning curve). A candidate measure for describing
the similarities between these curves is the correlation
coefficient, which we used in a two-stage heuristic. In
the first stage, singular value decomposition is applied
to produce an ordered eigenvector-based representa-
tion of the similarities between the learning curves of
subjects. In the second stage, a simple k-means clus-
tering algorithm is applied to this representation to
find clusters of subjects.

For each of Kruschke’s (1993) four category learning
tasks, this heuristic was applied to produce a range of
partitions of the data, from a single group with all
40 subjects, to seven groups with differing numbers of
subjects in each group. As a concrete example of this
process, the clusters found when the subjects were di-
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Figure 2: The pattern of change in BIC values for
each clustering of the position-relevant filtration (FP),
heigh-relevant filtration (FH), condensation A (CA)
and condensation B (CB) category learning data.

vided into two groups for the position-relevant filtra-
tion task are shown in Figure 1. Each circle represents
the learning curve of a subject, represented according
to their values along the first two component eigen-
vectors. The two groups of subjects identified by k-
mean clustering are superimposed using broken lines.
One cluster on the left encompasses 28 of the subjects,
while a much tighter cluster on the right encompasses
the remaining 12 subjects.

Model Fitting and Evaluation

For each of the clusterings for each task, maximum
likelihood fits of ALCOVE were found using a different
parameterization for each group according to Eq. (1).
BIC values were then calculated for each model family
using Eq. (2), giving the results1 shown in Figure 2.
It is clear that the minimum BIC for three of the four
tasks (position-relevant filtration, condensation A and
condensation B) is achieved when two separate groups
of subjects are considered, while the height-relevant
filtration data are best modeled by considering all of
the subjects as learning in the same way.

Figures 3 and 4 give more detailed results for, respec-
tively, the position-relevant filtration and condensation

1The full range of BIC values for the CB task is not
shown because, when four or more groups are considered,
at least one of the groups contains only subjects who be-
come less accurate as learning blocks progress. ALCOVE
is qualitatively unable to accommodate the decrease in the
averaged learning curve for this type of group, leading to
very poor fit, and very large BIC values. We have omitted
these values.
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Figure 3: The change in accuracy across learning
blocks for the subjects (broken lines) and ALCOVE
(solid lines), for the one group (“All”) and two group
(“G1” and “G2”) model families on the position-
relevant filtration task.

A tasks. In both of these figures, the top panel, labeled
“All”, shows the average accuracy of all subjects across
the eight learning blocks, and the maximum likelihood
fit of ALCOVE to these data. The middle and bottom
panels show the first (G1) and second (G2) groups of
subjects proposed by the two-group model family that
is prefered by the complexity analysis. These panels
show the average accuracy for both groups of subjects
separately, together with the maximum likelihood AL-
COVE learning curve.

Figure 3 shows that the moderate learning evident
when treating the subjects as having no individual dif-
ferences is better modeled as coming from two dis-
tinct groups of subjects. Some subjects, in the first
group, maintain near-perfect accuracy throughout the
category learning task. Other subjects, in the sec-
ond group, learn more gradually, only achieving near-
perfect accuracy in the last few learning blocks. Figure
3 shows that, with the exception of the rapid achieve-
ment of accuracy in the first block for the first group
of subjects, ALCOVE is able to model both of these
patterns of learning2.

In a similar way, Figure 4 shows that the gradual in-
crease in accuracy, evident when treating the subjects
as having no individual differences, is better modeled

2It is possible the application of one of ALCOVE’s de-
scendents, such as RASHNL (Kruschke & Johansen 1999)
or the unified mixture of experts model (Kruschke 2001),
which emphasize rule-oriented learning and incorporate a
rapid attention shifting capability (Kruschke 1996), could
overcome the deficiency.
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Figure 4: The change in accuracy across learning
blocks for the subjects (broken lines) and ALCOVE
(solid lines), for the one group (“All”) and two group
(“G1” and “G2”) model families on the condensation
A task.

as coming from two distinct groups of subjects. The
first group exhibits almost no learning, while the sec-
ond learns at a moderate rate. Once again, ALCOVE
is able to model both of these patterns of learning.
In fact, ALCOVE has more difficulty accommodating
the learning data resulting from averaging across all of
the subjects. What the individual differences analy-
sis developed here suggests is that this inability may
not indicate a fundamental weakness in ALCOVE, but
rather that the averaging process involved in summa-
rizing human performance has masked important indi-
vidual differences, and corrupted the underlying learn-
ing patterns in the original data.

Table 1 shows the maximum likelihood parameter
values for each group of subjects in the model family
with the lowest BIC value, for all four learning tasks.
These parameter values are generally interpretable in
terms of the different learning behavior revealed by the
individual differences analysis. For example, for the
position-relevant filtration task, the first group of sub-
jects have a greater λw value than the second group,
consistent with their more rapid learning. For this
task, both groups have high φ values, consistent with
their decisiveness (or ‘confidence’) in mapping evidence
into response probabilities. Both groups of subjects in
the condensation A task, however, have much lower φ
values, consistent with their inferior learning perfor-
mance, and the first group in this task, who basically
fail to learn, have a very low φ value. Other com-
parisons of this type, both within and across tasks,
generally have meaningful and useful interpretations,
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Table 1: Maximum likelihood parameter values for
each group of subjects in the model family with
the lowest BIC value, for all four learning tasks.
FP=position-relevant filtration, FH=height-relevant
filtration, CA=condensation A, CB=condensation B.

Task Group λw λa c φ
FP G1 0.38 0.49 1.68 3.20

G2 0.06 27.0 6.83 2.66
FH All 0.23 0.58 1.56 1.00
CA G1 0.47 1.14 2.53 0.27

G2 0.24 0.38 7.52 0.93
CB G1 0.41 0.32 0.79 0.31

G2 0.17 0 .02 3.37 1.09

and highlight the ability of ALCOVE to represent psy-
chologically important variations in category learning
through its free parameters.

Discussion
There are at least two conclusions that can be drawn
from modeling individual differences in Kruschke’s
(1993) category learning data using ALCOVE. The
first is that there is strong evidence for large and mean-
ingful differences in the learning behavior of groups of
subjects for three out of the four tasks. Previous analy-
ses, adopting the standard cognitive modeling practice
of considering all of the subjects as a single group,
are insensitive to these potentially important patterns
of variation. The second conclusion is that, for these
data, the basic ALCOVE model is generally able to
capture the individual differences in learning, when
asked to model appropriate groups of subjects. It does
this by applying different psychologically meaningful
parameterizations to accommodate variations in learn-
ing behavior. In this sense, what the results presented
here demonstrate is that accounting for individual dif-
ferences using model families has the potential to ex-
tend and increase the usefulness of existing cognitive
models significantly.

From this promising start, there are a number of
directions in which the basic approach described here
can be refined and extended. Most generally, the ex-
tension to other cognitive phenomena provides a rich
set of opportunities for future research. As with cat-
egory learning, there is evidence of individual differ-
ences in the similarity data used to model stimulus
representations (e.g., Ashby et al. 1994), and in the
curves of forgetting used to model memory retention
(e.g., Anderson & Tweney 1997; Heathcote, Brown,
& Mewhort 2000; Myung, Kim, & Pitt 2000; Wixted
& Ebbesen 1997), and in a range of other data from
which cognitive models have been developed.

Considering a broader range of cognitive phenomena

highlights the possibility of extending individual differ-
ence accounts to incorporate fundamentally different
models to capture between-subject variation, rather
than relying solely on parametric variation within the
same basic model. In memory retention, for exam-
ple, one group of subjects could be modeled using a
power function while another group is modeled using
an exponential decay function. For stimulus represen-
tation, some groups of subject could be modeled us-
ing a featural representation while others use a dimen-
sional representation. In the category learning con-
text considered here, it may make sense to model some
subject groups using ALCOVE or its descendants, but
apply a very different category learning model to oth-
ers, such as the fast and frugal account provided by
Categorization-By-Elimination (Berrety et al. 1999).

One of the weaknesses of the demonstration pre-
sented here is the reliance on the BIC to compare dif-
ferent competing individual differences models. While
the BIC is conceptually and computationally straight-
forward, it is insensitive to the complexity effects aris-
ing from the functional form of parametric interaction
within the individual models (Myung & Pitt 1997).
This is a potentially important shortcoming, especially
if fundamentally different models are used to explain
performance for different subject groups. There are,
for example, many competing models of retention that
use two parameters (Rubin & Wenzel 1996), with dif-
ferent complexities that the BIC is unable to distin-
guish. The obvious remedy for this problem is to use
more sophisticated model selection criteria that are
sensitive to all of the components of model complex-
ity. These include measures such as the Stochastic
Complexity Criterion (SCC: Rissanen 1996) and Nor-
malized Maximum Likelihood (NML: Rissanen 2001).
For cognitive models that resist the formal analysis
needed to derive these measures, an alternative is to
use numerical methods, such Markov Chain Monte
Carlo (e.g., Gilks, Richards, & Spiegelhalter 1996) to
approximate the Bayesian posterior distributions that
compare model families.

A final possibility for refining the approach demon-
strated here is to use a more principled optimization
approach to determine the groupings of subjects. The
method used here, based on k-means clustering of cor-
relations, is a sensible heuristic one. It is particularly
well suited to a model like ALCOVE that requires con-
siderable computation effort when finding maximum
likelihood parameter values. The clustering heuris-
tic is designed to identify good partitions of the sub-
jects into groups, and only requires parameter fitting
to be done once for each possible number of subject
groups. For other models, however, such as analytic
models of memory retention, finding maximum like-
lihood parameterizations is straightforward. In these
cases, a more explicit optimization approach to find-
ing partitions could be adopted, because repeated pa-
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rameter fitting is possible. For example, a stochastic
hill-climbing procedure could be used to find subject
groups that minimize the BIC, SCC or NML of the
model family.

Collectively, these possibilities describe a principled
and general approach for building and evaluating cog-
nitive models, using a variety of basic models and num-
bers of parameterizations, to accommodate individual
differences. It is a more general approach to cognitive
modeling than one that averages data, assuming there
are no individual differences. It is a more powerful
and succinct approach than one that uses subject-by-
subject analysis. While much of the work to realize this
potential remains to be done, the demonstration pre-
sented here, using multiple ALCOVE models to cap-
ture differences in category learning, provides a good
concrete example of its potential. It shows how using
model families, and relying on principled model selec-
tion criteria, can be used to develop detailed and inter-
pretable accounts of both how people are cognitively
the same, and how they are different.
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