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Induced and natural variation affect traits independently 
in hybrid Populus
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The genetic control of many plant traits can be highly complex. Both allelic variation (sequence change) and dosage variation (copy number 
change) contribute to a plant’s phenotype. While numerous studies have investigated the effect of allelic or dosage variation, very few have 
documented both within the same system, leaving their relative contribution to phenotypic effects unclear. The Populus genome is highly 
polymorphic, and poplars are fairly tolerant of gene dosage variation. Here, using a previously established Populus hybrid F1 population, we 
assessed and compared the effect of natural allelic variation and induced dosage variation on biomass, phenology, and leaf morphology 
traits. We identified QTLs for many of these traits, but our results indicate limited overlap between the QTLs associated with natural allelic 
variation and induced dosage variation. Additionally, the integration of data from both allelic and dosage variation identifies a larger set of 
QTLs that together explain a larger percentage of the phenotypic variance. Finally, our results suggest that the effect of the large indels might 
mask that of allelic QTLs. Our study helps clarify the relationship between allelic and dosage variation and their effects on quantitative traits.
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Introduction
Natural allelic variation plays an important role in phenotypic di
versity in plants (Alonso-Blanco et al. 1999, 2009; Todesco et al. 
2010; Huang et al. 2011, 2012; Huang and Han 2014; Jin et al. 
2016; Satbhai et al. 2017; Zhang et al. 2021; Duan et al. 2022). The 
statistical framework raised by R. A. Fisher provides an approach 
to systematically identify the quantitative trait loci (QTL) respon
sible for heritable variation (Fisher 1919). In the last decade, the 
development of new DNA high-throughput sequencing and geno
typing technologies has dramatically improved our ability to iden
tify polymorphic genetic markers between individuals or species 
(Gupta et al. 2008; Davey et al. 2011; Elshire et al. 2011). This, in 
turn, enables more accurate QTL identification in both plants 
and animals (McMullen 2003; Wellcome Trust Case Control 
Consortium 2007; Rafalski 2010; Jamann et al. 2015). Despite these 
technological advances, a wide percentage of the observed pheno
typic variance still remains unexplained by the detected QTLs. 
This is particularly problematic for complex traits with expected 
polygenic contributions. For example, the QTLs detected through 
the analysis of biomass-related traits in Populus explain, on aver
age, 26% of the observed phenotypic variation (Rae et al. 2009). 
To increase biomass yield through tree breeding, we need to con
sider other types of heritable variations, aiming for a deeper un
derstanding of the underlying regulatory mechanisms.

Besides allelic variation (sequence variation that does not in
volve copy number changes), dosage variation can also affect 
the phenotypic outcomes of many important plant traits. Copy 

number variation (CNVs), especially the ones affecting protein- 
coding regions, have been associated with phenotypic outcomes 
in multiple plant species (Cook et al. 2012; Díaz et al. 2012; Li 
et al. 2012; Carbonell-Bejerano et al. 2017; Prunier et al. 2019). 
Pan-genomic analyses have identified structural variants across 
different accessions of multiple plant species, many of which af
fect important agronomic traits such as flower size, fruit weight, 
and heat tolerance (Golicz et al. 2016; Pinosio et al. 2016; Alonge 
et al. 2020; Zmienko et al. 2020; Yan et al. 2023). Gene deletion 
and duplication can directly affect expression level (cis-effect), 
which in turn affects phenotypes. Gene dosage may also affect 
phenotype through mechanisms explained by the gene balance 
hypothesis (Birchler and Veitia 2012). Dosage variation can also 
modulate the expression of genes located outside of indel regions 
(trans-effect), since many traits are regulated by a complex net
work comprising multiple genetic components (Birchler and 
Veitia 2010; Veitia et al. 2013).

To increase our understanding of the relative contributions of 
these two sources of phenotypic variation, we investigated the 
phenotypic effects of induced dosage variation and natural allelic 
variation within the same population. We also aimed to document 
instances of interplay between these two sources of variation. For 
example, when a locus encodes a protein whose function is dosage 
sensitive, the CNV-induced expression changes affect the pheno
type. However, if allelic variation is also present, such as if one al
lele is hypomorphic or null, two scenarios are possible: (1) the CNV 
affecting the deficient allele results in no or little phenotypic vari
ation or (2) the CNV affecting the normal allele results in magnified 
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phenotypic variation. Either way, focusing on either the allelic 
variation or the dosage variation alone only addresses part of the 
mechanisms at play. A more comprehensive approach, which in
tegrates both types of variations may be better suited to fully 
understand the genetic regulatory factors of complex traits.

Populus is an attractive system to study the interplay between al
lelic and dosage variation. It is dioecious and therefore an obligate 
outcrosser and its genome are highly polymorphic, both in terms 
of sequence polymorphisms and CNVs (Tuskan et al. 2006; Pinosio 
et al. 2016). Pollen irradiation is a widely used approach for inducing 
indel mutations in plants (Brewbaker and Emery 1961; Yang et al. 
2004), starting as early as the 1950s (Nuffer 1957; Mottinger 1970). 
In tree species, pollen irradiation followed by pollination has been 
well-established (Osborne 1957; Rudolph 1978). Gamma-induced 
indels, especially larger ones, are not typically retained in future 
generations because they are often associated with lethality in the 
gamete, where the copy number goes down to zero. In clonally pro
pagated crops such as Populus, on the other hand, they can be re
tained indefinitely. In a previous report, we described the 
establishment of a Populus F1 hybrid population (592 lines) from 
an interspecific cross between a wild-type P. deltoides mother and 
gamma-irradiated pollen from P. nigra (Henry et al. 2015b). 
Whole-genome sequencing analysis revealed that 58% of the F1 
lines carry large-scale insertions or deletions (indels). The size of in
duced indels varies from 250 kb to whole chromosomes. The num
ber of indels per line varies between 0 and 10, with 2.5 indels per 
individual on average. Indels from different lines can overlap such 
that each genomic region is covered by 1–31 indels and only 1.6% 
of the genome (6.2 Mb) is not covered by any indel at all.

Using this resource, we investigated the association between 
dosage variation across the genome and a variety of phenotypes. 
This resulted in the identification of “dosage QTLs” associated 
with biomass, phenology, leaf morphology, and vessel develop
ment traits (Bastiaanse et al. 2019, 2020a; Rodriguez-Zaccaro 
et al. 2021). Since both parental genomes are highly polymorphic, 
natural allelic variation is expected to play an important role in 
the observed phenotypic variation, but it was not taken into ac
count in these earlier studies.

Here, we aim to investigate whether allelic variation, and in this 
case, the differences between the two haplotypes within each par
ent, also influence these traits (allelic QTLs). Next, we aimed to 
document the possible interaction between natural allelic vari
ation and induced dosage variation in this population (Fig. 1). 
This Populus clonal system is superior to our study goal since it al
lows us to obtain replicated phenotypic information easily. In a 
subset of 343 F1 lines, all offspring of the same two parental clones 
from this Populus population, and detected both dosage and allelic 
QTLs. Our results suggest a limited overlap between QTLs asso
ciated with allelic and dosage variation. A custom method was de
veloped to assess the effect of both allelic and dosage variation in 
a joint model. The results indicated that allelic and dosage vari
ation affect traits independently. Detection of allelic QTLs in a 
subset of the population that does not carry large indels resulted 
in a different set of QTLs, suggesting that large-scale indels might 
mask the effect of allelic QTLs in the full population. Finally, direct 
integration of both types of QTLs makes the association between 
trait values and genetic information stronger.

Materials and methods
Data acquisition and preprocessing
Genomic sequencing data, RNA-seq data, and phenotypic informa
tion were obtained from previous studies (Henry et al. 2015b; 

Zinkgraf et al. 2016; Bastiaanse et al. 2019, 2020a). Briefly, an 
interspecific cross between wild-type P. deltoides and 
pollen-irradiated P. nigra produced 592 F1 hybrid lines. 
High-coverage Illumina short-read sequences were obtained 
from the two parental lines with read depth around 45× and 
65× for P. deltoides and P. nigra, respectively. Additionally, low- 
coverage Illumina genome sequences were obtained from each 
of the F1 hybrid clones (read depth around 0.5× per line). Leaf 
RNA sequencing was performed on 166 F1 lines, each in tripli
cates. The raw RNA-seq reads were pooled per clone and used 
to assist in haplotype phasing. The collection and statistical ana
lysis of phenotypic information were described in previous stud
ies (Bastiaanse et al. 2019, 2020a). Three categories of phenotypes 
—leaf morphology, phenology, and biomass—were used in our 
study (Supplementary File 1).

The preprocessing of sequencing data followed a custom pipe
line developed previously. It starts with a demultiplexing step per
formed using a custom pipeline (https://github.com/Comai-Lab/ 
allprep) for separating raw reads into individual libraries. Reads 
were aligned to the Populus reference P. trichocarpa v3.0 (Tuskan 
et al. 2006), using a custom Python script based on Burrows- 
Wheeler Aligner (Li and Durbin 2009) (https://comailab.org/data- 
and-method/bwa-doall-a-package-for-batch-library-processing- 
and-alignment/). Bam files were generated in this step, which 
were used to obtain a mpileup file using a custom Python package 
(https://github.com/Comai-Lab/mpileup-tools) based on 
Samtools (Li et al. 2009), followed by a simplification step to con
vert the mpileup file into a parsed-mpileup file.

Haplotype phasing
To describe the parental haplotypes, we identified heterozygous 
positions in each parent and determined the phasing between 
these positions, using a custom computational pipeline (https:// 
github.com/guoweier/QTL_manuscript). Specifically, we started 
by identifying single nucleotide polymorphisms (SNPs) that can dis
tinguish between two haplotypes within a parent (Supplementary 
Fig. 1a). In short, we selected two lists of SNPs, one for P. deltoides 
and the other for P. nigra. The example of P. deltoides SNPs selection 
is shown in Supplementary Fig. 1a. For P. deltoides, we selected posi
tions that exhibited heterozygosity in P. deltoides and homozygosity 
in P. nigra; or positions that showed heterozygosity in P. deltoides 
with different heterozygous allele combinations in P. nigra.

Next, we used RNA-seq data obtained from a subset of 122 F1 in
dividuals to derive phased parental haplotypes (Supplementary 
Fig. 1b). Briefly, we first used the RNA-seq raw data from the diploid 
F1 lines for haplotype phasing, after retaining the positions that are 
at least 20× read depth in the RNA-Seq data. Second, we treated 
RNA-seq raw data as genomic sequencing data, with the preproces
sing approaches that have been described above. Parsed-mpileup 
file with 122 RNA-seq lines was obtained after running the pipeline. 
Then, the RNA-seq parsed-mpileup file was used to identify inher
ited alleles from P. deltoides and P. nigra, respectively. Finally, we col
lected the adjacent SNPs combination orders and recorded the 
order as parental haplotypes when data from more than 90% (109 
out of 122) of RNA-seq lines were consistent with it.

Genotyping
The adjusted phased haplotypes were applied to low-coverage se
quencing data for genotyping. Specifically, for each SNP marker, 
genotype in F1 hybrids was only recorded when it inherited the al
ternative allele. Recorded genotypic information was then binned 
(50 SNPs per bin) to increase the robustness of genotype calls. As a 
control, the same genotyping process was applied to the RNA-seq 
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data. The transcriptomic genotypes and genomic genotypes were 
compared manually (all resulting figures can be viewed at https:// 
github.com/guoweier/QTL_manuscript). Next, for the individuals 
for which both genomic and RNA-seq data were available, we 
sorted the F1 lines based on the read-depth of the low-coverage 
genome sequencing data. We then selected a read-depth thresh
old based on the following: a) Genotypes based on the low-pass 
genomic data clearly show an expected pattern of recombination 
along the whole genome and, b) Genotypes obtained from the gen
omic and RNA-Seq data are consistent. Lines for which only gen
omic data was available were retained if genomic coverage was 
above this threshold. As a result, 343 lines were selected to pro
ceed for QTL analysis. Transcriptomic and genomic genotypes 
comparison of chromosome 1 on the selected F1 line with the low
est read-depth is shown in Supplementary Fig. 2.

Dosage variation quantification
Methods for quantifying dosage variation have been described in 
previous studies (Bastiaanse et al. 2019). Shortly, we defined bins 
based on indels breakpoints and tiled bins along the chromo
somes. For each bin, the dosage genotype was determined by com
paring the mean read coverage for each individual to the mean of 
the population. Dosage indicates the total copy number in any gi
ven bin. These F1 lines are diploids, so the background dosage 
number is 2. Since all dosage variation originates from P. nigra 
(Henry et al. 2015b), which is the paternal parent, we decided to 
only focus on the dosage changes in P. nigra. So the normal dosage 
state is 1, representing the F1 line carrying 1 copy from P. nigra. If 
an F1 clone carries a deletion which occupies 4 bins on chromo
some 10, the dosage genotype for these 4 bins was set to 0, while 
the rest of bins on chromosome 10 were set to 1. Dosage genotypes 

Fig. 1. Major goal of this study. a) Illustration of the Populus population used in this study and the main goal of this study. The F1 population came from an 
interspecific cross between P. deltoides (female) and P. nigra (male). The phenotypic differences can result from i) natural variation (D1/D2, N1/N2); ii) 
Radiation-induced variation (indels). Our main goal is to investigate the interplay between natural variation and induced variation. D1/D2: P. deltoides 
haplotype1 and haplotype2. N1/N2: P. nigra haplotype1 and haplotype2. b) Type of variation examined in this article. For natural variation, we are 
examining the SNPs between 2 haplotypes within P. deltoides, as well as the SNPs between 2 haplotypes within P. nigra. We are not testing the 
species-specific SNPs (P. deltoides vs P. nigra) in this study. For induced variation, we examined the radiation-induced indels.
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were acquired for all 343 lines for which SNPs genotypes were also 
obtained. An illustration diagram can be found in Fig. 2.

QTL analysis
To conduct a QTL analysis that simultaneously includes both al
lelic and dosage variation we employed a custom Python pipeline 
available at https://github.com/guoweier/QTL_manuscript. We 
generated a common marker list encompassing three types of 
variation: the P. deltoides haplotype, the P. nigra haplotype, and 
the dosage variation. First, we identified the physical positions 
of binned markers in P. deltoides and P. nigra genotypes, respective
ly. We then imputed genotypes in the unknown regions using in
formation from their flanking binned markers. For example, on 
the P. nigra genotype, marker 1 is Chr01_1_10000 with genotype 
N1 and marker 2 is Chr01_20000_30000 with genotype N1. So the 
genotype in Chr01_10001_19999 is N1. If two flanking markers 
contained different genotypes, or if there was a missing flanking 
marker, the genomic region in between was assigned as a missing 
value “NA”. Second, we built a common marker list for the two 
parents, using P. deltoides markers as the reference and imputed 
P. nigra genotypes based on the markers’ physical positions. 
Last, we applied the common marker to the dosage genotype 
and obtained the dosage value for each new marker.

Single models were established for analyzing the correlation 
between phenotypes and each variation type. The model is speci
fied as follows:

Yi = β0 + β1gti + εi 

where Yi is the phenotype; β0 is the intercept; β1 is the unknown 
coefficient; gti is one of the examining genotypes (P. deltoides 
haplotype or P. nigra haplotype or dosage); and ϵi is the residual 
variance. P. deltoides haplotypes were recorded as D1 or D2. P. nigra 

haplotypes were recorded as N1 or N2, while deleted regions were 
recorded as “NA”. The dosage of the P. nigra allele was recorded as 
0 (deletion), 1 (regular), or 2 (insertion). To establish a suitable 
threshold for identifying significant QTLs, we employed a permu
tation test approach (Doerge and Churchill 1996). In short, for 
each trait and each genotype (P. deltoides haplotype or P. nigra 
haplotype or dosage), the phenotype data from the 343 F1 lines 
were randomized. Next, a linear regression between trait values 
and marker values was calculated with all the markers along 
the genome. The maximum t-value was selected. This randomiza
tion process was repeated 1,000 times. Then, we selected the top 5 
and 1% of maximum t-values. In the observed dataset, the mar
kers with t-values larger than the 5% threshold were considered 
significant, and those larger than the 1% threshold were consid
ered as confirmed. Adjacent significant markers were considered 
as belonging to the same QTL.

To investigate how much phenotypic variance can be explained 
by each single QTL, we performed the QTL mapping using a multi
variate model including all markers located underneath that 
QTL and extracted the adjusted R-square values. For phenotypic 
variance explained by all QTLs associated with one trait, we 
took the most significant marker (marker with the largest t-value) 
underlying each QTL and ran a multivariate model including 
these selected markers. Integration of QTLs from allelic and dos
age variation followed a similar approach. For each trait, we col
lected the most significant marker from each QTL and fitted 
these markers into a multivariate model. Adjusted R-square va
lues were recorded.

We designed a custom approach to perform QTL mapping 
combining all three types of variation. In short, we collected 
the genotypic information (P. deltoides haplotype or P. nigra haplo
type or dosage) and assigned a State for each combined genotype. 
There were 10 possible States for the combined variable 

Fig. 2. Representative illustration of QTL analysis using both allelic and dosage variation information. QTLs detected from sequence variation between 
two haplotypes (D1/D2) of P. deltoides, sequence variation between two haplotypes (N1/N2) of P. nigra and dosage variation can all contribute to the same 
trait (here tree height). P. deltoides and P. nigra haplotypes were acquired through analysis of allelic variation within each parent (D1/D2 or N1/N2). Dosage 
information was obtained through the calculation of relative copy number states in each chromosome bin (see details in Material and Methods).
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(Supplementary File 2). Then, a linear regression was performed 
using the lm() function in R, which is specified as follows:

Yi = β0 + β1Statei + εi 

where Yi is the phenotype of the ith individual; β0 is the intercept; 
β1 is the unknown coefficient; Statei is the variable after combin
ing the three genotypes (P. deltoides haplotype or P. nigra haplo
type or dosage) information of the ith individual; and ϵi is the 
residual variance. Next, we performed pairwise comparisons of 
all present States using the function pairwisePermutationTest() 
in the R package “rcompanion” (Mangiafico 2020). Each compari
son pair was treated independently, which generated 45 compar
isons (Supplementary File 2). For each comparison, the P-values 
were collected and adjusted using the Benjamini and Hochberg 
(BH) method (Benjamini and Hochberg 1995). Adjacent markers 
were considered to belong to the same QTL. Last we identified 
the pairs of States that were significantly different to infer 
the possible genetic factors underlying the observed phenotypic 
variation. Specifically, QTLs were classified into 6 groups: 
deletion, deletion + insertion, insertion, P. deltoides, P. deltoides +  
P. nigra, and P. nigra (Supplementary File 2). The proportion of 
phenotypic variance explained by this custom QTL approach 
was determined using a method similar to that described above 
for QTLs from single models.

Differentially expressed gene analysis and GO 
enrichment analysis
Differentially expressed genes were identified and the ones located 
within allelic QTLs were recorded. For each QTL, extreme phenotyp
ic mutants (10 and 90% quantile) were selected, excluding the indel 
mutants having an indel under the QTL bins. Differential expression 
analysis were performed using the limma-voom method (https:// 
ucdavis-bioinformatics-training.github.io/2022-April-GGI-DE-in-R/ 
data_analysis/DE_Analysis_with_quizzes_fixed). Specifically, the 
estimated read counts were filtered such that only genes having 
more than 10 reads per million in at least 80% of the libraries 
were retained. P-values were adjusted using the Benjamin– 
Hochberg method (Benjamini and Hochberg 1995). Genes located 
under the QTL bins and with adjusted P-value < 0.05 were retained. 
The annotation information from Phytozome (https://phytozome- 
next.jgi.doe.gov/info/Ptrichocarpa_v3_1) was added for each gene.

GO terms for Populus genes were obtained from Phytozome 
(https://phytozome-next.jgi.doe.gov/info/Ptrichocarpa_v3_1). 
Enrichment analysis was performed by comparing GO terms 
of genes present in QTL bins against the genes expressed in leaf 
tissue. GO terms were considered suggestively enriched if the 
adjusted P-value (BH method) < 0.1.

Results
Deriving combined genotype and dosage 
information from low-coverage genome data
The Populus F1 lines (592) were originally sequenced at a low read 
depth (∼0.5× per line), which was sufficient to identify large-scale 
indels but was not sufficient to reliably haplotype and genotype 
each individual (Howie et al. 2009; Williams et al. 2012; Martin 
et al. 2016; Hager et al. 2020). Fortunately, RNA-seq data from 
122 of these F1 lines was also available, as well as Illumina short- 
read sequencing data from two parental lines (P. deltoides 45×, 
P. nigra 65×) (Henry et al. 2015b; Bastiaanse et al. 2020a). Using 
these resources, we designed a custom computational process 

to derive parental haplotypes and genotype the F1 lines for both 
parental contributions (Fig. 2 and Supplementary File 3; see 
Materials and Methods).

The process is divided into 3 steps: parental SNP detection, par
ental haplotype phasing, and genotyping. Because our population 
is an F1 population, polymorphisms between the two parental 
genomes are not informative. Instead, we characterized the 2 pairs 
of parental haplotypes separately. We first selected 37,556 and 
33,035 positions that were heterozygous in the parental clones 
of P. deltoides and P. nigra, respectively. Next, we used the 
RNA-seq reads from 122 diploid F1 lines to derive phased haplo
types for a subset of these SNPs for the two parents separately. 
Finally, the phased haplotypes were applied to the low-coverage 
genomic data (∼0.5× per line) to genotype the remaining F1 indivi
duals. In total, we were able to obtain reliable genotype informa
tion for 343 F1 lines (Supplementary Fig. 1c). Last, we generated 
binned markers (50 SNPs per bin) to increase genotype robustness, 
and a final common marker set of 507 binned markers was gener
ated for multi-genotype QTL analysis that applied to both the 
P. deltoides and the P. nigra genomes (Supplementary Fig. 3).

In terms of dosage variation, among the 343 remaining F1 lines, 
54.2% (186 out of 343) were previously characterized to carry 
at least one indel. Deletions were more prevalent (66.5%) than in
sertions (33.5%) among these indels, as observed in the original 
population (Henry et al. 2015b). As described previously, we char
acterized dosage variation in 546 dosage binned markers, with an 
average of 6 indels in each dosage marker (Bastiaanse et al. 2019, 
2020a; Rodriguez-Zaccaro et al. 2021). Finally, these dosage mar
kers were combined with the natural allelic information to obtain 
a unified marker list of 507 binned markers, for which we had 
gathered information about the P. deltoides haplotypes, the P. nigra 
haplotypes, and the dosage information for each of the 343 F1 
individuals.

Contributions of natural allelic variation and 
induced dosage variation on phenotypes can be 
assigned to QTLs
This population was previously characterized phenotypically 
(Bastiaanse et al. 2019, 2020a; Rodriguez-Zaccaro et al. 2021) for 3 
phenotype categories (38 traits): leaf morphology (22 traits), phen
ology (7 traits), and biomass (9 traits; Supplementary File 1). In our 
subset of 343 F1s, using a single model (Trait ∼ Genotype), QTLs 
were observed for 27 traits. Specifically, 9, 6, and 86 QTLs were 
identified from P. deltoides, P. nigra, and dosage genotypes, respect
ively (Table 1 and Supplementary File 4). Of the dosage QTLs 
detected here, 77.9% (67 out of 86) were detected in the previous 
analysis as well (Supplementary Fig. 4; Bastiaanse et al. 2019, 
2020a).

Overall comparison of the number of QTLs detected using the 
three single models reveals that dosage variation has the most pro
nounced impact on phenotypic variation (Fig. 3, Supplementary 
Figs. 5 and 6). Interestingly, QTLs observed from the 3 single models 
did not overlap with each other (Fig. 4), indicating that natural vari
ation in the two parental species, P. deltoides and P. nigra, and dosage 
variation may influence these traits independently.

To investigate to what extent indels can affect the identification 
of allelic QTL results, we selected the 157 lines from this F1 popula
tion that did not carry any indels and tested the identification 
of allelic QTL on this subset. In total, 1 and 8 allelic QTLs were 
identified from the P. deltoides and P. nigra parents, respectively 
(Supplementary Table 1 and Supplementary File 4). Interestingly, 
there were no common allelic QTLs between the subset population 
(157 lines) and the full population (343 lines). A subset of both sets 
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of allelic QTLs overlapped with previously published QTLs. For ex
ample, for the allelic QTLs in the full population, P. nigra QTLs on 
chromosomes 6 and 17 for phenology-related traits (bud burst) 
were consistent with previously reported allelic QTLs (Frewen 
et al. 2000; Rohde et al. 2011; Fabbrini et al. 2012). For the allelic 
QTLs in the subset population, P. nigra QTLs on chromosome 3 
for phenology-related traits (bud burst) and leaf shape were con
sistent with reported QTLs in Populus (Rohde et al. 2011; Xia et al. 
2018). These results suggest that the identification of allelic QTL 
in the full population is significantly affected by the presence of 
the large-scale indels, which could completely mask the effect of 
some or all of the allelic QTLs when present.

Coming back to the full population, allelic variation and dosage 
variation explained 4.94 and 11.27% phenotypic variance, respect
ively (Fig. 5a). To investigate whether combining the effects of nat
ural allelic variation and induced dosage variation can explain a 
larger percentage of the observed phenotypic variance, we used 
a multivariate model to detect allelic and dosage QTLs simultan
eously. We first selected 12 traits for which both allelic and dosage 
variation were associated with detected QTLs (Supplementary File 
5). Integration of QTLs from the three single models explained 
15.51% of the observed phenotypic variance in these 12 traits. 
This percentage was significantly higher than the percentage of 

variance explained by either allelic variation alone (Tukey’s test, 
P < 0.001) or dosage variation alone (Tukey’s test, P = 0.019; 
Fig. 5a and Supplementary File 6).

To investigate the molecular mechanism underlying the de
tected QTLs, we identified the genes located within the observed 
QTL regions and examined their differential expression levels 
based on the leaf transcriptomic data from our previous study 
(Bastiaanse et al. 2020a) (Supplementary File 7). GO enrichment 
analysis indicated that differentially expressed genes (DEGs) asso
ciated with allelic QTLs were suggestively enriched with transla
tion (0.05 < P-value < 0.1; Supplementary Fig. 7), while DEGs 
associated with dosage QTLs were significantly enriched with 
stress response processes (Bastiaanse et al. 2020a).

A combined univariate model helps refine our 
understanding of trait regulation
Allelic and dosage variation effects may also interact with each 
other. For example, dosage effects are expected to be different if 
the causal gene also carries a loss-of-function allele (Fig. 6). To 
better understand the interaction between the effects of natural 
allelic variation and induced dosage variation, we combined the 
information from the three variation types and assigned each 
combined genotype to a unique state. For example, D1.N1.1 on 

Fig. 3. Observed QTLs for phenology traits using single models. a) Number of lines carrying indels under each bin. b) Gene density across the genome. (c to 
e) QTLs detected from P. deltoides (c), P. nigra (d), and dosage (e) genotypes. The traits from outermost to innermost in each track are c) Color_y1_y2_y3, 
Drop_y1_y2_y3, Time_serie_color_y1_y2_y3, Time_serie_drop_y1_y2_y3; d) Bud_burst_y1_y2, Time_serie_bud_burst_y1_y2; e) Bud_burst_y1_y2, 
Color_y1_y2_y3, Drop_y1_y2_y3, Green_canopy_duration_y1_y2, Time_serie_bud_burst_y1_y2, Time_serie_color_y1_y2_y3, and 
Time_serie_drop_y1_y2_y3. Phenotypic data were obtained from previous reports, and detailed trait information is summarized in Supplementary File 1.
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marker 1 represents the individuals with P. deltoides haplotype 1, P. 
nigra haplotype 1, and 1 P. nigra copy for marker 1. In this model, 
all individuals fit into one of 10 possible states, and we can 

incorporate these integrated genotypic states into a univariate 
model, such as Trait ∼ States (Supplementary File 2). Next, pair
wise comparisons can be performed between groups in the 
different genotype states using linear regression. Loci exhibit 
significant phenotypic differences through pairwise comparison 
and were assigned as QTLs. We categorized these QTLs into 6 
groups (deletion, insertion, deletion + insertion, P. deltoides, 
P. nigra, and P.deltoides + P. nigra), according to the phenotypic dif
ferences between compared genotypic states (see Materials and 
Methods).

In total, we observed 163 QTLs from the combined model that 
belonged to 4 different groups [deletion, insertion, P. deltoides, 
and P.deltoides + P. nigra (Table 2 and Supplementary File 4)]. 
Among these 4 groups, most QTLs were associated with deletions 
(Fig. 4). This result is consistent with expectation from single 
models, since dosage variation was associated with QTLs much 
more often than allelic differences (Fig. 4). These findings are 
also illustrated in the Circos plots, where deletions (Fig. 7c, 
Supplementary Figs. 8c and 9c) are associated with most QTLs, 
followed by insertions (Fig. 7d, Supplementary Figs. 8d and 9d), 
and allelic variation (Fig. 7e, Supplementary Figs. 8e and 9e). 
These observations confirmed that dosage variation drives 
phenotypic variation for most traits in our population, while 
variation in parental haplotype did not strongly modulate the ef
fects of dosage variation.

The combined model detected only a few instances where the 
QTLs observed by different genotypes overlapped (Fig. 4). These 
QTLs were associated with leaf shape and localized on chromo
some 17 (Supplementary Fig. 9), where they were associated 
with both deletions and insertions. This result is consistent with 
the outcome from the single model analysis, indicating that dos
age and allelic variation may independently affect the examined 
traits.

Fig. 4. Number of QTLs detected from single and combined models. 
Single.dos: QTLs from the single model Trait ∼ Dosage. Single.Pd: QTLs from 
the single model Trait ∼ P. deltoides haplotypes. Single.Pn: QTLs from the 
single model Trait ∼ P. nigra haplotypes. Combined.del: QTLs associated with 
a deletion. Combined.ins: QTLs associated with an insertion. Combined.Pd: 
QTLs associated with the P. deltoides haplotypes. Combined.Pd.Pn: QTLs 
associated with an insertion and the P. deltoides and P. nigra haplotypes.

Fig. 5. Phenotypic variance explained using the single and combined models. a) Phenotypic variance explained by allelic and dosage variation using single 
models. 12 traits were selected for the observation of both allelic and dosage QTLs. On the x-axis, All represents the variance explained by all QTLs 
identified using the three single models. Allelic represents the variance explained by the collection of QTLs from P. deltoides and P. nigra haplotypes. Dosage 
represents the variance explained by dosage variation. b) Comparison of the percentage of phenotypic variance explained by the single and combined 
models. On the x-axis, Combined represents the variance explained by QTLs observed from the combined model. Single.Dos, Single.Pd and Single.Pn 
represent QTLs identified from three single models associated with dosage variation, P. deltoides haplotypes, and P. nigra haplotypes, respectively. 
Statistical significance was calculated through pairwise permutation tests (P-value < 0.05).
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Finally, we investigated the percentage of phenotypic variance 
explained by the QTLs identified using the combined model. To 
calculate phenotypic variance for each trait, QTLs belonging to 
the same trait were merged. Merged QTLs explained on average 
23.2% of the phenotypic variance, which is significantly higher 
than the variance explained from dosage variation only (on average 
10.6%) or P. deltoides haplotype variation (on average of 4.3%) (per
mutation test, P-value < 0.05), and is suggestively higher than 
only P. nigra haplotypes (on average of 5.1%; permutation test, 
P-value < 0.1) (Fig. 5b and Supplementary File 6). Meanwhile, we ob
served that the integration of QTLs from all three single models ex
plained a smaller percentage of the phenotypic variance than the 
QTLs from the combined model (12.2% vs 23.2%; permutation 
test, P-value < 0.05). Presumably, the increase originates from the 
QTLs identified using the combined model but not identified using 
the single models. Some of these QTLs were shown to be suggestive 
(0.05 < P-value < 0.1) when using the single models (Fig. 8a, chro
mosomes 3, 4), while others were not identified at all using the sin
gle model (Fig. 7, chromosome 14). These findings confirm the 
advantage of using a combined model approach.

Discussion
Identifying candidate genes underlying a target trait is a crucial 
step toward understanding the mechanisms affecting the trait, 
and for applying this knowledge to plant breeding. Quantitative 

trait loci (QTL) analysis, which typically correlates SNP to traits 
or phenotype-associated features such as gene expression and 
RNA alternative splicing (Brem et al. 2002; Li et al. 2016), is an effi
cient approach for this endeavor. Besides SNPs, other genetic fea
tures such as dosage variation (Bastiaanse et al. 2019, 2020a; 
Rodriguez-Zaccaro et al. 2021) can affect traits of interest. A un
ique Populus population, which carries natural allelic variation 
and induced dosage variation was previously established (Henry 
et al. 2015b). Previous analysis demonstrated few point mutations 
and small indels in this population (Henry et al. 2015b), indicating 
that preexisting SNPs and induced large-scale indels are the major 
sources of genetic variation in this population and presumably 
drive the observed phenotypic variation. In our study, we aimed 
to investigate the effects of natural allelic variation and induced 
dosage variation on quantitative traits. In general, our results in
dicate no overlap between QTLs from natural and dosage vari
ation in our system.

A single model approach was used to describe the correlation 
between each source of variation and target traits. P. deltoides 
and P. nigra genotypic information allowed for the identification 
of QTLs between different haplotypes within each parental spe
cies. Compared with previous QTL analysis in other Populus cross 
populations (Rae et al. 2009; Rohde et al. 2011; Fabbrini et al. 2012), 
our study found fewer allelic QTLs. As demonstrated by our re
search identifying QTLs in the subset of trees that do not carry 
large indels, this may be because the presence of many large 

Fig. 6. Representative diagram of possible interplay between P. nigra haplotypes and dosage variation. N1 (P. nigra 1) encodes a non-functional protein, 
while N2 (P. nigra 2) encodes a functional protein. Copy number changes on N1 have no effect on phenotypes, while copy number changes on N2 result in 
dramatic differences on phenotypic outcomes. Chromosomes inherited from P. deltoides (not shown) are always present in one copy.

Table 2. QTLs obtained using the combined model.

Phenotype 
(# of traits)

Groupsa Total # of QTL # of traits  
with QTL

Variance explained by  
single QTL (µ ± σ) (%)

Variance explained by all  
QTLs of a trait (µ ± σ) (%)

Biomass (9) deletion 14 6 7.6 ± 6.7 12.3 ± 5.6
Leaf (22) deletion 84 12 6.4 ± 4.2 27.1 ± 30.2

insertion 12 5 13.0 ± 12.0
P. deltoides 2 2 6.9 ± 1.1

Phenology (7) deletion 39 6 5.8 ± 4.4 24.5 ± 14.1
insertion 7 3 10.3 ± 7.0
P. deltoides + P. nigra 5 3 5.0 ± 1.1

a The observed QTLs were categorized into groups based on their origin: deletion, insertion, deletion + insertion, P. deltoides, P. nigra, P. deltoides + P. nigra. This table 
only shows groups for which QTLs were identified.
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indels may mask the observation of QTLs associated with natural 
allelic variation. For example, dosage-sensitive genes can play the 
trans-regulatory factors and affect large numbers of genes across 
the genome (Bastiaanse et al. 2020a). Interestingly, we found no 
overlap between the P. deltoides QTLs and the P. nigra QTLs. A pre
vious study (Rohde et al. 2011) also reported no overlap between 
P. deltoides and P. nigra QTLs when the two species were used as 
the two parents of the same population (P. deltoides × P. nigra), 
which is consistent with our results. However, in the same study, 
shared QTLs were observed if P. deltoides and P. nigra were used in 
different crosses (Rohde et al. 2011). This might be because, if both 
P. deltoides and P. nigra carry genetic variation at the same location 
and both parental genotypes affect the trait, the source of pheno
typic variation is more difficult to identify. Instead, when they are 
crossed with other Populus species, which do not carry variations 
that affect the trait, QTLs can be detected. With the current 
data, it is difficult to determine if the pathways that control these 
three phenotypic categories—biomass, leaf morphology, and 
phenology—are similar or not.

Dosage variation was induced by γ irradiation of P. nigra pollen 
and all resulting indels are located on the P. nigra chromosomes 
(Henry et al. 2015b). Therefore, we expected to observe some overlap 
between P. nigra allelic QTLs and dosage QTLs. For example, if the 
P. nigra QTL is associated with alleles affecting gene expression 

levels, then dosage and allelic variation would have similar effects, 
with decreased protein level to 0 in the case of deletion or increased 
levels to two-folds in the case of an insertion. According to this mod
el, both P. nigra QTL and dosage QTL act through dosage-dependent 
regulation of the target trait. The dosage-dependent behavior is con
sistent with additivity and has been described as the basis for quan
titative variation (Lukens and Doebley 1999; Frary et al. 2000).

Surprisingly, dosage QTLs and allelic QTLs do not overlap 
(Fig. 4). There can be multiple reasons for this outcome, depending 
on the mechanisms underlying the QTL at hand. For loci that dis
play only allelic QTL, the impact of 1× to 2× constitutive dosage 
variation might be insufficient to affect protein function, whereas 
allelic variation could potentially affect gene function through 
more drastic modifications, such as significantly altering the ex
pression pattern, or directly affecting the protein function if there 
are changes in the amino acid sequence. It is also possible that 
dosage variation at those loci was absent or too infrequent in 
the indel population for the detection of a dosage QTL effect. 
Indeed, over 50% of the P. nigra loci are connected to fewer than 
5 indels (Henry et al. 2015b), limiting the statistical power of our 
dosage QTL analysis. Finally, gene dosage compensation is an
other possible explanation, in which the structural gene dosage 
effect is canceled by an inverse regulatory effect, exerted either 
within the same locus or from an unlinked region (Birchler et al. 

Fig. 7. Observed QTLs for the phenology traits using the combined model. a) Number of lines carrying indels under each bin. b) Gene density across the 
genome. (c to e) QTLs detected based on variation in deletion (c), insertion (d), and P.deltoides + P.nigra haplotypes (e). The traits from outermost to 
innermost in each track are c) Bud_burst_y1_y2, Color_y1_y2_y3, Drop_y1_y2_y3, Green_canopy_duration_y1_y2, Time_serie_bud_burst_y1_y2, 
Time_serie_drop_y1_y2_y3; d) Color_y1_y2_y3, Drop_y1_y2_y3, Time_serie_drop_y1_y2_y3; e) Color_y1_y2_y3, and Time_serie_bud_burst_y1_y2, 
Time_serie_color_y1_y2_y3.
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1990; Birchler and Veitia 2012). The combination of these two op
posite effects would result in no significant change of gene expres
sion. Conversely, for loci for which only dosage QTLs were 
detected, it is possible that natural allelic variation is not present 
at these loci, or that it has too subtle an impact to affect the asso
ciated phenotype. The gene balance hypothesis can explain the 
success in detecting dosage QTLs and the failure of detecting alle
lic QTLs in the case of genes encoding proteins that are part of 
multisubunit complexes. According to this hypothesis, traits 

regulated by multisubunit complexes are particularly sensitive 
to dosage. Copy number variations involving the genes encoding 
these subunits can perturb their stoichiometry, leading to a dra
matic alteration in the protein complex function and, ultimately, 
impacting the connected traits (Birchler and Veitia 2012). On the 
other hand, sequence variation with subtle effects would be diffi
cult to identify (Birchler and Veitia 2021).

Integration of QTLs from dosage and allelic variation, compared 
to either allelic QTLs or dosage QTLs alone, significantly improved 

Fig. 8. Examples of QTLs identified using the single and combined models on the phenology-related trait Time_serie_bud_burst_y1_y2. Each dot 
represents a genetic marker. The X-axis indicates genomic positions. The y-axis indicates the LOD scores (a) or adjusted P-value with negative log10 fold 
(b, c). Dots above the horizontal lines were selected as QTLs. These QTLs were categorized as observed only in the single models (triangle arrow), only in 
the combined model (double arrows) and in both single and combined models (single arrows). a) LOD scores of genetic markers from three single models. 
Top: Trait ∼ Dosage; Middle: Trait ∼ P. deltoides haplotype; Bottom: Trait ∼ P. nigra haplotype. (b, c) Combined model categorized QTLs into 6 groups based 
on their origin. Deletion (b) and P. deltoide + P. nigra (Pd + Pn) (c) groups are shown here because QTLs were identified in these comparisons. b) Each plot 
represents one pairwise comparison between two genotype states for which genotypes are equal but dosage varies. c) Each plot represents one pairwise 
comparison between two genotype states for which dosage is equal but the P. deltoides and P. nigra haplotypes vary.
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the percentage of variance explained (Fig. 5a). These results suggest 
that a large proportion of the phenotypic variation was caused by 
the induced large-scale indels, but not all of it. Some of the pheno
typic variation is caused by natural allelic variation, and taking 
both the allelic and dosage variation into account improves pheno
typic prediction. However, the integration of all identified QTLs 
from the single models explained, on average, only 12.2% of the ob
served phenotypic variance, indicating that the majority of the 
variance remains unexplained. This could be due to the interaction 
between allelic and dosage variation. For example, dosage effects 
are expected to be allele-sensitive if the responsible gene is hetero
zygous for a null allele (Fig. 6). As a result, single models focusing 
solely on natural allelic variation or induced dosage variation are 
not able to identify these interactive effects.

We next developed a combined model including all variation 
types. We categorized the QTLs into 6 groups based on the following 
types of variation: deletion, insertion, deletion + insertion, P. deltoides 
haplotypes, P. nigra haplotypes, and P. deltoides + P. nigra haplotypes. 
Most QTLs were associated with dosage-related groups, with dele
tions being the most common cause, followed by insertions. QTLs as
sociated with allelic variation (P. deltoides, P. nigra, and P. deltoides + P. 
nigra haplotypes) were the least common. Most QTLs were observed 
within dosage-related groups. Possibly, this is because dosage var
iants were newly induced and have not experienced selection. 
There was no overlap between allelic and dosage QTLs, which is con
sistent with the results obtained using the single models.

Taken together, we investigated the contribution of natural al
lelic variation and induced dosage variation in F1 Populus hybrids 
on quantitative traits. We found no overlap between allelic and 
dosage variation QTLs, suggesting that the naturally occurring 
sequence polymorphisms and the induced structural variation in
fluence the traits under different constraints and through differ
ent mechanisms. Integrating the QTLs from allelic and dosage 
variation significantly increased the proportion of phenotypic ex
plained variance compared to considering only allelic or dosage 
QTLs. A new method was designed to include all types of variation 
simultaneously for QTL analysis, and it was applied to investigate 
the interaction between allelic and dosage variation in detail. This 
novel approach significantly increased the explained proportion 
of phenotypic variance and revealed that genomic fragment dele
tion had the most pronounced effect on traits. The future direc
tion would be to identify responsible genes within the QTL 
intervals as a next step toward helping the development of 
Populus clones with commercial benefits.

Data availability
The sequences reported in this paper were previously deposited 
(Henry et al. 2015b; Bastiaanse et al. 2020a) and can be found in 
the National Center for Biotechnology Information BioProject 
Database (BioProject ID: PRJNA241273 and PRJNA646735) (Henry 
et al. 2015a; Bastiaanse et al. 2020b).
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