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Autoimmune disease is driven by the dysregulation of one’s own immune system and its inability 

to distinguish self from foreign; however, the etiology of autoimmunity is not wholly understood. 

I have developed a data-driven mathematical model which quantifies the dysregulation of 

autoimmune disease pathogenesis. The model explores the dynamics of homeostatic expansion 

during early immune development in healthy BALB/c mice (Wildtype; WT) and the pathogenesis 

of autoimmune disease in an interleukin-2 (IL-2) deficient BALB/c mouse model (IL-2 KO). This 

study focuses on the interactions between naive CD4 T cells, regulatory CD4 T cells (Tregs), 

activated CD4 T cells, and the dynamic influence of IL-2 on Treg functionality and survival. 

Removal of the IL-2 cytokine creates a homeostatic imbalance that leads to the rapid onset of 

autoimmune disease. Modeling allows us to predict the behavior of immune cells, quantify the 

suppressive differences between a healthy and an autoimmune system, and explore the 

parameters that can prevent autoimmune disease. Currently, no published models have 

quantitatively studied this specific timeframe in combination with the immunological dynamics 

that prevent autoimmune disease. 

 



 

 

 

 

CHAPTER ONE 
 

Introduction: Autoimmune disease, mathematical modeling, and 

current progress in the field 

1.1 Autoimmune disease 

Autoimmune diseases (AD), such as systemic lupus, colitis, and autoimmune hemolytic anemia 

(AIHA), affect 80 to 120 million people in the United States [1]. These diseases are often life-

threatening, difficult to diagnose, and incurable. Risk factors such as exposure to environmental 

irritants [3], family history of autoimmune disease [4], age, sex, and ethnicity [5] are known to 

increase the chances of developing autoimmune disease. However, despite our understanding of 

risk factors, we still do not fully understand the pathogenesis of AD and their prevalence is on the 

rise [2].  

To understand autoimmune pathology, we must first understand the mechanism that prevents the 

immune system from recognizing self-antigens. Tolerance prevents the immune system from 

recognizing an antigen, specifically for the deterrence of AD; it prevents self-antigen recognition. 

In addition, regulatory T cells (Tregs) are crucial for maintaining immunological tolerance to self-

antigens and preventing excessive immune responses detrimental to the host [91]. 

Although there are several treatment options for AD [92-94], these diseases are incurable, making 

it essential to recognize regulatory dysregulation before developing autoimmunity. Using 

mathematical modeling, I attempt to investigate the anomalies that develop in the Treg population 

before the failure of the immunological self-tolerance, with the understanding that this failure 

leads to the recognition of self-antigens and the development of autoimmune disease. I collected 

the data from healthy (wild type; WT) and autoimmune mouse model systems (IL-2 knockout; 

KO). In the KO mouse model, Treg functionality is disrupted, resulting in the rapid onset of 

autoimmunity [45, 51,52]. By creating a mathematical model that mimics the data of healthy and 

autoimmune systems, we may understand early dysregulation and forecast prevention strategies 

for AD. 

Size, homeostasis, expansion, and function of Tregs are determined by IL-2 cytokine. As shown 

by the IL-2 KO mice model and system lupus erythematosus patients, IL-2 cytokine dysfunction 

may lead to the development of autoimmune illness [45, 51, 52, 95]. However, due to the short 

half-life of IL-2 (30 minutes) [95-98], it is challenging to experimentally study their effects on the 

immune system, particularly its maintenance of self-tolerance through Tregs. Using our 

mathematical model, we can investigate the dynamics of IL-2 and Tregs in self-tolerance and 

uncover dysregulation before the start of AD. 

Two types of mathematical models can be formulated: qualitative and quantitative. The 

qualitative model does not implement any data for its calibration, and the quantitative does. I 

have developed a quantitative mathematical model, calibrated by in-house data, that can detect 
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early signs of dysregulation in the Treg growth trajectory and identify preventative measures for 

autoimmune disease.  

 

Tolerance 
To prevent and treat autoimmunity, we must understand the tolerance mechanism. Self-tolerance 

is the ability of the immune system to avoid activating against self-antigens. After tolerance 

develops, these antigens deactivate or eliminate lymphocytes that identify them. Tolerance to 

self-peptides is a crucial feature of the immune system; failure of this feature results in 

autoimmune disease development [22].  

There are two mechanisms of tolerance: central and peripheral tolerance. For central tolerance, 

immature T cells are tested against self-peptides in the thymus. If immature T cell has a strong 

interaction with a self-peptide via its lymphocytes’ T cell receptor (TCR), they are removed by 

apoptosis (negative selection). On the other hand, immature lymphocytes that recognize a self-

peptide with low avidity survive this process and egress into the periphery (positive selection) as 

naïve T cells. 

Central tolerance does not work perfectly, and some self-reactive cells still make their way to the 

periphery [21] where peripheral tolerance protects the body from AD development. Survival of 

naive T cells in the periphery depends on signaling provided by antigen-presenting cells (APC). 

Naive T lymphocytes are supplied with the survival signal when the TCR has a low-affinity 

interaction with self-peptides. Conversely, a strong interaction can lead to the deletion of that 

specific clonotype or become anergic [22]. Additionally, the equilibrium between Tregs and 

activated T cells maintains peripheral self-tolerance and immunological homeostasis. In many 

ways, Tregs inhibit the activation and proliferation of other cells and contribute to the 

maintenance of self-tolerance [99]. 

Amongst math-oriented immunologists, it is theorized that competition for survival signals 

creates an environment that exerts selective pressure on a highly diverse repertoire of naive T cell 

clonotypes [23-25]. T cell diversity, an essential feature of the immune system, maximizes the 

potential of recognizing any pathogen that invades the body [26]. This competition for survival 

signals creates a niche environment for the survival of a specific set of naive T cell clonotypes. 

The accessibility to interact with self-peptides, presented by APCs, sets the size limit of a niche 

population of naive T cells. Mandl et al. postulates that over time, as the immune system 

accumulates the number of pathogens it encounters, T cell receptors with a more robust 

interaction with self-peptides dominate the naive T cell repertoire. They found evidence that 

TCRs that bind well to foreign antigens also bind well to self-antigens. This skews the system 

towards a more efficient recognition of pathogens that can potentially pose a danger to the host in 

the form of autoimmune disease [26]. The results from Mandl et al. may explain why 

autoimmune disease becomes more prevalent as the population ages [100]. 

The story of tolerance becomes more complicated when we consider that Tregs depend on 

survival signals produced by activated T cells in the form of IL-2 cytokine (more on this ahead). 

A mathematical model developed by Carneiro et al. studies the theoretical dynamics of repertoire 

selection. They conclude that a subset of autoreactive effector and Treg cells regulate each other’s 

growth [27], suggesting that a low-grade amount of self-activation is necessary to maintain a 

basal population of Tregs. 
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Regulatory T cells 

In 1995, Sakaguchi et al. identified a population of CD4+CD25+ T cells in mice that accounted 

for 5-10% of all CD4 T cells. In vitro and in vivo, these CD4+CD25+ T cells demonstrated 

powerful regulatory activities [101]. The thymus is the source of naturally generated 

CD4+CD25+ T cells since thymectomy on day 3 of life results in negligible to undetectable 

peripheral CD4+CD25+ T cells in BALB/c mice [111]. From naïve T cells, induced regulatory T 

cells are produced de novo extrathymically. 

In 2000, Chatila et al. identified mutations in the gene encoding the transcription factor forkhead 

box P3 (Foxp3), previously named JM2, as the cause of X-linked autoimmunity-allergic 

dysregulation syndrome, causing an autoimmune lymphoproliferation disorder [102]. In addition, 

seminal investigations showed that Foxp3 controls Treg cell activity in scurfy mice, which 

develop a lymphoproliferative illness due to Treg functional deficiency [103, 104]. Therefore, I 

used foxp3 as a cellular marker for regulatory CD4 T cells in this project.  

Regulation of the immune reaction requires a balance between mounting a protective immune 

response and preventing a harmful inflammatory response. Tregs prevents an out-of-control 

immune response that can cause tissue damage, exposing more self-antigens and potentially 

instigating an even more robust immune response to self-antigens. There is significant evidence 

of dysregulation in the Treg population that can lead to autoimmune disease. Understanding the 

systemic influence of Tregs is critical and serves as the primary motivator for developing a 

mathematical model. 

Dysregulation of Tregs can be seen in the autoimmune disease systemic lupus erythematosus 

(SLE), where the immune system attacks widespread tissue. Tissues targeted in this disease 

include joints, skin, brain, lungs, kidneys, and blood vessels. Tregs are significantly decreased in 

patients with active SLE compared to control and inactive SLE groups [12]. Another systemic 

disease, autoimmune hemolytic anemia (AIHA) is an autoimmune disease where the immune 

system creates autoantibodies that target red blood cells (RBC) for destruction. One study found 

that patients with AIHA had 4.63% Tregs circulating in their blood, while the control group had 

9.76% [13]. Mgadmi et al. used repeated rat RBC immunization into C57BL/6 to study the 

immune response against RBC. Treatment with anti-CD25 depletes the Treg population. In this 

study, treatment with anti-CD25 before immunization with rat RBCs increased the incidence of 

AIHA from 30% to 90% [14]. 

 

Tregs prevent autoimmune disease 

In addition to the dysregulation seen of the Treg population in AD, there is evidence that Tregs 

may inhibit and prevent autoimmune illness. For example, colitis is an organ-specific 

inflammatory disease affecting the colon's inner lining. This disease is characterized by chronic 

inflammation that can lead to losing blood supply to the area, infection, and inflammatory bowel 

disease. Scientists discovered that CD4+ Tregs could inhibit colitis. This opened a new focus on 

signaling pathways that can give an avenue of therapeutic influence, such as manipulating Treg 

function via CTLA-4 and TGF-𝜷 [15-17].  

Type 1 diabetes (T1D) is one example of an organ-specific disease where Treg defects are 

observed [18]. Our knowledge of autoimmune diseases has accumulated enough to allow disease 

prevention and treatment attempts. In nonobese diabetic (NOD) mice, Grinberg-Bleyer et al., 

reversed T1D by the injection of low-dose IL-2 cytokine [19]. The infusion of IL-2 expands the 

survivability of Tregs and enhances their ability to prevent AD.  
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Bluestone, et al. developed a path for the therapeutic care of T1D in patients. The treatment 

involves the isolation and in vitro expansion of patient Tregs, then reinfusion of expanded Tregs 

back into the patients. This experiment is in a phase 1 clinical trial [20], where they primarily test 

for the safety of this procedure on people. They report that the infusion of Tregs has been well 

tolerated, with no additional concerns for safety. These are promising results for future 

therapeutic strategies for autoimmune disease. 

 

Peripheral tolerance and Treg suppression 

How do Tregs suppress and maintain peripheral tolerance? Tregs exercise their suppressive 

function in a contact-dependent and contact-independent manner. These include cytotoxic 

mechanisms, inhibitory cytokines, suppression of APCs, and the disruption of metabolic 

pathways.  

Cytolysis, via the secretion of granzymes, is a strength of Natural Killer (NK) cells and CD8 

cytotoxic T lymphocytes (CTL). CD4+Foxp3+ Tregs also possess cytotoxic properties by the 

differential expression of granzymes B, and perforin [28-30, 105-110]. However, this function 

can potentially prove to be problematic: It has been shown that Tregs can hamper the removal of 

cancer cells by eliminating NK and CTLs via granzyme B and perforin [31]. Although Treg 

suppression is essential for the maintenance of tolerance and immune suppression, their 

overperformance can be problematic for the host. 

In addition to Tregs directly affecting T effector cells, they can also modulate the function and the 

maturation of dendritic cells (DC). DCs are types of antigen-presenting cells whose primary 

function is to process antigenic material and present it on the surface for T cells to interact and 

identify. Direct interactions between Tregs and DCs attenuate effector T cell activation [32, 33]. 

This process involves the co-stimulatory molecule CTLA4, which Tregs constitutively express. In 

addition, Tregs can induce the expression of indoleamine 2,3-dioxygenase in DCs. This potent 

regulatory molecule causes the production of pro-apoptotic metabolites, resulting in the 

suppression of activated T cells [34]. Tregs can downregulate the expression of co-stimulatory 

molecules [35], suppressing the activation of naive T cells. Lastly, several studies have 

demonstrated that Tregs influence the maturation and function of DCs [36-40].  

The influence of Tregs on the metabolic function of effector T cells is still unclear but worthy of 

mention as a mechanism of Treg suppression. Tregs constitutively express CD25, which allows 

for their identification by the high levels of CD25 expression on their cellular surface. CD25 is a 

high-affinity receptor for the IL-2 cytokine. Activated effector T cells require IL-2 for the initial 

stages of activation and survival. In one study, Duhoit et al. suggest that Tregs can induce 

cytokine-deprivation-mediated apoptosis [41]. Lastly, the co-expression of CD39 and CD73 on 

Tregs may trigger a signaling cascade in effector T cells that downregulate their function [42, 

43].  

As a community, we understand the components involved in regulating tolerance and some 

mechanisms of Treg suppression, but how these mechanisms prevent the development of AD is 

still an active field of investigation. There are, however, theories of how the Treg function creates 

a threshold that must be overcome by a specific clonotype of naive T cells to trigger an immune 

response [44]. The process of central tolerance, selecting naive T cells with a low-level affinity 

for self-antigens, the competitive environment for naive T cells, and the relentless suppression by 

Tregs create an environment where self-reactive cells are unlikely to trigger an immune 

response.  
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If we theorize that Tregs establishes a ‘threshold’ for activation, we can then assume that there 

must be a concentration of Tregs to maintain this threshold. This concentration must be enough to 

counteract the low-grade immune response to self-antigens while also not preventing an immune 

response to a pathogen. This balance between T cells and Tregs is well understood as a 

requirement for proper immune function. In a normal and healthy system, it is expected for Tregs 

to represent ~5-15% of the entire T cell population [45-48]. However, how this balance is 

maintained is still unclear. The study of autoimmune disease development has moved past patient 

data towards a more sophisticated and systemic approach using mouse autoimmune models. 

 

1.2 IL-2 deficient mouse model system 

Several inbred mouse models have been developed to study the dynamics of autoimmune disease. 

Because of the complex nature of autoimmune disease and the uncertainty around its 

pathogenesis, mouse models offer us a manipulatable way to study AD dynamics. However, these 

systems are not perfect and sometimes eliminate a critical feature required for immune 

homeostasis. Eliminating these vital features leads to the rapid onset of AD, which can potentially 

mask the subtle differences that must occur for the development of autoimmune disease. Despite 

this, mouse models still provide a great deal of insight into the dynamics of AD and have 

provided insight into the therapeutic avenues of autoimmune diseases like T1D, lupus, and 

rheumatoid arthritis. 

Many murine models have been developed to study the dynamics of autoimmune disease, and 

they fall under three categories; induced, spontaneous, and genetically engineered. A small 

sample of the possible mice models that exist include: NOD mice that spontaneously develop a 

form of T1D [49]; Collagen-induced arthritis in DBA/1 mice [50]; and IL-2 knockout (IL-2 KO) 

mice that can develop systemic lupus erythematosus, Crohn’s disease and AIHA [45, 51, 52]. 

Treg function is impaired in the IL-2 KO mouse model. For this project, however, I will use the 

IL-2 KO mouse model to investigate Tregs' role in self-tolerance mathematically. 

 

IL-2 Cytokine 

Historically the IL-2 cytokine was named T cell growth factor because of its ability to stimulate 

proliferative growth in T cells [53]. IL-2 is mainly expressed by activated CD4 T cells in 

response to antigen stimulation but can also be produced by CD8 T cells and various other 

immune cells [54]. IL-2 promotes CD4 T cells, CD8 T cells, and NK cells, proliferation and 

induces cytolytic activity in CD8 T cells [55]. When the IL-2-deficient mouse was generated, the 

story expanded.  

As Katzman et al. [56] point out, there are opposing functions to the IL-2 cytokine. IL-2 binds to 

a complex of receptors to induce intracellular signaling. This complex includes the IL-2Rα 

(CD25), IL-2Rꞵ (CD122), and the common gamma (γc) chain (CD132). Defects in any of these 

receptor components result in severe autoimmunity [57]. For example, in the IL-2 KO mouse 

model, where IL-2 is depleted, all mice die between 18-36 days on the BALB/C genetic 

background from a combination of autoimmune hemolytic anemia and bone marrow failure [58]. 

 

IL-2 and Tregs 
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Treg size, homeostasis, and expansion are dependent on the availability of IL-2. Survival and 

function are also reliant on the presence of IL-2 for activated Tregs. In experiments where IL-2 is 

either removed or the receptor blocked with anti-CD25, significant depletion in Treg population 

size and function is observed, resulting in the progression of AD [59].  

In addition to IL-2 supporting the population size of Tregs, it also plays a role in their suppressive 

abilities. When Tregs are pre-treated with IL-2 there is a marked increase in their suppressive 

abilities in co-culture assays with effector CD4 T cells [60]. Since Treg survivability depends on 

IL-2, Barron et al. artificially extended the life of Tregs in IL-2 KO mice by eliminating the pro-

apoptotic BH3-only protein, Bim. In these experiments, Treg survival increased, but lethal levels 

of autoimmunity still occurred, because IL-2 plays a critical role in the suppressive function of 

Tregs [61]. 

The IL-2 KO system has several advantages for studying the progression of autoimmune disease: 

disease is rapid, the major underlying tolerance defect is known (Treg deficiency and reduced 

Treg suppressive function), and disease can be manipulated by eliminating various signals 

(CD28, CD40, dendritic cell help) [62]. Early signs of autoimmune disease have been observed 

by day 12 of development [51, 63] in IL-2 KO mice. Lethal autoimmunity is observed by day 19 

on the BALB/c genetic background. This allows us to track the deviation from a healthy 

developmental trajectory to an autoimmune state. In combination with modern high throughput 

data collection and mathematical modeling, we have the potential to simulate the instability that 

occurs globally in a system to study the development of autoimmune disease and identify critical 

characteristics of immune imbalance before the onset of autoimmune disease.   

1.3 A systems biology approach 

The immune system is diverse, containing a heterogeneous mix of cell types in unique states of 

differentiation and activation. Moreover, the diversity in cell state, location, and molecular 

organization or immune cells vary within and across the same organism. For the most part, 

immunology research has focused on specific cellular and molecular cell components by using 

powerful animal and in vitro models [64]. However, how these populations interact, influence 

each other, and function as a complete system has not been investigated robustly [65]. In part, this 

is a consequence of many relevant parameters (number and location of specific cell times) and 

mechanistic complexities (gene expression dynamics, circulating cytokines, and growth factors). 

Fortunately, modern advances in data acquisition – including the development of multiplexed 

high-throughput technologies like proteomic and transcriptomic profiling [66, 67], single-cell 

technologies [68], DNA sequencing [69], and multicolor flow cytometry [70] – have provided 

greater resolution into the temporal dynamics of immune systems. This allows the opportunity to 

develop, validate and study system-wide-level mathematical models of immunological 

phenomena. In addition, these higher-resolution data offer the hope for advanced and 

personalized therapeutics for human diseases, including autoimmune diseases. However, these 

realizations will only be realized if underlying immune system dynamics can be mechanistically 

predicted with mathematical models which will inform these personalized therapies [71]. 

Developing and validating mathematical models requires an interdisciplinary approach to 

integrate biological and physiological knowledge, chemical and physical properties as well as 

clinical and omics data.  
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1.4 Immune mathematical modeling 

The reductionist approach of immunology allowed for the discovery of fundamental features of 

the immune system ranging from discriminating between self- and non-self-antigens to the 

persistent suppressive ability of Tregs. From these features, we can begin to organize a 

conceptual model of autoimmune disease onset from IL-2 depletion.  

Mathematical modeling can become a powerful tool for knowledge discovery as it combines all 

known features into a single cohesive model. More specifically, a mathematical model serves 

many important roles such as: explaining existing observations, aiding in the generation of new 

hypotheses, understanding the impact of assumptions made in the model, generating in silico data 

in comparison to experimental data [72], improving the organization of data generated from 

experiments [73], offering search criteria for ideas that can be tested experimentally (reducing the 

time and cost of exploring with large experiments), discovering the underlying mechanisms 

driving certain phenomena [74], exploring the feasibility of an intuitive argument, and making 

theoretical contributions to the understanding of immunological systems [75].  

Comparisons between mathematical models and biological systems can follow two approaches: 

qualitative and quantitative models. In both, a mathematical formulation of a biological system is 

put together, often as an ordinary differential equation (ODE) representing the time-varying 

dynamics. However, once the structure of these models is complete, different approaches can be 

taken to explore the phenomenon in greater detail. For qualitative models, the main motivator is 

to explore the dynamics of the model without explicitly matching its quantitative output to 

experimental observation. For example, the mathematical model can be probed to determine 

conditions necessary for stability/instability [76], the probability that certain behavior occurs [77], 

or to investigate parameters that cause the bifurcation of the system into distinct behavioral 

patterns [78]. In quantitative comparisons, mathematical models are precisely developed in 

conjunction with and calibrated by experimental data [79] or use kinetic rates to try and predict 

the behavior of biochemical pathways in autoimmune disease [80]. Far from disjoint categories, 

there can be a combination of both qualitative and quantitative analysis of the same system of 

differential equations [81]. 

 

1.5 Qualitative modeling and autoimmune diseases 

Borghans et al. proposed one of the first mathematical models of immune system development 

including Tregs and autoimmune dynamics [82]. They aimed to determine the circumstances 

required to avoid autoimmune illness using "T cell vaccination," in which the immune system is 

prepared to prevent autoimmune disease through the injection of auto-reactive T cells. Although 

they note their model “is based on detailed data on experimental autoimmune encephalomyelitis”, 

the authors did not explicitly indicate how data was used to calibrate their mathematical model. 

Intriguingly, their model predicted qualitative differences to varying dose size of autoreactive T 

cells when inoculated.  

More recently, mathematical models that involve autoimmunity and the dynamics of Tregs have 

become increasingly complex. Models have begun to introduce differentiation from an active to 

an inactive state of CD4 T cells [44], the developmental process from somatic cells to active 

Tregs and T cells [83], and IL-2 dependent replication [84]. These studies aimed to identify 

conditions of the immune system which make it possible to perturb autoimmune disease by 

studying the qualitative results of their models. Again, these models were not fine-tuned to data, 

but focused on the phenomenological behavior possible from the models and used past data as a 

qualitative guide in development. As such, their theoretical probing of autoimmune dysregulation 
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could guide the development of experimental conditions necessary to answer these questions, but 

the models themselves did not lead to groundbreaking discoveries [84]. 

 

1.6 Quantitative modeling and autoimmune diseases 

Quantitative comparisons between mathematical models and empirical data are far less common 

than qualitative ones. Moreover, it is even more rare to see quantitative comparisons when 

examining models focused on immune system dysregulation. Busse et al. developed the first 

quantitative model focused on Treg, effector T cells, and IL-2 cytokine dynamics, but not 

autoimmunity [85]. Although Tregs and IL-2 cytokine dynamics are intimately associated with 

homeostasis and the prevention of autoimmune disease, Busse et al., do not explore the 

dysregulation that may occur for an autoimmune disease to develop. Instead, they study temporal 

dynamics between IL-2 production, Treg, and effector cell consumption of IL-2, and the resulting 

proliferation of Treg and effector cells. They quantitatively identified the simulation threshold by 

IL-2 cytokine that led to different proliferative states. Their model was validated by fitting the 

model to in-house collected data.  

Another important study in this field is the mathematical model developed by Garcia-Martinez et 

al. [87] of the IL-2 dynamics between Tregs and effector cells. Although the primary work in this 

study was qualitative, the mathematical model uses experimentally determined quantities and 

kinetic values (i.e., peripheral lymph nodes contain about 107 lymphocytes, 700-1000 IL-2 

receptors per activated T cells, IL-2 internalization, and half-life rates). Garcia-Martinez et al, 

found how the system’s steady-state could tend towards autoimmune disease when the 

autoreactive T cells outcompete the suppressive abilities of Tregs. Using experimentally 

determined rates is a useful strategy to predict the effects of drug therapies in the field of 

physiological based pharmacokinetic modeling and simulation (PBPK) [71]. However, this 

approach is problematic as values may vary between laboratories, and very few measure and 

estimate kinetic parameters [88, 89]. Due the heterogeneity of biological systems, temporal 

changes in machine behavior, and varying levels of technical skills can make interpreting kinetic 

rates within one’s own lab difficult so, the over-reliance on precisely knowing kinetic rates pose 

challenges to precise quantitative calibration and predictions from mathematical models.  

A recent study by Wong et al. used a combination of new imaging and computation approaches to 

study the dynamics between autoreactive T cells and Tregs at physiological numbers in situ [90]. 

In this study, they note that T cells that react to self-antigens transiently expand, produce IL-2 

cytokine and then the progeny readily dies off, they are ‘pruned’ by Treg suppression. Using a 

combination of data analysis, machine learning, and mathematical modeling they identified 

parameter combinations that allow autoreactive T cells to subvert the control of Tregs and escape 

the pruning event. This work provides a strong example of an autoimmune study that collected 

data and calibrated a mathematical model with the data collected. This type of approach to 

mathematical modeling ensures that the immune field receives a model that is both useful and 

quantitatively accurate in its reflection of the phenomenon of interest. 

 

1.7 Summary 

The project defined in the following chapters involves the creation of a quantitative model of 

immune system development calibrated by experimental data. I used this model to study 

dynamics rarely seen in immunological quantitative models: Treg and effector T cell dynamics, 

IL-2 influence on Treg survival and functionality, and homeostatic expansion in neonatal mice. 
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Currently, there are no published models that quantitatively study this specific timeframe in 

combination with the immunological dynamics that prevent autoimmune disease.  
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Chapter 2 
 

Methods and results: Characterization of autoimmune disease and data 

preparation for mathematical modeling 

To begin the characterization of autoimmune disease etiology, I must identify and isolate the 

relevant cellular populations. I will explain the logic for the collection days, the collection of cell 

populations, the experimental approach, and then explain the results from the data collected.  

2.1 Experimental conditions 

Days of data collection 

There are a few known key timepoints that contribute to the development of autoimmune disease 

pathology in IL-2 KO BALB/c mice. I chose the timepoints of data collection described below to 

survey important days of disease development. I collected data from both WT and KO mouse 

models for each timepoint, day 56 when IL-2 KO mice are no longer alive (n = 3-4). (Fig. 1) 

outlines autoimmune developmental events of IL-2 KO mice and time points of data collection 

(green diamonds), followed by a list of the rationale behind the days chosen: 

 

 

 
 

Figure 1. Timeline for data collection and autoimmune events.  Days of IL-2 KO autoimmune events and days 

selected for data extraction (green diamonds). Each tick mark represents a day, and the larger ticks represent every 5 

days.  

 

● Day 0: Birth  

● Day 4: Since thymectomy on day 3 of life results in negligible to undetectable peripheral 

CD4+CD25+ T cells in BALB/c mice, I assume that by day 4 Tregs ontogenetically 

begin to appear in the periphery from the thymus [1]. 

● Day 7: KO mice have an indistinguishable immune system compared to the WT [2]. 

● Day 9: Increased activation first observed in KO spleen [2]. 

● Day 10: Abnormal germinal center structures in KO mice observed [2]. 

● Day 12: Antibodies attached to red blood cells eventually causing autoimmune hemolytic 

anemia and aplastic anemia [3]; early bone marrow defects observed [4] 

● Day 16: CD8 T cells infiltrate the bone marrow and proliferate [4]. These are mid-stage 

disease developments of autoimmune diseases; I am interested in the cellular changes 

before serious symptoms of autoimmune disease become life threatening.  
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● Day 18+: Late-stage aplastic anemia (AA) and AIHA; B cell population crashes [2] 

● Day 56: Considered an adult mouse, only WT data was collected; IL-2 KO mice do not 

survive to this time point 

Cell populations 

At the beginning of the investigation, I did not know the structure of the mathematical model I 

would develop, but I knew the focus would be on the adaptive branch of the immune system. 

Therefore, I decided to track the growth trajectory of the significant cell populations in the 

adaptive immune system: CD4, CD8, B cells, and Tregs. Numerous studies show these 

populations are responsible for advancing and maintaining autoimmune disease in IL-2 KO [2, 5-

7] 

2.2 Data collection 

Mouse husbandry 

BALB/c IL-2-deficient mice were bred in our animal facility. BALB/c wild-type (WT) and IL-2 

heterozygous littermates were used interchangeably as controls in all experiments as no 

hemizygosity effect is observed. Male and female mice were used in all experiments. Mice were 

euthanized by CO2 asphyxiation followed by cervical dislocation or terminal bleed. All mice were 

bred and maintained in our specific pathogen-free facility in accordance with the guidelines of the 

Department of Animal Research Services at UC Merced. The UC Merced Institutional Animal 

Care and Use Committee approved all animal procedures. 

 

Organ processing and cell isolation 

Spleen and thymus were extracted, weighed, and processed through a wire mesh to generate 

single-cell suspensions. red blood cell (RBC) was lysed in lysis buffer was added to the sample, 

inverted for 30 seconds, left idle for 30 seconds, and then washed with phosphate-buffered saline 

(PBS). Samples were centrifuged at 1200 RPM for 5 minutes, supernatant discarded, and pellet 

resuspended in PBS. Cell counts were performed on a hemocytometer cell counter and 

resuspended to the desired concentration of cells.  

 

Spleen and thymic cells were surface stained in PBS / 2% fetal-bovine-serum with fluorochrome-

conjugated antibodies from Table 1 for 30 minutes at 4°C in the dark. Cells were washed with 

PBS/2%FBS, centrifuged at 1200 RPM for 5 mins, supernatant discarded. Cells were then fixed 

with Foxp3/Transcription Factor Fixation/Permeabilization Kit (eBioscience) according to the 

manufacturer’s instructions for intracellular proteins Ki67 and Foxp3.  

 

 

Marker Color Concentration Company Clone Purpose 

TCR-𝛃 FITC 1:400 Ebioscience H57-597 Part of the T cell 

receptor complex for 

activation 
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CD4  PerCP-Cy5.5 1:1600 Ebioscience RM4-5 Co-receptor for the T 

cell receptor complex in 

CD4 T cells 

CD8  PE-eFluor 610 1:200 Biolegend 53-6.7 Co-receptor for the T 

cell receptor complex in 

CD8 T cells 

CD19  PE-eFluor 610 1:800 Ebioscience 1D3 Important 

transmembrane protein 

in B cells that 

determines whether they 

live, proliferate, 

differentiate, or die 

Foxp3  PE 1:100 Ebioscience FJK-16s Master regulator for the 

development and 

function of Tregs 

Ki-67 PE Cy7 1:200 Ebioscience SolA15 Nuclear protein 

associated with cellular 

proliferation 

fixable 

viability 

dye 

eFluor506 1:500 Ebioscience - Staining of live cells in 

order to differentiate 

between live and dead 

cells after fixation and 

permeabilization 

CD69  APC-eFluor 780 1:50 Ebioscience 

 

H1.2F3 Early T cell activation 

CD62L PE 1:1600 Biolegend MEL-14 Cell adhesion molecule 

that allows cells to enter 

secondary lymphoid 

organs. Naive T cell 

marker 

CD44 FITC 1:400 Biolegend IM7 Cell-surface 

glycoprotein involved 

in lymphocyte 

activation 

Table 1. Fluorescent staining panel. Staining panel used to identify the major cell populations and unique markers to 

further characterize these populations. 

 

Cell Counting by hemocytometer  

After RBC lysis, the remaining cells are diluted to a level where each quadrant in the 

hemocytometer contains 50-100 cells. After dilution, cells in each quadrant are counted and the 

average is determined using the following formula: 

 

Total cell count = Average cell count x Dilution Factor x 104 x total volume 
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Flow cytometry acquisition 

After preparing the single cell suspension and staining with the conjugated antibody cocktail 

described above, samples were acquired on the BD LSR II. This flow cytometer is a benchtop 

four-laser flow cytometer capable of acquiring parameter values for up to 11 colors. The device 

has fixed-alignment lasers that are angled by mirrors to go through a flow cell to a user-

configurable octagon and trigon detector array. Detectors translate the fluorescent signal given by 

the chosen antibodies into electronic signals. Electronic signals are converted and saved as digital 

data [8]. 

 

To maintain the reproducibility of the experiments, I used sphero ultra particle rainbow 

calibration kits (sperotech) to maintain the BD LSR II within the same parameter ranges for each 

experiment. These beads are micron-sized particles that emit fluorescence in every channel of the 

flow cytometer[9]. The rainbow beads emit well-defined peaks that correspond to different 

fluorophore intensities. For every experiment, I ensured that the peaks were the same. Any 

variations in peak read were corrected by altering the voltage of the laser emitter.  

2.3 Data preparation 

Flow Cytometry analysis 

Flow cytometry analyzed using FCS Express version 6 (Denovo Software). The gating strategy 

included a lymphocyte gate based on forward and side scatter, dead cells excluded based on 

fixable viability dye and removal of doublets based on forward scatter width and forward scatter 

height followed by side scatter width and side scatter height. CD4+ populations assessed: Tregs 

(CD4+,CD8-,TCR-𝛽+, Foxp3+), naive T cells (CD4+, CD8-, TCR-𝛽+, CD44-,CD62L+), and 

activated T cells (CD4+, CD8-, TCR-𝛽+, CD44+,CD62L-). Replicating cells were identified based 

on Ki-67 expression. Total cellular numbers were defined using hemocytometer cell counts and 

flow cytometry data. The gating strategy is shown in (Fig. 2) 
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Figure 2. Example of gating strategy. An example of the hierarchical decision making for the selection of gates. Blue 

arrows indicate the origin of the resulting plot with new variables. Gate hierarchy is shown in the bottom right corner of 

the figure. 
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Quantifying cell populations 

After data collection, further calculations were performed to quantify populations and sub-

populations. Calculations performed and managed use the following code: 

 

Code lists 

All code scripts can be in the Hoyer lab box folder, my GitHub account (https://github.com/J-

Anzules/HomeostaticExpansion), and if necessary, through e-mail (jonanzule@gmail.com). 

 

● poCount_V2_AfterPythonScript 

○ Input: ActivatedCD4pop2.csv (Raw data results from the batch processing), 

TCellActivationSummary_filled.csv (Raw data of CD69/CD44/CD62L dataset 

from Genevieve) 

○ Purpose: Clean/prep datasets and calculated preliminary cellular ratios. 

○ Output:  

■ AfterCalculations.csv - Prepared ActivatedCD4pop2.csv, with 

incomplete entries and unbalanced experiments 

■ TCellActivationSummary_EdittedinR.csv - Prepped 

TCellActivationSummary_filled.csv 

■ NaiveTregDifferentiation.csv - Removed incomplete entries and 

balanced the dataset 

● CalculatingActivatedTCellsFromCD44.py  

○ Input: TCellActivationSummary_EdittedinR.csv, NaiveTregDifferentiation.csv 

○ Purpose: Use groupby methods in Pandas to estimate the activated T cell 

numbers and combine two datasets 

○ Output: Cleaned dataset + Estimated Activated T cell ratios 

● poCount_V2_AfterPythonScript 

○ Input: Combined data set, with estimated activated T cells and naive T cells. 

○ Purpose: Last set up before data can be used for model fit. 

○ Output: Cleaned dataset ready for model fitting 

 

Treg quantification example  

Here I present a verbal description of how I quantified the Treg population and its 

subpopulations: thymic-derived Tregs, naive-derived Tregs, and self-replicating Tregs. 

 

Definitions 

Total live cell counts in organ determined using a hemocytometer 

 

Total lymphocyte = Singles and live cells 

CD4 T cells = CD4+TCR-𝜷+ 

Treg = CD4+TCR-𝜷+ Foxp3+  

Proliferating Treg = CD4+TCR-𝜷+ Foxp3+ KI-67+ 

Thymic Treg ratio = Ratio CD4+TCR-𝜷+ Foxp3+ KI-67+ in the thymus 

 

https://github.com/J-Anzules/HomeostaticExpansion
https://github.com/J-Anzules/HomeostaticExpansion
mailto:jonanzule@gmail.com
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Calculations 

 

CD4 ratio = CD4 T cell events / total live cell events 

CD4 T cell count = CD4 T cell ratio * total live cell counts in organ 

Treg ratio = Treg events / CD4 T cell events  

Treg count = Treg ratio * CD4 T cell count 

Proliferating Treg ratio = Proliferating Treg events / Treg events 

Proliferating Treg count = Proliferating Treg ratio * Treg count 

Thymic derived Treg count  = Treg count * Thymic Treg ratio 

Naive derived Treg count = Treg count - ( Thymic derived Treg count + poliferating Treg 

count) 

○ Negative values are marked as 0 

2.4 Comparing major features of immune development 

P-values mentioned in this chapter are the results of a student t-test comparing WT and KO data. 

This test compares the means of both genotypes at a specific time; p-values lower than 0.05 are 

statistically significant.  

 

Organ Weight 

Comparing the weight of both the spleen and thymus between WT and KO systems, I observed 

some differences (Fig 3). In the KO mice, I observed a significant increase in thymic size at day 

18 (p-value: 0.014). For the spleen, I see a significant difference in size on day 14 (p-value: 

0.016) and day 18 (p-value: 0.003). The increased spleen size is a classical sign of 

lymphoproliferation seen in the IL-2 KO mouse model [2]. 

 

 
Figure 3. Thymus and spleen organ weights. Closed circles represent KO data, open circles represent WT data. Lines 

represent the mean of the data points.  Both figures show the weight of the organs in milligrams for each experimental 

takedown day (x-axis). (A) Spleen Weight, (B) Thymus weight. 

 

Cell populations evaluated 

Next, the characterization: CD4 T cells (Fig 4A), CD8 T cells (Fig 4B), B cells (Fig 4C), and 

CD4 regulatory T cells (Fig 5). Data for these populations are from both the spleen (top row) and 

thymus (bottom row). For total CD4 T cell numbers there is no statistical significance between 

the genotypes (Fig 4A). However, as expected based on prior publications, activated CD4 T cells 

are increased in KO spleen beginning on day 12 [2,3] (Fig 6B; section 2.5). For KO CD8 T cells 
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(Fig 4B) I see a significant increase in population size on day 18 (p-value: 0.008). For KO total B 

cell numbers, there is a significant increase in cell numbers on day 9 (p-value: 0.027) in the 

spleen (Fig 4C). 
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Figure 4. T and B cell frequencies and counts in the thymus and spleen. Red is the IL-2 KO data, and blue is the 

WT data. The top row in each section shows data from the spleen, while the bottom is data from the thymus. The first 

column represents the proportion of cells out of all lymphocytes. The second column represents the calculated total 

cells and their individual data points for each experiment. The third column is the total cell counts representing the 

mean and standard error bars of the data. (A) CD4 T cells, (B) CD8 T cells, (C) B cells. 

 

Tregs 

All Treg percentages are calculated by finding the ratio of Tregs (CD4+Foxp3+) to total CD4 T 

cells. In the IL-2 KO model, there is an uncontrolled activation and proliferation of the CD4 T 

cell population (Fig 6B, Fig 7B) [2,10], leading to lower Treg percentage numbers due to the lack 

of IL-2 survival signal (Fig 5B).  

 

No statistical significance of the total Treg cell counts is observed (Fig 5A). Focusing on the Treg 

percentages (Fig 5B), I performed a right-tailed student t-test comparing the WT to the KO data 

and observed a statistically significant decrease, in the KO data, for most days(Fig 5C) I note that 

on day 0 I removed the Treg percentage as these are primarily fetal peripheral Tregs, and thymic 

Tregs do not emerge until day 3-4 [1]. 
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Figure 5. Characterization of Treg population in the spleen and thymus. (A) In red is the IL-2 KO data, and blue is 

the WT data. The top row shows data from the spleen, while the bottom is data from the thymus. The first column 

represents the proportion of CD4 Tregs out of all lymphocytes. The second column represents the calculated total cells 

and their individual data points for each timepoint. The third column is the total cell counts representing the mean and 

standard error bars of the data. (B) Lines represent the mean of the data points. Closed circles represent KO data, open 

circles represent WT data. (C) P-values of a right-tailed student t-test comparing the Treg frequency between WT and 

KO data. 
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2.5 Characterization of CD4 T cell subpopulations 

I assumed that the Treg ratio in the thymus is the same ratio for how many thymic derived Tregs 

are in the periphery. I defined naive T cells as CD4+CD62L+CD44- to calculate the amount of 

naive T cells in the periphery. With the naive T cells calculated, I assume that non proliferating 

naive T cells (Ki-67-) are thymic derived naive T cells (Fig 6A). I define the ratio of 

CD4+CD62L-CD44+ as activated T cells (Fig 6B). Total activated T cells in IL-2 KO mice have a 

significant increase on the day on days 12 (p-value: 0.002), 14 (p-value: 0.009), and 18 (p-value: 

0.003). For total activated CD4 T cell count I see a statistically significant increase on day 18 (p-

value: 0.01). Ki-67 was used to calculate all of the replicating sub populations (Fig 6C); activated 

T cells (red), naive T cells (green) and Tregs (teal). There is no statistical significance in any of 

the proliferating subpopulations or the naive T cell total population (Fig 6D).   
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Figure 6. Characterization of T cell subpopulations. (A,B,C) Lines represent the mean of the data points. Closed 

circles represent KO data, open circles represent WT data. (A) Thymic derived Tregs (left) and naive T cells (right). 

(B) Activated T cell percentage (left) and activated T cell total cell count (right) (C) Displays all the proliferating 

populations (activated T cells (red), naive T cells (green) and Tregs (teal)) of WT (left) and KO (right). (D) Total naive 

T cell count. 
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2.6 Preparing experimental data for mathematical modeling 

I focus my project on three CD4 T cell populations: naive T cells, activated T cells and regulatory 

T cells and structured it as such: 

 

● Total Naive T cells 

○ Thymic derived naive T cells 

○ Proliferating naive T cells 

● Total Activated T cells 

○ Naive derived activated T cells 

○ Proliferating activated T cells 

● Total Regulatory T cells 

○ Thymic derived regulatory T cells 

○ Proliferating regulatory T cells 

○ Naive derived regulatory T cells 

 

In the following plots I present a global view of each population and their respective 

subpopulations (Fig 7). The topmost line of each plot shows the total cell count of all its sub 

populations (Red). There are no significant differences in the naive T cell population (Fig 7A). In 

the activated T cells data (Fig 7B), there are major differences between the WT and KO data that 

I will try to replicate in my mathematical model (Chapter 3).  
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Figure 7. Global view of naive, activated, and Treg populations. Circles represent single data points from each 

experiment, lines represent the mean of those data points for each day. (A) Naive T cells population and its sub 

populations: total naive T cells (red), thymic derived naive T cells (green), proliferating naive T cells (teal). (B) 

Activated T cells and their sub-populations: total activated T cells (red), naive derived activated T cells (green), 

proliferating activated T cells (teal). (C) Tregs and their subpopulations: Total Tregs (red), proliferating Tregs (green), 

naive/peripherally derived Tregs (teal), and thymic derived Tregs (purple). 

 

The methodology used to develop a mathematical model, fit the model to the data, explore the 

dysregulation caused by the lack of IL-2 in the KO system, and possible avenues for prevention 

of autoimmune disease development is explained in Chapter 3. 
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Chapter 3 
  

Methods and Results: for developing a mathematical model of 

autoimmune dysregulation  

I quantified and prepared a dataset of the central populations (naive CD4 T cells, activated CD4 T 

cells, and regulatory T cells) and the subpopulations. In this chapter, I detail the work behind 

developing a mathematical model and the process of fitting that model to the data collected. With 

a fit model, I can explore dynamics in silico, which would otherwise be costly if explored from in 

vivo and in vitro experiments. 

 

There are several biological constraints to be considered during the development of this 

mathematical model.  One of those constraints is the limited supply of IL-2 by activated T cells in 

the spleen [1]. This IL-2 supply is critical for the survival and maintenance of Treg suppressive 

function. Interestingly, IL-2 has a seemingly contradictory role: activated T cells supply the IL-2 

cytokine to the Treg population, whose role is to suppress the activation of T cells [2]. The 

relationship between Tregs, activated T cells, and IL-2 implies the presence of a balance between 

the activation of T cells and their suppression by Tregs. Disruption of this balance can lead to the 

development of autoimmune disease, as seen in the IL-2 KO mouse model [3]. 

 

The data I collected and prepared (Chapter 2) adds more complexity to the story between 

activated T cells and Tregs. Namely, the supplying force by naïve T cells and thymic production. 

The thymus can produce naïve T cells and Tregs, while naïve T cells can differentiate into Tregs 

or activated T cells. With my model, I attempt to encapsulate the dynamics of all these cellular 

populations in a system that develops autoimmune disease (IL-2 KO) and a healthy one (WT). 

 

Once the model is fit to the data, I will attempt to shed some light to the following questions: 

 

● How early does the lack of IL-2 cytokine start disrupting the immune system? 

● What is the global effect caused by the disruption of the IL-2 supply? 

● Does the starting population size matter for disease progression? 

● Can I quantify the suppressive difference between a healthy and an IL-2 KO autoimmune 

system? 

● How much activation is necessary for healthy immune development?  

● Which rates of my model are the most sensitive to disruption? 

● What are the best methods for preventing autoimmune disease development? 

 

My aim with this project is to develop a mathematical model that comprehensively studies the 

dysregulation that occurs in the development of autoimmune disease. 
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3.1 Model description  

 

Figure 8. Flow Diagram. Visual representation of my system of ordinary differential equations (equations 1 – 4). Solid 

line with arrows indicates the flow of cellular and cytokine populations while dashed lines with a bar head represent 

suppression. The system begins with the supply of naïve T cells and regulatory T cells (Tregs) by their production in 

the thymus. Naïve T cells differentiate into Tregs at rate 𝒄 and can become activated T cells at rate 𝛽. Naive T cells, 

activated T cells, and Tregs have their own self replication rate (𝑠𝑁 , 𝑠𝑇 , 𝑠𝑅) and death rate (𝑑𝑁 , 𝑑𝑇 , 𝑑𝑅).  IL-2 cytokine 

(produced by activated T cells at rate 𝑝) is consumed by Tregs at rate 𝑒𝑅 and activated T cells at rate 𝑒𝑇. A, B, and C 

are terms that are influenced by the presence of IL-2 to inhibit the death rate of Tregs (𝒅𝑹), inhibit naive T cell 

activation rate (𝛽), and increase the deactivation rate of activated T cells (T). The only difference I have between WT 

and IL-2 KO simulation is the production rate of IL-2 (𝑝). In the WT, 𝑝 is set to be 1000 molecules per cell per hour, 

for the IL-2 KO model it is set to be 100 molecules per cell per hour. 
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𝑑𝑁

𝑑𝑡
= 𝜇𝑁 (1 −

𝑁

𝐾𝑁
) + 𝑠𝑛𝑁 − 𝛽𝑁 (1 + (𝑅 (

𝐼

𝐾𝑖+𝐼
) 𝐾𝐴⁄ )

𝑛
)⁄  −  𝑑𝑁𝑁   (1) 

𝑑𝑇

𝑑𝑡
 =  𝛽𝑁 (1 + (𝑅 (

𝐼

𝐾𝑖+𝐼
) 𝐾𝐴⁄ )

𝑛
)⁄  + 𝑠𝑇  −  𝑗𝑅𝑇 (

𝐼

𝐾𝐽+ 𝐼
) −  𝑑𝑇𝑇    (2) 

𝑑𝑅

𝑑𝑡
 =  𝛼𝑅 (1 − 

𝑅

𝐾𝑅
 )  +  𝑠𝑅  +  𝑐𝑁 −  𝑑𝑅/(1 +  𝐼/𝐾𝐵)𝑛     (3) 

dI

dt
 =  𝑝𝑇 − eT𝐼𝑇 − eR𝐼𝑅 −  dI𝐼       (4) 

 

Khailaie et al. developed a mathematical model concluding that the discrimination between self 

and non-self antigens within our bodies is determined by the dynamical structure of the immune 

system and flow rate of cells between compartments [4]. I modified and expanded on their model 

to comprehensively study the dysregulation caused by the lack of IL-2 cytokine. 

The constant rate of thymic-derived Tregs (R) and naïve T cells (N) cells did not well match my 

data. As I explored other options, I found that a model where the rate at which naïve and Tregs 

exit the thymus depends on the population outside of the thymus works best. I assume that the 

rate at which Tregs and naïve T cells exit the thymus (𝛼 and 𝜇) depends on the population outside 

the thymus. Specifically, I assume that there is a carrying capacity for the populations (KN, KR) 

and that as the population approaches it the rate from the thymus goes to 0. The thymic 

production of naïve T cells is represented by 𝜇𝑁(1 − 𝑁/𝐾𝑁) and thymic Treg production by 

𝛼𝑅(1 − 𝑅/𝐾𝑅). 

The naive T cell population can further supply the Treg population by differentiation (c). Naive T 

cells interact with a combination of antigens from self and microflora. Some of these interactions 

result in activation and differentiation into activated T cells (T) by a rate of (β). Naïve T cells, 

activated T cells, and Tregs can self-replicate (𝑠𝑁, 𝑠𝑇 , 𝑠𝑅).  All compartments have their own 

death rate (dN, dR, dT) and half-life (dI). 

IL-2 is primarily produced by activated T cells (p) [5], which is then consumed at a constant rate 

by Tregs (eR) and activated T cells (eT). Treg size, homeostasis, and expansion are dependent on 

the availability of IL-2. Survival and function are also reliant on the presence of IL-2 for Tregs 

(Setoguchi, 2005). In my model the Treg death rate (dR) is suppressed by the hill suppressive 

function  

(
1

(1 + I/KB)n). 

I assume that an increase in IL-2 availability (I) will proportionally suppress the death rate of 

Tregs, KB establishes the half suppression rate of the Treg death rate. 

Suppression of the activated T cell population is a key feature of the Tregs in my model. Tregs 

can modulate the function and/or maturation of dendritic cells (DC) [6, 7]. DCs are a type of 

antigen-presenting cells whose main function is to process antigenic material and present it on the 

surface for T cells to interact and identify. In my model naïve T cell activation by DCs is 

represented by a constant rate 𝛽. Suppression of naïve T cell activation by Tregs is represented by 

the term  

(1 + (𝑅 (
𝐼

𝐾𝑖+𝐼
) 𝐾𝐴⁄ )

𝑛
), 
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where 𝐾𝐴 𝑎𝑛𝑑 𝐾𝑖 set the threshold for the regulatory influence on naïve T cell activation by Tregs 

and IL-2, respectively. Tregs also possess cytotoxic properties by the differential expression of 

granzymes B, and perforin [8 – 10]. I represent this suppressive functionality by  

jRT (
I

Kj  +  I
), 

 

where Kj is the half promotion rate by IL-2 and j is the deactivation rate.   

For this project I will simulate the behavior of both the WT and IL-2 KO systems. The IL-2 KO 

mouse model produces no IL-2 cytokine. However, Tregs can supplement other cytokines for its 

survivability and functionality by the consumption of IL-10 and IL-15 [11, 12]. To represent this 

functionality, I reduce the production of IL-2 to 10% of the WT value in the IL-2 KO simulation 

see table 1). This is the only difference between the WT and IL-2 KO simulations.  

 

 

Parameter definitions 

Thymus Production:  

• 𝞵 (
𝑐𝑒𝑙𝑙

ℎ𝑜𝑢𝑟
): Naive T cell production rate from thymus 

• 𝛂 (
𝑐𝑒𝑙𝑙

ℎ𝑜𝑢𝑟
): Treg production rate from thymus 

• nK (cells): Carrying capacity of naive T cells 

• rK (cells): Carrying capacity of Tregs 

Self-replication rates 

• SN (
1

ℎ𝑜𝑢𝑟
): Naive T cell self replication rate 

• ST (
1

ℎ𝑜𝑢𝑟
): Activated T cell self replication rate 

• SR (
1

ℎ𝑜𝑢𝑟
): Treg self replication rate 

Naive T cell differentiation rates 

• c (
1

ℎ𝑜𝑢𝑟
): Naive differentiation to Tregs 

• 𝜷 (
1

ℎ𝑜𝑢𝑟
): Naive activation to activated T cells 

Suppression dynamics 

• n (unitless): Hill coefficient 

• KA (cells): Treg half saturation rate for suppression of activation (𝜷) 

• Ki (molecules): IL-2 50% maximal response for activation suppression 

• j (
1

𝑐𝑒𝑙𝑙𝑠
): Deactivation rate of activated T cells by Tregs 

• Kj (molecules): IL-2 50% maximal response for activated T cell deactivation 

• KB (molecules): IL-2 half saturation for suppression of Treg death rate 

 

IL-2 cytokine expression and use 
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• p (
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙𝑠 ∙ ℎ𝑜𝑢𝑟
) : T cell production rate of IL-2 

• eT (
1

𝑐𝑒𝑙𝑙𝑠 ∙ ℎ𝑜𝑢𝑟
) : Activated T cell consumption rate of IL-2 

• eR (
1

𝑐𝑒𝑙𝑙𝑠 ∙ ℎ𝑜𝑢𝑟
) : Tregs consumption rate of IL-2 

Death Rates 

• dN (
1

ℎ𝑜𝑢𝑟
): Naive T cell death rate 

• dT (
1

ℎ𝑜𝑢𝑟
): Activated T cell death rate 

• dR (
1

ℎ𝑜𝑢𝑟
): Treg death rate 

• dT (
1

ℎ𝑜𝑢𝑟
): IL-2 cytokine half life 

 

 

 

 

 

 

3.2 Parameter estimation 

Nonlinear least square method 

Fitting the mathematical model to the data is a type of regression analysis where the methodology 

employs the nonlinear least squares method. The nonlinear least-squares analysis is a collection 

of numerical algorithms that can be utilized to determine the optimal parameter sets for the 

experimental data. The processes generally consist of an algorithm that employs an initial 

approximation of the parameters to produce a more accurate approximation. These improved 

responses are then utilized as beginning approximations in the subsequent iteration to produce an 

even more accurate approximation. Finally, this procedure is repeated until the approximation 

yields a stable set of responses (See: Stabilization of Error and parameter ranges) [13]. 

Each iteration brings us closer to a better representation of my data. At a certain point, a change 

in parameter selection results in diminishing returns and sometimes even worse results from my 

simulation; this point I define as the local minimum of errors. I calculate the error between each 

data point and simulation to quantify the model’s behavior relative to the experimental data. A 

reduction in error values defines a better approximation of the model. The local minimum is 

where the calculated error can no longer be lowered by altering parameter ranges. 

I am seeking to capture the developmental trajectory of expanding cellular populations (Fig. 7). If 

I computed the errors without normalizing, resultant values would have a different meaning at 

earlier time points than later because of the difference in population size. The relative squared 

error allows me to normalize the error values for all time points. Thus, the errors are calculated by 

the following objective function:   
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Ω = ∑ ∑ ∑ (
𝑆𝑔𝑏𝑖 −  𝐷𝑔𝑏𝑖

𝑆𝑔𝑏𝑖
)

2𝐿

𝑖=1

𝐵

𝑏=1

𝐺

𝑔=1

. 

 my objective function quantifies the relative error value between the simulation output (S) and 

my cellular data (D) for each genotype: 

 

G = [WT and IL-2 KO]  

 

Cellular populations: 

 

B = [Total naïve T cells, proliferating naïve T cells, thymic derived naïve T cells, 

        Total activated T cells, proliferating activated T cells, naïve derived activated T cells, 

        Total Tregs, proliferating Tregs, thymic derived Tregs, naïve derived Tregs] 

 

and at each time point: 

 

l = [Day 4, 7, 9, 12, 14, 18] 

 

Parameter ranges were estimated by optimizing my parameter ranges to minimize the objective 

function. 

 

Optimization Minimization Algorithm 

Fmincon [14, 15] is a constrained nonlinear optimization algorithm that searches for the best 

parameter sets that will minimize the error between model output and experimental data.  The 

error is calculated by the objective function mentioned above. The optimization process begins 

with declaring a parameter range to be tested, and randomly selecting a value within that range. 

For instance, the self-replication rate of naïve T cells (sN) is between 2.25𝑒−2 and 3.20𝑒−2, the 

initial parameter value is chosen randomly within this range, in this case: 2.89𝑒−2. The initial 

step is done for all parameters in table 2. Then the initial parameter values and ranges are 

supplied to fmincon, which executes the objective function. The objective functions' code utilizes 

all equations to obtain simulation results, which are then used to compute the total squared 

relative error.  

Depending on the simulation result and the errors calculated, fmincon will either increase or 

decrease the parameters given within their respective ranges. As fmincon continues to alter 

parameter values, it eventually finds a parameter set that produces the smallest possible error. 

Due to the random nature of this optimization process, it is conducted many times for all 

parameters. Parameter values determined by fmincon are then saved along with the resultant 

errors.   

The accumulation of data from fmincon can be used to study the relationship between selected 

parameter values and errors computed (Fig. 9). Additionally, the residuals (errors) from 

parameter sets can be visualized (Fig. 10). The analysis of simulation results, the relationship 
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between errors and parameter values, and residuals all help with the decision to either constrain, 

expand, or shift a parameter range to better represent the experimental data more accurately. 

Every alteration of parameter ranges improves fmincon's ability to converge on a local minimum 

of errors, identifying the parameter values that best represent the data.  

This optimization minimization process has led me to conclude that the parameter ranges in table 

2 are the best representation of the experimental data. Therefore, the only possible way to 

improve my simulation results would be to alter the structure of the mathematical model (see 

section 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Parameter ranges found from the least squares method. 

Parameters Description 

Range 

(min, max) Units 

μ 
Rate of Naive T Cells 

from Thymus 3.90𝑒−1, 4.07𝑒−1 hour-1 

SN 
Self replication rate of 

naive T cells 2.25𝑒−2 , 3.20𝑒−2 hour-1 

𝞪 
Rate of Tregs from 

Thymus 

3.50𝑒−4 , 7.00𝑒−4 

 hour-1 
c Rate of Naive to Tregs 1.3𝑒−3 , 1.5𝑒−3 hour-1 
SR Treg self replication 1.0𝑒−3 , 6.0𝑒−3 hour-1 

𝜷 
Rate of Naive to 

Activated T Cells 3.00𝑒−1 , 3.13𝑒−1 hour-1 

ST 
Activated T cells self 

replication rate 6.4𝑒−3 , 6.8𝑒−3 hour-1 

nK 
Carrying Capacity for 

naive T cells 1.70𝑒6 , 2.08𝑒6 cells 

dN 
Naive T Cell Death 

Rate 9.4𝑒−2 , 10.0𝑒−2 hour-1 
dR Treg Death Rate 0.50𝑒−2 , 1.50𝑒−2 hour-1 

dT 
Activated T cell death 

rate 3.7𝑒−2 , 4.43𝑒−2 hour-1 

j 
Deactivation rate of 

ActT by Tregs 2.25𝑒−7 , 4.18𝑒−7 cells-1 

KA 

Half activation 

suppression rate by 

Tregs 1.61𝑒−5 , 2.68𝑒−5 cells 

Ki 
Half rate for activation 

suppression boost 2.00𝑒−2 , 3.80𝑒−2 molecules 

Kj 
Half rate of 

deactivation boost 0.36 , 6.80 molecules 

KB 
Half suppression of 

Treg death rate 0.43 , 8.08 molecules 



40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Fixed parameters. 

 

Stabilization of Error and parameter ranges 

Most errors fall between Ω = 2665 (- 1 standard deviation) and Ω = 4197 (+ 1 standard 

deviation), as found by the optimization procedure. The determination of parameter ranges is 

evaluated on the stability of fmincon's parameter value output. Therefore, I examined the 

relationship between the parameter values selected and the resulting errors. A near linear 

correlation (R-value < 0.3) defines a stability of errors (Fig 9). In addition, I ensured that, within 

the specified parameter ranges, there was no significant clustering of parameter values near the 

range's boundaries. 

 

Figure 9 represents a scatter plot of parameter values (x-axis) and their associated errors (y-axis). 

The plot was generated from 638 iterations of my optimization algorithm. All these plots display 

a nearly linear relationship (R-value < 0.3) to the errors produced and no significant clustering of 

parameter values at the edges of their range.   

  

Parameters Description Value Units Reference 

dI 
IL-2 cytokine 

half life 1.39 hour-1 [21-24] 

p 
IL-2 expression 

rate 
1000, 

100 (KO) 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙𝑠 ∙  ℎ𝑜𝑢𝑟
 [25, 26] 

eT 

IL-2 

Consumption 

Rate by 

Activated T 

Cells 100 cells-1 x hour-1 [27] 

eR 

IL-2 

Consumption 

Rate by T 

Regulatory Cells 200 cells-1 x hour-1 [27] 
n Hill Coefficient 1 - Fixed 

dKO 
KO: IL-2 

expression rate 100 - Fixed 

rK 

Carrying 

capacity for 

Tregs 1.05𝑒6 cells 

Mean of day 56 

CD4+Foxp3+Ki6

7- cells 
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Figure 9. Results from fmincon parameter estimation search. Each data point represents one resolution of my 

optimization algorithm (632 total). The x-axis represents the parameter value, while the y-axis represents the error 

value of each data point. The blue line in the scatter plot represents the line of best fit determined through linear 

regression analysis. The top right of each figure shows correlation value. (A) μ: thymic naïve T cell production rate (B) 

sN: naïve T cell self-replication rate (C) β: naïve T cell activation rate (C) KA: half suppression rate of naïve T cell 

activation rate. 

 

Residuals 

In addition to selecting parameter ranges by a stable distribution of errors, I looked at the 

residuals from my model. In statistical, machine learning, or mathematical models’ residuals are 

the differences between predicted and observed values (simulation – experimental data). They 

serve as a diagnostic tool for evaluating the goodness of fit of the mathematical model. Residuals 

can also be used to identify patterns or structure in the data that are not explained by the model, 

which can lead to new insights or hypothesis.  

If all residuals are zero, then the simulation represents the data perfectly. However, zero residuals 

of a model are uncommon with highly varied biological data. In figure 10, the blue line of each 

figure represents the zeroth value of errors. I searched for an even spread between negative and 

positive values in my residual spread; this would be a good representation of the data. 

Based on the mean error value (3431; table 4), I selected the representative parameter set for the 

following figures (Figs. 10–16). The scatter plots in Figure 10 are from the residuals of the 

parameter set I selected. These figures display the data and simulation results (top) along with the 

corresponding residuals (bottom). The populations plotted are the total naïve T cells, activated T 

cells and Tregs. Except for the WT activated T cells (Fig. 10B), most of the residuals show a 

good representation of the data.  
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Table 4: Representative parameter values. 

  

Parameters Description Value  Units 

μ 
Rate of Naive T Cells 

from Thymus 4.00𝑒−1 hour-1 

SN 
Self replication rate of 

naive T cells 2.9𝑒−2 hour-1 

𝞪 
Rate of Tregs from 

Thymus 6.23𝑒−4 hour-1 
c Rate of Naive to Tregs 1.4𝑒−3 hour-1 
SR Treg self replication 3.8𝑒−3 hour-1 

𝜷 
Rate of Naive to 

Activated T Cells 3.0𝑒−1 hour-1 

ST 
Activated T cells self 

replication rate 6.5𝑒−3 hour-1 

nK 
Carrying Capacity for 

naive T cells 1.81𝑒6 cells 

dN 
Naive T Cell Death 

Rate 9.57𝑒−2 hour-1 
dR Treg Death Rate 1.15𝑒−2 hour-1 

dT 
Activated T cell death 

rate 4.23𝑒−2 hour-1 

j 
Deactivation rate of 

ActT by Tregs 4.18𝑒−7 cells-2 

KA 

Half activation 

suppression rate by 

Tregs 2.61𝑒5 cells 

Ki 
Half rate for activation 

suppression boost 2.3𝑒−1 molecules 

Kj 
Half rate of 

deactivation boost 1.84 molecules 

KB 
Half suppression of 

Treg death rate 0.44 molecules 
d IL-2 cytokine half life 1.39 hour-1 

p IL-2 expression rate 

1000, 

100 (KO) 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑐𝑒𝑙𝑙𝑠 ∙  ℎ𝑜𝑢𝑟
 

eT 

IL-2 Consumption 

Rate by Activated T 

Cells 100 cells-1 x hour-1 

eR 

IL-2 Consumption 

Rate by T Regulatory 

Cells 200 cells-1 x hour-1 

n Hill Coefficient 1 - 

dKO 

KO: IL-2 expression 

rate 100 - 

rK 

Carrying capacity for 

Tregs 1.05𝑒6 cells 
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Figure 10. Residuals and model output from representative parameter set. Each section of the figure contains the 

result of my simulation and comparison to the data (top) and the residuals of the model (bottom). The top figure 

contains the experimental results (black dots), the mean of data points (dotted line), and simulation results (solid black 

line). The bottom figure contains the residuals (black dots) and the 0 line (blue line). (A-C) WT data. (D-F) IL-2 KO 

data. (A, D) Total naïve T cells. (C, E) Total activated T cells. (D, F) Total Tregs. 

 

Beginning on day 12, KO mice had significantly higher activated T cell data than WT mice (Fig. 

6). The primary goal of my mathematical model was to replicate this distinction in activated T 

cell data. Based on comparing the activated T cell simulation results of both genotypes, I could 

replicate the observed overactivation (Fig. 11B). Unfortunately, my simulation did not accurately 

reproduce the WT activated T cell data. According to the residuals of WT total activated T cells 

(Fig. 10B), the residuals are mostly positive instead of an even distribution of positive and 

negative values. The IL-2 KO simulation, on the other hand, has a better fit for the KO data. The 

qualitative behavior in activation was accurately captured, but the quantitative was not. Capturing 

this desired qualitative behavior allows me to investigate the potential dysregulation that must 

occur prior to autoimmune disease development. 
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3.3 Result of fit to data 

During the early stages of development (days 0 - 9), the growth trajectories between both 

genotypes are similar in cell numbers. Post day 9 of development all cellular populations 

transition from the lag phase to exponential growth. On day 12, major differences are seen 

between genotypes in my data and simulation. My simulations effectively replicate the primary 

growth patterns of the cellular populations, as depicted in Figure 11. By comparing the results of 

both WT and KO simulations, I can investigate the dysregulation that occurs in the development 

of autoimmune disease. 

As observed in Figure 11A, a clear distinction in growth patterns among genotypes is evident 

when analyzing the total naive T-cell populations in my simulation. The growth trajectory of the 

KO genotype is notably lower compared to that of the WT genotype (Fig. 11A). The decrease of 

naive T cells suggests that this population is overactivated in autoimmune illness. Examining the 

activated T cells produced from naïve T cells (Fig. 11B), the KO genotype exhibits a higher level 

of activation than the WT genotype. These findings suggest that autoimmunity is driven by 

excessive stimulation of the naïve T cell population. A potential consequence of this in a 

biological system is that the diversity of naive T cells may decrease, increasing the likelihood that 

the immune system may not respond effectively to an infection, a condition known as 

lymphopenia [16, 17]. 

Figure 11B demonstrates that my simulation accurately reproduced the over activation and 

proliferation of activated T cells in the KO genotype. However, the model did not accurately 

reflect the data for the WT simulation, which highlights a limitation of the model. Despite 

extensive parameter searches, my model was unable to accurately capture both the WT data and 

the overactivation seen in the KO data. I concluded that only a restructuring of my mathematical 

model could lead to improved results. Despite this limitation, I will continue to investigate the 

model as it does capture the qualitative behavior of overactivation in the KO simulation compared 

to the WT. 

In the WT model and data, I noticed the population of activated T cells is maintained mostly by 

the activation of naive T cells (Fig. 11B). The IL-2 KO follows a similar trend, but both the naive 

derived activated T cells and self-replicating activated T cells prove to be significantly higher in 

the IL-2 KO simulation. The overactivation of naïve T cells and the reduction in their numbers 

may subsequently decrease the pool of available naïve T cells that have the capacity to 

differentiate into Tregs. A decrease in the availability of Tregs could further exacerbate the 

dysregulation of autoimmune self-reactive cells. I can see the consequence of over-activation in 

the naive derived Treg population, where there is a reduced number of Treg differentiation in the 

KO simulation (Fig. 11C).  

From my data and other experiments [18, 19] I note that the homeostatic expansion of Tregs is 

mostly due to the proliferation of Tregs and differentiation from naive T cells. My model was 
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able to capture this behavior and can be seen in Fig. 11C. Although the Treg numbers are similar 

between WT and IL-2 KO mouse model data, I noticed that the total Treg count is lower in the 

KO simulation. This is a quantitative difference seen in my simulation that may help explain 

some qualitative dysregulation in an autoimmune system. 
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Figure 11. Model fit to data and characterization of homeostatic expansion. All figures contain the results from 

data collection (black dots), mean of data (dotted line), and simulation results (solid line). (A-B) Each section is a table 

of figures for both WT (top row) and IL-2 KO (bottom row) data and simulation. For the simulation comparisons the 

WT is represented by a black line and the IL-2 KO by a dashed line. (A) Naive T cell population and its sub-

populations, starting from the left each column represents the data for total naive T cells, proliferating naive T cells, 

and thymic derived naive T cells. (B) Activated T cell population and its sub-populations, starting from the left each 

column represents the data for total activated T cell count, proliferating activated T cells, naive derived activated T 

cells. (C) Tregs and their sub-populations, starting from the left each column represents total Treg counts, proliferating 

Tregs, thymic derived Tregs, naïve derived Tregs.  

 

 

3.4 Exploring possible dysregulation in the Treg population 

I aimed to investigate the dysregulation of the Treg population in the IL-2 KO simulation, as it 

plays a crucial role in preventing autoimmune disease. Analysis of the Treg population 

throughout the simulation revealed a reduction at early time points, which becomes more 

pronounced as the simulation progresses (Fig. 12A). I aimed to uncover the underlying 

mechanisms of Treg population failure in the IL-2 KO model, which may contribute to the 

development of autoimmune disease. To achieve this, my algorithm closely monitored the 

dynamics of the model by focusing specifically on the Treg population. For this section I will 

focus on parts of the Treg dynamics:  

 
𝑑𝑅

𝑑𝑡
= 𝛼𝑅 (1 −

𝑅

𝑟𝐾
) + 𝑠𝑅𝑅 + 𝑐𝑁 − 𝑑𝑅𝑅 (

1

(1 + 𝐼/𝐾𝐵)𝑛) . 

 

I noticed that the Treg death rate, determined by the term:  𝑑𝑅𝑅/(1 +  𝐼/𝐾𝐵)𝑛, is higher in the 

WT at later time points (Fig. 12B). Because IL-2 deficiency increases Treg mortality, I expected 

the KO simulations' death rate to be greater throughout the entire simulation. The death rate 

among Tregs is directly proportional to the overall Treg population size. Thus, as the difference 

in Treg population size between genotypes increases, so does the number of Treg deaths. 

Eventually, the disparity in Treg size becomes so great that the WT Treg death rate surpasses that 

of the KO. 

Upon further investigation, the Treg proliferation (𝑠𝑅𝑅) is higher in the WT than the IL-2 KO 

simulation (Fig. 12C). So, at the same time where Treg death rate is higher in the KO simulation, 

it is also deficient in the it’s self-replication. This decline in proliferating ability in the KO 

simulations has strong implications that the Treg population is crippled from birth in the KO 

mouse models. The results of further analysis demonstrate that the self-replication rate of Treg 

cells in the KO model is insufficient to match the rate observed in the WT (Fig 15D).  In later 

sections I will test the consistency of these patterns by using Latin hypercube sampling (Section 

3.5). 
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Figure 12. Comparison of Treg Population Dynamics in Wild-type and Knock-out Simulations: Total Tregs, 

Death Rate, and Proliferation Rates. Plots display the Log transformation of various Treg population rates and sizes. 

The solid lines indicate WT simulations, while the dotted lines reflect KO simulations. (A) Total Treg population size 

(B) Treg death rate and (C) Treg proliferation rate 

3.5 Latin hypercube sampling 

Latin hypercube sampling (LHS) is a statistical method used for the sampling of near-random 

input values from a multidimensional distribution. I used lhsdesign [20] to generate an LHS 

matrix of size r-by-g; Where r is the number of simulations runs and p is the number of 

parameters to be tested. The randomized parameter values are obtained from a continuous 

uniform inverse cumulative distribution function.  

 

I implemented LHS to test the uncertainty of patterns seen in my model. For all experiments, I 

executed 3000 simulations with a +/- 60% variation of the initial input values. From the tested 

simulations, I calculated the mean, 10th and 90th percentile of the results for visualization.  

 
Sensitivity Analysis 

I performed a first‐order sensitivity analysis; I measured the fractional contribution of a single 

parameter to the model's output variance. I approached this method by taking 3000 LHS for each 

experiment and sequentially incrementing the parameter ranges; +/- 3%, +/- 10%, +/- 50%, +/- 

90%, +/- 99%. I found that 𝛍, thymic production rate of naive T cells; 𝛃, activation rate of naive 

T cells; and 𝐝𝐍 , the death rate of naive T cells to be the most sensitive parameters in the system. 

Figure 13 is the result of +/- 10% LHS sampling of the 𝛍 parameter. While figure 14 results from 

a +/- 90% LHS sampling of parameter 𝝰, the thymic production rate of Tregs.  
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Figure 13. Results of 𝛍 sensitivity analysis. First order sensitivity analysis of +/- 10% LHS sampling of the 𝛍 

parameter (thymic production rate of naive T cells). Results show the WT simulation. Blue dots represent experimental 

data, the top of the filled in area is the 90th percentile result, while the bottom is the 10th percentile mark, the blue line in 

the middle of the area represents the mean of all the model output.  

  



49 

 

Figure 14.  Result of 𝝰 sensitivity analysis. First order sensitivity analysis of +/- 90% of 3000 LHS sampling of 

parameter 𝝰, thymic production rate of Tregs. Results show the WT simulation. No filled in region is clearly seen (No 

variation).  

 

I also conducted a sensitivity analysis on the initial conditions of the model. A test of a +/- 99% 

range of the initial conditions displayed similar results to figure 14. From this result I can 

conclude that the model results do not depend on the initial conditions of the model. The 

continuous production and proliferation of new cells by the thymus suggests that the growth of 

the cellular population is contingent upon the rate of their production and replication. 

3.6 Dysfunction created by IL-2 deficiency 

To investigate the stability of deregulatory processes in the KO Treg populations, I utilized the 

LHS method as a statistical analysis tool [20]. This approach allows us to assess the consistency 

dysregulation seen in section 3.4. Specifically, I aimed to vary three key parameters that affect 

Treg survival: the Treg death rate (dR), the half suppression rate of Treg death rate (kB), and the 

IL-2 production rate for WT and KO cells (p and pKO respectively). I varied these parameters 

between +/- 60% using an LHS algorithm. From those simulations, I calculated the mean, 90th, 

and 10th percentile for each time point and plotted it (Fig. 15). 

In the KO simulation, I observed a decrease in the availability of IL-2 (Fig. 15A). This reduction 

in IL-2 availability leads to a weaker suppression of the Treg death rate (Fig. 15B). I quantified 
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the suppression strength of the Treg death rate with the term: 1 − (1/(1 +  𝐼/𝐾𝐵)𝑛). Despite 

the randomization, the pattern of increased Treg death rate early on persisted (Fig. 15C). 

The results of the LHS analysis of the Treg death rate (𝑑𝑅𝑅/(1 +  𝐼/𝐾𝐵)𝑛) reveal that, over time, 

the death rate of Tregs in the WT population surpasses that of the IL-2 KO population (Figure 

15C, top panel). The increased death rate in the WT population is likely due to the greater number 

of Tregs present, resulting in a higher rate of deaths per hour. However, during the early stages of 

development, the IL-2 KO Tregs exhibit a slightly elevated death rate compared to the WT 

population (Figure 15C, bottom panel). 

The variation in the rate of early Treg cell death among different genotypes is important, as it can 

significantly impact the homeostatic expansion of Treg cells, which is mainly driven by their 

proliferation. The increased death rate of Tregs during early IL-2 KO mice development may 

reduce the initial Treg population, reducing the capacity for Treg proliferation and growth (Fig. 

15D). Due to these deficiencies, the IL-2 KO Treg population is never able to properly develop 

(Fig. 15E). 

 
Figure 15. Impact of IL-2 Deficiency on Treg Cell Dynamics: Dysregulation of the Treg populations. Results 

from the +/- 60% LHS sampling range of parameters: dR, p, pKO, KB; for 3000 simulations. Chosen parameters affect 

Treg survival. The shaded represents the range of variability across all simulation results, where the top line 

corresponds to the 90th percentile, representing the upper limit of the variability, and the bottom line corresponds to the 

10th percentile, representing the lower limit of the variability. The solid lines within the shaded region represent the 

mean, which represents the average value across all simulations. Green represents the wild-type data, while pink 

represents the IL-2 KO data. (A) Available IL-2 cytokine in the system has a deterministic influence on (B) Treg death 

suppression strength. (C-E) Below every plot is a zoomed-in view of the data above it. (C-E) Represents the 

instantaneous rates of Treg death (C), Treg proliferation(D), and total Treg population size (E).  

  



51 

3.7 Prevention of autoimmune disease 

Due to the lack of IL-2 cytokine both the Treg population size and suppression are negatively 

affected. In combination, I set out to quantify the suppressive difference between a healthy and an 

autoimmune system by preventing autoimmune progression in the KO simulation. 

For this section, I assigned KO-specific parameters that directly impact the suppressive 

functionality of Tregs. Namely, KAKO is the half rate value for the suppression of the activation 

rate (ꞵ); jKO, is the removal rate of activated T cells by Tregs. These parameters have similar 

mathematical functions as KA and j in the WT simulation, but their values are not dependent on 

each other. I set up an LHS experiment for the parameters KA, j, KAKO, and jKO for the span of 

3000 simulations and varied the parameters between +/- 60%. The results of these simulations 

seek to predict the behavior of the system past the point of data collection (day 18) until day 25. 

A variation of +/- 60% in parameters without altering the initial KO-specific parameters clearly 

shows patterns of over-activation consistent with autoimmune disease (Fig. 16A top).  The KO 

activation (purple) does not exhibit the same level of control as the WT results (green), which are 

able to be stabilized after the initial activation peak. This difference in activation is what I am 

defining as autoimmune disease in the KO simulation. I aim to determine the quantitative 

difference in suppressiveness between the wild-type (WT) and knock-out (KO) systems by 

comparing the activation suppressive strength as measured by  

(1 − (1/(1 + (𝑅 (𝐼/𝐾𝑖 +  𝐼) 𝐾𝐴⁄ )𝑛))) 

(Fig. 16, middle panel) and the rate of removal of activated T cells as measured by  

𝑗𝑅𝑇 (𝐼/𝐾𝐽 +  𝐼) 

(Fig. 16, bottom panel). Without the manipulation of KO-specific parameters, the Treg 

suppressive abilities in the WT are superior during the most critical times of development. 

I quantitatively assess the suppressive deficiencies in the IL-2 KO simulation by manipulating the 

IL-2 KO specific parameters (KAKO, and jKO) to determine the extent to which these parameters 

must be adjusted to produce results like those of a healthy system. When I increase the jKO 

parameter by 300% I notice that the rate of activation is lower (Fig. 16B top) than no change (Fig. 

16A top), but not quite to the level of WT. Even with the high variation of parameter values and 

tripling of the jKO parameter I was not able to control the over-activation in autoimmune disease. 

The strength of suppression and the rate of naive T cell activation did not improve during the 

critical developmental stages.  

Reducing the half suppression rate (KAKO) by 83%, thus increasing the effectiveness of 

suppression of activation, I noticed the out-of-control activation is brought under control in the 

KO simulation and now overlaps with the WT (Fig. 16C top). Suppression strength and removal 

of activated T cell rate are now greater in the KO system than in the WT during the critical times 

of development, precluding autoimmune disease. Interestingly, when I artificially reduced the 

death rate of Tregs in the KO simulation, no significant change in model behavior was detected 

(not shown).  
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Figure 16. Model prediction and prevention of autoimmune disease. Results from the +/- 60% LHS sampling range 

of parameters: KA, KAKO, j, jKO, dR; for 3000 simulations. Parameters with the ‘KO’ subscript has been edited on the 

IL-2 KO version of the model to find the best methodology to prevent autoimmune disease. The top figures are 

activating naive T cells, mid: activation suppression strength, bottom: removed effector cell. I look at the simulation 

past the point where I have data (day 18) all the way until day 25. The shaded represents the range of variability across 

all simulation results, where the top line corresponds to the 90th percentile, representing the upper limit of the 

variability, and the bottom line corresponds to the 10th percentile, representing the lower limit of the variability. The 

solid lines within the shaded region represent the mean, which represents the average value across all simulations. (A) 

No change to any IL-2 specific parameters. (B) Parameter jKO is increased by 300%. (C) Half rate suppression, KAKO , 

is reduced by 83%; increasing the suppression strength of 𝜷 in the IL-2 KO model by the same proportion.  
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3.8 Mathematical modeling code 

All code scripts can be in the Hoyer lab box folder, my GitHub account (https://github.com/J-

Anzules/HomeostaticExpansion), and if necessary, through e-mail (jonanzule@gmail.com). 

 

Core Scripts 

● ModelandCellGrowth.m  

○ Input: Manual entry of parameter ranges 

○ Purpose: Given the parameter range, it randomly chooses a value within the 

range, it sets up all the necessary conditions to run fmincon. Fmincon is the main 

driver for optimizing my objective function. Defined more below. 

○ Output: Parameter sets, along with error values, and are saved to a csv file 

○ Fmincon: link, This function is part of the matlab toolbox, its used to find the 

minimum of a constrained nonlinear multivariable function. Minimum is 

determined by the iteration of the parameters ranges that spits back the result of 

my objective function (GrowthObjective.m; below) 

● GrowthObjective.m 

○ Input: The initial step of this function uses the randomized parameters 

determined by ModelandCellGrowth.m. Future steps in the minimization process 

use parameters chosen by fmincon. It searches until it finds the minimum values 

calculated by GrowthObjective.m 

○ Purpose: This script uses the parameter set fed to it by fmincon, which is then 

passed to the “SimulateGrowth.m'' function that uses ode15s to solve my system 

of ODE’s. The population values determined by SimulateGrowth.m are done for 

both the WT and IL-2 KO simulation. Then the error is calculated by comparing 

appropriate sub populations in the simulation result to the appropriate 

experimental data. Once all the calculations are done, fmincon then determines 

whether another parameter set should be tested. If it does, it chooses the right 

parameters to evaluate next, until it determines that it has found the minimum 

value. 

○ Output: Returns the sum of relative errors generated by this script. Fmincon will 

try to optimize the parameters, within the bounds of the model's constraints, to 

find the minimum error value. When it has done that, fmincon will return two 

things to me:  the final parameter set and the errors (WT error, KO error, and 

total error). 

○ Notes: 

■ When it comes to the percentage removal part of the code 

● SimulateGrowth.m 

○ Input: Parameter set and Genotype value 

■ 1 = WildType 

■ 2 = Knockout 

○ Purpose: Creates an empty dataset for the simulation values to be saved in, for 

every time step. Parameter set and initial conditions are given to my “Growth.m” 

function by ode15s. It does this for every time step 

https://github.com/J-Anzules/HomeostaticExpansion
https://github.com/J-Anzules/HomeostaticExpansion
mailto:jonanzule@gmail.com
https://www.mathworks.com/help/optim/ug/fmincon.html
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○ Output: A dataset called “ModelData” which contains the results of the 

simulation for either the WT or the KO simulation.  

○ Ode15s: Solves stiff differential equations. The equations that it solves is 

provided by the growth.m script 

● Growth.m 

○ Input: time step, initial conditions, parameter set, and genotype 

○ Purpose: Calculate population dynamics during a given time step 

○ Output: Population numbers to be saved in a data frame within 

“SimulateGrowth.m” 

Latin Hypercube Sampling 

● LHSInitialConditions 

○ Input: Sample size, Percent change, parameter set selection, initial conditions to 

be tested, and time frame 

○ Purpose: Sensitivity test of initial conditions by latin hypercube sampling of 

desired conditions. Test parameters are set by the user. 

○ Output: A multidimensional dataset of latin hypercube sampling results that is 

statistically analyzed by “CalculateTheFillRanges.m” 

○ Dependent core scripts: 

■ SimulateGrowth.m 

■ Growth.m  

■ CalculateTheFillRanges.m 

● CalculateTheFillRanges.m 

○ Input: Results from LHS, max hours of simulation 

○ Purpose: From the LHS results of every population, at every hour, this script 

calculates the mean, standard deviation, +/- 1 standard deviation, and the 

10th/90th percentile of those values.  

○ Output: The results are organized into a multidimensional array (Dataframe: 

StatsOfCells) that is fed to the PlottingLHSResults.m. 

● PlottingLHSResults.m 

○ Input: Dataframe: StatsOfCells, time frame 

○ Purpose: Depending on the experiment I will get plots that show the mean, the 

filled in ranges of all the simulations that lie between the 10th and 90th percentile 

of the LHS results.  

○ Output: Plots 

● LHSParameters: 

○ Input: Sample size, Percent change, parameter set selection, initial conditions to 

be tested 

○ Purpose: Sensitivity test of initial conditions by latin hypercube sampling of 

desired conditions. Test parameter are set by user. 

○ Output: Plots of the filled in ranges between the 10th and 90th percentile of all 

simulations performed with varied parameters. 

○ Dependent core scripts: 

■ SimulateGrowth.m 
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■ Growth.m 
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Chapter 4: 

Summary, Contribution, Future Directions 

4.1 Discussion 

IL-2 cytokine determines the size, homeostasis, expansion, and function of Tregs. As evidenced 

by the IL-2 KO mouse model and patients with system lupus erythematosus, disruption of IL-2 

cytokine functionality can result in the development of autoimmune disease [1]. However, due to 

the short half-life of IL-2 (30 min) [3, 4], it is challenging to experimentally track how IL-2 

influences the entire system, specifically its maintenance of self-tolerance via Tregs. Using the 

mathematical model, I can study the dynamics of IL-2 and Tregs in preventing autoimmune 

disease and identify dysregulation that occurs before its onset. 

I used experimental data to quantify various cellular populations from WT and IL-2 KO mouse 

models and observed the resulting differences and similarities. Using the least-squares method 

and the data collected, then I estimated the parameters of the mathematical model. As a result, I 

successfully captured the over-activation in the IL-2 KO data relative to the WT. With parameter 

ranges identified, I can further explore the dynamics of early immune dysregulation that may lead 

to autoimmune disease development.  

Khailaie et al. noticed in their mathematical model that the renewal rate of naïve T cells could 

determine the activation threshold of the immune system [5]. Therefore, carefully controlling this 

rate and population can help differentiate between self- and non-self immune responses. In my 

mathematical model, I discovered that the production rate of naïve T cells from the thymus (mu) 

is the most sensitive parameter. Additionally, by the end of the simulation (day 18), there were 

more naïve T cells in the WT simulation than in the KO. These findings imply that the dynamics 

and homeostasis of the naïve T cell population can influence the susceptibility to autoimmune 

diseases.  A more in-depth examination of naïve T cell homeostatic dynamics concerning 

autoimmune illness could provide additional insight.  

I anticipated that the Treg population would be fewer in the IL-2 KO simulation because the 

absence of IL-2 cytokine increases their mortality rate; I did not anticipate, however, that the 

proliferation rate of Tregs would also be lower. Using Latin hypercube sampling, I examined the 

consistency of this pattern by conducting additional simulations with varying parameters 

associated with the death of Tregs; the pattern of increased Treg mortality and a lower Treg 

proliferation rate was constant despite the variations. Treg population in the IL-2 KO was 

consistently lower in all simulations. The mathematical model predicts that the Treg population in 

the IL-2 KO mouse model from birth has a greater mortality rate and a lower proliferation rate. 

The elevated death rate is consistent with the experimental findings of the Treg population 

without IL-2 [6, 8]. 

A greater Treg mortality rate, which may limit the quantity of Treg cells available for 

proliferation, might explain the lowered population size in the KO simulations. Based on my 

results, early peripheral Tregs (prior to day three) are likely to be the most impacted by IL-2 

cytokine deficiency, since BALB/c mice begin to generate thymic Tregs robustly after day three 
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[9]. Future studies in the IL-2 KO should focus on early peripheral Tregs to better understand the 

immune dysregulation that occurs prior to the onset of autoimmunity. 

I discovered that Treg inhibition of the activation rate of naïve T cells considerably reduces the 

development of autoimmunity in my simulations; these findings highlight the modulatory role 

that Tregs have on dendritic cells [10-14]. Furthermore, my results are supported by previous 

research showing that inoculating IL-2 cytokine into autoimmune mice improves Treg 

suppressive function, preventing autoimmunity [15]. Several clinical investigations have shown 

that low-dose IL-2 grows Tregs selectively and is safe and effective for patients with 

autoimmunity or graft-versus-host disease [28-32].  

In contrast, deactivation of activated T cells by Tregs is insignificant for the prevention of 

autoimmunity; these results could be due to the absence of CD8 T cells. I hypothesize that the 

deactivation of activated T cells by CD8 T cells may compensate for the limited deactivation 

effect of Tregs [21]. Future iterations of themodel should incorporate the CD8 T cell population 

and their cytotoxic effect on activated T cells to assess this theory. 

It is challenging to investigate the pathophysiology of autoimmune disease, even though risk 

factors and disease dynamics are known. My simulation can detect early immune dysregulation in 

the Treg population and prevent autoimmune disease through the manipulation of the suppressive 

ability of Tregs. These findings are consistent with experimental results. My mathematical model 

can serve to understand the deregulatory properties that occur before autoimmune disease can 

develop. Finally, minor changes to the structure of the mathematical model can be adapted to 

represent other autoimmune mouse models like CD25 knockout and scurfy mice models [28, 29]. 

4.2 Future Steps 

Two projects can be pursued with no changes to the current mathematical model: determining the 

time point when an increased Treg suppression strength cannot prevent AD, and how many WT 

Tregs should be added to the IL-2 KO simulation to prevent AD. In addition, implementing the 

CD8 T cell population and its cytotoxic effect on the autoreactive CD4 T cell population would 

change the architecture of the mathematical model. However, it would give insight into the CD8 

T cell influence on autoreactive T cells. 

 

Implementation of CD8 T cells 

 

The addition of the CD8 T cell population should have a structure comparable to that of the CD4 

T cells already in my mathematical model structure, where a naive CD8 T cell population has an 

activation rate corresponding to an activated CD8 T cell population. For example, the population 

of CD8 T cells may be represented using the following equations: 

 

Equation for naïve CD8 T cells 

𝑑𝐸

𝑑𝑡
 =  𝜖𝐸 (1 − 

𝐸

𝐾𝐸
) +  𝑆𝐸𝐸 −  𝜃𝐸/ (1 + (𝑅 (

𝐼

𝐾𝐸 + 𝐼
) /𝐾𝐵)) −  𝑑𝐸𝐸 

 

The equation for activated CD8 T cells 
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𝑑𝐶

𝑑𝑡
 =  𝜃𝐸/ (1 + (𝑅 (

𝐼

𝐾𝐸 + 𝐼
) /𝐾𝐵)) + 𝑆𝐶𝐶  −  𝑑𝐶𝐶 

  

 

Their cytotoxic activity on the activated CD4 T cell population will be represented by the term 

𝑗𝐶𝑅𝐶in the equation: 

 

dT

dt
 =  βN/ (1 + (R (

I

Ki  +  I
) / KA)n) + sTT −  jRT (

I

Kj  +  I
)  − 𝑗

𝐶
𝑅𝐶 − dTT 

 

 

Further analysis for the prevention of autoimmune disease 

 

In my simulations, I discovered that enhancing the suppressive capabilities of Tregs can prevent 

AD. However, I implemented the suppression modification at the start of the simulation run and 

predicting when it will be too late to take preventative actions would be an intriguing area of 

study. I propose automating the search by adding a failure condition to the algorithm. This 

requirement should be a threshold of 120% of the activated T cell population size in the KO 

simulation relative to the WT. With a failure condition in place, AD prevention can automatically 

be evaluated hourly without visual determination. The algorithm will reduce the KA value every 

hour until it finds an hour when activated T cells in the KO simulation reach the failure condition. 

 

In addition, the simulations may be further assessed to determine the number of healthy Tregs 

required to rescue the autoimmune simulation. For example, the IL-2 cytokine present in the WT 

simulation would influence the injected Tregs in the KO simulation, granting them enhanced 

survivability and function. In other experimental labs, an autoimmune mouse model has been 

rescued by the inoculation of healthy Tregs [22]. Finding out how many Tregs are necessary at 

various periods to rescue an autoimmune system will yield interesting results.  

4.3 Limitations and Corrections 

 

Although my simulations captured the over-activation seen in the KO data, the activated T cell 

simulation in WT did not fit the WT data well. Despite all the parameter variations, no set could 

simultaneously fit this WT data and display the over-activation in the KO simulation. My model's 

current structure does not represent the data collected. In this section, I will propose changes to 

the mathematical model that may improve the representation of activated T cells. 

 

Activated T cells 

 

During the model development, I assumed that all activated T cells produce IL-2 cytokine. 

However, activated T cells only generate IL-2 cytokines temporarily after activation [23]. In 

addition to IL-2’s influence on Tregs, IL-2 also contributes to the proliferative rate of activated T 

cells [24]. Therefore, I should make two changes to represent activated T cell dynamics more 
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accurately: 
 

1. To simulate more accurate immunological dynamics, create two distinct populations of 

activated T cells: one which generates IL-2 cytokine and another that does not .  

2. Allow Il-2 cytokine to promote the proliferative rate of activated T cells 

 

These modifications to the active T cell population may rectify the situation where the total 

activated T cells in the WT simulation do not accurately mimic the experimental data. The benefit 

of these modifications is that I will not require further data collection. I collected data on CD4 T 

cells undergoing early activation (CD4+CD69+) and activated T cells past early 

activation (CD4+CD44+CD62L-CD69-). 

 

Naïve T cells 

 

The naïve T cell repertoire may be dysregulated in pre-autoimmune systems because KO 

simulations have fewer naive T cells than WT. The experimental data showed that naïve T cells 

do not vary across genotypes. Hence, the models do not accurately depict the homeostatic 

components of the population. IL-7 is a known survival signal that maintains homeostasis and 

prolongs the lifespan of naive T cells [25]. Future model structures should establish a dynamic 

environment regulated by IL-7 cytokine. For example, any naive T cell population decline would 

increase the population's renewal rate until it reaches its homeostatic level. 

 

Improved quantification of thymic output 

I estimated the thymic contribution to the cellular populations based on the percentage of T cells 

detected in the thymus. For instance, if there are 5% Tregs in the thymus, I assumed 5% of Tregs 

in the spleen originated in the thymus. These assumptions may not be accurate, but it was a 

reasonable approximation. Future data collection efforts should aim to quantify T-cell receptor 

excision circles in Tregs and naive T cells to understand better the thymic contribution to these 

cellular populations [26, 27]. 

 

Conclusion 

Despite the limitations of the simulations, it still offers a novel method for understanding 

homeostatic expansion in healthy and autoimmune systems. With the modifications outlined in 

this chapter, the mathematical model can offer far more insight into the dynamics of autoimmune 

disease. The methodology laid out here, along with adaptations of my mathematical model, may 

serve to describe other autoimmune mouse models (CD25 Knockout and scurfy mice). 
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