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Abstract

Classical Approaches to Understanding Quantum Systems
by
Seung Woo Shin
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Umesh V. Vazirani, Chair

While the exponential complexity of quantum systems is the basis of counterintuitive
phenomena such as quantum computing, it also represents a fundamental challenge: how can
we, classical beings, study, understand, and control quantum systems that are exponentially
more powerful than ourselves? In this dissertation, we present classical methods to approach
two such issues.

Firstly, we discuss the testing of quantum devices, particularly special-purpose quantum
computers. We propose a simple classical model for quantum annealers, arguably the most
intensely explored class of special-purpose quantum computers. The model provides a bench-
mark against which to compare the quantum annealer, in what may be called a “quantum
Turing test,” to determine whether the quantum annealer exhibits algorithmically significant
quantum behavior. An application of the test reveals that the input-output behavior of the
benchmark agrees with published data from the D-Wave One quantum annealer on random
instances of its native problem on 108 qubits, and closely matches the reported performance
of D-Wave 2X on special instances devised to exercise quantum tunneling. In other words,
the machine does not pass the quantum Turing test with respect to these inputs. A more
detailed analysis of the new classical model yields further algorithmic insights into the nature
of quantum annealing.

Secondly, we show that commuting stoquastic quantum k-SAT, an interesting variant
of the local Hamiltonian problem, is in NP for any k& = O(logn). The result follows from
a study of the computational complexity of tensor network nonzero testing, a fundamental
problem in quantum Hamiltonian complexity. We show that the problem in its most general
form is computationally very hard, i.e., not contained in the polynomial hierarchy unless
the hierarchy collapses. On the other hand, we are able to identify two “easy” special
cases of tensor network nonzero testing, namely nonnegative tensors and injective tensors,
which may be useful in certain contexts. Indeed, our main result follows by exhibiting a
direct connection between the special case of nonnegative tensor networks and commuting
stoquastic quantum k-SAT.



To my family



i

Contents

Contents ii
List of Figures iv
1 Introduction 1
1.1 Testing of a quantum computer . . . . . . . .. ... 2

1.2 Tensor network nonzero testing . . . . . . . .. ... ... L. 4

1.3 Outline of the thesis . . . . . . . . . . . .. ... .. .. ... 5

2 Background 7
2.1 Quantum computing: the new limit of quantum mechanics . . . . . . . . .. 7
2.2 Three principles of quantum mechanics . . . . . . . ... ... ... ... .. 10
2.3 Complexity of quantum systems: the local Hamiltonian problem . . . . . . . 14
2.4 Quantum Hamiltonian complexity: connections to condensed matter physics 17
2.5 Tensor networks . . . . . . . ... 20
2.5.1 Basicconcepts. . . . . . . . ... 20

2.5.2  Computational aspects . . . . . . . . ... ... L 27

3 A Turing Test for Quantum Annealers 30
3.1 Introduction . . . . . . . . .. 30
3.1.1 Related work . . . . . . . . ... 32

3.1.2  Preliminaries . . . . . . . . . ... 33

3.1.2.1 Pauli matrices . . . . .. ... ... 33

3.1.2.2 Bloch sphere . . . . .. ... ... ... ... 34

3.1.3 Introduction to quantum annealing . . . . ... .. .. ... ... .. 35

3.1.3.1 Top-down approach to quantum computing . . . .. .. .. 35

3.1.3.2 Adiabatic quantum computing . . . .. ... .. ... L. 37

3.1.3.3  Quantum annealing . . . . ... ... .. ... ... 38

3.2 Quantum Turing test . . . . . . . . ... 41
3.3 Classical models for quantum annealers . . . . . .. . ... ... ... .... 42
3.3.1 Simulated annealing . . . ... ... ... 0L 43

3.3.2 Simulated quantum annealing . . . . . .. ... ... L. 45



3.4

3.5

3.6

3.3.3 Classical spin dynamics . . . . . . .. .. .. ... L.
334 Ourmodel . . . . . ...
Benchmarking the D-Wave machine . . . . . . . . . ... ... ... .....
3.4.1 Random instances of the D-Wave native problem . . . . .. ... ..
3.4.2 Eight-qubit motif problem of Vincietal. . . . . . ... ... ... ..
3.4.3 Sixteen-qubit motif problem of Boixoetal. . . . . . . ... ... ...
Discussion . . . . . . . .
3.5.1 Synchronized flipping of spins . . . . . . ... ...
3.5.2 Deterministic behavior . . . . . . ... ... 000
Conclusions . . . . . . . . .

4 Tensor Network Nonzero Testing

4.1

4.2

4.3

4.4

4.5
4.6

Introduction . . . . . . ..o
4.1.1 Tensor networks in quantum Hamiltonian complexity . . . . . . . ..
4.1.2 Counting problems vs. decision problems . . . . . . . ... ... ...
4.1.3 Commuting local Hamiltonians . . . . . .. .. ... ... ... ...
Preliminaries . . . . . . . ...
4.2.1 Polynomial hierarchy . . . . . . . . .. ... ... ... .. ... ...
4.2.2 Physical interpretations of tensor networks . . . . . .. ... ... ..
4.2.3 Commuting local Hamiltonians . . . . . .. .. ... ... ... ...
4.2.4 Quantum k-SAT . . . . . ..
4.2.5 Stoquastic Hamiltonians . . . . . . . . ... ... ... ...
4.2.6 Tensor network nonzero testing . . . . . .. .. ... ... ...
Hardness of tensor network nonzero testing . . . . . . ... .. ... .. ...
4.3.1 Generalized tensor network nonzero testing . . . . . . ... ... ...
4.3.2 Tensor network nonzero testing . . . . . . . .. ... ... ... ..
Special cases of tensor network nonzero testing . . . . . .. ... ... L.
4.4.1 Nonnegative tensor networks . . . . . . . . ... ...
4.4.2 Injective tensor networks . . . . . .. ...
Connections to quantum Hamiltonian complexity . . . . . .. ... ... ..
Conclusions . . . . . . . . .

5 Conclusions

Bibliography

il

46
46
49
52
53
60
65
65
68
69

70
70
70
71
73
75
75
76
7
77
78
78
79
79
80
82
82
33
87
88

90

92



List of Figures

2.1

2.2

2.3

24

2.5

2.6
2.7

2.8

2.9

Rewriting a quantum state in two different bases. For convenience in illustration,
we are assuming that [t), |u), |ut) are real vectors. . . . .. ... ... ... ..
A schematic representation of a 3-local Hamiltonian H = ), H;. Each term H;
acts on at most three particles at a time. . . . . . . . . . ... ... ...
An illustration of translation invariance on a 3 x 3 2D lattice. If each node
represents a d-dimensional particle, A and B will be d? x d? matrices. For each
vertical edge (,7), we take the tensor product of the matrix A that acts upon
particles ¢ and j and the identity matrix that acts upon all other particles to
obtain H; ;. For each horizontal edge (i, j), we similarly take the tensor product
of the matrix B that acts upon particles ¢ and j and the identity matrix on all
other particles. Our translationally invariant 2-local Hamiltonian will simply be
defined as H =3 ocpHijo o oo oo oo
An example tensor network with two tensors of rank 3. Fach tensor has two
open edges and one closed edge, and it is assumed that every edge has a bond
dimension of two. Labeling each edge with either 0 or 1, the input to each tensor
is completely specified, so that it can output a complex number. The value of
the tensor network at this labeling is simply defined as the product of these two
complex numbers. . . . . .. ..
A pictorial illustration of how a tensor of rank 3 with bond dimension 2 on each
edge can be interpreted as a 23-dimensional vector, a 2 x 22 matrix, or a 2% x 2
matrix. Namely, in this notation a tensor is interpreted as a linear map from a
vector space whose basis vectors are indexed by its upper edges to another vector
space whose basis vectors are indexed by its lower edges. . . . . . . .. ... ..
Tensor product of three vectors [¢1), [102), and |bs). . . . . . . Lo
Inner product of two vectors [i1) and |i)9). Note that prior to the joining of
the edges, one of the vectors (in this case [¢)9)) needs to be modified so that the
modified vector’s outputs are complex conjugates of the original vector’s outputs.
This is why the bottom vector on the right-hand side is labeled (15| instead of
)
Matrix multiplication of a 2 x 22 matrix A and a 22 x 2 matrix B, which yields
a2x2matrix C. . . . .
Trace of a 2% x 2 matrix A. . . . . . . ...

v



2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8

3.9

3.10

3.11

Partial trace of a 2% x 2* matrix A over the third and fourth particles. . . . . .
Tr(AB) = (flatten(A), flatten(B)) for real matrices Aand B. . . . . . . ... ..
Tr(ABC) =Tr(BCA) =Te(CAB). . . . . ... . o ..
Swallowing of a tensor network. . . . . . . . .. ...
A matrix product state. . . . . . ...
The tensor network corresponding to (¢|O|¥). . . . . ... ..o

A Turing test. . . . . . .
The Bloch sphere representation of one-qubit state [¢) = cos (£) [0) +€'*sin (£) |1).
A schematic illustration of quantum tunneling vs. classical thermal fluctuations.
Classical 2D spins. Since the state of each individual qubit is fully described by
the corresponding 2D vector, no entanglement is possible between these qubits. .
The annealing schedule of D-Wave One (figure adapted from the supplemen-
tary materials of [24]). In the actual implementation, the effective schedule may
slightly vary from spin to spin (see the supplementary materials of [24] for details).
The “Chimera” interaction graph of D-Wave One (figure adapted from the sup-
plementary materials of [24]). Due to issues in implementation, not all of the
vertices on the Chimera graph represent working qubits on the device. The de-
fective qubits are colored grey and are excluded from experiments. . . . . . . . .
Histogram of success probabilities of D-Wave One, our classical model, and sim-
ulated annealing (SA). Unlike simulated annealing, the D-Wave machine and our
model exhibit a clear bimodal distribution. The histogram for simulated anneal-
ing (right panel) was borrowed from [24]. . . . . . .. ... .00
Correlation between D-Wave and our model. Each simulation of our model con-
sisted of 150,000 steps, following the annealing schedule of D-Wave One from
Figure 3.5. The system temperature of 7' = 0.22GHz ~ 11mK was used. The
(Pearson’s) correlation coefficient R between the D-Wave One and our model is
about 0.91. . . . . .
Correlation between simulated quantum annealing of [24] and our model. The
correlation coefficient R is about 0.99. . . . . . . . . ...
The eight-qubit motif problem proposed in [116], which can be mapped to a single
supernode of the D-Wave machine. All couplings are ferromagnetic, whereas there
is a local z-field applied in the positive direction for the four “core” spins, and
in the negative direction for the four “peripheral” spins. Formally, the final
Hamiltonian is defined as Hy = — >, hjof — >, . JijofoF. The local field h; is
set to be 1 if 7 is a core spin, and —1 otherwise. The coupling strength J;; = 1
for every edge {i,j}. Figure is borrowed from [116]. . . . . . . .. . .. ... ..
The solid curves represent the annealing schedule of D-Wave Two. Dotted blue
curves represent the effective annealing schedule for cases a = 0.2834 and o =
0.1099. The dotted black line represents the system temperature. Figure is
borrowed from [116]. . . . . . . . ..

35
40



3.12

3.13

3.14

3.15

3.16

3.17

3.18
3.19

vi

Experimental and numerical results from [116]. DW2, ME, SA, SD, and SSSV
represent D-Wave Two, quantum adiabatic Markovian master equation (expo-
nential quantum simulation), simulated anneailng, classical spin dynamics, and
our classical model respectively. Pgg denotes the probability of finding one of the
seventeen ground states. Figure is borrowed from [116]. . . . . . .. .. ... .. 57
Simulations of our classical model with Gaussian local noise. The model produces
a behavior similar to that of the D-Wave machine or quantum adiabatic master
equation from Figure 3.12. The model was simulated for 1,500 steps at the system
temperature of T' = 0.22GHz. Ten thousand runs were performed for each value
of . . . L 58
Further simulations of our modified classical model reproduce various other signa-
tures suggested in [116]. The top-left panel, which plots the trace-norm distance
[84] between the simulated state at the end of the annealing process and the Gibbs
state for the final Hamiltonian, is a good qualitative fit to the experimental data
presented in Figure 14 of [116]. The top-right, bottom-left, and bottom-right
panels are simulation results on larger instances of the problem with 12, 16, and
20 spins respectively (for details about the construction of these instances, see

[116]), and are consistent with the experimental results from Figure 10 of [116]. 59
The sixteen-qubit motif problem proposed in [23], which can be mapped to two
adjacent supernodes of the D-Wave machine. Figure is borrowed from [43]. . . . 60

The success probabilities of various algorithms as the annealing temperature T’

is varied. The data points represent the D-Wave machine, quantum simulations
based on master equations (NIBA and Redfield), simulated quantum annealing
(PIMC-QA), and our classical model (SVMC). Figure is borrowed from [23]. . . 61
A 945-qubit instance constructed in [43] using Boixo et al.’s 16-qubit motif prob-

lem as a building block. Black indicates a strong cluster spin and grey indicates

a weak cluster spin. Couplings between neighboring strong clusters are chosen to

be either ferromagnetic (blue) or antiferromagnetic (red) at random. Figure is
borrowed from [43]. . . . . ..o 62
A modified annealing schedule used in our quantum Turing test. . . . . . . . . . 63
Performances of various algorithms on the instances of [43]. The data points for
D-Wave 2X, simulated quantum annealing (SQA), and simulated annealing (SA)

were taken from [43]. Each run of our classical model consisted of 2,000 steps and

the system temperature of 7' = 0.22GHz ~ 11mK was used. Once the success
probability s is estimated for each instance, the time to find the optimal solution

with 99% probability is calculated as (runtime for one run on a single core)/(# spins)-
log(1=0-99) " here the factor 1 /(# spins) accounts for the amount of parallelism

log(1—s)
inhgerent in the D-Wave machine. . . . . . . . . . . . . ... 64



3.20 The performance of our model on a single instance of the 16-qubit motif problem.
The success probability clearly decreases with annealing temperature T', a behav-
ior which was interpreted in [23] as a signature of quantum tunneling. Compare
to the D-Wave data in Figure 3.16. . . . . . . . . . . .. . ... ...

3.21 Role of transverse field. The right panel is a snapshot of a typical simulation run
on the 108-qubit instances of [24], where the z-components of all 108 spins are
plotted in decreasing order. . . . . . . . ... ...

3.22 The first “branching point” of instance 13-55-29 at t = 0.13. There are two
alternatives considered by the model at this point, i.e. H(0.13) has two distinct
local minima up to the two-fold symmetry of flipping all spins. Blue dots indicate
the “difference” between these two alternatives, i.e. blue dots represent the spins
on which the signs of z-components differ between the two alternatives. The
Chimera graph figure was borrowed and modified from [24]. . . . ... ... ..

4.1 The polynomial hierarchy. . . . . . . . .. . .. ... ... ...
4.2 The computational complexity of the commuting local Hamiltonian problem is
not known in the general case. . . . . . . . ... ... L.
4.3 When a tensor network is viewed as a quantum state or operator, open edges
(dashed lines) are interpreted as corresponding to the physical particles. . . . . .
4.4 (a) An example tensor network T. (b) The subnetwork of T" induced by vertices
{v1,v2}. Note that the edges (vi,v4) and (vq, v3) are treated as open edges in the
subnetwork. Namely, E:‘}hys(S ) contains the dashed open edges in (b), whereas
EY*(S) contains the solid open edges. . . . . . . . .. .. ... ... ... ..
4.5 Illustrating the proof of Theorem 4.6. . . . . . . . . . . ... ... ... .. ...
4.6 The tensor network 7" in the proof of Theorem 4.7. In this example, L = {v;},
Si=A{ve,...,vprf,and R={w,}. . . ..o

4.7  An example tensor network representation of IT. . . . . . . . ... ... ... ..

vil

85



viil

Acknowledgments

First and foremost, I thank my advisor Umesh Vazirani. Looking back on the years I spent
here at Berkeley, I can only vaguely trace the paths that I have trodden and Umesh guided me
to tread. I came to Berkeley knowing that I wanted to learn quantum physics and quantum
computing but knowing practically nothing about them. How could it be that all the things
that happened happened, I do not know. One thing I remember well is that I enrolled in
Umesh’s quantum computing course in my first year and it was the most interesting course
I had ever taken. And ever since, my life was only about chasing the small and immediate
goals that lay before me. Therefore, if these small steps have somehow converged to a larger
theme, I take no credit for that; it probably happened thanks to Umesh’s careful guidance
and by virtue of the environment. I take credit only for the mechanical work that was
necessary to make the small steps.

I thank Zeph Landau and Sev Gharibian for showing me what it means to be a researcher.
I am especially grateful to Zeph for teaching me the tensor network formalism, which became
an invaluable part of my skill set. I thank Dorit Aharonov, Rahul Jain, Guy Kindler, Ashwin
Nayak, and Miklos Santha for hosting me at their institutions at various times and for the
wonderful experiences that only they could make possible. 1 thank the Berkeley theory
group professors Christos Papadimitriou, Prasad Raghavendra, and Satish Rao for setting
such high examples. I learned a lot watching their brilliant minds at work.

I thank Satish Rao and K. Birgitta Whaley for being on my dissertation committee
and for their guidance in the writing of this thesis. I also acknowledge useful discussions
with Tameem Albash, Sergio Boixo, Yichen Huang, Daniel A. Lidar, Daniel Nagaj, Troels
Rgnnow, Graeme Smith, John A. Smolin, and Matthias Troyer during research that was to
become the body of this thesis.

Last but not least, I would like to acknowledge the past and present members of the
Berkeley theory group — Nima Anari, Anand Bhaskar, Jonah Brown-Cohen, Siu Man Chan,
Siu On Chan, Paul Christiano, James Cook, Anindya De, Rafael Frongillo, Fotis Iliopou-
los, Varun Kanade, Jingcheng Liu, Peihan Miao, George Pierrakos, Alex Psomas, Aviad
Rubinstein, Manuel Sabin, Aaron Schild, Tselil Schramm, Jarett Schwartz, Piyush Srivas-
tava, Isabelle Stanton, Ning Tan, Greg Valiant, Thomas Vidick, Di Wang, Tom Watson,
Ben Weitz, Chris Wilkens, and Sam Wong — for the invigorating discussions, inspiration,
and most importantly the fun. I extend my special thanks to my only classmate Antonio
Blanca for our shared struggles and escapades in the earlier days of PhD effort, and my fellow
quantum students Urmila Mahadev, Anupam Prakash, and Guoming Wang for helping me
activate the non-classical part of my brain.



Chapter 1

Introduction

The potential enormous computational power of quantum systems was recognized in as early
as 1980’s, when e.g. Feynman [51] observed that the number of parameters required to specify
the quantum state of an n-particle system grows exponentially in n. This exponential na-
ture of quantum systems has since motivated close collaborations between computer science
and quantum physics and led to the birth of several new fields dedicated to studying these
connections, such as quantum computing, quantum information science, quantum cryptogra-
phy, and quantum Hamiltonian complexity. While being a crucial resource in these quantum
technologies, this same exponential power also presents a formidable challenge; namely, how
can we, classical beings, hope to study, understand, and control quantum systems which
are much more complex and powerful than ourselves? To add to this difficulty, the laws of
quantum mechanics severely limit the accessible information about the quantum state of a
system to be linear in the number of particles [71]. Thus both science and engineering seem
to require fundamentally new approaches in the quantum realm, where techniques we often
take for granted, such as simulation or verification, become intractable.

In the literature, the challenge of dealing with high complexity quantum systems has
been formulated prominently in two different contexts. Firstly, it has been observed that the
testing of quantum computers poses a unique challenge, largely due to the gap in computa-
tional power between the quantum computer and the classical tester. Can the classical tester
verify that the quantum computer is indeed performing the desired computation? Or, if the
quantum computer is cheating, can the classical verifier catch it? Remarkably, a sequence of
results [34, 1, 18, 52, 19, 92] shows that the framework of interactive proofs from complex-
ity theory provides an effective approach to this problem. In particular, these techniques
allow a fully classical verifier to command two entangled but non-communicating quantum
computers [92], or a classical verifier with capacity for constant-size quantum computation
to verify a fully universal quantum computer [34, 1]. Unfortunately, it is not clear whether
these techniques can be adapted to work for a wider range of quantum systems that do not
fit into these scenarios.

Secondly, the exponential nature of quantum systems is a major obstacle to understanding
physical properties of matter. In quantum many-body physics, in which a given material is
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often modeled using local Hamiltonians whose terms act on a constant number of neighboring
particles, the ground states of such Hamiltonians determine the properties of the material
at low temperatures. In view of the exponential description complexity of quantum states,
this naturally leads one to consider the following question: when do the ground states of
local Hamiltonians admit an efficient classical description? In full generality, the problem
of finding the ground state of a local Hamiltonian is known to be QMA-hard [78], which
effectively says that there is no general way to classically access the ground states of local
Hamiltonians. On the other hand, recent advances in quantum Hamiltonian complexity allow
us to circumvent some of these difficulties by exploiting structures of local Hamiltonians that
naturally arise in physics — indeed, ground states of some such “physical” Hamiltonians are
known to be efficiently computable (see e.g. [56] for a survey). While this gives us some
hope that most physical systems may turn out to live in a small corner of the Hilbert space
in which efficient computation is possible, many systems still remain outside of the reach of
any classical approach and are waiting to be explored.

This thesis attempts to advance the state of the art with respect to these challenges by
presenting two purely classical methods for understanding quantum systems. Firstly, we
develop a classical benchmark for quantum annealing which can be used to test for quantum
coherence or quantum speedup in a given implementation. Secondly, we investigate the
possibility of classically verifying ground states of certain local Hamiltonian problems, via
a fundamental problem called tensor network nonzero testing. We hope that the methods
presented in this thesis will continue to play a role in future research on these topics.

1.1 Testing of a quantum computer

In general, the testing of quantum devices is a particularly vexing issue both because the
laws of quantum mechanics severely limit the accessible information about the quantum
state of a system [71], and because of the exponential gap in computational power between
the quantum device and the classical tester. The nature of this challenge can perhaps be
well summarized in the following analogy: suppose we had an extraterrestrial friend K, who
claims he can travel near the speed of light. Every now and then, K begins to tell us stories
about the exquisite cuisine on Sirius B, the sophisticated culture of Alpha Centauri, and
so on and so forth. While we are generally amused by these stories, we wonder whether
there is any way for us to verify the authenticity of his claims. Unfortunately, being mere
human beings, we are utterly unable to travel with him to these places ourselves. Despite
this disadvantage, can we still somehow ensure that K was indeed in Alpha Centauri last
Thursday, or that he can actually travel at the speed he claims?

Of course, there are certain claims about quantum computers that can be tested using
the existing theory of quantum computing. For instance, Shor’s algorithm for factoring
[102] is known to be able to factor numbers exponentially faster than the best classical
algorithm. Since the solution to a factoring problem can be easily verified by multiplying
the returned factors, factoring of very large numbers can be used to test whether a given
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quantum computer is capable of an exponential quantum speedup. On the other hand, an
implementation of Shor’s algorithm would only test the machine with respect to one specific
problem, which raises the natural question of whether there is a way to test it for more
general problems. Remarkably, recent results on the testing of quantum computers [34, 1,
18, 52, 19, 92] provide a proof of principle that this is indeed possible for arbitrary BQP
computation. A major open question in this line of research is whether a fully classical
verifier can test a single quantum machine without resorting to the additional assumption
of two-party entanglement or ability to perform constant-size quantum computation.

On the other hand, while such schemes would provide a clear-cut and unambiguous test
for universal quantum computers, they tend to demand that the quantum computer that is
being tested implements a rather strong model of quantum computation. For instance, even
if the actual computation to be verified is very simple, the testing protocol might require
the quantum computer to perform arbitrarily complex BQP computation. Therefore, these
schemes do not address the testing of special-purpose quantum computation. This is a serious
shortcoming, especially since general-purpose quantum computation presents an enormous
engineering challenge which is not expected to be overcome in the next decade.

In fact, there has been more optimism about the possibility of building large-scale special-
purpose quantum computers in recent years, partly due to these challenges in achieving
general-purpose quantum computation. Instead of investing too much effort into improving
and verifying the elementary components of a quantum computer, the engineering of special-
purpose quantum computers often follows a “top-down” approach, which aims to first build
some quantum system that achieves nontrivial quantum coherence and only then tries to
find interesting computational problems that could be mapped to that system. In particular,
quantum annealing, which can be thought of as a heuristic implementation of adiabatic
quantum optimization [49], proposes a promising approach to finding the ground state of a
given classical Hamiltonian, which is an NP-hard optimization problem.

The first contribution of this thesis is a classical benchmark for the quantum annealer,
arguably the most intensely explored class of special-purpose quantum computers. In par-
ticular, we show that our classical benchmark provides a way to test these machines via
exclusively classical methods. This may be viewed as an adaptation of the famous Turing
test for artificial intelligence, which was designed to address the question “Can machines
think?” The Turing test provides an elegant approach to this question by focusing solely on
the black box behavior of the machine, thus avoiding many subtle issues around the concept
of “thinking.” It simply asks: is the black box behavior of the given machine indistinguish-
able from that of a human being? In our approach to quantum testing, which we call a
“quantum Turing test,” the input-output behavior of a given quantum annealer is compared
to that of our classical benchmark. The machine is said to fail the test if their behaviors are
nearly indistinguishable.

Since quantum annealing does not have a well-developed theory of quantum fault-tolerance
nor a rigorous analysis of quantum speedup, it is critically important to test that these ma-
chines actually work as claimed. The challenge has become even more pressing starting with
the announcement by the Canadian company D-Wave of its 108-qubit quantum annealer in
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2011, its subsequent scaling and claims and counterclaims about the speedups achieved by
these [25, 24, 93, 23, 43]. These recent developments have led such eminent institutions as
NASA and Google to start researching into the technology, rendering the testing of quantum
annealers as one of the most important subjects in experimental quantum computing today.

We demonstrate the effectiveness of our approach in testing both for quantum coherence
and quantum speedup by applying it to the D-Wave machine. In contrast to previous
comparisons of the machine to simulated annealing, the results of our quantum Turing tests
do not show evidence of quantum coherence or quantum speedup in the D-Wave machine.
A more detailed analysis of the new classical model yields further algorithmic insights into
the subtle nature of quantum annealing.

1.2 Tensor network nonzero testing

A central problem in quantum computing, the local Hamiltonian problem asks whether the
ground state of a given local Hamiltonian has small energy or not. It is famously complete
for the complexity class QMA [78], which can be understood as the quantum analogue of
NP - instead of asking for a classical witness that can be verified by a Turing machine
in polynomial time, QMA asks for a quantum witness that can be verified by a quantum
computer in polynomial time. Moreover, it is generally believed that QMA is a strict
superset of NP, and indeed that there is no subexponential size classical witness for QMM A-
complete problems. This means that ground states of local Hamiltonians generally do not
have an efficient classical description.

Hence, it is interesting and enlightening to identify “easy” special cases of the local Hamil-
tonian problem which can be placed in NP and thus allow for efficient classical verification
of the ground state. We note that one such example is the classical constraint satisfaction
problem, which can be obtained by restricting the local terms in a quantum Hamiltonian to
be diagonal in the standard basis. A perhaps more interesting example is proposed in [32],
which considers local Hamiltonian problems whose terms pairwise commute. Such problems
lie between the constraint satisfaction problem and the local Hamiltonian problem, and may
provide important insights into the nature of the gap between NP and QMA. While it has
been shown that 2-local commuting Hamiltonians [32] and certain special cases of 3-local and
4-local commuting Hamiltonians [2, 96] are in NP, these results do not seem to generalize
to k-local Hamiltonians with k > 4.

In this thesis, we show that an interesting variant of the commuting local Hamiltonian
problem called commuting stoquastic quantum k-SAT is in NP for any k£ = O(logn). On the
one hand, our results can be viewed as confirming the intuition that stoquastic Hamiltonians
are free of the so-called “sign problem” [33] and therefore more classical. On the other hand,
stoquastic Hamiltonians include highly nontrivial quantum systems such as the toric code
[44].

This result follows from a more general complexity theoretic treatment of tensor network
nonzero testing, a fundamental problem in quantum Hamiltonian complexity. Tensor net-
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works, which provide a graphical way to understand various linear algebraic computations,
have been increasingly popular in condensed matter physics as a data structure for encoding
various quantum objects. In particular, many special classes of tensor networks [88, 113,
114] have been studied in the literature in order to describe ground states of local Hamilto-
nians. While computing the value of a given tensor network is known to be #P-complete
(98], it has been pointed out that tensor networks with certain desirable structures can be
efficiently computed on a classical computer (most notably [88, 114]). Indeed, identifying
such efficiently computable classes of tensor networks is nowadays an important part of con-
densed matter physics research, such efficiency being essential to simulating and computing
interesting physical properties of a given material. In this thesis, we instead focus our at-
tention on the seemingly easier problem of testing whether a given tensor network encodes
a nonzero value. If it turns out to be significantly easier than the computation of tensor
networks, it could result in a new approach to dealing with such high complexity quantum
Hamiltonians.

Towards this goal, we establish the following connection between tensor network nonzero
testing and the commuting local Hamiltonian problem: if tensor network nonzero testing is
in NP, the commuting local Hamiltonian problem is also in NP. Note that this implication
could potentially be used to enable the classical verification of ground states of such Hamil-
tonians. Unfortunately, our results suggest that tensor network nonzero testing in its most
general form is computationally very hard, i.e., not contained in the polynomial hierarchy
unless the hierarchy collapses. On the other hand, we are able to identify two “easy” special
cases of tensor network nonzero testing, namely nonnegative tensors and injective tensors,
which may be useful in certain contexts. Indeed, we demonstrate this last point by trans-
lating the special case of nonnegative tensor networks (i.e. tensor networks whose entries
are all nonnegative real numbers) in light of the above connection between tensor network
nonzero testing and the commuting local Hamiltonian problem. We first show that nonzero
testing of nonnegative tensor networks is in NP, which immediately implies that commuting
stoquastic quantum k-SAT is also in NP. We expect that identifying other easy special
cases of tensor network nonzero testing may lead to novel techniques for classical verification
of other quantum problems.

1.3 Outline of the thesis

The results presented in this thesis are highly interdisciplinary, and as such, their context is
as important as their content. To put them in proper context, a detailed exposition of the
background is provided in Chapter 2. Those readers with prior exposure to these subjects
are advised to proceed directly to the main results presented in the subsequent chapters.
In Chapter 3, we present a classical benchmark for quantum annealers and use it in a kind
of quantum Turing test. We argue that although relying exclusively on classical simulation
methods, our approach provides an effective way of testing whether a given machine achieves
nontrivial quantum coherence and whether it achieves a quantum speedup. We demonstrate
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the effectiveness of this approach by applying it to experimental data from the D-Wave
machine.

In Chapter 4, we show that commuting stoquastic quantum k-SAT is in NP for any
k = O(logn). We note that this makes it the first variant of the commuting local Hamil-
tonian which is shown to be in NP for all constant k. The result follows from a study
of the computational complexity of the problem of testing whether a given tensor network
is nonzero. While the problem in full generality unfortunately turns out to be very hard,
we show that certain special cases are significantly easier and immediately imply the above
result about commuting stoquastic quantum k-SAT.



Chapter 2

Background

2.1 Quantum computing: the new limit of quantum
mechanics

Since quantum computing first emerged as a field in the 90’s, it has attracted a great deal of
attention from the academics and the masses alike. Among the many alternative approaches
to computing [119, 20, 47, 105, 7, 35, 86|, quantum computing stands out as the most
surprising because of its potential to violate the Extended Church-Turing Thesis, a central
conjecture in the theory of computing. The thesis posits that every model of computation can
be efficiently simulated by a probabilistic Turing machine, with only a polynomial overhead
in the time and space complexity. Early research in the theory of quantum computing
produced a sequence of results that seemingly contradicted the conjecture [21, 103, 102,
64], culminating in Shor’s algorithm for prime factoring [102], which has an exponential
advantage over the best known classical algorithm for the same problem.

On the other hand, the experimental realization of a quantum computer has proved to
be an extremely challenging task over the last two decades, and even the most optimistic
estimates for realization of this goal still place it at least a decade away [58]. The main
technical hurdle in implementing a quantum computer is presented by the intrinsic volatil-
ity of quantum information. While quantum systems are in general allowed to exist in a
superposition of many classical states, they are also forced to “collapse” into exactly one of
those classical states at the time of a measurement. To make things worse, once the system
gets measured, the information about the original superposition is irreversibly destroyed.
Interestingly, this is somehow related to the fact that we never seem to observe a quantum
mechanical phenomenon in our everyday life; it turns out that it is as though every system,
unless specially protected, is getting measured at every instant by its environment and any
quantum coherence there may be is thus destroyed. This phenomenon, which is the main
obstacle in experimental quantum computing, is called decoherence.

The most fundamental task in experimental quantum computing is perhaps that of build-
ing a robust quantum bit, or a qubit — a unit memory cell that could store one bit of
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quantum information. The great technological advances in the last two decades provided us
with many different ways of implementing a qubit, such as ion trap qubits, superconducting
qubits, NMR qubits, optical qubits, topological qubits, etc. While all of these technologies
fall short of achieving scalable quantum computation as yet, they offer different sets of advan-
tages and disadvantages. For instance, superconducting qubits can implement elementary
gate operations on the order of nanoseconds, but they also take only a few microseconds to
decohere and lose the stored quantum information. On the other hand, ion traps can take
as long as 50 seconds to decohere [66], but have scaling issues for larger numbers of qubits.

In general, techniques such as quantum error correction [84, 44, 39] are sought in order
to achieve fault-tolerance for practical systems, because it will often be infeasible to finish
the desired computation within microseconds or even 50 seconds. Quantum error correction
codes such as the surface code (see e.g. [53]) can in principle protect an arbitrary amount of
quantum information for an arbitrarily long time, but cannot be implemented at the present
time because of the unmet quality requirements that these codes impose on the physical
qubits used to implement them. Building a qubit that meets these requirements is the key
to scalable quantum computing, which many researchers are hoping to achieve over the next
decade.

In the meantime, even in the absence of an experimental realization of a quantum com-
puter, the theory of quantum computing has already made a successful landing in compu-
tational complexity theory and cryptography. One reason that quantum computing could
have such a big impact in these theoretical fields is perhaps that the most famous problem
that it solves efficiently, namely factoring, is enormously important in the theory of comput-
ing. Firstly, it is one of the few problems which are neither known to be in P nor known
to be NP-complete. Moreover, the conjectured hardness of factoring is the very basis of
the RSA cryptosystem, which is one of the most widespread cryptosystems today. Con-
versely, this means that a quantum computer will be able to easily break into all systems
that are secured by the RSA cryptosystem, which also motivates the study of quantum-
resistant cryptography. On the other hand, factoring is certainly not the only problem for
which the quantum computer will be useful. For instance, Grover’s quantum algorithm for
unstructured search [64] immediately yields a quadratic speedup over classical brute-force
algorithms for NP-complete problems. This means that quantum computers will be able to
solve satisfiability in O(2™/2) time, violating the strong exponential time hypothesis, another
important conjecture in complexity theory.

Whence comes this enormous computing power of quantum computers? The superposi-
tion principle of quantum mechanics states that if a system is capable of being in any one
state from a given set of states (e.g. the electron in a hydrogen atom can be either in the
ground state or the first excited state), then it is also capable of being in any superposition of
those states (e.g. superposition of the groundstate and the first excited state). Interpreting
the possible classical states of the system as orthogonal vectors in a vector space, we find
that possible states of a quantum system form a complex vector space (i.e. Hilbert space)
of dimension equal to the number of possible classical states of the system. In the case of a
quantum n-bit system, its possible states will form a Hilbert space of dimension 2", because



CHAPTER 2. BACKGROUND 9

the classical n-bit system have 2" possible states.

This means that we can, for example, prepare the quantum system of n bits in the uniform
superposition of all 2" possible classical states. Moreover, if we now apply quantum versions
of binary logic gates on this state, the effect is as though we are simultaneously applying
the given logic circuit on all 2" classical states. This inherent parallelism is certainly a
source of the computational advantage of quantum systems, but it alone cannot achieve any
useful speedup because of the limitations posed by the measurement principle of quantum
mechanics.

Roughly speaking, the measurement principle states that when a quantum system gets
measured, the system randomly collapses into exactly one of the possible classical states,
with probability proportional to the magnitude squared of the coefficient of that classical
state in the superposition. Hence, we realize that our scheme above of using the uniform
superposition of all 2™ classical states fails to be effective as is. Even though the inherent
parallelism of quantum systems allows us to perform computation on all 2" classical inputs
simultaneously, we are eventually only able to read out only one of the 2" outputs, so the
situation is not very different from sampling a random input and performing computation
on it. The success of quantum algorithms, such as Shor’s factoring algorithm, depends
crucially on the fact that the coefficients in a quantum superposition are complex numbers,
which allows cancellations to take place through constructive and destructive interferences.
For certain problems, such as factoring, we are able to devise a quantum circuit to ensure
that the coefficients of the undesired outputs are canceled out, whereas the coefficients of
the desired outputs are amplified. This allows us to extract information from our quantum
system much more efficiently, and in some cases results in a significant speedup over classical
computation.

If one were to single out one quantum mechanical phenomenon that makes quantum com-
putation possible, it would be entanglement. A distinguishing feature of quantum mechanics,
entanglement refers to the fact that certain superposition states of a many-part quantum
system do not allow for individual state description of its parts. This is a radical violation of
the central tenet of classical mechanics (and of our intuition), which posits that the universe
is a collection of particles and the description of individual particles constitutes the descrip-
tion of the universe. In contrast, entangled quantum systems exist only as a whole, so to
speak, and it is impossible to speak of the individual particles without also referring to the
whole. Entanglement is the source of such surprising technologies as quantum computation,
quantum teleportation, quantum cryptography, etc., and it is not difficult to show that none
of these is possible with only unentangled quantum states.

Moreover, while being one of the most interesting features of quantum mechanics, en-
tanglement remains also the least understood part of it. Although it has been extensively
verified that entanglement can occur in a small number of particles (see e.g. [54]), if we scale
the system up to more than a hundred particles, we immediately enter a regime which has
almost entirely evaded the grasp of experimental physics (the only exception being [80], to
our best knowledge). On the other hand, this high-entanglement regime is precisely the one
in which quantum computers are expected to function. Aharonov and Vazirani [38] suggest
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that quantum computation should therefore be viewed also as a test of quantum mechanics
in “the limit of high (computational) complexity.”

In fact, quantum computation has always had a close relationship with experimental
physics. One of the first motivations for quantum computation came from physics when
e.g. Feynman observed in 1981 [51] that Turing machines will not be able to simulate quantum
physics efficiently. This poses a significant challenge to the physicist, as it means that the
standard scientific method of hypothesizing, experimenting, and verifying can no longer
be applied — the computational complexity of our hypothesis is so large that even the best
computers in the world cannot handle it. The physicist’s need for a quantum computer is even
more pronounced today, when developing classical algorithms that can efficiently simulate
special cases of many-body quantum systems is an essential part of physics research. While
classical heuristics such as Density Matrix Renormalization Group [118] have enjoyed great
success for certain classes of quantum systems, even a small quantum computer consisting
of a few hundred qubits may already make possible many simulations that were inaccessible
on a classical computer.

On the one hand, quantum physics is complex and intractible. On the other hand,
as Aharonov and Vazirani [38] point out, the part of quantum mechanics that has been
experimentally verified so far is all of low complexity. Hence, quantum computation should
perhaps be thought of as a fundamental physics experiment which aims to test, for the
first time, the high complexity aspect of quantum mechanics. Will the theory of quantum
mechanics stand this test? Either way, the resolution of this question will result in a major
breakthrough in at least one of two fields. If the answer is yes, we will have built a quantum
computer, the machine that promises enormous speedups over today’s computers. Otherwise,
our understanding of quantum physics will have to be significantly revised.

2.2 Three principles of quantum mechanics

For those readers without prior exposure to quantum mechanics, we briefly introduce the
most basic principles of quantum mechanics, along with the notation that will be followed
throughout this thesis. Those who wish to get a deeper understanding of quantum mechanics
and quantum computation are invited to consult standard textbooks and online courses [84,
95, 63, 111].

1. Principle of Superposition: If a system can be in one of n classical states, it can
also be in a superposition of those states.

In the standard formulation of quantum mechanics, the n possible classical states of the
given system are represented by an orthogonal basis of a complex vector space (Hilbert
space) of dimension n. This basis is called the standard basis, and its constituent
vectors are denoted by [0),[1),...,|n —1).

A superposition of classical states can then be represented by a unit vector in this
Hilbert space, which may have more than one nonzero classical component. Most
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generally, an arbitrary state |¢)) of an n-dimensional quantum system can be written
in the following form:

&%)

631
V) = apl0) +aq|l) + -+ apafn — 1) =

Q1

Here, ;s are complex numbers and we assume that |¢) is normalized, i.e. Y, |a;]* = 1.
We note that in quantum mechanics, the global complex phase of a state is considered
an irrelevant quantity, i.e., if [1)) = €?|¢) for some § € R, the two states |¢)) and |¢)
are considered to be physically identical.

The direct quantum analogue of the classical bit is the qubit, which is nothing but
a two-dimensional quantum system. In contrast to the classical bit which has only
two possible states, the qubit has infinitely many possible states, as its state can be
described by any one of the infinitely many unit vectors in the two-dimensional Hilbert
space.

The state of a composite quantum system is defined as the tensor product of the states
of its constituent parts. For instance, suppose we have a quantum system consisting of
two qubits, whose states are a|0) 4+ b|1) and ¢|0) + d|1). The state of the whole system
is then given by

ac

d
(a|0) +0[1)) @ (c[0) +d|1)) = ac|0) ®|0) +ad|0) ®[1) +bc|1) ®|0) +-bd[1) ®[1) = ZC ,

bd
where the standard basis of the two-qubit system consists of |0) @ [0),...,|1) ® [1),
which are often abbreviated |00),...,|11). Note that an n-qubit system will be of
dimension 2" and its standard basis will consist of all possible classical states of an
n-bit system, i.e. [00---0),...,|11---1).

Here, it is important to note that while the state of a composite system can always be
determined from the states of its constituent parts, the reverse procedure is not always
possible. For example, it is easy exercise to check that there are no one-qubit states
al0) + b[1) and ¢[0) + d|1) such that (a|0) + b|1)) ® (c|0) + d|1)) = —5]00) + \%\11)
This means that when a two-qubit system is in the state \/Li|00) + \%Hl), there is
no way to describe the state of each individual qubit separately. The two qubits are
entangled, and it can be said that at this point they exist only as a whole. On the
other hand, states which can be described as a tensor product of the individual states

of its constituent parts are called product states. For example, \%IO(D -+ \/Li|01) =
10) ® (\%|0) + \%]1}) is a product state.
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Figure 2.1: Rewriting a quantum state in two different bases. For convenience in illustration,
we are assuming that [t)), |u), |ut) are real vectors.

The phenomenon of entanglement plays a crucial role in quantum computation. A
main reason that we are unable to simulate general quantum systems on a classical
computer is that we require exponential space to even describe the state of a quantum
system. For example, we needed to store 2" complex numbers to describe the state
of an n-qubit system, a drastic increase from n bits of memory required by a classical
n-bit system. In stark contrast, an unentangled n-qubit state only requires linear
space to describe, as it suffices to specify two complex numbers for each qubit. This
phenomenon of entanglement is also central to the themes of this thesis and will be
repeatedly touched upon in different contexts.

Last but not least, we emphasize that the quantum superposition signifies neither the
indefiniteness of the state of the system nor our lack of knowledge of it. On the contrary,
a quantum superposition is a definite state of the system which is completely known
to us. In that sense, the randomness of the quantum superposition is fundamentally
different from that of a classical ensemble.

2. Principle of Measurement: When a system gets measured, it randomly collapses
into exactly one of the possible classical states with probability equal to the magnitude
squared of the complex coefficient of each classical state.

Thus, were we to measure a one-qubit system in the state |¢)) = a|0) + S|1), the
outcome of the measurement will be 0 with probability |a|? and 1 with probability
|8]?. Moreover, the state of the system has now collapsed into |0) or |1), depending on
which outcome we saw in the measurement.

In principle, a quantum measurement can be made in an arbitrary orthogonal basis,
and there will be an orthogonal basis corresponding to each physical quantity that
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we can measure on the system, such as position, momentum, energy, spin, etc. The
possible outcomes of the measurement can be understood as corresponding to the
vectors in the given orthogonal basis. E.g., in the previous example, the basis of choice
was the standard basis, so the potential outcomes were either 0 or 1, corresponding
to |0) and |1) respectively. The probability of seeing each outcome is equal to the
projection squared of the state of the system on the corresponding basis vector. Hence,
if we were to measure the one-qubit system in the previous example in an arbitrary
orthogonal basis {|u), |u*)}, we would first rewrite the given state in this basis so that
[9) = alu) + blut), and find that the probability of seeing the outcome u and u' is
equal to |a|* and |b|*> respectively. Similarly to before, after the measurement, our
system will have collapsed to the basis vector corresponding to the outcome that we
saw in the measurement.

To formalize the notion of a measurement, we define what is called an observable in
quantum mechanics. The observable specifies the orthogonal basis to be used in the
measurement, along with real numbers which are to be interpreted as actual measure-
ment outcomes, e.g. the numbers we read off of our measurement apparatus. As an
example, {(|0),1),(|1),—1)} would be an observable for a one-qubit system that cor-
responds to a standard basis measurement. Note that there are many observables that
correspond to the same orthogonal basis, due to the freedom of choice of accompanying
real numbers. For purposes of computing the probability of each outcome, these real
numbers have no relevance. On the other hand, these real numbers will often have im-
portant physical interpretation, e.g., in an energy observable they would tell us what
the energy of the system is depending on the measurement outcome.

It is convenient to think of the orthogonal basis vectors and the real numbers specified
by an observable as eigenvectors and eigenvalues of a matrix. Since this matrix has
orthonormal eigenvectors and real eigenvalues, it will be Hermitian (i.e. A = A"). For
example, the above-mentioned one-qubit observable can be written as the Hermitian
matrix

oo+ -0+l = %),

where (u| denotes the conjugate tranpose of |u) and hence |u)(u| denotes the rank-
1 projection onto the vector |u). Most generally, we can think of any given n x n
Hermitian matrix as an observable for an n-dimensional quantum system, and vice
versa. What happens if there are repeated eigenvalues in the given Hermitian matrix?
The answer is simple; the probability of seeing a repeated eigenvalue as the outcome of
the measurement will be equal to the projection squared of the state of the system onto
the corresponding eigenspace, and the state of the system after seeing this outcome
will be the projection itself, appropriately renormalized.

The measurement principle also clarifies why a quantum superposition state reflects
neither the indefinite nature of the system nor our lack of knowledge about the state
of the system. While the state |0) appears to be a most definite state in the classical



CHAPTER 2. BACKGROUND 14

viewpoint, if we measure this state in the {%|O> + \/L§|1>’ \/L§|0> - \/L§|1>} basis, the
measurement outcome will be as indefinite as it can be — it will be uniformly random.
On the other hand, while the state \/L§|0> + \%H) appears to be a most indefinite
state in the classical viewpoint, it is a completely definite state with respect to the
above measurement. This shows that in quantum mechanics, a state which is most
definite with respect to one observable can be highly indefinite with respect to another
observable and vice versa, which is the very content of Heisenberg’s famous uncertainty
principle.

3. Principle of Unitary Evolution: Besides measurements, the time evolution of a
quantum system is described by a unitary rotation.

Most precisely, the time evolution of a quantum system is governed by the famous
Schrodinger’s equation, which depends on the energy observable H of the given system.
It is outside of the scope of this thesis to discuss the details of the time evolution of
a quantum system. However, we will point out that any time evolution described by
Schrédinger’s equation can be represented by a unitary matrix (i.e. UUT = UTU = I)
acting on the Hilbert space in which the quantum state resides. Intuitively, this means
that quantum systems evolve by a rigid-body rotation of the Hilbert space which
preserves inner products between vectors. Moreover, the theory of universal gate sets
in quantum computation [84] shows that in principle any given unitary rotation can
be implemented using Schrodinger’s equation by appropriately engineering the energy
observable of the system.

2.3 Complexity of quantum systems: the local
Hamiltonian problem

The energy observable, which determines the time evolution of a quantum system through
Schrodinger’s equation, is known as the Hamiltonian and is usually denoted by the letter
H. In this section, we consider Hamiltonians of the n-qubit quantum system, which are
central objects in the theory of quantum computing.

While we explained in the previous section that observables of the N-dimensional quan-
tum system are described by N x N Hermitian matrices, when N is very large, it becomes
infeasible to think about all such matrices. For instance, the dimensionality of the n-qubit
quantum system is N = 2", which already exceeds estimates for the number of elementary
particles in the observable universe at n = 500 [87]. Such observables are not only impossi-
ble to compute with, but also unlikely to be ever implemented. Therefore, it is reasonable
to restrict our attention to a subclass of Hermitian matrices which admit a more succinct
description.

A very useful and natural restriction that we could impose on our Hamiltonians is that
of locality. This means that the energy of a given physical system will depend entirely upon
local features of the state of the system. For example, imagine that we have n qubits placed



CHAPTER 2. BACKGROUND 15

n particles

A
[ \

Hs

Figure 2.2: A schematic representation of a 3-local Hamiltonian H = ), H;. Each term H;
acts on at most three particles at a time.

on a one-dimensional chain, each of which is allowed to have a spin of either +1 or —1.
However, these qubits interact with each other in such a way that neighboring qubits want
to be aligned with each other, e.g., if a neighbor of a given qubit has the spin of +1, it should
be energetically favorable for the given qubit to also have the spin of +1. We can succinctly
represent the Hamiltonian H of such a system as a sum of small observables H;’s, each of
which only measures two qubits ¢ and 7 4+ 1 and assigns an energy penalty of c if and only if
they are misaligned. For instance, the two-qubit observable that achieves this can easily be
written as ¢|01)(01] + ¢|10)(10]. Then, H; for 1 <i < n — 1 can be obtained by taking the
tensor product

Hi=I'® - @I ®(c|01){01] + c[10)(10)*" ' @ ' @ .- @ I",

where the superscripts denote which qubits are acted on by each matrix. Hence, while H;
is still technically a 2™ x 2™ matrix, it acts nontrivially upon only two qubits at a time and
can be succinctly described by specifying its action on those two qubits. Then, the system
Hamiltonian H will simply be defined as H = Z?;ll H;.

More generally, we can define k-local Hamiltonians as follows.

Definition 2.1. A Hamiltonian H for an n-particle quantum system is said to be k-local if
it can be written as H = " | H; where cach H; acts nontrivially upon at most k particles
at a time.

Note that in contrast to general Hamiltonians, k-local Hamiltonians require only polyno-
mial space to describe. This is because there are only (Z) = O(n*) ways to choose k particles
out of n particles, and each term that acts on k particles at a time is fully specified by a
d* x d* complex matrix, where d is the dimensionality of each individual particle (e.g. for
qubits, d = 2). Moreover, Hamiltonians that naturally arise in physical systems tend to be
well modeled by k-local Hamiltonians for a suitable choice of constant k.
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To the computer scientist, the structure of the k-local Hamiltonian is a familiar one.
Namely, it is straightforward to draw a parallel between the notion of locality in constraint
satisfaction problems such as MAX-3-SAT and the notion of locality in local Hamiltonians.
For instance, in the MAX-3-SAT problem we are given m Boolean clauses that each concern
up to three variables and are asked to find a Boolean assignment to the n variables that
minimizes the number of violated clauses. Similarly, we can imagine being given a 3-local
Hamiltonian, i.e., m local observables that each concern up to three qubits, and being asked
to find a quantum state on all n qubits that minimizes total energy. In fact, any MAX-3-SAT
instance can be translated into an energy minimization problem on a 3-local Hamiltonian
as follows. First, note that for each clause 7 in a MAX-3-SAT instance, there is exactly one
assignment to its three variables that violates the clause. For example, if the given clause
was x1 V —xg V x5, the only assignment to xq, x9, and x5 that violates the clause, out of the
eight possible assignments, would be z; = 0,29 = 1,25 = 0. Hence, we can naturally replace
this clause with a 3-qubit observable |010)(010|"*% that acts on qubits 1, 2, and 5. Taking
the tensor product of this matrix with identity matrices on all other qubits, we obtain our
3-local Hamiltonian term H;. Now we define our final Hamiltonian to be H = Z;il H;, so
that the minimum energy of the system is given by Ey = minyy (4| H|t)). Since it is clear by
construction that the standard basis is the simultaneous eigenbasis of every H;, at least one
standard basis vector |z) must be an eigenvector for the eigenvalue E,. Moreover, (z|H|z)
is simply equal to the number of MAX-3-SAT clauses violated by the assignment x. We
conclude that finding the minimum energy of H is equivalent to finding the solution to the
given MAX-3-SAT instance.

The obvious generalization of the above reduction shows that any instance of MAX-
k-CSP is in fact also an instance of energy minimization of a k-local Hamiltonian. The
latter problem is simply known as the k-local Hamiltonian problem in quantum computing
literature, and is formally defined as follows:

Definition 2.2. The k-local Hamiltonian problem is defined as the following promise prob-
lem:

e Input: A k-local Hamiltonian H = > " H; on n particles such that m = poly(n) and
||H;|| <1 (where ||-]| is the operator norm), numbers a and b such that b—a > 1/poly(n).

e Output:

- YES if the smallest eigenvalue (minimum energy) of H is at most a,

- NO if the smallest eigenvalue of H is at least b.

With the choice of @ = 0 and b = 1, the above reduction from MAX-3-SAT immediately
implies the following:

Theorem 2.1. The k-local Hamiltonian problem is NP-hard.
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However, even at a first glance it seems that this problem should indeed be much harder
than NP-complete problems. To see this, we recall that YES instances of NP-complete
problems must have polynomial witnesses which can be efficiently verified by a Turing ma-
chine. Do local Hamiltonian problems admit any such witness? Since the local Hamiltonian
problem seeks to decide whether there exists a state whose energy is at most a, a natural
candidate for a witness of this fact is the state itself. This is rather troublesome, however.
As we pointed out earlier, a quantum state of an n-qubit system requires exponential space
to even describe, let alone verifying it or finding it. Could there be a different kind of wit-
ness that can be efficiently described and verified? While the answer to this question is not
known, the general consensus seems to be that the answer is no.

On the other hand, we remark that the above choice of witness is already sufficiently
good for quantum computers. If we were working with a quantum computer, a witness that
requires n qubits to describe is in fact already an efficient witness. Moreover, it turns out
that there is a procedure by which the quantum computer can verify that this witness state
indeed has small energy [4, 78]. This immediately places the k-local Hamiltonian problem
in a complexity class called QMA, which can be thought of the quantum analogue of NP;
instead of requiring a polynomial witness that can be efficiently verified by a Turing machine,
QMA requires a polynomial quantum witness (i.e. the number of qubits is polynomial) that
can be efficiently verified by a quantum computer.

In a remarkable result, Kitaev proves that the k-local Hamiltonian problem is in fact also
complete for the class QMA [78, 4, 56], which makes it one of the most important problems
in the quantum computing literature. The k-local Hamiltonian problem to the theory of
quantum computing is what satisfiability is to the theory of computing.

2.4 Quantum Hamiltonian complexity: connections
to condensed matter physics

Since local Hamiltonians are objects that originated in physics, they also tend to play an
important role in fundamental physics research. At the highest level, Hamiltonians are
observables that allow us to measure the energy of a given state. Of course, a measurement
of a quantum system generally yields a random outcome, so it is difficult in general to speak
about the energy of the given state itself. On the other hand, it is often useful to think
about e.g. its expectation. In our notation, the expectation of the energy of a given state
|1} can simply be computed as:

Ejy) [H] = (Y| H|¢p) =: (H).

This is because if we write H = ), E;|¢;)(¢;| where E;’s and |¢;)’s are the eigenvalues and
eigenvectors of H, then

Eyy[H ZE|¢|¢Z ZE (WBlpi)(dil) = (¥ (ZEm ¢1)|w>:<w|H|w>,
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where (z|y) is simply a shorthand for (x| - |y). Moreover, if H happens to be a k-local
Hamiltonian, i.e., H =Y .", H; where each H; acts nontrivially on at most k particles at a

time, then
m

m
(H) = (|H|$) = (V] (Z Hz-> [0) =D (WIHilY).
i=1 i=1
Hence, if 1)) were a product state, this quantity can be efficiently computed. To compute
each term (1| H;|¢), we only need to sandwich a d* x d* matrix by two vectors of size d*.
Since both d and £ are constant, the overall time complexity is linear in the number of terms
in the given Hamiltonian.

The locality constraint in a Hamiltonian is particularly well-motivated in condensed mat-
ter physics, which is the study of condensed phases of matter such as solids, liquids, Bose-
Einstein condensates, etc. When a given material is in a condensed phase, it is often natural
to model the material as a 1D, 2D, or 3D lattice on which each node models a particle and
each edge models interaction between neighboring particles. In such a model, longer-range
interactions are considered negligible and dropped from consideration. Therefore, the result-
ing local Hamiltonian will, in addition to the CSP-like locality introduced in the previous
section, also retain a kind of geometric locality imposed by this lattice structure. Namely,
the particles in the system are thought of as residing on the nodes of a lattice of some di-
mensionality, and the system is assumed to be governed by a two-local Hamiltonian whose
individual terms act nontrivially upon at most two neighboring particles on this lattice. Of
course, in certain cases it will be appropriate to generalize this notion so that interaction is
allowed up to some fixed distance, yielding k-local Hamiltonians.

Another assumption on the structure of local Hamiltonians that is frequently introduced
by the condensed matter physicist is that of translational invariance. If the material that is
being studied were homogeneous, it would be natural to expect that the interaction between
its particles is uniform across the whole material. For local Hamiltonians defined on a
lattice, this assumption can conveniently be formulated by requiring that the Hamiltonian is
invariant under spatial translation. While finite lattices obviously cannot be translationally
invariant in the strictest sense, a suitable notion of translational invariance can still be
defined by imposing boundary conditions or by assuming that the lattice wraps around at
its boundaries (e.g. we may think of a 2D lattice as a torus). For instance, translational
invariance for 2-local Hamiltonians on a 2D lattice may be defined as the condition that
requires all the vertical edges to have the same matrix form and all the horizontal edges to
have the same matrix form, as in Figure 2.3.

An interesting question that naturally arises is whether the complexity theoretic results
about the k-local Hamiltonian problem which we surveyed in the previous section extend to
these apparently more restricted settings. Since we now seem to be working with a much
smaller class of local Hamiltonians, could we hope that e.g. the 2-local Hamiltonian problem
defined on a 2D lattice with the assumption of translational invariance would be efficiently
solvable? If the answer is yes, it would mean that the condensed matter physicist can study
the ground state (i.e. the lowest energy state) properties of the material on classical comput-
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Figure 2.3: An illustration of translation invariance on a 3 x 3 2D lattice. If each node
represents a d-dimensional particle, A and B will be d? x d? matrices. For each vertical
edge (i, j), we take the tensor product of the matrix A that acts upon particles i and j and
the identity matrix that acts upon all other particles to obtain H; ;. For each horizontal
edge (7,7), we similarly take the tensor product of the matrix B that acts upon particles i
and j and the identity matrix on all other particles. Our translationally invariant 2-local
Hamiltonian will simply be defined as H = 3, ) Hi ;.

ers. Unfortunately, a sequence of results from collaborative efforts of computer scientists and
physicists [85, 22, 83, 76, 97, 6, 61, 65] vanquish any such hope. In particular, Aharonov,
Gottesman, Irani, and Kempe [6] show that even the 2-local Hamiltonian problem defined
on a 1D chain is QMA-complete for sufficiently large local dimension d, and Gottesman
and Irani [61] show that the problem remains QMA gxp-complete (where QM A gxp is the
quantum analogue of NEXP) even with the assumption of translational invariance.

Of course, this does not imply that the ground states of local Hamiltonians are entirely
inaccessible. While the above results do show that finding the ground state of a general
Hamiltonian is intractable even with these additional assumptions, physicists have developed
many special classes of Hamiltonians whose ground states can be computed or in some cases
even analytically found. One such example is the class of gapped local Hamiltonians on a 1D
chain. Namely, for a family of 1D local Hamiltonians { Hy, Hs, ..., H,, ..., } for which there
is a constant gap between the smallest and the second smallest eigenvalues which does not
decrease in n, a classical heuristic called Density Matrix Renormalization Group (DMRG)
is known to be effective in computing the ground state [118].

We note that a basis of the DMRG algorithm is the longtime folklore in condensed
matter physics which conjectures that the ground states of gapped local Hamiltonians have
bounded entanglement [67], a proposition often referred to as the “area law.” Moreover, it
is well known that 1D states with bounded entanglement admit a polynomial description
through a tool called matrix product states (MPS) [115, 88]. Hence, if the area law were
true, we would be able to find the ground state of a given gapped 1D local Hamiltonian by
searching for matrix product states that have low energy with respect to this Hamiltonian.
DMRG is a method that achieves exactly this.

While DMRG has been hugely successful for 1D systems in practice for almost two
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decades, the area law remained a conjecture for a long time until it was rather recently
proved for 1D systems by Matt Hastings [67] and then significantly improved upon by Arad,
Landau, and Vazirani [14]. Interestingly, the latter work uses different proof techniques from
the former and heavily draws upon tools from theoretical computer science. In a follow-up
work [79], a provably correct algorithm for computing the ground state of gapped 1D systems
was presented for the first time, establishing that the problem of finding the ground energy
is in BPP for this class of local Hamiltonians.

Very often, the condensed matter physicist is struggling with the fact that the object of
their interest may be computationally intractable. Of course, the ground state, which may
be thought of as the state of the system at zero temperature, is by no means the only object
of their interest. They are interested in various quantities such as the state of the system at
a finite temperature, expectations of local observables, time evolution of a given state, etc.
In the absence of a quantum computer, their best bet is often to find scenarios in which there
is a bound on the amount of entanglement in the system and develop classical methods that
can exploit it. So there is a sense in which condensed matter physicists are doing computer
science in disguise.

In this section, we have briefly summarized how the field of quantum computing and the
field of condensed matter physics are meeting and exchanging ideas on their common ground
which is the local Hamiltonian problem. This connection is increasingly being recognized
as an emerging new field under the name of quantum Hamiltonian complexity. For a more
comprehensive survey on this area, the reader is cordially referred to [56].

2.5 Tensor networks

In this section, we will introduce a mathematical tool called tensor networks, which play
a central role in many of the aforementioned results in quantum Hamiltonian complexity.
Tensor networks are particularly well suited for computing linear algebraic objects and can
be thought of as a way of doing linear algebra with pictures.

2.5.1 Basic concepts

First, recall that a tensor is defined as a map from a fixed number of indices to complex
numbers.

Definition 2.3. A tensor of rank k is a map from [d;] X [da] X - - - X [d}] to C, where d; € Z*
and [z] :={0,1,...,2 — 1}.

Then, we can formally define a tensor network as follows.

Definition 2.4. A tensor network 7' is a graph (V, E) where each vertex v € V is as-
sociated with a tensor A, : [dy1] X [dy2] X -+ X [dyx] = C whose rank is k£ = deg(v) and
each edge e € FE is associated with a positive integer d.. Here, d. is referred to as the
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Figure 2.4: An example tensor network with two tensors of rank 3. Each tensor has two
open edges and one closed edge, and it is assumed that every edge has a bond dimension of
two. Labeling each edge with either 0 or 1, the input to each tensor is completely specified,
so that it can output a complex number. The value of the tensor network at this labeling is
simply defined as the product of these two complex numbers.

bond dimension of the edge e. Moreover, each vertex v is also associated with an ordering
o, E(v) = {1,...,k} (where E(v) denotes edges that are incident to v) on its k edges such
that for all e € E(v), we have d g, () = de.

In addition, this graph allows the following two unconventional features:

1. Two vertices can have arbitrarily many repeated edges.

2. An edge can be open-ended on one side, i.e., it can be incident to only one vertex. Such
an edge is said to be open and denoted (u, -), where u is the single adjacent vertex of
the edge. Edges that are incident to two vertices are said to be closed.

Definition 2.5. Let 7' = (V, E) be a tensor network and £ = {ey,...,e,}. Given a labeling
(X1, .y xy) € [dey] X -+ X [de,,], the value of T at (z1,...,2,,), denoted T(x1,...,x,y,), is
defined as the product of all the complex numbers output by the tensors A, in T when
interpreting the labeling on each tensor’s incident edges as input to the tensor.

While the above definitions appear rather technical, the crux of their content is only that
each vertex on this graph can be interpreted as a tensor which takes a labeling on its incident
edges as input. More precisely, if we were to label each edge e € F of a given tensor network
by some integer in [d.|, each vertex, taking these labels as input to their associated tensor,
will output a complex number (see Figure 2.4). The value of the tensor network at the given
labeling is defined as the product of these complex numbers.

In general, a tensor network with k& open edges can itself be interpreted as a tensor of
rank k via a process called contraction.

Definition 2.6. Let T' = (V| E) be a tensor network and let Eop = {e1,...,ex} and Ex =
{€k+1,€xt2,--.,en} denote the set of its open edges and closed edges respectively. Then we
can define a tensor A : [d,,] X [de,] X -+ x [de,] — C of rank k as follows:

Az, ..., xp) = Z T(x1, ..., Tm).

$k+1€[dek+1]
Ik+2€[d6k+2]

$Wle[de'm]
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Then, A is called the contraction of 7.

In other words, the contraction of a tensor network 7" with k& open edges is defined as a
tensor of rank k whose output on any given input x1, ...,z is computed by

1. labeling the k open edges with x1,...,z;, and then
2. taking the sum of the values of T" at all possible labelings on its closed edges.

While these definitions of a tensor network and its contraction may seem rather unmo-
tivated at a first glance, it turns out that these objects are capable of expressing almost
every kind of computation that happens in linear algebra and quantum mechanics. To see
this, we begin by observing that any given tensor can be interpreted as many different linear
algebraic objects. For instance, consider a tensor A : [2]¥ — C of rank k. One obvious way of
interpreting A is as a vector in a complex Hilbert space c?. Namely, we can interpret each
input (zq,xs,...,2;) € [2]* as representing the standard basis vector |zy@s - - - 2;) in C2
and the corresponding output A(zy,...,z;) as the coefficient of that standard basis vector.
In other words, we can think of A as representing the (potentially unnormalized) quantum
state

|1/)A> = Z A($17...,$k)|x1x2---;pk> — 14(0,7

z122--x€{0,1}

A(l,...,1,1)

On the other hand, A can also be viewed as a matrix of size 2! x 2™ for any I, m € Z* such
that [ +m = k, by interpreting A(xy,...,z,) as the matrix entry at the row indexed by

x1,...,x; and the column indexed by x;y1, 219, ..., i1 m. Namely,
l m l m l m
A(D,...,0,0,0,...,0,0) A(0,...,0,0,0,...,0,1) --- A(D,...,0,0,1,...,1,1)
l m l m l m
A(D,...,0,1,0,...,0,0) A(0,...,0,1,0,...,0,1) AD,...,0,1,1,...,1,1)
l m l m l m
MA_ -~ -\~ ~ -\~ S -~ -\~ -~ - . -~ -\~ Veu N~ ™. )
A(0,...,1,0,0,...,0,0) A(0,...,1,0,0,...,0,1) --- A(0,...,1,0,1,...,1,1)
l m l m l m
A1,...,1,1,0,...,0,0) A(1,...,1,1,0,...,0,1) --- A1,...,1,1,1,...,1,1)
or equivalently, we can write (z1,xs,..., x| Ma|xi 11, Tivo, - s Tpem) = A1, ..., xp).

Having seen these different linear algebraic interpretations of a tensor, we can even devise
a kind of pictorial notation to indicate which of these interpretations we are adopting for
each tensor, as in Figure 2.5. This kind of pictorial notation is in fact very useful because it
allows us to perform various kinds of linear algebraic computations by merely juxtaposing
the operand tensors and joining appropriate edges. Some examples include:
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Figure 2.5: A pictorial illustration of how a tensor of rank 3 with bond dimension 2 on each
edge can be interpreted as a 23-dimensional vector, a 2 x 22 matrix, or a 22 x 2 matrix.
Namely, in this notation a tensor is interpreted as a linear map from a vector space whose
basis vectors are indexed by its upper edges to another vector space whose basis vectors are
indexed by its lower edges.

1. Tensor product

One of the most basic operations that can be performed with tensor networks is that
of tensor product. In fact, the tensor product of a sequence of two tensor networks
Ty, ...,T,, is given by a simple juxtaposition of them, i.e., the resulting tensor network
includes all vertices and edges of T},...,T,, but there is no edge connecting 7; and
T; for i # j. For instance, Figure 2.6 shows how to take the tensor product of three
one-qubit states [¢1), |¢2), and [i3) to obtain a three-qubit state [¢). The claim is
that the contraction of the resulting tensor network yields a tensor that corresponds
to the tensor product of the three given tensors. In fact, it is easy to verify that this
is the case. On the one hand, if |77Z)1> = CL170|O> + CL171|]_>, |¢2> = a270|0> + a2’1|1>, and
|Y3) = asp|0) + as1|1), then by the rules of the tensor product we must have [¢) =
Zi,j,ke{o,l} ai,ias ;a3 |ijk). On the other hand, if 77, T5, and T3 are the tensor networks
corresponding to |1)1), |1a), and |13) respectively, by definition we have T;(z) = a;, for
i €{1,2,3} and = € {0,1}. Now, if T is the tensor network obtained by juxtaposing
Ty, T, and T3, since T does not have any closed edge, its contraction A is defined as
the tensor that maps its three inputs 4, j, k € {0, 1} to the product T1(i)T5(5)T5(k) =
a1, jas k., which is nothing but |¢). Additionally, this shows that any product state
of an n-qubit system can be described by a tensor network of n rank-one tensors each
of which has an open edge of bond dimension two.

It is straightforward to also verify that the tensor product of matrices can similarly
be obtained as a simple juxtaposition of the tensor networks corresponding to each
matrix.

2. Inner product

We now show that the inner product of two vectors can also be performed using tensor
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Figure 2.6: Tensor product of three vectors |11), [12), and |13).

1) |12 [%1)

NN =

) (o]

Figure 2.7: Inner product of two vectors [¢1) and |¢9). Note that prior to the joining of
the edges, one of the vectors (in this case |¢)9)) needs to be modified so that the modified
vector’s outputs are complex conjugates of the original vector’s outputs. This is why the
bottom vector on the right-hand side is labeled (15| instead of |1).

networks. Here, instead of merely juxtaposing the two given vectors, we also need to
join the corresponding edges of the two vectors, as in Figure 2.7. To see this, suppose
Ty and T5 are tensor networks corresponding to two vectors [¢1) = >y 1yr @z|z) and
|th2) = 3 e01yx Bxl) respectively and T is the tensor network obtained by performing
the operation depicted in Figure 2.7 on 7} and 75. Since the resulting tensor 7" has no
open edge, its contraction will yield a tensor of rank zero, i.e., a scalar. Moreover, this
scalar is computed as

T = Z Tl(il, e ,ik)TQ(il, N ,Zk) = Z ()é”lkﬁ:(l“c = <77D2|w1>,

i1,...,i,€{0,1} i1,..,ix €{0,1}
which is exactly the inner product between |¢1) and |¢).

3. Matrix multiplication

Matrix multiplication is another operation which can easily be performed using tensor
networks. Suppose we are given two tensor networks T; and T5 corresponding to the
two input matrices A and B. To obtain their product, we simply join the lower edges
of T} to the corresponding upper edges of T, as depicted in Figure 2.8. For this to
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Figure 2.8: Matrix multiplication of a 2 x 22 matrix A and a 22 x 2 matrix B, which yields
a 2 x 2 matrix C.

work, the number of lower edges of T} must be equal to the number of upper edges of
T,, and moreover the bond dimensions of the corresponding edges must exactly match.
This condition is the equivalent of the linear algebraic condition that the number of
columns of A must be equal to the number of rows of B. It is also straightforward to
verify that this procedure yields the correct output AB. Assuming that 77 is a tensor
with n upper edges and m lower edges and T5 is a tensor with m upper edges and k
lower edges, and, for simplicity, that the bond dimension of every open edge is two, we
note that the contraction of the tensor network 7' resulting from the above procedure

is given by
T(ila"'ainajlw"ajk): Z Tl(ila"'ainalla"'7lm)T2(l17'"7lm7j17"'7jk)
11,0 lme{0,1}
= Z Ail"‘i'rull“'lmBll“‘lm7j1"'jk
ll,...,lme{o,l}
- (AB)il"'imjl"'jk'
4. Trace

Finally, we show how to compute the trace of a given square matrix A. The assumption
here is that the tensor network 7T representing A has equal number of upper edges and
lower edges, and that the bond dimensions of the corresponding upper and lower edges
exactly match. Then, the trace of A can easily be obtained by joining each lower edge
of T to its corresponding upper edge, as in Figure 2.9. Clearly, the resulting tensor
network 7" will have no open edge, and hence its contraction will yield a scalar which
is computed as

/ . . . .
T = E T(@l, BN SRR ,Zk) = E Ail"'ik,il""ik = TI'(A),
i1,i2,...,i5€{0,1} i1,2,..,ip €{0,1}

where we are assuming for simplicity that every open edge in T has bond dimension
two and k£ denotes the number of upper edges in 7.
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Figure 2.9: Trace of a 2* x 2% matrix A.

Trs, A p— A

Figure 2.10: Partial trace of a 2* x 2% matrix A over the third and fourth particles.

We note that the partial trace of a matrix can similarly be computed, by only joining
those edges that correspond to indices that are being traced out (see Figure 2.10).

Together, these primitives give us a way to express a wide range of linear algebraic
computations as a tensor network. In particular, quantum mechanical objects such as states,
operators, and observables can be expressed in such a way that the tensor product structure of
the Hilbert space is well visualized, which is often helpful in recognizing important properties
such as entanglement.

Another strength of the tensor network formalism is that while we may want to use
the above primitives to initially construct a tensor network whose contraction encodes an
object of our interest, once the tensor network is constructed, we are free to drop the existing
interpretation of its component tensors and apply a different interpretation to get a new look
at the desired object, or even treat it purely as a computational object. For example, as in
Figure 2.11, given real matrices A and B we may construct a tensor network corresponding
to Tr(AB) and then decide to interpret A and B as vectors instead. Since changing the
pictorial representation of the vertices and edges does not affect the tensor network itself,
we find that Tr(AB) must be equal to the inner product of the flattened versions of A
and B (where flattening A means converting it into a vector by concatenating all its rows).
Similarly, Figure 2.12 shows how the tensor network representation of Tr(ABC') immediately
proves the well-known fact that Tr(ABC) = Tr(BCA) = Tr(CAB).
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Figure 2.11: Tr(AB) = (flatten(A), flatten(B)) for real matrices A and B.

A B C
B _— C _— A
C A B

Figure 2.12: Tr(ABC) = Tr(BCA) = Tr(CAB).

2.5.2 Computational aspects

A feature of the tensor network which is most useful for the computer scientist is that the
geometric structure of a tensor network instantly reveals the feasibility of the encoded com-
putation. This is particularly attractive in the context of quantum Hamiltonian complexity,
where the tractability of linear algebraic objects is one of the most important issues.

We will presently outline a standard algorithm for contracting tensor networks, which is
responsible for the above feature of the tensor network. The basis of this algorithm is the
following simple observation. Let S be any subset of tensors in a given tensor network 7,
and denote by T the tensor network derived by taking all the tensors in S and their incident
edges. If there are incident edges whose other end is outside of S, we make them open edges.
The observation is that if we replace the occurrence of Ts in T' by the contraction of T, the
contraction of T" does not change.

Hence, we can think of the following incremental algorithm for contracting a tensor
network. Suppose we are given a tensor network 7" whose bond dimensions and ranks are

bounded by a constant, along with some ordering Ay, ..., A, on its constituent tensors. We
begin by initializing S = A; and T = T. Then, at step i, we contract T{(;)(i) Air) to

obtain a tensor S¢t1) | and we replace the occurrence of T{(Q(i) Aiir) in 7@ by S+ to obtain
a modified tensor network 701, At termination of the algorithm, 7 will contain a single
tensor equal to the contraction of T. Following the presentation in [13], the algorithm can
be visualized as a bubble swallowing tensors one by one, while maintaining at each step

the contraction of the part of the tensor network which has already been swallowed (Figure
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Figure 2.13: Swallowing of a tensor network.

2.13).

Clearly, the time and space complexity of the algorithm depends crucially upon the size
of the computation performed at each step. Since the computation performed at each step
i is simply a contraction of a tensor network with two vertices S® and A,,;, the size of
this computation is bounded by the number of edges involved in it. While by definition the
degree of A; 1 is bounded by a constant, the degree of S can be arbitrarily large depending
on the tensor network and the given ordering. In fact, this observation can be formulated
into the following theorem.

Theorem 2.2. Let {1, T5,...,T,,...} be a family of tensor networks with bond dimensions
bounded by poly(n) and ranks bounded by O(logn). If the tensor networks T, in the
given family admit an ordering Ay, ..., A, on its constituent tensors such that for every i,
{A1,..., A;} defines a cut across which there are at most O(log n) edges, then the contraction
of tensor networks in the given family can be computed in polynomial time.

In fact, matrix product states [115, 88], which are heavily used in quantum Hamiltonian
complexity to describe quantum states of a 1D system, are one example of families of tensor
networks that allow for such efficient contraction. Figure 2.14 illustrates a general concept
of the matrix product state, which looks largely similar to the product state of Figure 2.6
except that it has horizontal edges of polynomial bond dimension. These edges allow for the
description of a small amount of entanglement, a significant improvement over product states.
Moreover, the 1D structure of the matrix product state allows for the efficient computation
of many interesting physical properties. For instance, Figure 2.15 shows how the expectation
of a two-qubit local observable O on a matrix product state |1)) can be expressed as a tensor
network. Tensor networks of this shape can be efficiently contracted by Theorem 2.2, using
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Figure 2.15: The tensor network corresponding to (|O|).

the ordering that sweeps the tensor network from left to right. Unfortunately, it is easy to see
that these ideas do not generalize to the 2D setting, which is exactly why many important
results in quantum Hamiltonian complexity (e.g. DMRG algorithm and area law) tend to
hold only for 1D systems.
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Chapter 3

A Turing Test for Quantum Annealers

The new form of the problem can be described in terms of a game which we call
the “imitation game.” It is played with three people, a man (A), a woman (B),
and an interrogator (C) who may be of either sex. The interrogator stays in a
room apart from the other two. The object of the game for the interrogator is to
determine which of the other two is the man and which is the woman. He knows
them by labels X and Y, and at the end of the game he says either “X is A and
Yis B” or “X is B and Y is A.” The interrogator is allowed to put questions to
A and B... We now ask the question, “What will happen when a machine takes
the part of A in this game?” Will the interrogator decide wrongly as often when
the game s played like this as he does when the game 1is played between a man
and a woman? These questions replace our original, “Can machines think?”

— Alan Turing [108]

This chapter is based on joint work with Graeme Smith, John A. Smolin, and Umesh
Vazirani [101, 100].

3.1 Introduction

In 1950, Alan Turing authored a seminal paper on the topic of artificial intelligence [108],
in which he introduced his famous test to distinguish machines from humans. Now simply
named the “Turing test,” the test consists in having an interrogator interact with two subjects
A and B via a text-only channel, where one of A and B is the machine in test and the other
is a human. At the end of the interrogation, the interrogator is to decide which one of the
two subjects A and B is the machine. Turing concludes that if the interrogator is unable to
distinguish the machine from the human, i.e. the failure rate of this game approaches %, we
can conclude that the machine can indeed think.

The genius of the Turing test is that it conveniently avoids all philosophical and def-

initional problems about “thinking” by focusing strictly on the input-output behavior of



CHAPTER 3. A TURING TEST FOR QUANTUM ANNEALERS 31

, (I

A B

Figure 3.1: A Turing test.

the given machine. Ignoring any implementation details there may be, the test treats the
machine simply as a black box and yet it provides a clear-cut criterion which is universally
appealing. The Turing test teaches us that sometimes complete obliviousness to low-level
details is the only reasonable way to approach a question.

Intriguingly, the problem of testing a quantum computer presents very similar issues
to the ones presented by the problem of artificial intelligence. The main question to be
addressed in the testing of a quantum computer is whether the given machine is indeed
“quantum.” Unfortunately it is difficult to arrive at a definition of “quantumness” which
will be universally accepted, just as it is difficult to arrive at a universal definition of “think-
ing.” For example, at the most basic level, there is even a sense in which every object in the
universe is “quantum,” because eventually its mechanics is governed by quantum physics.!
Even if we try to refine our definition by requiring that the object has to make use of an
exclusively quantum phenomenon which does not admit a classical description, we would
still be in a situation in which we have to consider a laptop computer “quantum,” because
quantum mechanics is essential to the design and description of its central computing ele-
ment, the transistor. On the other hand, a full-fledged universal quantum computer would
be unambiguously “quantum,” but such a criterion would leave out many interesting classes
of quantum devices which are able to perform nonclassical computation while falling short
of achieving universal quantum computation. Thus, the notion of “quantumness” seems to
depend crucially upon the scale or level of abstraction and it is not always clear where the
line should be drawn.

Even besides such definitional issues, the testing of a quantum computer poses more
fundamental challenges. Although the description of the quantum state of a system scales
exponentially in the size of the system, the laws of quantum mechanics severely limit the
amount of information that can be accessed by measuring the system. For instance, Holevo’s
bound [71, 84] dictates that the amount of information that can be retrieved from an n-qubit

In physics, classical mechanics is believed to be the macroscopic limit of quantum mechanics [46, 50].
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system is bounded by n bits. This restriction, together with the mismatch in the computa-
tional power of the quantum computer and the classical tester, seems to constitute a substan-
tial hindrance to finding a general strategy for the classical testing of quantum computers.
More generally, as [38] suggests, these limitations may even be viewed as threatening the
foundations of the scientific method itself. Namely, as our scientific theories such as quan-
tum mechanics become computationally more complex and even intractable, it is getting
increasingly difficult to compute the theoretical predictions to compare the experimental
data to.

In this chapter, we introduce a kind of Turing test that can be used to test whether
a given special-purpose quantum computer is indeed “quantum.” In this test, the input-
output behavior of a given machine is compared to that of a suitable classical model, where
the machine and the classical model are both treated like black boxes as in the original
Turing test. Such a test has two advantages. Firstly, by focusing solely on the input-output
behavior of the given machine, we avoid any philosophical or definitional problem regarding
what a “quantum” machine is, while providing an unambiguous criterion that can serve as a
useful necessary condition for any such device to claim quantumness. Secondly, we manage
to circumvent most of the fundamental challenges mentioned above, as the test consists only
of physical experiments on the machine and simulations of a classical model.

For such a quantum Turing test to be effective, it is critically important to define and use
a suitable classical model. In this thesis, we propose a simple classical model for quantum an-
nealers, in which qubits are modeled by classical magnets coupled through nearest-neighbor
interaction and subject to an external magnetic field. The finite temperature of the device
is modeled by applying the Metropolis rule to randomly “kick” each magnet at each step.
The detailed design is motivated as much by algorithmic considerations as physical ones,
the goal being to preserve the algorithmic characteristics of the quantum annealer as far as
possible while also introducing the extra assumption that quantum coherence in the machine
is destroyed at each instant.

While we predict that such a suitable model can be defined on a broader range of special-
purpose quantum computers, in this thesis we focus on devices that are based on quantum
annealing, a heuristic algorithm designed to solve NP-hard optimization problems. In the
absence of a well-developed theory of quantum fault-tolerance or a rigorous analysis of quan-
tum speedup by such machines, the testing of quantum annealers is a critically important
problem in experimental quantum computing today. We note that quantum annealing is
as yet the only model of special-purpose quantum computation which is being implemented
at a scale large enough to demand serious testing, intensely pursued by companies such as
D-Wave Systems and Google. The newest model of the D-Wave quantum annealer, D-Wave
2X, has as many as 1097 working qubits.

3.1.1 Related work

We note that there is a sequence of remarkable results [1, 34, 92, 18, 52, 19] that show that
the framework of interactive proofs from computational complexity theory together with
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the remarkable properties of quantum entanglement provides a way, in principle, of testing
general-purpose quantum computers. These results build upon the well studied theory of
interactive proofs from complexity theory, in which the computationally bounded verifier
seeks to verify a statement made by an all-powerful, but potentially malignant prover. To
adapt this framework to our problem of testing quantum computers, we could replace the
all-powerful prover in the interactive proof by a universal quantum computer and obtain a
complexity class called Quantum Prover Interactive Proofs (QPIP), originally introduced
in [1]. If it happens that QPIP = BQP, where BQP denotes the class of decision problems
that can be solved by a quantum computer in polynomial time with bounded error, it would
imply that the classical verifier can indeed verify any quantum computation via interactive
proofs, as desired. While this question is still open, certain restricted versions of the theorem
have been proved. For instance, it is known that the classical verifier who is capable of small-
scale quantum computation involving only a constant number of qubits at a time can verify
arbitrary quantum computation [1, 34], and that the classical verifier with access to two
quantum provers which are entangled but are not allowed to communicate with each other
can verify arbitrary quantum computation [92].

On the other hand, we observe that the above techniques tend to demand that the quan-
tum computer that is being tested implements a rather strong model of quantum computa-
tion. For instance, even if the actual computation to be verified is very simple, the testing
protocol might require the quantum computer to perform arbitrarily complex BQP com-
putation. Therefore, these schemes do not address the testing of special-purpose quantum
computation. This is a serious shortcoming, especially since general-purpose quantum com-
putation presents an enormous engineering challenge which is not expected to be overcome
in the next decade.

3.1.2 Preliminaries

In this section we introduce some elementary concepts and notations that will be used
throughout the rest of this chapter.

3.1.2.1 Pauli matrices

In quantum mechanics, there are three very frequently used one-qubit observables known as
Pauli matrices, which are defined as follows:

. (01 s (0 —i . (10
T=\10) 7\ o) 7 7\ =1

While these matrices have many interesting properties that would normally deserve a dedi-
cated section, here we only cover a few properties that will be needed for our later exposition.
When we refer to these matrices as local Hamiltonian terms in an n-qubit system, we will
denote which qubit they are acting on by the means of subscripts, e.g. of, oZ, etc. Moreover,
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for the sake of simplicity we will often allow the following abuse of notation:

Uf :Il®®jzfl®0'f®fl+1®®ln
o, =LH® QL1 Q0, [1 Q- QT
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Without further ado, we make the following observations:

1. The ground state of —¢® is the uniform superposition.
This is easily verified by noting that the two eigenvectors of o* are \/L§|0> + \%H} and
\%|0> — \%H), with eigenvalues 1 and —1 respectively. Hence, the ground state of
—o" is \%\O) + \%]1% which is indeed the uniform superposition. More generally, the
ground state of the n-qubit Hamiltonian )", o7 is the n-qubit uniform superposition

er{o,l}n \/Lfn|x>
2. A £0” term in the Hamiltonian biases the qubit towards |1) or |0).

This is again easily verified by noting that the two eigenvectors of o are |0) and |1),
with eigenvalues 1 and —1 respectively. Hence, the ground state of ¢* is |1), whereas
the ground state of —o” is |0).

3. A +0* ® ¢ term in the Hamiltonian “couples” two qubits.

Since
100 0
.. lo 10 0
TR =19 01 0 |
0 00 —1

this Hamiltonian term would prefer to “align” the two qubits by putting them in either
the state |00) or |11). Similarly, a 0* ® ¢* term in the Hamiltonian would prefer to
anti-align the two qubits by putting them in either |01) or |10).

3.1.2.2 Bloch sphere

Another useful formalism in quantum mechanics is the Bloch sphere, which provides a con-
venient representation of a qubit in terms of a spin pointing in some direction in three-
dimensional space. Namely, since we can write any given one-qubit quantum state |1)) as

[4) = cos (g) 0) + € sin (g) 1)

where 0 < 0 < 7 and 0 < ¢ < 27,2 we can easily map it onto the surface of a three-
dimensional sphere and vice versa, as in Figure 3.2. Moreover, it is straightforward to check

2We can assume without loss of generality that the coefficient of |0) is real because the global phase of
a quantum state is physically irrelevant.



CHAPTER 3. A TURING TEST FOR QUANTUM ANNEALERS 35

Figure 3.2: The Bloch sphere representation of one-qubit state [¢) = cos (g) |0) +
e sin (£) [1).

that the three axes of this three-dimensional sphere correspond to the eigenvectors of the
three Pauli matrices. Namely, the +1 eigenvectors of ¢*, o¥, and ¢* correspond to z, g, and
Z on the Bloch sphere, and similarly the —1 eigenvectors of ¢, ¢¥, and ¢* correspond to
—Z, —y, and —2Z.

The Bloch sphere provides a particularly useful geometrical interpretation of the qubit.
For instance, since the standard basis states |0) and |1) are mapped to Z and —Z on the
Bloch sphere respectively, we can think of the standard basis measurement as measuring
whether the spin is pointing up or down on the Bloch sphere. The sign and magnitude of
the z-component of the spin determines how probable it is to see each outcome, with the
two outcomes being equiprobable when the spin is pointing at some point on the equator,
e.g. I.

However, for obvious reasons the Bloch sphere is not going to be as useful in describing the
state of a qubit which is entangled with other qubits, although a certain limited description
is still possible via yet another formalism called mixed states [84].

3.1.3 Introduction to quantum annealing
3.1.3.1 Top-down approach to quantum computing

Whereas building a large-scale general-purpose quantum computer is a monumental task,
in recent years there is more optimism about the possibility of building large-scale special-
purpose quantum computers. Here, it is important to make note of the fact that a special-
purpose quantum computer is not merely a simpler version of a general-purpose quantum
computer. On the contrary, models of special-purpose quantum computation often tend
to employ principles that are fundamentally different from those employed in a model of
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general-purpose quantum computation. To highlight these differences, we observe that the
standard approach to building quantum computers can be thought of as the “bottom-up”
approach in that it first requires building well-specified elementary components such as
high-fidelity qubits and high-precision gate operations, and only then uses these lower-level
components as building blocks to implement higher-level components such as quantum error
correction, quantum algorithms, etc. The relatively slow progress in experimental quantum
computing can be attributed to the technical difficulty of realizing each of these components
at sufficiently high quality.

In contrast, engineering of a special-purpose quantum computer frequently follows what
may be called the “top-down” approach to computing. In the quantum setting, the spirit
of this approach would be translated as to first build some large-scale quantum system and
then try to find interesting computational problems that could be mapped to that system.
For better illustration, let us imagine for the moment that we are interested in the problem
of determining the shapes of water waves in a water basin. One approach to solving this
problem would be to first engineer a general-purpose classical computer which is Turing-
complete and then program it to simulate the physics of the water basin. However, there is
a sense in which this is a huge overkill with respect to the problem at hand. For instance, if
determining the shapes of the water waves was the only problem that we were interested in
solving, we can easily achieve our goal by having a real water basin along with a measuring
instrument, as, for this particular problem, the water basin itself can be considered a highly
effective special-purpose computer.

This kind of top-down approach is particularly attractive in quantum computing because
it lets us bypass many difficult problems in quantum engineering, quantum error correction,
fault-tolerance, etc., while still retaining the hope of achieving nontrivial quantum compu-
tation. In particular, it is easy to see that if we manage to build any large-scale quantum
system that achieves nontrivial quantum coherence, it would immediately yield a special-
purpose quantum computer that outperforms all classical computers on at least one problem,
namely the simulation of that system itself. While such a problem may not always be of
much practical relevance, we can imagine that it will at least be of enormous interest to
physicists.

By far, the leading candidate for such a “top-down” approach is quantum annealing (see
e.g. [75]), which is particularly promising in that it seeks to implement a quantum system
that can encode a large class of practically relevant problems. On the highest level, quantum
annealing can be thought of as a heuristic implementation of a quantum physical process
called adiabatic dragging, which is known to be able to encode the problem of finding the
ground state of a given classical Hamiltonian [49]. This class of problems is NP-hard [16]
and therefore any technique for solving them quickly and reliably is of great interest. While
there is no theoretical guarantee that even a successful, rigorous implementation of adiabatic
dragging will actually yield the optimal solution to these problems, the hope is that quantum
annealing may be able to utilize quantum effects such as tunneling [74] to yield a performance
that is superior to classical computers. The basis of this optimism will be elaborated upon
in Section 3.1.3.3.



CHAPTER 3. A TURING TEST FOR QUANTUM ANNEALERS 37

In addition, we note that there has been considerable optimism about the possibility of
building large-scale practical quantum annealers in recent years. The announcement by the
Canadian company D-Wave Systems of its 108-qubit quantum annealer in 2011 led to intense
excitement in the mainstream media (including a Time magazine cover dubbing it “the in-
finity machine”) and the computer industry, and a lively debate in the academic community.
This, and subsequent scaling and improvements [25, 24, 93, 23, 43], have highlighted both
the importance and challenge in testing special-purpose quantum computers.

3.1.3.2 Adiabatic quantum computing

Before we introduce quantum annealing, it will be appropriate to first have a brief discussion
of a model called adiabatic quantum computing, which served as a primary inspiration in
the development of quantum annealing. An alternative approach to quantum computing,
adiabatic quantum computing was first proposed by Farhi, Goldstone, Gutmann, and Sipser
[49] as a way to achieve quantum speedup for combinatorial search problems such as sat-
isfiability. Its main idea, which is very simple and elegant, can be summarized as follows.
Suppose we have an n-bit combinatorial search problem that we would like to solve, e.g.,
satisfiability. To implement adiabatic quantum computing, we begin by first preparing an
n-qubit quantum system in the ground state of some simple “initial” local Hamiltonian Hy,
such as Hy = — )", of. We note that the ground state of this choice of Hy is simply the
uniform superposition of all standard basis states and is relatively easy to prepare in the lab.
Then, we “adiabatically drag” the system Hamiltonian from Hj to another local Hamiltonian
Hy, which encodes the computational problem of interest and is typically significantly more
complex. This kind of adiabatic dragging can be implemented as a time-dependent local
Hamiltonian of the following form:

H(t) = (1—t)Hy + tHy.

Here, we assume that the system temperature is maintained at zero for the whole duration
of the process (hence the name adiabatic) and that ¢ goes from 0 to 1. That is, if the actual
duration of the dragging process is t, the system Hamiltonian at time s € [0,¢;] will be
given by H(s/ty). Intuitively speaking, the idea of adiabatic quantum computing is that if
we prepare our system in the ground state of the initial Hamiltonian and then morph the
system Hamiltonian into another “target” Hamiltonian sufficiently slowly, the system will
always remain in the ground state of the resulting time-varying Hamiltonian at each instant
of the dragging process. In particular, at the end of the process the system will be found in
the ground state of the final Hamiltonian Hy, which can be designed to encode the solution to
a desired combinatorial optimization problem. For example, we saw in Section 2.3 that local
Hamiltonians can encode solutions to arbitrary instances of constraint satisfaction problems,
including satisfiability.

Moreover, the well-known adiabatic theorem [73] in quantum mechanics rigorously es-
tablishes the above intuition:
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Theorem 3.1. Let A = ming<<i{A2(H(t)) — M\ (H(t))}, where X\;(A) denotes the i-th
smallest eigenvalue of A. If t; = Q(1/A?), the probability that the system will be found in
the ground state of Hy at time ¢ = 1 is bounded away from 0.

This means that the running time of the adiabatic algorithm as an exact algorithm should
be thought of as proportional to 1/A3. This inverse dependence on A has an intuitive
explanation; since a small value of A implies the existence of suboptimal states which come
very close to the optimal state at some point during this evolution, in such a case it would be
logical to exercise more care by increasing our running time, so as to ensure that the system
does not “jump” from the optimal state to a suboptimal state.

Unfortunately, there are known instances of certain combinatorial optimization problems,
such as satisfiability, for which the spectral gap A is shown to scale inverse-exponentially
[41, 42, 91]. This implies that the adiabatic algorithm also requires exponential time to
solve those problems in the worst case. While other instances have been constructed on
which the adiabatic algorithm provably outperforms simulated annealing [48; 91|, there is
some numerical evidence that A is exponentially small even in the generic case, i.e. for
randomly chosen instances [11]. Perhaps these results are not too surprising, given that
adiabatic quantum computing has been shown to be equivalent to the standard gate model
of quantum computing, up to a polynomial overhead [5].

On the other hand, the adiabatic model of quantum computing may offer significant
advantages over the standard gate model with respect to experimental realization. This is
already evident in the fact that the adiabatic model is described in the language of physics,
i.e. using Hamiltonians and continuous-time evolution, whereas the standard gate model is
described in the language of computer science, i.e. using gates and circuits. In addition,
the adiabatic model is known to possess some intrinsic robustness to certain kinds of noise
[49, 36]. Nevertheless, the fact that the adiabatic model has no well-established theory of
error correction (see [121]) will be a huge concern for anyone who wishes to implement it, as
several studies [36, 55, 106, 12, 112] show that such intrinsic robustness is not sufficient to
protect computation.

3.1.3.3 Quantum annealing

Quantum annealing, which is the main subject of this chapter, can be understood as a noisy
implementation of adiabatic quantum computing. It is defined in terms of the same kind
of Hamiltonian dragging as adiabatic quantum computing, but differs in that the system
temperature is assumed to be finite (i.e. nonzero) and the spectral gap condition in the
adiabatic theorem is not respected. Since its premises are not met, the adiabatic theorem is
no longer able to provide any form of performance guarantee to the model.

Hence, quantum annealing is not to be considered next to exact algorithms typically
studied by computer science theorists, which come with a rigorous guarantee to find the op-
timal or near-optimal solution within a prescribed running time. Rather, quantum annealing
begins with the admission that there is no such theoretical guarantee, and focuses more on
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obtaining a good field performance. In that regard, quantum annealing is a heuristic and
therefore would more appropriately be compared with classical heuristic algorithms such as
simulated annealing.

Interestingly, there is a sense in which comparison between quantum annealing and sim-
ulated annealing (unfamiliar readers are referred to the explanation in Section 3.3.1) is
particularly more appropriate, for these two methods seem to be built upon roughly the
same principle. Namely, both algorithms begin exploring the search space from a completely
random state at time ¢ = 0 and gradually increase the influence of the target Hamiltonian
over time, in the hope that such gradual evolution will help the system escape local minima
and have greater chances of finding the global minimum. The crucial difference is that in
quantum annealing a random state means a quantum superposition over multiple states,
whereas in simulated annealing it means a classical ensemble over states. Hence, in this
sense quantum annealing can be viewed as a quantum analogue of simulated annealing.

The basis for optimism about quantum annealing’s potential for a super-classical speedup
lies in the possibility of a phenomenon called quantum tunneling, whereby quantum systems
are able to get through barriers in the energy landscape notwithstanding an energy deficit
(see [91] for a concrete example). This is in stark contrast to the classical case, where
the system must acquire the amount of energy prescribed by the barrier if it were to ever
surmount the barrier (see Figure 3.3). Hence, if one could ensure that a given implementation
of quantum annealer is capable of inducing quantum tunneling at a sufficiently large scale, it
would at least be a demonstration of a computational primitive which is inherently quantum
and cannot be reproduced by any classical device. Even though the aforementioned results
about adiabatic quantum computing may be suggesting that there will be no implication
on the asymptotic time complexity of NP-hard optimization problems, it is reasonable to
expect that such a novel primitive will eventually find a practical use case.

The possibility of a speedup by quantum tunneling presents two main questions: firstly,
can quantum tunneling have a significant impact on the computation in zero-error mod-
els such as adiabatic quantum computing? Unfortunately, as we pointed out earlier, there
are known instances of certain combinatorial optimization problems, such as satisfiability,
for which the spectral gap A is shown to scale inverse-exponentially [41, 42, 91]. Hence,
the adiabatic algorithm also requires exponential time to solve those problems in the worst
case. While other instances have been constructed on which the adiabatic algorithm outper-
forms simulated annealing by exercising quantum tunneling [48, 91], there is some numerical
evidence that A is exponentially small even in the generic case, i.e. for randomly chosen
instances [11].

Secondly, there is also the question of whether quantum tunneling can occur in quantum
annealers despite the fact it is implemented at a finite (i.e. nonzero) temperature. This means
that the system is subject to thermal noise at all times and, in particular, can lose quantum
coherence very rapidly. In the absence of a general scheme for error correction on quantum
annealers, whether the quantum annealer can support large-scale quantum phenomena in
spite of such rapid decoherence is a particularly big concern. While some studies [25, 45,
8] suggest that decoherence in a quantum annealer may take place in the eigenbasis of the
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Figure 3.3: A schematic illustration of quantum tunneling vs. classical thermal fluctuations.

Hamiltonian and therefore be less detrimental, as yet there is no clear consensus on whether
large-scale quantum effects can indeed survive.

On the other hand, we observe that the finite temperature of the quantum annealer is
not necessarily a strictly adverse factor. On the contrary, there is even a sense in which
it can be highly beneficial to the computation, because thermal fluctuations that happen
at a finite temperature are in fact the very basis of classical annealing-based algorithms
such as simulated annealing. In such algorithms, it is precisely these thermal fluctuations
that provide the system with the necessary energy to surmount energy barriers surrounding
local minima and give it the potential to settle into the global minimum. In fact, simulated
annealing at zero temperature would simply correspond to the local search algorithm that
only explores neighboring states which are better than the current one, and it is easy to
see that such an algorithm would immediately get stuck in the first local minimum it finds,
yielding a terrible performance.

Therefore, while being a spiritual successor of adiabatic quantum computing, quantum
annealing should at the same time be clearly distinguished from adiabatic quantum com-
puting. While both algorithms depend upon the possibility of quantum tunneling to achieve
a super-classical speedup, quantum annealing is also intended to make active use of the
above computational primitive based on classical thermal effects, and it must be made clear
that quantum tunneling can effectively assist this classical primitive in a manner that will
manifest a noticeable improvement in the performance of the algorithm.

All in all, two main questions that must be answered about any given implementation of
a quantum annealer are as follows:

1. Does the implementation support large-scale quantum tunneling?

An important condition for a quantum annealer to achieve super-classical performance
is large-scale quantum tunneling. If the device is incapable of inducing quantum tun-
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neling or it can only support quantum tunneling at a small scale (e.g. affecting only
a constant number of spins at a time), it would likely imply that the computational
primitives used by the machine are local and can be efficiently simulated classically.

2. Does quantum tunneling benefit computation (i.e. yield a speedup over classical algo-
rithms)?

Even if the quantum annealer does support large-scale quantum tunneling, it does
not directly imply that it achieves a computational speedup. In order to claim a
speedup, a concrete class of instances on which the machine outperforms the best
classical algorithms must be demonstrated.

In this chapter, we seek to introduce a systematic approach to the above two questions, via
the concept of a quantum Turing test.

3.2 Quantum Turing test

The heuristic nature of quantum annealing presents a unique challenge in the verification of
its experimental realizations. We note that in the engineering of a general-purpose quantum
computer, in which each individual component such as qubits, quantum gates, measuring
equipment, etc., are carefully tested and specified, there is a sense of correctness provided
by the accuracy of those specifications. Namely, once all the elementary components used to
build a quantum computer are fully specified — e.g. in terms of the time it takes for a qubit
to decohere, the fidelity of a gate operation, the failure rate of an error correction code, etc. —
there is a sense in which we can expect the composition of those elementary components to
also behave according to our predictions, provided our understanding of quantum mechanics
is correct. On the other hand, such bottom-up approaches to verification are obviously not
compatible with top-down computational models such as quantum annealing. What would
be an appropriate way of testing or benchmarking special-purpose quantum computers such
as quantum annealers, both in terms of their ability to achieve nontrivial quantum coherence
and in terms of their ability to achieve a quantum speedup?

In this thesis, we propose that a kind of quantum Turing test, inspired by the famous
Turing test in artificial intelligence, provides a particularly effective way of exploring these
questions. Turing introduced his famous test to address the question “Can machines think?”
By analogy a quantum Turing test seeks to address the question “Is the given machine quan-
tum?” The main idea of the quantum Turing test is to compare the input-output behavior
of the given machine to that of a suitable classical model on inputs sampled from a pre-
scribed probability distribution, while treating both the machine and the classical model as
black boxes in the same fashion as in the original Turing test. If the machine turns out to
behave nearly identically to the classical model, we can conclude that the machine is not
sufficiently quantum and that it fails the quantum Turing test. In that sense, the classical
model in the quantum Turing test can be viewed as serving a role similar to that of the
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null hypothesis in statistical testing. Such a test is particularly relevant in the context of a
special-purpose quantum computer such as a quantum annealer, since such models do not
have a general theory of fault-tolerant quantum computation that can provide a rigorous
guarantee of quantum coherence.

Noting the fact that a special-purpose quantum computer is designed to solve (speed up) a
restricted class of computational problems, the quantum Turing test can be defined as follows.
Formally, a special-purpose quantum computer is a machine M together with a probability
distribution D on inputs. Here, the probability distribution D can be thought of as defining
the class of problems intended for the given special-purposed quantum computer M. Hence,
if we interpret D as a distribution over all inputs to a universal quantum computer, the
restriction is that M is designed to solve only those instances that are in the support of
D. The resources of M are specified by a bound P(n) on its degree of parallelism (or the
amount of hardware in the machine) and a bound 7'(n) on its running time, where n denotes
the size of the input. A quantum Turing test treats M as a black box, and tests the claim
that M has significantly better performance on random inputs drawn from the distribution
D than any classical algorithm. To falsify the claim, we wish to find a classical model C' that
uses comparable resources (O(P(n)) parallelism and O(7'(n)) time) and whose input-output
behavior is nearly indistinguishable from that of M on randomly chosen inputs from the
distribution D. If there exists such a classical model C, we conclude that the given machine
M fails the quantum Turing test.

3.3 Classical models for quantum annealers

In applying the quantum Turing test to a given quantum device, the most important issue
is that of the choice of the classical model. To see this, we point out that there is an
inherent asymmetry in the quantum Turing test. Namely, while the existence of even a single
classical model that reproduces the input-output behavior of the given machine immediately
constitutes its failure on the quantum Turing test, exhaustion of all classical models is
necessary to ensure with certainty that the machine passes the test. In practice, where such
exhaustion is infeasible, the quantum Turing test should at least entail distinguishing the
machine from some class of “reasonable” classical models. If the classical models used in the
test are physically and algorithmically well-motivated, even such limited versions of the test
can provide some evidence that the machine exhibits quantum effects or performs quantum
computation.

In this section we propose a simple classical model for quantum annealers, which pro-
vides such a reasonable starting point for the quantum Turing test. In this model, qubits
are modeled by classical magnets coupled through nearest-neighbor interaction and subject
to an external magnetic field. The finite temperature of the device is modeled by applying
the same kind of Metropolis rule as in simulated annealing to randomly “kick” each mag-
net at each step. The detailed design of the model is motivated as much by algorithmic
considerations as physical ones, the goal being to preserve the algorithmic characteristics of
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the quantum annealer as far as possible while also introducing the extra assumption that
quantum coherence in the machine is destroyed at each instant. Viewed in the Bloch sphere
formalism, our model can be understood as what physicists call a “mean-field approxima-
tion” of quantum annealing, which means that the system is assumed to remain in a product
(i.e. unentangled) state at all times. In this sense, our classical model is a natural classical
analogue of quantum annealing and provides a suitable foil against which to test that the
given implementation of a quantum annealer achieves nontrivial quantum coherence. This
addresses the first question raised in Section 3.1.3.3.

The classical model can also play a role in testing that the quantum annealer achieves a
quantum speedup, i.e. testing a claim that there is a computational problem that it solves
much faster than any classical algorithm. The key challenge in testing such a claim is, for
a given choice of computational problem, how to identify a good (if not the best) classical
algorithm to compare against. We argue that our classical model provides a natural starting
point in the search for such a classical algorithm. Indeed, since our model is designed to
explain the computational power of quantum annealing in the absence of quantum tunneling,
there is even a sense in which the performance gap between our model and the given machine
may be interpreted as corresponding to the contribution of quantum tunneling. Thus, our
classical model addresses the second question from Section 3.1.3.3.

It is interesting to contrast our classical model with simulated annealing as a possible
benchmark for a quantum annealer. Indeed, given quantum annealing’s resemblance to
simulated annealing, comparison tests based on simulated annealing have frequently been
employed to argue that e.g. the D-Wave machine performs quantum computation [25, 24,
43]. An analysis of our findings sheds new light on the nature of quantum annealing and
its comparison with simulated annealing. Our classical model can be viewed as a variant
of simulated annealing which works with 2D vectors rather than bits (or classical spins)
in the presence of an external bias in the z-direction. While neither feature by itself (2D
vectors and external x-bias) changes the qualitative behavior vis-a-vis simulated annealing,
surprisingly the combination of both features makes the model behave very differently from
simulated annealing, producing a behavior that could naively be interpreted as a signature
of quantum tunneling. The fact that a purely classical model like ours can exhibit such a
behavior exposes a pitfall in using “quantum signatures” as evidence of quantum tunneling.

Before we introduce our classical model, we begin by introducing several related classical
models that have been used in the literature to study quantum annealing.

3.3.1 Simulated annealing

In this section, we provide a brief introduction to simulated annealing, one of the most
popular classical metaheuristics for optimization problems.

Practiced since prehistoric times, annealing is a highly effective metallurgical technique
for obtaining high-quality metallic crystals. The method consists simply in first heating
the target material to a high temperature and then letting it slowly cool back to room
temperature. Annealed materials tend to possess various favorable characteristics such as
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increased ductility, malleability, softness, etc. Interestingly, there is a surprising analogy
between this metallurgical task of obtaining high-quality crystals and the computational
optimization problems which have been the subject of our discussion. In fact, the task of
obtaining high-quality crystals can directly be viewed as an optimization problem, because
higher-quality crystals have particles that are more regularly spaced and therefore have a
smaller physical energy. In this sense, annealing can be viewed as a technique for achieving
lower-energy configurations of a given material.

Simulated annealing [77] is a metaheuristic obtained by directly simulating the metal-
lurgical annealing process in the context of computational optimization problems. As an
algorithm, it can be outlined as follows:

e Initialize the temperature 1" to be some high constant 7. Generate a random solution x.
e Repeat the following for a suitable number of steps:

- Sample a random neighbor z’ of x by making a random local modification to x. For
instance, if x is binary, 2’ can be generated by flipping a randomly selected bit of x.

- Let Af = f(2') — f(x), where f is the function we seek to minimize. With probability
min{1,e2//T} accept the new solution 2’ by updating z < 2.

- Decrease T' by a small amount.

Note that the temperature 7" in this algorithm can be interpreted roughly as our aggres-
siveness in the exploration of the search space. For instance, when T is close to 0, moves
that increase the cost function f even very slightly will have a vanishing acceptance proba-
bility e=2f/T and will be virtually prohibited, yielding a rather conservative exploration of
the search space. In contrast, when 7' is very large, the acceptance rule practically ignores
the cost difference Af and always accepts the new solution z’, yielding a very aggressive
exploration of the search space.

Therefore, simulated annealing can intuitively be thought of as an algorithm that initially
attacks the search space completely randomly, but gradually increases the influence of the
cost function f over time. The idea is that the higher temperature in earlier parts of the
annealing process enables the algorithm to explore the search space without being stuck in
local minima, enhancing its chances to find a region which is likely to contain the global
minimum. Then, as the temperature approaches zero, the algorithm will eventually behave
like a simple hill descending algorithm and quickly settle into a nearest local minimum. Note
that this provides an interesting parallel to quantum annealing, in which also the randomness
(which in the quantum case corresponds to the bias towards the uniform superposition) is
decreased over time and the strength of the problem Hamiltonian is increased over time.

Clearly, the initial temperature 7y and the amount by which 7" is decreased in each step
are important parameters in simulated annealing. Together, these parameters constitute
what is called the annealing schedule of the algorithm. We note that the latter parameter
does not have to be constant. In fact, exponential update rules such as T <+ 0.997 are
frequently used to implement the annealing schedule in practice. More generally, we can
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think of the temperature as an arbitrary positive decreasing function T'(t) where ¢ is the step
number.

While the algorithm is relatively straightforward, the choice of the acceptance probability
min{1, e~ 4/ / T} merits more discussion. Widely known as the Metropolis acceptance rule, it
was first proposed by Metropolis et al. in 1953 [82] in order to make the random walk implicit
in the above algorithm converge to a physically meaningful distribution. Indeed, under the
above choice of the acceptance rule, the stationary distribution of this random walk is shown
to be the well-known Gibbs distribution F(x) oc e=/@)/T 3 which is widely used in statistical
physics to describe the state of a given physical system at a fixed temperature 7. In this
interpretation, each x is thought of as corresponding to a physical configuration and f(z)
its energy. Hence, at fixed T', the above algorithm is merely a sampling algorithm for the
Gibbs distribution, and this provides a justification for the claim that simulated annealing
is a physical simulation of annealing.

While simulated annealing is guaranteed to converge to the global minimum after a suffi-
ciently large number of steps [62], it is recognized mainly as a heuristic because the number
of steps required for exact convergence is usually exponential. Nevertheless, simulated an-
nealing is celebrated as one of the most successful metaheuristics for practical optimization
problems.

3.3.2 Simulated quantum annealing

Another classical model for quantum annealing that is frequently considered in the litera-
ture is simulated quantum annealing, which is nothing but a direct simulation of quantum
annealing itself. While a simulation of quantum systems is generally infeasible due to their
exponential nature, a specific class of quantum Hamiltonians called stoquastic Hamiltonians
(some details are provided in Section 4.2.5) are commonly believed to be “easy” to simulate
using certain nontrivial methods [29]. The methods that are used to simulate such systems
are known under the name of quantum Monte Carlo (e.g. [17]), and are based on a map-
ping that is known to exist between stoquastic quantum systems in d spatial dimensions
and classical systems in d + 1 spatial dimensions. It turns out that the quantum Hamilto-
nian for adiabatic quantum computing and quantum annealing described in Section 3.1.3.2
also satisfies the condition of stoquasticity, and therefore may admit accurate simulations
via quantum Monte Carlo methods. Of course, if such simulations were actually accurate,
then any potential for a quantum speedup would be immediately ruled out. However, the
belief that quantum Monte Carlo simulations are effective for stoquastic Hamiltonians is of
heuristic nature, and it is possible that there are features of quantum annealing which are
not described by quantum Monte Carlo simulations.

3While the actual Gibbs distribution is defined as F(z) oc e=/(®)/kT 'here we will think of the Boltzmann
constant k as being subsumed into T.
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Figure 3.4: Classical 2D spins. Since the state of each individual qubit is fully described by
the corresponding 2D vector, no entanglement is possible between these qubits.

3.3.3 Classical spin dynamics

In this section, we briefly introduce a classical model for quantum annealing proposed by
Smolin and Smith [104], originally in the context of the D-Wave machine. Noting that qubits
in the D-Wave machine are reported to decohere in time that is orders of magnitude shorter
than the total annealing time of the machine, they propose that these qubits should be
modeled as 2D classical spins, i.e. each qubit ¢ should be represented by a 2D unit vector
on the z-z plane making some angle 6; with the 2 axis. Hence, any o7 term in the original
quantum Hamiltonian is now replaced by the x-component of the classical spin, which is
given by sin;, and any o} term is replaced by the z-component of the classical spin, given
by cos ;. If H(t) is the classical time-dependent Hamiltonian? thus obtained, the equations
of motion of the system are simply defined by the following ordinary differential equations:

d )
_ezze’w

dt

d, _did
dt ' db;’

Then, it is straightforward to simulate the model by integrating this system of ordinary
differential equations.

3.3.4 Owur model

Finally, we describe our classical model for benchmarking quantum annealers. While our
model shares certain features with some of the previous models, we argue that it provides a
more appropriate benchmark for quantum annealers than any of those models.

4Note that a classical Hamiltonian is simply a function from the set of possible classical states (in this
case [0,27)™) to R which returns the energy of a given state.
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In a typical implementation of quantum annealing for 2-local Hamiltonians, a quantum
annealer consists of a set of qubits subject to a time-varying Hamiltonian of the form:

H(t)=—A(t)) of — B(t) (Z hioi + ) Jijafaj) .

1<i<j<n

Here A(t) controls the magnitude of the transverse z-field (i.e. the initial Hamltonian), and
B(t) that of the local z-fields and z-z interactions (i.e. the final Hamiltonian). The z-z
interactions are limited to neighboring pairs of qubits {7, j} on an interaction graph which
is dictated by the hardware architecture. For example, if the implemented interaction graph
of a given quantum annealer were a 2D grid, .J;; would be allowed to have a nonzero value
only if ¢ and j are neighboring qubits on that grid. As before, we can assume that ¢ goes
from 0 to 1, and that the boundary conditions are B(0) ~ 0 and A(1) ~ 0, so that the
ground state of the final Hamiltonian H(1) is determined solely by the local z-fields and z-z
interactions. The quantum annealer works by first preparing the system in the ground state
of H(0) ~ —A(0) >, 07 and then gradually evolving the Hamiltonian from H(0) to H(1)
according to the schedule specified by A(t) and B(t). The computational problem that is
native to the quantum annealer is therefore that of finding the ground state of a classical
Ising spin glass, i.e. a spin configuration with each spin value z; € {—1, 1} chosen to minimize

the energy H = — >, h;jz — Zl§i<j§n Jijzizj. We note that this problem is known to be
NP-hard on 2D grids [16], but admits a polynomial-time approximation scheme on planar
graphs [15].

To apply a quantum Turing test to quantum annealers, we introduce a classical 2D spin
model that employs a Metropolis-like noise process. In this sense, the model can be viewed
as incorporating ideas from both simulated annealing and classical spin dynamics. In our
model, each spin ¢ in the quantum annealer is modeled by a classical magnet pointing in
some direction 6; in the z-z plane. We further assume that

1. there is an external magnetic field of intensity A(t) pointing in the Z-direction,

2. there is a local magnetic field of intensity B(t)h; pointing in the 2-direction at spin i,
and

3. neighboring magnets are coupled via either ferromagnetic (i.e. we prefer their z-com-
ponents to have the same sign) or antiferromagnetic (i.e. we prefer their z-components
to have opposite signs) coupling, according to whether J;; is positive or negative.

The resulting Hamiltonian mirrors the quantum Hamiltonian described earlier:
H(t) = —A(t) Z sind; — B(t) <Z hi cos 8; + Z J;j cos 0; cos 9j> .
i i 1<i<j<n

Note that a natural update procedure for this model in the absence of noise is to have each
spin 4 simply align with the net effective field at that location, which is A(t)z + B(t)Z(h; +
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Zl§i<j§n Jijcosb;), ie., it should make an angle §; with the z-axis where
A(t)

However, since a quantum annealer is implemented at a finite temperature i.e. in a
very noisy setting, neither the above update rule nor the ordinary differential equations from
classical spin dynamics are likely to accurately describe the dynamics of the system. Instead,
we perform a Metropolis-type update in order to simulate the effects of finite temperature
T. That is, at each time step,

tan 8, =

1. we pick a random angle 8, € [0, 27) for each spin 4, and

~AB/TY where

2. update 6; to 8 with probability max{1, e
AE; = H(t)ly_g — H(1)
= —A(t)(sinf; —sin6;) — B(t)h;(cos b, — cos b;)
—B(t) Z Jij cos6;(cos 0 — cosb;).
1<i<j<n

Note that our update procedure can be regarded as the direct analogue of simulated
annealing for 2D vectors instead of bits. It is clear by construction that the model can be
simulated using n elementary processors, one for each spin, and the simulation time is linear,
O(T). Moreover, the model retains the geometric locality of the quantum annealer.

Further justification for the physical concept of our model can be obtained by viewing
the model in terms of the Bloch sphere. Namely, one can interpret the 2D vectors in our
model as Bloch sphere vectors for the corresponding qubits, in which case the expectations
of observables ¢ and o} are given by

(o7} — (cos (%) (0] + sin (%) <1y> oo (Cos (%) 0) + sin (%) \1))
_ (cos (%) (0] + sin (%) <1y> (cos (%) 1) + sin (%) yo>)
_ 2.sin (%) cos (%)

= sin(f;),
( ) (0] + sin <%) <1|> o <cos <%) 10 + sin (%) |1>)
= (cos <5> (0] + sin (%) <1y> (cos (%) 0) — sin (%) \1))
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Hence, the classical Hamiltonian defined by our model can be written as

H(t) = AW Y (o7) — B (Z hiod)+ > Tyl ) ,

1<i<j<n

which is nothing but the Hamiltonian obtained by replacing each Pauli matrix in the orig-
inal quantum Hamiltonian by its expectation. This corresponds to a popular technique in
quantum physics called mean-field approximation, which is widely used on systems in which
entanglement is expected not to play a crucial role. This provides a sense in which our model
is a natural classical analogue of quantum annealing, derived under the single assumption of
the lack of entanglement. Moreover, this suggests a natural way to generalize our model to
work for arbitrary quantum Hamiltonians; namely, under the assumption that the system is
in some product state |¢), any given quantum Hamiltonian H = ). H; can be approximated
by replacing H; with (H;),,. While in this chapter we are restricting the Bloch vectors to be
on the XZ plane, we may need to allow them to use all three dimensions if we were to deal
with more general Hamiltonians that also involve ¢¥ terms.

Compared to other classical models for quantum annealing, our model possesses several
advantages. First, unlike simulated annealing, our model is capable of modeling the trans-
verse field —A(t) >, o7 thanks to its adoption of 2D vector representation. In contrast,
the state representation in simulated annealing allows only +Z2 or —Z for each spin and the
introduction of a transverse field will not have any effect at all. Second, unlike classical
spin dynamics, our model is capable of modeling the finite temperature 7" of the quantum
annealer, using the Metropolis update rule. Third, unlike simulated quantum annealing,
our model is simple and natural. We note that simulated quantum annealing introduces
an additional spatial dimension that does not have an immediate physical interpretation, a
factor that makes it difficult to understand and analyze.

Before we conclude the section, we remark that we have considered a particularly simple
noise model in our classical model. We note that there are situations where it can be
helpful to consider more general noise models. For example, in general the fluctuations
of the local z-fields relative to those of the z-z interactions may be governed by an extra
parameter. In certain regimes, this new parameter may be critically important in determining
the qualitative behavior of the model. This has implications for the quantum Turing test:
instead of testing against a single model, it must search in a small neighborhood around the
core model. In other words, in such regimes, the classical benchmark should be regarded as
a family of models.

3.4 Benchmarking the D-Wave machine

In this section, we demonstrate the effectiveness of the quantum Turing test by applying
it to the D-Wave machine, which is the only commercially available, and therefore most
accessible, quantum annealer to date.
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Figure 3.5: The annealing schedule of D-Wave One (figure adapted from the supplementary
materials of [24]). In the actual implementation, the effective schedule may slightly vary
from spin to spin (see the supplementary materials of [24] for details).

A leading figure in experimental quantum annealing, D-Wave Systems has been making
headlines in various academic and mainstream media since 2011, when they released their
first commercial product D-Wave One. A quantum annealer with 108 qubits, D-Wave One
was soon reported to exhibit genuine quantum signatures in a few scientific papers [25, 74, 45,
24] and its 503-qubit successor D-Wave Two was even claimed to outperform conventional
software solvers by a factor of 3600 [81]. After a few years of rapid scaling, their latest
product D-Wave 2X, released in 2015, operates with as many as 1097 qubits, and reportedly
outperforms simulated annealing by a factor of 10® on a specially designed class of test
instances [43].

These D-Wave machines implement the quantum annealing model as introduced in the
beginning of Section 3.3.4 with a particular choice of the annealing schedule and the interac-
tion graph. For example, Figures 3.5 and 3.6 depict D-Wave One’s annealing schedule and
interaction graph. While the choice of its annealing schedule is straightforward in that it
follows the usual boundary conditions A(1) ~ 0 and B(0) ~ 0, the choice of the interaction
graph merits further comments. The interaction graph implemented by the D-Wave archi-
tecture is the so-called Chimera graph, which may be described as a 2D lattice with each
lattice point replaced by a supernode of 8 vertices arranged as a complete bipartite graph
K44 (see Figure 3.6). The left four qubits in each supernode are coupled vertically in the
2D lattice and the right four qubits horizontally. More specifically, each left qubit is coupled
with the corresponding left qubits in supernodes immediately above and below its own su-
pernode, and each right qubit is coupled with the corresponding right qubits in supernodes
immediately to the right and left of its own supernode. The number of qubits in a D-Wave
processor is determined by the number of supernodes in each row and column of the original
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Figure 3.6: The “Chimera” interaction graph of D-Wave One (figure adapted from the
supplementary materials of [24]). Due to issues in implementation, not all of the vertices on
the Chimera graph represent working qubits on the device. The defective qubits are colored
grey and are excluded from experiments.



CHAPTER 3. A TURING TEST FOR QUANTUM ANNEALERS 52

2D lattice. For instance, D-Wave One has 16 supernodes arranged in a 4 x 4 lattice, whereas
the latest D-Wave 2X has 144 supernodes arranged in a 12 x 12 lattice. We note that the
Chimera graph is not planar, and therefore the problem of minimizing the energy on this
graph cannot be handled by the polynomial-time approximation scheme of [15]. On the other
hand, Saket [94] recently developed a new polynomial-time approximation scheme designed
specifically for Chimera graphs, which means that computing approximate solutions to the
class of problems solved by the D-Wave machine is easy even classically. Hence, the hope
for achieving an exponential quantum speedup with D-Wave’s current architecture can be
thought of as mostly with respect to finding the ezact minimum.

Since the release of D-Wave One, the findings and controversies surrounding the D-Wave
machines have generated excited debates not only in the mainstream media but also in
the computer industry and the academic community. Many of these debates arose from a
number of early reports that seemed to contradict one another. For example, while McGeoch
and Wang [81] found D-Wave Two to outperform conventional software solvers by a factor of
3600, Rgnnow et al. [93] reported that they found no evidence of quantum speedup compared
to simulated annealing, and Selby [99] even reported that there is a classical heuristic that
could outperform D-Wave Two by a factor of up to 160. Similarly, while Boixo et al. [26]
reported to have found a quantum signature in experiments with D-Wave One, Smolin and
Smith [104] claimed that this same quantum signature could be described using entirely
classical concepts. The debates about the potential power of the D-Wave machines were
further fueled by fact that even among experts opinion is sharply divided about the nature
of decoherence in a quantum annealer. On the one hand, the decoherence time (i.e. the time
it takes for a qubit to decohere and effectively lose its quantum information) of D-Wave’s
qubits is reported to be on the order of nanoseconds [25], whereas the total annealing time of
the D-Wave machine is typically on the order of microseconds [24]. One way to interpret this
is that quantum information in the D-Wave machine keeps evaporating in time that is orders
of magnitude shorter than the running time of the algorithm and therefore the algorithm
should not be able to exhibit any quantum effects. On the other hand, there are studies
25, 45, 8] that suggest that decoherence is less detrimental to quantum annealers than to
general-purpose quantum computers, rendering the short decoherence times of D-Wave’s
qubits less relevant.

Indeed, it was these controversies and confusions that provided the initial motivation for
the research presented in this chapter, as they clearly manifested the impending need for a
systematic approach to benchmarking quantum annealers. In this section, we demonstrate
the effectiveness of the quantum Turing test and our classical model by applying the test to
experimental data from D-Wave quantum annealers.

3.4.1 Random instances of the D-Wave native problem

In our first quantum Turing test, we compare the input-output behavior of the D-Wave
machine to that of our classical model on the experimental data reported in [117, 24]. We
note that this dataset was used in [24] to claim evidence of quantum tunneling, where the
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main argument was based on the behavioral difference between the D-Wave machine and
simulated annealing. The dataset records the input-output behavior of D-Wave One on a
thousand randomly chosen inputs, noting its probability of finding the exact ground state
for each instance. Hence, the input distribution of the quantum Turing test is defined by
choosing J;; for each edge {i, j} on the Chimera graph to be either —1 or 1 independently at
random. Note that this defines a probability distribution D that is uniform on its support
and can be thought of as representing the random instances of the native problem of the D-
Wave machine. While in practice the D-Wave machine can implement any final Hamiltonian
of the form H = — ) h;z — El§i<j§n Jijzizj where h;, J;; € [—1,1], this dataset focuses
on the case where h; = 0 and J;; € {—1,1} because it is suggested in [24] that this case
captures the hardest instances of the problem. Indeed, nonzero values of h; would add a bias
to individual spins, which would typically make the problem easier to solve.

The results of this quantum Turing test are presented in Figures 3.7 and 3.8. First, we
note that the simulations of our model yield a histogram with clear bimodal signature similar
to that of the D-Wave machine, as opposed to the unimodal signature of simulated annealing
(Figure 3.7). One interpretation of this histogram is that both the D-Wave machine and
our classical model behave more deterministically than simulated annealing on this dataset,
as it shows that on most instances they either succeed with high probability (the mode at
1.0) or fail with high probability (the mode at 0.0). Moreover, the success probabilities of
our model achieve a remarkably high correlation with the success probabilities of D-Wave
One (Figure 3.8), showing that the input-output behavior of D-Wave One on the above
input distribution is accurately reproduced by our classical model. Since this implies that
quantum tunneling is not necessary to explain the input-output behavior of D-Wave One on
this input distribution, it can be formalized as the machine’s failure to pass the quantum
Turing test on random instances of the D-Wave native problem.

We note that the correlation of 0.91 between D-Wave One and our classical model is
slightly higher than the correlation between D-Wave One and simulated quantum annealing
reported in [24], which is also around 0.91. Interestingly, a direct comparison between our
model and simulated quantum annealing reveals an extremely high correlation of R =~ 0.99
(Figure 3.9). This seems to confirm our previous observation that our model may be viewed
as a mean-field approximation of quantum annealing, in which the system is assumed to be
in a product state at every time step.

3.4.2 Eight-qubit motif problem of Vinci et al.

In this section, we apply the quantum Turing test to the eight-qubit motif problem of [23],
which was proposed to distinguish our classical model from the D-Wave machine.

Figure 3.10 depicts the problem Hamiltonian used in the experiments of [116], which has
17 classical solutions with exactly the same energy —8. Indeed, it is easy to see that all of
the sixteen classical states in which the four core spins are pointing in the positive direction
are ground states of the Hamiltonian. In addition, there is one more ground state with all
eight spins pointing in the negative direction. In [116], the first sixteen ground states are
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Figure 3.7: Histogram of success probabilities of D-Wave One, our classical model, and
simulated annealing (SA). Unlike simulated annealing, the D-Wave machine and our model
exhibit a clear bimodal distribution. The histogram for simulated annealing (right panel)
was borrowed from [24].
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Figure 3.8: Correlation between D-Wave and our model. Each simulation of our model
consisted of 150,000 steps, following the annealing schedule of D-Wave One from Figure 3.5.
The system temperature of T = 0.22GHz ~ 11mK was used. The (Pearson’s) correlation
coefficient R between the D-Wave One and our model is about 0.91.
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Figure 3.9: Correlation between simulated quantum annealing of [24] and our model. The
correlation coefficient R is about 0.99.

Figure 3.10: The eight-qubit motif problem proposed in [116], which can be mapped to a
single supernode of the D-Wave machine. All couplings are ferromagnetic, whereas there is
a local z-field applied in the positive direction for the four “core” spins, and in the negative
direction for the four “peripheral” spins. Formally, the final Hamiltonian is defined as Hy =
— > hiof =3 ; Jijofoi. Thelocal field h; is set to be 1 if i is a core spin, and —1 otherwise.
The coupling strength J;; = 1 for every edge {7, j}. Figure is borrowed from [116].
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Figure 3.11: The solid curves represent the annealing schedule of D-Wave Two. Dotted blue
curves represent the effective annealing schedule for cases o = 0.2834 and o = 0.1099. The
dotted black line represents the system temperature. Figure is borrowed from [116].

called “clustered” ground states because they are all connected by single spin flips, whereas
the last ground state is referred to as the “isolated” ground state.

We note that this Hamiltonian was previously used in [25] to distinguish the behavior of
the D-Wave machine from that of simulated annealing. As the problem size is fairly small,
both the D-Wave machine and simulated annealing almost always succeed in finding one of
the 17 ground states. To distinguish between the two, [25] considers the quantity Pr/Pe,
where P is the probability of seeing the isolated ground state at the end of the process and
Po is the probability of seeing a clustered ground state, divided by 16. They show that
the D-Wave machine and the quantum simulation based on adiabatic Markovian master
equation (which is exponential but feasible for very small problems) preferred the clustered
ground state (P;/Po < 1), whereas simulated annealing preferred the isolated ground state
(Pr/Pe > 1). A simple experiment confirms that our classical model also agrees with the
behavior of the D-Wave machine and the quantum simulation (P;/Po < 1).

To distinguish between D-Wave and our model, Vinci et al. [116] perform a more elaborate
version of this experiment with an additional control variable o which represents the strength
of the final Hamiltonian. Namely, the machine is programmed to implement the time-
dependent Hamiltonian H(t) = A(t)Ho+ aB(t)Hy, where « is varied in the range [0, 1] as in
Figure 3.11. As shown in Figure 3.12, they find that the machine and the adiabatic quantum
master equation prefer the isolated ground state (P;/Po > 1) when « is small, whereas the
SSSV model always prefers the clustered ground state (P;/Pc < 1) at all values of a.

It is illuminating to examine more closely the small « regime in which the behaviors
of the D-Wave machine and our classical model differ. Since the final Hamiltonian Hy is
being scaled by «, a small value of o means that the coupling strength between qubits
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Figure 3.12: Experimental and numerical results from [116]. DW2, ME, SA, SD, and SSSV
represent D-Wave Two, quantum adiabatic Markovian master equation (exponential quan-
tum simulation), simulated anneailng, classical spin dynamics, and our classical model re-
spectively. Pgg denotes the probability of finding one of the seventeen ground states. Figure
is borrowed from [116].

is very small at any given time. This means that the system Hamiltonian is effectively 1-
local for the most part, rendering the phenomenon of quantum entanglement rather unlikely.
Therefore, the regime of small & may be thought of as a more “classical” regime in which the
machine is expected to be driven mostly by thermal fluctuations rather than quantum effects.
Furthermore, it can be seen in Figure 3.11 that this regime has the transverse field A(t) nearly
die out before the final Hamiltonian becomes strong enough to be able to overcome the system
temperature, implying that the transverse field A(t) does not participate in the computation
in any meaningful way. However, without the transverse field the system Hamiltonian can
be written entirely in the standard basis, which again makes the system classical.

In addition, we note that the smaller the value of « is, the larger the fluctuations in
the control parameters of the algorithm would appear relative to the strength of the final
Hamiltonian af{ . Hence, we could predict that the effects of such fluctuations would become
more pronounced in this regime. This means that in designing the quantum Turing test for
this problem we need to be particularly careful of the fact that our classical model could be
highly sensitive to such fluctuations and may change its qualitative behavior in response to
them. In this sense, the results of Figure 3.12, which compares the D-Wave machine only
to the unaltered version of our classical model, cannot be viewed as a final verdict of the
quantum Turing test for the D-Wave machine on this problem. In fact we will presently
demonstrate that a simple adoption of Gaussian local noise completely alters our model’s
behavior in the regime of small «, reproducing the same qualitative behavior observed in the
machine and the quantum simulation in Figure 3.12.

Formally, the input distribution for the quantum Turing test on this problem corresponds
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Figure 3.13: Simulations of our classical model with Gaussian local noise. The model pro-
duces a behavior similar to that of the D-Wave machine or quantum adiabatic master equa-
tion from Figure 3.12. The model was simulated for 1,500 steps at the system temperature
of T'=0.22GHz. Ten thousand runs were performed for each value of a.

to sampling o € [0, 1] uniformly at random and using as input the classical Hamiltonian of
Figure 3.10 multiplied by a. Since the support of such a distribution is very small, it makes
sense to perform the test on an e-net of the support rather than on random samples. Figure
3.13 shows the simulation results of a modified version of our classical model, in which there
is a small independent Gaussian noise in the calibration of each local z-field. To be more
precise, we simulate the time-dependent Hamiltonian defined as

H(t) = A(t) Zsin@- - Z(B(t) ~a-h; +€)cosb; — ZB(t) - - J;jcosb; cosb;,

i i<j

where €¢; ~ N(0,0.24).> Not only does the modified model readily reproduce the signature
reported in Figure 3.12, it also reproduces various other signatures suggested in [116] (Figure
3.14).

These results stress the importance of the view that our classical model outlines a family
of reasonable models rather than a single model. In the strict sense, establishing that a
given phenomenon is truly “quantum” is extremely challenging, since it involves ruling out
all possible classical explanations. While this is not practically feasible, it is difficult to

5We note that introducing similar Gaussian noise also on the z-z couplings does not seem to affect the
simulation results.
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Figure 3.14: Further simulations of our modified classical model reproduce various other
signatures suggested in [116]. The top-left panel, which plots the trace-norm distance [84]
between the simulated state at the end of the annealing process and the Gibbs state for
the final Hamiltonian, is a good qualitative fit to the experimental data presented in Figure
14 of [116]. The top-right, bottom-left, and bottom-right panels are simulation results on
larger instances of the problem with 12, 16, and 20 spins respectively (for details about the
construction of these instances, see [116]), and are consistent with the experimental results
from Figure 10 of [116].
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Figure 3.15: The sixteen-qubit motif problem proposed in [23], which can be mapped to two
adjacent supernodes of the D-Wave machine. Figure is borrowed from [43].

overemphasize the importance of carefully ruling out a range of classical models contained
in a small neighborhood of our core model.

We note that after the above results were posted, Vinci et al. [9] followed up with a
more elaborate analysis of the same problem which showed some differences between our
augmented model and the D-Wave machine. However, we do not attempt to further pursue
this direction because such analyses do not seem to yield a direct computational implication
towards the promise of a speedup.

3.4.3 Sixteen-qubit motif problem of Boixo et al.

In this section, we investigate the computational power of the newest D-Wave 2X machine on
instances based on the sixteen-qubit motif problem of Boixo et al. This motif problem was
initially proposed in [23] to provide evidence of quantum tunneling in the D-Wave machine
and was subsequently used as a building block to construct much larger problems of size up
to 945. It is reported that D-Wave 2X outperforms both simulated annealing and simulated
quantum annealing by a factor of up to 10® on these instances [43].

Figure 3.15 depicts a single instance of this sixteen-qubit motif problem. The problem
is constructed on two adjacent supernodes on the D-Wave chip by setting all interaction
terms to be ferromagnetic (J = 1) while also applying local z-fields of size 0 < h; < 0.5
and hr = —1 to the two supernodes. Hence, we will refer to these supernodes as the “weak
cluster” and the “strong cluster” respectively. Note that the Hamiltonian strongly biases
the spins in the strong cluster to point down, whereas the orientation of the weak cluster is
determined by the competition between the z-z couplings to the strong cluster and its own
local z-fields. This forms a kind of double-well potential in which there are two low-energy
states separated by an energy barrier. As long as h; < 0.5, the unique ground state of
the Hamiltonian is the state in which every spin points down, whereas there also exists a
prominent suboptimal state which has the spins in the weak cluster point up instead. The
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Figure 3.16: The success probabilities of various algorithms as the annealing temperature T’
is varied. The data points represent the D-Wave machine, quantum simulations based on
master equations (NIBA and Redfield), simulated quantum annealing (PIMC-QA), and our
classical model (SVMC). Figure is borrowed from [23].

energy gap between these two “wells” is 4 — 8h and can be tuned by varying the value
of hr. The main idea behind this construction is that quantum annealing may be able
to tunnel through the energy barrier between these two wells and therefore find the true
ground state of this Hamiltonian with higher probability than classical algorithms. With
the choice h; = 0.44, it is reported in [43] that while the D-Wave machine successfully
finds the ground state of this Hamiltonian, our classical benchmark tends to find the above-
mentioned suboptimal state. Moreover, it is reported that the success probability of the
D-Wave machine decreases with annealing temperature 7', whereas the success probability
of our classical benchmark increases with 7. In other words, the performance of the D-Wave
machine improves as the rate of thermal effects is turned down, which may be interpreted
as implying that the machine’s success can mostly be attributed to quantum tunneling. On
the other hand, a similar reasoning would render the two classical models to be performing
computation mostly by thermal effects.

A perhaps even more interesting set of test instances is studied by Denchev et al. in [43],
in which the above 16-qubit motif problem is scaled up by placing many copies of it on the D-
Wave chip and then interconnecting them with ferromagnetic or antiferromagnetic couplings.
An example problem instance of this type is shown in Fig. 3.17. We note that these instances
are by far the largest test instances for the D-Wave machine that are publicly available, and
that they have considerably more structure than the instances from [24]. In [43], it is reported
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Figure 3.17: A 945-qubit instance constructed in [43] using Boixo et al.’s 16-qubit motif
problem as a building block. Black indicates a strong cluster spin and grey indicates a
weak cluster spin. Couplings between neighboring strong clusters are chosen to be either
ferromagnetic (blue) or antiferromagnetic (red) at random. Figure is borrowed from [43].
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Figure 3.18: A modified annealing schedule used in our quantum Turing test.

that D-Wave 2X outperforms both simulated annealing and simulated quantum annealing
by a factor of up to 10® times on these instances, which is then interpreted as evidence that
quantum tunneling can provide considerable computational advantage.

Probing a small neighborhood of our core model, we find that this 16-qubit motif problem
represents a regime in which the behavior of our classical benchmark is highly sensitive to
small fluctuations in the control parameters, as suggested by the presence of local z-fields
h;’s. Indeed, Figures 3.18 and 3.19 show how our classical model, augmented with a small
variation in the annealing schedule parameter B(t), instantly exhibits a performance that is
comparable to that of D-Wave 2X. In this augmentation, we assume that the local z-fields
follow a slightly different annealing schedule B*(t) from the z-z interactions, which yields
the time-varying Hamiltonian

H(t) = —A(t) Z sinf; — B*(t) Z hicos 0; — B(t) Z J;j cos @ cosb;.

1<i<j<n

For optimization purposes, the annealing schedule that is used in these simulations (Figure
3.18) is different from the machine’s physical schedule. However, we note that it is possible
to achieve similar input-output behavior using the physical schedule if we alter the annealing
schedule of the local z-fields using the same principle. While the running time of D-Wave
2X is on average still an order of magnitude smaller than the running time of our classical
benchmark, this advantage is within the software simulation overhead for the classical bench-
mark. Hence, the results of our quantum Turing test appear to invalidate the interpretation
of these test instances as evidence of a quantum speedup in the D-Wave machine.

In addition, we remark that the modified annealing schedule shown in Figure 3.18 can
be interpreted as suggesting that the implemented strengths of the local z-fields are slightly
weaker than the implemented strengths of the z-z interactions in the earlier half of the
annealing process. Even physically, such an assumption is not entirely implausible given the
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Figure 3.19: Performances of various algorithms on the instances of [43]. The data points
for D-Wave 2X, simulated quantum annealing (SQA), and simulated annealing (SA) were
taken from [43]. Each run of our classical model consisted of 2,000 steps and the system
temperature of T' = 0.22GHz =~ 11mK was used. Once the success probability s is estimated
for each instance, the time to find the optimal solution with 99% probability is calculated
as (runtime for one run on a single core)/(# spins) - %, where the factor 1/(# spins)
accounts for the amount of parallelism inherent in the D-Wave machine.

difference in implementation of the local fields and of the interactions. However, we stress
that such physical interpretations, while potentially of independent interest, are not directly
relevant to the verdict of a quantum Turing test — the major thrust of a quantum Turing
test is computational, and it treats the machine and the classical model as black boxes.

As a last note, we point out that it is possible to also reproduce the D-Wave machine’s
behavior on a single instance of the 16-qubit motif problem using the same modified annealing
schedule. Under this modification, our model not only matches the success probability of the
D-Wave machine on this problem but also reproduces its response to changes in annealing
temperature (Figure 3.20). This sharp change in qualitative behavior again stresses the point
that our classical model should be viewed as a family of models rather than a single model,
especially when used to benchmark noisy devices.

In this section, we have investigated claims of speedup in the D-Wave machine by applying
the quantum Turing test on the test instances of [43]. Our results suggest that there is no
evidence of a significant speedup with respect to these test instances, and stand in contrast
to previous comparisons of the machine to simulated annealing and simulated quantum
annealing [43].
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Figure 3.20: The performance of our model on a single instance of the 16-qubit motif problem.
The success probability clearly decreases with annealing temperature 7', a behavior which
was interpreted in [23] as a signature of quantum tunneling. Compare to the D-Wave data
in Figure 3.16.

3.5 Discussion

In the previous section, we have shown that the D-Wave machine fails the quantum Turing
test with respect to the published test instances from [24] and [43]. In particular, our
classical model reproduces both the input-output behavior of the D-Wave machine on random
instances of its native problem [24] and its apparent speedup on a more specially designed
set of instances [43]. The fact that no other classical model is able to reproduce both aspects
of the machine highlights the effectiveness of our classical model in benchmarking quantum
annealers.

3.5.1 Synchronized flipping of spins

In addition to being useful in the context of a quantum Turing test, our classical model also
suggests interesting insights into the nature of quantum annealing itself. For instance, a closer
examination of our simulations on the instances from [24] reveals that our model tends to flip
a large cluster of spins simultaneously in the earlier parts of the annealing schedule. Naively,
such a behavior may appear to resemble global-scale effects due to quantum tunneling and
is therefore surprising. The source of this behavior can be traced to the gradation in the
magnitude of z-components of spins in the presence of the transverse field (see Figure 3.21).
Indeed, we note that in the absence of a transverse field each spin will simply tend to point
completely up or completely down, for the energy will always be minimized at one of those
two configurations. In the presence of a transverse field, the relative strengths of the net
z-field at that location and the transverse field determine the angle at which the spin should
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Figure 3.21: Role of transverse field. The right panel is a snapshot of a typical simulation
run on the 108-qubit instances of [24], where the z-components of all 108 spins are plotted
in decreasing order.

be oriented. To draw an analogy with spectral graph algorithms [37], the two situations are
like cuts and eigenvectors of a graph. This is also reminiscent of certain features of belief
propagation algorithms [27].

A case study on the instance 13-55-29 of [117] illustrates this phenomenon very clearly.
Simulated on this instance, our model always settles into one of two fixed alternatives at
time ¢ = 0.13, up to the two-fold symmetry of flipping all spins (since the instances of [24]
have h; = 0 for every spin i, the energy of the system is preserved under the flipping of
all spins). Figure 3.22 shows that the choice between these two alternatives corresponds to
deciding the orientation of the “green” cluster with respect to that of the “blue” cluster, in
the sense that moving from one alternative to the other corresponds to flipping all the spins
in one of these two clusters. An examination of other instances of [24] and other values of
t strengthens this observation: alternatives explored by our model invariably correspond to
choosing different orientations between large clusters of spins.

How do we account for this similarity between the behavior of our classical model and
that of quantum annealing, in particular the “tunneling-like” synchronized flipping exhibited
by our model? Our simulations suggest that our classical model exploits the structure of the
“Chimera” interaction graph in a very different way from simulated annealing, and possibly
closer to the way quantum annealing treats it. For instance, the Chimera graph of D-Wave
One consists of 16 supernodes of 8 vertices each, with edge density within a supernode
much higher than between supernodes. This structure makes it likely that many supernodes
have highly stable (i.e. low-energy) configurations determined mostly by interactions across
their internal edges. The two-fold symmetry of flipping all the spins implies that these
stable configurations come in pairs. To a first approximation, the major challenge for the
algorithm consists in breaking this two-fold symmetry based on the energy contribution from
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Figure 3.22: The first “branching point” of instance 13-55-29 at ¢ = 0.13. There are two
alternatives considered by the model at this point, i.e. H(0.13) has two distinct local minima
up to the two-fold symmetry of flipping all spins. Blue dots indicate the “difference” between
these two alternatives, i.e. blue dots represent the spins on which the signs of z-components
differ between the two alternatives. The Chimera graph figure was borrowed and modified
from [24].
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interactions with other supernodes. Indeed, in our simulations we see smaller and smaller
clusters become involved in this type of symmetry breaking process as t increases. That is,
we eventually see choices made about the orientation between one or two supernodes and
the rest of the system.

This observation provides some insight into the nature of the energy minimization prob-
lem on Chimera graphs. Namely, for any algorithm that treats supernodes implicitly as
building blocks, the effective problem size may be thought of as closer to the number of
supernodes m = n/8 rather than the number of spins n. This appears to be the case for our
classical model, and in this sense, the search space that the algorithm must explore to solve
a 108-qubit problem is quite modest. Unfortunately this also suggests that as the number of
qubits is increased, we might see a qualitative change in the difficulty of the problem. This
intuition seems to be confirmed in [93], where it is reported that the success probability of
the D-Wave machine drops off dramatically on 512-qubit instances.

3.5.2 Deterministic behavior

In this section, we discuss the source of the “deterministic” behavior of our classical model,
which was manifested in the bimodal histogram of Figure 3.7. We recall that this was a
feature of the D-Wave machine that simulated annealing was unable to reproduce.

To explore this issue, let us examine in more detail the search space explored by our
model. First, we observe that our model simplifies to a 2-dimensional analogue of simulated
annealing if the transverse field A(t) is omitted. In this case, the time-dependent Hamiltonian
of the model reduces to H(t) = B(t)H, so the Metropolis acceptance probability at time ¢ is
given by max{e 2HrBM/T 1} Since B(t) is increasing in time and 7" is constant, we see that
this exactly corresponds to a 2-dimensional version of simulated annealing that follows the
schedule T"(t) = T'/B(t). This means that in the later parts of the annealing schedule, where
A(t) becomes negligibly small, our model should behave essentially like simulated annealing
at low temperature, i.e. like a greedy local search. Indeed, there was no noticeable change to
our simulation results on the instances of [24] even if we simply performed the 2-dimensional
simulated annealing after ¢ = 0.31.

Hence, the main difference in the ways our model and simulated annealing explore the
search space lies in the regime where the transverse field A(t) is large (say when ¢ < 0.31).
In simulated annealing, this is the part of the schedule where the system explores the state
space in a manner resembling the uniform random walk. By contrast, the time-dependent
Hamiltonian H (t) of our classical model in this regime admits only a small number of local
minima, and the system is forced to settle into one of those local minima. For example, it is
easy to prove that it has only one local minimum when ¢ < 0.06 (with respect to the D-Wave
One annealing schedule of Figure 3.5), as the z-z interactions are still negligibly small up
to this point. Moreover, it is empirically observed that our model reaches only a handful of
distinct local minima even at ¢ = 0.31. Combined with the previous observation that the
model behaves like a local search afterwards, this provides an explanation of the apparent
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determinism of our classical model and the reason that it produces a bimodal histogram
rather than a unimodal histogram.

3.6 Conclusions

One of the central open questions about quantum annealing is whether it supports large-
scale tunneling that can meaningfully contribute to the computation. On the one hand, toy
examples have been constructed on which adiabatic quantum computers successfully tunnel
through large energy barriers that simulated annealing is unable to surmount [48, 91]. On
the other hand, evidence from simulations based on insights from Anderson localization
suggests that such success may not extend to more general settings [11]. In any case, finding
a signature of large-scale quantum tunneling seems to be a crucial milestone in the quest
for a successful quantum annealer, for it is the very basis of the optimism that quantum
annealers can achieve a speedup. Our results suggest that this task is challenging, since
purely classical models like ours can exhibit behaviors that appear to be “quantum.”

On the other hand, the quantum Turing test effectively avoids such complications by
focusing more on the black box behavior of the machine and the classical model. In this
paper, we have demonstrated the effectiveness of this approach both in terms of testing
quantum coherence and testing for a quantum speedup. Since the posting of our preprint,
our approach has helped to shape directions of much research in the field [9, 10, 90, 70,
23, 40, 43, 69|, leading to interesting new discoveries about quantum annealing and its
implementations. The quantum Turing test is expected to continue to play an important
role in the pursuit of special-purpose quantum computation, as an effective null hypothesis
against which any claim of quantumness can be tested.
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Chapter 4

Tensor Network Nonzero Testing

To be, or not to be — that is the question.

— Hamlet, William Shakespeare

This chapter is based on joint work with Sevag Gharibian, Zeph Landau, and Guoming
Wang [57].

4.1 Introduction

4.1.1 Tensor networks in quantum Hamiltonian complexity

In Chapter 2 we saw that tensor networks are a popular tool in condensed matter physics
and quantum Hamiltonian complexity because of their ability to efficiently represent certain
classes of entangled quantum states. In addition to matrix product states (MPS) [115,
88] we sketched in Section 2.5.2, physicists have developed more general classes of tensor
networks such as projected entangled pair states (PEPS) [113] or multiscale entanglement
renormalization ansatz (MERA) [114] to encode various quantum states that arise in nature.
Among these, the study of the ground states of local Hamiltonians is considered particularly
important, because it is closely related to many interesting physical phenomena that are
observed at low temperature, such as superconductivity or superfluidity.

Unfortunately, not all such tensor networks can be as useful as the matrix product states
because of computational efficiency issues. For example, we observed in Section 2.5.2 that the
idea that enables efficient computation of various physical quantities on a matrix product
state does not seem to generalize to tensor networks whose geometry has more than one
spatial dimension. In view of the algorithm that we sketched in that section, contracting
tensor networks defined on even a 2D lattice seems to require exponential time. Can we
make this intuition rigorous by proving that this problem is hard for some complexity class,
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e.g. NP7 Since the usefulness of a given class of tensor networks is largely determined by
their computational feasibility, it is natural to ask such complexity theoretic questions about
various classes of tensor networks.

In fact, it turns out that the general problem of contracting a tensor network is compu-
tationally even much harder than NP. It is known to be complete for the class #P [98],
which is the complexity class consisting of all the counting problems that are associated with
the decision problems in NP. For example, the counting problem associated with the satis-
fiability problem would ask: how many assignments are there that satisfy the given boolean
formula f?7 Of course, knowing the exact count of satisfying assignments implies knowing
whether there exists at least one such assignment, so the counting problem is always at least
as hard as its decision counterpart.

Given the widely believed hardness gap between the two complexity classes NP and
#P. it is tempting to ask what is the decision problem corresponding to the problem of
tensor network contraction, which may be viewed as a counting problem. It seems that one
natural candidate is the problem of tensor network nonzero testing, in which we ask whether
the contraction of a given tensor network 7" represents a nonzero tensor (i.e. whether there
exists some input on which 7" outputs a nonzero value). Indeed, the standard reduction
from #P-complete problems to tensor network contraction works by explicitly constructing
a tensor network that counts the number of solutions to a given graph problem. On such
constructions, tensor network nonzero testing would directly correspond to the problem
of deciding whether the given graph problem has at least one solution. This raises some
hope that tensor network nonzero testing could indeed be significantly easier than the #P-
complete tensor network contraction and might give rise to novel approaches to problems in
quantum Hamiltonian complexity.

In this chapter, we study the computational complexity of tensor network nonzero testing.
We show that, contrary to what the above analogy seems to suggest, tensor network nonzero
testing is not expected to be much easier than tensor network contraction in the most general
case. On the other hand, this result does not entirely rule out the potential of this approach;
by identifying easy special cases of tensor network nonzero testing, we are immediately able
to make some nontrivial discoveries in quantum Hamiltonian complexity.

4.1.2 Counting problems vs. decision problems

In complexity theory, there is a standard way of converting decision problems to their corre-
sponding counting versions. For instance, if we take any problem in NP and a corresponding
polynomial-time verifier, the problem can be swiftly translated into a counting version by
asking for the number of witnesses that will cause the verifier to accept. For most prob-
lems this can simply be understood as counting the number of solutions, e.g. the number of
3-colorings on a given graph, whereas their decision counterparts would ask whether there
exists at least one solution, e.g. “is this graph 3-colorable?”

We note that such counting problems indeed have a distinguished history in the study
of classical physics. For example, in statistical mechanics there is an object called “parti-
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tion function,” which is essential to computing probability distributions that arise in nature.
The partition function, despite the slightly misleading name, can be thought of as the nor-
malization constant to a probability density function defined over classical states of a given
system. Since the number of possible classical states grows exponentially in the system size,
computing the partition function generally corresponds to computing the weighted sum of
an exponential number of terms. It is not difficult to see that the essence of this computa-
tion is similar to that of many counting problems [59]. Interestingly, computing the norm
of an unnormalized quantum state, which may be expressed as a tensor network contraction
problem, can be viewed as a quantum analogue of the computation of the partition function.

The computational difficulty of counting problems, physical or non-physical, has been
extensively studied in the literature and is captured in the complexity class #P [110]. While
it is obvious that any counting problem is at least as hard as its decision counterpart, which
implies that any #P-complete problem is at least also NP-hard, it is unclear a priori exactly
how much harder #P-complete problems may be compared to NP-complete problems. An
elegant answer to this question is provided by the celebrated theorem of Toda [107], which
relates the computational complexity of counting problems to that of the so-called polynomial
hierarchy (PH). To define the polynomial hierarchy, let us imagine a hypothetical world in
which we have access to an oracle with a mystical power to solve any problem in NP in an
instant. For example, in that hypothetical world, all NP-complete problems will be solvable
in polynomial time by simply invoking the oracle once. If we denote by PNP the class of
problems that can be solved in polynomial time with the help of such an “NP oracle,” the
above statement can be expressed as NP C PNP. Similarly, we can define NPNF to be the
class of problems that can be solved in nondeterministic polynomial time with the help of
an NP oracle. This then naturally defines an infinite hierarchy of such oracle complexity
classes as follows: -

NP C NPNP ¢ NPNP™ € NPNPY T C

Then the complexity class PH, named the polynomial hierarchy, is simply defined as the

(2

——f—
union of ¥ := NPNP™ v over all 7 (Figure 4.1). Toda’s theorem relates the computa-
tional complexity of the polynomial hierarchy to that of counting problems by proving that
counting problems are at least as hard as the polynomial hierarchy, i.e. PH C P#¥. Since a
widely believed conjecture is that the polynomial hierarchy does not collapse, i.e. ¥F # Zil
for every i, the theorem can be interpreted as implying a large hardness gap between NP
and #P.

We also note that, somewhat surprisingly, a decision problem and its corresponding
counting problem may not always have matching complexity. For instance, counting the
number of perfect matchings is famously #P-complete [110], whereas deciding whether there
exists at least one perfect matching is in P. Such potential hardness gaps between a decision
problem and its counting version provide further motivation to study tensor network nonzero
testing, as they raise hope that tensor network nonzero testing could turn out to be much
easier than tensor network contraction, at least in certain special cases.
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Figure 4.1: The polynomial hierarchy.

Our main result about the hardness of tensor network nonzero testing states that tensor
network nonzero testing is not contained in the polynomial hierarchy unless the hierarchy
collapses. Even though it is not known whether there is a gap between PH and P#F, our
result may still be viewed as providing strong evidence that tensor network nonzero testing
is computationally “very hard.” On the other hand, certain special cases of tensor network
nonzero testing can be identified which are complete for the much easier class of NP. By
connecting these results to problems in quantum Hamiltonian complexity, we demonstrate
the sense in which identifying “easy” special cases of tensor network nonzero testing could
directly lead to discoveries in quantum Hamiltonian complexity.

4.1.3 Commuting local Hamiltonians

While our results do clearly demonstrate the hardness gap between the general problem
of tensor network nonzero testing and some of its special cases, one might ask why such
gaps should matter at all, given that the complexity classes that feature in our results are,
“hard” or “easy,” all unlikely to be solvable in polynomial time. If we intend to use certain
special cases of tensor network nonzero testing to handle problems in quantum Hamiltonian
complexity, and those special cases turn out to be NP-complete, is there any useful result
that can still be derived from them?

We note that the witness-based definition of NP provides an interesting view of tensor
network nonzero testing that makes this possible. To see this, we recall that the local
Hamiltonian problem is known to be complete for the class QMA [78], the class of problems
that admit an efficient quantum witness that is verifiable on a quantum computer. Assuming
the widely believed conjecture NP =% QMA | this implies that there is no efficiently verifiable
classical witness that could attest to the fact that a given Hamiltonian has small ground
energy. This seems to be related to the inherent exponential nature of quantum states, for
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Figure 4.2: The computational complexity of the commuting local Hamiltonian problem is
not known in the general case.

if there were a way to efficiently describe quantum states classically, then the ground state
itself could serve as an effective classical witness. In stark contrast, we note that any NP-
complete special case of the local Hamiltonian problem would by definition admit such an
efficient classical witness. While finding this witness would still likely be intractable, the
existence of such a witness is already significant in many ways. For example, it implies that
there are interesting features (e.g. ground energy) of the given class of local Hamiltonians
that can be efficiently described classically, which raises questions about how “quantum”
such systems should really be considered to be. In fact, we have already seen in Section 2.3
that the classical constraint satisfaction problems can be viewed as an NP-complete special
case of the local Hamiltonian problem.

An important open problem that can guide research in this direction is the commuting
local Hamiltonian problem, originally introduced in [32]. A special case of the local Hamil-
tonian problem, the commuting local Hamiltonian problem is obtained by introducing the
additional restriction that the local terms in the given Hamiltonian must pairwise commute.
Equivalently, this means that there must be a basis that simultaneously diagonalizes all of
the local terms. Hence, this problem represents an intriguing middle ground between the
quantum local Hamiltonian problem and the classical constraint satisfaction problem, the
latter of which differs from the commuting local Hamiltonian problem only in that the diag-
onalizing basis is further restricted to be the standard basis. In this sense, the commuting
local Hamiltonian problem can be seen as a relaxation of the constraint satisfaction prob-
lem, and its computational complexity must lie somewhere between that of the constraint
satisfaction problem and that of the local Hamiltonian problem.

Noting the hardness gap between these two problems, one would naturally wonder whether
the computational complexity of the commuting local Hamiltonian problem is closer to NP
or to QMA. Obviously this question is crucial to understanding whether such Hamiltonians
should be thought of as being closer to classical Hamiltonians or to quantum Hamiltonians,
and may even provide an important clue as to which features of quantum local Hamiltonians
are responsible for the complexity jump from NP to QMA. While the fact that non-
commutativity of quantum observables is the basis of many important quantum phenomena
such as Heisenberg’s uncertainty principle may be suggesting that commuting local Hamil-
tonians should essentially be classical, it is known that they can nonetheless exhibit highly
nontrivial quantum phenomena such as long-range entanglement. A prominent example of
this is the toric code [44].
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Previous results on the subject place many special cases of the commuting local Hamil-
tonian problem in NP, showing that in those cases the problem can indeed be considered
classical. Namely, it is known that commuting 2-local Hamiltonians are NP-complete [32],
commuting 3-local Hamiltonians on qubits (i.e. the dimension of each particle is 2) are
NP-complete [2], and even commuting 4-local Hamiltonians on 2D lattices of qubits are
NP-complete [96]. There are also other results [68, 3, 120] whose conditions are more com-
plicated than simply limiting the degree of locality or the particle dimension. However,
the computational complexity of the commuting local Hamiltonian problem largely remains
open, as none of these results seems to extend to the case where the degree of locality is
greater than 4 and there is no progress towards proving that even the most general case of
the commuting local Hamiltonian problem is QM A-complete.

Interestingly, the approach of Schuch [96] makes an implicit use of a tensor network
representation of the ground space (i.e. the eigenspace corresponding to the lowest eigenvalue)
of a given commuting local Hamiltonian, which can effectively serve as a classical witness to
the fact that the Hamiltonian has small ground energy. Furthermore, it turns out that the
verification of such witnesses involves solving an instance of tensor network nonzero testing.
This explains how identifying NP-complete special cases of tensor network nonzero testing
can automatically place certain classes of commuting local Hamiltonians in NP, and one
such case will be explicitly demonstrated in Section 4.5 to argue for the usefulness of tensor
network nonzero testing.

4.2 Preliminaries

In this section, we introduce the preliminaries and notations that will be used in the further
exposition of the subject.

4.2.1 Polynomial hierarchy

To formally define the polynomial hierarchy, we first introduce the notion of oracle Turing
machines.

Definition 4.1. Let A be any computational problem. An oracle Turing machine for A
is a Turing machine with the additional ability to query the “oracle” about instances of A.
The oracle returns the solution to the queried instance in a single step.

Similarly, if C is any complexity class, an oracle Turing machine for C is a Turing
machine with the ability to query the oracle about any instance of any problem in C.

Definition 4.2. If X is a computational problem or a complexity class, we define P¥X to be
the class of problems that can be solved in polynomial time by an oracle Turing machine for
X. Similarly, NP is defined as the class of problems that can be solved in nondeterministic
polynomial time by an oracle Turing machine for X.
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Figure 4.3: When a tensor network is viewed as a quantum state or operator, open edges
(dashed lines) are interpreted as corresponding to the physical particles.

Then, the polynomial hierarchy is simply defined as follows:
Definition 4.3.
Yo =P,
sP, = NP,

Definition 4.4.
PH = U >xF.

4.2.2 Physical interpretations of tensor networks

We have noted that tensor networks are often used to represent quantum states and opera-
tors. In such cases, each open edge of the tensor network can be thought of as corresponding
to a physical qubit of the system. For example, the quantum state [¢)) of an n-qubit system
is represented by a tensor network 7}y with n open edges of bond dimension 2 (Figure 4.3 is
an example with n = 6), where j-th open edge corresponds to the j-th qubit. If we specify
a labeling i1,...,7, € {0,1} on those open edges, the contraction of this tensor network,
denoted T}y, will output the coefficient of the basis vector [i1 -+ -4,) in [¢):

Ty (it i) = (i1 -+ in10).

Similarly, a linear operator A for an n-qubit system (i.e. a 2" x 2" matrix) is represented
by a tensor network 7’4 with 2n open edges of bond dimension 2 (Figure 4.3 is an example
with n = 3). In this case, the first n open edges are interpreted as representing the n inputs
to the linear operator, whereas the last n open edges represent the n outputs of the linear
operator. If we specify labels iy, ...,%,,71,...,J, on these 2n open edges, the contraction of
the tensor network outputs the corresponding entry of the matrix A:

Tiliv, .- iny Jis s fin) = Ay v, = (- ] Alin - - ).

Hence, in both interpretations the open edges of the tensor network naturally correspond to
the physical qubits of the quantum system at hand.
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4.2.3 Commuting local Hamiltonians

In this section, we formally define the commuting local Hamiltonian problem.

Definition 4.5. A k-local Hamiltonian H = )" H; is said to be commuting if for any
1 S Z,j S m we have H»LHJ = H]HZ

Definition 4.6. The commuting k-local Hamiltonian problem is defined as the following
promise problem:

e Input: A commuting k-local Hamiltonian H = ) ;" H; on n particles such that m =
poly(n) and ||H;|| < 1 (where || - || is the operator norm), numbers a and b such that

b—a > 1/poly(n).
e Output:

- YES if the ground energy of H is at most a,
- NO if the ground energy of H is at least b.

4.2.4 Quantum k-SAT

In this section, we introduce an important variant of the local Hamiltonian problem which
is called quantum k-SAT. A special case of the local Hamiltonian problem, quantum k-SAT
may be considered a more direct quantum analogue of classical k-SAT in that it asks whether
the ground energy of a given local Hamiltonian is ezactly zero.

Definition 4.7. The quantum k-SAT problem is defined as the following promise problem:

e Input: A k-local Hamiltonian H = > H; on n particles such that m = poly(n) and
each H; is a projection, a number b such that b > 1/poly(n).

e Output:

- YES if the ground energy of H is zero,
- NO if the ground energy of H is at least b.

Similarly to the classical case, quantum k-SAT is known to be in P for k£ = 2 [28] and
QMA ;-complete for k& > 2 [28, 60], where QMA; is a variant of QMA in which YES
instances are accepted with probability 1 (perfect completeness). While it remains open
whether QMA; = QMA, it is plausible that the computational complexity of QMA; is
close to that of QMA (in the classical case, it is known that MA; = MA [122]). We
note that the commuting version of quantum k-SAT can be naturally defined by adding the
same commutativity constraint as in the commuting local Hamiltonian problem, while its
computational complexity remains unknown.
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4.2.5 Stoquastic Hamiltonians

In this section we introduce stoquastic Hamiltonians, another interesting class of local Hamil-
tonians we already briefly discussed in Section 3.3.2. The notion of stoquasticity was first
formulated by Bravyi et al. [33] to identify those Hamiltonians that can be more efficiently
handled on a classical computer. In that paper, for example, the local Hamiltonian problem
for stoquastic Hamiltonians is shown to be contained in the complexity class AM, which
means that there is a classical one-round interactive protocol for proving that a given sto-
quastic Hamiltonian has small ground energy. Moreover, as we mentioned in Section 3.3.2,
it is commonly believed that stoquastic Hamiltonians can be efficiently simulated using a
classical algorithm called quantum Monte Carlo [29].
In short, stoquastic Hamiltonians are defined as follows:

Definition 4.8. A k-local Hamiltonian H = ) " | H; is called stoquastic if every H; has
real and nonpositive off-diagonal matrix elements.

A useful property of stoquastic Hamiltonians is that they admit Gibbs states whose
matrix elements are nonnegative in the standard basis [31].! This further implies that the
ground state of H has real and nonnegative coefficients in the standard basis [31], which
allows one to view it essentially as a classical probability distribution.

We note that we can naturally define the stoquastic local Hamiltonian problem and
the stoquastic quantum k-SAT problem by simply adding the stoquasticity constraint. As
noted before, the stoquastic local Hamiltonian problem is known to be contained in AM
[33] and complete for StogMA, which lies between MA and QMA [30]. The stoquastic
quantum k-SAT problem is known to be MA-complete. While the above results seem to
suggest that stoquastic Hamiltonians could indeed be more classical than quantum, they
nonetheless encompass a wide range of Hamiltonians with nontrivial quantum behavior. For
instance, the transverse field Ising model, the Heisenberg model on bipartitate graphs, the
bosonic Hubbard model, the toric code [44], and the quantum annealing Hamiltonians all
fall into the class of stoquastic Hamiltonians. In particular, the ground states of the toric
code Hamiltonian are known to manifest exotic quantum phases such as topological order
(i.e. long-range entanglement).

4.2.6 Tensor network nonzero testing

Finally we introduce the main object of study of this chapter, which is the problem of tensor
network nonzero testing.

Problem 4.1. Generalized tensor network nonzero testing (gTNZ) is defined as follows:

e Input: A tensor network T" and two numbers a and b such that b —a > 1.

IThe Gibbs state for a quantum Hamiltonian H is defined as p = e~ /T / Tr(e=#/T) and is widely used
in statistical physics to describe the state of a given quantum system at a fixed temperature 7T'.
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e Output:

- YES if there exists an input & such that |7*(Z)| > b (where T* denotes the contraction
of T),

- NO if for all Z, |T*(Z)| < a.
Problem 4.2. Tensor network nonzero testing (TNZ) is defined as follows:
e Input: A tensor network 7'
e Output:

- YES if there exists an input  such that 7%(Z) # 0,
- NO if for all #, T*(Z) = 0.

We note that TNZ can be viewed as a special case of gI'NZ in which ¢ = 0 and b = 1,
as we can amplify the gap b — a by multiplying all the entries of the tensors in 7" by an
appropriate scalar.

4.3 Hardness of tensor network nonzero testing

In this section, we show that tensor network nonzero testing is not expected to be much
easier than tensor network contraction despite the intuition suggested by the analogy of
decision problems vs. counting problems. Namely, we show that generalized tensor network
nonzero testing is #P-hard, and that tensor network nonzero testing is not contained in PH
unless the hierarchy collapses.

4.3.1 Generalized tensor network nonzero testing

Theorem 4.1. Generalized tensor network nonzero testing (gTNZ) is #P-hard.

Proof. We prove this by exhibiting a polynomial-time Turing reduction from #PERFECT-
MATCHING to gTNZ. We note that the former problem is #P-complete even on 3-regular
graphs [109].

Suppose we are given an instance of #PERFECT-MATCHING, namely an arbitrary 3-
regular graph G = (V, E'). We will construct a tensor network 7" on this graph such that its
contraction encodes the number of perfect matchings in G. To achieve this, we set the bond
dimension of every edge to be 2, and make each vertex v € V correspond to the tensor A
defined as follows:

1 if exactly one of 7, j, and k is 1,

0 otherwise.

Ali, g, k) = {
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Now, T is a closed tensor network without any open edge, so its contraction is simply a
scalar. By the definition of contraction, it is computed as

Z T(Zl,,Z‘EO - Z H A(iv17iv27iv3)'

1,02, g €40,1} il’iQ"“’i'E'E{O’l}z‘vl,z'v;,z‘ev‘g/eE(v)

Noting that each summand is 1 if and only if 7y, ..., 4 corresponds to a perfect matching,
we see that the contraction of T" indeed encodes the number of perfect matchings in the
graph G. We remark that a similar construction based on 3-COLORING was used in [13]
to sketch #P-hardness of tensor network contraction.

To complete the Turing reduction, it suffices to show that we can efficiently compute the
contraction of T" with an oracle Turing machine for gTNZ. Indeed, it is obvious that the
oracle Turing machine can achieve this using binary search. O

4.3.2 Tensor network nonzero testing

An immediate corollary of the construction used in Theorem 4.1 is that TNZ is at least
NP-hard. In fact, the construction suggests an intriguing analogy between tensor network
contraction and counting problems, in which tensor network nonzero testing would corre-
spond to the decision problems associated with those counting problems. This raises a
natural question: could TNZ also be in NP? Unfortunately, the following theorem seems to
answer it in the negative.

Theorem 4.2. If TNZ is in ¥, then PH C ¥, i.e., the polynomial hierarchy collapses
to the (i + 2)-nd level.

Proof. To prove the theorem, let A denote the following computational problem.
e Input: A 3-regular graph G = (V, FE) and a nonnegative integer k.
e Output:

- YES if the number of perfect matchings in G is at least k,
- NO otherwise.

As a first step, we show that A € NP™2 by constructing an oracle Turing machine for
TNZ that decides A in nondeterministic polynomial time. This oracle Turing machine can
be described as follows:

1. Nondeterministically guess k& < k' < 3" where n = |V|. (Note that the number of
perfect matchings in a 3-regular graph never exceeds 3", for each vertex is allowed to
choose only one of its three incident edges.)

2. As in the proof of Theorem 4.1, construct a closed tensor network 7" whose contraction
encodes k*, the number of perfect matchings in the given graph G.
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3. Manipulate T" to obtain another closed tensor network 7" whose contraction encodes
k* — k’. While there are multiple ways to achieve this, one way may be summarized
as follows. First, we increase the bond dimension of every edge in 7" by one. In our
case, every edge of T' has bond dimension of 2, so edges of 1" will have bond dimension
of 3. Moreover, if we denote by A, the tensor associated with vertex v in T, the
corresponding tensor A/ in 7" is defined as

Ay(i g, k), ifi,5,k€{0,1},

0, otherwise.

except at one vertex v;. On vy, A is defined similarly except that it outputs —&’,
instead of 1, when ¢+ = j = k = 2. It is straightforward to verify that the contraction
of T" equals k* — K.

4. Invoke the oracle for TNZ on T”. If the oracle answers YES, we output NO. Otherwise,
we output YES.

To see that the above algorithm works, suppose we are given a YES instance of A, i.e. a
graph G along with a number £ which is greater than or equal to k*, the true number of
perfect matchings in GG. Then, in step 1, there will be some nondeterministic path on which
k' = k*. On this path, 7" constructed in step 3 will contract to zero, and therefore the oracle
will output NO in step 4. As desired, we end up answering YES. On the other hand, suppose
we are given a NO instance of A, i.e. a graph G along with a number k& which is smaller than
k*. In this case there will be no nondeterministic path on which &’ = k*, and therefore 1"
will always contract to a nonzero value. Hence, the oracle will always output YES and we
will end up answering NO, as desired. This shows that A € NPTNZ,

However, we note that an oracle Turing machine for A can easily count the number of
perfect matchings on a given graph using binary search. This means that

P#PERFECT-MATCHING C P4 C PNPTNZ C NPNPTNZ.

Using our assumption that TNZ is in ¥F, we conclude

p#PERFECT-MATCHING NPNPZip —xP.
On the other hand, Toda’s theorem and the #P-completeness of #PERFECT-MATCHING
imply

PH C P#P — p#PERFECT-MATCHING

Combining the two inclusions, we obtain PH C EzP+27 as desired. O

Since a widely believed conjecture is that the polynomial hierarchy should not collapse,
this theorem can be interpreted as strong evidence that tensor network nonzero testing is
not likely to be contained in the polynomial hierarchy.
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4.4 Special cases of tensor network nonzero testing

Unfortunately, the results of the previous section can be interpreted as showing that tensor
network nonzero testing is highly unlikely to be in NP. This implies that the most general
case of tensor network nonzero testing cannot be used to provide an efficient classical witness
for local Hamiltonians (as we will show in Section 4.5, TNZ € NP would imply that the
commuting local Hamiltonian problem is also in NP). In this section, we identify two
special cases of tensor network nonzero testing which can be placed in NP, in the hope that
such special cases can be translated to produce relevant results in quantum Hamiltonian
complexity.

4.4.1 Nonnegative tensor networks

The first special case we consider is the case of nonnegative tensor networks, which are
defined as follows.

Definition 4.9. A tensor network is called nonnegative if its tensors only uses nonnegative
real entries.

Theorem 4.3. Tensor network nonzero testing for nonnegative tensor networks is contained
in NP.

Proof. Suppose we are given a nonnegative tensor network 7". By definition, 7" is nonzero if
and only if there exists an input & such that 7%(%') > 0 (where 7™ denotes the contraction of
T'). Furthermore, since each summand in the computation of 7*(Z) is nonnegative, T7*(Z) > 0
if and only if there exists at least one summand which is nonzero. Hence, an NP witness for
this problem would specify a labeling  on the open edges of T" and labeling 7 on the closed
edges of T such that T'(Z,¢) > 0. This is easy to verify in polynomial time, and implies that
T*(Z) > 0. Hence, tensor network nonzero testing for nonnegative tensors is contained in
NP. O

Theorem 4.4. Tensor network nonzero testing for nonnegative tensor networks is NP-hard.

Proof. We prove the theorem by reducing 3-EDGE-COLORING to tensor network nonzero
testing. The former problem, which asks whether a given graph is edge-colorable with 3
colors, is known to be NP-complete even on simple 3-regular graphs [72].

Suppose we are given an instance of 3-EDGE-COLORING, i.e. a simple 3-regular graph
G. As in the proof of Theorem 4.1, we construct a nonnegative tensor network 7" on this
graph such that its contraction encodes the number of edge-colorings of (G. To achieve this,
we set the bond dimension of every edge to be 3, and make each vertex v € V' correspond
to the tensor A defined as follows:

A, 5, k) 1 if¢, j, and k are distinct,
2,7, = .
J 0 otherwise.
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(a) (b)

Figure 4.4: (a) An example tensor network T. (b) The subnetwork of 7" induced by vertices
{v1,v2}. Note that the edges (v1,v4) and (v, v3) are treated as open edges in the subnetwork.
Namely, EX"™5(S) contains the dashed open edges in (b), whereas E*(S) contains the solid
open edges.

Since T is a closed tensor network without any open edge, its contraction is simply a scalar.
By definition, it is computed as

> Tl ig) = > [T  AGu.iv. i)

102,00 €{0,1} il’m’""i'E'E{o’l}ivpivzv,iev‘;eE(u)
Noting that each summand is 1 if and only if 7y, ..., % g corresponds to a valid edge-coloring,
we see that the contraction of T' indeed encodes the number of edge-colorings of the graph
(. Hence, deciding whether the contraction of 7" is nonzero corresponds to deciding whether
there exists at least one valid edge-coloring of G, which shows that tensor network nonzero
testing for nonnegative tensor networks is NP-hard. O

Together, the above two theorems show that tensor network nonzero testing for non-
negative tensor networks is indeed NP-complete. The result holds even if we restrict to
nonnegative tensor networks on 3-regular graphs. On the other hand, it is well known that
tensor networks on 2-regular graphs are efficiently contractible, because such graphs have
the same kind of 1D structure which made possible e.g. the contraction of matrix product
states (see Section 2.5.2).

4.4.2 Injective tensor networks

Next, we consider the case of the so-called injective tensor networks, which are defined as
follows:

Definition 4.10. Let T be a tensor network defined on graph G = (V, E) and S C V. Also,
let EP™5(S) denote the open edges in T' that are incident to vertices in S. The subnetwork
of T" induced by S is the tensor network T consisting of all vertices in S along with all
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the edges that are incident to them. Edges between S and V' \ S are treated as open edges
in T and are denoted by EY(S).

Definition 4.11. A tensor network 7" defined on graph G = (V| E) is called k-injective if
V' can be partitioned into sets S, ..., Sk such that for every 1 <i <k,

1. T, is connected,
2. E;hys(Si) is nonempty, and

3. the operator A; obtained by viewing T, as a linear map from E}¥(S;) to ER™(S;) is
injective.

Thus, an intuitive understanding of injectivity is that the given tensor network can be
partitioned into k parts such that the physical state of each part (i.e. output from E2™*(S;))
is uniquely determined by its boundary conditions (i.e. input to E¥*(S;)). We note that this
definition of injectivity was inspired from the study of [89], in which a similar notion was
studied in the context of translationally invariant tensor networks, and was observed to be
a generic condition.

Interestingly, the following two theorems demonstrate a way in which injectivity might
be related to the problem of tensor network nonzero testing.

Theorem 4.5. The following problem, which we call injectivity testing, is in NP.
e Input: A tensor network 7.
e Output:

- YES if T is k-injective for some k, with the size of each S; being O(logn).
- NO otherwise.

Proof. The prover simply specifies the partition Sy, ..., S; that witnesses the k-injectivity
of T'. Since each 5; is of logarithmic size, T’s, can be contracted in polynomial time. Then it
is trivial to check that the conditions of k-injectivity hold. O]

Theorem 4.6. If a tensor network T is k-injective for some k, then its contraction 7™ is
nonzero.

Proof. Suppose S, ..., Sk is the partition that witnesses the k-injectivity of T'. Then, A;, as
defined in Definition 4.11, is injective for every ¢. This means that the adjoint map A! from
EPM3(S;) to EYT(S;) is surjective, so for every i there exists some [¢);) such that

B3 (S0)
Ailpi) = 100---0).



CHAPTER 4. TENSOR NETWORK NONZERO TESTING 85

1)
N N \\ \\ /A\\
\\ U1 \\ V2 NI N V2 s \\\\ V2
S u
— —
|1h2)
\\ V4 \\ V3 N SZ N //A\\\
N | Vg N | V3 Vi S~.] U3
V4
|0) 0)
10) 10) T T
(0]0) - (0]0) =1 <« <«
10) 10)

|0) |0)

Figure 4.5: Hlustrating the proof of Theorem 4.6.

Hence, if we join each T, with a tensor network representing |1;) so as to represent Af|1);), the
contraction of the resulting tensor network must equal the tensor product state |0) ®- - -®|0).
Recombining them back into the shape of T', we see that the contraction of the resulting closed
tensor network is a product of many copies of (0|0), which is 1. Thus, we have shown that if
A is the linear map interpretation of T' from US| EP"(S;) to C, A(|1h1) @)@+ - -@|iy)) = 1
(see Figure 4.5). It follows that the contraction of 7" is nonzero. O

Note that the above two theorems provide a sense in which injectivity testing can be
regarded as a weaker version of tensor network nonzero testing. In fact, the notion of
injectivity provides an efficiently verifiable certificate of the fact that a given tensor network
is nonzero. A natural question therefore is whether the converse might also hold: can we show
e.g. that every nonzero tensor network has an injective tensor network representation in which
Si’s are logarithmically large? The question is interesting because an affirmative answer to
this question could potentially lead to a novel approach to proving that the commuting local
Hamiltonian problem is in NP.

To make progress on this question, we can try to formulate it as follows: given a nonzero
tensor network 7', is it always possible to find a geometrically equivalent k-injective ten-
sor network 7" such that the size of each S; is O(logn)? Here, T" and 7" are said to be
geometrically equivalent if their underlying graphs are identical. We note that this notion
of geometric equivalence is often natural in quantum Hamiltonian complexity, where tensor
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networks of fixed geometry (e.g. matrix product states) are often used to represent ground
states of local Hamiltonians.
In the following theorem, we answer this question in the negative.

Theorem 4.7. For all £ > 2, there exists a nonzero tensor network 7" which does not have
a geometrically equivalent k-injective representation.

Proof. We prove the theorem by explicitly constructing a tensor network with the desired
property. Let T be a matrix product state of length n with bond dimension 2 (Figure 4.6).
Then, we can make T represent the quantum state [¢)) = |00---00) + [10---01) by defining
the tensors of T as follows:

1. If i € {1,n}, A,, is the tensor that outputs 1 if and only if the labels on the two
incident edges match. Otherwise, A,, outputs 0.

2. Ifi € {2,...,n—1}, A,, is the tensor that outputs 1 if and only if the labels on the two
incident closed edges match and the label on the incident open edge is 0. Otherwise,
A,, outputs 0.

Now, assume towards a contradiction that T" admits a geometrically equivalent k-injective
representation 7" for some k& > 2. Since k > 2, there exists some S; that contains neither v,
nor v,. Moreover, since S; must be connected, S; = {vj,vj41...,v_1,v;} for some j and [.
Let L ={vy,...,v;_1} and R = {vj41,...,v,}, and denote by e, and eg the edges (vj_1,v;)
and (v, v41) respectively, as in Figure 4.6. Now, if we join to each of the j — 1 open edges
in L a tensor network representing |0), L can be seen as a tensor network with one open
edge e;. Moreover, the vector |i;) represented by this tensor network is nonzero, because
otherwise the coefficient of any standard basis vector that begins with j — 1 zeroes must
vanish in |¢), which is a contradiction. Similarly, if we join to each of the first n — 1 — 1
open edges in R a tensor network representing |0) and to the last open edge a tensor network
representing |1), R can be seen as a nonzero tensor network with one open edge eg. Let |¢g)
be the vector represented by this tensor network.

Finally, we observe that the operator A; obtained by viewing T, as a linear map from
EP™3(S,) to E*(S;) = {er,er} is surjective by definition, so there must be some input |¢)
such that A;|¢) = |¢r)®]|1r). This means that if we now join to the open edges of S; a tensor
network representing |¢), the resulting tensor network can be viewed as an inner product
between A;|¢) and [i1) ® |[¢r), which is clearly nonzero. However, another way to interpret
this tensor network is as an inner product between |¢) and |00 --0) ® |¢) ®|00- - - 01), which
is zero. This is a contradiction, and we conclude that 7" does not have a geometrically
equivalent k-injective representation.

O
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Figure 4.6: The tensor network 7" in the proof of Theorem 4.7. In this example, L = {v;},
S; ={ve,...,vp1}, and R = {v,}.

4.5 Connections to quantum Hamiltonian complexity

In this section, we rigorously establish the connection between tensor network nonzero test-
ing and the commuting local Hamiltonian problem. In particular, it turns out that the
nonnegative special case of tensor network nonzero testing directly corresponds to the com-
muting version of stoquastic quantum k-SAT, allowing us to immediately place the problem
in NP.

Theorem 4.8. If tensor network nonzero testing is in NP, then the commuting k-local
Hamiltonian problem is also in NP for any & = O(logn).

Proof. To prove this theorem, we use a setup similar to that of Schuch [96]. Suppose we
are given an instance of the commuting local Hamiltonian problem, i.e., a commuting local
Hamiltonian H = ), H; and two numbers a and b such that b —a > 1/poly(n). If H is
a YES instance, its ground state |¢) will have energy at most a. We seek to provide an
efficiently verifiable witness to this fact.

First, we note that since H;’s commute with each other, there is a basis of H that
simultaneously diagonalizes every H;. This implies that H has a ground state [¢)) which is
a simultaneous eigenvector of H;’s. Moreover, if we denote by II; the projection operator
onto the eigenspace of H; occupied by [¢), IT := [], 11, is the projection onto a subspace of
H consisting only of ground states. In particular, (¢/|I1|¢)) = 1, so II is nonzero.

Now, suppose that tensor network nonzero testing is in NP. Then, the prover for the
commuting local Hamiltonian problem specifies for each H; which eigenspace II; is occupied
by the ground state |¢), and also provides the NP witness of the fact that the tensor network
IT = [T, II; is nonzero (since each II; is of polynomial size, I can be efficiently described as
a tensor network by joining II;’s together as in Figure 4.7). The verifier does the following:

1. Check that the sum of eigenvalues corresponding to eigenspaces II;’s is at most a.
2. Invoke the verifier for tensor network nonzero testing to check that II is nonzero.

If H indeed has small ground energy, it is obvious that an honest prover will pass the above
test. Conversely, if the prover passes the above test, II is a nonempty subspace of H and any
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Figure 4.7: An example tensor network representation of II.

state in II has energy smaller than or equal to a. Hence, we conclude that the commuting
k-local Hamiltonian is in NP for any £ = O(logn). O

Theorem 4.9. If tensor network nonzero testing for nonnegative tensor networks is in NP,
then the commuting stoquastic quantum k-SAT problem is also in NP for any £ = O(logn).

Proof. Suppose H = ). H; is a YES instance of commuting stoquastic quantum k-SAT
and [¢) is the ground state of H. Since |1)) has zero energy and H;’s are projections, |¢)
must occupy the smallest eigenspace of each H;. Moreover, since H; has real and nonposi-
tive off-diagonal matrix elements, the projection II; onto the smallest eigenspace of H; has
nonnegative real entries (Proposition 4.1 of [31]). This implies that the tensor network rep-
resentation of II := II; is a nonnegative tensor network. The theorem now follows by the
proof of Theorem 4.8. O

Corollary 4.10. The commuting stoquastic quantum k-SAT problem is in NP for any
k = O(logn).

Proof. This is an immediate consequence of Theorem 4.3 and Theorem 4.9. O]

We remark that while commutativity and stoquasticity constraints may appear to make
the problem more “classical,” this result is still surprising given that highly nontrivial quan-
tum Hamiltonians such as the toric code [44] satisfy all the constraints of this problem. Sto-
quastic quantum k-SAT without the commutativity constraint is known to be M A-complete
by a result of Bravyi et al. [30]

4.6 Conclusions

In this section, we have studied the computational complexity of tensor network nonzero
testing, a fundamental problem in quantum Hamiltonian complexity. Despite the analogies
made between this problem and the decision versions of counting problems, our results show
that the problem is unlikely to be much easier than tensor network contraction: namely, it
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is shown that the problem is not contained in the polynomial hierarchy unless the hierarchy
collapses.

On the other hand, we were able to identify two “easy” special cases of tensor network
nonzero testing — nonzero testing of nonnegative tensors and injectivity testing — which may
be useful in certain contexts. For example, the fact that nonzero testing of tensor networks
with nonnegative real entries is NP-complete has a direct implication on an important
open question in quantum Hamiltonian complexity: namely, it places commuting stoquastic
quantum k-SAT in NP for any & € O(logn). To the best of our knowledge, this represents
the first approach to commuting local Hamiltonian problems which does not rely on the
techniques of Bravyi and Vyalyi [32]. Thus our result is free of any constraint on the locality
parameter k, which seems to be imposed by the use of those techniques.

Naturally, our results open up a number of directions for future research. Firstly, we
note that the construction used in the proof of Theorem 4.8 imposes a very specific structure
on tensor network II. Hence, in fact we only need to show that the special case of tensor
network nonzero testing restricted to this structure of Il is in NP in order to show that the
commuting k-local Hamiltonian problem is also in NP. This possibility is intriguing and
seems to merit further research. Secondly, it also seems worthwhile to explore whether our
techniques can be extended to place the commuting stoquastic k-local Hamiltonian problem
in NP. The proof of Theorem 4.9 does not go through in this case because the local terms
H;’s are not necessarily projections.

But most importantly, the framework of tensor network nonzero testing seems to have
a potential to apply to other problems in quantum Hamiltonian complexity as well, beyond
the commuting local Hamiltonian problems which were explored in this chapter. Tensor
networks are ubiquitous in quantum Hamiltonian complexity, and the problem of nonzero
testing seems too fundamental to be not important. We hope that further research on this
topic will beget many more approaches to understanding high complexity quantum systems.
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Chapter 5

Conclusions

For one who is interested in both computer science and fundamental sciences, the present
time is full of excitement and opportunities. As scientific theories across all disciplines
become more complex and required computations more demanding, we are entering an era in
which in order to do any science one has to know a bit of computer science. Moreover, this is
not only in the sense of knowing how to write simple programs, but also in the sense of having
a more fundamental insight into what computation is. In this thesis, we have surveyed how
two seemingly unrelated fields of computer science and quantum physics are coming together
on the common ground of quantum computing. The emergent field of quantum Hamiltonian
complexity, which lies at the heart of this intersection, makes a particularly strong case of
the benefit bestowed by such interdisciplinary exchanges of expertise.

The main contribution of this thesis is two promising classical approaches to understand-
ing high complexity quantum systems. Firstly, we have introduced the notion of a quantum
Turing test, which compares the black-box behavior of a quantum device to that of a suit-
able classical model in order to test the “quantumness” of the machine. Our classical model
for the quantum annealer shows a remarkable correlation with experimental data from the
D-Wave quantum annealer and closely reproduces its performance on test instances specially
designed to measure speedup. This can be formulated as the machine’s failure on a quantum
Turing test defined on those input distributions. Our methodology is expected to continue
to provide an effective guideline to future work on experimental quantum annealing.

Secondly, we have studied the computational problem of tensor network nonzero testing,
a fundamental problem which can be thought of as a decision version of the #P-complete
tensor network contraction problem. Under reasonable complexity assumptions, we prove
that the problem is not contained in the polynomial hierarchy and therefore, in its most
general form, unlikely to yield an efficient classical description of properties of quantum
systems. On the other hand, we identify certain special cases of tensor network nonzero
testing which are contained in NP. In particular, the fact that nonzero testing of nonnegative
tensor networks is in NP turns out to have a direct implication on an open problem in
quantum Hamiltonian complexity: it shows that commuting stoquastic quantum k-SAT, a
variant of the more general commuting local Hamiltonian problem, is in NP.
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A chief benefit of working in an interdisciplinary field such as quantum Hamiltonian
complexity is that it is full of important discoveries which are to be made just by establishing
simple connections between concepts from different fields. This compels us to free ourselves
from the established formalism and mannerism specific to a field and revisit familiar concepts
afresh, which often leads to a more intuitive and deeper understanding of those concepts.
We hope that the work presented in this thesis succeeds in demonstrating this point: in
fact, our work mostly consisted in recombining in interesting ways elementary concepts from
computer science and physics. Most importantly, we hope that it sends out a clear invitation
to the reader to jump into the field of these interesting connections between computer science
and other sciences, which exist and must be further clarified.
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