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Radio-frequency (rf) Paul traps operated with multifrequency rf trapping potentials provide the
ability to independently confine charged particle species with widely different charge-to-mass ratios.
In particular, these traps may find use in the field of antihydrogen recombination, allowing antipro-
ton and positron clouds to be trapped and confined in the same volume without the use of large
superconducting magnets. We explore the stability regions of two-frequency Paul traps and perform
numerical simulations of small, multispecies charged-particle mixtures that indicate the promise of
these traps for antihydrogen recombination.

INTRODUCTION

The measurable properties of hydrogen (H) and an-
tihydrogen (H̄) atoms are expected to be identical as
postulated by the combined charge (C), parity (P), and
time (T) reversal symmetry [1]. One of the most promis-
ing tests of this symmetry is the precise comparison of the
optical and microwave spectra of hydrogen and antihy-
drogen. The spectrum of hydrogen has been extensively
studied [2, 3], but precise measurements for antihydrogen
are complicated by the small quantities of H̄ available
and the technical complexity of the experimental appa-
ratus [4]. The efficient production and trapping of cold
and neutral antimatter systems is therefore a topic of
great interest.

Production of antihydrogen requires the ability to trap
antiprotons and antielectrons (positrons) in the same vol-
ume. The state of the art is dominated by Penning traps,
where a constant homogeneous magnetic field and inho-
mogeneous static electric field allow for confining par-
ticles of mass m and charge Q. The ALPHA experi-
ment [5, 6] and the ATRAP experiment [7, 8] rely on
a variation of a Penning trap for initial particle con-
finement. Penning traps have the advantage of robust
trapping for a wide range of charge-to-mass ratios, while
also facilitating a high charge density of positrons for effi-
cient three-body recombination. A large trap volume and
superconducting magnet creates a high magnetic trap
depth ( 1 K) for the resulting neutral antiatoms. A lim-
itation, however, is the inability to trap the oppositely
charged particles in equilibrium in the same volume due
to the use of a DC potential for confinement along the
axial trap direction. Recombination is achieved by inject-
ing antiprotons into the positron cloud [9]. The resulting
antiatoms are typically created with energy above the
magnetic trap depth, and most antiatoms are lost during

recombination. Typical yields in the ALPHA appara-
tus are several trapped antiatoms per attempt every ≈15
minutes [10, 11]. The ASACUSA experiment has pur-
sued an alternative to spectroscopy on trapped atoms
with a CUSP trap [12], which uses an anti-Helmholtz
field to generate a beam of spin polarized antihydrogen
for eventual microwave spectroscopy atoms [13, 14].

A solution to the problem of equilibrium charge over-
lap was previously explored in a hybrid Penning-Paul
trap [15]. In that work a magnetic field and DC poten-
tial of a Penning trap confined protons and the radio-
frequency Paul trap potential compensated the axial DC
potential for electrons. The method still relied on a
strong magnetic field for radial confinement, and to our
knowledge this technique has not been continued or ex-
tended to antimatter systems.

A seemingly easy solution to the problem of charge
overlap is to use a Paul trap for confining both charged
particles. A Paul trap provides a dynamical trapping
potential, and works for positive and negative charges
equally well. The problem arises from the vastly differ-
ent charge-to-mass ratio of antiprotons (p̄) and positrons
(ē). The stability of a Paul trap is characterized by di-
mensionless stability parameters a and q [16], which are
related to the static and dynamic amplitudes, respec-
tively, of the confining potential. Both parameters scale
linearly with the charge-to-mass ratio, Q/m. A is stable
for 0 < q < 0.9 in case of a ≈ 0, with optimal trapping
achieved around q = 0.5. A trap optimized for trapping
antiprotons will have an effective q ≈ 900 for positrons
and is fully unstable.

A Paul trap optimized for positrons with large Q/m
is theoretically stable for antiprotons, but suffers from
poor equilibrium charge overlap. Particle confinement is
characterized by the pseudopotential U ∝ m(a+q2)Ω2r2,
where m is the particle mass, Ω is the frequency of the
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FIG. 1. Survey of various trap geometries that can realize
the potential indicated in Eq. (1). Particularly interesting are
planar all-rf Paul traps indicated by the geometry in lower
right. Such a geometry is suitable for miniaturization with
modern atom chip technology [20, 21] Atom chip technology
may then also support deep traps for the produced neutral
antihydrogen.

.

trap potential, and r is the distance from the trap cen-
ter [17]. If antiprotons and positrons confined in the
same region thermalize due to the Coulomb interaction
and a ≈ 0, the characteristic cloud radius of antipro-
tons will be a factor of

√
mp̄/mē ≈ 45 larger due to

the dependence of q on Q/m. The larger cloud radius
of antiprotons will also make them more susceptible to
anharmonicities of the trapping potential. We note that
the ASACUSA collaboration reported work for several
years on a large-volume, superconducting resonant-cavity
Paul trap for antihydrogen production [18]. More recent
reports indicate the intention to use this trap for spec-
troscopy of antiprotonic helium, p̄He+ [19].

In this paper we discuss features of a two-frequency
Paul trap that allows simultaneous confinement of an-
tiprotons and positrons and allows the antiproton and
positron cloud sizes to be matched. Trap frequencies
are chosen such that positrons are confined by the high-
frequency component of the trap potential and protons
are primarily confined by the low-frequency component.
This allows the pseudopotentials for antiprotons and
positrons to be adjusted independently. Our work was
partially inspired by the preliminary discussion of two-
frequency Paul traps in Ref. [22].

TWO-FREQUENCY PAUL TRAP

The quadrupole potential of a two-frequency Paul trap
takes the form

V (t, r) = (V0 + V1 cos Ω1t+ V2 cos Ω2t)
(x2 + y2 − 2z2)

2r2
0

,

(1)
where r0 is a geometric scale for the trap. We will choose
frequencies such that the fraction Ω2/Ω1 is a number η ≥
1. The potential can be created by a system of hyperbolic

electrodes with cylindrical symmetry, or approximated
by more practical geometries as indicated in Fig. 1.

In the initial discussion only motion along the x-
direction is considered. From the symmetry of the po-
tential these results will also hold for the y-direction, and
may be extended to the z-direction by scaling stability
parameters by a factor of −2. The equation of motion
for a charged particle in the potential of Eq. (1) can be
written

ẍ(τ) + (a− 2q1 cos 2η−1τ − 2q2 cos 2τ)x(τ) = 0, (2)

where τ = Ω2t/2 is a normalized time,

q1,2 = −2
Q

m

V1,2

Ω2
2r

2
0

, (3)

a = 4
Q

m

V0

Ω2
2r

2
0

(4)

are low-frequency (q1), high-frequency (q2), and DC (a)
Mathieu parameters. The time derivative indicated by
ẍ(τ) is with respect to the time variable τ . Equation (2)
is a specific example of a Hill differential equation: a
second order, linear differential equation with periodic
coefficients.

Qualitative discussion

Setting q1 = 0 recovers the well known Mathieu equa-
tion for a single-frequency trap. A trapped particle un-
dergoes high-frequency motion at multiples of the trap
drive frequency, Ω2, in addition to a slow macromo-
tion at a secular frequency of ω2 = (1/4)(a + q2

2/2)Ω2
2.

In an optimal trap a ≈ 0, and the secular frequency
is ω ≈ q2Ω2/(2

√
2) [16]. If we operate the trap at

q1 ≈ 0, q2 ≈ 0.5 we can choose the ratio of trap drive
frequencies, η, large enough so that the secular oscilla-
tion frequency ω � Ω1. In this regime it is possible to
treat a non-zero q1 as a slowly varying DC term in addi-
tion to a.

We now consider Eq. (2) from the perspective of two
charged particles, A and B, with opposite charges and
masses mA < mB . To facilitate the discussion we in-
troduce the notation qA,B1,2 and aA,B to distinguish trap
parameters for the light particle, A, and the heavy
particle, B. An important observation is that qB1,2 =

(mA/mB)qA1,2. The same relationship holds for a, al-
though this DC parameter will be set to zero for most
of the manuscript.

If the high-frequency confinement is optimized for the
lighter particle A and for η < mB/mA, the secular oscil-
lation frequency of the heavy particle B due to qB2 will
be slower than Ω1. Therefore we must also consider the
dynamic pseudo potential of qB1 for B. We may write the
effective potentials experienced by each particle as [16]
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FIG. 2. Scaling of the secular frequency as a function of
q2 for B in units of Ω2, for η = 5. The values of q1 for
each curve are indicated on the plot. The value of a was
zero for all calculations. The solid lines indicate the ex-
pected secular frequency extracted from the pseudopotential
of Eq. (5). Filled circles are estimated from a fast Fourier
transform (FFT) of the numerical integration of Eq. (2). The
inset shows the calculated FFT used to extract secular fre-
quencies for q1 = 0.004, q2 = 0.02. Vertical lines indicate the
driving frequencies. The lowest-frequency peak is the secular
frequency.

UA(x) =
1

8
mA

(
aA +

(qA2 )2

2

)
Ω2

2x
2, (5)

UB(x) =
1

8
mB

(
aB +

(qB1 )2

2
η2 +

(qB2 )2

2

)
Ω2

2x
2, (6)

where we typically choose η to be large enough that
qA1 is close enough to zero that its effect on particle A
can be ignored. The validity of the pseudopotential ap-
proximation is discussed in detail in Refs. [23, 24]. The
pseudopotential for particle B in Eq. (5) can be arrived
at by alternately considering the limiting cases where qB1,2
go to zero. When qB2 = 0, Eq. (2) can be rewritten with
another time transformation τ → τ ′ = Ω1t/2 to obtain
the η2 factor multiplying qB1 . We confirmed the scal-
ing of these pseudopotentials by numerical determination
of the secular frequency, shown in Fig. 2. Equation (5)
also illustrates the ability of a two-frequency trap to cre-
ate overlapping yet independent potential wells for two
charged particles with an appropriate choice of trap pa-
rameters and frequency ratio, visually demonstrated in
Fig. 3. This opens the possibility for combining and sep-
arating different species of charged particles with high
efficiency.

In the remainder of the manuscript we discard the su-
perscript notation. Where relevant, it is assumed that
q1,2 and a refer to trap parameters for the lighter charged
particle.
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FIG. 3. Sketch of pseudopotentials for particles A and
B assuming a frequency ratio of η = 200 and mass ratio,
mB/mA ≈ 1836 (matching that of positrons and antipro-
tons). Parameters were qA2 = 0.37, qA1 = 0 (solid lines) and
qA2 = 0.37, qA1 = 0.02 (dashed lines). The small perturbation
of UA(x) by qA1 oscillates with frequency Ω1 as indicated by
the shaded band and will average to zero.

Floquet Theory

To determine the stability of a two-frequency trap we
define the vector u(τ) = [x(τ), ẋ(τ)]. Equation (2) may
then be written in matrix form

u̇(τ) = P(τ) · u(τ), (7)

where

P(τ) =

(
0 1

(a− 2q1 cos 2η−1τ − 2q2 cos 2τ) 0

)
. (8)

If η is a rational number it can be represented as an ir-
reducible fraction m/n, where m and n are both integers
and m ≥ n. In this case the matrix P(τ) has periodicity
T = mπ such that P(τ + T ) = P(τ).

General closed-form solutions of Eq. (7) do not exist,
however it is possible to use Floquet theory to make state-
ments about the existence of bound solutions for par-
ticular values of equation parameters. The existence of
bound solutions implies a stable trap.

A discussion of Floquet theory may be found in most
differential-equations texts, such as Ref. [25], and appli-
cation of Floquet theory to Paul traps in Refs.[23, 24, 26].
Here we simply state that the boundary of stability re-
gions may be found by identifying parameters for which
the solution x(τ) has periodicity T or 2T . A general so-
lution with period 2T contains all solutions with period
T , so we choose

x(τ) =
∑
k

cke
i k
m τ , (9)



4

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

q1

q 2

η = 3

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

q1

q 2

η = 5

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

q1

q 2

η = 3.2

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

q1

q 2

η = 7

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

q1

q 2

η = 13

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

q1

q 2

η = 11/3

FIG. 4. Stability diagram of a two-frequency Paul trap for q1 and q2. Lighter shading indicates stable operating parameter
regions. Frequency ratios, η, are indicated in the upper-left corner of each plot.

where the sum over k extends from −∞ to +∞. Equa-
tion (9) and Eq. (8) lead to the identity

∑
k

[(
a− k2

m2

)
ck − q1(ck−2n + ck+2n)−

q2(ck−2m + ck+2m)

]
ei

k
m τ = 0. (10)

The only way for Eq. (10) to hold for all τ is if each
element of the sum satisfies this relation independently.
Equation (10) may therefore be summarized as a matrix
equation

D ·



...
ck−1

ck
ck+1

...

 = 0, (11)

where the elements of the infinite matrix D are given by

Dij =

(
η2a− k2

m2

)
δi,j − q1(δj,j−2n + δj,j+2n)−

q2(δj,j−2m + δj,j+2m). (12)

Stability diagrams

Equation (11) is equivalent to the statement

det(D) = 0. (13)

Stable trap operating parameters can be identified by
finding parameters that satisfy Eq. (13). Although D is
an infinite matrix, a matrix of size (10m+1)× (10m+1)
centered around D00 was found to be a sufficient approx-
imation for evaluating stability. We find that parame-
ters where det (D) > 0 correspond to stable traps, and
parameters where det (D) < 0 correspond to unstable
traps. This means only det (D) needs to be evaluated,
and Eq. (13) does not need to be solved exactly. Us-
ing larger matrices changes the stable area by less than
0.1%. The matrix evaluated can still be large, but most
elements are zero and programs such as Mathematica
or MATLAB have efficient tools for computations with
sparse matrices.

The stability diagrams in q1, q2 space are shown in
Fig. 4 for integer and rational frequency ratios. These
diagrams show a structure of unstable resonances that
increase in density with the frequency ratio. Near the q2

axis these unstable features correspond to a parametric
resonance condition between the secular oscillation fre-
quency ω of the particle due to q2 and the frequency
Ω1. These resonances become infinitely thin, but ex-
tend all the way to the q2 axis. For large frequency ra-
tios this structure indicates that a damping mechanism
will be necessary for long-term stable operation of a two-
frequency trap. The stability region for rational numbers
shares general features with the closest integer ratio dia-
grams, with a significantly denser resonance structure as
can be seen in Fig. 4.

It is important to note that stability for the light par-
ticle does not guarantee stability for the heavy parti-
cle. Stability calculations can easily be evaluated for
both particles, however simultaneous stability can be ob-
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FIG. 5. A direct comparison of the matrix determinant (left,
purple) and numerically (right, black) calculated stability di-
agrams for η = 5. The unstable resonances are finely resolved
in the left diagram and extend all the way to the q2-axis, while
in the diagram to the right the stability arms merge before
reaching the q2-axis. For further comparison between the two
methods, the analytic calculation took 15 s and the numerical
calculation took 9700 s, a difference of nearly three orders of
magnitude. Regarding the scaling of the computation time,
both methods take significantly longer for larger η.

tained with a general guideline. Revisiting particles A
and B: if mB/mA � η, stable values of q2 and q1 for
the light particle are also stable for the heavy particle if
q1η

2mA/mB < 0.9. This can be seen by setting q2 = 0 in
Eq. (2) for the heavy particle, and recovering the regular
Mathieu equation with the transformation τ = τ ′η.

NUMERICAL SIMULATIONS

In the previous section we require the determinant of
the matrix D in Eq. (11) to be zero. With this method
we are forced to approximate an infinite matrix with a
large but finite representation.

Another issue of the matrix determinant solution is
that we are bound to rational frequency ratios η, which
means that in practice an irrational frequency ratio can
only be approximated by rounding to a nearby rational
number. While the matrix method works for any rational
number in principle, even short decimal numbers require
the evaluation of impractically large matrices. For exam-
ple, finding stable regions for η = 3.14159 would require
the evaluation of a 314160 × 314160 matrix for compa-
rable accuracy to the stability diagrams in Fig. 4. In
this case direct numerical integration of the equation of
motion is more efficient.

The method we chose for this purpose is numerical
integration of Eq. (2) in Mathematica. The numerical
method then not only makes solutions with an irrational
η possible, but also allows for modifications of the equa-
tion of motion to incorporate effects such as damping,
multiple interacting particles, real trap geometries, or
electrical noise that heats the particles.

We evaluate the equation of motion for a time inter-
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FIG. 6. Stability diagrams for η = e, an irrational number,
without damping or coupling. On the top the entire simu-
lated (q1, q2) range is shown. Red boxes in the upper and
lower left diagrams indicate regions plotted in the lower left
and lower right diagrams, respectively. The lower left dia-
gram magnifies the region of q2 ∈ [.60, .75], q1 ∈ [.10, .15]
and the lower right diagram magnifies the region of q2 ∈
[.64, .66], q1 ∈ [.130, .150]. The diagram’s visual complex-
ity appears constant over each zoom step which may be due
to the irrationality of e and thus may continue infinitely.

val [τ0, τ1], during which the amplitudes of a particle’s
oscillation A0 at τ0 and A1 at τ1 are either of the same
order of magnitude or escalate to a difference of many
orders of magnitude for, respectively, stable or unstable
(q1, q2) combinations. This time interval’s length has to
be chosen in respect to the available computation power.
Simultaneously the precision with which we can deter-
mine stability increases with the length of this time in-
terval due to the fact that a solution close to the border
of stability takes a long time to diverge. We compromised
between a short solution time and precision by choosing
∆τ = τ1 − τ0 < 1000 (with units 2/Ω2). The computer
had 64 GB RAM and 10-core processor, running simula-
tions for a time interval of [0, 600].

We define the parameter s(τ0, τ1) to determine whether
a particular combination of (q1, q2) is stable. This stabil-
ity parameter is evaluated by integrating the square of
the solution over [τ0, τ1] and dividing it by the intervals
length ∆τ :

s(τ0, τ1) =
1

∆τ

∫ τ1

τ0

x(τ)2dτ. (14)

We choose s(τ0, τ1) < 10000 to identify a combination
of (q1, q2) as stable. This condition catches oscillations
that are close to the parametric resonances and have large
amplitudes. For s(τ0, τ1) > 10000 we expect the ampli-
tude to continue growing for times beyond the integration



6

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

q2

q1

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

q2

q1

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

q2

q1

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

q2

q1

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

q2

q1

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

q2

q1

FIG. 7. (top row) Stability diagrams with damping b for η = 45, evaluated with numeric integration. They correspond to b = 0
(left), b = 0.1 (center) and b = 0.4 (right). The stability region broadens with increased damping in such a way that the area
of stability between two unstable resonances extends, widening the stable q2 region and the maximum of stable q1.
(bottom row) Stability diagrams of a charged particle in a two-frequency Paul trap with η = 45 and an additional magnetic
field B0 along the z-axis (see text), calculated with the matrix determinant method. Values of the magnetic field parameter
correspond to p = 0.1 (left), p = 0.3 (center) and p = 0.7 (right). The stability region grows larger with increased magnetic
field coupling p so that at q2 = 0 the maximum value of q1 increases, while the maximum value of stability for q2 decreases.

limit τ1, but ultimately the value of this condition is arbi-
trary and chosen based on available computing resources.
This stability parameter s(τ0, τ1) is evaluated by numeri-
cally integrating the coupled equation s′(τ) = 2x(τ)/∆τ
simultaneously with the equation of motion. This sig-
nificantly reduces computational overhead. Using these
rules to decide if a particular combination of (q1, q2) is
stable or not, we can modify the original equation of mo-
tion and consider extensions to the stability question.

Numeric integration vs. matrix determinant

Without damping and coupling the numerical and ma-
trix determinant methods agree, but the ability to treat
other cases — in general modifications to Eq. (2) — and
the fact that we can use irrational frequency ratios η is
what sets the numerical method apart from the matrix
determinant method. A downside of these numerical cal-
culations for differential equations is the larger amount
of time it takes to do a calculation, and the lower preci-
sion around sharp features. While the analytic solutions
take around five minutes to yield results, the numerical
solutions take anywhere from three to over ten hours.

The stability diagrams from numerical integration and
matrix determinant calculations are compared in Fig. 5.
The thin resonances extending to the q2-axis are less visi-
ble in the numerically calculated diagrams due to the lim-

ited (q1, q2) resolution and finite integration time. These
resonances are infinitely thin near the q2-axis — which
means hardly resolvable — and evolve over large time
periods that would require excessive computation power
to evaluate.

Stability diagrams for irrational values of η share gen-
eral features with diagrams for nearby integer values of η,
but contain complex structures of instability that appear
to have a fractal nature of scale-invariant complexity as
shown in Fig. 6.

Equation of damped motion

Adding a damping term to Eq. (2) yields a new differ-
ential equation that can now model effects such as laser
cooling or coupling of the particles’ mechanical motions
to a cold resonant circuit [27, 28],

ẍ(τ) + 2bẋ(τ) + (a− 2q1 cos 2η−1τ − 2q2 cos 2τ)x(τ) = 0,
(15)

where b = β/mΩ2 and β is the damping parameter.
Equation (15) is numerically integrated and the stabil-
ity assessed by the same threshold as in Eq. (14). The
effect of damping terms is pictured in Fig. 7.
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FIG. 8. Numerically calculated rms radii for various number of positrons (circle), or antiprotons (squares). The calculation
is done separately for positrons and antiprotons. Ions were assumed to have an average kinetic energy corresponding to a
temperature of 4 K. Adding a low-frequency potential can significantly affect the cloud size of antiprotons, while leaving the
positron cloud largely unaffected. Black symbols show rms radii for positrons and antiprotons without the low-frequency
potential. Calculations were performed for η = 7, 45 and 170. The bottom row shows the same data on an enlarged vertical
scale. The reason for apparent resonances for 5 and 9 ions is not presently understood. These plots show that for a frequency
ratio η = 170 it is possible to almost match positron and antiproton cloud sizes (see Fig. 9).

Equations of motion with magnetic field

For antihydrogen production the ion trap must be op-
erated in the presence of a magnetic field to trap the
resulting neutral particles. A magnetic trap uses an in-
homogeneous magnetic field to create a potential well.
As a first approximation of the effect of the magnetic
field on the charged particles we consider the effect of a
uniform magnetic field B0 along the z-axis of the trap.
We consider the effect of a uniform magnetic field B0

along the z-axis of the trap. Due to the Lorentz force the
x- and y-motion are no longer independent and we get a
pair of coupled equations,

ẍ(τ)− pẏ(τ) + (a− 2q1 cos 2η−1τ − 2q2 cos 2τ)x(τ) = 0,
(16)

ÿ(τ) + pẋ(τ) + (a− 2q1 cos 2η−1τ − 2q2 cos 2τ)y(τ) = 0,
(17)

where p = (2B0Ze)/(Ω2m) is a dimensionless magnetic
field parameter related to the cyclotron frequency. Sta-
bility can be evaluated using the matrix determinant
method after making a coordinate transformation to a
frame rotating with frequency p/2 [16]. In this rotating
frame the magnetic field acts as an extra DC potential.
The effects of different values of p are shown in the sta-
bility diagrams of Fig. 7. In general the magnetic field
increases stability due to the radially directed Lorentz
force. This effect has been observed in single-frequency
Paul traps combined with Penning traps [15].

ANTIHYDROGEN PRODUCTION IN
TWO-FREQUENCY PAUL TRAP

As discussed previously, a benefit of a two-frequency
trap for charged particles with vastly different charge-
to-mass ratios is the independent control over the trap-
ping potential for each species. In a single-frequency trap
the heavy particle experiences a much weaker trapping
potential, resulting in a larger volume of confinement
and poor overlap with the light particle cloud. Adding
a low-frequency field allows heavy charged particles to
be compressed without affecting the light charged par-
ticles. This also opens the possibility of independent
transport of charged species within the same volume. Us-
ing a nested electrode structure the two charged species
may be initially trapped in different volumes and then
merged. This is advantageous for antihydrogen produc-
tion, where the current procedure is to trap antiprotons
and positrons in independent potential wells and then
inject the antiprotons into the positron cloud.

We ran numerical calculations of trapping that account
for the inter-particle Coulomb interactions. For a collec-
tion of N positrons and N ′ antiprotons we introduce the
variables ri = (xi, yi, zi) and Rk = (Xk, Yk, Zk) to in-
dicate the position vector for the i-th positron or k-th
antiproton, respectively. The equations of motions that
we solve are:
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r̈i + (a− 2q1 cos 2η−1τ ′ − 2q2 cos 2τ ′)

 xi
yi
−2zi

 =

(18)

Γ

N∑
j 6=i

ri − rj
|ri − rj|3

− Γ

N ′∑
j′

ri −Rj′

|ri −Rj′ |3
,

R̈k −
1

ρ
(a− 2q1 cos 2η−1τ ′ − 2q2 cos 2τ ′)

 Xk

Yk
−2Zk

 =

(19)

Γ

ρ

N ′∑
l 6=k

Rk −Rl

|Rk −Rl|3
− Γ

ρ

N∑
l′

Rk − rl′

|Rk − rl′ |3
,

where the ρ = mp/me is the ratio of masses, and Γ is a
dimensionless Coulomb constant given by

Γ =
4e2

meΩ2
2l

3
0

. (20)

This constant is defined in cgs units (e = 4.8 ×
10−10 statC), and the characteristic length scale l0 is
chosen to be 10−4 cm. This formulation of the equa-
tions of motion is inspired by the work in Ref. [29], where
antihydrogen production in a single-frequency trap was
considered. In that work production of transient, clas-
sically bound antihydrogen states was observed in nu-
merical simulations for a single-frequency Paul trap op-
timized for positron confinement. Reference [29] also
claims a trapping mechanism related to the attraction
between trapped positrons and antiprotons. While the
Coulomb interaction certainly provides a significant at-
tractive force between antiprotons and positrons in close
proximity, we believe the effect to be overstated in [29]
and they primarily observe the weak but still-significant
confining force of an infinite-range dynamic potential on
antiprotons. This is demonstrated in Fig. 8, where a
single-frequency Paul trap optimized for positrons pro-
vides weak confinement for antiprotons without positrons
in the trap.

In the first simulation we consider positrons and an-
tiprotons separately. The equations are numerically in-
tegrated for between 1 and 10 particles. The root-mean-
square (rms) radius,

√
〈|ri|2〉, of each particle’s orbit in

a simulation is evaluated and the average of these val-
ues over all particles is calculated. The simulation for
each particle number is repeated 15 times with a ran-
domly chosen set of initial velocities corresponding to a
4 K temperature. The results of these simulations for
positrons and antiprotons are shown in Fig. 8. The val-
ues of q2 = 0.37 and q1 = 0.024 for the positrons were
chosen as stable operating regions for all three frequency
ratios and along all three axes. The trap drive frequen-
cies are chosen such that Ω2/2π = 600 MHz and η = 170.

FIG. 9. Orbits for 10 positrons (light gray) and two an-
tiprotons (red) in a two-frequency trap with positron trap
parameters q2 = 0.37, η = 170, q1 = 0 (left) and q1 = 0.024
(right). The simulation is done for a realistic scenario where
both species are present. When q1 = 0 the antiproton orbit
extends outside the plot boundaries.

Results were calculated with and without the q1 term,
and clearly show that for large frequency ratios the an-
tiproton cloud can be compressed considerably without
having any significant effect on the positron cloud.

In the second simulation we consider a mixture of 10
positrons and two antiprotons using the same parame-
ters as before. The simulation shows that recombina-
tion is likely to occur at an enhanced rate with a two-
frequency trap, due primarily to the increased overlap
of the antiproton and positron clouds. Figure 9 shows
positron and antiproton orbits with and without the low-
frequency potential. The low-frequency potential does
seem to moderately affect the positron orbits, possibly
due to the increased rate of energy changing collisions
between positrons and antiprotons. The average rms
distance between antiprotons and positrons is plotted in
Fig. 10.

To quantify relative recombination rates, we calcu-
late the energy of each reduced-mass positron-antiproton
pair,

E(t) =
1

2

memp

me +mp
(vrel.vrel)−

Γ

|rrel|
, (21)

where vrel is the relative velocity of a given positron-
antiproton pair and rrel is the distance between them. A
negative energy corresponds to a classically bound state.
A list containing the energy of every positron-antiproton
pair Eij(t) is calculated as a function of time, and the
number of negative energies is recorded at every point
in the simulation. Figure 10 shows the cumulative num-
ber of bound pairs produced during the simulation, with
and without the low-frequency confining potential. A
non-zero q1 results in bound antiproton-positron pairs
appearing 5× more often than for q1 = 0.
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FIG. 10. (top) Plot of average rms distance between
positrons and antiprotons for positron trap parameters q1 =
0 [black] and q1 = 0.024 [red]. The frequency ratio is
η = 170 and q2 = 0.37. (bottom) Cumulative number of
bound antiproton-positron pairs for the same trap parame-
ters, (black) q1 = 0 and (red) q1 = 0.024. The appearance of
bound pairs is five times more frequent with the non-zero q1.

Charge density

The Coulomb interaction between positrons and an-
tiprotons is conservative, and to create a bound state
from initially unbound particles a third party must re-
move energy from the system. The spontaneous emis-
sion of photons is one possible mechanism, but is a slow
process compared to the characteristic close-interaction
time for charged particles. The primary mechanism for
antihydrogen production in the ALPHA experiment is
a three-body scattering process that relies on a high-
density positron plasma [30]. More than 106 positrons
are trapped with a density of > 107 ē/cm3 [10].

We estimate the achievable positron densities in a Paul
trap by assuming a force balance between the Coulomb
and pseudopotential forces for a positron at the edge of
the positron cloud,

Ne2

r2
=

1

2
mω2r,

where the equation is written in cgs units. The an-
tiproton density is assumed negligibly low. This leads
to an expected charge density ρē = (3/8π)mω2/(e2).
If we assume a trap drive frequency of Ω2/2π = 6 ×
108 Hz, and q2 = 0.37, the positron secular frequency
is ω/2π ≈ 80 MHz and the maximum positron density
is ρē ≈ 2 × 108 ē/cm3, significantly higher than in the
ALPHA experiment. This suggests that three-body re-
combination is also a viable option for an all rf trap.

Extrapolating the conclusions of our simulations from
several charged particles to several million charged par-
ticles is not straightforward, for instance instability may

arise due to excitation of collective particle oscillations by
the dynamic potential. These problems may be avoided,
however, by using more compact trap configurations, for
instance planar traps fabricated with atom-chip technol-
ogy [20, 21]. These can localize charged particles more
precisely and permit optical access without restrictions
enforced by large magnets. Increased overlap and local-
ization would facilitate studies of other recombination
mechanisms, such as resonantly enhanced photoinduced
recombination [31–33]. Recombination in a smaller vol-
ume may also simplify direct laser cooling of ground-state
antihydrogen that may be produced [34, 35]. Together
these methods may reduce the number of positrons and
antiprotons necessary, and increase the precision and rate
of experiments with trapped H̄.

SUMMARY

We have discussed the potential of two-frequency Paul
traps for the simultaneous trapping of positrons and an-
tiprotons for recombination to antihydrogen. Stable re-
gions in the trap parameter space have been identified
and confirmed using independent methods based on Flo-
quet theory and direct numerical integration of the equa-
tions of motion. Floquet theory provides stability maps
for any rational frequency ratio, while numerical integra-
tion provides stability maps of reduced precision for any
possible frequency ratio. Additional effects such as those
of damping and magnetic fields were also investigated.
We have further confirmed that two-frequency potentials
enable charged particles with very different charge-mass
ratios to be trapped simultaneously in volumes of simi-
lar size, a significant improvement over single-frequency
Paul traps. The influence of this control on the rate of
antihydrogen production is a topic of continued investi-
gation.

The feasibility of two-frequency Paul traps for antihy-
drogen recombination is a topic that merits further study;
a number of important questions need to be answered.
What effect does micromotion in an rf trap have on the
energy spectrum of the produced antihydrogen? How
will the trap electric fields contribute to ionization loss
of Rydberg states? What trap depths can be achieved
with real electrode geometries? Can atomic ion species
be used for sympathetic cooling?

Investigation of recombination dynamics in two-
frequency traps can be pursued initially with ions such
as 9Be+ or 40Ca+ and electrons. These positive ions
have convenient laser-cooling wavelengths, which simpli-
fies many technical challenges of detection and cooling.
If the techniques can eventually be proven with protons
and electrons, the extension to antihydrogen is mainly a
question of technical complexity and availability of an-
tiprotons.

This work was supported in part by the DFG DIP



10

project Ref. FO 703/2-1 1 SCHM 1049/7-1. DB, FSK,
and NL acknowledge financial support by the Cluster of
Excellence PRISMA at the Johannes-Gutenberg Univer-
sität Mainz. FSK acknowledges support from the DFG
within the project BESCOOL. NL was supported by a
Marie Curie International Incoming Fellowship within
the 7th European Community Framework Programme.

∗ naleefer@berkeley.edu
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Physical Review Letters 108, 12 (2012), arXiv:1201.2717.

[9] C. Amole, M. D. Ashkezari, M. Baquero-Ruiz,
W. Bertsche, E. Butler, A. Capra, C. L. Cesar, M. Charl-
ton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M. C.
Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N.
Hardy, M. E. Hayden, C. A. Isaac, S. Jonsell, L. Kur-
chaninov, A. Little, N. Madsen, J. T. K. McKenna,
S. Menary, S. C. Napoli, K. Olchanski, A. Olin, P. Pusa,
C. Ø. Rasmussen, F. Robicheaux, E. Sarid, C. R. Shields,
D. M. Silveira, C. So, S. Stracka, R. I. Thompson, D. P.
van der Werf, J. S. Wurtele, A. I. Zhmoginov, L. Fried-
land, and A. collaboration), Physics of Plasmas 20,
043510 (2013).

[10] C. Amole, G. B. Andresen, M. D. Ashkezari, M. Baquero-
Ruiz, W. Bertsche, P. D. Bowe, E. Butler, A. Capra,
P. T. Carpenter, C. L. Cesar, S. Chapman, M. Charl-
ton, A. Deller, S. Eriksson, J. Escallier, J. Fajans,
T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez,
J. S. Hangst, W. N. Hardy, R. S. Hayano, M. E. Hayden,
A. J. Humphries, J. L. Hurt, R. Hydomako, C. A. Isaac,
M. J. Jenkins, S. Jonsell, L. V. J??rgensen, S. J. Kerri-
gan, L. Kurchaninov, N. Madsen, A. Marone, J. T. K.
McKenna, S. Menary, P. Nolan, K. Olchanski, A. Olin,
B. Parker, A. Povilus, P. Pusa, F. Robicheaux, E. Sarid,
D. Seddon, S. Seif El Nasr, D. M. Silveira, C. So, J. W.
Storey, R. I. Thompson, J. Thornhill, D. Wells, D. P.
van der Werf, J. S. Wurtele, and Y. Yamazaki, Nuclear
Instruments and Methods in Physics Research, Section
A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment 735, 319 (2014).

[11] C. Amole, M. D. Ashkezari, M. Baquero-Ruiz,
W. Bertsche, E. Butler, A. Capra, C. L. Cesar, M. Charl-
ton, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara,
D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy,
M. E. Hayden, C. A. Isaac, S. Jonsell, L. Kurchaninov,
A. Little, N. Madsen, J. T. K. McKenna, S. Menary,
S. C. Napoli, P. Nolan, K. Olchanski, A. Olin, A. Povilus,
P. Pusa, C. Ø. Rasmussen, F. Robicheaux, E. Sarid,
D. M. Silveira, C. So, T. D. Tharp, R. I. Thompson,
D. P. van der Werf, Z. Vendeiro, J. S. Wurtele, A. I. Zh-
moginov, and A. E. Charman, Nature Communications
5, 3955 (2014).

[12] A. Mohri and Y. Yamazaki, Europhysics Letters (EPL)
63, 207 (2003).

[13] Y. Enomoto, N. Kuroda, K. Michishio, C. H. Kim, H. Hi-
gaki, Y. Nagata, Y. Kanai, H. A. Torii, M. Corradini,
M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli,
N. Zurlo, K. Fujii, M. Ohtsuka, K. Tanaka, H. Imao,
Y. Nagashima, Y. Matsuda, B. Juhász, A. Mohri, and
Y. Yamazaki, Physical Review Letters 105, 1 (2010).

[14] N. Kuroda, S. Ulmer, D. J. Murtagh, S. Van Gorp,
Y. Nagata, M. Diermaier, S. Federmann, M. Leali,
C. Malbrunot, V. Mascagna, O. Massiczek, K. Michishio,
T. Mizutani, a. Mohri, H. Nagahama, M. Ohtsuka,
B. Radics, S. Sakurai, C. Sauerzopf, K. Suzuki,
M. Tajima, H. A. Torii, L. Venturelli, B. Wünschek,
J. Zmeskal, N. Zurlo, H. Higaki, Y. Kanai, E. Lodi-
Rizzini, Y. Nagashima, Y. Matsuda, E. Widmann, and
Y. Yamazaki, Nature communications 5, 3089 (2014).

[15] J. Walz, S. Ross, C. Zimmermann, L. Ricci,
M. Prevedelli, and T. W. Hänsch, Physical Review Let-
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