UC Irvine
ICS Technical Reports

Title
Distributed individual-based simulation using autonomous objects

Permalink
https://escholarship.org/uc/item/75c7p6x1|

Authors

Fukuda, Munehiro
Bic, Lubomir F.
Dillencourt, Michael B.

Publication Date
1998-01-21

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/75c7p6x1
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Distributed Individual-Based Simulation Using

Autonomous Objects
Munehiro Fukuda, Lubomir F. Bic, and Michael B. Dillencourt

Department of Information and Computer Science
University of California, Irvine
e-mail: {mfukuda, bic, dillenco}@ics.uci.edu

Technical Report 97-46
January 21, 1998

Abstract

Individual-based simulation modeling structures an entire complex and
open-ended application as a collection of individual autonomous entities.
The behavior of the entire system is simulated as interactions among such
entities and hence the application development focuses primarily on describ-
ing the entities behaviors. Therefore, this modeling scheme attracts many
scientists dealing with complex models from the battlefield to particle-level
simulations. A natural implementation of individual-based modeling is to
use the philosophy of autonomous objects, i.e., mobile entities navigating
autonomously through their underlying computational network. We have
developed MESSENGERS, an autonomous-objects-based system aimed at a
general-purpose distributed computing, and, especially, distributed simula-
tions. It is the first system to provide a virtual-time computing environ-
ment for autonomous objects, and therefore the present work is the first
experiment in applying the paradigm of autonomous objects to distributed
individual-based simulations. The environment supports both conservative
and optimistic simulations. In this paper, we discuss MESSENGERS’ ad-
vantages for application development from the software engineering point
of view, and show conditions, such as problem size, entity granularity and
scalability, necessary for MESSENGERS to exploit its parallelism and achieve
competitiveness with conventional message-passing executions.

Pt

no.,

-

+

=

Contents

1 Introduction 3

2 MESSENGERS Paradigm 4
2.1 Principles of Operations 4
2.2 Virtual Time Support 6
25 Daemon's Behavior » s s sew s s vmw s s sme g5 wemss Bm ¢ 8 7

3 Simulation Modeling 11
3.1 Individual-Based Simulations 12
3.2 Programming with MESSENGERS 14
3.3 Programming using Message-Passing 17
3.4 MESSENGERS versus Message-Passing 19

4 Performance Comparisons 20
4.1 PVM versus MESSENGERSot v v i i .. 21

4.2 Conservative versus Optimistic Synchronizations 23

5 Conclusion 25

1 Introduction

Most traditional simulation programs are based on a top-down mathematical de-
scription of the entire simulation model. However, all models cannot be efficiently
described using this approach, especially when they include large, complex, and/or
open-ended properties. Another approach is “individual-based” modeling, which
structures the entire model as a collection of individual simulation entities. With
this approach, the behavior of a complex system results from interactions among
those autonomous entities. These focus on their own local behavior, while the entire
model achieves its open-ended growth by incrementally incorporating new types of
entities. Furthermore, it is relatively easy to apply this approach to multiproces-
sors or multicomputers by distributing simulation entities to each computing node

[LS95, MSC94].

Typical examples of such “individual-based” simulations are interactive battle
simulations [Com94, Rog92], traffic modeling [Res94], particle-level simulations in
physics [HE88], and various individual-based simulation models in biology or ecology
[Mic96, Lan95]. Related to the latter is also the study of collective behavior in Al,
which investigates the mechanisms that result in complex and highly coordinated
behaviors of groups of individuals, such as a school of fish [Dew84] or an ant colony
[CJ90], while each individual has only a very limited local knowledge of the “problem”
and a set of simple rules to follow.

The main concern is how individual-based simulations should be implemented in
actual computing systems. Most systems represented by Timewarp OS [JBW*87] and
SPEEDES [Ste92] have assumed the top-down mathematical modeling where large
processes describing partial differential equations or stochastic models are bound to
processors in a static computational flow and exchange their messages along the
available communication paths. With these conventional systems, users may face the
following difficulties: (1) entities are allocated statically and not allowed to migrate,
(2) new entities cannot be introduced, (3) entity interactions are fixed a priori or all
entity information must be broadcast periodically, which limits scalability.

The best-known system for individual-based simulations is Swarm [MBLA96] in
which a simulation entity is an object described in an object oriented language and
is called an agent. Thus, a simulation is organized as a collection of agents, named
a swarm, with a schedule of events over those agents. Like many object-oriented
systems, Swarm supports hierarchical structuring of objects, which in turn allows
a swarm to be includeded as an agent in another swarm. Swarm libraries provide
users with efficient simulation environments: scheduling tools for entity interactions,
the support for probes, graphic interface, and the control for simulation scenarios.
However, Swarm does not directly aim at distributed simulation, and thus users need
to be concerned with distributed coordination of entity interactions by themselves.

Recently, the philosophy of autonomous objects has received great popularity for
network management and distributed processing. Autonomous objects are mobile
entities, capable of navigating autonomously through their underlying computational
network and launching tasks at the nodes they visit. Using autonomous objects as
individuals is a natural extension to distributed individual-based simulations. In this
approach, a collection of autonomous objects are interacting with one another as en-
tities and moving over a logical network constructed as a virtual space. WAVE is one
of the first autonomous-object-based systems, which aims at distributed simulations,
especially DIS as one of its application domains [BBCS94]. It is a complete environ-
ment consisting of a specialized language to express arbitrary autonomous objects
behaviors, and a run-time system of interpreters [SB94]. In spite of its goal, WAVE
however has several disadvantages for simulations: (1) objects named waves with
different roots cannot communicate with one another directly, (2) waves are inter-
pretive objects and become heavy when they call precompiled functions, which must
be invoked as independent processes, and (3) its distributed termination detection
works only for waves with the same root and thus cannot be used for virtual time
management.

We have developed MESSENGERS, an autonomous-object-based system aiming at
general-purpose distributed computation [BFD96]. The system provides objects with
navigational autonomy, various inter-objects communication schemes, and dynamic
function linking. MESSENGERS is the first system to facilitate a virtual-time com-
puting environment for autonomous objects. This paper presents the first experi-
ment to apply the paradigm of autonomous objects to distributed individual-based
simulations. Furthermore, the MESSENGERS virtual-time environment supports not
only conservative but also optimistic simulations. In this paper, we demonstrate that
MESSENGERS allows users to simply and intuitively program individual models as au-
tonomous objects within a virtual-time environment, and shows several performance
results: entity granularity and scalability suitable to distributed computing, com-
parison with a static message-passing model, and conditions under which optimistic
synchronization performs better than a conservative scheme.

2 MESSENGERS Paradigm

2.1 Principles of Operations

MESSENGERS is a system that supports the development and use of distributed ap-
plications structured as collections of autonomous objects, called Messengers!. To
allow Messengers to navigate autonomously through the network and carry out their

!case (Messengers), while the system as a whole is denoted by small capitals (MESSENGERS).

tasks, the MESSENGERS system is implemented as a collection of interpreter dae-
mons instantiated on all physical nodes participating in the distributed computation.
A daemon’s task is to continuously receive Messengers arriving from other daemons,
interpret their behaviors, described as programs carried as part of each Messenger,
and send them on to their next destinations as dictated by their behaviors.

The MESSENGERS system involves three levels of networks. The lowest level is the
physical network (a LAN or WAN), which constitutes the underlying computational
nodes. Superimposed on the physical layer is the daemon network, where each daemon
is a UNIX process running a MESSENGERS language interpreter. The logical network
is an application-specific computation network created on top of the daemon network.
At system startup, a single logical node, named INIT, is created on every daemon
node. Any Messenger may be injected (from the shell or by another Messenger) into
any of the INIT nodes and it may start creating new logical nodes and links on the
current or any other daemon.

Messenger programs, referred to as Messenger scripts, are written in a subset of
C and are compiled into a form of byte code for more efficient transport and parsing
[Bid96]. Each script is carried in its entirety by the Messenger as it propagates through
the network and is replicated each time the Messenger needs to follow more than one
logical link. This gives a programming style much easier than the commonly used
approaches to individual-based simulation modeling. In particular, the user does
not have to include all models of simulation entities and space in the simulation
program at a time. Rather, these models are described in a separate Messenger
script and incrementally injected as an independent Messenger object into the system.
While some Messengers are dynamically constructing or modifying the logical network
corresponding to a simulation space, other Messengers representing individual entities
may roam over the logical network.

Messenger scripts distinguish three types of variables. Messenger variables are
private to and carried by each Messenger as it propagates through the logical net-
work. Node variables are resident in nodes of the logical network and shared by all
Messengers visiting the same logical nodes. Network variables are predefined at each
logical node and give each Messenger access to the network information local to the
current node.

A Messenger script is a sequence of statements, which can be of one of the follow-
ing types: (1) Computational statements enable the Messenger to perform arbitrary
computations. They include all standard C assignment and control statements, in-
volving arbitrary variables and constants; (2) Navigational statements distinguished
as create(), delete(), and hop() endow the Messenger with mobility, permitting it to
create and destroy logical nodes and/or links, and to move within the logical net-
work; (3) Function invocation statements permit the dynamic loading and invocation
of precompiled C functions to be executed in native mode. The ezec() statement

spawns a separate concurrent process for the invoked function, while the func() state-
ment invokes the function as part of the current Messenger’s behavior and returns its
results to it.

The details of the MESSENGERS language specification are not the focus of this
paper; they are described in [FBDM98].

2.2 Virtual Time Support

All distributed features that enhance the basic language capabilities are made avail-
able through a system library of functions which Messengers invoke using the func
statement. Through this system library, the MESSENGERS daemon provides a virtual-
time environment in which Messengers can schedule their activities along a virtual
time line.

Each scheduled event suspends the involving Messenger until the conditions asso-
ciated with this event are satisfied. The triggering conditions may be simply future
points in time to wake up the Messenger but may also include a predicate applied
to Messenger and node variables. Once a Messenger schedules an event by calling
one of the event-scheduling functions explained below, its further interpretation is
suspended until virtual time reaches the time specified in the event or the system
satisfies the specified predicate.

Virtual time is automatically maintained over the system in either a conservative
or an optimistic manner, which can be selected in a user’s system configuration file.
In both cases, all daemons of the system periodically decide the globally minimal
future time of events, called GVT, (i.e., Global Virtual Time), by exchanging their
local minimal future time of scheduled events, called LVT, (i.e. Local Virtual Time).
This guarantees consistent virtual-time-oriented interpretations of Messengers with
respect to the advancing GVT.

The following lists the functions interfacing to the virtual-time environment sup-
ported in MESSENGERS.

M_gutstart()

The MESSENGERS’ virtual time environment is not activated until a Messenger
invokes the M_guvtstart() function. The invocation may occur at any daemon. GVT
initially starts from 0, and may be suspended using M.gvtstop() (see below). A
subsequent M_gvtstart() reactivates the virtual time environment such that GVT
continues with the last value saved at the time of deactivation. In other words, all
daemons periodically exchange their LVTs to update GVT during the virtual time
computation mode, while they simply maintain GVT in the inactive mode.

M_gvtstop()

The virtual time environment is deactivated once a Messenger invokes the M_gutstop()
function. The invocation may occur at any daemons. However, the system recognizes
only one invocation whose virtual time is the earliest among possible multiple invoca-
tions, it waits until GVT reaches this deactivating time, and then disables the virtual
time environment.

M_getlvt()
This function returns the current LVT to the calling Messenger.

M_sched_time_dlt(delta_time)

The daemon suspends the interpretation of a Messenger calling M_sched_time_dIt()
for the number of virtual time units given in delta_time.

M_sched_time_abs(absolute_time)

The daemon suspends the interpretation of a Messenger calling M_sched_time_abs()
until its LVT reaches an absolute value given in absolute_time. If the content of abso-
lute_time is already smaller than the LVT, the daemon simply ignores the suspension
of this Messenger and continues to interpret it.

M_sched_time_node(node_variable, predicate, messenger_variable, delta_time)

This event-scheduling function involves two conditions: One is a period of virtual
time given in delta_time to suspend the calling Messenger. The other is a predicate
associated with node and Messenger variables to suspend the Messenger until it is
satisfied. The predicate may be only a simple logical operator. The daemon resumes
the Messenger when either of these two conditions is satisfied.

Examples: Figure 1 shows two Messenger scripts, creator() and traverser(), which
create a linear logical network and traverse it, respectively. The traverser() Messenger
starts from an INIT node one virtual time unit later than the ereator() Messenger (line
9), and both suspend themselves at each node for one unit (line 5 and 12). Therefore,
the traverser() will follow but never pass the creator(), as shown in Figure 2.

2.3 Daemon’s Behavior

In this section, we will concentrate on how the virtual-time environment is realized
inside the MESSENGERS daemon. The overall explanation of the daemon’s behavior
is given in [Fuk97].

(1) creator() {
(2) func(name = "M_gvtstart");
(3) while (1) {

(4) create(node = "N"; link = +);

(5) func(name = "M_sched_time_dlt"; in = 1);
. 1}

)}

(8) traverser() {
(9) func(name = "M_sched_time_dlt"; in = 1);
(10) while (1) {

(11) hop(link = +);

(12) func(name = "M_sched_time_dlt"; in = 1);
13y . ¥

(14) }

Figure 1: An example of Messenger scripts using the virtual-time environment

& -

Traverser()—> Creator()—

hop(link:ﬂ creale(ﬁode:N)

Figure 2: One Messenger follows another Messenger creating a network

There are two reasons why virtual time is realized at system level rather than user
level:

1. Better programmability: The problem in distributed simulation is reduced
into distributed termination detections, whose goal is guaranteeing that there
are no more events to be processed at a given virtual time point. The added
complexity in mobile autonomous objects is that the objects are roaming over
the network while propagating and terminating themselves as well as scheduling
future events. It is much easier for the system, rather than the ever, to detect
active and in-transit autonomous objects and events, which in turn permits users
to focus on simulation modeling.

2. Better performance: Implementing virtual time means repeating distributed
termination detections, which requires periodical system-wide synchronizations.
Needless to say, efficiency cannot be expected with an implementation of such
synchronizations at the application layer. Especially for an optimistic simulation,
the system-level implementation is much better suited, since it can easily save
the history of old object states, recover these states, and annihilate erroneously
propagated objects, since the system manages all objects.

To achieve better performance, the MESSENGERS daemon adopts several new im-
plementation techniques. The rest of this section will concentrate on explaining them.

Figure 3 illustrates the implementation of event-driven simulations in the MESSEN-
GERS system. The MESSENGERS daemon receives a new Messenger injected from an
external process through a Unix-supported message queue, which we call an interface
port, and enqueues it into Ready Messenger Queue. Once the daemon picks up the
Messenger from this queue, it continues processing the Messenger script as long as its
statements are computational. If the Messenger calls an event-scheduling function,
the daemon enqueues the corresponding event into Function Event Queue, which is
implemented as a splay tree, and then pushes the Messenger into Suspended Messen-
ger Queue. When the LVT reaches the time scheduled in that event, the daemon
picks it up from Function Event Queue, and moves the corresponding Messenger into
the Ready Messenger Queue. This may be repeated any number of times. Eventually,
the Messenger will terminate or perform a navigational command. In the latter case,
the daemon enqueues it into Outgoing Messenger Queue and thereafter sends it out
through the socket interface during the next inter-daemon communication phase.

Conservative synchronization has all daemons process only Messengers and events
scheduled at GV'T. After this processing, the daemons find out the minimal future
time among events unprocessed in their own Function Event Queue, exchange it as
their next possible LVT, and update GVT to the minimal value.

Optimistic synchronization permits all daemons to process Messengers and events

10

External
Processes

. Outging Magr Quene

___ Socket Communication

N mmiiborl) Iitespreter Daemon

Figure 3: Implementation of event-driven computation in MESSENGERS

by incrementing their own LVT regardless of the current GVT value. While dae-
mons are working more independently than with conservative synchronization, this
may cause inconsistent cases of delivering a Messenger to a daemon whose LVT is
newer than the Messenger’s time stamp. In such cases, the daemon must turn back
its LVT to the old time stamp and recover its old state. To be prepared for such a
rollback operation, the daemon incrementally saves results of its interpretation and
event processing. In prior to interpreting a new Messenger, invoking a precompiled
function, processing an event, or modifying a logical network, the daemon saves the
current state of the corresponding data structures, associates them with old events,
and enqueues these events into Old Event Queue. Upon a rollback, the daemon pops
events out of this queue in a counter-chronological order, and incrementally returns
to its appropriate earlier state. When the daemon detects that it has erroneously
sent out Messengers, it sends the corresponding cancellation messages to the appro-
priate destinations. Every periodical GVT decision, each daemon performs a garbage
collection by deallocating events in Old Event Queue which are older than a new

GVT.

The underlying inter-daemons communication uses either TCP/IP or UDP, which
is specified in a user’s system configuration file. Figure 4 describes the layered im-
plementation of inter-daemons communication. The highest level is a user’s script
including navigational statements and event-scheduling functions. Under the script

11

MESSENGERS
Script Level hop() create() delete() Sfunc(M_sched_xxx)
Junc(M_recv), func(M_send)

¥
Virtual Time
Communication Level
Periodical GVT computation
Anri-mecmgpr

Inter-daemon
Communication Level header_transfer(daemon)
pcke_transfer(daemon->packets)
/— \
Enhanced Features for TCP/IP | Enhanced Features for UDP
- recovery from packet loss
- socket buffer congestion control | _ poorderin g received packets
))
OS System Calls
TCP/IP Sockets UDP Sockets
connect() accepi() sendmsg() recvmsg()
read() write() close()

Figure 4: Implementation of inter-daemons communication

level is the virtual time communication that automatically creates messages for GVT
decisions and Messenger cancellations. All Messengers and virtual-time-related mes-
sages are disassembled into headers and packets whose transmission is handled by two
internal functions: header_transfer() and packet_transfer(). Depending on TCP/IP
or UDP, these two functions support reliable communications. Under TCP/IP, they
prevent socket buffers from congestion by having two threads write and read data
through sockets in turn, while under UDP they work on recovery from packet loss
and reordering received packet.

Section 3 and 4 will verify better programmability and performance resulting from
the virtual time implementation at the system level discussed here.

3 Simulation Modeling

As described in Section 1, distributed individual-based simulations are realized by two
design principles: (1) the modeling of entity behavior, including their interactions in
the simulated space, and (2) the coordination and timing of their interactions in the
physical network. The main interest of application programmers lies in the former.
The latter is the result of distributed computation and the necessary effort depends
on the programming style required and the simulation features provided by each

12

system. With MESSENGERS, application programmers are largely relieved from this
coordination problem and thus may focus on the entity behavioral modeling. This
section demonstrates MESSENGERS’ superiority over a conventional message-passing
system such as PVM, from this programmability point of view.

3.1 Individual-Based Simulations

To understand the typical entity behavior in this class of simulations, we first consider
the ant evolution program, whose goal is finding the best genetic code for ants to
bring back food to the nest efficiently. The ant genetic code is represented as a
bit string called a “genotype”. The best genetic code is derived over multiple life
generations, each of which consists of the following two stages: (1) simulating the
food-searching behavior of ants with different genotypes, and (2) generating offsprings
by the selection, crossover and mutation of the best group of parent genotypes. The
first stage is an example of individual-based simulations. Over a 2-dimensional space,
ants with different genotypes start from their nest, roam in search for food, and bring
it back to the nest. While roaming over the space, they may leave pheromone trails
which guide the other ants to the food source. Figure 5 illustrates this simulation. An
ant senses its surrounding information: the presence of food, the presence of a nest
and the amount of pheromone. It may thereafter take one of the following actions:
moving to any of the four neighboring cells, picking up a unit of food if the ant has
found it, dropping a unit of food if the ant has arrived at its nest, and dropping some
units of the pheromone.

The decision to move to a neighboring cell depends on each ant’s genotype. It
may always select the one whose units of the pheromone is larger than any other
neighboring cells, always move randomly, use the pheromone only when its amount
exceeds a given threshold, or even stay at the current position. The decision scheme
may also prohibit an ant to share the same cell with others. In any case, the ant’s
behavior can be modeled as a simple repetition of taking action and moving to a new
position, which is being paced using virtual time:

for (5;) {
M_sched_time_dlt(delta);
action();
new_position();

}

We expect that this basic structure can be applied to many individual-based simu-
lations, while the number and granularity of entities vary for each type of application.
For instance, particle simulations deal with millions of particles whose actions may
be simple collisions, while DIS deals with a much smaller number of entities, such

4

13

r #3

Processor#2.. B . Pr

"N

Processor #0 Processor #1

Figure 5: Ant evolution Program: an example of individual-based simulations

as tanks and fighters, but need a large amount of computation to decide their next
actions. Thus, we implemented this basic repetition of action() and new_position() in
both MESSENGERS and PVM for not only discussing the programmability but also
finding the number and granularity of entities necessary for MESSENGERS to achieve
performance competitive with PVM.

We use a two-dimensional grid for a simulation space and have entities walk with
a direction-decision algorithm, which may choose a neighboring cell to move to ran-
domly or according to a given goal. To obtain a deterministic simulation result, each
entity is given a different ID, avoids choosing a cell occupied by another entity at
the current virtual time, and recomputes a new neighboring cell when it collides with
another entity with a higher entity ID at the same cell. Figure 6 illustrates this
deterministic behavior.

Three entities with IDs 84, 97, and 103 residing at cells [0, 1], [1, 1], and [2,0] are
now deciding their new positions. They are given a direction-decision algorithm that
makes all entities choose their left-hand cell first and, if occupied, keep selecting other
cells in a counter-clock wise direction until an empty one is found. The entity #84
finds no more cell on its left side and thus moves downward to cell [0,0]. The entity
#103 locates the entity #84 to its left and thus moves downward to cell [1,0]. The
entity #97 first moves to its left-hand cell [1,0]. However, it detects a collision with
the entity #103, and goes back to its original position due to its smaller ID. It then

A

14

£[0,2] gl1,2] g(2,2]

821

| e97;

810,01

384_'3

Figure 6: 2D walk simulation: a simplified form of individual-based simulation

chooses the cell [2, 1] as its new position.

3.2 Programming with MESSENGERS

Figure 7 and 9 shows two Messenger scripts, grid() and entity(). The former con-
structs a two-dimensional grid, the latter describes a walking entity.

The grid() Messenger starts with the lower-left corner of the grid (lines 2 and 3),
consecutively creates vertical links of one column (line 4 and 5), and comes back to
the origin (line 6). The rest of the script then repeatedly constructs new columns by
piling up rectangles on top of each other adjacent to the already constructed portion of
the grid. Figure 8 illustrates this process. It starts by drawing the lowest vertical edge
(line 9). The Messenger then creates each box by: hopping along the left vertical edge
of the rectangle from the south-west up to the north-west corner (line 14), creating an
upper horizontal edge to the north-east corner (line 16), creating a right vertical edge
down to the south-east corner (line 18), and jumping back to the north-west corner
(line 13). Logical-to-physical node mapping is performed implicitly by selecting the
desired number of daemon nodes and their creation threshold to control the clustering
of logical nodes (See Section 2.4.3 Node Mapping in [Fuk97].)

The entity() Messenger schedules its behavior every 10 virtual time units (line 3).
It first checks its termination condition (lines 4-8). For instance, the termination may
be satisfied when the entity reaches its final destination cell or when it is outside of
the simulation space. Then, the entity calls the function compute() (line 9), followed
by deciding on one of the four neighbors as its next destination through its direction-
decision function named walk() (line 11), and hopping to the chosen direction (lines
13-16). If the cell is not occupied or the entity collides with another entity whose ID
is smaller (line 17), the entity records its own ID as the new resident ID (line 19) and
waits until virtual time is incremented (line 20). Otherwise, the entity must move back

(1) grid() {

(2) create();
(3) addr_0 = $address;
(4) for (j = 0; j < size; j++)
(5) create(link = +"vertical);
(6) hop(node = addr_0);
(7) for (i = 1; < size; i++) {
(8) addr_nw = addr_0;
(9) create(link = +"horizontal");
(10) addr_se = $address;
(11) addr_0 = $address;
(12) while (j = 1; j < size; j++) {
(13) hop(node = addr_nw);
(14) hop(link = +"vertical");
(15) addr_nw = $address;
(16) create(link; link = +"horizontal");
an addr_ne = $address;
(18) create(node = addr_se; link = -"vertical");
(19) addr_se = addr_ne;
(20) jt+;
(21) }
(22) hop(node = addr_0);
(23) } }

Figure 7: A Messenger script for 2D grid creation

2. create()

“\4.hop() | 3. create()
. line 13 line 18

Figure 8: 2D grid creation using MESSENGERS

(1) entity() {
(2) while(1) {

(3) func(name = "M_sched_time_d1t"; in = 10);
(4) func(name = "terminate_cond"; in = pos_x, pos_y; out = condition);
(5) if (condition) {
(6) old_resident = NONE;
(7) exit;
(8) }
(9 func(name = "compute');
(10) for (trial = 0; trial < 4; trial++) {
(11) func(name = "walk"; in = pos_x, pos_y, param; out = dir, param);
(12) 0ld_node = $address;
(13) if (dir == W) hop(link = +"vertical");
(14) else if (dir == E) hop(link = +"holizontal);
(15) else if (dir == S) hop(link = -"vertical");
(16) else hop(link = -"holizontal");
17 if (old_resident == NONE && new_resident < my_id) {
(18) alarm = new_resident;
(19) new_resident = my_id;
(20) func(name = "M_sched_node"; in = alarm, "==", my_id, 1);
(21) if (alarm !'= my_id)
(22) break;
(23) }
(24) hop(node = old_node);
(25) }
(26) new_node = $address;
(27) hop(node = old_node);
(28) old_resident = NONE;
(29) hop(node = new_node);
(30) old_resident = my_id;
(31) new_resident = NONE;
(32) alarm = NOHE;
(33) } }

Figure 9: 2D walk simulation using MESSENGERS

to the original cell (line 24) and repeat the same sequence with another destination.
This repetition must also be performed by an entity that has been waiting for a new
virtual time (line 20) but was awaken by someone with a higher ID (line 21), who
has the right to occupy the cell. Once virtual time is incremented, it is guaranteed
that all movements have been decided, and thus each entity erases its residency in
the previous cell (line 28) and marks the new cell (line 30).

We note that the entity walk specification described in Figure 6 was translated
directly and intuitively into the concrete script level of Figure 9, which was possible
due to the small semantic gap between the abstract and the programming levels of the
simulation models. Once a grid() Messenger creates a 2D grid over a physical network,
a set of entity() Messengers can start walking immediately on a distributed system
without any user-level descriptions of low-level coordinations, (i.e. entity migrations,
interactions, virtual time delivery, and network maintenance.) Simulation users can
therefore focus on their model design, embodied in the functions “compute”, “walk”,
and “terminate_cond’.

17
3.3 Programming using Message-Passing

Figure 10 and 11 show the corresponding programs using message-passing. First, the
master process spawns a given number of slave processes, each of which is in charge of
simulating entities in its assigned simulation sub-space (lines 3-5). The master process
also works as a virtual time manager which confirms that all slaves are finished with
the current GVT (lines 10-11), and broadcasts a new GVT (lines 8-9).

The slave process first initializes its assigned space (lines 14-15), and then goes into
a loop of entity simulations (lines 16-46). It investigates the termination condition
for all entities residing in its assigned space (line 18-19), kills the ones which satisfy
the condition (lines 20-21), and executes actions for all the alive entities through
the compute() function (line 23). The slave then repeats a nested loop for entity
exchanges with its neighbors which consists of two phases (lines 25-44). The first
exchange phase (line 26-31) performs the following tasks: the computation of each
entity’s new logical position (line 26-27), the migration of entities whose new positions
are outside of the assigned space (line 30), and the merger of exchanged and resident
entities into a new list (line 31). The second exchange phase (line 32-44) performs
the followings: the detection of entity collisions (line 34), the migration of entities
that have been swept out due to collisions with those with a higher ID (line 42), and
the merger of entities into a new list (line 43).

Each slave process knows who are its neighbors in advance, and thus maintains a
list for entities sent to each neighbor. When an entity is out of the assigned space
as a result of its movement to a new position or backing-off to the original cell, it is
enqueued into the appropriate list by the enqueue_migr() function (line 47-52). Using
this list, the migration() function performs the entity migration to each neighboring
process (line 54-64).

Obviously, the message-passing code is much longer than the corresponding Mes-
senger scripts, in spite of the fact that the init_space(), enqueue_migr() and migra-
tion() functions are still at an abstract level. The length of an actual PVM imple-
mentation is more than 900 lines of C code, while an MESSENGERS version consists
of 200 lines of Messenger scripts and 230 lines of C programs. The message-passing
version must take a master-slave form, coded as two different programs. Since the
intelligence lies in each slave process rather than each entity, the slave must divide
the entity walking algorithm into three while loops: (1) entity termination and com-
putation, (2) entity walk and migration, and (3) entity back-off and migration, each
of which must be performed in batch for all entities. Therefore, the conventional
message-passing program supports no simple intuitive implementation of the simu-
lation model. Furthermore, the low-level coordination of simulation entities is left
completely up to the simulation model designer.

(1) master() {

(2) for (i = 0; i < slaves; i++) {

(3) spawn("slave", &(slave_id[i]));

(4) send(slave_id[i], sub_region, entity_list, sim_time);
(5) recv(&ack);

® }

(7) for (gvt = 0; gvt <= sim_time; t += 10) {
(8) for (i = 0; i < slaves; i++)

(9) send(tids[i], gvt);

(10) for (i = 0; i < slaves; i++)

(11) recv(&ack);

(12) } }

(13) slave() {

(14) recv(&sub_region, kentity_list, &sim_time);

(16) init_space(sub_region, entity_list, sim_time);

(16) for(;;) {

7 recv(&gvt);

(18) while (e = dequeue(entity_list, gvt)) !'= NULL) {

(19) if (terminate_cond(e->pos_x, e->pos_y)) {

(20) grid[e->pos_x][e->pos_y] .old_resident = NONE;

(21) free(e);

(22) }

(23) compute();

(24) }

(25) for (trial = 0; trial < 4; trial++) {

(26) while (e = dequeue(entity_list, gvt)) != NULL) {

(27) walk(e->pos_x, e->pos_y, e->param, &e->new_x, &e->new_y);
(28) enqueue_migr(e, e->new_x, e=>new_y);

(29) }

(30) migration();

(31) merge(local_list, tmp_list);

(32) while (entity = dequeue(entity_list, gvt)) != NULL) {
(33) g = &grid[e->new_x] [e->new_y];

(34) if (g->old_resident== NULL && g->new_resident->my->id < e->my_id) {
(35) enqueue_migr((nr = g->new_resident), nr->pos_x, nr->pos_y);
(36) g->new_resident = e->my_id;

(37) enqueue(tmp_list, e);

(38) continue;

(39) }

(40) enqueue_migr_list(e, e->pos_x, e->pos_y);

(41) }

(42) migration();

(43) merge(local_list, tmp_list);

(44) }

(45) if (gvt == sim_time) break;

(46) }

Figure 10: 2D walk simulation using message-passing (line: 1 - 46)

18

(47) enqueue_migr(e, dist_x, dist_y) {

(48)
(49)
(50)
(51)
(52)
(53) }

if (dist_y > max_y) enqueue(north_migr_list, e);

else if (dist_x > max_x) enqueue(east_migr_list, e);
else if (dist_y < min_y) enqueue(south_migr_list, e);
else if (dist_x < min_x) enqueue(west_migr_list, e);
else enqueue(tmp_list, e);

(54) migration() {

(55)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64) }

3.4

The

send(north_neighbor, north_migr_list);
send(east_neighbor, east_migr_list);
send(south_neighbor, south_migr_list);
send(west_neighbor, west_migr_list);
recv(north_neighbor, north_migr_list);
recv(east_neighbor, east_migr_list);
recv(south_neighbor, south_migr_list);
recv(west_neighbor, west_migr_list);

Figure 11: 2D walk simulation using message-passing (line: 47 - 61)

MESSENGERS versus Message-Passing

preceding section demonstrated that MESSENGERS allows simulation users to

focus on their model design much more than the message-passing paradigm from two
points of view: (1) the understandability of simulation programs, and (2) the low-load
coordination of entity interactions. In addition, there are several other fundamental
differences between these two paradigms:

Individual-based applications involve not only entity modeling but also their
simulation space management. These two issues are separated clearly in the
MESSENGERS implementation. The simulation space is created by an indepen-
dent Messenger, such as grid, and may persist until the MESSENGERS system
is shut down. Hence, simulation entity Messengers can be injected at any time
during the simulation. In contrast, the message-passing version where a slave
process runs at each physical node interwines the simulation space management
and the individual entity behavior.

The message-passing implementation is fixed in terms of its functionality. Any
modification or extension would require the program to be modified, recompiled,
and redistributed to the physical nodes. The MESSENGERS implementation, on
the other hand, is open-ended and thus arbitrarily extensible. Specifically, it
is possible to introduce another set of instances or arbitrary new entities of a
different type in the simulation space at runtime, without recompiling or even
halting the ongoing simulation. Hence, the MESSENGERS paradigm facilitates
interactive and incremental simulation modeling.

20

e With the message-passing implementation, each slave node program must be
told who its neighbors are, (e.g. IP names in PVM). This hard-wired program-
ming requires recompilation and explicit supply of the neighboring information
whenever the physical topology changes. In contrast, Messenger scripts are not
affected by such a node mapping problem. Logical nodes may be distributed
implicitly as described with the grid code.

4 Performance Comparisons

The Messenger script itself is interpretive and thus slower than a native code ex-
ecution when executed on a single machine. However, the MESSENGERS daemon
allows the script to call precompiled C functions, and uses multiple computing nodes.
Hence, the MESSENGERS may achieve better performance than a single processor
execution depending on granularity of the computation. Similarly, it displays slower
performance than the message-passing version where static processes execute native
program and communicate with one another using an optimized communication li-
brary. Such performance slow-down will however be mitigated by MESSENGERS’s flow
control mechanism for socket communication and the system level implementation of
virtual time synchronization. Therefore, we focus on the following two evaluations:
(1) the entity granularity necessary to achieve speed-up over the corresponding single
processor version and (2) the effect of optimistic synchronization.

Figure 12 shows the topology of a daemon network and the mapping of a 2D
grid over the network when we use five and ten workstations respectively. One of
them is always dedicated to a new GVT computation, and thus four or nine CPUs
are actually working for the entity simulation.. All workstations are Sun SPARC
Station 5S5’s (32MB memory each) connected by a 10Mbps Ethernet in the same
sub network, where no other irrelevant user programs are running.

The Messenger scripts and message-passing programs discussed in Section 3 are
used for the evaluations. The message-passing version uses PVM. In addition, we
also implement another version of Messenger scripts, which do not use the MESSEN-
GERS virtual time environment but implement it at the script (i.e. application) level.
Initially, a set of simulation entities are placed together in the center portion of a
2D grid, each occupying its own cell. The walk() function used for each entity to
decide the next position returns a random direction, and thus we simulate a random
propagation of entities walking from the center.

21

2D grid

n00 n00

Deamon network

4 processors 9 processors

Figure 12: Logical-to-daemon network mapping for 2D grid
4.1 PVM versus MESSENGERS

We investigate two different sizes of the problem. One is the simulation of 36 entities
walking over a 10 x 10 grid, and the other of 144 entities over a 20 x 20 grid (a four-
time increase). The compute() function defined as an entity’s action has no contents
other than dummy floating-point operations. For each simulation of the 10 x 10 and
20 x 20 grids, we measured its performance when changing the number of the floating-
point operations in order to find a break-even point of computation granularity to
perform better than a single CPU version. Figure 13 shows the performance of these
two different grid sizes.

10 x 10 gird simulation:

With five CPUs, MESSENGERS’ computation granularity in the non-virtual time mode
needs more than 160,000 floating-point operations to overcome the single CPU ver-
sion. This is reduced to 64,000 operations in the virtual time mode. On the other
hand, the PVM version achieves speed-up over the single CPU version around 50,000
operations. Therefore, MESSENGERS in the virtual time mode runs within only a
1.3 times slow-down as compared to PVM. With ten CPUs, the performance of both
MESSENGERS and PVM is degraded below that of CPUs. This is because the problem

size is small as compared to communication latency.

20 x 20 grid simulation:

With five CPUs, MESSENGERS’ computation granularity in both non-virtual time
and virtual time modes becomes smaller, (i.e. 50,000 and 30,000 floating-point op-
erations to become competitive with the single CPU version). However, PVM needs
only 2,500 floating-point operations. MESSENGERS is approximately 2.5 times slower
than PVM at 30,000 floating-point operations and thus looses its competitiveness.
Both MESSENGERS and PVM show their scalability with ten CPUs. In particular,
MESSENGERS in virtual time mode reduces the breaking point from 30,000 to 20,000

(seconds)

Elasped Time

Elasped Time (seconds)

36 entities walking on a 10x10 grid

T T T LB |

-

PVM on 4 CPUs]
PVM on 9 CPUs -+]
messengers w/o VT on 4 CPUs -8--
messengers w/o VT on 9 CPUs -B- |
messengers w/ VI on 4 CPUs -X---
messengers w/ VT on 9 CPUs -
01 i " PO T U O o | " T S IR R o VL | A
1000 10000 100000
Floating-Point Operations
144 entities walking on a 20x20 grid
oo g
B i E-'——— _____________________
[— g TR AT
 — - e 2 ’
g . ——
oo™ et PVM on 4 CPUs -+-]
[- PVM on 9 CPUs -+]
"""" messengers w/o VT on 4 CPUs -B-
messengers w/o VT on 9 CPUs -G
p messengers w/ VT on 4 CPUs -X--
messengers w/ VT on 9 CPUs -X--
1 1 L " PR N W W | " L 1 PO T I A | 1
1000 10000 100000

Floating-Point Operations

Figure 13: Comparison between PVM and MESSENGERS for 2D random walk

22

23

floating-point operations and slightly shrinks the large performance distance between
PVM and MESSENGERS.

In summary, MESSENGERS is competitive with PVM for a smaller problem size
when it uses the virtual time mode. To minimize an entity granularity and take
advantage of CPU scalability, the problem size must be enlarged, which however
lowers PVM’s break-even point to surpass the single CPU version much more than
MESSENGERS and thus weakens its competitiveness. This drawback is mainly caused
by the context switches and function calls occurring in MESSENGERS, which increase
with a larger number of simulation entities.

4.2 Conservative versus Optimistic Synchronizations

We investigate under what conditions optimistic synchronization performs better than
the conservative scheme for MESSENGERS. We focus on the simulation of 32 entities
walking on a 10 x 10 grid only, since MESSENGERS shows its competitiveness with
PVM for a smaller problem size. Indeed, better performance is not expected for a
larger problem due to more context switches and function calls, which in turn incur
more state-saving overhead in optimistic synchronization.

In general, the more events each physical node schedules locally, the better perfor-
mance optimistic synchronization achieves over the conservative scheme. If Messen-
gers schedule no local events and hop every 10 simulation cycles, there is no difference
between these two schemes in terms of the number of messages required for GVT de-
cision, while optimistic synchronization incurs state-saving and rollback overhead.
Therefore, we evaluated the performance with one or two dummy events inserted
between any two hop statements in each Messenger script. For instance, with two
dummy events per hop, a Messenger schedules itself to hop at virtual time T' and at
time, 7'+ 10 and 7"+ 20 only calls the compute() function. It then repeats these three
operations.

Figure 14 shows the performance using five CPUs when one and two dummy events
are inserted respectively. We again measured elapsed time while changing the number
of floating-point operations included in the compute() function. MESSENGERS takes
advantage of optimistic synchronization the most efficiently with only one dummy
event in the range of small computations. In particular, MESSENGERS using opti-
mistic synchronization is even faster than PVM. However, such superiority is limited
in the range where computation granularity is too small for both MESSENGERS and
PVM to gain from parallelism due to communication overhead, (i.e., below 20,000
floating-point operations).

Beyond this threshold, the performance of optimistic synchronization is gradually

Elasped Time (seconds)

Elasped Time (seconds)

32 entities scheduling 1 local event per hop

L B R B R | T T T T T

single
PVM -+~
messengers w/o VT -B--
messengers w/ conservative VT -
messengers w/ optimistic VT -&--

PR W | L 1 N T U | i

10000 100000
Floating Point Operations

32 entities scheduling 2 local events per hop

T T T T T T T T T LI B B B R | T

single <-— o
PVM —+--
messengers w/o VT -8--

messengers w/ conservative VT -%--
messengers w/ optimistic VT -&--

L s PO (O i T B X L PR T T A | 1

1000

10000 100000
Floating Point Operations

Figure 14: Comparison between conservative and optimistic synchronizations

24

25

degraded and finally matches that of the conservative scheme at 100,000 floating-
point operations. The insertion of two dummy events between hops does not change
the efficiency of optimistic synchronization. The smaller the computation, the better
the performance.

Optimistic synchronization didn’t achieve better performance with ten CPUs than
five CPUs. One of the reasons is that the master CPU needs to communicate with
more slave CPUs for each GVT decision. However, the main reason lies in logical-
to-physical node mapping. As shown in Figure 12, one CPU is surrounded by four
neighbors, so that it receives more cancellation messages than other CPUs, causes
more rollbacks, and thus becomes a bottleneck.

In summary, MESSENGERS can achieve its performance close to PVM using opti-
mistic synchronization but its truly effective range where it also surpasses the single
CPU version is limited to between 20,000 and 100,000 floating-point operations. Such
efficiency is obtained under the following conditions: (1) a relatively small problem
size, (2) one or more events scheduled between hop statements, (3) a small multipro-
cessor configuration, and (4) an efficient logical-to-physical node mapping.

5 Conclusion

MESSENGERS is the first autonomous-object-based system incorporating a virtual
time environment. We have demonstrated that the paradigm of autonomous objects
in conjugation with virtual time eases individual-based simulation modeling. The
daemons coordinate all interactions among Messenger objects along a virtual time
line, and therefore users can focus on the design of their entity models. With MEs-
SENGERS’ navigational autonomy, models are programmed in Messenger scripts from
the entities’ view point.

Our performance evaluation showed the following three results: (1) the system-
level implementation of virtual time performs two-times better than the user-level
implementation, (2) the performance of conservative synchronization is competitive
with PVM for small scale simulation domains where tens of entities are moving over
four CPUs, and (3) the performance can be further improved by optimistic synchro-
nization but its scalability is as small as that of the conservative scheme.

We are presently addressing the performance so that MESSENGERS will be com-
petitive with PVM in any range of computation granularity and network size. One
such improvement is full compilation and native-mode execution of Messenger scripts.
Rather than interpreting objects, the MESSENGERS daemons handle threads, which
execute compiled code of Messenger scripts. Thus we can completely eliminate the
overhead incurred by interpretations and function calls from the script layer. Another

26

improvement is load balancing where overloaded daemons will be off-loaded by having
logical nodes and Messengers residing there migrate to other lightly-loaded daemons.

In view of the software engineering benefits to simulation modeling derived from
the paradigm of autonomous objects and the fact that we are still improving MES-
SENGERS’ performance, we feel that MESSENGERS is a promising tool for distributed
individual-based simulations.

References

[BBCS94]

[BFDY6]

[Bid96]

[CJ90]

[Com94]

[Dew84]

[FBDMOYS]

[Fuk97]

[HESS]

L. Bic, P.M. Borst, M. Corbin, and P.S. Sapaty. The WAVE control pro-
tocol for distributed interactive simulation. In Proc. 11th DIS Workshop
on Standars for the Interoperability of Distributed Simulations, pages 519-
533, Orland, FL, September 1994. Institute for Simulation and Training.

Lubomir F. Bic, Munehiro Fukuda, and Michael B. Dillencourt. Dis-
tributed computing using autonomous objects. IEEE Computer, pages
55-61, August 1996.

B. Bidyuk. MESSENGERS-C compiler manual. Report MSGR-06, Uni-
versity of California, Irvine, CA, 1996.
http://www.ics.uci.edu/"bic/messengers.

Robert J. Collins and David R. Jefferson. AntFarm: Towards simulated
evolution. In Artificial Life II: Proceedings of the Workshop on Artificial
Life, pages 579-601, Santa Fe, NM, February 1990. Addison-Wesley.

DIS Steering Committee. The DIS vision: A map to the future of dis-
tributed simulation. Institute for Simulation and Training, 1994.

A. K. Dewdney. COMPUTER RECREATIONS sharks and fish wage an
ecological war on the toroidal planet wa-tor. Scientific American, pages

14-22, December 1984.

Munehiro Fukuda, Lubomir F. Bic, Michael B. Dillencourt, and Fehmina
Merchant. Distributed coordination with MESSENGERS. Science of Com-
puter Programming, page to appear, in 1998.

Munehiro Fukuda. MESSENGERS: A Distributed Computing System
Based on Autonomous Objects. PhD thesis, University of California,
Irvine, CA 92697, June 1997.

R.W. Hockney and J.W. Eastwood. Computer Simulations using Parti-
cles. IOP Publishing Ltd, Bristol, Great Britain, 1988.

[JBW+87]

[Lan95]

[LS95]

[MBLA96]

[Mic96]

[MSC94]

[Res94]

[Rog92]

[SBY4]

[Ste92]

27

David Jefferson, Brian Beckman, Fred Wieland, et al. Distributed simula-
tion and the Time Warp Operating System. Technical Report No.870042,
UCLA, Computer Science Dept., August 1987.

Christopher G. Langton. Artificial Life : An Overview (Complex Adaptive
Systems). MIT Press, Cambridge, MA, August 1995.

Helmut Lorek and Michael Sonnenschein. Using parallel computers to
simulate individual-orieted models in ecology: A case study. In Proc.
ESM’95 European Simulation Multiconference: Modelling and Simulation,
pages 526-531, Prag, 5-7 June 1995. SCS International.
http://offis.offis.uni-oldenburg.de/projekte/ecotools/.

Nelson Minar, Roger Burkhart, Chris Langton, and Manor Askenazi. The
Swarm simulation system: A toolkit for building multi-agent simulations.
Technical report, Santa Fe Institute, Santa Fe, NM, June 1996.
http://wuw.santafe.edu/projects/swarm/.

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs, 3rd Edition. Springer-Verlag, 1996.

William Maniatty, Boleslaw Szymansk, and Tom Caraco. Implementa-
tion and performance of parallel ecological simulations. In Proc. IFIP
WG10.3 Working Conference on Applications in Parallel and Distributed
Computing, volume vol.A-44, pages 93-102, Caracas, Venezuela, April
1994. Elseveir Science Publishers.

http://www.cs.rpi.edu/research/tempest/.

M. Resnick. Changing the centralized mind. Technology Review, pages
30-40, July 1994.

Ralph V. Rogers. Implementing system simulation of C3 systems using
autonomous objects. In Proc. IEEE/AIAA 11th Digital Avionics Systems
Conference, pages 275-280, Seatle, WA, 5-8 October 1992. IEEE.

P.5. Sapaty and P.M. Borst. An overview of the WAVE language and
system for distributed processing of open networks. Technical report,
University of Surrey, UK, 1994.
http://ww.ira.uka.de/132/wave/wave.html.

Jeff S. Steinman. SPEEDES: A multiple-synchronization environment
for parallel discrete-event simulation. International Journal in Computer
Simulation, pages 251-286, 1992.

