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Abstract—Retinal Miiller glial cells, in addition to providing
homeostatic support to retinal neurons, have been shown to
engage in modulation of neuronal activity and regulate
vasomotor responses in the retina, among other functions.
Calcium-mediated signaling in Miiller cells has been impli-
cated to play a significant role in the intracellular and
intercellular interactions necessary to carry out these func-
tions. Although the basic molecular mechanisms of calcium
signaling in Miiller cells have been described, the dynamics of
calcium responses in Miiller cells have not been fully
explored. Here, we provide a quantitative characterization
of calcium signaling in an in vitro model of Miiller cell
signaling using the rMC-1 cell line, a well-established line
developed from rat Miiller cells. rMC-1 cells displayed robust
intracellular calcium transients and the capacity to support
calcium transient-mediated intercellular calcium waves with
signaling dynamics similar to that reported for Miiller cells in
in situ retinal preparations. Furthermore, pharmacological
perturbations of intracellular calcium transients with thapsi-
gargin and intercellular calcium waves with purinergic
receptor antagonists and gap junction blockers (PPADS
and FFA, respectively) suggest that the molecular mecha-
nisms that underlie calcium signaling in rMC-1 cells has been
conserved with those of Miiller cells. This model provides a
robust in vitro system for investigating specific mechanistic
hypotheses of intra- and intercellular calcium signaling in
Miiller cells.

Keywords—Glial cells, Miiller cells, Calcium signaling,
Calcium dynamics, Retina.

INTRODUCTION

Miiller cells are the primary macroglial cell type of
the neural sensory retina and have diverse functions in
both health and disease. The classical role of these cells
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is providing homeostatic support to retinal neurons,*
although a number of other functions including mod-
ulating neuronal activity via bi-directional communi-
cation with neurons in the inner nuclear layer,>**> >’
regulating vasomotor responses in the retina,'>**-°
and contributing to degenerative retinal pathologies
through reactive gliosis have been proposed.®'®
Underlying the bi-directional signaling of Miiller glia
with neurons and vascular regulation are calcium
changes that mediate intra- and intercellular signaling
processes.”’ Miiller cells in in situ retinal and eye cup
preparations have been shown to generate transient
increases in intracellular calcium both spontane-
ously’* and in response to light stimulation,®’
with frequencies and durations comparable to those
observed for astrocytes in brain slices>**” and in vivo.'®
Activation of metabotropic purinergic P2Y receptors
by extracellular adenosine 5'-triphosphate (ATP)
leading to the formation of inosital triphosphate (IP3)
by phospholipase C (PLC), and IP5s-dependent calcium
release from intracellular stores have been implicated
as key steps in the generation of calcium transients
in vitro®®* and in situ, >335 although there is
also evidence for activation of ionotropic puriner-
gic receptors (i.e., P2X;) that augment the calcium
increase via influx from the extracellular milieu.”
Stimulation of in situ preparations with 488-nm light
flashes has been shown to increase neuronal activity
that correlates with an increased frequency of calcium
transients in Miiller cells.’” Light-evoked calcium
responses have been shown to be blocked by suramin,
a purinergic antagonist, and apyrase, which hydrolyzes
ATP, providing support for an ATP-dependent
mechanism. Interestingly, tetrodotoxin (TTX) is also
able to block light-induced calcium responses in Miiller
cells, suggesting that amacrine and ganglion cells
(retinal neurons that generate action potentials) may
be necessary for light-evoked signaling to Miiller
cells.’” Conversely, signaling from Miiller cells to
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neurons may also be mediated by calcium changes. It
has been suggested that calcium increases in Miiller
cells mediate the release of ATP that, once hydrolyzed
to adenosine by ecto-nucleotidases, induce hyperpo-
larizations in retinal ganglion cells by activating A,
adenosine receptors that open potassium channels.
However, the details of this calcium-dependent ATP
release require further investigation.

Calcium signaling in Miiller cells has also
been implicated to play an important role in pathol-
ogy. Specifically, upregulated intracellular calcium
responses have been associated with gliosis of Miiller
cells in retinal detachment and proliferative vitreoret-
inopathy (PVR).>'®¢ Miiller cell endfeet in acutely
isolated porcine retinal wholemounts display increased
calcium responses to ATP stimulation one to three
days following experimental rhegmatogenous detach-
ment, along with increased expression of P2Y; and
P2Y, receptors. Furthermore, this increase in calcium
sensitivity extended to Miiller cells beyond the region
of detachment; potentially caused by alterations in the
functional state of P2 receptors or resensitization of
receptors by soluble growth factors released during
pathology.'®® Intracellular calcium increases via
activation of metabotropic and ionotropic P2 receptors
by extracellular ATP (as observed in retinal pathology)
have also been shown to stimulate DNA synthesis and
cell proliferation in primary Miiller cells***'* and are
implicated as a potential mechanism for increased glial
mitogenic activity in PVR.>'® Finally, adenosine, the
degradation product of ATP, has also been found at
elevated concentrations under pathological conditions
such as retinal hypoxia,*’ and has been shown to
potentiate increased Miiller calcium transients in
response to light stimulation.’”

An intriguing but controversial observation made in
in situ and in vitro experiments is the capability of
Miiller cells to support intercellular calcium waves
mediated by intracellular calcium transients.'3*37-3%
Stimulation of Miiller cells and retinal astrocytes in
acutely isolated retina and eye cups using ATP ejec-
tion, mechanical, or electrical stimulation evoke cal-
cium transients that propagate outward to adjacent
glial cells as intercellular calcium waves.***® Intercel-
lular signaling between Miiller cells is mediated by
ATP signaling via purinergic receptors, since waves
have been shown to be blocked by the purinergic
receptor antagonist, suramin.** In addition, gap junc-
tion channels formed by homeotypic and heterotypic
coupling of hemichannels involving connexin 43 have
also been implicated in calcium transient-mediated
intercellular  signaling, presumably by allowing
exchange of small secondary messengers (i.e., Ca and
IP3).!7:21-323159  Although  experimentally evoked
calcium waves have been shown to participate in

the modulation of neuronal activity and vasomotor
responses,” these observations are controversial
because intercellular calcium waves in Miiller cells
have not been observed under physiological conditions
in vivo, raising the issue of whether the in vitro and
in situ observations may be an experimental artifact.?’
Calcium transients observed in individual Miiller cells
of acutely isolated eye cups in response to 488-nm light
stimulation were not seen to propagate through net-
works,”” although neither the physiological range of
luminous stimuli nor physiologically realistic stimula-
tion patterns have been fully explored, thus necessi-
tating more detailed follow-up studies. However, the
same paper did report intercellular calcium signaling
between Miiller cells under conditions that mimic
neuropathology.”’” In the presence of elevated adeno-
sine, light stimulation sometimes produced a delayed
calcium response in Miiller cells that propagated into
neighboring cells,?’ suggesting a potential contribution
of intercellular calcium waves to disease states in the
neural retina.

Although the basic molecular mechanisms of
calcium signaling in Miiller cells have been described,
the dynamics of calcium responses in Miiller cells have
not been fully explored. This is critical for investigat-
ing any physiological or pathophysiological roles cal-
cium signaling may be playing. Here we provide a
quantitative characterization of calcium signaling
in an in vitro model using the rMC-1 cell line, a well-
established line developed from rat Miiller cells*® that
has been used in numerous studies to investigate the
cell biology of Miiller cells and their contributions to
pathology. !0 1%19:264648 ‘The dynamics of individual
intracellular calcium transients and intercellular cal-
cium waves were analyzed in individual cells and net-
works of rMC-I-cells. Very similar to data from
primary Miiller cells in vitro and in situ, tMC-1 cells
displayed robust intracellular calcium transients and
the capacity to support calcium transient-mediated
intercellular calcium waves. Furthermore, pharmaco-
logical experiments suggest that the molecular mech-
anisms that underlie calcium signaling in TMC-1 cells
are dependent on activation of purinergic receptors by
extracellular ATP and, to a lesser extent IP3;-mediated
gap junctional signaling, similar to that described for
Muiiller cells. Lastly, the dynamics of calcium signaling
in rMC-1 cells are quantitatively very similar to in situ
Miiller cells in intact retinal preparations that preserve
the local cytoarchitecture. Although in vitro systems
are simplified representations of physiological condi-
tions, the calcium signaling mechanisms in rMC-1 cells
seem to have been conserved with respect to the known
physiological mechanisms in Miiller cells. And although
rMC-1 cells differ significantly from their relatives
in the retina in some respects (e.g., morphology,
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functional polarization, etc.), the results we provide
in the present work as well as the data from
others!'01219:26:4648 9005t that, on a molecular and
cellular level, rMC-1 cells are a good model of Miiller
cells and can provide an opportunity to study these
fundamental processes under controlled experimental
conditions where the complexity of the physiology or
pathophysiology may confound direct measurements.

MATERIALS AND METHODS

Reagents and Cell Cultures

rMC-1 Miiller cells (originally obtained courtesy of
Dr. Vijay Sarthy, Northwestern University, Chicago,
IL) were passaged four to five times to expand them
from frozen stocks. All experiments were performed
one day after recovered cells were seeded on P35 glass-
bottom Petri dishes (MatTek Corp., Ashland, MA) at
~200,000 cells/cm” incubated in culture media (high
glucose Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% fetal bovine serum
(FBS), 2 mM L-glutamine, and 1% (v/v) Pen/Strep) at
37°C and 5% CO,. Cell cultures reached workable
confluency (>80%) overnight. Media changes, in
which all media were replaced, were performed every
two days. Unless otherwise stated, all reagents were
obtained from Sigma (St. Louis, MO).

Calcium Imaging

rMC-1 cultures of ~80% confluency were washed
twice with Kreb-HEPES buffer (KHB) solution (10 mM
HEPES, 4.2 mM NaHCO;, 10 mM glucose, 1.18 mM
MgS0O,, 1.18 mM KH,PO,, 4.69 mM KCI, 118 mM
NaCl, 1.29 mM CaCl,, pH 7.4) and incubated with
5 uM Fluo-4AM in KHB for 1 h at room temperature.
Excess dye was removed by washing twice with KHB
and an additional incubation of 30 min at room
temperature was done to equilibrate intracellular dye
concentration and ensure complete intracellular esteri-
fication. Intracellular calcium transients were induced
by the application of adenosine 5’-triphosphate (ATP)
at a final concentration of 50 uM. A range of ATP
stimulation concentrations were tested (from 1 to
500 uM); 50 uM was the lowest concentration of ATP
capable of inducing intracellular calcium responses in
rMC-1 cells. Additionally, this concentration of ATP
(50 uM) has been used extensively in published studies
on calcium transients in primary Miiller glia cultures
and acute retinal preparations as an effective dose that
does not seem to negatively affect the cells.****>* The
use of a similar stimulation condition allowed the direct
comparison of data in other published work. Treatment
of rMC-1 cultures with thapsigargin (1 uM) were done

at room temperature for 20 min prior to addition of
ATP. Intercellular calcium waves were initiated by a
single mechanical stimulation delivered to a localized
region of 1-3 cells using a 0.5 um i.d. micropipette tip
(WPI Inc., Sarasota, FL) mounted on a M325
Micrometer Slide Micromanipulator (WPI Inc., Sara-
sota, FL). Comparable data were obtained using phar-
macological ATP stimulation, although it was harder to
ensure that only a localized region was initially stimu-
lated; therefore, only data and results for mechanical
stimulations are presented. Treatment of rMC-1 cul-
tures with pyridoxal phosphate-6-azophenyl-2’,
4’-disulfonic acid (PPADS; 100 uM), flufenamic acid
(FFA; 100 uM), MRS2179 (100 uM), and apyrase
(50 U/mL) was done by incubation with the respective
compounds during the de-esterification phase. We
analyzed seven FFA-treated cultures; three PPADS-
treated cultures; three MRS2179-treated cultures; three
apyrase-treated cultures; and compared them to the five
untreated rMC-1 cultures.

Visualization of calcium indicator dye fluorescence
was done using a 488-nm (FITC) filter on an Olympus
IX81 inverted fluorescence confocal microscope
(Olympus Optical, Tokyo, Japan) that included epiflu-
oresence, confocal, phase, brightfield, and Hoffman
differential interference contrast (DIC) modalities.
Real-time movie recordings of intracellular calcium
transients were acquired at 5 Hz for 500 s while inter-
cellular calcium transient propagation was acquired
at 16.3 Hz until dissipation of the waves using a
Hamamatsu ORCA-ER digital camera (Hamamatsu
Photonics K.K., Hamamatsu City, Japan) and Image-
Pro Plus data acquisition and morphometric software
(version 5.1.0.20, Media Cybernetics, Inc., Silver
Spring, MD).

Quantification of Calcium Transients

Using ImageJ, an open source morphometric
application (http://rsbweb.nih.gov/ij/), the circle-select
tool was modified to allow manual selection of indi-
vidual cells on the xy-plane of each movie using circles
of 4 pixels (~5 um) in diameter. Each cell was consid-
ered as an individual region of interest (ROI). In
building the ROI list for each movie, we traced cells in
the frame in which they appeared brightest as a result
of an activation event. By going through all the frames
in a movie, we were able to catalog every cell in the
field of view that participated in the propagation of
signaling waves in the network for a given movie. An
ImageJ plugin was used to calculate the average
intensity for each ROI in each frame as well as the x—y
coordinates of its area centroids. All of this data
was organized in matrix format for postprocessing
analyses. Since the fluorescence intensity of Fluo-4 AM
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was proportional to calcium concentrations, changes
in cytosolic calcium concentrations could be inferred
from the fluorescence profile of individual cells.

For analysis of individual intracellular calcium
transients, the data was processed to identify periods
of sustained increases in fluorescence intensity. Due to
the highly dynamic and cyclic nature of the intracel-
lular calcium transients, an averaging filter of 15 frames
was applied to reduce noise and a first-derivative filter
was then used to identify significant and sustained
increases in calcium (i.e., 15 or more consecutive
frames with positive derivative values). We defined this
as the rise phase of the intracellular calcium transients.
For analysis of intercellular calcium waves, an aver-
aging filter of five frames was applied to the data to
reduce noise in the fluorescence signals. The change in
fluorescence intensity normalized to the level of base-
line fluorescence (AF/F) was taken to indicate the
magnitude of calcium changes within rMC-1 cells.
AF/F greater than two standard deviations from
baseline and a decrease of fluorescence intensity to
10% of its peak value were used as criteria for fluo-
rescence profiles of completed calcium transients (i.e.,
that had experienced both full activation and deacti-
vation; see Fig. 3). Real-time recordings of calcium
signaling in response to mechanical stimulations were
assessed at both the network and individual cell level.
All calculations and graphs were done using Matlab
(Mathworks, Natick, MA).

Immunocytochemistry

Immunocytochemistry (ICC) was performed on
rMC-1 cultures prepared identically to those used for
calcium imaging. Cells were fixed in 4% paraformal-
dehyde (Electron Microscopy Sciences, Hatfield, PA)
for 15 min and washed twice with physiologically
buffered saline (PBS; Invitrogen, Carlsbad, CA). Cul-
tures labeled for glial fibrillary acidic protein (GFAP)
were permeabilized in 1% FBS and 0.1% Triton X-100
(Fisher Scientific International, Hampton, NH) for
30 min before incubating with anti-GFAP primary
antibody (1:50; Sigma, St. Louis, MO) while cultures
labeled for P2Y, receptor, P2X; receptor, and conn-
exin 43 were incubated with their respective primary
antibodies at 1:25 (Invitrogen, San Francisco, CA),
1:10 (Sigma, St. Louis, MI), and 1:50 (Chemicon,
Temecula, CA) dilutions, respectively, with 10% FBS
in PBS for 2 h. Routine negative controls for all con-
ditions included the omission of the primary antibody
and incubation with 10% FBS in PBS during the
primary incubation step. For secondary antibody
labeling, cells labeled for GFAP were incubated
with tetramethylrhodamine isothiocyanate (TRITC)
conjugated anti-mouse IgG (1:50; Sigma, St. Louis,

MO) while cells labeled for P2Y R, P2X,R, and Cx43
were incubated with fluorescein isothiocyanate (FITC)
conjugated anti-rabbit IgG (1:50; Sigma St. Louis,
MO). Following the ICC, all slides were mounted
using Molecular Probes Prolong® Gold antifade
reagent with DAPI (Eugene, OR).

RESULTS

rMC-1 Cells Express Specific Markers for Glial Cells
and Metabotropic Purinergic Receptors

Qualitatively, rMC-1 cells show similar expression
patterns to Miiller cells for key proteins, both in our
hands and in previous work. Immunocytochemical
characterization of glial fibrillary acidic protein
(GFAP) showed low levels of baseline expression
(Fig. la, e), consistent with in vivo Miiller cells which
only express high levels of GFAP when they become
reactive following injury.'®*® Antibody labeling of
P2Y R, a metabotropic purinergic receptor that is
G-protein coupled to induce release of calcium from
intracellular stores through the formation of inosital
triphosphate (IP;) by PLC, displayed a strong expres-
sion profile (Fig. 1b, f). In addition, we also obtained
positive labeling for P2X; receptors (Fig. 1c, g), dem-
onstrating the presence of both ionotropic and
metabotropic forms of purinergic receptors on rMC-1
cells, consistent with known mechanisms for the role of
ATP in calcium signaling by Miiller cells.’*° Finally,
there was also positive expression for the gap junc-
tional protein connexin 43 (CX43; Fig. 1d, h), a sub-
type commonly expressed on primary Miiller cells.”">

rMC-1 Cells Exhibited ATP-Induced Intracellular
Calcium Transients

Using real-time calcium-sensitive fluorescence imag-
ing, we recorded intracellular calcium transients in
rMC-1 cells at a low frequency in the absence of
applied stimulation. Five 500-s real-time recordings
were analyzed and showed that approximately 2% of
the cells in culture produced intracellular calcium
transients in buffer in the absence of applied stimula-
tion; an average of 23.3 &£ 3.0 calcium transients were
observed in each movie at a rate of 1.67 £ 0.71
transients/signaling cell/500 s, with calcium eleva-
tions averaging 5.9 + 0.5 s in duration. Application
of 50 uM ATP significantly increased the number of
intracellular calcium transients in rMC-1 cells to
482.8 + 241.5 per movie (p < 0.01, Fig. 2a). Further-
more, ATP-induced increases in calcium signaling were
due to significant increases in the number of cells
exhibiting intracellular calcium transients (from 2% to
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FIGURE 1. Immunocytochemistry of cultured rMC-1 Miller
cells for GFAP, P2Y,R, P2X;R, and Cx43. (a—d) Phase-contrast
micrographs of fluorescence images in (e-h), respectively.
(e-h) GFAP (e), P2Y,R (e), P2X;R (G), and Cx43 (H) immuno-
reactivity. All images were taken at X400, scale bar = 25 um.

31%; p < 0.01, Fig. 2b) rather than an increase in the
frequency of calcium transients per signaling cell;
which were 1.67 & 0.71 and 1.74 4+ 0.25 transients/
signaling cell/500 s for controls and 50 uM ATP,
respectively, with no significant differences detected via
the Student r-test. Interestingly, along with the increase
in the number of intracellular calcium transients in
ATP-treated cultures, we also observed a significant
decrease in the average duration of calcium elevations
to 3.4 £ 0.6 s (Fig. 2¢) following application of ATP.
Quantification of the amplitude change (AF/F) of

spontaneous vs. ATP-stimulated calcium transients
showed an amplitude change of 31.8 & 5.7% for
control cultures. Corresponding to the shorter dura-
tion of calcium elevations with the application of ATP,
we observed a decrease in the average amplitude of
calcium transients in comparison to controls (14.3 &+
2.9%, p < 0.01, Fig. 2d). Taken together, these results
suggest that elevated extracellular ATP induced a
higher number of faster calcium transients with smaller
amplitudes vs. those of control conditions.

To probe the molecular mechanisms responsible for
ATP-induced intracellular calcium transients in rMC-1
cells, we analyzed the effects of applying thapsigargin,
a drug that depletes intracellular calcium stores via
inhibition of the calcium ATPase pump on the endo-
plasmic reticulum (ER).> Thapsigargin applied at a
concentration of 1 uM effectively blocked the increase
in the number of intracellular calcium transients pre-
viously measured with 50 uM extracellular ATP and
rendered it comparable to that of control cultures
(Fig. 2a). As before, our results indicated that this
decreased incidence of calcium transients in the pres-
ence of elevated ATP (to 25.2 £ 10.0 transients per
movie) was due to a significantly lower number of
signaling tMC-1 cells in thapsigargin-treated cultures
rather than changes in the frequency of transients
per cell (which are 1.51 +0.39, 1.74 + 0.25, and
1.51 + 0.57 transients/signaling cell/500 s under 1 uM
thapsigargin, 50 uM ATP, and 50 uM ATP plus 1 uM
thapsigargin, respectively, with no significant differ-
ences detected by ANOVA). Furthermore, in the
presence of thapsigargin, the amplitude and duration
of calcium elevation in ATP-stimulated calcium tran-
sients were comparable to that of the control cultures
(23.7 + 8.0% and 5.15 £+ 1.1 s).

Finally, to explore the possible ionotropic as well
as the metabotropic components of the purinergic
response, we tested ATP-enhanced responses in the
presence of zero extracellular calcium and in the pres-
ence of specific inhibitors. In our hands, rMC-1 cells
demonstrated an increase in intracellular calcium rather
than calcium oscillations due to zero-extracellular
calcium, thus implicating a role for extracellular cal-
cium, potentially acting through ionotropic purinergic
receptors; a return to calcium-containing buffer
restored the ATP response. To explore the role of
metabotropic purinergic receptor signaling, specifically
the P2Y,; receptor, on ATP-potentiated intracellular
calcium transients, we applied MRS2179 to specifically
block this receptor. 100 uM MRS2179 reduced the
percentage of signaling cells from 31% to 11% in the
presence of ATP as well as decreased the number of
intracellular calcium transients approximately 50%
(to 246.2 £ 182.8), with no significant changes to
the duration or amplitude of oscillations. Finally,
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application of 5 mM PPADS, a broad-spectrum pu-
rinergic receptor antagonist, completely but reversibly
inhibited ATP-stimulated calcium transients. The re-
moval of PPADS restored the response of these cells
to extracellular ATP.

Intercellular Calcium Waves were Mediated by ATP
and IP3 and Displayed Specific Signaling Dynamics

Localized stimulation of rMC-1 cells induced a
propagating wave of calcium transients that spread
radially outward from an initial activated cell. For each
recording, all cells participating in calcium waves were
individually analyzed to quantitatively study the spatial
and temporal properties of calcium transient propaga-
tion. To characterize the dynamics of intracellular cal-
cium transient responses that underlie calcium waves,
we measured: (1) activation time, the rise time from
10% to 90% of the peak amplitude, (2) deactivation
time, the decay time from 90% to 10% of the peak
amplitude, and (3) AF/F, the percent change of maxi-
mum Fluo-4 fluorescence intensity with respect to the

baseline resting state (Fig. 3a). We observed kinetic
variations in calcium transient responses (Fig. 3b).
Some cells displayed a rapid increase in cytosolic cal-
cium (Fig. 3b, responses 1 and 3) while others had a
gradual increase from baseline that preceded the main
calcium rise (Fig. 3b, response 2). Additionally, some
cells presented a smooth and rapid decrease (Fig. 3b,
response 1), while others had a kinetically slower de-
crease (Fig. 3b, response 2) and displayed a secondary
calcium hump (Fig. 3b, response 3). Combining five
data sets (100 & 20 cells were analyzed per recording),
the averaged values for activation and deactivation
times were 3.87 4+ 0.62 s and 18.91 & 2.60 s, respec-
tively. The average change in the amplitude of the
fluorescence signal of the calcium indicator (AF/F) was
67.4 £ 16.5%. It was interesting to note that intracel-
lular calcium transients in the context of a calcium wave
were significantly longer in duration than spontaneous
or ATP-induced transients in individual cells, although
it is not clear mechanistically why.

We then investigated the population dynamics of
calcium wave events in intact networks by plotting the
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calcium transient parameters described above as a
function of radial distance from the stimulation source
for all individual cells that contributed to a wave. We
were interested in assessing statistical trends associated
with changes in individual calcium transients as a
function of radial distance. Box plots show spatiotem-
poral data binned in 50 um radial sections (Fig. 4). The
centers of the boxes denote the median value while the
upper and lower edges are the 75th and 25th percentiles,
respectively. The whiskers show the range of the data
and extreme outliers (+; defined by >1.5 of inter-
quartile distance). The plots suggest that cells located
closer to the stimulation site preferentially displayed
shorter activation times (Fig. 4a; ~2s at radius,
r <50 um, and >6 s at r > 150 um), longer deactiva-
tion times (Fig. 4b; ~37 s at r < 50 um, and <25 s at
r > 150 um), and larger calcium transient amplitudes
(Fig. 4c; AFJF = 80% atr < 50 um, and AF/F < 30%
atr > 150 um). We note that these observations may be

due to higher extracellular ATP concentrations near the
center of a calcium wave>* possibly due to the clustering
of the initially activated cells following mechanical
stimulation. Furthermore, cells located closer to the
stimulation site exhibited a larger range of amplitude
changes (i.e., 20-200% at r < 50 ym, and 10-75% at
r > 150 yum) and deactivation times (i.e., 10-100 s at
r <50 um, and 15-35 s at r > 150 um), while a large
range of activation times were observed in cells irre-
spective of their location (e.g., 0.5-14 s at r < 50 um,
and 4.7-17 s at r > 150 um).

Finally, we calculated the velocity of signal propa-
gation between rMC-1 cells, by plotting the radial
distance of each activated cell from the stimulation site
against its time to activation from the time of simula-
tion. The distance of signal propagation as a function
of time followed a logarithmic trend that was fitted
well with a power function (Fig. 5, R? = 0.86 + 0.06).
To give a sense of the signaling speed of the wave, the
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calculated average propagation velocities at 0.2, 0.4,
0.6, 0.8, and 1.0 s following stimulations were 23.8 +
37,188 £2.2,16.8 + 1.5, 15.5 + 1.0, 14.6 £+ 0.8 um/s,
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FIGURE 5. Calculation of the velocity of intercellular calcium
transient propagation between rMC-1 cells by plotting the
distance of activated rMC-1 cells from the stimulation site
against its time to activation (defined at 10% of its measured
peak amplitude) in relation to the time of simulation. The
resultant plot followed a logarithmic trend that fitted well with
a power function to estimate the calcium signaling propaga-
tion velocity. Each dataset (n = 5) fitted with a power function,
0.77<R?<0.91.

respectively. The average signaling speed decreased to
10.5 £+ 3.3 after 5s, and 7.8 &£ 1.0 um/s after 10 s.
This data suggests that decreases in the signaling speed
and response amplitudes along the radial direction of
the wave may be associated with mechanisms respon-
sible for the cessation of signal propagation, perhaps
by reducing the regenerative component of the calcium
wave.

To examine the molecular mechanisms underlying
intercellular calcium waves, we pharmacologically
perturbed calcium-mediated signaling by applying the
purinergic receptor antagonist PPADS** and the gap
junction blocker, FFA.*' Cultures treated with FFA
and PPADS resulted in a 70% and 86% decrease in the
number of responsive cells, respectively, as compared
to control cultures (Fig. 6a). PPADS also affected the
duration of individual responses. There was a signifi-
cant increase in the average duration of intracellular
calcium transients in cultures treated with PPADS
(86.71 £ 46.6 s, mean + s.e.) as compared to FFA
(29.1 £ 3.3 s, mean £ s.¢) or nontreated controls
(31.1 £ 3.1 s, mean =+ s.e.; Fig. 6b). These results
suggest that the underlying molecular mechanisms
responsible for intercellular calcium waves in tMC-1
cells are similar to those described for Miiller cells and
astrocytes.>* Finally, we examined the role of ATP as
the extracellular signaling factor in by using the
ATPase apyrase at 50 U/mL. Apyrase completely
blocked the propagation of calcium transients from
initially activated cells to neighboring cells. Applica-
tion of apyrase at 10 U/mL also reduced calcium
transient propagation to neighboring cells, although
some responses were sometimes seen to travel to
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FIGURE 6. FFA-treated and PPADS-treated rMC-1 cultures
blocked IP;- and ATP-mediated calcium signaling, respec-
tively. (a) Average number of activated cells per calcium wave.
*p<0.01, n=17; *p<0.01, n = 12. (b) Average duration of the
calcium transients per calcium wave. *p<0.01, n=12.

adjacent cells in immediate cell-cell contact. These
results provided further evidence for the involvement
of ATP in the molecular mechanism underlying inter-
cellular calcium waves in rMC-1 cells.

DISCUSSION

We introduced and characterized the dynamics
of an in vitro model for studying intracellular and
intercellular calcium signaling using the rMC-1 cell line
derived from primary rat Miiller cells.** Although
in vitro systems are simplified representations of
physiological conditions, culture systems provide an
opportunity to manipulate and investigate molecu-
lar and cellular processes in isolation. If the funda-
mental molecular mechanisms under investigation in
the in vitro system are conserved with respect to known
physiological processes, then the former provides an
opportunity to study elements of these processes at a
fundamental level under controlled experimental con-
ditions. The molecular mechanisms that underlie cal-
cium signaling in tMC-1 cells and the dynamics of

intracellular calcium transients and intercellular cal-
cium waves are similar to those reported for primary
Miiller cells and in situ retinal preparations, and
thereby provide a molecular model of calcium signal-
ing in Miiller cells.

Immunocytochemically, rMC-1 cells exhibited low
baseline levels of GFAP, a specific marker for astro-
cytic and related macroglial cells,'*** similar to non-
reactive Miiller cells. In addition, they showed positive
expression for P2Y R, a G-protein-coupled metabo-
tropic purinergic receptor involved in calcium mobili-
zation from intracellular stores,>>**>° as well as for the
P2X5 ionotropic purinergic receptor and connexin 43,
which have been respectively shown to augment cyto-
solic calcium via influx of extracellular calcium in
response to ATP** and coordinate intercellular cou-
pling of calcium transients via the formation of gap
junction channels.'”>! Functionally, rMC-1 cells
exhibited intracellular calcium transients that were
significantly increased in the presence of ATP, sug-
gesting that these cells express functionally intact
purinergic receptors. The effect of ATP was blocked by
the application of thapsigargin, which has been pre-
viously shown to deplete intracellular calcium stores by
specifically inhibiting endoplasmic reticulum calcium-
ATPases.” Our results suggest that ATP-evoked cal-
cium transients in TMC-1 cells were initiated by the
release of calcium from intracellular stores similar to
that reported for primary Miiller cells.>' To further
elucidate signaling via metabotropic purinergic recep-
tors, we applied 2’-Deoxy-N°-methyladenosine-3’,
5’-bisphosphate (MRS2179), a specific antagonist of
the P2Y, receptor,”** and showed that it significantly
reduced the percentage of signaling cells as well as
decreased the number of intracellular calcium tran-
sients in the presence of ATP by approximately 50%.
The inability of MRS2179 to completely abolish the
ATP-induced increase in intracellular calcium tran-
sients in the presence of thapsigargin suggests the
possibility of additional ATP sensitive metabotropic
purinergic receptors subtypes on rMC-1 cells, some of
which have been shown to be expressed by primary
Miiller cells (i.e., P2Y,, P2Y4, P2Y,).'*** Application
of pyridoxal phosphate-6-azophenyl-2’,4’-disulfonic
acid (PPADS), a nonspecific P2Y receptor antagonist
that blocks intracellular calcium mobilization by
inhibiting IP; channels®’ that has been used against
P2Y,, P2Ys P2Y, P2Y ;5922284452 and P2Y,
receptors.®?”*" was able to completely but reversibly
inhibit ATP-stimulated calcium transients. In addition,
the results point to the potential involvement of
ionotropic purinergic receptors, since the removal of
extracellular calcium impeded the ability to these cells
to exhibit calcium transients in the presence of ATP.
However, additional pharmacological characterization
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is needed to further elucidate a potential ionotropic
receptor role in rMC-1 calcium signaling.

The average duration of ATP-induced intracellular
calcium transients in rMC-1 cells was within the range
of response durations reported for Miiller cells in
intact retinal preparations, which were measured to be
between 2.5 and 6 s.>” Surprisingly, along with the
increase in the number of intracellular calcium tran-
sients in ATP-treated cultures, we also observed a
decrease in the average duration and amplitude of
calcium elevations in the presence of ATP. The exact
mechanism for this is unclear. However, since ATP is a
ligand for a number purinergic receptors, it is likely
that at elevated extracellular concentrations ATP also
activates a number of ionotropic purinergic receptors,
such as the P2X7 receptor we showed to be present
on rMC-1 cells (see Fig. 1). This would drastically
increase the permeability of the plasma membrane to
monovalent and divalent ions, thereby potentially
reducing the duration and amplitude of calcium tran-
sient responses triggered in individual cells. In addi-
tion, it has been suggested that light induces Miiller cell
calcium transients in the retina via the release of ATP
by amacrine and/or retinal ganglion cell neurons.®’
The exceptional similarity between the duration of
calcium transients in ATP-stimulated rMC-1 cells
(3.4 +£ 0.6 s) and that previously reported for Miiller
cells in light-stimulated intact retinal preparations
(3.84 £+ 0.82 s) further supports that the tMC-1 cell
line has retained the principle mechanisms associated
with physiological intracellular calcium mobilization
and signaling pathways in Miiller cells.

Since in situ experiments have also shown the ability
of Miiller cells to support intercellular calcium waves*®
and similar events have been observed under conditions
that mimic pathology,’” we also characterized the
dynamics of calcium waves in rMC-1 cultures and tes-
ted whether their propagation necessitated an ATP
and/or IP;-dependent signaling mechanism. The ability
of rMC-1 cell networks to support intercellular calcium
waves was demonstrated by the radial propagation of
signaling events following a stimulation. Published
studies by several groups have implicated extracellular
ATP as the primary facilitator of calcium waves in
Miiller cell networks of healthy and diseased ret-
ina.*?*3%3 There is evidence for a similar mechanism
in rtMC-1 networks based on measurements of calcium
waves following the application of the purinergic
receptor antagonist PPADS,** which resulted in a sig-
nificant (86%) reduction in the size of the calcium wave
as measured based on the number of participating cells.
Apyrase, an ATP diphosphohydrolase, inhibited the
propagation of calcium transients to secondary cells
adjacent to the stimulation site, further implicating a
key role of extracellular ATP in intercellular calcium

waves in rMC-1 network signaling. However, there
were also some differences between rMC-1 cells and
Muiiller cells. Specifically the inhibition of gap junctions
using flufenamic acid (FFA), a pharmacological
agent that has been shown to reduce Cx32, Cx43, Cx46,
and Cx40 currents by 85% to 95%.*"* caused a
decrease in intercellular calcium signaling by 70% in
rMC-1 cells, which has only been previously reported as
the primary mechanism for intercellular calcium waves
between retinal astrocytes.* There was also a signifi-
cant increase in the averaged duration of the intracel-
lular calcium transients in cultures treated with
PPADS.

Our calculated value of relative calcium transient
amplitudes (AF/F), activation, and deactivation times
(67.4 £ 16.5%,3.87 £ 0.62 s,and 18.91 + 2.60 s, respec-
tively) for intercellular calcium waves in rMC-1 cell
networks were comparable to published results for
Miiller calcium transients in mechanically stimulated
calcium waves in situ.>**® The calculated speed of the
initial signal propagation in rMC-1 networks was
23.8 &£ 3.7 um/s along the radial direction, which
was similar to the reported value of 23.1 & 6.7 um/s
for mechanically stimulated calcium waves in situ.
Combining the results of our kinetics analysis and
pharmacological studies, the data suggests that
intercellular calcium transient propagation in tMC-1
networks is both qualitatively and quantitatively
similar to that reported for Miiller cells in in situ
retinal preparations.
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