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INTRODUC TION

Breast cancer represents a significant health challenge for women 
in the United States, being the most diagnosed cancer with an 
estimated 298,790 new cases in 2023 alone (American Cancer 
Society, 2022; Center for Disease Control and Prevention, 2022). 
A prevalent and debilitating symptom among cancer patients 

is chronic pain, affecting approximately 35% of individuals 
(American Cancer Society, 2019). This issue is particularly acute in 
female breast cancer survivors who are more susceptible to pain 
(Gallaway et al., 2020). Characterized by pain persisting for more 
than 3 months, chronic pain severely impacts the quality of life 
and challenges cancer treatment. The high incidence and profound 
impact of chronic pain highlights the critical need for effective 
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Abstract
Purpose: The aim of the study was to develop a prediction model using deep learning 
approach to identify breast cancer patients at high risk for chronic pain.
Design: This study was a retrospective, observational study.
Methods: We used demographic, diagnosis, and social survey data from the NIH ‘All 
of Us’ program and used a deep learning approach, specifically a Transformer- based 
time- series classifier, to develop and evaluate our prediction model.
Results: The final dataset included 1131 patients. We evaluated the deep learning 
prediction model, which achieved an accuracy of 72.8% and an area under the re-
ceiver operating characteristic curve of 82.0%, demonstrating high performance.
Conclusion: Our research represents a significant advancement in predicting chronic 
pain among breast cancer patients, leveraging deep learning model. Our unique ap-
proach integrates both time- series and static data for a more comprehensive under-
standing of patient outcomes.
Clinical Relevance: Our study could enhance early identification and personalized 
management of chronic pain in breast cancer patients using a deep learning- based 
prediction model, reducing pain burden and improving outcomes.
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management strategies and a deeper understanding to enhance 
the overall outcomes and quality of life for patients diagnosed 
with breast cancer (Jensen et al., 2010).

Chronic pain in cancer patients is influenced by a confluence 
of factors, such as clinical conditions, psychosocial elements, 
and socioeconomic aspects (Van Den Beuken- Van Everdingen 
et al., 2016). The clinical conditions directly affect pain intensity 
and characteristics (Caraceni & Shkodra, 2019). Psychosocial fac-
tors, such as stress, anxiety, and depression, can intensify the ex-
perience of pain (Riba et al., 2019). Socioeconomic aspects are also 
known to be significant, as access to healthcare resources, financial 
stability, and social support systems can greatly impact pain man-
agement and overall treatment outcomes (Peppercorn et al., 2011). 
Therefore, a holistic approach in cancer care is essential, one that 
encompasses and addresses the complex interplay of clinical, psy-
chosocial, and socioeconomic factors in each patient's experience 
of pain (Ferrell et al., 2017).

In this context, the ‘All of Us’ program by the NIH emerges as 
a groundbreaking resource for cancer research (All of Us Research 
Program Investigators, 2019). This extensive dataset, compris-
ing health data from over a million participants across the United 
States, incorporates demographic, clinical, environmental, socio-
economic, and lifestyle factors. It offers an in- depth view of the 
complex aspects of cancer and its associated chronic pain. The de-
tailed and diverse nature of the ‘All of Us’ dataset is invaluable for 
developing precise, personalized chronic pain management strate-
gies, improving treatment outcomes and enhancing the quality of 
life for cancer patients.

In this study, we used data from the ‘All of Us’ program to identify 
breast cancer patients at high risk for chronic pain, with the goal 
of optimizing pain management. Specifically, we used an innovative 
deep learning approach to analyze the large, complex, national- level 
‘All of Us’ dataset. Given recent advantages in artificial intelligence 
(AI), deep learning techniques hold great promise in cancer research, 
as they can process vast amounts of data, including time- series in-
formation, to discern patterns and predictors of health outcomes. 
Tailoring pain management strategies to individual needs through 
our prediction model could revolutionize our understanding and 
nursing care of chronic pain in breast cancer patients, resulting in 
more effective, patient- focused clinical decisions and an improved 
quality of life for these individuals.

There have been some studies on predicting chronic pain 
among breast cancer survivors. However, these either used small 
samples, relied solely on clinical information, or were conducted 
outside the United States (Liukas et al., 2023; Lötsch et al., 2018; 
Tan et al., 2023; Yin et al., 2023). To date, no study has been 
conducted using a deep learning approach that leverages time- 
series data and national- level health data with socioeconomic in-
formation to predict patients at high risk for chronic pain among 
breast cancer patients. To address this gap, we have leveraged a 
transformer- based approach (Vaswani et al., 2017) in deep learn-
ing to develop a more accurate and personalized prediction model 
for chronic pain risk.

METHODS

Data sources

This is a retrospective study designed using the ‘All of Us’ Research 
Program's Controlled Tier Dataset. The dataset is de- identified and 
available to authorized users on the Researcher Workbench. Ranging 
from 03/1980 to 05/2022, the dataset includes demographics, pa-
tient survey, lab measurement, drug exposure, and diagnosis infor-
mation. Although the ‘All of Us’ Program Dataset provides various 
data types, such as biosamples and physical measurements, only a 
limited number of populations had all that information. To ensure 
a sufficient sample size for our deep learning approach, we exclu-
sively included data types available for the majority of breast cancer 
patients in the dataset. We specifically extracted data for patients 
with a breast cancer diagnosis (ICD- 9: 170.X; ICD- 10- CM: C50.X), 
focusing on their demographic profiles, survey responses, and diag-
nostic codes. Since the data were fully de- identified, the study was 
exempt from Institutional Review Board review at the University of 
California, Irvine.

Prediction and outcome variable

Our input variables used for modeling were derived from multiple 
data elements available in the ‘All of Us’ dataset, primarily including 
(1) demographic information, (2) diagnosis codes prior to the cancer 
diagnosis, and (3) survey data. The demographic information encom-
passed age at the time of breast cancer diagnosis, race, and ethnic-
ity. Moreover, we incorporated diagnosis codes recorded before the 
breast cancer diagnosis to capture the patients' health status, pre- 
existing conditions, overall health, and medical history. We extracted 
a time- series of diagnosis codes and the corresponding timestamps 
(days until the cancer diagnosis) for each patient from the source 
records. Additionally, patient survey data, which included patient- 
reported outcomes and socioeconomic factors, were also included.

Our outcome variable was the occurrence of chronic pain fol-
lowing the cancer diagnosis. To determine the development of new 
chronic pain and the exacerbation of pre- existing chronic pain in 
breast cancer patients, we applied a set of criteria (Table 1) to de-
termine the presence of chronic pain within 3 years following the 
cancer diagnosis.

Data preparation and feature selection

The data preparation phase involved tailored processes for each data 
type—demographic, diagnosis codes, and social survey data—ensur-
ing their compatibility with the deep learning model by mapping 
the code data with unique integers and tabular data with standard 
encoding methods. These steps were crucial in converting raw data 
from the ‘All of Us’ dataset into a format amenable to deep learn-
ing analysis, particularly for a Transformer- based model. By using 
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dedicated encoding techniques for each data type, we ensured that 
our model could effectively learn from and interpret the complex 
and diverse information in the dataset.

The demographic data were a standard tabular data, encoded 
into a numeric form with conventional techniques. For race and 
ethnicity, we applied one- hot encoding, creating binary variables 
for each category to capture this categorical information without 
introducing ordinal assumptions. Age at diagnosis was normalized by 
dividing it by 100. This normalization step puts the age variable on a 
scale that is more consistent with the other variables in the model, 
improving the model's ability to learn from this feature.

Diagnosis codes were prepared through a two- step process: con-
catenating code vocabularies to form unique identifiers and tokeniz-
ing these into non- zero integers for efficient model processing. We 
managed variable code lengths by setting a standard input sequence 
length, truncating longer sequences, and padding shorter ones. This 
approach of truncation and zero- padding was consistently applied 
to the timestamp series (Devlin et al., 2018). Despite the categorical 
nature of these codes, we avoided code mapping (e.g., ICD- 9- CM to 
ICD- 10- CM) or grouping (e.g., 530.81 and 530.8 to 530). This was 
possible due to a Transformer- based model's proficiency in handling 
unmodified, complex data structures—a key advantage of advanced 
deep learning algorithms.

For the survey data, we used one- hot encoding (Hancock & 
Khoshgoftaar, 2020) for each question- answer pair. This technique 
converted the categorical survey responses into a binary matrix, fa-
cilitating their integration into the predictive model. This approach 
was particularly important for handling the diverse range of ques-
tions and answers within the socio- economic and health- related 
survey data.

Feature selection is often used in deep learning to choose only 
the most relevant features to reduce the noise in the data, avoid 
overfitting, and ultimately improve the model performance. For the 
demographic and survey data, we applied a variance thresholding 
method prior to the model training to select relevant features from 
the raw data. Variance thresholding (Guyon & Elisseeff, 2003) is a 
technique used to filter out features with low variance, as these may 
not contribute significantly to the predictive power of the model. 

This thresholding approach ensures that only features with a vari-
ance above the specified threshold, accounting for variations in bi-
nary attributes, are retained. It streamlines the input data for our 
model, focusing on attributes that exhibit meaningful variation while 
efficiently handling binary features.

Model architecture

We utilized a state- of- the- art Transformer- based time- series classifier 
(Rasmy et al., 2021), specifically tailored to handle the complexities of 
diagnosis code series within the context of binary classification. This 
architecture has advantages in capturing the temporal dynamics and 
patterns in sequential medical data, which is vital for understanding 
the progression of health events in breast cancer patients.

The Transformer is a type of neural network architecture that 
has revolutionized the field of natural language processing and has 
since found applications in various other domains, including health 
informatics (Vaswani et al., 2017). It is the backbone of the latest 
Large Language Models (LLMs; Thirunavukarasu et al., 2023) and 
Generative AI innovations such as BERT (Devlin et al., 2018) and 
GPT (Brown et al., 2020), and Med- BERT (Rasmy et al., 2021). The 
Transformer's core innovation lies in its use of self- attention mech-
anisms, which allow the model to weigh the significance of different 
parts of the input data differently. The self- attention mechanism 
computes attention scores, represented in a matrix, to determine 
how much emphasis to give to each part of the input in the context 
of the sequence. This mechanism is a key for handling tasks where 
understanding the relationship between different parts of the data, 
irrespective of their position in the sequence, is crucial.

Transformers offer several advantages over traditional sequence 
processing models, such as RNNs (Recurrent Neural Networks) and 
LSTMs (Long Short- Term Memory networks) (Sherstinsky, 2020). 
One key advantage is their ability to handle long- range dependen-
cies effectively, meaning they can remember and utilize information 
from earlier in the sequence. This capability is critical in contexts 
such as medical histories, where past diagnoses can be highly rel-
evant to current health outcomes. Additionally, Transformers are 

TA B L E  1  Definition of chronic pain in this study.

Definition

Development of new chronic 
pain

The presence of chronic pain was identified using ICD- 9- CM, ICD- 10- CM, and SNOMED codes recorded after 
the cancer diagnosis. For ICD- 10- CM codes, records where the code started with ‘G89’ were selected. For 
ICD- 9- CM, records beginning with ‘338.2’ were included. For SNOMED, records with the code ‘82423001’ 
were selected.

Alternatively, chronic pain was determined by the use of pain medication* for more than 3 months following the 
cancer diagnosis, characterized by both of the following conditions:
• Documentation of consecutive administration of pain medication within a 3- month period.
• The total duration of pain medication administration exceeding 3 months.

Exacerbation of Pre- existing 
Chronic Pain

This was identified if pain intensity (severity) scores were available before and after the cancer diagnosis, and 
there was a documented increase in the score.

*Pain medication: Buprenorphine, Butorphanol, Codeine, Dihydrocodeine, Fentanyl, Hydrocodone, Hydromorphone, Levorphanol tartrate, 
Meperidine hydrochloride, Methadone, Morphine, Opium, Oxycodone, Oxymorphone, Pentazocine, Tapentadol, Tramadol.
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more parallelizable than RNNs and LSTMs, leading to faster training 
times and enabling the processing of longer sequences more effi-
ciently (Karita et al., 2019; Zeyer et al., 2019). Figure 1 illustrates the 
overview of our model architecture.

Encoder- only transformer structure

We used the encoder part of the Transformer architecture for bi-
nary classification of time- series data. Unlike sequence- to- sequence 
models needing encoders and decoders, our model predicts a single 
variable. The encoder produces contextualized embeddings from di-
agnosis codes, capturing complex data relationships.

Positional encoding and days- to- cancer timestamps

Positional encoding and days- to- cancer timestamp embeddings were 
integrated into our Transformer model to enhance the interpreta-
tion of diagnosis sequences. The former provides positional context, 
whereas the latter quantifies the temporal distance to the breast can-
cer diagnosis. It offers insights into the sequence order, frequency, 
and timing of patient visits and health events. This dual- embedding 
approach significantly enriches the model's analytical capabilities.

Incorporating demographic and survey data

Our model architecture merges time- series diagnosis codes with 
static demographic and survey data, utilizing feedforward linear 

layers to process each data type. These layers generate feature 
vectors, encoding vital information such as demographic data, and 
socio- economic factors from survey responses. This integration 
strategy amplifies the model's predictive capability by combining 
dynamic and static data sources.

Concatenation with contextualized embeddings

After generating feature vectors for demographic and survey data, we 
concatenate these with the contextualized embeddings from the di-
agnosis code series. This merges temporal diagnosis information with 
static demographic and survey data, forming a comprehensive feature 
set that encapsulates time- series and static elements, offering a com-
plete perspective of each patient's medical and socio- economic profile.

Final feedforward layer

The model combines diverse feature representations and pro-
cesses them through a final feedforward layer, producing outputs 
for binary classification of chronic pain risk. A sigmoid layer then 
converts these outputs into probabilities, reflecting the likeli-
hood of chronic pain development within 3 years post- breast can-
cer diagnosis. By integrating both dynamic and static data, the 
model harnesses a comprehensive range of predictors, enhancing 
its accuracy and providing a nuanced understanding of chronic 
pain factors in breast cancer patients. This demonstrates the 
Transformer- based model's capability in managing complex health 
informatics data.

F I G U R E  1  Overview of our transformer- based chronic pain prediction model: Three different data inputs are passed into dedicated 
encoders to generate a final vector that can be classified into a single value.
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Model training and evaluation

We allocated our dataset into three segments: 70% for training, 5% 
for validation, and 25% for testing. The training set was crucial for 
the primary training phase, the validation set helped in fine- tuning 
the model parameters and mitigating overfitting, and the test set 
was reserved for evaluating the model's final performance. The 
model was trained with specific hyperparameters to optimize its 
performance. To evaluate the performance, we used accuracy, Area 
Under the Receiver Operating Characteristic Curve (AUROC), preci-
sion, and recall metrics.

To determine which input features or variables have the most 
significant contribution on the model's predictions, we measured 
the feature importance. We used permutation, measured by the de-
crease in a model's performance when the values of a single feature 
are randomly shuffled, thus disrupting the feature- target relation-
ship. This process, repeated for each feature, identifies the most sig-
nificant ones based on the largest performance drop – revealing the 
most influential features.

RESULTS

Sample characteristics

The final dataset comprised 1131 patients, with 199 (17.59%) sam-
ples representing patients with chronic pain (positive case) and 932 
(82.40%) samples representing patients without chronic pain (nega-
tive case). We analyzed the data characteristics and compared the 
differences between positive cases and negative cases. The av-
erage age of the group is 57.8 years, with a standard deviation of 

10.4 years. The ages range from a minimum of 23.9 to a maximum 
of 86.8 years. In terms of racial demographics, the majority of the 
individuals are White, accounting for 997 people (88.2%). Black or 
African American individuals account for 84 people (7.5%), followed 
by Asians with 24 people (2.1%). The categories ‘More than one pop-
ulation’ and ‘Other’ include 13 individuals each, representing 1.1% 
of the total for each group. In terms of ethnicity, Non- Hispanic or 
Latino patients were more than 98%.

From the diagnosis records, we identified the top 10 most com-
mon diagnosis codes for positive and negative cases, as shown in 
Table 2. The dataset contained 5740 unique diagnosis codes. From 
the survey data, we found 81 questionnaires related to patient- 
reported outcomes and socioeconomic factors.

Data preparation and feature selection

Despite the high number of unique diagnosis codes, no remapping 
or grouping was applied; instead, we leveraged a Transformer- based 
model's capability to process complex data without simplification. 
We selected the input sequence length to be slightly higher (128) 
than the mean length of the codes (109), and then truncated the 
codes if the sequence was longer. If the number of codes were less 
than 128, we added padding token (“PAD”, which is defined as 0) 
to specify that it is padded. The same rule was applied to the time 
stamp series as well (truncation and zero padding). In our threshold-
ing process for feature selection, we tuned a parameter denoted as 
‘p’, which represents the allowable probability of a constant value in 
binary features. We set ‘p’ to 0.9 for demographic features and 0.8 
for survey features due to the lower variance in the demographic 
feature dataset compared with the survey features.

TA B L E  2  Top 10 common diagnosis codes.

All Positive Negative

ICD- 9- CM 272.4: Other and 
unspecified hyperlipidemia

280 ICD- 9- CM 272.4: Other and unspecified 
hyperlipidemia

60 ICD- 9- CM 272.4: Other and 
unspecified hyperlipidemia

219

ICD- 9- CM 401.9: Unspecified essential 
hypertension

254 ICD- 9- CM 401.9: Unspecified essential 
hypertension

51 ICD- 9- CM 401.9: Unspecified 
essential hypertension

202

ICD- 9- CM 729.5: Pain in limb 196 ICD- 9- CM 530.81: Esophageal reflux 44 ICD- 9- CM 729.5: Pain in limb 157

ICD- 10- CM I10: Essential (primary) 
hypertension

188 ICD- 9- CM 733.90: Disorder of bone and 
cartilage, unspecified

43 ICD- 10- CM I10: Essential (primary) 
hypertension

153

ICD- 9- CM 530.81: Esophageal reflux 179 ICD- 9- CM 729.5: Pain in limb 38 ICD- 10- CM E78.5: Hyperlipidemia, 
unspecified

135

ICD- 9- CM 733.90: Disorder of bone 
and cartilage, unspecified

171 ICD- 10- CM I10: Essential (primary) 
hypertension

34 ICD- 9- CM 530.81: Esophageal 
reflux

134

ICD- 10- CM E78.5: Hyperlipidemia, 
unspecified

159 ICD- 9- CM 272.0: Pure hypercholesterolemia 30 ICD- 9- CM 244.9: Unspecified 
acquired hypothyroidism

130

ICD- 9- CM 244.9: Unspecified acquired 
hypothyroidism

159 ICD- 9- CM 465.9: Acute upper respiratory 
infections of unspecified site

29 ICD- 9- CM 733.90: Disorder of bone 
and cartilage, unspecified

127

ICD- 9- CM 272.0: Pure 
hypercholesterolemia

137 ICD- 9- CM 311: Depressive disorder, not 
elsewhere classified

28 ICD- 9- CM 780.79: Other malaise 
and fatigue

110

ICD- 9- CM 719.46: Pain in joint, lower 
leg

136 ICD- 9- CM 719.46: Pain in joint, lower leg 28 ICD- 9- CM 719.46: Pain in joint, 
lower leg

107
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Model training and evaluation

The choice of hyperparameters in our model was driven by an em-
pirical testing to balance model complexity with computational ef-
ficiency and performance. Specifically, the number of attention 
heads (4) and encoder layers (2) were chosen to capture sufficient 
contextual relationships within the data without overcomplicating 
the model, which can lead to overfitting. The dimension of the feed-
forward network (32) and the hidden dimensions for demographic 
and social data (4) were selected to ensure a model that can pro-
cess features efficiently while maintaining enough capacity to learn 
significant patterns. We used a constant learning rate of 0.001 
throughout the training process, together with Adam optimizer 
(Kingma & Ba, 2014). The number of epochs was set to 20, provid-
ing a balance between adequate learning and preventing overfit-
ting. The positional weight (3.0) was specifically set to mitigate the 
impact of class imbalance within our dataset. Each parameter was 
iteratively adjusted to optimize the trade- off between accuracy and 
generalization capability using the validation set.

For the model's regularization strategies, we incorporated 
dropout layers within the transformer encoder, setting a dropout 
rate of 0.1. Additionally, we adjusted the neural network sizes to 
further mitigate overfitting. The layer dimensions for the demo-
graphic and social components were established at 4. Moreover, 
to address class imbalance in the dataset, we applied a positive 
weight of 3.0.

Regarding the performance evaluation, the accuracy was 73.1% 
for the training set and 72.8% for the test set. The AUROC was 82.0% 
for both the training and test sets. Precision was 35.8% for the train-
ing set and 38.4% for the test set. In terms of recall, it reached 75.9% 
for the training set and 68.4% for the test set. Figure 2 presents the 
ROC curves for the training and test sets. We also computed the 
confusion matrix to detailed view of the prediction evaluation which 
is shown in Figure 3.

For further analysis and experiment on the impact of the imbal-
anced dataset and our mitigation, we explored different positive 

weight values to refine our model's performance using the training 
set. Our aim was to achieve a balanced outcome among AUROC, 
precision, and recall. Initially, with a positive weight of 1.0, the model 
demonstrated an AUROC of 78.2% and relatively high precision at 
72.0%, but the recall was low at 19.5%. When we increased the posi-
tive weight to 3.0, the model achieved an improved AUROC of 82.0% 
and a higher recall of 75.9%, though precision dropped to 35.8%. 
Finally, with the positive weight further increased to 5.0, the recall 
reached 96.1% at the cost of a reduced AUROC of 77.4% and preci-
sion of 24.2%. Based on these results, we decided to use a positive 
weight of 3.0 to strike a balance between recall performance and 
the overall predictive metrics of AUROC and precision. This strategy 
enabled the model to identify most positive cases effectively while 
reducing false negatives, aligning with our goal to maintain a reason-
able equilibrium between precision and recall.

Self- attention mechanism and feature importance

Figure 4 illustrates the self- attention mechanism within a sequence 
of input codes, highlighting the top five most influential connections. 
This visualization helps to clarify which parts of the sequence the 
model views as most important for its predictions, offering insights 
into the internal reasoning of the neural network and revealing key 
relationships in the data. Table 3 explains the strongest connections 
in Figure 4. Consequently, we determined that ‘age at cancer diagno-
sis’ is the most significant demographic feature, with an importance 
score of 0.139. Table 4 details the top 10 influential survey question- 
answer pairs that affected the prediction performance the most.

DISCUSSION

Although chronic pain is prevalent among breast cancer survivors 
and significantly impacts their quality of life, predicting patients at 
elevated risk for chronic pain is challenging due to the multifaceted 

F I G U R E  2  ROC curves from training and test datasets.
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nature of the influencing factors. There is a clear need for a pre-
dictive tool that leverages innovative techniques and fully capital-
izes on large, diverse datasets. In this study, we utilized advanced 
deep learning and the versatility of Transformer- based algorithms 
to address this need.

Main contributions

One of the key innovations in our study was the seamless integration 
of time- series diagnosis history with static demographic and survey 

data, creating a comprehensive prediction model. By combining 
these diverse data sources into a unified model, we aimed to capture 
a holistic view of each patient's medical and socioeconomic context. 
This approach allowed us to consider the content of diagnosis codes 
and the temporal patterns and static attributes that influence chronic 
pain outcomes.

Additionally, the application of the Transformer architecture in 
our study is an innovative step, leveraging its powerful attention 
mechanisms and handling of sequential data to derive meaningful 
insights from complex medical histories. Our method is distinct 
in integrating time- series data that captures the chronological 

F I G U R E  3  Confusion matrix from both training and test sets.

F I G U R E  4  Top 5 strongest connections from the self- attention mechanism.
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sequence of diagnoses; this approach not only incorporates de-
mographic data, as explored in TransformEHR (Yang et al., 2023), 
but also introduces survey data. This unique combination fosters a 
detailed analysis of the various factors contributing to the onset or 
worsening of chronic pain among breast cancer patients. Through 
an analysis of the self- attention matrices within our Transformer- 
based model, we gained valuable insights into the diagnosis codes 
that had the most significant impact on our predictions. This inter-
pretability aspect of our model provided a window into the complex 
relationships and dependencies within the medical history of breast 
cancer patients. Identifying these influential codes is a crucial step 
toward enhancing our understanding of the factors contributing to 
chronic pain outcomes.

Furthermore, to further dissect the contributions of demo-
graphic and social survey data, we used permutation importance 
which computes the contribution of a feature by random shuffling 
(Altmann et al., 2010). This analysis allowed us to pinpoint the most 
impactful features within these datasets. It highlighted the socio- 
economic factors and demographic attributes that play a pivotal role 
in predicting chronic pain in breast cancer patients.

Modeling results

From the diagnosis records, we identified distinct characteristics in 
the top 10 most common diagnosis codes for positive and negative 
cases. Certain diagnoses, such as ICD- 9- CM 311 for Depressive 
Disorder, not elsewhere classified, were unique to the top 10 in 
positive cases. This observation supports existing research, sug-
gesting that depression can amplify pain perception, and increase 
sensitivity to pain. Conversely, chronic pain can induce depres-
sive symptoms due to ongoing discomfort, diminished quality 
of life, and the constraints it places on daily activities (Linton & 
Bergbom, 2011; Surah et al., 2014).

In terms of evaluation, our predictive model demonstrated 
commendable performance, achieving an AUROC of 82.3%. The 
model exhibited reasonable recall (68.4%), ensuring that it ef-
fectively identified patients at risk of chronic pain. However, we 
observed a lower precision rate (38.4%), which can be attributed 
to the relatively small and imbalanced dataset (1:4.7). This imbal-
ance poses a challenge in distinguishing true positive cases from 
false positives. The difference of evaluation results between 
training and test sets are small, showing that the regularizations 
were effective.

Interpreting the strongest connections from the self- attention 
mechanism of a neural network, as visualized in Figure 4, involves 
understanding how different parts of the input sequence relate to 
each other and contribute to the model's output. The top connec-
tions can provide a narrative or justification for the model's deci-
sions. It appears that when a malignant neoplasm, other than breast 
cancer, is paired with malignant neoplasm of the breast, there is 
a high correlation with the outcome. This suggests that comorbid 
cancer or a history of other cancer significantly impacts the risk of 
chronic pain (Jensen et al., 2010; Paice et al., 2016). Furthermore, 
when infection is combined with malignant neoplasm of the breast, 
it exerts a significant impact on the outcome. This suggests a poten-
tial link between infections and the development or exacerbation of 
chronic pain conditions.

Limitations and future directions

This study has several limitations. First, the demographics of the 
dataset lacked diversity. The majority of the patients were White 
(88.2%) and non- Hispanic (98%), which may limit the generalizabil-
ity of the findings. This indicates the need for careful consideration 

TA B L E  3  Strong connections among diagnosis.

Diagnosis codes Highly related to

• Malignant neoplasm of duodenum
• Chronic viral hepatitis B without 

delta- agent
• Malignant melanoma of scalp and neck
• Molluscum contagiosum
• Unspecified viral infection characterized 

by skin and mucous membrane lesions

• Malignant 
neoplasm of 
central portion of 
right female breast

• Malignant neoplasm of peritoneum, 
unspecified

• Mesothelioma, unspecified
• Malignant melanoma of left lower limb, 

including hip
• Malignant neoplasm of overlapping sites 

of retroperitoneum and peritoneum
• Malignant melanoma of other part of 

trunk

• Malignant 
neoplasm of nipple 
and areola, left 
female breast

• Molluscum contagiosum
• Viral conjunctivitis, unspecified
• Anogenital (venereal) warts
• Herpesviral vulvovaginitis

• Malignant 
neoplasm of 
nipple and areola, 
unspecified female 
breast

• Basal cell carcinoma of skin, unspecified
• Squamous cell carcinoma of skin of right 

lower limb, including hip
• Basal cell carcinoma of skin of right lower 

limb, including hip
• Basal cell carcinoma of skin of 

unspecified lower limb, including hip
• Basal cell carcinoma of skin of other part 

of trunk

• Bacterial 
foodborne 
intoxication, 
unspecified

• Malignant 
neoplasm of nipple 
and areola, left 
female breast

• Basal cell carcinoma of skin, unspecified
• Mesothelioma, unspecified
• Malignant neoplasm of peritoneum, 

unspecified
• Basal cell carcinoma of skin of 

unspecified parts of face

• Malignant 
neoplasm of 
nipple and areola, 
unspecified female 
breast

• Unspecified streptococcus as the cause 
of diseases classified elsewhere

• Other specified bacterial agents as the 
cause of diseases classified elsewhere

• Viral intestinal infection, unspecified
• Pityriasis versicolor

• Malignant 
neoplasm of 
central portion of 
right female breast
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in addressing these disparities. Potential approaches could include 
curating the dataset with an adequate number of underrepresented 
populations, testing with different populations, or developing 
race/ethnicity- specific models when sufficient data are available. 
Such efforts are crucial to ensure the applicability and relevance 
of the study's conclusions across diverse groups. Second, although 
we only included demographics, diagnosis codes, and survey data 
related socioeconomic status due to limited resources, there are 
more factors that influence pain than the factors included in this 
study. Future study is required that includes additional factors 
such as medications and genetics data. Finally, we only included 
patients whose survey data was available, which may have intro-
duced a selection bias into our model's predictions. This limitation 
could potentially impact the representativeness and diversity of 
our dataset, thus affecting the model's ability to generalize its pre-
dictions across a broader patient population. Although we did not 
explicitly encounter issues with low questionnaire response rates, 
we recognize the importance of addressing this potential source of 
bias. Future investigations should consider strategies such as data 
imputation techniques (Efron, 1994) to account for incomplete 
data, thereby ensuring the robustness and accuracy of the model's 
predictions.

CONCLUSION

Our research represents a significant step forward in predicting 
chronic pain among breast cancer patients for pain management and 
effective nursing care, highlighting the power of deep learning and 
Transformer- based models. The unique aspect of our model is its ho-
listic integration of both time- series and static data, enhancing the 
comprehensive understanding of patient outcomes. However, fu-
ture work is needed to incorporate additional factors that influence 
chronic pain, alongside more diverse demographic data. By expand-
ing the application of this deep learning approach across different 

medical contexts, we aim to uncover new insights and address unre-
solved questions in healthcare.
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