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Abstract 

Corynebacterium glutamicum, a natural glutamate-producing bacterium adopted 

for industrial production of amino acids, has been extensively explored recently 

for high-level biosynthesis of amino acid derivatives, bulk chemicals such as organic 

acids and short-chain alcohols, aromatics, and natural products including 

polyphenols and terpenoids. Here, we review the recent advances with a focus on 

biosystem design principles, metabolic characterization and modeling, omics 

analysis, utilization of non-model feedstock, emerging CRISPR tools for 

Corynebacterium strain engineering, biosensors, and novel strains of C. glutamicum. 

Future research directions for developing C. glutamicum cell factories are also discussed.

Keywords 

biosystem design, CRISPR, metabolic models, polyphenol, terpenoid.
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Introduction 

The growing concerns on climate change and energy supply have driven fast 

development of microbial manufacturing of diverse bioproducts from renewable 

resources [1-3]. One of the most commonly used industrial microbes is Corynebacterium 

glutamicum, a gram-positive and nonpathogenic bacterium adopted industrially for the 

production of amino acids. C. glutamicum demonstrates several physiological properties 

advantageous to fermentative production, such as high rates of sugar consumption under 

either aerobic or anaerobic conditions regardless of cell density, high tolerance to osmotic 

pressure and various chemicals (including the final products), and capability of 

simultaneously utilizing mixtures of sugars without carbon catabolite repression [4]. 

Recently, the product portfolio of this host platform has been expanded substantially to 

cover organic acids, short-chain alcohols, phenolics, and plant natural products (Figure 

1), attributed to the elucidation of more physiological information, the establishment of 

genome-scale models, and the development of sophisticated genetic manipulation tools. 

In this review, we summarize the latest progress on the engineering of C. glutamicum, 

with a focus on biomanufacturing, utilization of various substrates, emerging approaches 

of gene editing and metabolic regulation, metabolic modeling and omics analysis, and 

novel strains of C. glutamicum.  

Production of primary metabolites, amino acids and amino acid derivatives  53 

C. glutamicum has been applied industrially to produce 17 natural amino acids54 

(except glycine, methionine and aspartate [5-8]) as well as amino acid derivatives such as 55 

5-aminovalerate and polyglutamic acid (PGA) (Table 1) [9-11]. The general principles of56 

strain engineering include: (1) introduction of the biosynthetic pathway consisting of 57 
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heterologous genes, (2) balancing of the amino acid biosynthetic pathway and the 

downstream pathway, and (3) deletion or suppression of competing pathways. For 

example, the heterologous pathway involving genes davTBA responsible for 

aminovaleramide formation from lysine was overexpressed in a lysine-producing C. 

glutamicum strain, followed by expression of various aldehyde reductase orthologues for 

the generation of 5-hydroxyvaleric acid. The resulting strain achieved a titer of 52 g/L in 

fed-batch fermentation [12]. Another example is the production of glutaric acid. The L-

lysine catabolic pathway from P. putida was expressed in C. glutamicum, converting L-

lysine to glutaric acid, with a titer of 105 g/L [13]. Moreover, C. glutamicum metabolism 

has been studied by 13C-Metabolic Flux Analysis (MFA). The metabolic knowledge led to 

heterologous expression of transhydrogenase and site-directed mutagenesis of pentose 

phosphate pathway enzymes to promote co-factor balance and L-methionine production 

[14]. In addition to amino acids and their derivatives, C. glutamicum is an excellent host to 

synthesize various organic acids (i.e., lactate, succinate, pyruvate, and α-ketoglutarate) 

[15,16] and short-chain alcohols (Table 1) [17].   

Biosynthesis of natural products 

C. glutamicum is a GRAS (generally regarded as safe) microbe that can produce 

pharmaceuticals and nutraceuticals. It has a strong shikimate pathway for the synthesis of 

phenylalanine and tyrosine, which are primary building blocks for polyphenol 

biosynthesis. Polyphenols usually exhibit antimicrobial properties. C. glutamicum is 

naturally more resistant to polyphenols than E. coli, and can even metabolize polyphenols 

as carbon sources under certain conditions. As a consequence, C. glutamicum has been 

recently engineered to produce diverse subgroups of flavonoid compounds including 

4

80 



81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

naringenin, kaempferol, eriodictyol, and cyanidin 3-O-glucoside [18,19]. Moreover, C. 

glutamicum has been employed to produce aromatics, such as indole, protocatechuate, 

4-hydroxybenzoate and 4-aminobenzoate (Figure 1) [4]. C. glutamicum has also been 

used to synthesize various terpenoids, including astaxanthin, valencene, and lycopene 

[20]. However, its performance for the biosynthesis of natural products is generally lower 

than those obtained in E. coli, S. cerevisiae, or Y. lipolytica [21]. One possible reason is 

that enzyme expression in C. glutamicum leads to insoluble inclusion bodies. To improve 

the expression of heterologous proteins, the fusion of a soluble peptide tag has been 

shown to be an effective approach [18]. 

Utilization of cellulosic sugars and non-model feedstock 

C. glutamicum can use glucose, sucrose and fructose but not pentoses [22,23]. 

Recent research to expand the spectrum of C. glutamicum carbon sources targets 

methanol, chitin, pentoses (xylose and arabinose) from hemicellulosic hydrolysates, 

galactose and lactose that are abundant in whey-based fermentation media, and glycerol 

that is a major by-product from the biodiesel industry [24] (Figure 1). The relevant 

strategies for strain engineering toward sugar utilization contain adaptive evolution, 

introduction of sugar transporters from other microbes, activation of cryptic transporters, 

and expression of sugar pathway genes for subsequent catabolism [25]. C. glutamicum 

contains an endogenous yet silent glycerol-catabolizing pathway. Earlier attempts 

regarding glycerol utilization in this bacterium involved activation of the endogenous 

pathway or introduction of heterologous pathways; however, these methods only led to 

limited success [26]. A recent study optimized the expression of the heterologous genes 

involving glpF (encoding aquaglyceroporin), dhaD (encoding glycerol dehydrogenase), 
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and dhaK (encoding ATP-dependent dihydroxyacetone kinase). The best strain achieved a 

glycerol utilization rate of 1.34 g/g DCW/h and the maximum specific growth rate of 

0.37 h-1 with glycerol as the sole carbon source [26]. 

A consolidated process using starch as the feedstock has been achieved in C. 

glutamicum that lacks hydrolases to decompose starch. Surface display of α-amylase 

from Streptococcus bovis enabled the engineered C. glutamicum to degrade starch into 

glucose, which is then metabolized to produce lysine [27,28]. On the other hand, a co-

culture approach has been applied. Through the division of labor [29], the partner strain 

(α-amylase-producing E. coli) is designed to digest starch into glucose, whereas C. 

glutamicum uses glucose to produce value-added chemicals [30].  

Recently, new methods have been developed to depolymerize lignin [31]. While a 

range of molecules can be released from lignin, aromatic molecules such 

as para-coumarate and ferulate are natively catabolized by C. glutamicum 

[32,33]. Therefore, lignocellulosic biomass could release both monomeric sugars and 

aromatics as feedstock for this organism. 

New tools to engineer C. glutamicum 

Traditional gene knockout or knockin in C. glutamicum uses allelic exchange 

plasmids, which is a multi-step and overall inefficient process. Better gene modifications 

can be achieved by CRISPR/Cas9 in conjunction with ssDNA-binding repair protein 

RecT from E. coli (Figure 2) [34]. Adapting these techniques to C. glutamicum 

has required some optimization; expressing S. pyogenes Cas9 alone can 

generate double-strand breaks that are highly toxic to the cell, thus leading to a 

low genome editing efficiency especially when Cas9 is expressed constitutively. In 

contrast, Cas12a 
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(Cpf1) from Francisella novicida is non-toxic and highly efficient in 

nucleotide modifications with the aid of single-stranded DNA. With Cas12a, a 5’ PAM 

(Protospacer Adjacent Motif) sequence 5′-NYTV-3′ preceding a 21 bp targeting spacer 

sequence can introduce double-strand breaks [35]. Inspired by this, similar 

toolboxes have been developed for C. glutamicum genome editing through 

optimized expression of guide RNA and Cas9, and coexpression of recombinases [36]. 

Another newly developed tool is the adenine/cytosine base editor. In this system, the 

catalytically dead Cas9 is fused to a cytosine deaminase (CDA) or adenine 

deaminase (AID), which enables base pair transition from C:G to T:A or from A:T 

to G:C. Expression of the guide RNA and the fusion construct Cas9-CDA or Cas9-

AID triggers precise base editing in either the genome or the plasmid [37]. By 

applying this tool to the sequences of ribosome-binding sites or promoter regions, the 

pathway genes can be regulated in parallel and their expression levels can be 

varied in a large range [37]. Moreover, the genome‐targeting scope of such base 

editors has been expanded by loosening the 3’ PAM sequence requirements from 

a 5’-NGG-3’ to 5’-NG-3’ using the Cas9 variants, thus providing 3.9-fold more 

target loci for C. glutamicum gene modifications [36]. 

The CRISPR system has been investigated in the interference of gene expression 

(CRISPRi) (Figure 2). By employing a catalytically-dead Cas9 endonuclease that binds 

to one or several target sequences simultaneously with the aid of guide RNAs, 

the expression of the target gene(s) can therefore be repressed or, in some cases, 

activated [38]. For example, C. glutamicum was engineered for carotenoid 

production and CRISPRi tested 74 genes involved in its central metabolism, 

regulatory genes, and biosynthetic pathways. Such an effort led to the identification 

of new target genes for 
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increased carotenoid bioproduction [39]. On the other hand, a synthetic small regulatory 

RNA (sRNA)-based gene knockdown strategy has been developed in C. glutamicum 

(Figure 2). This system contains an RNA chaperone Hfq from E. coli and a rationally 

designed sRNA consisting of the E. coli MicC (mRNA-interfering complementary OmpC) 

scaffold and a target binding site. Upon expression in C. glutamicum, the sRNA binds to 

the mRNA of the target genes, represses translation and enzyme synthesis, and regulates 

the production of the target compounds [40].  156 

Biosensors are useful in metabolic engineering. C. glutamicum contains many native 157 

transcription factors that respond to amino acids to trigger the expression of exporters. In 158 

addition, some endogenous regulatory proteins are responsive to native metabolites or 159 

natural products [41,42]. For example, MarR (multiple antibiotic resistance 160 

regulator)-type regulator CrtR, which represses the transcription of the promoter of the 161 

crt operon (PcrtE) and its own gene (PcrtR), can sense intracellular geranylgeranyl 162 

pyrophosphate (GGPP), and the CrtR/PcrtE switch can be used to screen 163 

GGPP-overproducing strains for the production of carotenoids [42]. Recently, other 164 

biosensors have been discovered in C. glutamicum such as ShiR, NCgl0581, and CgmR, 165 

in addition to previously identified biosensors such as Lrp, GlxR, LysG [43]. They can be 166 

applied in the screening of efficient producers or as a switch to modulate biosynthetic 167 

pathways in a dynamic manner. For instance, various dynamic pathway regulation tools 168 

have been reported, including quorum-sensing-based genetic circuits [44] and synthetic 169 

metabolic switches (responsive to cell growth [26] or effector molecules such as 170 

gluconate [45] and ferulic acid [46]). 171 

Multi-scale models and omics analysis to assist C. glutamicum engineering 172 
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A DBTL (design-build-test-learn) cycle for C. glutamicum engineering involves: 1) 

design pathways, 2) build genetic constructs, 3) test strains for desired traits, and 4) learn 

new strategies for the next cycle of DBTL. In the design stage, metabolic modeling 

predicts strain metabolism and identify biosynthesis bottlenecks. Several computational 

design tools, including models and algorithms, have been developed to greatly accelerate 

such a process. The recently updated genome-scale metabolic model of C. glutamicum, 

i.e., model iCW773 established for strain ATCC 13032, consists of 773 genes, 950 

metabolites, and 1207 reactions [47]. This model coupled with flux balance analysis and 

computational strain design could suggest the genetic interventions leading to hyaluronic 

acid overproduction. Engineering efforts following such predictions led to 28.7 g/L of 

hyaluronic acid (0.21-0.97 MDa) in fed-batch fermentation [48]. In another example, 

model-guided metabolic engineering reconstructed the TCA cycle, blocked product 

degradation, enhanced transport system, and improved gamma-aminobutyric acid 

(GABA) production (achieving 23 g/L) [49]. Similarly, a pool influx kinetics approach 

integrated dynamic 13C labeling with model-based analysis, leading to the identification 

of key genes for improving L-histidine production in C. glutamicum [50]. Recently, an 

enzyme-constrained metabolic model was developed [51]. This model improved the 

prediction of C. glutamicum phenotypes and revealed the trade-off between biomass yield 

and enzyme usage efficiency, which could guide strain engineering for L-lysine 

production. In parallel to mechanistic models, data driven approaches (such as AI) have 

been reported to facilitate successful DBTL cycles in other model organisms such as E. 

coli [52] and S. cerevisiae [53]. Moreover, the Automated Recommendation Tool (ART) 

for machine learning applications has been built to design synthetic biology components 
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(such as promoters) [54]. The same machine learning approaches may enhance C. 

glutamicum strain development and biomanufacturing [55].  

Omics analyses are important tools to facilitate DBTL strain development. In a 

putrescine-producing C. glutamicum strain obtained via adaptive evolution, key 

engineering loci were identified at the genetic level using whole genome sequencing and 

at the protein level using comparative proteomics analysis. Subsequent engineering 

efforts guided by the omics studies further increased the titer of putrescine by 30% [56]. 

In another study, transcriptomic and metabolomic data were analyzed to uncover the 

association between cellular metabolism and the amino acid-producing phenotype, 

suggesting that active pentose phosphate pathway and glyoxylate cycle are correlated 

with efficient production of branched-chain amino acids [57]. On the other hand, 

bio-production scale-up from laboratory flasks to industrial fermenters requires 

multi-scale process analyses and optimizations. Thereby, various process models 

have been built to predict C. glutamicum fermentations [58], to gain insights 

into cell metabolism under bioreactor conditions [59], and to quantify bioreactor 

mass transfer, hydromechanics, and power input [60]. Moreover, the integration of 

process models with intracellular omics analysis under scale-down conditions provide 

valuable perspectives on C. glutamicum physiologies inside inhomogeneous industrial 

fermenters [61].  

Novel C. glutamicum strains for metabolic engineering applications  

While genomic tools and computational model development have reached maturity 

for the ATCC 13032 type strain, differences between the type strain and other C. 

glutamicum isolates remain an untapped reservoir of potential metabolic capacity. 

A phylogenetic analysis of the 26 most common C. glutamicum isolates described in 

the 
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literature identified 9 distinct groups with unique genomic islands and complex 

polymorphisms that may be related to their specific amino acid secretion phenotypes [62]. 

These C. glutamicum isolates can have differing potentials to produce desirable 

heterologous bioproducts. N-Acetylglucosamine (GlcNAc) is a monosaccharide with 

potential applications in human health. Deng and coworkers introduced the 223 

Caenorhabditis elegans GNA1 gene (encoding glucosamine-6-phosphate 224 
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240 

acetyltransferase) into different C. glutamicum isolates and detected GlcNAc titers at 3.0 

g/L in the S9114 isolate. In contrast, ATCC 13032 produced 0.5 g/L GlcNAc. The 

authors were able to adapt standard C. glutamicum gene modification tools in the S9114 

isolate to further boost titers in batch mode to 6.9 g/L in rich media [63]. Similarly, 

Banerjee and coworkers tested the production of a 5 gene isoprenol production pathway 

in a transformation-improved ∆mrr ATCC 13032 strain as well as in isolate BRC-JBEI 

1.1.2, and found that isoprenol titers were at the lower detection limit (15 mg/L) in the 

type strain but was twenty-fold higher in BRC-JBEI 1.1.2 [64]. Many (>500) genes in 

these C. glutamicum isolates lack any functional characterization and have no known 

homologs in other species, and this trend will likely hold as more genomes from related 

Corynebacteria are identified from diverse microbiomes using high quality metagenomic 

assembly approaches. Functional genomics approaches using parallel transposon 

mutagenized mutant libraries that have been applied in other bacterial hosts will enable 

the comparison of gene function across these isolates, providing insights into the 

unknown genes harbored in these strains [65]. 

Conclusions and Outlook for the Industry 
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C. glutamicum has superior capability in the biosynthesis of diverse amino acids, organic 

acids, short-chain alcohols, and their derivatives, many of which are bulk chemicals. The 

fermentation facilities and bio-separation techniques for C. glutamicum factories have 

been established, facilitating the commercialization of other compounds beyond 

amino acids. Meanwhile, the development of omics analyses and high-

throughput cultivate/screen [66] is momentously speeding strain characterization and 

development. Additionally, the existence of a natural aromatic-degrading pathway 

and the strong resistance to aromatic inhibitors in hemicellulosic hydrolysates 

suggest promising potentials of C. glutamicum for the utilization of lignocellulose 

to produce diverse chemicals [64]. On the other hand, it should be noted that C. 

glutamicum is not the best chassis organism for all compounds. For example, natural 

products are synthesized in this bacterium at low yields. To improve the functions of 

the plant-derived pathways in C. glutamicum, several approaches can be employed, 

including transporter engineering or cell wall remodeling to increase efflux of the 

final products, enzyme modifications to enhance catalytic performances, and modular 

pathway engineering [67,68]. In addition, advanced metabolic modeling and 

emerging AI technologies may accelerate C. glutamicum engineering to synthesize 

various high value products.   
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Table 1. Recent achievements in C. glutamicum-based biosynthesis of compounds 

Classification Chemicals Titer Culture conditions Reference 

Amino acids 40 g/L Fermenter [69] 

and derivatives 52 g/L Fermenter [12] 

16.3 g/L Fermenter [70] 

21.3 g/L Fermenter [71] 

65.3 g/L Fermenter [72] 

12.5 g/L Fermenter [56] 

49.3 g/L Fermenter [73] 

L-Leucine

5-Hydroxyvaleric acid 
5-Aminolevulinic acid 
Poly-γ-glutamic acid 
Ectoine

Putrescine Indigoidine

Spider silk protein

0.56 g/L Fermenter [74] 

Aromatics 2.5 g/L Shake flask [75] 

16 g/L Fermenter [76] 

Dipicolinic acid 

Protocatechuate 

Vanillin 0.31 g/L Shake flask [77] 

Alcohols 98 g/L Fermenter [78] 

24 g/L Fermenter [79] 

1.25 g/L Shake flask [80] 

1,3-Propanediol 

4-Amino-1-butanol 
Isoprenol

(3-methyl-3-buten-1-ol) 
Isobutanol 20.75 g/L Shake flask [81] 

Organic Acids Succinate 94 g/L Fermenter [15] 

Muconic acid 85 g/L Fermenter [82] 

Adipic acid 35 µg/L Shake flask [83] 

Terpenoids Astaxanthin 22 mg/L Shake flask [84] 

CoQ10 0.4 mg/L Shake flask [85] 

Polyphenols Cyanidin 3-O-glucoside 40 mg/L Shake flask [18] 

Naringenin 37 mg/L Shake flask [86] 

Resveratrol 158 mg/L Shake flask [86] 

Salidroside 9.7 g/L Fermenter [87]
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Figure Legends 

Figure 1. The portfolio of typical chemicals produced by engineered C. glutamicum. The 

chemicals include amino acids, their derivatives, organic acids, short-chain alcohols, fatty 

acids, aromatics, terpenoids, and polyphenols. The carbon sources for C. 

glutamicum include molasses and starch (common industrial fermentation media), 

hemicellulosic hydrolysates, xylose, methanol, glycerol, aromatics, etc.  

Figure 2. The new genetic tools and models developed for metabolic engineering of 

C. glutamicum. 
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