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AN ANALYSTS OF A TWO-PERSCN INTERACTION SITUATION

IN TERMS OF A MARKOV PROCESS i/

By

Richard C. Atkinson and Patrick Suppes
Stanford University

The present study represents an attempt to quantitatively descride

behavicr in a game situation involving social interaction between two

individua;s. The basis .of prediction is in terms of a Markov model for
learning which, in conceptual development, is closely related to statistical
- learning theory (4).

Before proceeding to the details of this study there are three general
:remarks Wé would like to mske concerning the fundamental ideas and methods.
(i) The principles of behavior that constitute our theory of social inter-
action are rigorously derivable from general principles of individual
behavior, in particular, from stochastic versions of reinforcement theory.
(ii)_The results are quantitative in a sharp sense; elaborate mathematics
_have ndt been applied to quantities which can only be ordinally measured.
(1ii) The underlying principles constitute a genuine theory in the sense
that priocr to experimentation quantitative prédictions_of behavior may be
made for a wide range of experimental parameter values.

.For the purposes Qf this experiment a play'of a game is a triél. On
a given trial, each of the players meskes & choice between one of two
“responses, After the players have independently indicated their responses,
the outcomé of the trisl is announced. In an earlier study (2) we considered
games where the outcomes-were such that on each trial one player was "correct"”

and the other player was'"incorrecf"; that is, zero~-sum games. In this study
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the games have outcomes such that on each trial both players can be correct,
both can be incorrect, or one can be correct and the other incorrect; that
is, non-zero-sum games. More important than the shift from zero-sum to
non-zero-sum games is the fact that in contrast to (g) the players were
informed that they were interacting with each other.

On all trials, the geme is described by the following payoff matrix:

Bl B2
A (257, (x,57,)
AE (x3,y3) (Xu9Yu)

&
The players are designated A and B. The responses available to

player A are Al and AE; similarly, the responses for player B are

B1 and BE' If player A selects Al and player B selecis Bl then

there is (i) a probability =x. that player A is correct and 1-x, that

1 1

‘player A is incorrect, and (ii) a probability ¥y that player B is

correct and l-yl that player B is incorrect. The outcome of the other

A_B.  and A232 are identically specified in

three response pairs AlBE’ o

terms of (x2’y2)’ (x3,y ) ana (Kh’yh)! For subseguent derivations it

3

will be useful to introduce the following notation:

ai = Xiyi

bi = xi(l—yi)
(1)

e, = (l-—xi)yi

3., =

(1-x,)(1-y,)




where -ai+bi+ci+di = 1.

The experiment to be presented employs the procedure outlined above.
At the start of an experimental session Ss were informed of the game
characteristics of the situation and instructed to maximize the number of
trials on which their response was correct.

Qur thecretical analysis of behavior in the situation is in terms of
g Markov model. Since a detailed mathematical development of the model
is presented elsewhere (;;) we shall confine ourselves to the most salient
features and omit mathematical proofs. A mbre complete development of_the
psychological-concepts which lead to the present model and its relation to

the Estes and Burke stimulus sampling theory can be found in (2).

Model.-~- 1In our situation, where two responses are available to each
3, we say that if a response occurs and is correct, then the response is
‘reinforced; 1f a response occurs and is incorrect then the alternative
" regponse is reinforced.

On any trial, a player is described as being in oné of two states.
If in state 1, he will make response 1s: if in state 2, response 2. ‘Thus
the two players can be specified in terms of the following four states:
>, < A

3B, > and < A_,B

1 2

bf a couple indicates the response of player A and the second, the

< Al,Bl l’BE >, < A > where the first member

2 2

response of player B.

The learning process is defined with respect to these states.

For player A we assume that when one of his responses is reinforced

~on trial n there is (i) a probability 6, that the organism is affected




by the reinforcing event so that on trial n+l he will make the response
reinforced on trial n and (ii) a probability 1-6, that the organism
is not affected by the reinforcing event and therefore repeats on trial
n+l  the response made on trial n. Stated equivalently there is a
probability eA that the state of the player at the start of trial n+l
i the one corregponding to the response reinforced on trial n and 1—9A.
that the state of the player at the start of trial =+l 1is the same as

ét the start of trial n regardless of the reinforcing event.

Identical riles describe the leafning'process for player B 1in terms
of  93. Thus, the parameters GA and eB describe the léarning rate
characteristics of players A and B respectively, and are quantities
which can be egtimated from a subset of the data and used to prediet
the remaining data (é) or In some cases estimgted from other experimental
éeteups_(z).

For the above set of assumptions and the payoff probabilities 8y bi,

c, snd d,, the transition matrix (7) describing the learning process can

be derived and is as follows:




<A ,B > < A,,B, > < A,,B > < A,;B, >

a1+b1(l'eB) b, 8y cleA dleAeB
< AR, > e (1-8,) +d,0,(1-6, ) _ +deA(1-eB)

+al(1-eA)(1-eB)

| - 9 |

0,8, a,+b,(1-6p) 59,8 AN

; Ay 5By > +d293(1-eA) '+02(l—6A) ' +d29A(1-eB)
+d2(1-eA)(1-eB)

C3QA d3QAeB | a3+b3(l—6B) b3OB

< AyB, > +d39A(l-9B) +°3(l“9A? ‘+d393(1-eA)
+a3(1-eA)(1—eB)
8 -
| 4,9,8; | ¢, 8, by 6, ah+bu(l QB)
< AyB, > +¢46A(1-eB) +dueB(1-eA) *ch(l'eA)
+dh(1-eA)(l-eB)

Rows designate the state on trial =n and columns the state on trial n+l.
Thus d2eAeB, the entry in row 2, column 3 is the conditional probability of
being in state < Ag’Bl > on trial n+l given that the pair of 8s was

in state < Al,B2 > on trial n, for we have:

48,65 = 8,°0 + D,0 + ¢,:0 + de[(l-GA)(l—eB)-O + eA(lueB)no

+ eB(l-eA).o + 1],

®%



The one stage transition probabilities completely describe response
behavior in the situation and from these one can obtain any theoretical
quantity desired. 1In particular we can derive an expression for the asymptotic
probebility of each of the four states, or equivalently stated, the asymptotic
probability of the joint occurrence of responses A, and Bj (i, = 1 or 2)
on a trial (7,8); this probability will be denoted as pG3(< Ai,Bj >). In
terms of these quantities we obtain the asymptotic probability of an A

L

and a Bl response. Namely,

(2) P (A) = (<A LB >) +p (<A,B,>)

(3) b, (By) = P (< ALB) >) +p (< A,B >).

The general expressions for pOO(Al) and. poo(Bl) are too lengthy to
reproduce here hut special forms of the equations will be used in analyzing.
data of ‘the present study.

The esgential interaction character of our Mérkov model is made clear by
the following observation. The joint probabilities pn(< Ai’Bj >) are
fundamental to the progéss rather than the individual probabilities pn(Ai)
and pn(Bj)? Given the former the latter can be computed, but not vice
- versa. In particular the players are not responding independently, that is,

in general

P, (< A58, >) £ (4))p (B)).




Method
ra

Experimental parameter values.-- Two groups were run; for game-theoretic

congiderations to be indicated later, they were designated Sure and Mixed.

- - -3 =1 = L =1 -
Fo; the Sure Group X = 1, Xy = s x3 =L % =3 and Yy = V= 1,
¥, = 2 ¥y, = 59 For the Mixed Group x, =1, x_ = 3 x, =0, x, = 2 and
387478 177 %78 3T R T8
_ S _ 5 _3
yl=01y2~lsy3—‘8)yh==g°
Apparatus.-- The apparatus has already been described in detail (2),

and only the salient features will be repeated here. The 8s, run in pairs,

- sat at opposite ends of a table. Mounted vertiecally in front of each 5

was a large opague panel, E sat between the two panels and was not visible
to either S. The apparatus, as viewed from the 8's side, consisted of two
silent operating keys mounted at the bage of the panel; upon the panel were
mounted three milk glass panel lights. One of these lights, which served

as the signal for S5 to respond, was centered between the keys at 8's

eye level. Each of the two remaining lights, the reinforecing signals, was
mounted directly above cne of the keys. The presentation and duration of

the lights were sutomatically controlled.

Subjects.-~ The Ss were 88 undergraduates obtained from introductory
psychology courses at Stanford University. They were randomly assigned to
the experimental groups with the restriction that there were 24 pairs of '§s

in the Sure Group and 20 in the Mixed Group.




Procedure.-- For each pair of Ss, one person was randomly selected
as player A and the other player B. Further, for each £ one of the
two response keys wes randomly designated response 1 and the other response
2 with the restriction that the following possible combinations occurred
equally often in each of the experimental groups: (a) Al and Bl on the
right, (b) A, on the right and B, on the left, (c) A, on the left and
B, on the right, and (d) Al and B, on the left.

When the BSs had been seated they were read the.following-instructions:

"This experiment is analogous to a real life situation where what you
gain or lose depends not only on what you do but also on what someone else
does. In fact, you should think of the situation as & game involving you
and another player, the person at the other end of the table.

"The experiment for each of you consists of a series of trials. The
top center lamp on your panel will light for about two seconds to Indicate
the start of each trial. Shortly thereafter one or the other of the two
lower lamps will light up. Your job is to predict on each trial which one
of the two lower lamps will light and indicate your prediction by pressing
the proper key. That is, if you expect the left lamp to light press the
left key, if you expect the right lamp to light press the right key. 0n
each trial press one or the other of the two keys but never both. If you
are not sure which key to press then guess.

"Be sure t0 indicate your choice by pressing the proper key lmmediately
. after the onset of the signal light. ‘That is; when the signal light goes

on press one or the other key down and release it. Then wait until one of

the lower lights geoes on. If the light above the key you.pressed goes on




you:'prediction was correct, 1if the light above the key opposite from the
one you pressed goes on you were incorrect.

"Being -correct or incorrect on a given trial depends on. the key you
press and also on the key the other player presses. With some combinations
of your key choice with the other player's key choice, you may both be correct;
with other combinations one player will be correct and the other incorrect;
for still other combinations you may both be incorrect.

"As you have probably already guessed, the situation is falrly compli-
cated. The object of the experiment is to see how many correct predictions
you can get over a series of trials."

Questions were answered by paraphrasing the appropriate part of the
instructions.

Following the instruections, 210 trials were run in .continuocus  sequence.
For each pair of BSs, sequences of reinforcing lights were generated in
accordance with assigned values of (xi,yi) and observed regponses.

On all trials the signal light was lighted for 3.5 sec; the time
between successive signal exposures was 10 sec. The reinforecing light
followed the cessation of the signal light by 1.5 sec. and remained on for

2 sec.,

Results and Discussion

Mean learning'curves and asymptotic results.~- Figure 1 presents the

mean proportions of Al and B responses in successive blocks of 30

1

trials for the entire sequence of 210 trials. An inspection of this
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Tigure indicates that responses were fairly stable over the last 90 trials.
To check the stability of response behavior for individual data, ts for
paired measures were computed between response proporticns for the first
and last halves of the final block of 90 trials. In all cases the obtained
values of % did not approach significance at the .10 level. In view of
these results it appears reascnable to assume that a constant level of
responding had been attained; consequently the proportions computed over
the last 90 trials were used as estimates of the asymptotic probabilities
of an A and a B response. Table 1 presents the observed mean pro-

1 1
portions of Al and Bl regponses in the last 90 trial block and the
standard deviations associated with these mesns. Entries for the SBure Group
are based on N=24; for the Mixed Group, N=20.

The values predicted by the Markov model are also presented in Table

1 and are obtained by substitution in the following equations:

(1x,)(1-7) + (1x,) (1)
B 2t = T )

(l~x2)(l—y4) + (l-xh)(l"ya)
(2-XQ-Xu)(2—y3~yh) - (xu—x3)(yh—y2)

(5) P, (B) =

It should be noted that these equations are not a general solution tb the -

Markov process described in the first section of this paper but represent a

2/

solution only when the following pair of conditions are satisfied:—
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Table 1. Predicted and observed mean proportions of Al and
Bl responses over the last block of 9C trials.
A1 Bl
Predicted [Observed 8 Predicted [Observed s
Sure Rrak 719 .090k .43 158 .0930
Mixed 551 546 L0557 .281 .250 L0787
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el
+
P
1

X, + X
4

(6)

An inspection of equations (&) and (5) indicates that pOO(Al) and Poo(Bl)
are independent of the lesrning parameters QA and GB and gtrictly functions
of xs and .yi, Consequently these equations should account for both
individual asymptotie behavior and group mean asymptotic values.

Inspection of Table 1 indicates very close agreement between observed
ahd predicted values. To check this agreement t tests were ruan between
the observed and predicted values employing the observed standard deviation
of the mean as the error term. In all cases the obtained value of t did
not approach significance at the .10 level.

A check on the correspondence between individusl asymptotic behavior
and predicted values is eguivalent to evaluating the agreement between
observed standard deviations presented in Table 1 and asymptotlic varisbility
predicted by the model. Unfortunately direct computation of this theoretical
quantity is extremely cumbrous, and we have not obtained an analytical solu-
tion. Nevertheless, some results from Monte Carlo runs (2,3) tentatively

suggest that the observed varisnces are of the proper order to be accounted

for in terms of the present model.

Transition probabilities.-- Because of the relatively simple mathematical

character of stationary Markov processes with a finite number of states, it
is possible to ask certain detailed questions. Probably the most immediate

question is: how do the aggregate transition matrices ror the two experimental




e

—

Table 2.

to the theoretical transition matrix.

Computed over the last 90 trisls.

-lla-

Observed transition matrices corresponding

Mixed

Sure
'<Al,Bl>. <AB,> |<AL,B > | <ALB> | <ALB> [ <AB> [<ALB> |<ALB>
<A,B> .2# .59 6% 1% .19 .62 L06% L13%
<A,B,> LOT7% .72 LOL* .20 L05% A5 LO3% A7
<A2,Bl>. .20 .38 17 .25 .26 .30 .20 .20
<A2,B2> .16 A2 .08 .34 .16 .39 .12 .33
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groups compare with the theoretical matrix derived in the first section of
this paper. Table 2 presents the observed matrices computed over the last
90 trials for the two groups. No statistical test is needed to see that
the observed matrices differ significantly from the theoretical matrix.
It suffices to observe that in the theoretical matrix, for the set of experi-
mental parameter values employed in both the Mixed and Sure Groups, the
transition probabilities in the last two entries in row one and the first and
third entries in row two are identically zero, but in the observed matrices,
entries in these cells (denoted by % in Table 2) are in some cases markedly
different from zero.

Without regard to a specific model we can ask another highly relevant
guestion about the data:; can the data be more adequately accounted for
by a two-stage Markov model which employs informstion sbout responses of
8s on the previous two trials as compared with a one-stage model which
employs response informastion about only one preceding trisl? For this
purpose we use the test described in (1). The null hypothesis is that
'Pijk = pjk for i=1,2,3,4% where pijk is the probability of state k
. given, successively, i and Jj on the two previocus trials, and pjk is
the probability of state k simply given state J on the preceding trial.
To test this hypothesis the following sum was computed for the.aggregate
‘group data:

2 A N 2 A
- * -
x L nij(Pijk ij) /ij )
i,J5k

where n§J =§::7nijkn If the null hypothesis is true, x? has the usual
k
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limiting distribution with l;(lp-l)e = 36 degrees of freesdom.

The values of X2 were 51.9 for the Sure Group and 49.7 for the Mixed
Group. In neither case were these values significant at the .05 level.
This result indicates that for the present set of dats there is no statisti-
cally significant improvement in prediction if one knows the response history
of the pair of Ss  on the previous iwo trials as compared to such knowledge
on only one preceding trial. The Markov model presented in this paper 1s
formulated as a one-stage process, but it should he pointed out that this
assumption is not necessary for our general theoretical approach to the

problem of interaction among 8s in such situaticns.

Game theory comparisons.-- The development of an adequate theory of

optimsl strategies for non-zero-sum, two-person games has been intensively
pursued in thg past decade, but as yet no concept of optimality has been

proposed which is as solidly based as the minimax concept for zéro—sum, two-
person games. A natural division of non-zero-sum games is into cooperative

and non-éooperative games. In a cooperative game the players are permitted

to communicate and bargain before selecting a strategy; in a non-cooperative
game no such communication and bargaining is permitted. As should be obvious
from earlier sections, the experimental situation described in this paper
corresponds o a non-cooperative rather than a cooperative game.

In certain special non-zero-sum games the highly appealing sure-thing
principle may be used to select an optimal strategy. In brief, a strategy
satisfies the sure-thing principle if no matter what your -opponent does you

are at least as well off, and possibly better off, with this strategy in
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comparison to any other available to you. The experimental parameters
.(xi,yi) were so selected that for one of the experimental‘groups, namely
the Sure Group, each § had available such a strategy, namely, response

A for player A and B

! for player B with probability 1.

2
Unfortunately in most non-zero-sum games the sure-thing principle does

not lead to selection of -a unigue optimal strategy, or even to a.relatively

small class of optimal strategies. In this event, probably the best concept

of ‘'optimality yet proposed for nonucooperative; non-zero-sum games is Nash's

notion of an equilibrium point {9,10). Roughly speaking, an equilibrium

point is a set of strategies, one for each player, with the property that
these strategies provide a way of playlng the game such that if all the
"players but one follow their given strategies, the remaining player caunot'
do better by following any strategy other'thén one belonging to the
equilibrium point. The experimental parameters (xi,yi) were selected
for the second experimental group, the Mixed Group, so that the game had
a unique equilibrium point consisting of a mixed strategy for each 5. In
particular, player A should haﬁe chosen response Al and player B,
response Bl’ with probability 1/5.

| Although 8s were not shown the pay-off matrix in our experiment, it
ig a reasonable conjecture that after a large numbef of trials they would
learn enough about the situation to approach an optimal geme strategy,
namely, a sure-thing strategy for one group, and an equilibrium point for
the other. Concerning this conjecture the results for the Sure Group seem

conclusive: +the optimal strategies of responding Al or B, with proba-

2

~bility 1, for players A or B respectively, are not even roughly
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approximated by the observed asymptotic means. Results for the Mixed Group

_are also decisive. The observed mean asymptotlc probability of an Al

response differs significantly from the equilibrium point strategy of 1/5

at beyond the .001 level. And the observed mean asymptotic probability

of a Bl response differs significantly from the equilibrium point strategy
at the .02 level.

Comments.-~- From the standpoint of many social psychologists the
experimental_situation used in this study is too highly structured in terms
of sucéessful performance, and interaction between Ss 1s too severely
restricted. Concepts like those of friendliness, cohesiveness, group
pressure, oplnion discrepancy and receptivity, which have been important
in numerous recent investigations, play no role in our situation. However,
thege limitations are offset by scme substantial assets. An intrinsically
gquantitative prediction of behavior in an interaction situastion has been
derived in a rigorous manner from fundamental principles of reinforcement
and assceciative learning. In particular the oﬁly psychological concepts
needed for the analysis of our experiment are the classical triad of
stimalus, response and reinforcement. In comparison, studies using common-
#ense group concepts. like those Jjust mentioned have not been quantitative
in character nor have_they made any serious headway toward deriving'these
concepts from any specific psychological theory.

From anotﬁer viewpoint it is interesting to observe that this study
supports results in (2), namely, that various concepts of optimal strategy

from the theory of games have not proved useful tools for the prediction

of actual behavior. Although this generalization must be qualified by the
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remarks that Ss were not shown the pay-off matrix of the game, the relative
success of statistical learning models in predicting hehavior seems sub-
stantial. Still, it is of theoretical interest to find out how much, if any,
explicit knowledge of the pay-off matrix disturbs the predictive accuracy of
the learning model; experimentsl investigation of this-problem.is now under

way.
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Summaxyy

The study deals with an analysis of & non-zero-sum, two-person game
situation in terms of a Markov model for learning. The formulation of
this model ig derived from considerations similar to those employed by
Estes and Burke in their stimulus sampling spproach to learning.

3s  were run in pairs for 210 trials. A single play of the game was
treated as a trial. On a trial, each player made a choice between one of
two alternative responses; after the players had made their response, the
outeome of the trial was announced. The responses avallable to player A
were designated A. and AQ; similtarly the responses ‘available to player

1

B were Bl and BB' If player A selected Al and player B selected

B, then (i) there was a probability x, ‘that player A was correct and

l-xl that player A was incorrect, and (ii) there was a probability vy
that player B was correct and l—yl that player B was incorrect. The

outcome of the other three response pairs A A Bl’ and AEB were

172’ "2 2
identically specified in terms of (Xg’yg)’ (x3,y3), and (Xh’yh)° §é
were informed of the game characteristics of the situation and instructed
to maximize the number of trials on which their response was correct.
Two groups were run, each employing a different set of (xi,yi) values.
The selection of thése values was determined by geme-thecretic considerations;
that is, a group had available either a mixed equilibrium point strategy or
a sure-thing strategy.

Analysis of the results was in terms of the following comparisons

between theory snd data: (a) mean asymptotic response probabilities,
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Summary (Cont.)

{b) one and two stage transition probabilities, and (c) variances associated
with asymptotic response prcbabilities. 1In general, the predicted and
observed results were in close agreement. The results of the study were

81g0 considered from the viewpoint of game theory.
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Footnotes

This research was supported by the Behavioral Scienceg Division of the

Ford Foundation and by the Group Psychology Branch of the (Office of
Naval Research. '

Tn general, the solutions for 'pOO(Al) and pOD(Bl) are functions of

both 8, and € (2,11).
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