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ABSTRACT OF THE THESIS

A Maximum Likelihood Prediction Model for

Building Seismic Response

by

Mehrdad Shokrabadi

Master of Science in Statistics

University of California, Los Angeles, 2018

Professor Ying Nian Wu, Chair

Earthquakes in seismically-active regions present a significant human and financial risk to

communities. This study focuses on proposing a prediction model that could serve as a

means for quantifying the impact of the main characteristics of earthquakes on the seismic

risk of reinforced concrete moment frame structures. The seismic hazard due to sequential

earthquakes is examined under mainshock-aftershock seismic sequences. A two-step max-

imum likelihood regression approach was adopted in order to propose a relationship that

would link the seismic response of the studied buildings to the key characteristics of an

earthquake. The accuracy of the proposed prediction equation was examined by comparing

its outcomes with what was expected from physics-based models. Both the magnitude of

an earthquake as well as the distance from the building’s location to the rupture plane of

the building were found to be among the parameters with the most notable impact on the

buildings’ seismic response.
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CHAPTER 1

Introduction

1.1 Motivation

One of the most consequential natural hazards in terms of both human and financial losses

is earthquake. Despite the recent advances in the design and construction of earthquake-

resistance buildings, recent seismic events in China, New Zealand [1] and Japan [2] have

highlighted the importance of the pre-planning for major seismic events. In recent years,

designing buildings to withstand major seismic events has become increasingly importnat

in the engineering community. The introduction of performance-based earthquake engineer-

ing [3] has marked a turning point is utilizing probabilistic frameworks for seismic design of

civil structures. Performance-based earthquake engineering has provided engineers with the

tools that are necessary in order to incorporate the uncertainties in the response of buildings

to seismic events as well as the uncertainties in the occurrence of earthquakes themeselves.

This is achieved through total probability theorem and assuming certain probability distri-

bution for the response of buildings and the characteristics of earthquakes (e.g., magnitude

and source-to-site distance). Building response is usually assumed to follow a lognormal

distribution [4], the occurrence of earthquakes with certain magnitudes is usually modeled

through an exponential distribution with a rate calculated using the relationship suggested

by Gutenberg and Richter [5] and the distance from where the earthquake has occurred to

the site where the building is located (source-to-site distance) is usually modeled using an

empirical distribution fitted to the distance data of each earthquake.

A prohibitive factor in using the performance-based earthquake engineering’s framework

for building seismic design is the complexity and computational cost associated with eval-
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uating seismic response of buildings that is a main requirement of the performance-based

earthquake engineering’s approach. To obtain an accurate estimate of how a building would

respond to future earthquakes, first one needs to build a numerical model of the building.

Buildings, depending on their size and configuration, can contain hundreds of different in-

dividual components (e.g., beams, columns, shear walls, foundation, bearing walls) with

each component usually showing a range of complex behaviors when subjected to earth-

quakes with different intensities. Moreover, as some of these components get damaged in an

earthquake, the distribution of the seismic loads accross the remaining components changes

drastically that could have a major impact on the building seismic response. As such, not

only constructing an accurate model of the building’s individual components is important

when evaluating seismic response, but it is crucial to accurately represent how these building

elements would interact with each other in the numerical model.

Earthquakes are a compilation of random waves and therefore, even when having similar

magnitudes, they could have substantially different impacts on the buildings that they are

applied to. As such, an important step in numerically predicting the seismic response of

a building is to subject its numerical model to a large set of earthquakes with distinct

characteristics. This would allow for obtaining a comprehensive picture of the building’s

response to future seismic events. However, an accurate numerical model of the building

could be significantly complex as described before and subjecting such a complex model to a

large number of earthquakes could be very computationally demanding and time-consuming.

A solution to this problem is to use a prediction equation for building response. Such a

prediction equation would take as inputs the characteristics of an earthquake that have the

most significant impacts on the building response as well as the most important properties

of the building (e.g., number of stories, dynamic period of response) and yield an estimate

of the expected response of the building to such a seismic event.
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1.2 Objectives

The main objective of this study is to use a large dataset of mainshock-aftershock ground

motions to propose an equation that can be used to predict the seismic response of buildings

when they are subjected to a sequence of mainshock-aftershock ground motions. Aftershocks

can play a significant role in the financial and human costs of major mainshock seismic events.

Aftershocks have been shown to exacerbate the damage caused by mainshocks and in some

cases, have caused significant human and financial losses [6] [7]. While aftershocks are

usually smaller in magnitude than their causative mainshock, structures can be particularly

vulnerable to aftershocks due to their high rate of occurrence and the reduction in the lateral

load-carrying capacity caused by mainshock-damage. In the 1999 Kocaeli earthquake, several

buildings that survived the mainshock, which had a magnitude of 7.4, collapsed during a

magnitude 5.9 aftershock, which occurred one month later, killing seven people and injuring

more than two hundred [8]. The aftershocks that followed the 2008 Wenchuan earthquake

damaged 196 dams and claimed more lives. The 2010 magnitude 7.1 Darfield earthquake

was followed by two magnitude6.2 and 6.0 aftershocks, which resulted in 185 fatalities and

damaged approximately 100,000 buildings in the city of Christchurch [1]. The five aftershocks

with magnitudes over 7 that followed the 2011 Tohoku earthquake caused additional damage

to infrastructure, liquefaction and loss of lives [2]. As such, it is crucial for a building response

prediction equation to account for the contribution of both mainshocks and aftershocks to

the demand that a building would experience during earthquakes.

1.3 Organization

This study seeks to propose a prediction equation for nonlinear response of reinforced con-

crete moment frame buildings under mainshock-aftershock seismic sequences. The main

body of the thesis consists of 3 chapters. Chapter 1 discusses the advantages that a predic-

tion for building seismic response can have as well as the importance of accointing for both

mainshocks and aftershocks in the developement process of the equation.
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Chapter 2 describes the steps involved in building a numerical model of the reinforced

concrete moment-frame structures that are used for developing the prediction equations and

the method used for obtaining the response of buildings under mainshock-aftershock seismic

events. Additionally, the set of mainshock-aftershock ground motions, which are all from

real as-recorded seismic sequences, are discussed in this chapter.

Chapter 3 discussed the steps involved in developing the mixed-effect prediction equation.

The outputs of the building response prediction equation are in the form of maximum relative

displacement between the building floors recorded during a seismic event divided by the

height of the story between the two floors. We will refer to this measure of building seismic

response as maximum story drift ratio (SDR).

The main focus of Chapter 4 is placed on discussing different aspects of the prediction

equation developed in Chapter 3. First, we would show the unbiasedness of the prediction

equation by examining its residuals and then we will discuss the accuracy of the prediction

equation by comparing its predicted outputs with the outputs that are expected based on

physical models.
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CHAPTER 2

Building numerical model and input ground motions

In the first part of this chapter, we will briefly discuss the steps that are taken in assembling

a numerical model of the buildings. The outputs of this numerical model when subjected

to a set of earthquake ground motions will comprise a crucial part of the dataset that will

be used in Chapter 3 to propose a prediction equation for building seismic response. In the

second half of the current chapter, we will describe the set of earthquake ground motions

that the numerical models of the buildings are subjected to.

2.1 Building Model

Five modern, code-conforming reinfi buildings are used for this study. The building models

are adopted from the set of models developed by Haselton [9]. The buildings are designed

following the latest seismic provisions of the design and loading codes in the USA; namely

ACI 318-02 and ASCE 7-05 ([10]; [11]). The design requirements of Chapter 21 of ACI

318-02 for the seismic design of special moment frames are also adopted. Figure 2.1 shows

the location of the buildings as well as the locations of the faults that contribute the most

to the seismic hazard at the location of the buildings. To investigate the effect of building

height on mainshock-aftershock seismic response, five 2-, 4-, 8-, 12- and 20-story buildings

are included in the study. The buildings are designed for a high-seismicity site in Southern

California. The variation in the building heights height would provide a means to more

thoroughly study the relationship between the building configuration and seismic response.

The buildings were chosen to incorporate a broad period-range (0.66s − 2.63s) to evaluate

whether the effects of alternate record-pairs varies across structure periods. The seismic
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response of the 2-story, and to a lesser extent the 4-story, structure is mostly influenced by

the high frequency energy of ground motions due to their low first-mode period (T1). A

broader range of frequencies influence the response of taller buildings because of their high

T1 and the presence of significant higher-mode effects.
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Figure 2.1: The site location of the buildings and the faults that contribute the most to the

seismic hazard at the location of the buildings

Two-dimensional nonlinear models of the buildings are constructed using one of the most

powerful platforms used for numerical modeling of civil structures calles OpenSees [12]. These

numerical modols will be utilized to perform nonlinear dynamic analyses under a large set

of ground motions. Figure 2.2 shows a schematic layout of the 4-story building’s model.

The remaining building models follow a similar layout. Table 2.1 summarizes the design

information as well as the periods of the first two modes of each building. The design base

shear coefficient in Table 2.1 is the ratio of the building’s total weight used in designing the

building the building to resist the earthquake loads and the yield base shear coefficient is the

ratio of the force required for building to experience permanent, non-restorable deformations

normalized by the building’s total weight. The first mode periods are obtained using eigen-

value analysis where the inputs are the building’s mass and stiffness matrices.
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Figure 2.2: Schematic illustration of the numerical model of the archetypes used for nonlinear

dynamic analyses

Table 2.1: Summary of building properties

Stories Design base shear coefficient Yield base shear coefficient First mode period

2 0.125 0.392 0.66

4 0.092 0.143 1.12

8 0.050 0.077 1.71

12 0.044 0.075 2.01

20 0.044 0.070 2.63
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Geometric destabilization effects are incorporated with a leaning column. Beams and

columns are represented with flexural plastic hinges at the member-ends connected through

an elastic element. The nonlinear behavior of the flexural hinges is modeled using the

trilinear backbone curve developed by Ibarra et al. [13], which is capable of capturing

both strength and stiffness deterioration as the building experiences consecutive loading and

unloading cycles during an earthquake. The properties of the plastic hinges are obtained

through the empirical relationships developed by Haselton [9]. The points of connections

of beams and columns are modeled with an elastic element as the detailing requirements

for special moment frames are expected to prevent shear failure in the joints. It is worth

noting that the use of a two-dimensional model to simulate the seismic response of a building

structure has its limitations. Three dimensional effects such as bi-axial bending in columns

and accidental torsion are not captured. Moreover, ignoring the contribution of gravity

frames could potentially underestimate the strength and stiffness of the structure [9]. More

detailed information on the design and structural modeling approach and its limitations can

be found in Haselton [9].

2.2 Mainshock-aftershock sequences

As noted previously, one of the objectives of this work is to investigate the impact of

mainshock-aftershock ground motions on structural response. In order to achieve this objec-

tive, we need to compile a set of mainshock-aftershock ground motions recorded from past

earthquakes that we would later applt to the numerical models of the buildings discussed

in Section 2.1 to obatin their seismic response. One of the most comprehensive ground mo-

tion collections is the NGA-West2 database complied by the Pacific Earthquake Engineering

Center (PEER) at University of California, Berkeley with more than 21000 records from 599

earthquakes [14].

The set that we used in developing the building response prediction equation contains

1240 mainshock-aftershock records from 13 events. We use actual mainshock-aftershock

sequences as predicting building response under Synthetic records could be erroneousas re-
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ported in a number of past studies. Goda [15] compared the collapse performance of a

2-story wood-frame building under both mainshock-mainshock and mainshock-aftershock

ground motion pairs. The mainshock-mainshock sequence used the same records in the

second event as in the first. The mainshock-mainshock sequence produced higher collapse

probabilities than mainshock-aftershock. Ruiz-Garca [16] did a similar study using two low-

and mid-height steel frames and reached the same conclusion. In developing a ground mo-

tion prediction equation, Abrahamson et al. [17] found that the median of spectral values

of aftershocks at short periods are smaller than those from similar mainshocks, whereas

at longer periods (≥ 0.75 sec) the aftershock spectral ordinates were larger. Chiou and

Youngs [18] also reached a similar conclusion. As such, to avoid any loss in accuracy of the

building response prediction, we are using actual as-recorded mainshock-aftershock pairs.

The mainshock-aftershock classification for the ground motions selected from the PEER

NGA-West2 database is based on the time and distance windowing algorithms developed

by Wooddell and Abrahamson [19]. A magnitude-dependent time window and a distance

threshold of 40 km measured in terms of the centroidal Joyner-Boore distance [19] is used to

identify the aftershock ground motions following a mainshock event. The magnitudes of the

events that produced the selected ground motions range from 6.18 to 7.62 for mainshocks

and 5.80 to 7.28 for aftershocks. The source-to-site distances are within 0 and 94.50 km

window for mainshcoks and 0 to 510.00 km range for aftershocks. The response spectra of

all the mainshock and aftershock ground motions as well as the median spectra are shown

in Figures 2.3 and 2.4.
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Figure 2.3: Response spectra of mainshock ground motions
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Figure 2.4: Response spectra of aftershock ground motions
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CHAPTER 3

Developing a prediction equation for building seismic

response

Ground motion prediction equations have been used in past studies to predict the response

of simple, linear structures. Usually when an earthquake happens on a fault, the epicenter

of the fault is far from the location of the structure whose response we are interested in. As

the waves that comprise an earthquake pass through the sites located between the building

and the earthquake source, they would get damped or amplified depending on the condition

of the soil that they are passing through. A ground motion prediction equation uses such as

magnitude and fault type as well as the distance from the earthquake’s occurrence location

to the building’s site and the soil condition at the building’s location to give an estimate

of the intensity of the earthquake at the building’s location. While there are a number of

such equations available in the literature (e.g., [20][21][22]), the majority of ground motion

prediction equation in the past have been developed for very simple structures whose re-

sponses to earthquakes were linear. While the equations proposed for linear systems could

give a preliminary idea of how a strcuture responds to a ground motion and how the seismic

response is influenced by the different characteristics of earthquakes, it is a well known fact

that the response of a building even to a moderate earthquake would be highly nonlinear.

Despite this shortcoming of the current prediction equations, most of the efforts in develop-

ing ground motion prediction equations have been directed towards linear systems. There

are only a handful of precition equations developed for nonlinear systems and even then

most of these equation are developed for the simplest forms of nonlinear systems, namely

single-degree-of-freedom systems which only have one component and there is no interaction

between different components or various dynamic modes of response in them. In fact, to
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the author’s knowledge there is only one prediction equation developed specifically for a

complex multi-degree-of-freedom structure [23]. What distinguishes the current study from

the Hancock et al.’s study is the incorporation of both mainshocks and aftershocks in the

development steps of the prediction equation proposed in this study. As discussed before,

aftershocks could have a significant impact on the seismic response of buildings. Ground mo-

tion prediction equations are historically developed by using statistical regression on large

sets of data. In the early stages of developing ground motion prediction equations, ordinary

least square (OLS) regression was the primary method utilized for performing regression

on the earthquake ground motion data. However, Fukushima and Tanaka [24] showed that

using OLS could result in significant inaccuracies in predicting response due to the strong

correlation between earthquake magnitude and distance. To overcome this error, Fukushima

and Tanaka [24] suggested a two-stage regression method to decouple the magnitude regres-

sion step from the regression on distance step. Random-effect models were introduced by

Brillinger and Preisler [25]. Their models included two major sources of variation. The first

component was to account for the variation from an earthquake to another earthquake. This

variation mostly occurs due to the differences in the magnitude and fault style of different

earthquakes. The second source of variation was the record-to-record variability. This ele-

ment of variation accounts for the various ground motions that are recorded from a single

earthquakes at different stations. The record-to-record variability mainly occurs due to the

different soil conditions of the sites where accelerograms record the ground motions from a

seismic event. At each of the two steps of regression on magnitude and distance, a maximum

likelihood approach (MLE) is adopted in order to obtain the parameters of the regression

equation. The prediction equation adopted in this study has the following form based on

the physics-based model of ground motions and building response.

ln(SDR) = c1(M−Mh)+c2SS+c3NS+c4RS+c5ln(
√
R2
jb + h2−1)+c6ln(Vs30/760)+εr+εe

(3.1)

Ground motions are usually recorded in two perpendicular directions. In this study, for

each ground motions we applied its recorded time series in two perpendicular directions to

12



the building and took the geometric average of the building response under the two perpen-

dicular ground motion directions as the response variable. As such, in Equation 3.1 SDR

is the geometric mean of the maximum story drift ratio obtained for the two perpendicular

components of the ground motion and c1 to c6 and h are coefficients computed through

regression. M in Equation 3.1 is the magnitude of the earthquake under which we are pre-

dicting the building’s response and Rjb is the shortest distance from the building’s location

to the surface projection of the rupture plane of the fault. The regression was performed

using the two-step procedure of Joyner and Boore (1993) and Joyner and Boore (1994),

which provides for an event-specific mean misfit, which is similar to an event term in a

ground motion prediction equation developed using mixed effects regression. SS, NS and

RS are dummy variables that define the fault type of each ground motion. For instance,

if the fault type of ground motion i is SS, then SSi = 1 and NSi = RSi = 0. Vs30 is the

parameter that defines the soil condition at the location of the building and is defined as

the average shear wave velocity of in 30-meter long soil profile. εr is the record-to-record

residual that would be different from a ground motion time series to another time series. εe

is the earthquake-to-earthquake residual that would vary between different earthquakes but

it will remain constant among all the time series that belong to the same earthquake.

Equation 3.1 has a nonlinear coefficient term ln(
√
R2
jb + h2 − 1). To simplify the fiting

steps by using a form of it where all the regression coefficients are linear, we start by calcu-

lating the Taylor expansion of Equation 3.1 at a realization of h which we call h
′

as shown

in Equation 3.2 ([26]). The second order terms are ignored.

ln(SDR) =c1(M −Mh) + c2SS + c3NS + c4RS + c5ln(
√
R2
jb + h′2 − 1)

+ c6ln(Vs30/760) + c5

1
2
2h(R2

jb + h
′2

)
1
2√

R2
jb + h′2 − 1

(h− h′
)

+ εr + εe

(3.2)

Equation 3.2 can be written in the matrix format described in the following.
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Y =


ln(SDR1)

ln(SDR2)
...

ln(SDRn)

 (3.3)

X =



M1 −Mh SS1 NS1 RS1 ln(
√
R2
rup1

+ h′2 − 1) ln(Vs301/760) c
′
5

1
2
2h(R2

rup1
+h

′2
)
1
2√

R2
rup1

+h′
2−1

M2 −Mh SS2 NS2 RS2 ln(
√
R2
rup2

+ h′2 − 1) ln(Vs302/760) c
′
5

1
2
2h(R2

rup2
+h

′2
)
1
2√

R2
rup2

+h′
2−1

...
...

...
...

...
...

...

Mn −Mh SSn NSn RSn ln(
√
R2
rupn + h′2 − 1) ln(Vs30n/760) c

′
5

1
2
2h(R2

rupn
+h

′2
)
1
2√

R2
rupn

+h′
2−1


(3.4)

β =



c1

c2

c3

c4

c5

c6

δh


(3.5)

ε =


εr1 + εe1

εr2 + εe2
...

εrn + εen

 (3.6)

In the matrix of Equation 3.5, δh = h − h′
and n is the total number of the time series

used in the regression. In each step of the iteration, the new value of h is calculated as

ht = ht−1 + δh. The matrices of Equations 3.3, 3.4, 3.5 and 3.6 together form the matrix

equation of Equation 3.7.
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Y = Xβ + ε (3.7)

As discussed before, in this study we are interested in performing the regression in two

stages. Performing the regression in two stages would allow us to differentiate the two main

sources variation in the response of the structure; namely variation in the parameters that

vary from one earthquake to another (M , SS, NS and RS) and the parameters that vary

within the different time series recorded from the same earthquake (Rjb and Vs30). To achieve

this goal, the first stage of the regression is performed only on M , SS, NS and RS as shown

in Equation 3.8 ([26]).

Pi = c1(Mi −Mh) + c2SSi + c3NSi + c4RSi + εei (3.8)

We need to re-write the X and β matices of Equations 3.4 and 3.5 in the form shown

in Equations 3.9 and 3.10.

Xr =



ln(
√
R2
rup1

+ h′2 − 1) ln(Vs301/760) c
′
5

1
2
2h(R2

rup1
+h

′2
)
1
2√

R2
rup1

+h′
2−1

E11 E12 . . . E1Ne

ln(
√
R2
rup2

+ h′2 − 1) ln(Vs302/760) c
′
5

1
2
2h(R2

rup2
+h

′2
)
1
2√

R2
rup2

+h′
2−1

E21 E22 . . . E2Ne

...
...

...
...

... . . .
...

ln(
√
R2
rupn + h′2 − 1) ln(Vs30n/760) c

′
5

1
2
2h(R2

rupn
+h

′2
)
1
2√

R2
rupn+h

′2−1
En1 En2 . . . EnNe


(3.9)

βr =



c5

c6

δh

P1

...

PNe


(3.10)
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εr =


εr1

εr2
...

εrn

 (3.11)

In Equation 3.9, Ne is the total number of earthquakes that are included in the regression.

Eij is 1 if the time series ij comes from earthquake i and it is zero if the time series ij does

not belong to earthquake j. Equations 3.9, 3.10 and 3.11 together give the following matrix

equation.

Y = Xrβr + εr (3.12)

If we assume that εri follow a normal distribution a mean value of zero and a standard

deviation taken as σr, then the vector of coefficients βr can be calculated using the familiar

relationship shown in Equation 3.13.

βr = (XT
r Xr)

−1XT
r Y (3.13)

The next step is to calculate the remaining coefficients c1, c2, c3 and c4 in Equation 3.1.

In order to do so, we add and subtract P
′
i terms in Equation 3.9 and move Pi to the right side

of the equation. Recall that the P
′
i terms are obtained using Equation 3.13 in the previous

step ([26]).

P
′

i = c1(Mi −Mh) + c2SSi + c3NSi + c4RSi + εei + P
′

i − Pi (3.14)

Now we can re-arrange Equation 3.14 in the following matrix form.

Ye =


P

′
1

P
′
2

...

P
′
n

 (3.15)
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Xe =


M1 −Mh SS1 NS1 RS1

M2 −Mh SS2 NS2 RS2

...

Mn −Mh SSn NSn RSn

 (3.16)

βe =


c1

c2

c3

c4

 (3.17)

εe =


P

′
1 − P1 + εe1

P
′
2 − P2 + εe2

...

P
′
n − Pn + εen

 (3.18)

Which can be written in the matrix form of Equation 3.19.

Ye = Xeβe + εe (3.19)

The variance in the estimate of Ye can be calculated as shown in Equation 3.20 ([26]):

V ar[Ye] = V ar[P
′ − P ] + σ2

eI (3.20)

Note that, in Equation 3.20 the correlation between P
′ − P and σ2

eI iz zero. This is

because P
′ − P is a linear combination of the error terms εr obtained through Equation ??

which themselves were independent normal random variables. The variance in the estimate

of βr in Equation 3.13 can be calculated using the relationship of Equation 3.21.

V ar[βr] = (XT
r Xr)

−1σ2
r (3.21)

We can write the likelihood function of the linear regression in Equation 3.19 can be

written as shown in Eqaution 3.22.
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Le = (2π)
Ne
2 |V ar[Ye]|−

1
2 exp(

1

2
(Ye −Xeβe)

TV ar[Ye]
−1(Ye −Xeβe)) (3.22)

Equation 3.22 represents a generalized least square problem whose soultion is as shown

in Equation 3.23.

β̂e = (XT
e V ar[Ye]Xe)

−1XT
e V ar[Ye]

−1Ye (3.23)

Equations 3.23 and 3.13 provide the basis for calculating all the unknown coefficients

of Equation 3.1. However, a main prblem with Equation 3.23 is that σ2
e in the V ar[Ye]

component is unknown. To calculate σ2
e , we can use the following recursive relationship.

E[(Ye −Xeβ̂e)
TV ar[Ye]

−1(Ye −Xeβ̂e)] = n− 4 (3.24)

In Equation 3.24, n − 4 is the number of the degrees of freedom of the regression in

Equation 3.20. To calculate the coefficients c1, c2, c3 and c4 in Equation 3.1, we start with

Equation 3.23 with an initial trial value for σe. For each trial value of σe, we need to solve

Equation 3.20 and Equation 3.23 until the value of σe converges.

The variance-covariance matrix V ar[Ye] is a diagonal matrix where each diagonal term

can be calculated as shown in Equation 3.25. The Ni term is the number of time series

used in the regression that belong to earthquake i. The V ar[Ye] matrix is diagonal since all

the variation in the second stage of the regression is due to the variations in the properties

of earthquake that vary from one event to another and not the properties that would vary

within the time series that belong to the same earthquake ([26]).

V ar[Ye]i =
1

σ2
r

Ni
+ σ2

r

(3.25)
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CHAPTER 4

Outcomes of prediction equation for building seismic

response

In this section, we will discuss the outcomes of the seismic response prediction equation

discussed in Chapter 3. We use the prediction relationship of Equation3.1 tp predict the

maximum relative displacement between the stories of the buildings described in Section 2.1

given certain characterisitcs of a future earthquake. These characteristics are magnitude,

source-to-site distance, the type of the soil at the building’s location and fault type. We

develop an individual equation for each of the five concrete frame buildings to better reflect

the unique dynamic characteristics of each building and their impact on the seismic response.

In order to find the regression coefficients of Equation 3.1, first we need to calculate the

SDR values which would serve as the input observations of the equation. In order to do so,

we need to subject the numerical models of the buildings described in Section 2.1 to the set

of mainshock-aftershock ground motions discussed in Section 2.2 and record the maximum

story drift values. The next step is to follow the regression steps discussed in Chapter 3 to

calculate the regression coefficients. Equation 3.1 has an Mh term that defines the point

where there will be a shift in the relationship between the building response and magnitude

of the earthquake. We included this term in the regression equation since a number of

past studies have suggested that the relationship between building response and earthquake

magnitude is different for large-magnitude and small-magnitude earthquakes ( [21, 20, 22]).

Based on the analysis of the relationship between the seismic response of the five buildings

examined in this study and the magnitudes of the considered earthquakes, we selected a value

of 6.7 for Mh. The plots between the exponentials of εe from the first stage of regression and

earthquake magnitude are used to calibrate Mh (each εe serves as an estimate of ln(SDR)
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for the entire time series available from one earthquake). The exponentials of εe versus

magnitude plots for the five studied buildings are shown in Figure 4.2 to demonstrate how

the Mh calibration is done. As can be seen, there is a clear change in the relationship between

magnitude and the exponentials of εe at the Mh values in the neighborhood of 6.7. As such, a

bilonear regression with the breaking point at Mh = 6.7 is likely to represent the magnitude

scaling component of the regression more accurately compared to a simple linear regression.
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Figure 4.1: Calibration of Mh for a) 2-story, b) 4-story, c) 8-story, d) 12-story and e) 20-story

buildings

Table 4.1 summarizes the coefficients of the regression performed using Equation 3.1
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for each of the five studied buildings. The c1 coefficient, which establishes the relation-

ship between the earthquake magnitude and the maximum building demand is positive as

expected; indicating that as the magnitude of the earthquake increases, the earthquake-

induced demand that the buildings would experience increases too. The c2, c3 and c4 are

dummy variables that would take on a value of zero or one depending on the fault type of

the earthquake being examined. as such, the serve as the intercept of the regression equation

for each fault type. The c5 coefficient has a negative value for all the building types. This

suggests that there is an inverse relationship between the distance from the rupture surface

of the fault to the site where the building is located and the seismic demand on the building.

The value of h does not vary significantly among the five studied buildings and prevents the

c5ln(
√
R2
rup + h2 − 1) from becoming singular for very small values of R.

Table 4.1: Regression coefficients of Equation 3.1

Building c1(M ≤Mh) c1(M > Mh) c2 c3 c4 c5 h c6

2-Story 1.46 0.21 -1.24 -1.74 -1.54 -1.25 11.81 -0.64

4-Story 1.59 0.49 -1.77 -2.22 -2.21 -1.14 9.15 -0.78

8-Story 1.57 0.61 -2.23 -2.60 -2.73 -1.10 8.02 -0.96

12-Story 1.63 0.69 -2.13 -2.54 -2.60 -1.21 9.08 -1.02

20-Story 1.72 0.72 -1.98 -2.41 -2.43 -1.31 10.67 -1.02

A metric for measuring the unbiasedness of regression is the distribution of its residuals.

If residuals are distributed quite randomly about the horizontal axis that represents one of

the predictors in the regression such that their mean value is close to zero across a range of

values for that predictor, then it can be concluded that the prediction equation is unbiased

with respect to that particular predictor. Figure 4.2 shows how the distribution of the

earthquake-to-earthquake residuals (εe) obtained in the first stage of the regression vary as

the magnitude of the earthquakes used in the regression changes. The εe are shown for all

the five considered building cases. Recall that the first stage of the regression is performed

only on the predictors that would vary from one earthquake to another earthquake. As such,

the predictor selected for the plots of Figure 4.2 is magnitude which is the main parameter
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that varies among different earthquakes. The means and standard deviations of the εe values

are shown for 7 magnitude intervals. As shown in the figure, the mean values of εe are close

to zero for all magnitude intervals; suggesting that the first stage of the regression, whose

main predictor variable was magnitude, yields an equation that is unbiased with respect to

the magnitudes of the earthquakes included in the regression.
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Figure 4.2: Earthquake-to-earthquake residuals (εe) versus earthquake magnitude for a)

2-story, b) 4-story, c) 8-story, d) 12-story and e) 20-story buildings

One of the main predictors in the second stage of the regression, which was performed

on the predictors that would vary from one recorded time series to another, was the distance
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from the buildings’ location to the rupture plane of the fault. Figure 4.3 shows how the

residuals in this step of regression (εr) are distributed with respect to the distances of all

the earthquakes involved in the second step of the regression. The εr values are again shown

for each of the five case study buildings. Error bars, which show the mean and standard

deviation of εr for 11 distance intervals, are also plotted on each curve. For very short

distances (Rjb < 10km), the lack of sufficient datapoints in the regression steps results in εr

values whose average deviate from zero whereas for the larger distances the averages of εr

values are close to zero. Moreover, the lack of sufficient datapoints has a notable impact of

the variance of the error term εr. As can be seen in Figure 4.3, for Rjb < 10km the variance

of εr is much larger than the variance of the εr term at higher diatances. However, for larger

distances, which have more datapoints in the regression stage, the variance of εr does not

change significantly with distance as shown in Figure 4.3.

Figure 4.4 shows the ratio of the observed building seismic responses (measured by

applying the set of ground motions to the numerical models of the buildings) to the seismic

responses predicted by Equation 3.1. These plots serve as a metric for examining the accuracy

of the prediction equations developed for each of the five studied buildings’ seismic response.

In each plot, both the ratios are grouped into four sets based on the magnitude of the

earthquake under which the seismic response is measured. As we can see in Figures 4.5

and 4.6, magnitude is one the most important characteristics of an earthquake that affects

a building’s seismic response. As such, we would be able to identify any systematic bias in

the predictions for a certain magnitude range by grouping the observations based on their

magnitudes. The response ratios are plotted against distance following the same logic as

the one behind grouping observations based on their magnitudes and since distance is also

one of the main variables that affects a building’s seismic response. Error bars are also

plotted for 12 distance intervals. As can be seen, for most of the observations the average

of the ratios of the actual to predicted response variable is within 0.8 to 1.5 with the ratios

randomly scattered on both sides of y = 1 line. This indicates that the prediction equations

developed for the five studies buildings have an acceptable degree of accuracy and do not

show a systematic bias with respect to magnitude or distance when predicting the seismic
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Figure 4.3: Record-to-record residuals (εr) versus earthquake distance for a) 2-story, b)

4-story, c) 8-story, d) 12-story and e) 20-story buildings
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response of the case study buildings.
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Figure 4.4: Ratio of observed to recorded building seismic response for four different mag-

nitude bins and for a) 2-story, b) 4-story, c) 8-story, d) 12-story and e) 20-story buildings

As another metric for accuracy of the predictions of the buildings’ seismic response, we

plotted the maximum relative story displacement values (SDR) versus the distance from the
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buildings’ site to the rupture surface of the faults in Figure 4.5. It is expected that as the

distance increases, the SDR values decrease as the waves generated by the earthquake would

get more extensively attenuated as the distance between the building and the fault increases.

Moreover, we would expect the seismic demand in the form of SDR values increase as the

magnitude of the earthquake increases. Both trends can be seen in Figure 4.5 for all the

five studied buildings. At distances bewlo 10 km, there is not a significant decline in SDR as

the distance increases. This is an expected outcome since at distances very close to the fault

large pulse-like velocity periods, which mostly depend on the magnitude of the earthquake

rather than its distance, are the main factor in determining the building’s seismic response.

However, as distance exceeds 10 km, there is a clear decline in SDR as distance grows larger

which, as explained above, is an expected trend. For each of the three magnitude values,

the increase in the magnitude of the earthquake has a very notable impact on the building’s

seismic response; under a magnitude 7.5 event, the SDR value could be up to 10 times

larger compared to a magnitude 5.5 event. The gap between the SDR values under the three

magnitude values remain almost intact throughout the entire distance range of Figure 4.5.

Finally, Figure 4.6 shows how the relatonship between the predicted SDR values, distance

and Vs30. Recall that Vs30 is a measure for the type of the soil that the building is located on.

As Vs30 increases, the soil underneath the building becomes harder, i.e., the soil would get

closer to rock. For very soft soils with low Vs30 values, the soil can amplify the earthquake

waves such that the final shaking that the building experiences after it is filtered by the soil

profile that the building is constructed on could be much larger than the original shaking

amplitude. As such, it is not surprising that, in Figure 4.6, there is an inverse relationship

between SDR values and Vs30 such that SDR values could be up to 5 times larger when

Vs30 = 180m
s

compared to when Vs30 = 760m
s

.
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Figure 4.5: Trends between maximum relative story displacement and source-to-site distance

for 3 magnitude bins and for a) 2-story, b) 4-story, c) 8-story, d) 12-story and e) 20-story

buildings
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Figure 4.6: Trends between maximum relative story displacement and source-to-site distance

for 3 different soil types and for a) 2-story, b) 4-story, c) 8-story, d) 12-story and e) 20-story

buildings
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CHAPTER 5

Conclusion

A key step in having a community that is resilient to earthquakes is the ability to accu-

rately predict the seismic response of the buildings that the population of the community

reside in. While the structural engineering community has witnessed a substantial increase

in the accuracy of the numerical models employed in predicting building seismic response,

the complexity of such models and the computational effort associated with simulating the

building seismic response are usually the two main prohibitive factors in accurately predict-

ing the building seismic response. The main focus of this study was placed on proposing

a relationship that can be used in estimating the seismic response of reinforced concrete

structures. This equation would establish a relationship between the key dynamic features

of the building and the characteristics of earthquakes that have the most significant impact

on the building’s seismic response. Such a relationship can be used in obtaining an estimate

of the extend of the demand that a building is likely to experience when it is subjected to

an earthquake with a certain magnitude that has occured within a certain distance of the

building.

We adopted a two-step maximum likelihood regression method when developing our

prediction equation. The first stage of the regression incorporates the characteristics of

earthquakes that vary from one seismic event to another; namely magnitude and the fault

type. The second stage of the regression would provide a picture of how the parameters that

could vary within a single seismic event (distance from the fault’s rupture plane to individual

buildings and the type of the soil the building is located on) would impact the building’s

seismic response response.

To ensure the unbiasedness of the proposed prediction equation with respect to the
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predictors involved in the regression steps, we examined the residuals from both stages

of the regression and no systematic bias in the prediction equations developed for each of

the five case study buildings was found. To examine the accuracy of the predictions made

using the proposed equations, we compared the impact that changes in the key parameters

of the equation would have on the buildings’ seismic response to what we were expecting

from physics-based models and we found that the predicted response follows the expected

trends.
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