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7
CHAPTER

Surface Electromagnetic Waves
on Structured Perfectly
Conducting Surfaces

Alexei A. Maradudin
Research Professor, Physics and Astronomy School of Physical Sciences,

University of California, Irvine, CA, USA

A planar interface between a dielectric medium, e.g. vacuum, and a perfect conductor does not support
a surface electromagnetic wave. This is easily seen.

Let us consider a system consisting of vacuum in the region x3 > 0. We assume that a p-polarized
electromagnetic wave of frequency ω is propagating in the x1 direction along the planar surface of
a semi-infinite perfect conductor that occupies the region x3 < 0. The magnetic field in the vacuum
region x3 > 0, H(x; t) = (0, H2(x1, x3|ω), 0) exp (−iωt), had only a single nonzero component. The
amplitude H2(x1, x3|ω) satisfies the equation(

∂2

∂x2
1

+ ∂2

∂x2
3

+ ω2

c2

)
H2(x1, x3|ω) = 0, (7.1)

together with the boundary condition

∂

∂x3
H2(x1, x3|ω)

∣∣∣∣
x3=0

= 0 (7.2)

on the surface of the perfect conductor. A solution of Eq. (7.1) that vanishes as x3 → ∞ is

H2(x1, x3|ω) = A exp[ikx1 − β0(k)x3], (7.3)

where

β0(k) =
{

[k2 − (ω/c)2] 1
2 k2 > (ω/c)2,

−i[(ω/c)2 − k2] 1
2 k2 < (ω/c)2.

(7.4)

For the expression (7.3) to represent a surface wave β0(k) should be real and positive, so that, from
Eq. (7.4), we see that the wavenumber k should satisfy the inequality |k| > (ω/c).

Substitution of this solution into the boundary condition (7.2) yields the equation

−β0(k)A exp (ikx1) = 0. (7.5)

A nontrivial solution with A �= 0 requires that β0(k) = 0, which yields the dispersion relation

ω = ck. (7.6)
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However, this dispersion relation does not correspond to a surface wave. When it is satisfied the magnetic
field in the vacuum is given by

H2(x1, x3|ω) = A exp[i(ω/c)x1], (7.7)

independent of x3. The wave described by Eq. (7.7) is in fact a surface skimming p-polarized bulk
electromagnetic wave, not a surface electromagnetic wave.

However, if the perfectly conducting surface is roughened, either periodically or randomly, it supports
a surface electromagnetic wave. This has been known for a long time in the context of the use of surface
electromagnetic waves on metallic surfaces in technological applications in the gigahertz and terahertz
regions of the electromagnetic spectrum.

In the gigahertz and terahertz spectral regions the electromagnetic field of a surface plasmon polari-
ton at a planar vacuum-metal interface penetrates a distance of the order of 1 µm into the metal, but
extends many hundreds or even thousands of wavelengths into the vacuum. Thus, this mode is very
weakly bound to the interface, and is often referred to as a surface current. If it is desired to use surface
electromagnetic waves in technological applications in these spectral regions, a way must be found to
bind them to the surface.

A planar metal surface in these frequency regions, if structured with a periodic array of subwavelength
grooves or dimples, can support a surface electromagnetic wave that is tightly bound to the dielectric-
metal interface. The grooves and dimples allow some of the field in these modes to penetrate more
deeply into the metal. This alters the electromagnetic boundary conditions away from those at a planar
interface in a manner that allows a surface wave to exist. Surface electromagnetic waves in the visible
region of the optical spectrum have been well studied and utilized. Structured metal surfaces now offer
the possibility of studying and utilizing surface electromagnetic waves in the gigahertz and terahertz
spectral regions as well. Since in the gigahertz and terahertz regions a metal is well described by a
perfect conductor, the early calculations of surface waves on structured vacuum-metal interfaces in
these frequency regions were carried out on the basis of a perfectly conducting surface.

Thus, Goubau [7.1] showed that although a perfectly conducting wire of circular cross section does
not support a surface electronic wave, it does if it is periodically corrugated. Soon after, Rotman [7.2]
showed theoretically and experimentally that a lamellar grating ruled on a metal surface will support a
microwave surface electromagnetic wave.

In this early work it was also found that random surface roughness as well as periodic corrugations
binds a surface electromagnetic wave to a perfectly conducting surface [7.3].

Many years later [7.4,7.5] it was noted that by using the results obtained by patterning a planar
interface between a dielectric and a perfect conductor with one- or two-dimensional periodic arrays
of grooves and holes of finite depth, respectively, one could create surface electromagnetic waves
on metallic surfaces, in the microwave and terahertz frequency regions, that mimic the properties of
surface plasmon polaritons at a planar dielectric-metal interface in the visible frequency range of the
electromagnetic spectrum in a specified way by varying the parameters defining the patterning. This
observation has opened the door to the creation of surface wave-based devices that operate at microwave
and terahertz frequencies. Consequently these surface waves have become the objects of many theoretical
and experimental investigations.

In this chapter we survey the theoretical and experimental studies that have been carried out of surface
electromagnetic waves on periodically corrugated perfectly conducting surfaces. Applications of these
surface waves are described in other chapters of this book.
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We will restrict our discussion to surface electromagnetic waves on periodically structured surfaces
that are planar in the absence of the structuring. This excludes consideration of surface waves on perfectly
conducting milled [7.6,7.7] and helically grooved [7.8] wires, and on corrugated grooves [7.9] and ridges
[7.10]. A comprehensive review of surface waves on these types of surfaces is presented in Ref. [7.11].

We also omit discussion of surface electromagnetic waves on randomly rough perfectly conducting
surfaces. Theoretical results demonstrating the binding of such waves to one-dimensional and two-
dimensional randomly rough perfectly conducting surfaces are presented in Refs. [7.12–7.14] and
[7.15], respectively.

7.1 One-Dimensional Perfectly Conducting Surfaces: Theory
The dispersion curves and associated electromagnetic fields of surface electromagnetic waves on one-
dimensional periodically corrugated perfectly conducting surfaces, defined by a variety of surface
profile functions, have been calculated by several different approaches. Thus, dispersion curves have
been calculated for surfaces defined by rectangular grooves [7.5,7.16–7.21], by a sinusoidal surface
profile [7.22,7.23], by a symmetric sawtooth surface profile function [7.22], by a periodic array of
V-grooves [7.24], by a periodic array of slits in a perfectly conducting film that is surrounded symmetri-
cally [7.25,7.26] or asymmetrically [7.26]. Most of these calculations predicted dispersion curves with
only one branch in the non-radiative region of the (ω, k) plane. However, in Refs. [7.18–7.21,7.23] it
was found that for sufficiently deep grooves a perfectly conducting grating supports additional, higher
frequency, branches of the dispersion curve. A dispersion curve with two branches has been predicted
for surface electromagnetic waves on a doubly periodic groove array on a perfectly conducting sur-
face [7.27].

Several of these calculations were carried out three to four decades ago for the mathematically
identical problem of the propagation of surface acoustic waves of shear horizontal polarization on
periodically corrugated surfaces of elastically isotropic media [7.16–7.18,7.22,7.23]. One needs only
to replace the speed of shear elastic waves with the speed of light in vacuum to obtain the former curves
from the latter.

In the remainder of this section we present an approach to the determination of the dispersion relation
for surfaces on the one-dimensional periodically structured perfectly conducting surface depicted in
Fig. 7.1. It is analogous to the method used by Lopez-Rios et al. [7.28] to study the reflectivity of a
metallic lamellar grating but here applied to the corresponding homogeneous problem for a perfectly
conducting lamellar grating.

We work with the single nonzero component of the magnetic field in this system, H2(x1, x3; t) =
H2(x1, x3|ω) exp (−iωt). Because this field must satisfy the Floquet-Bloch condition H2(x1 + d,

x3|ω) = exp (ikd)H2(x1, x3|ω), where k is the wave number of the surface wave, the field at any
point of space above the grating surface can be determined from the field in the central cell located
between x1 = −d/2 and x1 = d/2.

In the vacuum region x3 > 0, the magnetic field can be written in the form

H2(x1, x3|ω) =
∞∑

n=−∞
An exp[ikn x1 + iα0(kn)x3], (7.8)
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FIGURE 7.1

A perfectly conducting lamellar grating.

where kn = k + (2πn/d), and

α0(kn) = [(ω/c)2 − k2
n] 1

2 , Reα0(kn) > 0, I m α0(kn) > 0. (7.9)

We see from Eq. (7.8) that in order that the magnetic field it represents decay to zero as x3 → ∞, we
must have I mα0(kn) > 0.

The magnetic field within the central groove of the grating, which is defined by −a/2 < x1 <

a/2,−h < x3 < 0, that satisfies the boundary conditions

∂

∂x1
H2( ± a/2, x3|ω) = 0 − h < x3 < 0, (7.10a)

∂

∂x3
H2(x1,−h|ω) = 0 − a/2 < x1 < a/2, (7.10b)

can be written as

H2(x1, x3|ω) =
∞∑

m=0

Bm cos
mπ

a

(
x1 − a

2

)
cos αm(x3 + h), (7.11)

where
αm(ω) = [(ω/c)2 − (mπ/a)2] 1

2 , Reαm(ω) > 0, I mαm(ω) > 0. (7.12)

The coefficients {An} and {Bm} are obtained from the remaining boundary conditions satisfied by
the magnetic field. These are

∂

∂x3
H2(x1, 0 + |ω) = 0 a/2 < |x1| < d/2, (7.13a)

H2(x1, 0 + |ω) = H2(x1, 0 − |ω) − a/2 < x1 < a/2, (7.13b)
∂

∂x3
H2(x1, 0 + |ω) = ∂

∂x3
H2(x1, 0 − |ω) − a/2 < x1 < a/2. (7.13c)
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We now project Eq. (7.13c) onto the set of basis vectors {exp (−ik j x1); j = 0,±1,±2, . . .} with
the use of Eq. (7.13a), and obtain∫ d

2

− d
2

dx1
∂

∂x3
H2(x1, 0 + |ω) exp (−ik j x1)

=
∫ a

2

− a
2

dx1
∂

∂x3
H2(x1, 0 − |ω) exp (−ik j x1), (7.14)

where it should be kept in mind that the function represented by the integrand on the left-hand side of
this equation vanishes for |x1| > a/2. The substitution into this equation of the expressions given by
Eqs. (7.8) and (7.11) then leads to

A j = i
a

d

1

α0(k j )

∞∑
m=0

S jmαm sin αmh Bm, (7.15)

where

S jm = 1

a

∫ a
2

− a
2

dx1 exp (−ik j x1) cos
mπ

a

(
x1 − a

2

)
,

= 1

a

2k j

k2
j − (mπ/a)2

sin k j
a

2
m even, (7.16a)

= i

a

2k j

k2
j − (mπ/a)2

cos k j
a

2
m odd. (7.16b)

We next project Eq. (7.13b) onto the set of basis vectors {cos mπ
a

(
x1 − a

2

) ; m = 0, 1, 2, . . .} and
obtain

Bm = 2εm

cos αmh

∞∑
n=−∞

S∗
nm An, (7.17)

where {εm} are numbers defined by

εm =
{ 1

2 m = 0,

1 m ≥ 1.
(7.18)

At this point we can either substitute Eq. (7.17) into Eq. (7.15) to obtain an infinite system of linear
homogeneous equations for the amplitudes {An},

An = i
2a

α0(kn)d

∞∑
j=−∞

{ ∞∑
m=0

εm Snm S∗
jmαm tan αmh

}
A j , (7.19)

or we can substitute Eq. (7.15) into Eq. (7.17) to obtain an infinite system of linear homogeneous
equations for the amplitudes {Bm},

Bm = i
a

d

2εm

cos αmh

∞∑
j=0

{ ∞∑
n=−∞

S∗
nm Snj

α0(kn)
α j sin α j h

}
B j . (7.20)
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The solvability condition for either of these systems of homogeneous equations is the dispersion relation
for the surface electromagnetic waves propagating on the perfectly conducting surface depicted in
Fig. 7.1.

In general these dispersion relations have to be solved numerically. However, an approximate analytic
solution of the dispersion relation can be obtained in the following way. We first assume that only the
fundamental eigenmode is retained in the expansion (7.11), i.e. the only nonzero term in this expansion
is the m = 0 term. In this case Eq. (7.20) becomes

1 = i
a

d

ω

c
tan (ωh/c)

∞∑
n=−∞

sinc2(kna/2)

α0(kn)
. (7.21)

This approximation is valid when the wavelength 2π/k of the surface wave is much larger than the
lateral size a of the grooves, namely when k � 2π/a. We next assume that only the term with n = 0
in the expansion (7.8) is nonzero. This is equivalent to assuming that the structure depicted in Fig. 7.1
is a homogeneous metamaterial. With this assumption Eq. (7.21) simplifies to

k = ω

c

[
1 +

(a

d

)2
sinc4 ka

2
tan2

(
ωh

c

)] 1
2

. (7.22)

For a narrow groove, where (a/d) � 1, we can replace sinc(ka/2) by unity, and obtain finally

k = ω

c

[
1 +

(a

d

)2
tan2

(
ωh

c

)] 1
2

. (7.23)

From the result given by Eq. (7.23) we can deduce several features of the dispersion curve in its
dependence on the parameters defining the surface, namely a, h, and d. We see first that for a = 0 or
h = 0, which correspond to a planar surface, k = (ω/c), so that the corresponding wave is not bound to
the surface. We also see that for nonzero a and h, k is larger than ω/c, i.e. it is in the non-radiative region
of the (ω, k) plane, and hence the wave is bound to the surface. The dispersion curve bends away from
the vacuum light line ω = ck into the non-radiative region more strongly as the width of the groove a
increases for fixed values of its depth h and of the period of the grating d. The dispersion curve bends
away from the vacuum light line ω = ck into the non-radiative region more strongly as the depth of
the groove h increases for fixed values of the width of the groove a and of the period of the grating d
(Fig. 7.2a). The dispersion curve also bends away from the vacuum light line more strongly as the width
of the groove increases for fixed values of h and d (Fig. 7.2b). Thus, the wave displays the phenomenon
of wave slowing, i.e. its phase and group velocities fall progressively below that of the speed of light
in vacuum as the wave number k increases. The wave number k becomes infinite when (ωh/c) = π/2.
Therefore, the maximum frequency of the mode is given by ωmax = (π/2)(c/h), which decreases
with increasing groove depth. Thus, the structured one-dimensional perfectly conducting surface that
corresponds to the dispersion relation [7.23] is approximately equivalent to the planar surface of a free

electron metal, characterized by a dielectric function ε(ω) = 1 −
(
ω2

p/ω
2
)

whose plasma frequency is

ωp = (π/
√

2)(c/h).
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FIGURE 7.2
Dispersion curves for surface electromagnetic waves supported by the perfectly conducting lamellar grating
depicted in Fig. 7.1. (a) Dependence on h for a fixed groove width a = 0.2d . (b) Dependence on a for a
fixed groove depth h/d = 0.6.

7.2 Two-Dimensional Perfectly Conducting Surfaces: Theory
A good deal of attention has been directed at surface electromagnetic waves on two-dimensional peri-
odically structured perfectly conducting surfaces. The majority of the theoretical studies of these waves
have dealt with planar surfaces into which doubly periodic arrays of holes of finite [7.5,7.11,7.29–7.32]
and infinite [7.4,7.5,7.33] depth have been drilled. In the majority of cases the holes have a square cross
section, which simplifies the numerical calculations, e.g. by modal methods, and constitute a square
array. However, holes with circular cross sections have been used in some calculations [7.29,7.33], and a
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triangular lattice of circular holes was used in other calculations [7.29]. Other forms of two-dimensional
periodically structured surfaces have also been used in such calculations [7.15,7.29,7.33–7.35].

In Refs. [7.4,7.5,7.33] the dispersion relation of the surface waves supported by two-dimensional
periodically corrugated perfectly conducting surfaces was obtained from the pole of the reflectivity of
the surface when the latter was illuminated from vacuum by a p-polarized electromagnetic field. In
the remainder of this section we describe two approaches in which the dispersion relation is sought
in a study of the free oscillations of the electromagnetic field in the vacuum region, rather than from
the pole of the reflectivity. The first is a modal method analogous to the one used for this purpose in
Refs. [7.11,7.32]. The second is the Rayleigh method [7.15] in which the electromagnetic field in the
vacuum region is expanded in outgoing plane waves, and used in satisfying the boundary conditions on
the structured surface. We consider them in turn.

7.2.1 A Modal Approach
The dispersion curve for surface electromagnetic waves with a square array of holes with a square cross
section and a finite depth can be obtained by a modal method. The mathematical apparatus employed in
this approach was developed in studies of the diffraction of electromagnetic waves by a thin perfectly
conducting screen perforated by a two-dimensional periodic array of circular or rectangular holes, or
the transmission of electromagnetic waves through such a periodically perforated perfectly conducting
screen, by Chen [7.36–7.38] and by Bliek et al. [7.39].

The system we consider consists of a square lattice of lattice constant d of holes with a square cross
section of edge a and a depth h drilled into the planar surface of a perfect conductor in contact with
vacuum (Fig. 7.3). The vacuum occupies the region x3 > 0, while the unstructured perfect conductor
fills the region x3 < 0. The surface profile function ζ(x‖) that defines the surface through the equation

a

x1

x2

x3

d

h

FIGURE 7.3
A schematic depiction of a two-dimensional square lattice of square holes of a finite depth drilled into a
semi-infinite perfect conductor.
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x3 = ζ(x‖), where x‖ = (x1, x2, 0), is therefore a doubly periodic function of x‖,

ζ(x‖ + x‖(	)) = ζ(x‖), (7.24)

where
x‖(	) = 	1a1 + 	2a2. (7.25)

Here a1 and a2 are two noncollinear primitive translation vectors of a two-dimensional Bravais lattice,
while 	1 and 	2 are any positive or negative integers or zero, which we denote collectively by 	. The
area of the primitive unit cell of the two-dimensional lattice defined by Eq. (7.25) is ac = |a1 × a2|.

The sites of the lattice reciprocal to the one defined by Eq. (7.25) is defined by

G‖(h) = h1b1 + h2b2, (7.26)

where the primitive translation vectors b1 and b2 are defined by

ai · b j = 2πδi j , (7.27)

where δi j is the Kronecker symbol, while h1 and h2 are any positive or negative integers and zero that
we denote collectively by h. In the present case we have

a1 = d(1, 0, 0), a2 = d(0, 1, 0), (7.28a)

and
b1 = (2π/d)(1, 0, 0), b2 = (2π/d)(0, 1, 0). (7.28b)

The electric and magnetic fields in the region x3 > 0 can be written as

E>(x|ω) =
∑
G‖

{[
K̂‖ − x̂3

K‖
α0(K‖, ω)

]
Ap(K‖)

+ (x̂3 × K̂‖)As(K‖)
}
φ(K‖|x‖)eiα0(K‖,ω)x3, (7.29a)

H>(x|ω) =
∑
G‖

{
ω

c

(x̂3 × K‖)
α0(K‖, ω)

Ap(K‖)

− c

ω
α0(K‖, ω)

[
K̂‖ − x̂3

K‖
α0(K‖, ω)

]
As(K‖)

}
× φ(K‖|x‖)eiα0(K‖,ω)x3 . (7.29b)

The superscript “>” in these expressions indicates that these are the fields in the vacuum region x3 > 0.
A time dependence of the form exp (−iωt) has been assumed in obtaining these fields, but is not
indicated explicitly. To simplify the notation we have defined the wave vector K‖ by K‖ = k‖ + G‖,
where k‖ = (k1, k2, 0) is the wave vector of the surface wave. The function α0(K‖, ω) is defined by

α0(K‖, ω) = [(ω/c)2 − K 2‖ ] 1
2 , Reα0(K‖, ω) > 0, I mα0(K‖, ω) > 0. (7.30)
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The coefficients {Ap(K‖)} and {As(K‖)} are the amplitudes of the p (TM)—polarized and s (TE)-
polarized components of the electromagnetic field in the region x3 > 0, respectively. Finally, the
functions {φ(K‖|x‖)} are the plane waves

φ(K‖|x‖) = 1

d
exp (iK‖ · x‖). (7.31)

They are orthonormal when integrated over the area of the unit cell of the lattice of holes,∫ d

0
dx1

∫ d

0
dx2φ

∗(K‖|x‖)φ(K′‖|x‖) = δK‖,K′‖ . (7.32)

The tangential components of these electric and magnetic fields evaluated on the surface x3 = 0,
which are the components entering the boundary conditions at this surface, are then given by

E>
1 (x‖, 0|ω) =

∑
G‖

[K̂1 Ap(K‖) − K̂2 As(K‖)]φ(K‖|x‖), (7.33a)

E>
2 (x‖, 0|ω) =

∑
G‖

[K̂2 Ap(K‖) + K̂1 As(K‖)]φ(K‖|x‖), (7.33b)

H>
1 (x‖, 0|ω) =

∑
G‖

[
−ω

c

K̂2

α0(K‖, ω)
Ap(K‖)

− c

ω
α0(K‖, ω)K̂1 As(K‖)

]
φ(K‖|x‖), (7.33c)

H>
2 (x‖, 0|ω) =

∑
G‖

[
ω

c

K̂1

α0(K‖, ω)
Ap(K‖)

− c

ω
α0(K‖, ω)K̂2 As(K‖)

]
φ(K‖|x‖). (7.33d)

The electric and magnetic fields vanish inside the perfect conductor, but are nonzero inside the holes.
The modes in the holes are waveguide modes when the holes are infinitely deep, and can be obtained
by the approach described in the book by Jackson [7.40]. When the holes have a finite depth h, suitable
linear combinations of these waveguide modes are used to satisfy the boundary conditions at x3 = −h.
In what follows we will assume that the holes have a finite depth h (Fig. 7.3).

The resulting modes can be divided into TE and TM modes, whose components can be written in
the following forms (m, n = 0, 1, 2, . . . ):

TM modes

ETM
1mn(x|ω) = − kmn

γ 2
mn

mπ

a
cos

mπ

a
x1 sin

nπ

a
x2 sin kmn(x3 + h), (7.34a)

ETM
2mn(x|ω) = − kmn

γ 2
mn

nπ

a
sin

mπ

a
x1 cos

nπ

a
x2 sin kmn(x3 + h), (7.34b)

ETM
3mn(x|ω) = sin

mπ

a
x1 sin

nπ

a
x2 cos kmn(x3 + h). (7.34c)
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HTM
1mn(x|ω) = −i

(ω/c)

γ 2
mn

nπ

a
sin

mπ

a
x1 cos

nπ

a
x2 cos kmn(x3 + h), (7.35a)

HTM
2mn(x|ω) = i

(ω/c)

γ 2
mn

mπ

a
cos

mπ

a
x1 sin

nπ

a
x2 cos kmn(x3 + h), (7.35b)

HTM
3mn(x|ω) = 0. (7.35c)

TE modes

ETE
1mn(x|ω) = −i

(ω/c)

γ 2
mn

nπ

a
cos

mπ

a
x1 sin

nπ

a
x2 sin kmn(x3 + h), (7.36a)

ETE
2mn(x|ω) = i

(ω/c)

γ 2
mn

mπ

a
sin

mπ

a
x1 cos

nπ

a
x2 sin kmn(x3 + h), (7.36b)

ETE
3mn(x|ω) = 0. (7.36c)

HTE
1mn(x|ω) = − kmn

γ 2
mn

mπ

a
sin

mπ

a
x1 cos

nπ

a
x2 cos kmn(x3 + h), (7.37a)

HTE
2mn(x|ω) = − kmn

γ 2
mn

nπ

a
cos

mπ

a
x1 sin

nπ

a
x2 cos kmn(x3 + h), (7.37b)

HTE
3mn(x|ω) = cos

mπ

a
x1 cos

nπ

a
x2sinkmn(x3 + h). (7.37c)

In these expressions we have introduced the functions

γmn =
[(mπ

a

)2 +
(nπ

a

)2
] 1

2

, (7.38)

kmn =
[
(ω/c)2 − γ 2

mn

] 1
2
. (7.39)

The tangential components of the electric and magnetic fields in the region x3 < 0 evaluated on the
plane x3 = 0 can then be written as

E<
1 (x‖, 0|ω) =

∞∑
m=0

∞∑
n=0

[
Amn

(
− kmn

γ 2
mn

mπ

a

)

+Bmn

(
−i

(ω/c)

γ 2
mn

nπ

a

)]
cos

mπ

a
x1 sin

nπ

a
x2 sin kmnh, (7.40a)

E<
2 (x‖, 0|ω) =

∞∑
m=0

∞∑
n=0

[
Amn

(
− kmn

γ 2
mn

nπ

a

)

+Bmn

(
i
(ω/c)

γ 2
mn

mπ

a

)]
sin

mπ

a
x1 cos

nπ

a
x2 sin kmnh, (7.40b)
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H<
1 (x‖, 0|ω) =

∞∑
m=0

∞∑
n=0

[
Amn

(
−i

(ω/c)

γ 2
mn

nπ

a

)

+Bmn

(
− kmn

γ 2
mn

mπ

a

)]
sin

mπ

a
x1 cos

nπ

a
x2 cos kmnh, (7.40c)

H<
2 (x‖, 0|ω) =

∞∑
m=0

∞∑
n=0

[
Amn

(
i
(ω/c)

γ 2
mn

mπ

a

)

+Bmn

(
− kmn

γ 2
mn

nπ

a

)]
cos

mπ

a
x1 sin

nπ

a
x2 cos kmnh, (7.40d)

where the {Amn} and {Bmn} are coefficients to be determined. It should be kept in mind that these field
components are nonzero only in the region 0 < x1 < a, 0 < x2 < a.

The boundary conditions on the fields at the plane x3 = 0 require that E>
1 (x‖, 0|ω) and E>

2 (x‖, 0|ω)

vanish on this plane outside the region of the unit cell occupied by the hole, and be continuous across
the hole:

E>
α (x‖, 0|ω) = E<

α (x‖, 0|ω) α = 1, 2. (7.41)

They also require that H1 and H2 be continuous across the hole:

H>
α (x‖, 0|ω) = H<

α (x‖, 0|ω) α = 1, 2. (7.42)

We use these equations to obtain relations among the amplitudes Ap(K‖), As(K‖), Amn , and Bmn . We
first project Eq. (7.41) on the function φ∗(K′‖|x‖) and obtain

[K̂1 Ap(K‖) − K̂2 As(K‖)]

=
∞∑

m=0

∞∑
n=0

[
Amn

(
− kmn

γ 2
mn

mπ

a

)
+ Bmn

(
−i

(ω/c)

γ 2
mn

nπ

a

)]

× sin kmnhS∗
mn(K‖), (7.43a)

[K̂2 Ap(K‖) + K̂2 As(K‖)]

=
∞∑

m=0

∞∑
n=0

[
Amn

(
− kmn

γ 2
mn

nπ

a

)
+ Bmn

(
−i

(ω/c)

γ 2
mn

mπ

a

)]

× sin kmnhT ∗
mn(K‖), (7.43b)

where

Smn(K‖) =
∫ a

0
dx1

∫ a

0
dx2φ(K‖|x‖) cos

mπ

a
x1 sin

nπ

a
x2, (7.44a)

Tmn(K‖) =
∫ a

0
dx1

∫ a

0
dx2φ(K‖|x‖) sin

mπ

a
x1 cos

nπ

a
x2. (7.44b)

These integrals can be evaluated analytically in closed form.
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We then project Eq. (7.42) with α = 1 on the function sin m′π
a x1 cos n′π

a x2, and obtain

∑
G‖

[
−ω

c

K̂2

α0(K‖, ω)
Ap(K‖) − c

ω
α0(K‖, ω)K̂1 As(K‖)

]
Tmn(K‖)

= a2

4
θmεn

[
Amn

(
−i

(ω/c)

γ 2
mn

nπ

a

)
+ Bmn

(
− kmn

γ 2
mn

mπ

a

)]
. (7.45a)

We next project Eq. (7.42) with α = 2 on the function cos m′π
a x1 sin n′π

a x2 and obtain

∑
G‖

[
ω

c

K̂1

α0(K‖, ω)
Ap(K‖) − c

ω
α0(K‖, ω)K̂2 As(K‖)

]
Smn(K‖)

= a2

4
εmθn

[
Amn

(
i
(ω/c)

γ 2
mn

mπ

a

)
+ Bmn

(
− kmn

γ 2
mn

nπ

a

)]
. (7.45b)

In writing these equations we have introduced the symbols

θm = (1 − δm0) m ≥ 0 (7.46)

and

ε0 = 2 (7.47a)

εm = 1 m � 1. (7.47b)

The pair of Eqs. (7.45) can be solved to yield Amn and Bmn as functions of Ap(K‖) and As(K‖). When
these relations are substituted into Eqs. (7.43) a pair of coupled homogeneous equations for Ap(K‖)
and As(K‖) is obtained. The solvability condition for this system of equations is the dispersion relation
for the surface waves supported by the doubly periodically corrugated perfectly conducting surface.

In order that the dispersion relation obtained in this way be the dispersion relation for a surface
electromagnetic wave, its solution should be sought in the non-radiative region of the (ω, k‖) plane,
which is defined by the condition k‖ > ω/c. In this region α0(K‖) is pure imaginary for each value of
K‖, and the electromagnetic fields defined by Eqs. (7.29) decay exponentially with increasing distance
into the vacuum from the surface x3 = 0.

As an illustration of the kinds of results that can be obtained by this approach we present in Fig. 7.4a
dispersion curves of the surface electromagnetic waves supported by a square lattice of lattice constant
d of square holes of edge a of different depths h [7.11]. These curves are plotted for a value of a given
by a = 0.6d, and for values of h increasing from h = 0.1d to h = d. The two-dimensional wave vector
of the surface wave is assumed to be given by k‖ = x̂1k‖. The dispersion curve is a periodic function
of k‖ with a period 2π/d. It is an even function of k‖, is tangent to the vacuum light line ω = ck‖ as
k‖ → 0, and has a zero slope at k‖ = π/d. It thus mimics the dispersion curve of a surface plasmon
polariton propagating on a planar metallic surface.

It is seen that the dispersion curve is lowered in frequency as the depth of the hole is increased. It
is also lowered in frequency when the ratio a/d is increased from a/d = 0.4 to a/d = 0.8, when the
depth h is kept fixed at h = 0.6d (Fig. 7.4b).
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FIGURE 7.4
The dispersion curve of the surface electromagnetic waves supported by a square lattice of square holes of
finite depth drilled into the planar surface of a perfect conductor. The length of the edge of a hole is related
to the lattice constant of the square lattice by a = 0.6d . The depth of the holes increases from h = 0.1d
to h = d . The inset shows a schematic of the system. (b) Dispersion curves for this system when the hole
depth is fixed at h = 0.6d and the length of the edge increases from a = 0.4d to a = 0.8d . The inset shows
the electric field amplitude at the band edge for h = 0.6d and a = 0.6d (Ref. [7.11]).

Thus, by varying the geometrical properties of a doubly periodic array of holes of finite depth
drilled into the planar surface of a semi-infinite perfect conductor, surface electromagnetic waves can
be produced on it with tailored dispersion curves that resemble those of surface plasmon polaritons on
a planar metal surface.

7.2.2 The Rayleigh Method
The modal method is particularly well-suited to the determination of the dispersion relation of surface
electromagnetic waves on a perfectly conducting surface pierced by a doubly periodic array of holes of
finite depth.

However, these are not the only kinds of periodically structured perfectly conducting surfaces that
support surface electromagnetic waves. Such surfaces with more general profile functions can also
support surface waves, whose dispersion relations can be obtained by an approach that differs from the
modal method, namely the Rayleigh method [7.41]. In this method the expression for the electromagnetic
field in the vacuum region that satisfies the boundary condition at infinity, is continued into the surface,
and used to satisfy the boundary conditions on it. In the selvedge region, the region of the vacuum
between the minimum and maximum points on the surface, the electromagnetic field can consist of
both incoming and outgoing waves, while in the Rayleigh method it consists of only outgoing waves.
Nevertheless, it has been shown by many authors [7.42–7.49] that it is a rigorous approach to the study
of the interaction of an electromagnetic field with a periodically structured surface provided that the
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surface profile function is an analytic function of its coordinates, and that the ratio of the amplitude of the
surface structure to the period of the structure is smaller than a critical value. Methods for determining
this critical ratio have been developed [7.44,7.46,7.49].

In this section we will apply the Rayleigh method to obtain the dispersion relation for the free
oscillations of the electromagnetic field in the vacuum above the rough surface. As we have noted
earlier, this is equivalent to investigating the poles of the specular reflectivity, and leads to somewhat
simpler calculations. We first use this approach to determine the dispersion relation for a rough perfectly
conducting surface defined by an arbitrary two-dimensional profile function. We then specialize the
result to the case that the rough surface is a bigrating.

7.2.2.1 The Rayleigh Dispersion Relation
When the perfectly conducting surface is a two-dimensional rough surface, we write the equation
defining the surface as x3 = ζ(x‖). The region x3 > ζ(x‖) is vacuum. The region x3 < ζ(x‖) is the
perfect conductor. The surface profile function ζ(x‖) is assumed to be a single-valued function of x‖
that is differentiable with respect to x1 and x2.

The electric field in the vacuum region can be written as E(x; t) = E(x|ω) exp (−iωt), where

E(x|ω) =
∫

d2q‖
(2π)2

{ c

ω
[q̂‖α0(q‖) − x̂3q‖]Ap(q‖)

+ (x̂3 × q̂‖)As(q‖)
}

exp[iq‖ · x‖ + iα0(q‖)x3], (7.48)

with
α0(q‖) = [(ω/c)2 − q2‖ ] 1

2 , Reα0(q‖) > 0, I mα0(q‖) > 0. (7.49)

The coefficients Ap(q‖) and As(q‖) are the amplitudes of the p- and s-polarized components of this
field with respect to the local sagittal plane defined by the vectors q̂‖ and x̂3.

To obtain the dispersion relation for surface electromagnetic waves on this surface we begin by
introducing the vector

JE (x‖|ω) = n × E(x|ω) | x3=ζ(x‖) , (7.50)

where
n = (−ζ1(x‖),−ζ2(x‖), 1) (7.51)

is a vector normal to the surface at each point of it, directed into the vacuum, and ζ j (x‖) = ∂ζ(x‖)/∂x j ,

j = 1, 2.
The boundary condition satisfied by the field (7.44) on the surface x3 = ζ(x‖) can now be written

JE (x‖|ω) = 0. (7.52)

This vector equation constitutes a set of three equations

JE (x‖|ω)i = 0 i = 1, 2, 3. (7.53)

However, these equations are not independent. The vector n is perpendicular to the vector JE (x‖|ω), so
that

n · JE (x‖|ω) = −ζ1(x‖)JE (x‖|ω)1 − ζ2(x‖ JE (x‖|ω)2 + JE (x‖|ω)3 = 0. (7.54)
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Thus, the satisfaction of any two of Eqs. (7.53) ensures the satisfaction of the third. We will assume as
the pair of independent equations Eq. (7.53) with i = 1, 2. Written out explicitly, they are

∫
d2q‖
(2π)2

{ c

ω
[q‖ζ2(x‖) − q̂2α0(q‖)]Ap(q‖)

− q̂1 As(q‖)
}

exp[iq‖ · x‖ + iα0(q‖)ζ(x‖)] = 0, (7.55a)∫
d2q‖
(2π)2

{ c

ω
[q̂1α0(q‖) − q‖ζ1(x‖)]Ap(q‖)

− q̂2 As(q‖)
}

exp[iq‖ · x‖ + iα0(q‖)ζ(x‖)] = 0. (7.55b)

We next introduce the representation

exp[iγ ζ(x‖)] =
∫

d2 Q‖
(2π)2 I (γ |Q‖) exp (iQ‖ · x‖), (7.56)

so that

I (γ |Q‖) =
∫

d2x‖ exp (−iQ‖ · x‖) exp[iγ ζ(x‖)]. (7.57)

By differentiating both sides of Eq. (7.57) with respect to xμ(μ = 1, 2), we obtain

ζμ(x‖) exp[iγ ζ(x‖)] =
∫

d2 Q‖
(2π)2

Qμ

γ
I (γ |Q‖) exp (iQ‖ · x‖). (7.58)

When we substitute Eqs. (7.56) and (7.58) into Eqs. (7.55a) and (7.55b), and equate to zero the k‖ Fourier
coefficient in each of the resulting equations, we obtain the equations satisfied by the amplitudes Ap(q‖)
and As(q‖),

∫
d2q‖
(2π)2 I (α0(q‖)|k‖ − q‖)

×
{

c

ω

q‖k‖k̂2 − (ω/c)2q̂2

α0(q‖)
Ap(q‖) − q̂1 As(q‖)

}
= 0, (7.59a)

∫
d2q‖
(2π)2 I (α0(q‖)|k‖ − q‖)

×
{

− c

ω

q‖k‖k̂1 − (ω/c)2q̂1

α0(q‖)
Ap(q‖) − q̂2 As(q‖)

}
= 0. (7.59b)



7.2 Two-Dimensional Perfectly Conducting Surfaces: Theory 239

A more convenient set of equations for these amplitudes is obtained in the following way. We multiply
Eq. (7.59a) by k̂2, Eq. (7.59b) by −k̂1, and add the resulting equations. The result is

∫
d2q‖
(2π)2 I (α0(q‖)|k‖ − q‖)

{
c

ω

k‖q‖ − (ω/c)2(k̂‖ · q̂‖)
α0(q‖)

Ap(q‖) + (k̂‖ × q̂‖)3 As(q‖)
}

= 0. (7.60)

We next multiply Eq. (7.59a) by k̂1, Eq. (7.59b) by k̂2, and add the resulting equations. The result is

∫
d2q‖
(2π)2 I (α0(q‖)|k‖ − q‖)

{
ω

c

(k̂‖ × q̂‖)3

α0(q‖)
Ap(q‖) + (k̂‖ · q̂‖)As(q‖)

}
= 0. (7.61)

The solvability condition for this pair of coupled homogeneous integral equations for Ap(q‖) and
As(q‖) is the dispersion relation for the surface electromagnetic waves on the surface x3 = ζ(x‖).
From Eq. (7.60) we see that for any solution ω(k‖) of this dispersion relation to be the dispersion curve
of a surface wave, I mα0(k‖) must be positive.

7.2.2.2 A Doubly Periodic Surface
We now apply Eqs. (7.60) and (7.61) to the case where the surface profile function is a doubly periodic
function of x‖, Eq. (7.24). For such a surface the function I (γ |Q‖) becomes

I (γ |Q‖) =
∑
G‖

(2π)2δ(Q‖ − G‖)I(γ |G‖), (7.62)

where

I(γ |G‖) = 1

ac

∫
ac

d2x‖ exp (−iG‖ · x‖) exp[iγ ζ(x‖)]. (7.63)

We also introduce the expansions

Ap,s(q‖) =
∑
G‖

(2π)2δ(q‖ − k‖ − G‖)ap,s(k‖ + G‖), (7.64)

where k‖ is the two-dimensional wave vector of the surface electromagnetic wave, in order that the
electric field in the vacuum region satisfy the Bloch-Floquet theorem.

The substitution of the expansions (7.62) and (7.64) into Eqs. (7.60) and (7.61) yields the following
equation for the coefficients ap,s(k‖ + G‖):∑

G′‖

I(α0(K′‖)|K‖ − K′‖)

×
⎛
⎜⎝

c
ω

K‖K ′‖−(ω/c)2K̂‖·K̂′‖
α0(K ′‖)

(K̂‖ × K̂′‖)3

ω
c

(K̂‖×K̂′‖)3

α0(K ′‖)
(K̂‖ · K̂′‖)

⎞
⎟⎠

(
ap(K′‖)
as(K′‖)

)
= 0. (7.65)
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FIGURE 7.5
A doubly periodic surface formed by placing a square lattice of perfectly conducting hemiellipsoids on the
planar surface of a semi-infinite perfect conductor.

In writing this equation we have introduced the vectors K‖ = k‖+G‖ and K′‖ = k‖+G′‖. The dispersion
relation for surface electromagnetic waves on a perfectly conducting bigrating is obtained by equating
to zero the determinant of the matrix of coefficients in Eq. (7.65).

The solutions of this dispersion relation are even functions of k‖, ωs(−k‖) = ωs(k‖), where s labels
the solutions (bands) for a given k‖ in the order of increasing magnitude. They are also periodic functions
of k‖ with a period that is the first Brillouin zone of the bigrating, ωs(k‖ +G‖) = ωs(k‖). The solutions
can then be sought for values of k‖ inside the first Brillouin zone, and inside the non-radiative region
defined by k‖ > (ω/c).

Dispersion curves have been calculated for surface electromagnetic waves propagating on a surface
that consists of a square lattice of hemiellipsoids on an otherwise planar surface of a perfect conductor
(Fig. 7.5). The primitive translation vectors of the square lattice are a1 = a(1, 0, 0), a2 = a(0, 1, 0).
Those of the reciprocal lattice are b1 = (2π/a)(1, 0, 0), b2 = (2π/a)(0, 1, 0). The surface profile
function is given by

ζ(x‖) =
∑

	

s(x‖ − x‖(	)), (7.66)

where

s(x‖) = H [R2 − x2‖ ] 1
2 |x‖| < R, (7.67a)

= 0 |x‖| > R. (7.67b)

The function I(γ |G‖) defined by Eq. (7.63) in this case becomes

I(γ |G‖) = 1 + 2π R2

a2

∞∑
n=1

(iγ H R)n

(n + 2)n! G‖ = 0, (7.68a)
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= 2π R2

a2

∞∑
n=1

(iγ H R)n

n!
2

n
2 �

( n
2 + 1

)
(G‖ R)

n
2 +1

Jn
2 +1(G‖ R)G‖ �= 0, (7.68b)

where Jν(x) is the Bessel function of the first kind and order ν.
Due to the circular symmetry of each hemiellipsoid, it is necessary to solve the dispersion relations

only for vectors k‖ inside the irreducible element of the two-dimensional first Brillouin zone. In the
present case it consists of the one-eighth region of the first Brillouin zone that generates the entire zone
when transformed by the application of the operations of the point group C4v to it. It is depicted in the
insets to Fig. 7.6a and b.

In solving the dispersion relation defined by Eq. (7.65) the infinite sum over G′‖ has to be truncated.
This was done by restricting the reciprocal lattice vectors G‖(h) = h1b1 + h2b2 and G′‖(h′) = h′

1b1 +
h′

2b2 to those that satisfied the conditions
[
h2

1 + h2
2

] 1
2 ≤ Nmax and

[
h′2

1 + h′2
2

] 1
2 ≤ Nmax for some

integer Nmax . The convergence of a solution was tested by increasing Nmax systematically until the
solution stopped changing.

The values of the parameters assumed in obtaining the results presented in Fig. 7.6a were R/a =
0.375 and H = 1, and for the results presented in Fig. 7.6b they were R/a = 0.375 and H = −1. The
first 15 terms in the series in (7.68a) and (7.68b) were kept, and a value of Nmax = 10 was used in
calculating the results plotted in this figure. The dispersion curves depicted in this figure were calculated
for values of k‖ on the boundary of the irreducible element of the two-dimensional first Brillouin zone.
For the values of the parameters defining the surfaces each dispersion curve displays an absolute band

FIGURE 7.6
The dispersion curves for surface electromagnetic waves on a square lattice of hemiellipsoids on the planar
surface of a perfect conductor in the non-radiative region of ω and k‖ values are plotted as functions of k‖ along
the boundary of the irreducible element of the two-dimensional first Brillouin zone depicted in the insets.
The values of the parameters assumed in obtaining these results are (a) R/a = 0.375, H = 1, Nmax = 10;
(b) R/a = 0.375, H = −1, Nmax = 10.
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gap within the non-radiative region of ω and k‖ values, with a second, higher frequency branch within
the non-radiative region. For both the surface formed from protuberances and the surface formed from
indentations the lowest frequency branch of the corresponding dispersion curves bends away from the
vacuum light line into the non-radiative region as the boundary of the Brillouin zone is approached, more
strongly in Fig. 7.6b than in Fig. 7.6a. Thus, the corresponding surface waves display the phenomenon
of wave slowing.

7.3 Experimental Results
Experimental studies of surface electromagnetic waves on periodically structured perfectly conducting
surfaces have been carried out on structured metal surfaces in the gigahertz and terahertz regions of the
electromagnetic spectrum, where a metal is well represented by a perfect conductor. Experiments have
been carried out on both one- and two-dimensional periodically structured surfaces. We consider the
results for these two types of surfaces in turn.

7.3.1 One-Dimensional Surfaces
The propagation of microwave surface electromagnetic waves on a composite grating structure consist-
ing of an alternating sequence of two rectangular grooves of different depths cut into a metal (copper)
surface was studied theoretically and experimentally by Gao et al. [7.27]. The dispersion curve of
this structure consists of two branches. The lower frequency branch is determined primarily by the
single-period grating with the deep grooves; the higher frequency branch is determined primarily by the
single-period grating with the shallow grooves. These two frequency bands can be varied independently
by changing the depths of the two grooves from which the structure is constructed. The experimental
results obtained are in good agreement with the calculated results.

Several of the experimental studies of surface electromagnetic waves on periodically structured
surfaces have been devoted to the guiding of such waves by one-dimensional surface structures of
various types.

The guiding of terahertz surface electromagnetic waves by a one-dimensional periodic array of
rectangular holes on the surface of an aluminum film has been studied by THz time-domain spectroscopy
[7.50]. The properties of the waves guided by this structure depend strongly on the length of the holes
in the direction of propagation and on their depth. When the holes become sufficiently deep, they
support electromagnetic resonances at discrete frequencies, which manifest themselves as peaks at the
corresponding frequencies in the spectral dependence of the transmissivity of the structure. The lateral
confinement of the guided wave decreases with increasing groove depth, and its propagation length
increases to as much as 12 cm. In general, the measured mode properties proved to be larger than those
calculated for a perfectly conducting structure. The long propagation length enabled the fabrication and
characterization of a Y-splitter on the basis of this waveguide.

In a related study [7.51] these authors studied the effects of changing the geometrical parameters of
the rectangular holes and the thickness of the film on the propagation of the guided waves they support.
It was found to be possible to vary the number of propagating modes and their frequencies, as well as
the lateral confinement of the modes and their propagation lengths in this manner.
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The guiding of gigahertz surface electromagnetic waves by a one-dimensional periodic metallic
structure that is the inverse of the one studied in Refs. [7.50,7.51] has been investigated by Zhao et al.
[7.52]. The rectangular holes of finite depth employed in Refs. [7.50,7.51] were replaced by rectangular
protuberances of finite height similar to the dominos studied theoretically for the guiding of surface
waves on structured perfectly conducting surfaces in Ref. [7.53]. The electromagnetic field of the wave
guided by this structure can be confined to an area of 0.04λ-by-0.3λ in the plane transverse to the
direction of propagation, where λ is its wavelength in air. The mode size can be shrunk to 0.01λ0-by-
0.02λ0 in the THz region, where λ0 is the wavelength in free space, by coating the structure with silicon.

An interesting type of guiding structure for surface waves in the microwave frequency range has been
developed by Shen et al. [7.54]. These authors fabricated a thin (18 µm) copper strip one of whose
edges was decorated with an array of rectangular grooves whose period was 5 mm. The copper strip was
bonded to a single layer of polyimide (12.5 µm) by an epoxy adhesive (13 µm). The total thickness of
this sample is 43.5 µm. It is therefore ultra thin and flexible,and can be wrapped around curved surfaces.
The surface waves that propagate over curved surfaces were termed conformal surface plasmons. The
structure supporting them can be designed to operate in the spectral range from the microwave to mid-
infrared frequencies. A near-field scanning system was used to map the localized electromagnetic fields
above the comb-shaped metal strip. The operating frequency was fixed at 10 GHz. The experimental
results showed good confinement in both lateral directions and long propagation lengths of the conformal
surface plasmons as they traveled on several curved surfaces, including sharp bends. These modes appear
to be promising for use in a wide variety of plasmonic devices operating in a broad spectral range.

In concluding this section we note that surface plasmon polaritons exist not only at a dielectric-
metal interface. They also exist at the interface between a dielectric and an n-type semiconductor. In
Ref. [7.24] Li et al. have demonstrated the propagation of terahertz waves bound to an interface between
air and a highly-doped silicon surface on which a one-dimensional periodic array of V-shaped grooves
was fabricated.

7.3.2 Two-Dimensional Surfaces
Even before the current interest in surface electromagnetic waves on structured perfectly conduct-
ing surfaces arose, theoretical and experimental studies were being carried out for such waves in the
microwave and terahertz wavelength regions, where a metal is well represented by a perfect conductor.
In a notable study Sievenpiper et al. [7.35] investigated surface electromagnetic waves at microwave
wavelengths on a structure consisting of a flat metal sheet on which a square lattice of mushroom-shaped
protrusions is placed. The surface wave band structure of this surface was calculated by means of the
finite element method for two-dimensional wave vectors along the edge of the irreducible element of
the two-dimensional first Brillouin zone of the square lattice. It has the interesting feature that the dis-
persion curve of the lowest frequency branch, of TM or p polarization, follows the vacuum light line
up to a certain frequency, where it suddenly becomes very flat. At a frequency slightly higher than the
maximum frequency of this TM polarized branch a second branch, of TE or s polarization, begins, and
continues upward with a slope smaller than the vacuum speed of light. The TM band does not reach the
TE band edge, but stops below it, forming band gap. Higher frequency branches of the band structure are
also obtained in these calculations. Thus, this structured surface supports surface electromagnetic waves
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FIGURE 7.7
The dispersion curves for surface electromagnetic waves on a perfectly conducting surface patterned with a
square lattice of mushroom-shaped protrusions in the non-radiative region of ω and k‖ along the boundary
of the irreducible element of the two-dimensional first Brillouin zone depicted in the inset. The radiative
broadening of the TE modes above the light line is indicated by error bars (Ref. [7.35]).

of both TM and TE polarizations, in non-overlapping frequency ranges, and displays an absolute band
gap between the first and second branches. Experimental results obtained by these authors confirmed
the results of their theoretical studies. The dispersion curve calculated by Sievenpiper et al., and their
experimental results are presented in Fig. 7.7.

In this and in subsequent experimental work the structures studied differed in most cases from those
assumed in the theoretical studies of these surface electromagnetic waves. Nevertheless, the results
obtained were in good agreement with the theoretical predictions.

In an experimental observation of surface electromagnetic waves localized to a structured metal sur-
face in the gigahertz frequency region carried out by Hibbins et al. [7.55], the reflectivity of microwaves
from a nearly perfectly conducting substrate perforated by holes was measured. Results of the theory
presented in Ref. [7.4] were used to determine the structural parameters of a surface that would support
a surface wave in this frequency region.

The structure studied in this work was a 300 mm × 300 mm array of hollow brass tubes of square
cross section, length 45 mm, side length d = 9.525 mm, and inner length a = 6.960 mm. These tubes
were arranged, square face down, on a flat brass plate and tightly clamped together. On the surface of
the array of tubes was placed a periodic array of parallel brass cylindrical rods of radius r = 1.0 mm,
with a period 2d (Fig. 7.8). These were introduced to control the strength of the diffractive coupling to
the surface mode supported by the structure, which otherwise would be very weak.

Reflectivity spectra were measured for a series of fixed values of the polar angle of incidence θ .
The incident field was p polarized with the xz plane as the plane of incidence, and only the p-polarized
component of the specularly reflected field was registered. The surface mode was revealed as a dip in
the frequency dependence of the reflectivity. A typical reflectivity spectrum, recorded at θ ∼= 14◦ is
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FIGURE 7.8
Photograph of the experimental sample showing the square brass tubes (d = 9.525 mm, a = 6.960 mm)

and brass cylindrical rods (radius r = 1.0 mm). The coordinate system is also shown (Ref. [7.55]).

FIGURE 7.9
The dispersion of the surface mode on the air-filled sample. The plane of incidence is the xz plane. The
frequency of the resonance is derived from experimental (x) and modeled (sold curve) data sets. The shaded
region represents the region of the frequency-wavenumber plane within which surface modes cannot be
directly coupled to, since they lie to the right of the vacuum light line. The dashed curves depict the first-
order diffracted light lines centered on kx = ±2π/(2d) = ±300 m−1 associated with the array of cylindrical
rods. The dot-dashed curve similarly corresponds to first-order diffraction from the array of brass tubes. The
inset shows the TM-polarized reflectivity spectrum obtained for an angle of incidence θ ∼ 14◦, and illustrates
the resonant surface mode at ∼12.3 GHz (Ref. [7.55]).

presented in the inset to Fig. 7.9. With the use of the relation kx = (ω/c) sin θ , the dispersion curve
for the surface mode was constructed from the results of a series of such measurements and is presented
in the main part of Fig. 7.9. This dispersion curve lies on the second branch of the dispersion relation in
the reduced zone scheme, and lies in the radiative region of the (ω, kx ) plane, to the left of the vacuum
light line. This is why it can be excited by an incident volume electromagnetic wave. It is, therefore,
strictly speaking a leaky surface wave. The experimental results are in very good agreement with results
calculated with the finite element method.
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In these experiments additional measurements were made when the tubes were filled with wax.
Again, good agreement between the experimental and computational results was found.

In subsequent work Williams et al. [7.56] studied the guiding of surface plasmon polaritons in the
terahertz frequency region on a copper surface patterned with a square array of annular holes of finite
depth, each of which supports both a TEM coaxial mode and a TE11 coaxial mode. The dispersion curve
of the surface modes supported by this structure consists of two branches, each of which can be varied
independently of the other. The ability to guide two modes can be useful in waveguide-based chemical
or biochemical sensing [7.57], where the ability to ratio responses in at least two frequency bands with
high dynamic range is desirable for quantitative analysis. Terahertz time-domain spectroscopy was used
to determine the decay lengths of the electric field of the surface modes into the vacuum, which were
found to be of the order of 500 µm at frequencies of the order of 1 THz. This is about a factor of a
hundred smaller than the decay length into the vacuum of a surface wave on a planar copper surface
at such a frequency [7.58]. The amplitude mean free path of the surface mode along the surface was
estimated from the data and the theory of Zenneck surface waves on copper [7.58] to be of the order of
5 cm at a frequency of about 1.45 THz.

Lockyear et al. [7.59] used the method of attenuated total reflection in the Otto geometry [7.60] to
determine the dispersion curve of surface electromagnetic waves on a structured copper surface in the
gigahertz frequency range. It consisted of square 18 µm thick copper patches of edge length 1.3 µm
arranged in a square array with a period of 1.6 mm. The patches were separated from a copper ground
plane by a low loss 0.79 mm thick dielectric layer. Each copper patch, however, was connected to the
ground plane by a hollow copper via with a 0.15 mm radius. A p-polarized electromagnetic field was
incident on the sample through a large wax prism at an angle of incidence greater than the critical angle
for total internal reflection at the wax-air interface (θ0 = 41.8◦, where θ0 is the angle of incidence in
the prism). The prism was placed above the sample at a variable distance t from it. The surface mode
was observed as a strong reflectivity minimum in the frequency dependence of the specularly reflected
beam. At each angle of incidence in the range 42◦ < θint < 71◦ the distance t was varied in the
range 3.5 mm < t < 7.5 mm, allowing the optimum coupling condition to be found. For this optimum
condition the resonant frequency of the mode was determined, which allowed the in-plane wave number
k‖ to be found, and the mode’s dispersion curve constructed. In Fig. 7.10 is shown the dispersion of
the surface mode at the optimum coupling condition for internal angles in the range 42◦ < θint < 71◦.
Also shown is a dispersion curve calculated by the finite element method.

The agreement between the two sets of results is very good. The inset to Fig. 7.10 shows a typical
reflectivity spectrum for several values of the gap width t for an internal angle of incidence θint = 58.2◦.
It is seen that changing the gap width brings the resonant coupling through an optimum condition
(topt = 5.5 mm), and also shifts the resonance frequency. The latter effect is mainly due to the
penetration of the exponentially decaying fields of the surface waves into the wax prism.

The work of Lockyear et al. demonstrates that it is possible to couple incident microwave radia-
tion into a surface electromagnetic wave by means of the Otto ATR geometry. Moreover, the surface
used in this study was significantly thinner than other surfaces used in this frequency region for such
studies, much thinner than the operating wavelength. Finite element calculations also showed that the
electromagnetic field in this mode is strongly localized to the surface.

In the experiments described up to now the tightly bound surface electromagnetic waves in the
microwave and terahertz frequency regions were excited on the illuminated side of the structure
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FIGURE 7.10
(circles) The dispersion of the TM-polarized surface mode supported by the sample compared to the pre-
dictions of the finite element method (solid curve). The frequency of the lower band edge associated with
the sample, to which the dispersion curve is asymptotic, is depicted by the dotted line. The inset shows the
specular reflection from the sample as a function of frequency for θint = 58.2◦. Here the width of the air
gap t is varied between 3.5 and 7.5 mm in 1 mm steps. The resulting shift in the resonant frequency is
attributed to field penetration into the wax prism, due to the latter’s close proximity to the sample surface.
Note the optimum coupling condition at topt = 5.5 mm (Ref. [7.59]).

supporting them. Kushiyama et al. [7.61] predicted a slab structure that allows the excitation of these
surface waves on the back surface of the slab in the Kretschmann attenuated total reflection configu-
ration [7.62]. This configuration is convenient for applications such as sensing devices. The structure
consists of a three-dimensional metallic wire mesh in which a metallic sphere is added to the center of
each of its links. In an experimental study of this structure the excitation of the surface electromagnetic
wave was revealed as a dip in the frequency dependence of the reflectivity for a fixed angle of incidence.

7.4 Conclusions
The results of the calculations and measurements described in this chapter show that a one- or two-
dimensional periodically structured perfectly conducting surface can bind a surface electromagnetic
wave to it. The dispersion curves of these surface waves can be varied in desirable ways by changing
the parameters defining the surfaces: the widths, depths, and shapes of their indentations, the material
they are filled with, and the period of the structure. They are therefore more easily manipulated than are
the dispersion curves of surface plasmon polaritons at planar dielectric-metal interfaces. An important
consequence of this capability is that it is now possible to create devices based on surface electromagnetic
waves for applications in the microwave or terahertz ranges, where surface plasmon polaritons on planar
surfaces cannot be used. Examples include the study of electronic coherence in semiconductors [7.63],
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pharmaceutical quality control [7.64], in chemical and biochemical sensing [7.57], and in security
screening [7.65]. Several of these applications will be discussed in detail in other chapters of this book.
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