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AN ANALYSIS OF A TWO-PERSON INTERACTION SITUATION

IN TERMS OF A MARKOV PROCESS ~/

By

Richard C. Atkinson and Patrick Suppes
Stanford University

The present study represents an attempt to quantitatively describe

behavior in a game situation involving social interaction between two

individuals. The basis of prediction is in terms of a Markov model for

learning which, in conceptual development, is closely related to statistical

learning theory (~).

Before proceeding to the details of this study there are three general

remarks we would like to make concerning the fundamental ideas and methods.

(i) The principles of behavior that constitute our theory of social inter-

action are rigorously derivable from general principles of individual

behavior, in particular, from stochastic versions of reinforcement theory.

(ii) The results are quantitative in a sharp sense; elaborate mathematics

have not been applied to quantities which can only be ordinally measured.

(iii) The underlying principles constitute a genuine theory in the sense

that prior to experimentation quantitative predictions of behavior may be

made for a wide range of experimental parameter values.

For the purposes of this experiment a play of a game is a trial. On

a given trial, each of the players makes a choice between one of two

responses. After the players have independently indicated their responses,

the outcome of the trial is announced. In an earlier study (~) we considered

games where the outcomes were such that on each trial one player was "correct"

and the other player was "inCorrect"; that is, zero-sum games. In this study
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the games have outcomes such that on each trial both players can be correct,

both can be incorrect, or one can be correct and the other incorrect; that

is, non-zero-sum games. More important than the shift from zero-sum to

non-zero-sum games is the fact that in contrast to (g) the players were

informed that they were interacting with each other.

On all trials, the game is described by the following payoff matrix:

The players are designated A and B. The responses available to

player A are A
l

and A2 ; similarly, the responses for player Bare

Bl and B2 · If player A selects A
l

and player B selects B
l

then

there is (i) a probability Xl that player A is correct and l-xl that

player A is incorrect, and (ii) a probability Yl that player B is

correct and l-Yl that player B is incorrect. The outcome of the other

three response pairs A1B2, A2B
l

and A
2

B
2

are identically specified in

terms of (x2'Y2)' (x
3

'Y3) and (x4 'Y4)' For subsequent derivations it

will be useful to introduce the following notation:

a, = X.Y.
1 1 1

b, = x.(l-y.)
1 1 1

(1)
c, = (l-x, )Y.

1 1 1

d
i = (i-x. ) (l-y, )

1 1
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where a.+b.+c.+d. = 1.
1 111

The experiment to be presented employs the procedure outlined above.

At the start of an experimental session Ss were informed of the game

characteristics of the situation and instructed to maximize the number of

trials on which their response was correct.

Our theoretical analysis of behavior in the situation is in terms of

a Markov model. Since a detailed mathematical development of the model

is presented elsewhere (11) we shall confine ourselves to the most salient

features and omit mathematical proofs. A more complete development of the

psychological concepts which lead to the present model and its relation to

the Estes and Burke stimulus sampling theory can be found in (~).

Model.-- In our situation, where two responses are available to each

~' we say that if a response occurs and is correct, then the response is

reinforced; if a response occurs and is incorrect then the alternative

response is reinforced.

On any trial, a player is described as being in one of two states.

If in state 1, he will make response 1; if in state 2, response 2. Thus

the two players can be specified in terms of the following four states:

< Al,Bl >, < Al ,B2 >, < A2,Bl > and < A2,B2 > where the first member

of a couple indicates the response of player A and the second, the

response of player B.

The learning process is defined with respect to these states.

For player A we assume that when one of his responses is reinforced

on trial n there is (i) a probability SA that the organism is affected
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by the reinforcing event so that on trial n+l he will make the response

reinforced on trial nand (ii) a probability l-6
A

that the organism

is not affected by the reinforcing event and therefore repeats on trial

n+l the response made on trial n. Stated equivalently there is a

probability 6
A

that the state of the player at the start of trial n+l

is the one corresponding to the response reinforced on trial nand l-6A

that the state of the player at the start of trial n+l is the same as

at the start of trial n regardless of the reinforcing event.

Identical rules describe the learning process for player B in terms

of 6
B

• Thus, the parameters 6
A

and e
B

describe the learning rate

characteristics of players A and B respectively, and are quantities

wl1ich can be estimated from a subset of the data and used to predict

the remaining data (~) or in some cases estimated from other experimental

set-ups (2).

For the above set of assumptions and the payoff probabilities ai' bi ,

and d., the transition matrix (1) describing the learning process can
1

be derived and is as follows:
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< AI,BI > < AI ,B2 > < A2,BI > < A2,B2 >

al +bl (I-8B) b
l

8
B

c
l

8
A dl"AeB

< AI,BI > +cl (I-8A) +dI 8B(I-8A) +d
1

8
A

(l-e
B

)

+dl (1-8A) (l-eB)

b28B a2+b2 (1-8B) d21'lA9B c2eA

< AI ,B2 > +d2
9
B(I-8A) +C2(1-8A) +d28A(1-8B)

+d2(1-8A) (1-8B)

c
3
8A d

3
8
A

8
B a

3
+b

3
(l..-8B) b

3
8
B

< A2,BI > +d
3
8A(I-8B) +C

3
(1-8A) +d

3
8B(l..-8A)

+d
3

(1-8A) (1-8B)

d4eA
8
B

c
4

8
A b48B 8.4+b

4
(1-8

B
)

< A2,B2 > +d
4

8A(I-eB) +d48
B

(I-8A) +c4(i-ElA)

+d
4

(1-6
A

)(1-8B)

Rows designate the state on trial n and columns the state on trial n+l.

Thus d2eA8B, the entry in row 2, column 3 is the conditional probability of

being in state < A2,BI > on trial n+l given that the pair of Ss was

in state < ~,B2 > on trial n, far we have:
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The one stage transition probabilities completely describe response

behavior in the situation and from these one can obtain any theoretical

quantity desired. In particular we can derive an expression for the asymptotic

probability of each of the four states, or equivalently stated, the asymptotic

probability of the joint occurrence of responses Ai

on a trial (l,Q); this probability will be denoted as

and B. (i,j =1 or 2)
J

P « A.,B. ». In
CD ~ J

terms of these quantities we obtain the asymptotic probability of an Al

and a B
l

response. Namely,

(2)

The general expressions for poo(Al ) and Poo(Bl ) are too lengthY to

reproduce here but special forms of the equations will be used in analy~ing

data of the present study.

The essential interaction character of our Markov model is made clear by

the following observation. The joint probabilities p«A.,B.»
n ~ J

are

fundamental to the process rather than the individual probabilities Pn(Ai )

and p (B.). Given the former the latter can be computed, but not vice
n J

versa. In particular the players are not responding independently, that is,

in general

p « A.,B. » I p (A.)p (B.).
n ~J n~nJ
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Method

I

Experimental parameter values.-- Two groups were run; for game-theoretic

considerations to be indicated later, they were designated Sure and Mixed.

For the Sure Group
1 1

= 4 ' x4 = 2

5
~

5 For the Mixed Group xl 1, 3 x
3

0,
~

5 andY3 = E' = B' = x
2 = E , = = E

~ = 0, Y2 = 1, Y3
5

~
3= E , = E

Apparatus.-- The apparatus has already been described in detail (g),

and only the salient features will be repeated here. The ~s, run in pairs,

sat at opposite ends of a table. Mounted vertically in front of each S

was a large opaque panel, E sat between the two panels and was not visible

to either S. The apparatus, as viewed from the S's side, consisted of two

silent operating keys mounted at the base of the panel; upon the panel were

mounted three milk glass panel lights. One of these lights, which served

as the signal for S to respond, was centered between the keys at S's

eye level. Each of the two remaining lights, the reinforcing signals, was

mounted directly above one of the keys. The presentation and duration of

the lights were automatically controlled.

Subjects.-- The Ss were 88 undergraduates obtained from introductory

psychology courses at Stanford University. They were randomly assigned to

the experimental groups with the restriction that there were 24 pairs of Ss

in the Sure Group and 20 in the Mixed Group.
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For each pair of ~s, one person was randomly selected

as player A and the other player B. Further, for each S one of the

two response keys was randomly designated response 1 and the other response

2 with the restriction that the following possible combinations occurred

equally often in each of the experimental groups: (a) Al and Bl on the

right, (b) Al on the right and Bl on the left, (c) Al on the left and

B
l

on the right, and (d) Al and Bl on the left.

When the Ss had been seated they were read the following instructions:

"This experiment is analogous to a real life situation where what you

gain or lose depends not only on what you do but also on what someone else

does. In fact, you should think of the situation as a game involving you

and another player, the person at the other end of the table.

"The experiment for each of you consists of a series of trials. The

top center lamp on your panel will light for about two seconds to indicate

the start of each trial. Shortly thereafter one or the other of the two

lower lamps will light up. Your job is to predict on each trial which one

of the two lower lamps will light and indicate your prediction by pressing

the proper key. That is, if you expect the left lamp to light press the

left key, if you expect the right lamp to light press the right key. On

each trial press one or the other of the two keys but never both. If you

are not sure which key to press then guess.

"Be sure to indicate your choice by pressing the proper key immediately

after the onset of the signal light. That is, when the signal light goes

on press one or the other key down and release it. Then wait until one of

the lower lights goes on. If the light above the key you pressed goes on
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your prediction was correct, if the light above the key opposite from the

one you pressed goes on you were incorrect.

"Being correct or incorrect on a given trial depends on. the key you

press and also on the key the other player presses. With some combinations

of your key choice with the other player's key chOice, you may both be correct;

with other combinations one player will be correct and the other incorrect;

for still other combinations you may both be incorrect.

"As you have probably already guessed, the situation is fairly compli­

cated. The object of the experiment is to see how many correct predictions

you can get over a series of trials."

Questions were answered by paraphrasing the appropriate part of the

instructions.

Following the instructions, 210 trials were run in continuous sequence.

For each pair of ~s, sequences of reinforcing lights were generated in

accordance with assigned values of (xi'Yi) and observed responses.

On all trials the signal light was lighted for 3.5 sec; the time

between successive signal exposures was 10 sec. The reinforcing light

followed the cessation of the signal light by 1.5 sec. and remained on for

2 sec.

Results and Discussion

Mean learning curves and asymptotic results.-- Figure 1 presents the

mean proportions of Al and B
l

responses in successive blocks of 30

trials for the entire sequence of 210 trials. An inspection of this
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figure indicates that responses were fairly stable over the last 90 trials.

To check the stability of response behavior for individual data, ts for

paired measures were computed between response proportions for the first

and last halves of the final block of 90 trials. In all cases the obtained

values of t did not approach significance at the .10 level. In view of

these results it appears reasonable to assume that a constant level of

responding had been attained; consequently the proportions computed over

the last 90 trials were used as estimates of the asymptotic probabilities

of an A
l

and a B
l

response. Table 1 presents the observed mean pro­

portions of Al and B
1

responses in the last 90 trial block and the

standard deviations associated with these means. Entries for the Sure Group

are based on N=24; for the Mixed Group, N=20.

The values predicted by the Markov model are also presented in Table

1 and are obtained by substitution in the following equations:

(4)

(5)

It should be noted that these equations are not a general solution to the

Markov process described in the first section of this paper but represent a

solution only when the following pair of conditions are satisfied:~/
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Table 1. Predicted and observed mean proportions of Al and

B
l

responses over the last block of 90 trials.

Al B
l

Predicted Observed s Predicted Observed s

Sure .714 ·719 .0904 .143 .158 .0990

Mixed ·551 ·546 .0557 .281 .250 .0787
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(6)

An inspection of e~uations (4) and (5) indicates that poo(Al ) and Poo(Bl )

are independent of the learning parameters 9
A

and 8
B

and strictly functions

of xi and Yi' Conse~uently these e~uations should account for both

individual asymptotic behavior and group mean asymptotic values.

Inspection of Table 1 indicates very close agreement between observed

and predicted values. To check this agreement t tests were run between

the observed and predicted values employing the observed standard deviation

of the mean as the error term. In all cases the bbtained value of t did

not approach significance at the .10 level.

A check on the correspondence between individual asymptotic behavior

and predicted values is e~uivalent to evaluating the agreement between

observed standard deviations presented in Table 1 and asymptotic variability

predicted by the model. Unfortunately direct computation of this theoretical

~uantity is extremely cumbrous, and we have not obtained an analytical solu­

tion. Nevertheless, some results from Monte Carlo runs (~,l) tentatively

suggest that the observed variances are of the proper order to be accounted

for in terms of the present model.

Transition probabilities.-- Because of the relatively simple mathematical

character of stationary Markov processes with a finite number of states, it

is possible to ask certain detailed ~uestions. Probably the most immediate

question is: how do the aggregate transition matrices 1"or the two experimental
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Table 2. Observed transition matrices corresponding

to the theoretical transition matrix.

Computed over the last 90 trials.

Sure Mixed

< Al,B? <A l ,B2 > <A2,B l > <A2'B2> <ArB? <AJ:B2> <A2'Bl > <A 2,B?

<AJ:BJ?' .24 ·59 .06* .11* .19 .62 .06* .13*

<AJ:B2> .07* ·72 .01* .20 .05* .45 .03* .47

<A2,B? .20 .38 .17 .25 .26 ·34 .20 .20

<AzB2> .16 .42 .08 ·34 .16 ·39 .12 ·33
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groups compare with the theoretical matrix derived in the first section of

this paper. Table 2 presents the observed matrices computed over the last

90 trials for the two groups. No statistical test is needed to see that

the observed matrices differ significantly from the theoretical matrix.

It suffices to observe that in the theoretical matrix, for the set of experi-

mental parameter values employed in both the Mixed and Sure Groups, the

transition probabilities in the last two entries in row one and the first and

third entries in row two are identically zero, but in the observed matrices,

entries in these cells (denoted by * in Table 2) are in some cases markedly

different from zero.

Without regard to a specific model we can ask another highly relevant

question about the data: can the data be more adequately accounted for

by a two-stage Markov model which employs information about responses of

Ss on the previous two trials as compared with a one-stage model which

employs response information about only one preceding trial? For this

purpose we use the test described in OJ· The null hypothesis is that

Pijk = Pjk for i=1,2,3,4 where Pijk is the probability of state k

given, successively, i and j on the two previous trials, and Pjk is

the probability of state k simply given state j on the preceding trial.

To test this hypothesis the following sum was computed for the aggregate

group data:

2
X =L

i, j,k

where nr
J
. =Ln. 'k' If the null hypothesis is true, X

2
has the usual

k lJ
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2limiting distribution with 4(4-1) ; 36 degrees of freedom.

The values of
2

51.9 for the Sure Group Md 49·7 for the MixedX were

Group. In neither case were these values significant at t~ . 05 level .

This result indicates that for the present set of data there is no statisti-

cally significMt improvement in prediction if one knows the response history

of the pair of Ss on the previous two trials as compared to such knowledge

on only one preceding trial. The Markov model presented in this paper is

formulated as a one-stage process, but it should be pointed out that this

assumption is not necessary for our general theoretical approach to the

problem of interaction among Ss in such situations.

Game theory comparisons.-- The development of an adequate theory of

optimal strategies for non-zero-sUill, two-person games has been intensively

pursued in the past decade, but as yet no concept of optimality has been

proposed which is as solidly based as the minimax concept for zero-sUill, two-

person games. A natural division of non-zero-sum games is into cooperative

Md ~-cooperative games. In a cooperative game the players are permitted

to communicate and bargain before selecting a strategy; in a non-cooperative

game no such communication and bargaining is permitted. As should be obvious

from earlier sections, the experimental situation described in this paper

corresponds to a non-cooperative rather than a cooperative game.

In certain special non-zero-sum games the highly appealing sure-thing

principle may be used to select an optimal strategy. In brief, a strategy

satisfies the sure-thing principle if no matter what your opponent does you

are at least as well off, and possibly better off, with this strategy in
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comparison to any other available to you. The experimental parameters

(x.,y.) were so selected that for one of the experimental groups, namely
1 1

the Sure Group, each S had available such a strategy, namely, response

Al for player A and B
2

for player B with probability 1.

Unfortunately in most non-zero-sum games the sure-thing principle does

not lead to selection ofa unique optimal strategy, or even to a relatively

small class of optimal strategies. In this event, probably the best concept

of optimality yet proposed for non-cooperative, non-zero-sum games is Nash's

notion of an equilibrium point (2.,10). Roughly speaking, an equilibrium

point is a set of strategies, one for each player, with the property that

these strategies provide a way of playing the game such that if all the

players but one follow their given strategies, the remaining player cannot

do better by following any strategy other than one belonging to the

equilibrium point. The experimental parameters (x.,y.) were selected
1 1

for the second experimental group, the Mixed Group, so that the game had

a unique equilibrium point consisting of a mixed strategy for each S. In

particular, player A should have chosen response A
l

and player B,

response Bl , with probability 1/5.

Although Ss were not shown the pay-off matrix 'in our experiment, it

is a reasonable conjecture that after a large number of trials they would

learn enough about the situation to approach an optimal game strategy,

namely, a sure-thing strategy for one group, and an equilibrium point for

the other. Concerning this conjecture the results for the Sure Group seem

conclusive: the optimal strategies of responding Al or B2 with proba­

bility 1, for players A or B respectively, are not even roughly
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approximated by the observed asymptotic means. Results for the Mixed Group

are also decisive. The observed mean asymptotic probability of an Al

response differs significantly from the equilibrium point strategy of 1/5

at beyond the .001 level. And the observed mean asymptotic probability

of a B
l

response differs significantly from the equilibrium point strategy

at the .02 level.

Comments.-- From the standpoint of many social psychologists the

experimental situation used in this study is too highly structured in terms

of successful performance, and interaction between Ss is too severely

restricted. Concepts like those of friendliness, cohesiveness, group

pressure, opinion discrepancy and receptivity, which have been important

in numerous recent investigations, play no role in our situation. However,

these limitations are offset by some substantial assets. An intrinsically

quantitative prediction of behavior in an interaction situation has been

derived in a rigorous manner from fund~mental principles of reinforcement

and associative learning. In particular the only psychological concepts

needed for the analysis of our experiment are the classical triad of

stimulus, response and reinforcement. In comparison, studies using common-

sense group concepts like those just mentioned have not been quantitative

in character nor have they made any serious headway toward deriving these

concepts from any specif~c psychological theory.

From another viewpoint it is interesting to observe that this study

supports results in (g), namely, that various concepts of optimal strategy

from the theory of games have not proved useful tools for the prediction

of actual behavior. Although this generalization must be qualified by the
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remarks that Ss were not shown the pay-off matrix of the game, the relative

success of statistical learning models in predicting behavior seems sub­

stantial. Still, it is of theoretical interest to find out how much, if any,

explicit knowledge of the pay-off matrix disturbs the predictive accuracy of

the learning model; experimental investigation of this problem is now under

w~.
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Summary

The study deals with an analysis of a non-zero-sum, two-person game

situation in terms of a Markov model for learning. The formulation of

this model is derived from considerations similar to those employed by

Estes and Burke in their stimulus sampling approach to learning.

Bs were run in pairs for 210 trials. A single play of the game was

treated as a trial. On a trial, each player made a choice between one of

two alternative responses; after the players had made their response, the

outcome of the trial was announced. The responses available to player A

were designated Al and A
2

; similarly the responses available to player

B were B
l

and B
2

• If player A selected Al and player B selected

B
l

, then (i) there was a probability xl that player A was correct and

I-xl that player A was incorrect, and (ii) there was a probability Yl

that player B was correct and l-Yl that player B was incorrect. The

outcome of the other three response pairs A
I
B

2
, A

2
B

l
, and A

2
B

2
were

identically specified in terms of (X2'Y2)' (x
3

'Y3)' and (x4'Y4)' Ss

were informed of the game characteristics of the situation and instructed

to maximize the number of trials on which their response was correct.

Two groups were run, each employing a different set of (Xi'Yi) values.

The selection of these values was determined by game-theoretic considerations;

that is, a group had available either a mixed equilibrium point strategy or

a sure-thing strategy.

Analysis of the results was in terms of the following comparisons

between theory and data: (a) mean asymptotic response probabilities,
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Summary (Cant.)

(b) one and two stage transition probabilities, and (c) variances associated

with asymptotic response probabilities. In general, the predicted and

observed results were in close agreement. The results of the study were

also considered from the viewpoint of game theory.
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Footnotes

This research was supported by the Behavioral Sciences Division of the

Ford Foundation and by the Qroup Psychology Branch of the Office of

Naval Research.

In general, the solutions for are functions of
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