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A Simple Model of Hydrophobic Hydration
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aUniversity of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, SI-1000 
Ljubljana, Slovenia

bLaufer Center for Physical and Quantitative Biology, Stony Brook University, 5252 SUNY, Stony 
Brook, NY 11794-5252, USA

Abstract

Water is an unusual liquid in its solvation properties. Here, we model the process of transferring a 

nonpolar solute into water. Our goal was to capture the physical balance between water’s hydrogen 

bonding and van der Waals interactions in a model that is simple enough to be nearly analytical 

and not heavily computational. We develop a 2-dimensional Mercedes-Benz-like model of water 

with which we compute the free energy, enthalpy, entropy, and the heat capacity of transfer as a 

function of temperature, pressure and solute size. As validation, we find that this model gives the 

same trends as Monte Carlo simulations of the underlying 2D model and gives qualitative 

agreement with experiments. The advantages of this model are that it gives simple insights and 

that computational time is negligible. It may provide a useful starting point for developing more 

efficient and more realistic 3D models of aqueous solvation.

1 Introduction

The solvation of nonpolar solutes in water is important in biology, for ligand binding, 

membrane formation, protein folding, and biopolymer conformational changes. This process 

is unusual in its thermal properties. The solvation of nonpolar solutes in water shows an 

unusual temperature dependence of the free energy (ΔG), enthalpy (ΔH), entropy (ΔS), and 

heat capacity (ΔCp) of transfer (from vacuum to water). ΔG and ΔCp are large and positive, 

while ΔH and ΔS show a sharp increase with temperature and can switch from negative to 

positive values. These anomalies are known as the “hydrophobic effect”. Hydrophobicity has 

been studied extensively through experiments and theory (see review papers 1–3 and 

references therein). It has been established that hydrogen bonding plays a key role in the 

hydrophobic effect.4–14 Features of the hydrophobic effect have been observed not only for 

inert gasses, but also in various biological processes, such as protein–protein, protein-ligand, 

protein–DNA binding, and protein folding.15–25

Nonpolar solvation in water has also been studied extensively by computer simulations.26–35 

Some such studies employ explicit-solvent models, such as TIP or SPC. Such atomic-level 

simulations are often too expensive for exploring the full dependencies on temperature, 

pressure and solute size. Heat capacities, for example, are notoriously difficult to converge in 

all-atom simulations of explicit-water models. Implicit-solvent models are faster, but 

sometimes inaccurate. Another alternative is hybrid models, which retain explicit-water 
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characteristics near the solute and are more approximate further away (see Topol et al. and 

references therein36).

Our aim here is different. We seek a model that can capture the physical balance of hydrogen 

bonding and van der Waals interactions, and yet be sufficiently simple and efficient to allow 

us to explore full dependences on temperature, pressure, and solute size of properties such as 

the solvation entropy, enthalpy and heat capacity. At minimum, such a model should first 

capture the properties of pure water.37–39 This requires a way to handle orientation-

dependent interactions. Water’s hydrogen-bonding arms are rigidly and sterically coupled to 

each other, which leads to a complex multi-body and non-local angular effects. Promising 

modern theories of water have been proposed based on the thermodynamic perturbation 

methods and on the associative Ornstein–Zernike integral equation theory.40–48 For example, 

these approaches have been explored in a 2-dimensional water models, called Mercedes-

Benz-like models.6,49,50 Recently, this type of model has been also explored in 3D.48,51,52 

However, these integral-equation methods have the limitations that: (1) while they are much 

more efficient than computer simulations, they, too, can be computationally expensive, (2) 

they are mathematically demanding for angle-dependent potentials, and (3) they treat cold 

water (around room temperature and biological temperatures) less accurately than hot water 

(near the boiling point), because the important angular dependences are only approximated. 

Here, we are particularly interested in treating cold water, because of its practical importance 

and because this is where experiments are commonly performed.

A simple statistical mechanical theory of water was developed by Truskett and Dill,53 in 

which energetic interactions between Mercedes–Benz type model water molecules are based 

on water triplets that find themselves in one of three possible energy levels (cage-like 

hydrogen-bonded structure, denser non-bonded structure, or extended structure with no near-

neighbor interactions). More recently, Urbic and Dill54 (UD) proposed an even simpler 

statistical mechanical theory of water: a pair of waters (resembling Mercedes–Benz water) 

on the underlying hexagonal lattice can be classified into three states (hydrogen-bonded, van 

der Waals or non-interacting), depending on the separations and orientations of the 

molecules. The theory is capable of reproducing all the relevant thermodynamic and 

volumetric properties of 2D model of water.54

Few years ago, Xu and Dill11 proposed a very simple analytical theory of the hydrophobic 

effect which builds on a two-dimensional Mercedes–Benz model of water. Starting from the 

statistical partition functions for a water molecule in the bulk and in the first solvation shell 

around a hydrophobe the theory reproduces the main characteristics of the hydrophobic 

effect and it accounts for different solute sizes effects.

While the theory of Xu and Dill11 required the results of a reference Monte Carlo simulation 

of the pure water bulk phase, our approach here is much simpler and circumvents any 

computer simulation steps by using an analytical model of the pure phase of water. We start 

from an analytical UD theory of water.54 A partition function for a water molecule in the 

bulk and in the first hydration shell of a hydrophobic solute is then built using the 

expressions for average energies of different states (hydrogen-bonded, van der Waals and 

open) that the water molecule can be classified into and upon considering the geometric 
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restrictions through which a solute dictates the formation or breakage of the hydrogen bonds 

between water molecules in the first solvation shell. Finally, from statistical mechanical and 

thermodynamical relations we calculate the ΔG, ΔH, TΔS, and ΔCp. Predictions of the 

theory are compared with the results of the Monte Carlo computer simulations for 

Mercedes–Benz water. Proposed theory seems to be promising. Our purpose was not to 

introduce adjustable parameters to bring the theory into an exact agreement with 

simulations, but to show that the theory, based on simple statistical mechanical arguments, 

reproduces the hydration anomalies in a qualitative way. We think that the theory also offers 

potentials for studying solvation of ions.

The perspectives of this article are the following: after the above-given Introduction, we 

briefly review the main idea of UD theory of water in Section 2. Following this, we develop 

theoretical expressions for the main thermodynamic functions of hydrophobic hydration. In 

Section 3, details of the Monte Carlo computer simulation are given. Theoretical and 

simulation results are reported, compared and discussed in Section 4. The last section 

highlights the main conclusions of this work.

2 Theory

2.1 The model for pure water

First, we review the UD model for pure water,54 since this will be our starting point for 

nonpolar solvation. We consider a system of N water molecules, each of which is modeled 

as a 2-dimensional disk. We suppose here that the structure of the liquid state of this water is 

a perturbation from an underlying hexagonal (ice) lattice.54 Each water molecule is located 

nearest to one particular grid point, and no two waters are assigned the same point (see 

Figure 1 of Ref. 54). Each molecule of liquid water can be in one of three possible 

orientational states relative to its clockwise neighbor on the hexagonal lattice: a wat can be 

hydrogen-bonded (HB, S) to its neighbor, it can be in van der Waals contact (LJ), or it can 

have no interaction at all (called open, O). These states are graphically presented in Figure 1: 

in an HB and S state (panel a) an H-bonding arm of a test water molecule is aligned with an 

H-bonding arm of its clockwise neighbor within the relative orientation angle θ ∈ [−π/3, 

π/3], and the distance between the centers of the two water molecules does not exceed the 

distance at which an H-bond can be formed. If the relative orientation angle is outside the 

range [−π/3, π/3], the two water molecules form a van der Waals contact (panel b, no H-

bonds). If neither the orientation nor the relative position of the two water molecules is such 

as to form H-bonds or van der Waals contact, a test water molecule makes no interactions 

with its neighbor and the state is referred as open (panel c).54

The pair interaction energy of a water molecule with its clockwise neighbor, in four different 

states, is11,53,54

(1)
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where εHB is the maximum energy obtained when the hydrogen bond of two neighboring 

water molecules is collinear; ks is the spring constant of an angular Hooke’s law spring for 

the hydrogen bond bending (see Figure 1); εLJ is the van der Waals contact energy between 

two neighboring water molecules that are not hydrogen bonded; and εc is the cooperativity 

energy. In addition to these three liquid states (HB, LJ, O), our model also includes a fourth 

state, S, representing solid-state ice. In state S, a water molecule participates as a member of 

a hexagonal cage in which all six water molecules are hydrogen bonded. We treat an S-state 

hydrogen bond as stronger and more cooperative than a liquid-state hydrogen bond, as 

described below.

Using this model of energies, we now compute the partition functions of these four states of 

water. Any two neighboring water molecules will vary in their relative positions (x, y) and 

their relative orientation angles, −π/3 ≤ θ ≤ π/3. We obtain the partition function Δj for each 

of the four states by integrating over the appropriate positions and orientations,

(2)

Performing this integration results in the individual partition functions for the four states 

described above (HB, LJ, O, and S) (for more details of this model of pure water, see Ref. 

54):

(3)

(4)

(5)

(6)

c(T) denotes the momentum contribution to the partition function,  is the effective 

volume (double integration over the coordinates, ∫ ∫ dxdy; ),54 T is 

the temperature, p is the pressure, k is Boltzmann’s constant, and the factor of 2/3 corrects 

for double counting and accounts for the three bonding arms of each water molecule. To 
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retain terminology that corresponds to 3D models, we refer to the ‘volumes’ of the 

individual states, υj, even though, of course, in a 2D model such quantities actually have 

units of area. We prefer this 3D terminology because we believe it simplifies the comparison 

with experiments, and future generalization to 3D. The volumes, which are determined 

principally from geometric considerations,54 are:

(7)

(8)

(9)

(10)

where rHB is the hydrogen-bond length, and σLJ is the Lennard–Jones size parameter, having 

units of a length.

We now combine the individual water-molecule partition functions into a partition function, 

Q1, for one hexagon cage of six waters:

(11)

In equation (11), the term in parentheses accounts for the combinatorics for all the possible 

configurations of the three different types of water, each occupying any position in the 

hexagon. The last two terms in equation (11) describe our treatment of water in its highly 

ordered states, such as ice. We treat the cooperativity of hydrogen bonding in ice as follows: 

when a hexagon has all six water molecules hydrogen bonded together, this leads to an 

additional energetic stabilization (with a cooperativity energy εc), which reduces the 

configurational freedom, captured by the solid-state partition function, ΔS.

From the hexagon partition function, we can compute the populations of the different states, 

fj (j = HB, LJ, O, and S), using
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(12)

The molar volume of pure water is then obtained as the weighted sum over the volumes of 

the different water states using the expression

(13)

Finally, correlations between the cages are taken into account. To treat the whole system of 

N/3 hexagons (each of the N waters in the full system participates in three hexagons), we 

treat the attractions among different hexagonal cages through a mean-field attraction van der 

Waals energy term, , which reduces the pressure to .53–55

For modeling the solvation of a nonpolar solute it is necessary to calculate additional 

quantities not calculated in the original UD paper.54 The ensemble average energy, 〈uj〉, for 

each of the four types of water molecule structure, is first needed and can be calculated as

(14)

Inserting equations (1) into equation (14) gives

(15)

(16)

(17)

(18)

The average energy of a water molecule, summed over the four different water states, can be 

expressed as

Lukšič et al. Page 6

J Phys Chem B. Author manuscript; available in PMC 2017 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(19)

2.2 The model for hydrophobic solvation in water

So far, we have only described how our model treats pure water, with no solute. Now, a 

nonpolar solute molecule of diameter σs is inserted into UD water. Again, as above, we 

focus on one water molecule and its clockwise neighboring water molecule. In this case, the 

two water molecules under consideration are both located in the first hydration shell of the 

solute (see Figure 2). The presence of the solute imposes a geometric restriction; a solvation-

shell water molecule may be unable to form all three hydrogen bonds with its neighboring 

water, as it was able in the bulk. The maximum number of hydrogen bonds that the water is 

capable of forming, a quantity that we call ζ(ϕ), depends on the geometric restrictions 

imposed by the solute. ϕ is the angle between the hydrogen-bond arm and the vector 

pointing from the center of a water molecule to the center of the solute. ζ(ϕ) is therefore a 

function of the solute radius.

There are two different possibilities depending on the size of the solute molecule. For 

smaller solutes, water molecules in the first solvation shell can form a maximum of either 2 

or 3 hydrogen bonds depending on the angle ϕ. However, for bigger solutes, first-shell water 

molecules can form a maximum of only 1 or 2 hydrogen bonds. We define a critical angle ϕc 

at which a hydrogen-bonding arm points along a tangent to the solute (see Figure 2),

(20)

Hence the quantity ζ(ϕ), describing the maximum number of hydrogen bonds that can be 

formed by a water molecule in a first-solvation shell will be (around small solutes, ϕc ≤ π/3),

(21)

or (around big solutes, π/3 < ϕc ≤ π/2),

(22)

A solute molecule does not impose just geometric restrictions on first-shell water molecules, 

but it also perturbs the energetics of water-water interactions in the first shell. Whereas 

equation (19) gives the average energy, 〈ε〉b, of water molecule in the bulk, the average 

energy 〈ε〉h of molecule of water in the first solvation shell will be
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(23)

where εSW is the energy of interaction between the solute and a water molecule. Based on 

these energies, the partition function for a bulk water can be approximated, by treating 

interactions between waters only in averaged way, as11

(24)

whereas the partition function for a water molecule in the first shell around a solute 

molecule can be written as11

(25)

In equation (25)  denotes the molar volume of the solution. It is smaller than the  by 

the overlap volume  (see Figure 3):

(26)

if a ≤ b + d, where , and d = (σLJ + σs)/2. If instead, a > b + d, then we 

set Δυ = πb2.

We compute the Gibbs free energy of transferring a hydrophobic solute into water using11

(27)
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where n(σs) is the average number of water molecules in the first solvation shell. In this 

theory we assumed that n(σs) is proportional to the solvent surface accessible area of the 

solute, which we take to be represented by a circular cavity of radius σs/2 (see Figure 2)

(28)

We can extend this model to solutes of arbitrary shape by calculating surface integral of ln 

(qh/qb). Standard thermodynamic relations give the enthalpy, entropy, and the heat capacity 

of transfer as

(29)

(30)

(31)

This completes the description of our model of nonpolar solvation.

3 Monte Carlo reference computer simulations

In order to check the approximations in our analytical treatment above, we performed Monte 

Carlo reference computer simulations of the related underlying Mercedes–Benz model of 

water, following Ref. 6. Thermodynamic averages of solute insertion into water were 

obtained by Widom’s particle insertion method.56,57 During the isothermal-isobaric (NpT) 

simulation of pure water, a ghost solute (LJ) particle of diameter σs was inserted at random 

into the simulation box containing N water molecules, but did not influence the water 

molecules. The free energy (ΔG), enthalpy (ΔH), entropy (ΔS), and the heat capacity (ΔCp) 

of insertion were computed using the following standard expressions

(32)

(33)
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(34)

(35)

ΔU is the energy of interaction of the ghost LJ particle with all N water molecules. 

Simulations were initiated from an equilibrium distribution of water molecules, followed by 

a pre-equilibration step of 107 NpT moves. Statistics were collected in simulations of 5 · 108 

NpT moves, where every 1000th cycle 100 insertions of a hydrophobic Lennard–Jones solute 

were attempted. The well-depth LJ parameter for the solute was taken to be the same as for a 

water molecule, for simplicity, while the contact parameter was calculated as the arithmetic 

mean: σLJ = (σwater + σs)/2. If σLJ ≥ 0.85, a cut-off in Lennard–Jones potential was 

introduced, so that the contact parameter was set to 0.85 and rij = rij − (σLJ − 0.85). The 

number of water molecules in simulation varied from 60 to 600, depending on the size of the 

solute. All the simulations were performed at reduced pressure p* = 0.19.

To calculate the orientation of water molecules with regard to the solute, a solute particle 

was placed in the center of the simulation box. NpT simulations were performed in the 

standard way. Statistics were collected during 5 · 108 moves.

4 Results and discussion

In this section, we explore the predictions of the present model, for how the free energy, 

enthalpy, entropy, and the heat capacity of transfer of the nonpolar solute into water depend 

on temperature, solute radius and pressure. Our predictions are compared with the Monte 

Carlo simulation results on Mercedes–Benz water (except that the pressure dependence is 

not yet known from MC simulations). We compare our results to experimental data on 

argon, where available. Previous work has shown that the Mercedes–Benz water 

qualitatively reproduces the thermal anomalies of the hydrophobic effect (see Figure 5 of 

Ref. 6).

Here are the values of the parameters we used: εHB = 1, rHB = 1, εLJ = 0.1, σLJ = 0.7, εSW = 

εLJ (unchanged from the MB model6), the spring constant for the angular variation of a 

water-water hydrogen bond is ks = 10, the cooperativity energy for the hexagonal ice state is 

εc = 0.06 and the van der Waals constant is a = 0.03 (unchanged from the UD model54). We 

did not vary any parameters since we wanted to see how the theory reproduces the MC 

results. All theoretical and machine calculations were performed with physical quantities in 

reduced units (designated by an asterisk): temperature, T* = kT/|εHB|; pressure, 

; free energy, G* = G/|εHB|; enthalpy, H* = H/|εHB|; entropy, S* = S/|εHB|; 

heat capacity, ; volume, . All distances are scaled by rHB (for 

example, σ = 0.7 means that σ = 0.7rHB).
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One of the characteristics of the hydrophobic effect is the so-called , the temperature at 

which the entropy of transfer of the nonpolar solute to water is zero.6,16 In the MB model, 

this temperature delineates two different behaviors of shell waters around the nonpolar 

solute, and it therefore depends on the solute size. It was established from simulations that 

 is the point at which the relative hydrogen-bonding strength and the number of shell 

and bulk water molecules around a solute reverse their roles.6 Therefore, to compare the 

theory and simulations on equal footing, the reduced temperatures, T*, of the theory and of 

simulations were divided by the temperature where the entropy of transfer of a solute of size 

σs = 0.7 equals zero (  for theory and  for simulations) since theoretical 

results are shifted due to approximations in the theory. In the present theory, this temperature 

is , while for a simulation of a Lennard–Jones solute in a Mercedes–Benz water 

this temperature equals . The size of the solute presented as Lennard Jones disk 

(0.7) was chosen to be the same as the Lennard-Jones width-parameter of the water, since in 

this case the solute fits in the center of a hexagonal cage of surrounding water molecules.

4.1 Solvation thermodynamics depends on temperature

Figure 4 shows that the analytical theory predicts the dependence of the thermal transfer 

quantities on temperature relatively well (experimental data for argon, taken from Ref. 58 

are shown in Figure 5). Figure 4 shows that, consistent with experiments on real water:58 (1) 

the free energy of nonpolar solvation in 2D water is positive over the range of temperatures 

that we take to represent liquid water, (2) the free energy is more unfavorable for larger 

solutes, and (3) the heat capacity of solvation is positive for cold water and diminishes at 

higher temperatures, although, interestingly, the heat capacity of transfer becomes negative 

at even higher temperatures.6 This behavior arises because heating ‘melts out’ the hydrogen 

bonds among the first-shell waters faster than it melts out the hydrogen bonding in the bulk. 

The model also predicts correctly that there is a minimum in the hydrophobe solubility 

(maximum in ΔG*) vs. temperature (see Figure 4a, 4e, and Figure 5a, showing the 

experimental results for argon). The trends in ΔG* qualitatively agree with the trends 

predicted by the simulations of spherical hard-sphere solutes mimicking Ne, Ar, methane, 

and Xe, as well as with the simple information theory model proposed by Garde et al. (see 

Figure 1 of Ref. 19). For small solutes, our theory also predicts the entropy convergence 

(Figure 4c and 4g) as observed in solutions of hydrocarbons in water (see Figure 2 of Ref. 

19).

The temperature dependence of solvation in our model is attributable to the hydrogen 

bonding of water molecules in pure water.54 In particular, starting from the freezing point of 

water, increasing the temperature first melts out water’s hydrogen bonding, favoring denser 

van der Waals states of water in cold liquid water, then ultimately melting out the van der 

Waals interactions too in hot liquid water. The population of the open non-interacting state 

(O) increases with temperature. By assumption in the model, the populations fj are not 

perturbed by the introduction of the solute; this approximation is likely to be best for dilute 

solutes.
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4.2 Solvation thermodynamics depends on the size of the solute

It has been established experimentally and theoretically that hydrophobic hydration strongly 

depends on the size of the solute.5,23,58–61 Larger solutes are less soluble in water, since they 

expose more nonpolar surface to water. The solvation free energy increases linearly with 

volume for small solutes. The solvation free energy increases linearly with area for larger 

solutes.59,60 The transition happens at the small-to-large crossover length. This crossover 

length is correlated to a transition in the thermodynamic nature of hydrophobic hydration: 

while for small solutes the entropy contribution to the change in free energy dominates 

(−TΔS > ΔH), for larger solutes −TΔS < ΔH.61 Figure 6, panels b and d, show predictions of 

the computer simulations for how the thermal properties of nonpolar solute solvation should 

depend on the solute radius. Similar behavior is captured by our simple model (panels a and 

c; note, however, that TΔS, and not −TΔS as in Ref. 61, is shown in the Figure 6a and 6b, 

and the actual crossover between TΔS and ΔH is therefore not shown, however the cross-

over between −TΔS and ΔH appears at σs = 0.44).

The model gives the following interpretation of the results in Figure 6. First, for small 

solutes, heating melts out first-shell-water hydrogen bonding, leading to a large heat 

capacity. Second, for larger solutes, because the first-shell water molecules are already 

constrained geometrically to have fewer hydrogen bonds than they would have around a 

smaller solute, heating is unable to cause further melting of additional hydrogen bonds, so 

there is little heat capacity change in transferring a large solute to water. Like the data, our 

model shows that ΔG grows with volume for small solutes and with area for large solutes. 

The model predicts the small-to-large transition at σs = 1.3, whereas the transition in the MC 

simulations is at 1.8.

Figures 7 shows one aspect in which our model is simplified. In the MC simulations, water’s 

orientational correlations around the solute involve a continuous distribution, whereas our 

approximation to that distribution is a step function. There is a sharp transition in angular 

distribution around the solute, corresponding to σs = 1.3. The present model could be readily 

improved, but we felt that it would be useful here to see how far the simplest possible model 

could take us.

Figure 8 shows the average energy and free energy of water molecule in the bulk (horizontal 

dashed line) and in the first shell (continuous line) depending on the size of the solute 

molecule for three different temperatures. These behaviors arise largely because increasing 

solute size leads to the breaking of hydrogen bonds.

4.3 Solvation thermodynamics depends on pressure

We modeled the pressure dependence of transfer of a nonpolar solute from the gas phase 

into water; see Figures 9 and 10. There are three main findings. First, applying pressure 

makes nonpolar solvation in water more favorable: the free energy of solvation decreases 

with pressure. Second, applying pressure above p* = 0.2 (which approximately corresponds 

to atmospheric pressure), in cold water, breaks hydrogen bonds, causing more orientational 

disorder, making the entropy of solvation more favorable, reducing the otherwise 

anomalously large heat capacity, and increasing the enthalpy. This applies up to about p* = 
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2. Third, at very high pressures (above p* = 2), liquid water as a solvent acts much like a 

simple van der Waals liquid. At low pressures and for room temperature, these results are 

consistent with the results of Chen et al.,62 showing that the enthalpy, entropy, and heat 

capacity are almost constant (Figures 10 and 11 in Chen et al.62). What we believe is an 

artifact of the model appears at high pressures: the free energy of solvation is predicted to 

become negative at high pressures. In this limit, the current model appears to lead to a van 

der Waals density of the liquid that is too high.

5 Conclusions

We have developed a simple analytical model of the hydrophobic hydration. The theory is an 

extension of our analytical model of 2D water which assumes three microstates for water-

water interaction. Two water molecules can either interact through hydrogen bond or van der 

Waals interaction, or do not interact at all(nonbonded interaction). In our model of hydration 

we explicitly treat water’s hydrogen bonds and orientations. The free energy of solvation is 

calculated by analyzing all possible states of a test water molecule in the first solvation shell. 

From the partition functions for the water molecule in bulk and a water molecule in the first 

hydration shell around a hydrophobic solute, we were able to calculate the Gibbs free energy 

of transfer and the corresponding changes in the enthalpy, entropy, and the heat capacity. 

According to the simple classical picture, transferring nonpolar solute into water is 

characterized by a large opposing entropy in cold water, a large opposing enthalpy in hot 

water, and a large positive heat capacity of transfer. The theory qualitatively correctly 

describes the temperature dependence of the relevant thermodynamic functions, as well as 

the trends in the solute size. The heat capacity of hydrophobic solvation is found to be large 

in this model because increasing temperature breaks hydrogen bonds and increases the 

orientational entropy of the first-shell waters. First-shell water-water hydrogen bonding is 

‘melted out’ by either temperature, increased solute size, or pressure. The main advantages 

of the analytical theory are that it gives insights into how experimental properties arise from 

the physics of hydrogen bonding and van der Waals interactions and it is much faster to 

compute than many other models. The full temperature and/or pressure dependence is 

computed in a fraction of a second on a single CPU. The present model is rather artificial, 

but may be a useful starting point for a more realistic 3D modeling of solvation. This 

transition to realistic 3D water models is not straightforward.
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FIGURE 1. 
Three states of interaction between Mercedes–Benz model water molecules. Panels: (a) test 

water makes a hydrogen bond with its neighbor, (b) test water makes a van der Waals 

contact with its neighbor, (c) test water forms no interaction with its neighbor.
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FIGURE 2. 
Definition of the critical angle ϕc.
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FIGURE 3. 
Schematic representation of the overlap volume, Δυ (green shaded area), calculated via 
equation (26). It equals the intercept volume of the solute’s volume (left circle) and the 

molar volume of the bulk water,  (right dashed circle).
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FIGURE 4. 
Temperature trends in the transfer thermodynamics. Panels (a, b, c, d) are theoretical 

predictions, panels (e, f, g, h) are Monte Carlo results for a simple Lennard–Jones solute in 

Mercedes–Benz water (line is plotted as a guide for the eye). Solute radii are: σs = 0.5 (red; 

continuous line, ●), 1.0 (blue; dashed line, ■), and 1.5 (green; dash-dotted line, ▲). 

Temperatures are scaled to the temperature where the entropy of transfer of a solute of size 

0.7 equals zero: theory, ; simulation, . Pressure is set to p* = 0.19. On 

panel (h) data for σs = 1.5 were omitted due to bad sampling statistics.
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FIGURE 5. 
Experimental temperature trends in the transfer thermodynamics of argon at 1 atm. Panel 

(a): ΔG (continuous line, ●), ΔH (dashed line, ■), and TΔS (dash-dotted line, ▲). Panel (b): 

ΔCp. Data are taken from Ref. 58, line is plotted as a guide for the eye.
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FIGURE 6. 
Size dependence of the thermodynamic functions. Panels (a, b): ΔG* (red; continuous line, 

●), ΔH* (blue; dashed line, ■), T*ΔS* (green; dash-dotted line, ▲) as a function of the 

solute radius, σs. Panels (c, d):  vs σs. Panels (a) and (c) show predictions of the 

theory for T* = 0.2, p* = 0.19, while data on panels (b) and (d) are simulation results, taken 

from Ref. 7 and apply for T* = 0.18.
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FIGURE 7. 
Angular distribution W for first-shell waters around a hydrophobic solute of size σs = 0.5 

(red; continuous line), 1.0 (blue; dashed line), and 4.0 (green; dash-dotted line). Panel (a): 

theory, ; panel (b): simulation, . p* = 0.19. Inset in panel (a) 

schematically defines the angle.
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FIGURE 8. 
Size dependence of (a) the average energy of a water molecule in the first solvation shell 

(continuous lines), , and the value of the average energy, , in the bulk (dashed lines), 

and (b) same for the Gibbs free energy of a water molecule. Results are at different 

temperatures: T* = 0.16 (red), 0.20 (blue), and 0.30 (green). Pressure is set to p* = 0.19.
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FIGURE 9. 
Pressure dependence of the (a) Gibbs free energy, (b) enthalpy, (c) entropy, and (d) heat 

capacity of transfer of a simple Lennard–Jones solute into Mercedes–Benz like water. Solute 

radii are: σs = 0.5 (red; continuous line), 1.0 (blue; dashed line), and 1.5 (green; dash-dotted 

line). Temperature is set to T* = 0.2.
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FIGURE 10. 
Same as in Figure. 9. Temperatures are: T* = 0.16 (red; continuous line), 0.2 (blue; dashed 

line), and 0.3 (green; dash-dotted line). Solute radius is σs = 0.7.
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