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There is awell-established needwithin the remote sensing community for improved estimation and understanding
of canopy structure and its influence on the retrieval of leaf biochemical properties. The main goal of this research
was to assess the potential of optical spectral information fromNASA's Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) to discriminate different canopy structural types. In the first phase, we assessed the relationships be-
tween opticalmetrics and canopy structural parameters obtained fromLiDAR in terms of different canopy structural
attributes (biomass (i.e., area under Vegetation Vertical Profile, VVPint), canopy height and vegetation complexity).
Secondly,we identified and classifieddifferent “canopy structural types”by integrating several structural traits using
Random Forests (RF). The study area is a heterogeneous forest in Sierra National Forest in California (USA). AVIRIS
optical propertieswere analyzed bymeans of several sets of variables, including single narrow band reflectance and
1st derivative, sub-pixel cover fractions, narrow-band indices, spectral absorption features, optimized normalized
difference indices and Principal Component Analysis (PCA) components. Our results demonstrate that optical
data contain structural information that can be retrieved. The first principal component, used as a proxy for albedo,
was themost strongly correlated opticalmetricwith vegetation complexity, and it also correlatedwellwith biomass
(VVPint) and height. In conifer forests, the shade fraction was especially correlated to vegetation complexity, while
water-sensitive optical metrics had high correlations with biomass (VVPint). Single spectral band analysis results
showed that correlations differ inmagnitude and in direction, across the spectrumandby vegetation type and struc-
tural variable. This research illustrates the potential of AVIRIS to analyze canopy structure and to distinguish several
structural types in a heterogeneous forest. Furthermore, RF using opticalmetrics derived fromAVIRIS proved to be a
powerful technique to generate maps of structural attributes. The results emphasize the importance of using the
whole optical spectrum, since all spectral regions contributed to canopy structure assessment.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Using remote sensing data to characterize ecosystem traits and pro-
cesses is important to understanding functionality and ecosystem ser-
vices. At leaf level, we have a strong understanding of the relationship
between spectral reflectance, biochemistry and structure (Gates,
Keegan, Schleter, & Weidner, 1965; Gausman & Allen, 1973; Gausman,
1984; Asner, Martin, Ford, Metcalfe, & Liddell, 2009; Sánchez-Azofeifa,
Castro, Wright, Gamon, et al., 2009; Féret, François, Gitelson, Asner,
et al., 2011). However, these relationships become substantially more
complex when scaling to the canopy. It is well known that canopy re-
flectance at the pixel level is a function of the vegetation component
properties (leaf and woody components), canopy structure (leaf and
stem area and 3-dimensional orientation), understory vegetation and
soil, illumination and view geometry (Asner, 1998; Asner & Martin,
nologies and Remote Sensing

uesca).
2009; Asner, Martin, Anderson, & Knapp, 2015). Considering only with-
in pixel elements, the impact of canopy structure, understory vegetation
and soil produces a more complex relationship, making accurate esti-
mates of leaf properties challenging to impossible (Asner, Martin,
Anderson and Knapp 2015; Ollinger, 2011).

Some studies have related leaf optical properties to canopy reflec-
tance assuming some approaches to simplify the problem, for instance,
Allen and Richardson (1968) modeled this relationship considering the
canopy as horizontal layers of stacked leaves, a clearly unrealistic as-
sumption. Other studies have retrieved foliar and canopy chemistry
from imaging spectroscopy data (Peterson, Aber, Matson, Card, et al.,
1988; Townsend, Foster, Chastain, & Currie, 2003; Ustin, Gitelson,
Jacquemoud, Schaepman, et al., 2009; Doughty, Asner, & Martin,
2011) without a canopy model. Many approaches to estimate forest
canopy parameters are based on empirical models (Coops, Smith,
Martin, & Ollinger, 2003; Kokaly, Asner, Ollinger, Martin, et al. 2009;
Clevers & Kooistra, 2012), but their models are constrained by site and
sensor dependence. Another approach is to develop physical models,
for example, canopy radiative transfer models (forward and inverse

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2016.04.020&domain=pdf
http://dx.doi.org/10.1016/j.rse.2016.04.020
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model simulations) that relate leaf optical propertieswith biophysical and
biochemical variables (Verhoef, 1984; Rosema, Verhoef, Noorbergen, &
Borgesius, 1992; Jacquemoud, Bacour, Poilvé, & Frangi, 2000;
Jacquemoud, Verhoef, Baret, Bacour, et al., 2009; Ceccato, Flasse,
Tarantola, Jacquemoud, et al., 2001). Omari, White, Staenz, and King
(2013) used PROFLAIR leaf-canopy reflectance model to simulate a
broad-leaf forest canopy using Hyperion Imaging spectroscopy data to
test retrieval of leaf area index (LAI) and canopy chlorophyll content.
Cheng, Zarco-Tejada, Riaño, Rueda, et al., (2006) used three leaf and can-
opy radiative transfer models to estimate vegetation water content for
canopies with three different architectures. Zarco-Tejada, Rueda, and
Ustin (2003) estimated leaf water indexwithMODerate resolution Imag-
ing Spectroradiometer (MODIS) data by inversion of a leaf-canopymodel
(PROSPECT + SAILH) in chaparral vegetation in California (USA). The
main problem they found was the large number of unknown parameters
to fix and the constraints they needed to include for accurate retrievals.

More recent research has sought to better quantify the influence of
canopy structure on canopy reflectance, (Knyazikhin, Schull, Stenberg,
Mõttus, et al., 2013) especially under differing vegetation densities
and vegetation gap distributions. Variables such as leaf area index
(LAI), leaf angle distribution and canopy gaps play a significant role in
canopy reflectance (Asner, 1998; Ollinger, 2011). If the impact of solar
and view geometry is added, scaling from leaf to canopy becomes still
more challenging. Consequently, it is essential to account for the influ-
ence of canopy structure together with solar and view geometry, isolat-
ing leaf spectra to retrieve qualified foliar properties from canopy
spectra (Asner, Martin, Anderson, and Knapp 2015). Nevertheless, be-
fore analyzing the influence of each component, it is necessary to esti-
mate them as accurately as possible. Solar and view geometry are
easilymeasured; however, canopy structure assessment involves great-
er difficulty, but is critical in the analysis of imaging spectroscopy data.
For example, White, Gómez, Wulder, and Coops (2010) found that the
spectral variability found in a coastal temperate forest is more related
to structural complexity than to species diversity.

The 3-D information provided by Light Detection and Ranging
(LiDAR) data enables a characterization of canopy structure
unachievable by any other passive remote sensing technique. The ability
of LiDAR data to accurately provide structural information has been
widely proved over different scenarios. It has proved its capability to es-
timate height, fractional cover, LAI, clumping index, biomass or volume
at different levels of detail, from single trees to stand level (Hilker,
Wulder, & Coops, 2008; Hopkinson & Chasmer, 2009; Tang, Brolly,
Zhao, Strahler, et al., 2014; Riaño, Valladares, Condes, & Chuvieco,
2004; García, Gajardo, Riaño, Zhao, et al., 2015; Bouvier, Durrieu,
Fournier, & Renaud, 2015; Næsset, Gobakken, Bollandsås, Gregoire,
et al., 2013; García, Riaño, Chuvieco, & Danson, 2010). This makes
LiDAR as a valuable technology to provide reference data for other re-
mote sensors, enabling the development of models using LiDAR as cali-
bration/validation data. The GLAS (Geoscience Laser Altimeter System
— http://attic.gsfc.nasa.gov/glas/) sensor, on-board the ICESat (Ice
Cloud and land Elevation Satellite — http://icesat.gsfc.nasa.gov/icesat/)
satellite, proved also to be useful to estimate forest structural attributes
(Suna, Ransonb, Kimesb, Blairb, et al., 2008; Duncansona, Niemanna, &
Wulderb, 2010; Popescu, Zhao, Neuenschwander, & Lin, 2011), al-
though its accuracy was reduced over steep terrain because of the
large footprint size (Hilbert & Schmullius, 2012), which caused the
mixing of ground and vegetation reflections.

Acquiring large spatial coverages with airborne LiDAR is not feasible
(i.e., limited access and expensive) and satellite borne sensors provide a
sample of the terrain with footprints spaced 170 m along-track and
15 km across-track at the equator; therefore, integration with passive
remote sensing may offer an alternative to overcome this limitation
(Lefsky, Cohen, & Spies, 2001). Much previous research in this area
used multispectral data, more specifically broadband spectral indices.
Cohen and Spies (1992) found a good relationship between spectral
variables derived from Landsat TM and several forest structural
attributes, such as standard deviation of tree size, structural complexity,
and stand age, in a conifer forest in theCascadeMountains, Oregon,USA.
Lu, Batistella, and Moran (2005) explored the influence of forest struc-
ture in heterogeneous Amazon forests to estimate aboveground bio-
mass using spectral mixture analysis of Landsat Thematic Mapper
data. They found TM4 and green vegetation fractions were the most
suitable variables for estimating succession forest biomass. Hall,
Shimabukuro, and Huemmrich (1995) found positive relationships be-
tween shade fraction and LAI, biomass density, diameter at breast
height (DBH), and aboveground net primary productivity (NPP) in a
black spruce stand in the Superior National Forest near Ely, Minnesota,
USA. Hyde, Dubayah, Walker, Blair, et al. (2006) estimated canopy
height and biomass in conifer dominated forests in the Sierra Nevada
Mountains, California, USA using Principal Component Analysis (PCA)
and Normalized Difference Vegetation Index (NDVI) derived from
Landsat ETM+. They found ETM+ accurately predicted canopy height
but poorly predicted biomass, probably due to sensor saturation prob-
lems at high biomass levels. Ahmed, Franklin, and Wulder (2013) esti-
mated canopy cover and height in a temperate deciduous and
coniferous forest integrating Landsat spectral indices, spectral mixture
analysis, and disturbance information. Ahmed, Franklin, Wulder, and
White (2015) found that forest disturbance derived from Landsat time
series improved accuracy of canopy structure estimation information in
a coastal temperate forest in Vancouver, British Columbia, Canada, as
well as, aiding a pre-stratification between young and mature forests.
Along the same lines, Pflugmacher, Cohen, and Kennedy (2012) used for-
est disturbance and recovery information from Landsat time series to es-
timate aboveground biomass, basal area, and height in mixed-conifer
forests in the Blue Mountains in Oregon, USA.

Nevertheless, important physical andphysiological processes of veg-
etation have not been measured using broadband spectral indices
(Blackburn, 1998). To address these data gaps, imaging spectroscopy
data has promise since surface reflectance is sampled at high spatial
resolution over hundreds of contiguous narrow spectral bands in the
optical range (Ollinger, 2011). Imaging spectroscopy data can be used
to calculate a wider range of vegetation spectral indices than Landsat
data as well as specific absorption features, which combined, allows
identification of physiological traits that minimize soil background
effects (Asner, 1998; Ustin, Roberts, Gamon, Asner, et al., 2004). For in-
stance, Ogunjemiyo, Parker, and Roberts (2005) found a negative rela-
tionship between AVIRIS albedo and canopy rugosity in a conifer
forest. Roberts, Ustin, Ogunjemiyo, Greenberg, et al. (2004) evaluated
how structural attributes identified with AVIRIS data (albedo, spectral
fractions, NDVI and Equivalent Water Thickness (EWT)) varied with
stand age in conifer forest. Swatantran, Dubayah, Roberts, Hofton, et
al., (2011) found strong correlations betweenAVIRISwater-sensitive in-
dices and shade fractionwith canopy height derived from Laser Vegeta-
tion Imaging Sensor (LVIS) in the montane forests of the Sierra Nevada,
California, USA. Although, imaging spectroscopy data appears to be
promising for canopy structure estimation, it has not yet been widely
used for this purpose and its usefulness has not been completely
exploited. The proposed Hyperspectral Infrared Imager (HyspIRI) mis-
sion (National Research Council (NRC), 2007) will provide frequent
global high spectral resolution information that offers an opportunity
for globally assessing canopy structure from optical data. Thus, it is nec-
essary to develop and test effective and efficient tools and techniques in
preparation for these data. In order to further develop and refine these
methods, airborne LiDAR data provides most useful validation and ref-
erence data source (Hudak, Lefsky, Cohen, & Berterretche, 2002;
Wulder & Seemann, 2003).

The main objective of this research was to assess the relationship
among structural metrics from LiDAR and from optical spectral infor-
mation from AVIRIS, to better understand the effects of canopy struc-
ture on canopy spectral reflectance. Improving this understanding is a
necessary step in developing methods to accurately estimate leaf prop-
erties from image data.

http://attic.gsfc.nasa.gov/glas/
http://icesat.gsfc.nasa.gov/icesat/
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Specifically, this study sought to 1) analyze the effect of stratification
by forest type (Conifer versus Hardwood) on the relationships between
opticalmetrics and vegetation structure; 2) identify the spectral regions
and optical metricsmost significantly correlated with canopy structure;
and 3) identify andmapwhatwe call “canopy structural types”, by inte-
grating several structural traits and evaluating their distributions across
a heterogeneous forest. The final goal of this work is to discriminate
these canopy structure types rather than to quantitatively predict the
structural variables themselves.

Although a body of research exists around the study of canopy struc-
ture with optical properties, most of the research has been focused on a
single forest type (Cohen & Spies, 1992; Hall, Shimabukuro, and
Huemmrich, 1995; Ogunjemiyo, Parker, and Roberts, 2005; Roberts,
Ustin, Ogunjemiyo, Greenberg, et al., 2004; Franklin, Hall, Smith, &
Gerylo, 2003) or on a single structural variable, or several independently
analyzed variables (Ahmed, Franklin, Wulder, and White, 2015;
Ogunjemiyo, Parker, and Roberts, 2005; Swatantran, Dubayah,
Roberts, Hofton, et al., 2011). In this paper, we focus on a heterogeneous
landscape and the combination of structural traits that distinguish dif-
ferent canopy structure types.

2. Study site

The study site is Soaproot Saddle (Fig. 1) located in the mid-
elevation range of the Sierra National Forest in central California, USA,
approximately 1100 m above sea level. The area is composed of a
mixed conifer and evergreen and deciduous broadleaf forests, clearly
dominated by conifer species mainly Pinus ponderosa (ponderosa
pine) and Calocedrus decurrens (incense cedar). Themain broadleaf spe-
cies are the deciduous Quercus kelloggii (black oak) and the evergreen
Quercus chrysolepis (canyon oak). The forest canopy density varies
from dense to relatively open with a dense understory of shrubs and
grasses. The topography is complex with steep slopes in some areas.
The area has a strong Mediterranean climate characterized by hot
and dry summers and mild and wet winters. The mean temperature
Fig. 1. Location and map of the Soaproot Saddle study region with a high resolution aerial imag
green represents mixed forest and grey rocks.
ranges from 5.5 °C to 18.0 °C, with 805 mm of precipitation per year
(http://criticalzone.org/sierra/infrastructure/field-area/flux-tower-at-
soaproot-saddle/). The study region covers an area of 2000 ha located
within the Soaproot Saddle NEON (National Science Foundation's
National Ecological Observatory Network) site.

3. Data and methods

3.1. AVIRIS preprocessing

AVIRIS data were acquired by the Jet Propulsion Laboratory (JPL)
(California Institute of Technology Center) onboard a NASA ER-2 during
the HyspIRI flight summer campaign in June 2013. AVIRIS provides sur-
face radiance measurements in 224 spectral bands between 370 and
2500 nm with a bandwidth of 10 nm and a spatial resolution of 18 m
(Green, Eastwood, Sarture, Chrien, et al., 1998). The noisy atmospheric
absorption bands from 1342 to 1482 nm and from 1800 to 1966 nm
were removed; as a result 193 bands were used.

The AVIRIS image was radiometrically calibrated, geometrically
orthorectified and atmospherically corrected by JPL. In addition, a topo-
graphic correction was applied to avoid the effect of the slope and as-
pect on reflectance values. We used the model proposed by Soenen,
Peddle, and Coburn (2005) which is based on the Sun-Canopy-Sensor
(SCS) correction developed by Gu and Gillespie (1998). This correction
takes into account the orientation that trees do not grow perpendicular
to the inclined terrain. The formulation is as follows (Eq. (1)):

ρn ¼ ρ
cosα cosθþ C

cosiþ C
ð1Þ

where ρn is the normalized reflectance, ρ is the uncorrected reflectance,
α is the slope of the terrain, θ is the solar zenith angle, i is the illumina-
tion angle, and C is an empirical parameter introduced by Soenen,
Peddle, and Coburn, (2005) to moderate the overcorrection of the SCS
correction at large incidence angles. The empirical parameter
e and two major forest types delineated (conifer (green) versus hardwood (yellow)), dark

http://criticalzone.org/sierra/infrastructure/field-area/flux-tower-at-soaproot-saddle/
http://criticalzone.org/sierra/infrastructure/field-area/flux-tower-at-soaproot-saddle/


Table 1
Narrow-band indices used in this research with their formulas and references.

Index Formula Reference

NDVI ρ800−ρ660
ρ800þρ660

Rouse et al. (1973)

NDVI705 ρ750−ρ705
ρ750þρ705

Gitelson and Merzlyak (1994),
Sims and Gamon (2002)

mNDVI705 ρ750−ρ705
ðρ750þρ705−2�ρ445Þ Sims and Gamon (2002), Datt (1999)

EVIa G � ρ800−ρ660
ρ800þC1�ρ660−C2�ρ480þL Huete et al. (2002)

NDWI ρ860−ρ1240
ρ860þρ1240

Gao (1996)

NDII ρ819−ρ1649
ρ819þρ1649

Hunt and Rock (1989)

CAI 0:5 � ρ2005−ρ2203
ρ2106

Daughtry (2001)

a L = canopy background adjustment for correcting nonlinear, differential NIR and red
radiant transfer through a canopy; C1 and C2 = coefficients of the aerosol resistance term
(which uses the blue band to correct for aerosol influences in the red band); and G = a
gain or scaling factor. The coefficients adopted in the EVI algorithm are, L = 1, C1 = 6,
C2 = 7.5, and G = 2.5 (Huete, Justice, & Liu, 1994; Huete, Liu, Batchily, & van Leeuwen,
1997).
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(C) (Eq. (2)) is a function of the slope (b) and the intercept (a) of the re-
gression line derived from the relationship between the reflectance and
the cosine of the illumination angle.

ρ ¼ aþ b cosi⇒ C ¼ a
b

ð2Þ

3.2. LiDAR preprocessing

LiDARdatawere collected over the same region covered by theAVIRIS
data by an Optech Gemini small footprint waveform-recording LiDAR
flown by the National Ecological Observatory Network (NEON) (NEON
Technical Memo 005, 2013), and provided as discrete returns (up to
4) in LAS Specification 1.4 format. In addition, a Digital Elevation Model
(DEM) with 1 m spatial resolution was provided along with the point
cloud (19 p/m2), which was used to derive the height of each return
above the ground, calculated as the difference between the Z coordinate
of the point, and the Z value of the DEM at the same X, Y position.

3.3. LiDAR and AVIRIS dataset preparation

LiDAR and AVIRIS data were both acquired in June 2013. LiDAR var-
iables were calculated at 18-m spatial resolution to match that of the
AVIRIS data. Pixels with a very low vegetation cover were removed
from the analysis; such pixels were identified by NDVI values less than
0.4. Additionally, pure conifer and hardwood pixels were identified
using the vegetation map provided by the Forest Service (CALVEG
www.fs.fed.us). AVIRIS pixels were labeled as pure conifer or hardwood
only when the entire 18m-pixel was completely within an area of coni-
fer or hardwood according to CALVEG data. In total we analyzed six
datasets: a LiDAR and an AVIRIS dataset for three scenarios: all vegetat-
ed pixels, conifer forest pixels only and hardwood forest pixels only.

3.4. Optical metrics

The optical metrics calculated and evaluated included (Appendix
Table A.1): (1) single narrow-band reflectance and 1st derivative,
(2) sub-pixel cover fractions, (3) narrow-band indices (4) spectral
absorption features, (5) optimized normalized difference indices, and
(6) Principal Component Analysis (PCA) components.

3.4.1. Single spectral narrow bands
Reflectance for the 193 narrow-band wavelengths and 192 first

order derivative transformed narrow-bands were individually consid-
ered. The first derivative is approximated as finite differences.

3.4.2. Sub-pixel fractions
Multiple Endmember Spectral Mixture Analysis (MESMA) (Roberts,

Gardner, Church, Ustin, et al., 1998; Dennison, Halligan, & Roberts,
2004) was used to obtain sub-pixel fractions of Green Vegetation
(GV), non-photosynthetic vegetation (NPV), soil, and shade for each
pixel. MESMA models each pixel's spectrum as a linear combination of
pure spectral components or ‘endmembers’. The main difference be-
tween MESMA and simple Spectral Mixture Analysis (SMA) is that, in
MESMA, the number and types of the endmember can vary at the
pixel level (Roberts, Gardner, Church, Ustin, et al., 1998). The image is
unmixed using all possible combinations of two, three and four
endmembers, selecting the best-fit model for each pixel. MESMA pro-
vides endmember abundances within the pixel together with a root
mean square error (RMSE) model fit. In this analysis, we constrained
themaximumallowable RMSE to 2.5%. Theminimumandmaximumal-
lowable endmember fractions were constrained to fall between −0.05
and 1.05. MESMA was implemented using the ENVI/IDL VIPER Tools
add on package (Roberts, Halligan, & Dennison, 2007) which includes
a detailed description of the tools.
Due to the lack of pure NPV and soil pixels in this ecosystem at 18m
spatial resolution, a reference spectral library of NPV and soil
endmembers was created using spectra collected during fieldwork in
2014 using an ASD full-range spectrometer sensor FieldSpec3
Spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA).
These endmembers included several soil types, a range of herbaceous
NPV, downed branches, and leaf litter and bark from the dominant
tree species. Each spectrum was an average of 50 scans measured ap-
proximately 1 m above the surface (~1 cm from the surface for bark)
under completely clear sky conditions within 2 h of solar noon. GV
endmembers were selected from the AVIRIS image, and photometric
shade was used in modeling. Twenty five, ten and twelve spectra
were preliminarily selected as NPV, soil, and GV endmembers, respec-
tively. We used three metrics to select the final representative
endmembers for each class: (1) Count-based Endmember Selection
(COB: Roberts, Dennison, Gardner, Hetzel, et al., 2003) where
endmembers are selected based on the maximum number of
endmembers that are modeled within their own class. (2) Endmember
Average RMSE (EAR: Dennison & Roberts, 2003) where endmembers
are selected based on the minimum RMSE within a class and (3) Mini-
mum Average Spectral Angle (MASA: Dennison, Halligan, and Roberts,
2004), where endmembers are selected based on the lowest average
spectral angle. The final endmembers selected were the ones high
inCOB values and low MASA and EAR values.

3.4.3. Narrow-band indices and absorption features
A set of narrow-band spectral indices (Table 1) and absorption fea-

tures, which might be related with canopy structure, were calculated.
Thesemetricswere selected from the literature and included those indi-
ces found to be related to structural parameters such as biomass, LAI or
vegetation height. Among the seven spectral narrow-band indices used,
some are sensitive to the presence of green foliar biomass, such as Nor-
malized Difference Vegetation Index (NDVI) (Rouse, Haas, Schell, &
Deering, 1973), Red Edge Normalized Difference Vegetation Index
(NDVI705) (Gitelson &Merzlyak, 1994; Sims&Gamon, 2002),Modified
Red Edge NormalizedDifference Vegetation Index (mNDVI705) (Sims&
Gamon, 2002; Datt, 1999), and Enhanced Vegetation Index (EVI)
(Huete, Didan, Miura, Rodriguez, et al., 2002). Others are sensitive to
water content, such as Normalized Difference Water Index (NDWI)
(Gao, 1996), Normalized Difference Infrared Index (NDII) (Hunt &
Rock, 1989) or dry matter content, like the Cellulose Absorption Index
(CAI) (Daughtry, 2001).

We additionally calculated several absorption-based derivatives
(Wtr1EdgeWvl, Wtr1EdgeWvl: NIR1 water absorption feature edge
wavelength and magnitude respectively) and fit water measurements
(Wtr1AbAr, Wtr2AbAr: NIR1 and NIR2 water absorption feature areas
respectively), and physically-derived values (EWT). The Near-Infrared
(NIR) water absorption features are found beginning at approximately

http://www.fs.fed.us
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958–1073 nm(i.e., NIR1) and 1105–1168 nm(i.e., NIR2), respectively. A
detailed explanation of these metrics can be found in Clark and Roberts
(2012), Ustin, Riaño, and Hunt (2012) and Hunt, Ustin, and Riaño
(2013). EWT was computed using a Beer-Lambert light-extinction
model, and additional details can be found in Roberts, Green, and
Adams (1997).

3.4.4. Optimized normalized difference indices
Wealso constructed optimized normalized indices related to canopy

structure using the AVIRIS data. Normalized indices are the most com-
monly used indices to relate remote sensing data and canopy properties
(Hansen & Schjoerring, 2003; Ferwerda, Skidmore, & Mutanga, 2005;
Zhao, Reddy, Kakani, Read, et al., 2005). Normalized difference indices
were calculated with all possible combinations of two AVIRIS bands to
explore the band combination indices that had the strongest relation-
ships with canopy structure, as compared to the LiDAR variables. Two
types of normalized difference index were computed, one type based
on untransformednarrow-bands (Eq. (3)),where ρλa and ρλb are the re-
flectance at bands λa and λb respectively. The other used the first deriv-
ative transformed narrow-bands (Eq. (4)), where dρλa and dρλb are the
first derivative of reflectance between bands (λa andλa− 1) and (λb and
λb − 1) respectively. The best indices were selected based on the maxi-
mum R2 value.

ND ¼ ρλa−ρλb
ρλa þ ρλb

ð3Þ

DND ¼ dρλa−dρλb
dρλa þ dρλb

ð4Þ

3.4.5. Principal Component Analysis
Principal Component Analysis (PCA) (Richards, 1999) was per-

formed both using the full spectral range as well as specific regions of
the spectrum that presented the strongest relationships with canopy
structure based on the results from our single band analysis and index
optimization. PCA finds a set of orthogonal axes that maximize the var-
iance of the data and produces a set of uncorrelated output variables
that are linear combinations of the original values; therefore, the first
PC contains the largest percentage of data variance. The information
within each selected spectral region is thus summarized by a reduced
number of bands. We selected the PCs that together represented 90%
of the data variance for use in our analysis. We used the first principal
component of reflectance as a proxy for the albedo (Kauth & Thomas,
1976; Small, 2003). The albedo is the fraction of radiation incident
that is reflected and thismeasure has been used to characterize the scat-
tering, thus is expected to be related to canopy structure.

3.5. LiDAR metrics

We derived a set of variables from the LiDAR data (Appendix
Table A.2) to describe the vegetation structure of the study sites. Since
Table 2
Relationship among all LiDAR variables as measured by the coefficient of determination.

LAI FC FC_1ret VVP H

LAI 1.00 0.94 0.92 0.87 0
FC 1.00 0.98 0.94 0
FC_1ret 1.00 0.94 0
VVP 1.00 0
H_max 1
H_mean
H_median
H_std
CHM_std
our study area was multilayered with shrub vegetation, which also
affected the signal received at the sensor, those returns with a height
greater than or equal to 0.5 m was assumed to be tree returns.

The height of the vegetation and its variability were described by
means of the maximum (H_max), mean (H_mean), median (H_medi-
an) and standard deviation (H_std) of the height, derived from the
height distribution of the LiDAR returns. To avoid possible outliers, the
99th percentile was used to describe themaximum height. Canopy sur-
face roughness or complexity was described by the standard deviation
of the pixel heights of a canopy height model (CHM_std) created at
1 m spatial resolution. Fractional cover (FC) represents the vertical pro-
jection of the vegetation canopy onto the ground, and was used as a
proxy to describe the horizontal distribution of the vegetation in the
study area. Using LiDAR data, FC can be estimated as the proportion of
vegetation returns relative to the sum of vegetation and ground returns.
This ratio can be computed based on the first return ratio or based on an
all returns ratio (Hopkinson & Chasmer, 2009). Lovell, Jupp, Culvenor,
and Coops (2003) showed that FC estimated from first returns
(FC_1ret) overestimate the real FC; nevertheless, since first returns
resemble the upper canopy more closely we estimated FC using both
approaches. Leaf area index (LAI) can be estimated from the canopy
cover (Morsdorf, Kotz, Meier, Itten, et al., 2006); however, since no con-
sideration of the spatial distribution of the canopy elementswas consid-
ered, this estimate represents the effective LAI (LAIe), also since leaf and
woody componentswere no separated, the actualmeasurement is plant
area index (PAI). To describe the vertical distribution of the vegetation
for the study area, the Vegetation Vertical Profile (VVP) at a 0.5 m verti-
cal resolution was derived for each pixel as the proportion of canopy
returns for each height bin. The area under the profile (VVPint)was com-
puted as a proxy for the amount of biomass present in the pixel.

3.6. LiDAR and optical metrics relationship

We first assessed correlations among LiDAR variables to evaluate
whether these could be grouped in some way to simplify the following
analysis. After selecting the LiDAR variables with unique information,
the strength and the direction of the relationship between these and
the untransformed and the first derivative transformed narrow-band
reflectance values were evaluated by Pearson's correlation coefficient.
Relationships between all LiDAR variables and the remaining optical
metrics were assessed using the coefficient of determination (R2).

3.7. Canopy structure assessment

In a first phase, each LiDAR structure variable (e.g. height) was used
independently to testwhether opticalmetrics can discriminate different
classes (i.e., low,medium, high), and in a secondphasewe evaluated the
ability of optical metrics to discriminate canopy structure types that in-
corporate multiple structural variables; these are subsequently defined
in Section 3.7.1 below. In both phases, we use classification to test the
ability of optical metrics to define canopy structure. Our hypothesis is
that if we can discriminate different canopy structure types using
_max H_mean H_median H_std CHM_std

.21 0.04 0.03 0.40 0.29

.24 0.06 0.05 0.41 0.32

.22 0.05 0.05 0.38 0.29

.38 0.17 0.16 0.48 0.38

.00 0.82 0.79 0.77 0.74
1.00 0.99 0.38 0.38

1.00 0.35 0.34
1.00 0.95

1.00



Fig. 2. The strength and the direction of Pearson's correlation coefficient between LiDAR
variables and original reflectance narrow-bands for a) biomass (VVPint), b) height and
c) complexity related LiDAR variables as defined in Section 4.
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optical metrics, optical data can provide critical information on struc-
ture for improved retrieval of canopy chemistry. We considered LiDAR
variables the reference data for validation purposes.

3.7.1. Canopy structure type definition using LiDAR
LiDAR variables (i.e., biomass (VVPint), height and complexity) were

classified into five ordinal classes (very low, low,medium, high and very
high) using an unsupervised IsoData classification. In the first phase
each LiDAR variable was used independently and in the second, the
three LiDAR structural variables thatwere binned into five LiDAR classes
were combined into a unique classification of canopy structure types.
The number of possible combinations among the three variables is
125; these classes were analyzed in terms of their representativeness
(i.e., number of pixels) and the proximity among classes with the intent
to reduce the number of combinations among classes and variables to
an interpretable and ecologically meaningful set. The following analysis
was done at the pixel level using each of the different datasets described
in Section 3.3 (all vegetated pixels, conifer forest, and hardwood forest
pixels).

3.7.2. Canopy structure types discrimination with optical metrics using
Random Forests

We used the non-parametric regression tree-based classifier Ran-
dom Forests (RF) (Breiman, 2001; Pal, 2005) to discriminate canopy
structural types from the optical metrics. Several studies have shown
the utility of non-parametric regression tree methods for ecological ap-
plications (Hansen, DeFries, Townshend, Sohlberg, et al., 2002; Moisen
& Frescino, 2002; Cutler, Edwards, Beard, Cutler, et al., 2007; Blackard,
Finco, Helmer, Holden, et al., 2008). Among these methods, RF is well-
suited for analyzing complex non-linear relationships, and it has been
satisfactorily used with forest remote sensing data (Ahmed, Franklin,
Wulder, and White, 2015; Chan & Paelinckx, 2008; Falkowski, Evans,
Martinuzzi, Gessler, et al., 2009; Powell, Cohen, Healey, Kennedy,
et al., 2010; Kantola, Vastaranta, Yu, Lyytikainen-Saarenmaa, et al.,
2010; Pierce, Farris, & Taylor, 2012; Naidoo, Cho, Mathieu, & Asner,
2012). The main advantages of this method are that (1) it does not
require any assumptions between independent and dependent
variables (Olden, Lawler, and Poff, 2008); (2) it allows selection of
the best variables without any a priori selection; (3) although the
whole data set is used, each run has an independent validation; and
(4) it provides a ranking of the most important variables (Clark &
Roberts, 2012).

RF generates a user-defined number of decision trees. Each tree is cre-
atedwith a randomly selected set of training samples (the reference data)
and independently tested with the remaining observations. After the
maximum number of trees has been reached, each observation's class is
determined by themajority chosen class of all decision trees. The number
of decision trees was set at 500 to ensure that every observation was
predicted at least several times. This number was selected by
running RF with increasing numbers of trees from 10 to 1000.
Classification error decreased with increasing number of trees until it
reached 500, at which point, the error stabilized. The number of variables
randomly sampled at each split was sqrt(p), where p is the number of
variables. A third of the observations were randomly selected with re-
placement from each class for training, and the remaining two thirds
retained for validation. The error rate for each classificationwas evaluated
with a confusionmatrix, and classification accuracy was estimated by the
percentage of Out Of Bag (OOB) data (Breiman, 2001) and the Kappa
index.

OOB error is the proportion of misclassified data. Each tree is built
using a different bootstrap sample of the original data, and the remain-
ing data is used to test the classification. The proportion of times that an
observation is misclassified averaged over all bootstrap samples is the
OOB error. Kappa measures the accuracy based on the difference be-
tween the actual agreement in the error matrix (values in themajor di-
agonal) and the chance agreement which is indicated by values of rows
and columns across the major diagonal (Congalton, 1991) (Eq. (5)),
where k is the number of classes.

K ¼
n �

Xk

i−1

nii−
Xk

i−1

niþ � nþi

n2−
Xk

i−1

niþ � nþi

ð5Þ

It is assumed that n samples are distributed into k2 cells. Each sample
is assigned to one class (k) in the classification. nij indicates the number
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of samples of class j that are classified into class i. ni+ and n+i are repre-
sented by the following formulas (Eqs. (6) and (7))

niþ ¼
Xk

j−1

nij ð6Þ

nþ j ¼
Xk

i−1

nij ð7Þ

RF was also used to rank the importance of each optical metric for
differentiating the structural classes. RF provides two measures of vari-
able importance: 1) the decrease in root mean square error that quan-
tifies the observed decrease in error when the appropriate variable is
included in themodel, and 2) the Gini index that quantifies node impu-
rity, that is, the degree to which a variable generates terminal nodes.
The RF algorithm (Liaw&Wiener, 2002) was implemented in the R sta-
tistical program (3.0.1) (R Development Core Team, 2014).

We ran the RF analysis two times. The first time vegetated pixels
from across the entire study region were included. In the second run,
the study area was split up into two regions. The RF analysis was run
on one subset and then the classifier obtained from this region was ap-
plied to the second region. We did this to assess how portable the rela-
tionships we observedwere when applied to an area not used in model
building or assessment. Within each analysis, we further sub-divided
our data to evaluate whether accounting for vegetation type could
improve the results (i.e., conifer forest and hardwood forest). Lastly, be-
cause our optimized normalized difference indices were data depen-
dent, they could introduce a positive bias in the modeling process. To
address this, we ran each analysis with and without these variables.

4. Results

The results are divided into four subsections. Section 4.1 contains
analysis of the relationship among LiDAR structural variables.
Section 4.2 presents the relationships between LiDAR structure and op-
ticalmetrics. In Section 4.3,we present the results of index optimization,
and Section 4.4 contains the results of the canopy structural type
classifications. Section 4.4 is further divided into two sections.
Section 4.4.1 contains the results of each the structural variables
Table 3
The strength and the direction of the relationship between LiDAR variables, as defined in Sectio
vegetated pixels, conifer pixels and hardwood forest pixels.

ALL CONIFER

VVPint Height Complexity VVPint

GV 0.01 + 0.06 − 0.01 − 0.03 +
SHADE 0.38 + 0.29 + 0.36 + 0.31 +
NDVI 0.31 + 0.01 + 0.13 + 0.27 +
NDVI705 0.34 + 0.01 + 0.14 + 0.36 +
mNDVI705 0.35 + 0.02 + 0.15 + 0.38 +
EVI 0.04 + 0.04 − 0.00 + 0.05 +
NDWI 0.19 + 0.01 + 0.06 + 0.22 +
NDII 0.31 + 0.02 + 0.13 + 0.29 +
CAI 0.25 − 0.00 − 0.10 − 0.23 −
EWT 0.39 + 0.06 + 0.12 + 0.42 +
Wtr1EdgeWvl 0.10 + 0.00 + 0.02 + 0.15 +
Wtr1EdgeMag 0.10 + 0.00 + 0.02 + 0.15 +
Wtr1AbAr 0.35 + 0.04 + 0.12 + 0.42 +
Wtr2AbAr 0.46 + 0.09 + 0.20 + 0.47 +
PC1 0.39 − 0.25 − 0.34 − 0.39 −
PC2 0.07 + 0.02 − 0.00 + 0.10 +
VIS-PC1 0.43 + 0.04 + 0.22 + 0.51 +
VIS-PC2 0.30 − 0.14 − 0.19 − 0.42 −
NIR-PC1 0.26 − 0.27 − 0.29 − 0.19 −
NIR-PC2 0.17 + 0.01 + 0.06 + 0.21 +
SWIR1-PC1 0.42 − 0.13 − 0.27 − 0.46 −
SWIR2-PC1 0.44 − 0.10 − 0.24 − 0.51 −
independently (Section 4.4.1.1 biomass (VVPint), Section 4.4.1.2 height
and Section 4.4.1.3 complexity) and Section 4.4.2 presents the results
of the combination of all structural variables, defining the so-called
structural types.

4.1. LiDAR variable relationship

We observed strong inter-correlations (i.e., ≥0.85) among LiDAR
variables with respect to three vegetation structural attributes
(Table 2): variables related with biomass (LAI, FC, FC_1ret and VVPint),
variables related with height (H_mean, H_median and H_max), and
variables related with vegetation complexity or canopy roughness
(H_std and CHM_std). Because of this, we elected to use VVPint as a
proxy of the amount of canopymaterial, i.e., qualitative measure of bio-
mass, based on previous studies that showed that the vertical profile can
be related to biomass (Harding, Lefsky, Parker, & Blair, 2001; Zhao,
Popescu, & Nelson, 2009). In this study, we used the integral of VVP.
H_mean was selected to represent height, and CHM_std to represent
vegetation complexity. Subsequent analyses used these three attributes.

4.2. LiDAR-optical metrics relationship

Fig. 2 shows the Pearson correlations between the original narrow-
band reflectance and biomass (VVPint), height, and complexity. Table 3
shows the relationships between the structural properties as described
by LiDAR and AVIRIS-derived optical metrics considering the three sce-
narios studied (i.e., all vegetated pixels, conifer and hardwood forest).

Results showed that Pearson correlations between biomass (VVPint)
and reflectance differed across the spectrum and by vegetation type
(Fig. 2). Biomass (VVPint) in both hardwood and conifer forest types
were strongly negatively correlated (i.e., R ≤ −0.6 for most spectral
bands) in the visible and shortwave-infrared (SWIR) parts of the spec-
trum, and in hardwood forest, there was also a weak positive correla-
tion, with Pearson coefficients between 0.3 and 0.4, in the NIR region,
up to 1150 nm. Conifer height was positively correlatedwith the visible
part of the spectrum and negatively with the NIR. On the other hand,
hardwood forests lacked any clear part of the spectrum highly correlat-
ed with height. Correlations with vegetation complexity had similar,
generally low, values across the spectrum. When using the first deriva-
tive of reflectance, we observed generally higher correlations across the
n 4.1, and optical metrics as measured by the coefficient of determination considering all

HARDWOOD

Height Complexity VVPint Height Complexity

0.38 − 0.04 − 0.32 + 0.00 + 0.00 −
0.26 + 0.34 + 0.10 + 0.02 + 0.02 +
0.13 − 0.02 + 0.54 + 0.02 + 0.00 +
0.14 − 0.03 + 0.50 + 0.05 + 0.02 +
0.07 − 0.06 + 0.45 + 0.05 + 0.02 +
0.35 − 0.02 − 0.39 + 0.01 + 0.00 +
0.11 − 0.02 + 0.13 + 0.00 − 0.00 +
0.12 − 0.03 + 0.50 + 0.00 + 0.00 −
0.08 + 0.02 − 0.67 − 0.01 − 0.00 +
0.03 + 0.16 + 0.09 + 0.00 − 0.00 +
0.02 − 0.01 + 0.20 + 0.04 − 0.04 −
0.02 − 0.01 + 0.19 + 0.04 − 0.04 −
0.00 + 0.12 + 0.25 + 0.01 − 0.01 −
0.04 + 0.21 + 0.30 + 0.00 + 0.00 +
0.21 − 0.36 − 0.22 − 0.00 + 0.02 +
0.35 − 0.02 − 0.42 + 0.01 − 0.04 −
0.05 − 0.09 + 0.59 + 0.00 − 0.02 −
0.01 + 0.10 − 0.05 + 0.10 − 0.12 −
0.41 − 0.35 − 0.00 + 0.00 − 0.00 −
0.15 − 0.01 + 0.11 + 0.01 − 0.01 −
0.00 − 0.17 − 0.45 − 0.02 + 0.06 +
0.00 + 0.13 − 0.62 − 0.00 + 0.04 +
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spectrum, but no one wavelength region stood out as being especially
strongly related to the LiDAR variables. For height, the improvement
was the greatest for conifer pixels.

The relationship between the structural properties optical metrics
varied in direction and magnitude (Table 3). Wtr2AbAr, SWIR2-PC1
and VIS-PC1 had the highest correlations with biomass (VVPint) when
all vegetated pixels were considered and for conifer forest alone. For
hardwood forest, the best correlations were found with CAI, SWIR2-
PC1 and VIS-PC1. Lower correlations occurred between height and
optical metrics. The highest correlations were found with shade, NIR-
PC1 and PC1 when all vegetated pixels were considered. Within conifer
forest NIR-PC1, GV and EVI had the highest correlations. However, none
of the optical metrics consistently showed significant correlation
(i.e., R2 ≤ 0.10 for all optical metrics) with height in hardwood
forests. The weakest correlations were found with vegetation
Fig. 3. Coefficient of determination from the all possible band combinations of normalizeddiffere
for a) all pixels b) conifer pixels and c) hardwood pixels; and those related to LiDARheight for: d
for g) all pixels h) conifer pixels and i) hardwood pixels.
complexity. Shade, PC1 and NIR1-PC1 had the highest correlations,
when all vegetated pixels were considered. Relatively low to moderate
correlations, with R2 ≥ 0.30, occurred for conifer forests, for PC1, NIR-
PC1 and shade. No optical metrics showed significant correlation in
hardwood forests.

4.3. Index optimization

The index optimization analysis is summarized in Fig. 3 and Table 4.
The best band combination optimized index and the spectral regions
most related to canopy structure are presented in Fig. 3. Table 4 shows
the best band combination normalized difference index using original
(ND) and the first derivative narrow-bands (DND) compared with the
best correlated optical metric found in the previous section for the
three LiDAR-derived metrics selected.
nce indices using untransformednarrow-bands related to biomass (VVPint) LiDAR variable
) all pixels e) conifer pixels and f) hardwood pixels; and those related to LiDAR complexity



Fig. 4. Frames in column 1 show biomass (VVPint) (a), height (d) and complexity (g) as classified from the LiDAR data. Frames in column 2 show biomass (VVPint) (b), height (e) and
complexity (h) as predicted from AVIRIS using training data acquired across the entire study region. Frames in column 3 show biomass (VVPint) (c), height (f) and complexity (i) as
predicted by AVIRIS but using training data from only half of the study region and applied to the entire region. Color code to indicate: Very low (red), low (orange), medium (yellow),
high (light green) and very high (dark green). No data (white).

Table 4
The coefficient of determination of the opticalmetricswith the highest correlations and the best band combination normalized difference index using original (ND) and thefirst derivative
narrow-bands (DND), for biomass (VVPint), height and complexity LiDAR variables considering all pixels, conifer pixels or hardwood forest pixels.

All Conifer Hardwood

Index R2 Index R2 Index R2

VVPint Wtr2AbAr 0.50 VIS-PC1 0.61 CAI 0.67
ND (1148–1800) 0.50 ND (733–791) 0.48 ND (560–2425) 0.68
DND (937–927/2186–2176) 0.45 DND (752–742/2186–2176) 0.40 DND (667–657/2256–2246) 0.64

Height shade 0.40 NIR-PC1 0.50 VIS-PC2 0.10
ND (1138–1148) 0.33 ND (956–946) 0.34 ND (560–628) 0.46
DND (521–511/849–840) 0.40 DND (927–917/1043–1033) 0.41 DND (540–530/684–674) 0.43

Complexity shade 0.36 PC1 0.42 VIS-PC2 0.12
ND (1205–1215) 0.30 ND (1014–1043) 0.33 ND (375–713) 0.36
DND (840–830/1214–1205) 0.37 DND (849–840/1043–1033) 0.36 DND (723–713/713–703) 0.33
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Overall, we did not find an optimized index that greatly improved R2

values with biomass (VVPint), height and vegetation complexity (Fig. 3)
when considering all vegetation pixels or conifer forest. However, for
hardwood we found stronger relationships with height and vegetation
complexity, with an increase from 0.10 to 0.46 and from 0.12 to 0.36,
respectively. Among optimized indices, the ones based on the first de-
rivative transformed narrow-bands were slightly more strongly
correlated.

The optimized narrow-band index analysis also provided informa-
tion about the spectral regions more related to canopy structure in
terms of biomass (VVPint), height and vegetation complexity. When all
vegetation pixels were considered, the highest correlations with bio-
mass (VVPint) occurred when bands in the NIR and SWIR regions of
the spectrum were combined. When separated into conifer and hard-
wood pixels, we also observed higher correlations using these bands,
but the best bands for hardwood were a combination of visible and
SWIR bands, and a combination of two NIR bands (~733 nm and
791 nm) in conifer forests. For height, the best band indices for all veg-
etation pixels were found using wavelengths around 1100 nm, coinci-
dent with a water absorption feature, and with slightly weaker
correlations around 600 nm. In conifer forests, we found the strongest
correlations with indices using pairs of wavelengths in the NIR region,
but also found good correlations using bands combining a visible
and SWIR wavelength pair. In hardwoods the highest correlations
were found using pairs of bands in the visible or in the NIR parts of
the spectrum, particularly around 600 nm. For complexity, indices
using the bands around 1100 nmwere highly correlated for all vegetat-
ed pixels and conifer forest only. However for hardwood forest, good
correlations were found using bands from the visible to NIR-SWIR
infrared portion of the spectrum with most other bands, and the best
band combinationswere between bands 375 and 713 nm, and between
1482 and 1966 nm.

When all vegetation pixels were considered, the highest correlations
between first derivative optimized narrow-band index with biomass
(VVPint) occurred when bands in the NIR (937–927 nm) and SWIR
(2186–2176 nm) regions of the spectrum were combined. When
separated into conifer and hardwood pixels, we observed the highest
correlations using the combination of visible (752–742 nm and
667–657 nm for conifer and hardwood respectively) and SWIR (2186–
2176 nm and 2256–2246 nm for conifer and hardwood respectively)
bands. For height, the best band indices using first derivatives bands
for all vegetation pixels were found using visible (521–511 nm) and
NIR (849–840 nm) parts of the spectrum. In conifer forest, the strongest
correlations were combining bands in the NIR (927–917 nm and 1043–
1033 nm) region. In hardwood the highest correlations occurred using
pairs of bands in the visible (540–530 nm and 684–674 nm) parts of
the spectrum. For complexity, the highest correlations were found
using bands in the NIR (840–830 nm and 1214–1205 nm for all pixels,
Table 5
Classification accuracy and Kappa coefficient for three structural variables (biomass (VVPint), h
tated pixels, conifer pixels and hardwood forest pixels) considering all variables (24 variables:
ering overlap between consecutive classes.

VVPint

Accuracy Kapp

All 24v Without 68.87 0.48
With 89.35 0.83

22v Without 68.05 0.47
With 89.27 0.83

Conifer 24v Without 58.40 0.56
With 78.63 0.77

22v Without 57.24 0.55
With 78.08 0.77

Hardwood 24v Without 61.80 0.61
With 81.29 0.81

22v Without 59.59 0.59
With 85.18 0.85
and 849–840 nm and 1043–1033 nm for conifer forest). In hardwood
forest the highest correlations were found using bands around 700 nm
(723–713 nm and 713–703 nm). The highest correlated optical metrics
with biomass (VVPint), height and vegetation complexity and the best
band combination index using untransformed and the first derivative
transformed narrow-bands are summarized in Table 4.

4.4. Canopy structural type discrimination with optical metrics using
random forests

4.4.1. Individual variables
Fig. 4 shows results from RF classifications for the three structural

variables and Table 5 summarizes the overall accuracy and Kappa coef-
ficient of biomass (VVPint), height and complexity classifications for the
three scenarios (i.e., all vegetated pixels, conifer and hardwood forest).
There were no differences in accuracy when optimized indices were
included or removed from the classifications, thus results will be ex-
plained considering the 24 variables in the classifications. By examining
the spatial error distribution (Fig. 5), we observed most errors occurred
between the most structurally similar classes (Table 6 and Fig. 5). Since
the class thresholds were not defined following ecological criteria, we
considered the impact of small overlapping zones between adjacent
classes in order to evaluate the magnitude of the error and to evaluate
the border effect. We greatly improved the classification accuracy for
the three variables (i.e., biomass (VVPint), height and complexity) in
all the studied scenarios when considering these overlapping zones
(Tables 5 & 6). Table 7 shows the percentage error for the prediction
and the extrapolation of biomass (VVPint), height, and complexity clas-
ses. The similarity between prediction and extrapolation errors in most
cases demonstrates the portability of the method developed. Finally,
Table 8 shows the top five optical metrics for structural class prediction
based on the decrease in root square mean error and Gini index for bio-
mass (VVPint), height, and vegetation complexity. The following subsec-
tion explains in more detail the results found for each LiDAR-derived
metric (i.e., biomass (VVPint), height and vegetation complexity).

4.4.1.1. Biomass (VVPint). In terms of vegetation stratification, the highest
overall accuracy for biomass (VVPint) classifications was achievedwhen
all vegetated pixels were included. The overall accuracy for conifer and
hardwood forest was 58.40% and 61.80%, respectively. The lowest errors
were found in classes 3 (39.10%) and 4 (17.86%) for all vegetated pixels
(Table 6). These classes make up the greatest number of pixels within
the study area. Within conifer forest, the lowest errors were found in
classes 1, 3 and 4. Within hardwood forest, class errors were similar
among classes.

Fig. 4a, b and c show a classification comparison among LiDAR-
derived biomass (VVPint) and RF results, with and without an indepen-
dent validation dataset. In general terms, results were similar among
eight and complexity as defined in Section 4.1.) and the three scenarios studied (all vege-
24v) or removing the optimized indices (22 variables: 22v), and with and without consid-

Height Complexity

a Accuracy Kappa Accuracy Kappa

62.09 0.47 52.98 0.40
88.54 0.85 84.74 0.82
60.83 0.45 53.20 0.40
88.33 0.84 86.66 0.84
59.05 0.57 49.20 0.47
78.06 0.77 67.30 0.66
57.41 0.55 48.35 0.46
76.72 0.76 66.40 0.65
61.04 0.60 59.39 0.58
80.43 0.80 78.43 0.78
60.31 0.59 57.82 0.57
79.39 0.79 76.84 0.76



Table 6
Percentage of class error for the biomass (VVPint), height and complexity classifications in
the three scenarios studied (all vegetated pixels, conifer pixels and hardwood forest
pixels) considering all variables (24v), and with and without overlapping between con-
secutive classes.

VVPint Height Complexity

Without With Without With Without With

All Class1 54.75 20.86 36.77 1.09 18.18 3.40
Class2 53.04 20.73 31.75 3.70 59.92 10.84
Class3 39.10 13.03 26.92 7.20 41.08 9.84
Class4 17.86 6.33 70.80 29.29 65.85 22.63
Class5 62.03 17.34 56.86 40.60 51.58 26.80

Conifer Class1 37.11 12.67 41.05 16.36 41.08 27.99
Class2 56.72 32.61 30.59 14.98 53.95 32.81
Class3 32.72 17.02 45.82 24.88 45.60 29.08
Class4 40.17 20.38 50.03 31.78 57.52 36.44
Class5 73.42 38.62 70.04 51.75 67.08 50.57

Hardwood Class1 37.01 12.75 23.80 12.32 38.41 20.88
Class2 38.95 14.22 61.17 34.64 45.81 23.68
Class3 50.95 20.02 30.32 15.24 39.18 20.87
Class4 37.20 13.51 41.11 18.12 40.27 21.95
Class5 34.25 11.50 82.72 52.47 48.55 32.20

Fig. 5. Spatial distribution of classification error for biomass (VVPint) (a), height (b) and complexity (c) considering the entire study region (row 1) and classification error for biomass
(VVPint) (d), height (e) and complexity (f) considering just half of the study region but applied to the full area (row 2). Color code: Green: one class overestimated, blue: more than
one class overestimated, yellow: one class underestimated, and red: more than one class underestimated.
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classifications, although high biomass (VVPint) (Class 5) tended to be
underestimated in the eastern and southern parts of the image, espe-
cially when an independent dataset was used (Fig. 4c). Fig. 5a and d
show the spatial distribution of class error, and the error percentage
by vegetation type can be found in Table 7. The lowest accuracy was
found in mixed pixels, with a similar percentage using either the entire
image or just half for training. The best overall accuracy was achieved
for the conifer forest, where 73.58% and 71.11% of the pixels were cor-
rectly classified by RF with non-independent and independent datasets
respectively. The greatest differences between the two RF classifications
were found in hardwood forest with overall accuracies of 70.67% when
the whole dataset was considered and 58.65% when an independent
validation dataset was used. Errors were similar for mixed pixels and
conifer forest, while within hardwood forest, underestimation was
more common, especially when an independent dataset was used.

Based onmeandecrease in RF overall accuracy ranking (Table 8), the
optimized index using the first derivative transformed narrow-bands
was the most important optical metric for biomass (VVPint) when all
metricswere considered, while CAIwas themost importantwithout in-
cluding optimized indices. In addition, metrics sensitive to photosyn-
thetic pigments (EVI, GV) together with more water-sensitive metrics
(EWT) or principal components (VIS-PC2, PC2) were within the top-
five most important optical metrics. Based on Gini index ranking
(Table 8), the optimized indices using the first derivative transformed
narrow-bands were the most important optical metrics for biomass
(VVPint). Within the top-five important metrics we also found the first
principal components of the SWIR2 region together with indices sensi-
tive to photosynthetic pigment, such as, NDVI and mNDVI705. When
optimized indices were removed, CAI and NDII entered the top five.

4.4.1.2. Height. The highest accuracy for height classifications (Table 5)
was found without vegetation stratification showing similar overall ac-
curacy for hardwood forest (i.e., 62.09% vs 61.04%). The overall accuracy
for conifer forestwas 59.05%. Table 6 shows thepercentage of class error
for height classifications in the three scenarios studied. Considering all
vegetated pixels, the highest errors were found in class 4 with a per-
centage of 70.80%. In conifer and hardwood forests the highest errors
were found in class 5 (high biomass (VVPint)), but this class only repre-
sented 6% and 3% of the conifer and hardwood pixels, respectively. In
the hardwood forest, class 2 also showed high errors with an accuracy
of 60.43%.

Results comparing LiDAR-derived height classes and RF classifica-
tions showed the high similarity (Fig. 4d, e and f). Height tended to
be underestimated in the northwestern portion of the image,
especially in the high height class (Class 5), while height tended to be
overestimated in the northeastern portion and in the south, especially
when considering the independent dataset. Fig. 5b and e show the



Table 7
Percentage of error for the prediction and the extrapolation of biomass (VVPint), height and complexity classifications for conifers, hardwoods and mixed forest types.

VVPint Height Complexity

Prediction Extrapolation Prediction Extrapolation Prediction Extrapolation

Conifer Overestimated One class 14.13 13.99 16.12 17.47 15.34 18.49
More than one class 0.24 0.35 0.87 1.06 1.83 4.43

Underestimated One class 11.92 14.29 20.30 20.84 29.78 21.55
More than One class 0.14 0.26 5.92 7.32 10.92 10.95

Reference 73.58 71.11 56.78 53.30 42.12 44.58
Hardwood Overestimated One class 10.69 6.73 11.65 20.16 46.75 31.39

More than one class 0.24 0.25 0.08 0.27 9.75 5.02
Underestimated One class 18.25 32.94 14.67 15.49 6.57 7.59

More than one class 0.16 1.43 0.51 1.59 2.37 1.78
Reference 70.67 58.65 73.10 62.49 34.57 54.22

Mixed pixels Overestimated One class 17.12 15.95 14.76 18.66 19.08 19.65
More than one class 0.32 0.37 0.55 0.82 1.52 4.11

Underestimated One class 14.69 17.25 20.47 19.99 26.52 21.86
More than one class 0.70 0.87 2.53 2.90 9.98 6.71

Reference 67.16 65.56 61.70 57.64 42.90 47.67
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spatial distribution of class error, and the error percentage by vegetation
type is found in Table 7. Although most of the errors correspond to ad-
jacent classes, some relatively continuous areas with more than one
class underestimated errors were found especially in northwest part
of the study area. In general, heights were underestimated. In terms of
vegetation stratification, the conifer forest produced the lowest overall
accuracies with a similar percentage using either the entire image or
with just half for training. The hardwood forest showed the lowest
error percentage with overall accuracies of 73.10% and 62.49% with
non-independent and independent datasets, respectively. The highest
differences between RF classifiers were found in mixed pixels with
overall accuracies of 61.70% and 57.64%with andwithout non-indepen-
dent dataset.

Optimized indices using the first derivative transformed narrow-
bands were the most important optical metric to classify height
based on mean decrease in RF overall accuracy ranking (Table 8),
while CAI was the most important without the optimized indices. The
top-five most important metrics also included water-sensitive metrics
such as Wtr1Edge Wvl, NDWI, NDII and the second principal compo-
nent of the NIR part of the spectrum when the optimized indices
were removed. Based on Gini index ranking (Table 8), the optimized
index using the first derivative transformed narrow-bands was
also the most important optical metric for height together with
NDVI705, mNDVI705, Wtr2AbAr and VIS-PIC1. The most important
metrics without the optimized indices in the classification were similar
except the EWT entered and DND-height dropped out of the top-five
metrics.

4.4.1.3. Complexity. In terms of vegetation stratification, the highest
overall accuracy for complexity classifications (Table 5) was achieved
in hardwood forest (i.e., 59.39%) showing similar results when all pixels
Table 8
The top five optical metrics for prediction based on the decrease in root square mean error and

VVPint Height

all_24v all_22v all_24v

RMSE DND-biomass CAI DND-height
EWT EWT CAI
CAI PC2 NDII
VIS-PC2 GV NDWI
EVI EVI Wtr1EdgeWvl

GINI ND-biomass SWIR2-PC1 DND-height
DND-biomass mNDVI705 mNDVI705
SWIR2-PC1 CAI Wtr2AbAr
mNDVI705 NDII VIS-PC1
NDVI NDVI NDVI705
are considered (i.e., 52.98%). The lowest overall accuracies were found
in the conifer forest (i.e., 49.20%). By examining the class error distribu-
tion (Table 6) the highest errors for all vegetated pixels were found in
classes 2 and 4 (i.e., 59.92% and 65.85%, respectively). Conifer and hard-
wood forests showed similar error percentages in all classes.

Fig. 4g, h and i show a classification comparison among LiDAR-
derived biomass (VVPint) and RF results, with and without an indepen-
dent validation dataset. High vegetation complexity tended to beunder-
estimated in the northwestern and eastern portions of the image, while
low vegetation complexity tended to be overestimated in the southern
part, especiallywhenusing a non-independent dataset. The percentages
of error (Fig. 5c and f and Table 7) of more than one class were higher
than in biomass (VVPint) and height classifications. The greatest differ-
ences between RF using a non-independent or independent dataset
were found in hardwood forest with overall accuracies of 34.57% and
54.22%, respectively. Conifer forest and mixed pixels presented similar
levels of error that, in general terms, tended to underestimate the vege-
tation complexity. Within hardwood forest, vegetation complexity was
clearly overestimated.

Based on mean decrease in RF overall accuracy ranking (Table 8),
within the top-five important metrics for classifying vegetation
complexity, we found metrics sensitive to photosynthetic pigments,
such as NDVI and mNDVI705, water-sensitive metrics, such as, NDII,
Wtr1EdgeWvl, or dry matter and principal component metrics, such
as, SWIR2-PC1 and VIS-PC2. The optimized index using the first deriva-
tive transformed narrow-bands was one of the most important optical
metrics for complexity based on Gini index ranking (Table 8). The top-
five important optical metrics also included mNDVI705, EWT, PC1 and
VIS-PC1. When the optimized indices were removed the most impor-
tant metrics were similar except the Wtr2AbAr entered and optimized
index dropped out of the top-five metrics.
Gini index for biomass (VVPint), height and vegetation complexity.

Complexity

all_22v all_24v all_22v

CAI mNDVI705 CAI
Wtr1EdgeWvl CAI VIS-PC2
NDII SWIR2-PC1 mNDVI705
NIR-PC2 Wtr1EdgeWvl Wtr1EdgeWvl
NDWI NDII NDVI705
Wtr2AbAr DND-complex mNDVI705
mNDVI705 mNDVI705 EWT
VIS-PC1 EWT VIS-PC1
EWT VIS-PC1 Wtr2AbAr
NDVI705 PC1 PC1



Table 9
Canopy structural type definitions based on the selected combination of the three classes
(low, medium, high) for each LiDAR variable (biomass (VVPint), height and complexity).
The selection criterion is explained in detail in Section 4.4.2.

Structural type VVPint Height Complexity % Study area

1 Low Low Low 4.89
Medium Low Low 8.84
Medium Low Medium 3.15

2 Medium Medium Medium 7.27
Medium Medium High 4.83
Medium High High 5.55

3 High Low Low 17.20
High Low Medium 3.11
High Medium Low 4.96

4 High Medium Medium 8.92
High Medium High 7.38
High High High 14.64
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4.4.2. Canopy structural types
Section 4.4.2.1 details the definition of canopy structural types in the

study area based on combinations of the three LiDAR-derived structural
variables (Table 9). Section 4.4.2.2 contains the results of Random For-
ests classification of these canopy structural types using optical metrics.
Fig. 6 shows these RF classification results, and Table 10 summarizes the
overall accuracy, class error and Kappa coefficient. Classification error is
mapped in Fig. 7, and Tables 11 and 12 contain the top five optical met-
rics for canopy structural type classification.

4.4.2.1. Canopy structural type definition. The analysis of the 125 possible
combinations from the five classes of LiDAR variables showed that 31
combinations were not present, 69 occupied less that the 1% of the
study area each, and the percentage of the dominant classes was just
8%. In a second step, the LiDAR structure variables (i.e., biomass (VVPint),
height, and complexity) were classified in three classes in order to re-
duce the number of possible combinations from 125 to 27. Table 9
shows the description of the 12 LiDAR variable combinations that repre-
sented more than 1% of the study region. However, among the 12 clas-
ses, there were still some that were not well-represented in the study
area. In addition, the RF results using these 12 classes showed high over-
lap between consecutive classes. Consequently, the 12 classes were
grouped into 4 structural types with varying levels of biomass (VVPint),
height and complexity (Table 9).

4.4.2.2. Canopy structural type discrimination. When classifying these
structural types, we observed no significant differences in accuracy
when optimized indices were included or removed from the classifica-
tions (70.16% and 67.95 respectively) (Table 10). The overall accuracy
Fig. 6. Canopy structural types classified by LiDAR data (a), predicted with Random Forests c
considering just half of the study region (c). Structural Type 1 (orange), Structural Type 2 (yel
are defined in Table 9). No data (white).
did not decrease significantly with or without the independent dataset
(66.23% and 70.16% with and without independent dataset considering
all optical metrics and 63.53% and 67.95without optimized indices). Veg-
etation stratification was not considered due to the low representative-
ness of the 4 classes within each scenario. The lowest and highest errors
were found in classes 4 (high biomass (VVPint), height and complexity)
and 2 (medium biomass (VVPint), height and complexity), respectively.

Fig. 6 shows a classification comparison among LiDAR-derived cano-
py structural types and RF results, with and without an independent
validation dataset, and Fig. 7 shows the spatial distribution of class
error, and the error percentage by vegetation type can be found in
Table 11. In general terms, results were similar among classifications
and there was no clear spatial trend in errors. Errors appeared mainly
along the borders between classes. The lowest accuracy was found in
mixed pixels, with a similar percentage using either the entire image
or just half for training. The best overall accuracy was achieved for
hardwood forest, where 83.88% and 77.84% of the pixels were correctly
classified by RF with non-independent and independent datasets, re-
spectively. The accuracy for conifer forest was also good, with 73.24%
correctly classified pixels when the whole dataset was considered and
69.57% when an independent validation dataset was used.

Based on mean decrease in RF overall accuracy ranking (Table 12),
within the top-five most important metrics for classifying structural
types, we found the optimized indices using the first derivative
transformed narrow-bands for biomass (VVPint) and height together
with the second PC of the VIS region of the spectrum and CAI with
and without an independent dataset. The absorption water feature
Wtr1EdgeWvl is replaced by the second principal component when
an independent dataset is used. Some differences were also found in
the top-five most important metrics in the classification without opti-
mized indices with and without an independent dataset. The optimized
indices using the first derivative transformed narrow-bands for height
and complexity were found within the top-five metrics based on Gini
index ranking (Table 12) together with some principal components
considering different regions of the spectrum. When the optimized
indices were removed, results from the Principal Component Analysis
were also found within the most important metrics together with
water absorption features.

5. Discussion

5.1. Relationship between single optical metric and each structural

Our initial analysis of single spectral bands showed that correlations
differ, in magnitude and in direction, across the spectrum and by vege-
tation type for each structural variable. Biomass (VVPint) wasmost sim-
ilar between the two forest types, producing negative correlations in
lassification considering the entire study region (b) and predicted from RF classification
low), Structural Type 3 (light green) and Structural Type 4 (dark green) (structural types



Table 10
Canopy structural types classification percentage of class error, accuracy and Kappa coef-
ficient considering all variables (24 variables: 24v) or removing the optimized indexes (22
variables: 22v) for the prediction and the extrapolation.

Type 1 Type 2 Type 3 Type 4 Accuracy Kappa

All 24v Prediction 36.13 51.02 24.44 18.74 70.16 0.59
Extrapolation 40.51 48.27 30.31 21.66 66.23 0.54

22v Prediction 37.46 56.11 28.04 18.65 67.95 0.56
Extrapolation 40.65 52.37 36.74 22.25 63.53 0.50
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visible and SWIR part of the spectrum and positive correlation in the
NIR. Similar results were found in Marshall and Thenkabail (2014).
The highest correlations in the visible and SWIR part of the spectrum
for biomass (VVPint) could be due to the fact that radiation absorption
for the pigments in the visible, and for the lignin, cellulose and
protein-N in the SWIR, are less affected by the scattering caused by
the canopy structure that dominates the NIR (Kokaly Asner, Ollinger,
Martin, et al., 2009). On the other hand, the estimation of height and
vegetation complexity seems to be more challenging since only the co-
nifer forest showed different correlations across the spectrum. The best
band combination indices method allowed us to distinguish clear spec-
tral regions highly related to biomass (VVPint). However, based on
height and complexity variables, the best optical band combination is
around 1100 nm, coincident with a water absorption feature. Although
the water-sensitive optical metrics do not show very high correlations
with height and complexity, this analysis demonstrates the importance
of these metrics to assess structure. The reason may be because taller
trees in this forest often have more complex canopies and higher
shade fractions. Our results agree with other researchers who have
shown strong correlations between water-sensitive optical metrics
and canopy height (Cohen & Spies, 1992; Swatantran, Dubayah,
Roberts, Hofton, et al., 2011).

The relationships found in our study between optical indices/
absorption features and vegetation structural metrics measured by
LiDAR are consistent with the findings of other studies. For example, the
shade fraction was correlated with biomass and height (i.e., R2 ≥ 0.30)
(Hall, Shimabukuro, and Huemmrich, 1995; Swatantran, Dubayah,
Roberts, Hofton, et al., 2011), but a stronger correlation was found with
LiDAR-derived complexity in conifer forest, which agrees with Lu,
Batistella, and Moran, (2005); Ogunjemiyo, Parker, and Roberts, (2005)
Fig. 7. Spatial distribution of classification error for canopy structural types (structural types are
study (b). Black: one or more classes above the correct estimate and red: one or more classes b
and Sabol, Gillespie, Adams, Smith, et al., (2002). Similar results were
found with the first principal component, used as a proxy for the albedo.
This variable seems to be a valuable optical metric to explain biomass
(Roberts, Ustin, Ogunjemiyo, Greenberg, et al., 2004) and height (Hyde,
Dubayah, Walker, Blair, et al., 2006), but its highest correlations were
found with vegetation complexity, specifically in conifer forests, it was
the most strongly correlated optical metric. This result agrees with find-
ings by Ogunjemiyo, Parker, and Roberts, (2005). Water-sensitive optical
metrics (water indices, absorption features and PCA with SWIR region)
had high correlations with biomass (VVPint), especially in the conifer for-
ests. The higher correlations foundwithwater-sensitive opticalmetrics as
opposed to pigment-sensitive metrics could be due to the saturation
problem of the latter in conifer forests with high biomass density. This
did not occur in the hardwood forest, possibly due to the lower biomass
density associated with this type of forest. These results are in agreement
with other authors in mixed forest types (Roberts, Ustin, Ogunjemiyo,
Greenberg, et al., 2004; Swatantran, Dubayah, Roberts, Hofton, et al.,
2011; Freitas, Mello, & Cruz, 2005).

Wediscovered several optimized indices that yielded higher correla-
tions (i.e., R2 ≥ 0.40)with the three structural attributes, consistentwith
studies by Gong, Pu, Biging, and Larrieu (2003) that estimated LAI using
normalized indexes derived from Hyperion data, or with studies by
Peña, Brenning, and Sagredo (2012) that constructed empirical normal-
ized indexes using Hyperion data to estimate canopy structure
variables, such as, tree diameter at breast height or tree height using
either original band or its first derivatives.

Optimized indices were especially effective in hardwood forests,
resulting in stronger correlations with all three structural variables.
Casas, Riaño, Ustin, Dennison, et al., (2014) also showed improvement
using a best band combination technique among other techniques to re-
trieve water vegetation information. We found similar correlations be-
tween optimized indices and structural variables using both
untransformed and transformed narrow-band indices, which unlike
Peña, Brenning, and Sagredo, (2012), showed stronger correlations
with the first derivative-based normalized indices than with untrans-
formed band-based indices. Although the correlations are similar, the
information provided by these two types of indices is different. Opti-
mized indices using untransformed reflectance bands are based on re-
flectance values at different wavelengths, while first derivative band
indices exploit the change between bands. However, these indices
defined in Table 9) considering the entire study region (a) and considering just half of the
elow the correct estimate.



Table 11
Percentage of error for the prediction and the extrapolation of canopy structural types
classifications for conifer, hardwood and mixed forest.

Prediction Extrapolation

Conifer 73.24 69.57
Hardwood 83.88 77.84
Mixed pixels 66.64 64.86
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maybe site and image dependent, and thus, further analysis should be
done to assess their usefulness in other study regions. Still, they are
promising given that other studies over a range of ecosystems have ob-
served similar patterns in correlation between these wavelength re-
gions and canopy structure.

In general terms, stronger relationships were found between single
spectral bands and biomass (VVPint) when stratifying by forest type.
However, for the other two variables (i.e., height and complexity),
increased correlations were only found for the conifer forest. On the
other hand, the best band combination indicesmethods had higher cor-
relations with the three structural variables in hardwood forests. These
differences found among vegetation types make sense, due to the differ-
ent architecture of conifer and hardwood forests. Although conifer and
broad-leaf forests can have similar leaf area, the leaf distribution is signif-
icantly different. In conifers, needles are packed in dense shoots while
hardwood trees have broader,flatter leaves. Crown shape is also different,
with conifers having conical crownswhereas hardwood trees have spher-
ical or ellipsoidal crowns. Needles produce self-shading within the shoot,
so they tend to reflect less light than broad-leaf canopies (Ollinger, 2011).
Needles causemore scatter thanhardwood leaves because of lower trans-
mittance and higher absorbance by needles than broad leaves (Roberts,
Ustin, Ogunjemiyo, Greenberg, et al., 2004; Allen, Gausman, Richardson,
& Thomas, 1969; Knapp & Carter, 1998). Needles often have higher dry
matter content, thus absorption could be stronger in the SWIR. Further-
more, the recollision probability, which is sensitive to the canopy struc-
tural organization complexity, is larger for conifers than for hardwood
(Knyazikhin, Schull, Stenberg, Mõttus, et al., 2013). These dissimilarities
result in different relationships between canopy structure and optical
properties between forest types.

5.2. Relationship between all optical metric and each structural variable

Although we found acceptable correlations (i.e., higher than 0.30)
between LiDAR and optical metrics, they were not especially strong.
This could be due to several sources of error. For instance the relation-
ship was measured using Pearson's correlation, which assumes a linear
relationship but this assumptionmay not always be true. In addition the
information from just one set of optical metrics is not sufficient to de-
scribe all the spectral variability in the structure variable. The correla-
tion values indicate whether a relationship exists between variables,
but the low values mean that is necessary to have auxiliary information
to explain and estimate the structural variable with confidence. Also the
mix of understory vegetation, litter, and soil within the pixel may intro-
duce bias in the empirical relationship between pixel reflectance and
the canopy structure variable measured by LiDAR. Besides structural-
optical relationships are age dependent, for instance, Ogunjemiyo,
Table 12
The top five optical metrics for prediction based on the decrease in root square mean error and

RMSE

Prediction Extrapolation

all_24v all_22v all_24v all_22v

DND-biomass VIS-PC2 DND-biomass VIS-PC2
DND-height CAI DND-height PC2
VIS-PC2 PC2 VIS-PC2 SWIR2-PC1
Wtr1EdgeWvl Wtr2AbAr PC2 GV
CAI Wtr1EdgeWvl CAI Wtr1EdgeWvl
Parker, and Roberts, (2005) found that the relationship between canopy
rugosity and albedo varied nonlinearly with tree age. All these factors
make it difficult to estimate canopy structure solely from a single optical
metric, especially within heterogeneous forests.

To address the first two points, we used the combinations of optical
metrics to classify general patterns in each structural attribute using the
non-parametric RF technique. We found the most important metrics
were not necessarily the same ones identified in the literature, and
theses varied for the three structural attributes studied. However, it is
critical to note that optical metrics associated with greenness, water
and dry matter, derived from the VIS, NIR and SWIR portions of the
spectrum, were always present in the top five RF variable rankings.
This underlines the importance of considering the entire spectrum
for canopy structure assessment, andmoves beyond the findings of pre-
vious studies by considering multiple optical metrics. The inclusion of
several absorption features (rather than indices) in the top variable
ranking also emphasizes the importance of using imaging spectroscopy
data, because the absorption features occur in discrete portions of the
spectrum and cannot be estimated with a few bands in broadband sen-
sors (Ollinger, 2011). Although other studies have demonstrated the
importance of the entire spectrum for other applications, such as species
discrimination (Asner & Martin, 2009; Asner, Martin, & Suhaili, 2012;
Clark & Roberts, 2012) or for estimating foliar traits from imaging spec-
troscopy data (Asner, Martin, Anderson, and Knapp, 2015), this issue
has not been well-studied for canopy structure assessment. Additional-
ly, it is important to highlight the importance of the SWIR spectral re-
gion and the absorption features, specifically those related to water
content (Hunt, Ustin, and Riaño, 2013). Further research is needed to
more deeply explore the SWIR spectral region and its role in canopy
structure assessment. Lastly, stratifying by forest type did not improve
RF accuracy, and Swatantran, Dubayah, Roberts, Hofton, et al. (2011)
had similar result in similar forest. This indicates our RF approach can
be applied to multiple forest types simultaneously.

5.3. Individual structural classes' assessment

Of the three structuralmetricswe considered, biomass is themost fre-
quently estimated with optical remote sensing data. Canopy height and
complexity have been less commonly estimated because their relation-
ship with optical data is not well-understood (Hyyppä, Hyyppä, Inkinen,
Engdahl, et al., 2000). Our result improves this understanding and dem-
onstrates that optical metrics derived from AVIRIS data and used in the
RF classifier can be used to discriminate different tree height and com-
plexity classes andproduce continuousmapsof these classeswithmoder-
ately high accuracy (from 60% to 89%). Though several researchers have
found good correlations between canopy rugosity (i.e., complexity) and
optical data using textural analysis (Ogunjemiyo, Parker, and Roberts,
2005; Sabol, Gillespie, Adams, Smith, 2002), we did not find these rela-
tionships in a preliminary assessment of several textural variables, includ-
ing entropy and homogeneity. In future research, textural analysis could
be addressed using higher spatial resolution data or taking into account
other textural variables not considered here.

The greatest source of error in themapswas due to thediscretization
of continuous structural variables into classes. The consideration of
Gini index for canopy structural type classifications.

GINI

Prediction Extrapolation

all_24v all_22v all_24v all_22v

VIS-PC1 SWIR2-PC1 SWIR2-PC1 SWIR2-PC1
SWIR2-PC1 VIS-PC1 VIS-PC1 VIS-PC1
DND-height PC1 DND-height Wtr2AbAr
DND-complex SWIR1-PC1 DND-complex VIS-PC2
PC1 Wtr2AbAr SWIR1-PC1 PC1
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small, overlapping values between adjacent classes greatly improved
the classification accuracy in all the studied scenarios, but this highlights
the fact that it can be challenging to define discrete classes within each
structural attribute. We also demonstrated the portability of these
models by assessing a spatially independent classification. While error
increased slightly for biomass (VVPint) and height, we observed a slight
decrease in error for complexity. This may be because different classes
were better represented in the dataset used to develop the classifier,
resulting in higher accuracy for the independent dataset. As in all classi-
fication studies, the training data selectedwill affect the accuracy. There
are established tradeoffs between realistic and equal class representa-
tion within training data. Some spatial patterns in the error were ob-
served for height and complexity classifications. Heights tended to be
underestimated within the pixels having high biomass and high height.
These errors are similar to those found by others (Peña, Brenning, and
Sagredo, 2012; Hudak, Lefsky, Cohen, and Berterretche, 2002). Com-
plexitywas generally underestimated in the areas of highest complexity
areas and overestimated in the areas of lowest complexity. This is a typ-
ical issue when using regression analysis. From an ecological perspec-
tive, overestimation of complexity in homogeneous areas could be due
to spectral variability more related to biochemical/biophysical condi-
tions rather than structural properties; however further analysis is re-
quired to confirm this.

5.4. Defining and mapping canopy structural types

Because the three structure variables studied (biomass (VVPint),
height and complexity) covary in an ecologically meaningful way, differ-
ences in canopy structure may be better represented by taking into ac-
count all three variables simultaneously. This motivated our evaluation
of structural type identification, and our results support this idea. We
identified four major canopy structural types: The first structural type is
represented by low biomass, height and complexity; these pixels are
dominated by shrubs. The second structural type is characterized by me-
dium biomass and medium height and complexity; this structural type
represents mixed growth form pixels. The third structural type found
shows high biomass, low-medium height and complexity; this type is
mainly associated with pixels dominated by hardwood species. And the
fourth structural type is characterized by high biomass, height and com-
plexity; it is mainly associated with pixels dominated by conifer species.

Although land cover maps, such as CALVEG can be used to identify
the species composition of an area, it is also vital to know the canopy
structure and how it varies spatio-temporally within and across a
mixed species forest. Our research provides a methodology to discrimi-
nate such vegetation structure scenarios, providing valuable informa-
tion for decision making in several disciplines such as fire ecology,
pestmanagement orwildlife ecology among others. Easily interpretable
maps of canopy structural types are critical for fire or pest behavior
modeling since canopy continuity and homogeneity are a key factors
in terms of fire spread and suppression, monitoring pest expansion or
wildlife habitat (Van Wagner, 1977; Jia, Burke, Goetz, Kaufmann, et al.,
2006; Lecina-Diaz, Alvarez, & Retana, 2014). Maps of structural com-
plexity can contribute to increased accuracy of biomass and carbon se-
questration. Furthermore, these structural types may facilitate fuel
type discrimination and fuel availability, which are both determinants
for fire risk estimation, the establishment of appropriate treatment to
reduce fire risk (fuel thinning) or to improve carbon storage. Moreover,
the approach detailed here can also be used to asses fire impact and
severity (e.g., two fires with the same intensity may result in different
fire severity depending on canopy structure), as well as to track forest
recovery after a disturbance (Keeley, 2009; Ryan, 2002).

5.5. Future work

Future research may address some of the assumptions and limita-
tions of our study. For instance, canopy reflectance is impacted by
illumination and view angles (Hall, Shimabukuro, and Huemmrich,
1995; Sharma, Kajiwara, & Honda, 2013), atmospheric effects, or misreg-
istration problems that might introduce bias and reduce classification ac-
curacy. For this research, we used LiDAR variables as the reference data.
LiDAR data may be affected by acquisition factors, such as altitude and
scan angle (and their impact on point density), terrain, and vegetation
characteristics, such as species composition or canopy closure
(Morsdorf, Frey, Meier, Itten, et al., 2008; Næsset, 2009; Ørka, Næsset, &
Bollandsås, 2010). These potential sources of LiDAR inaccuracymay influ-
ence AVIRIS canopy structure classification accuracy. However, even con-
sidering those LiDAR uncertainties, LiDAR has been proven as an accurate
tool for characterizing vegetation structure (Hilker, Wulder, and Coops,
2008; Hopkinson & Chasmer, 2009; Tang, Brolly, Zhao, Strahler, et al.,
2014). Existing spaceborne LiDAR systems, such as GLAS, and futuremis-
sions, such as GEDI, will continue to expand the use of LiDAR for canopy
structure assessment. Although optical data will never yield estimates of
structural attributes as accurately as LiDAR or radar, results from this re-
searchhave demonstrated the usefulness of imaging spectroscopydata to
obtain this information that will enable extending capability to map
structural types into areas where LiDAR data are unavailable. Our future
research will more specifically focus on developing models to estimate
the structural variables extending the approach demonstrated to a
broader study area to test its applicability to other forest types with dif-
fering environmental conditions. This is critical given that imaging spec-
troscopy data will become more widely available when several
spacebornemissions are launched, such as the German Aerospace Center
(DLR) EnMap mission (http://www.enmap.org/, Kaufmann, Segl,
Kuester, Rogass, et al., 2012), the Italian Space Agency (ASI) PRISMAmis-
sion (http://www.asi.it/en/activity/observation-earth/prisma, Pignatti,
Acito, Amato, Casa, et al., 2012), the Japanese SpaceAgencyHySuimission
(Ohgi, Iwasaki, Kawashima, & Inada, 2010; Staenz & Held, 2012), the
Indian Space Agency planned hyperspectral imager (Kumar, Thapa, and
Kuriakose (2015) on the geostationary imaging satellite (GISAT)), and
NASA's planned Hyperspectral Infrared Imager (HyspIRI) mission
(National Research Council (NRC), 2007; Lee et al., 2015). These sensors
may provide frequent, global, high spectral resolution information, offer-
ing a wider opportunity for its use in canopy structure assessment.

6. Conclusions

Remote sensing assessments of canopy structure have become critical
to many research and management agendas, including biomass estima-
tion, carbon cycle assessment and climate modeling. While it has been
well-established that LiDAR can be used to very accurately estimate can-
opy structure, our research evaluated an alternative approach, using im-
aging spectroscopy data. Though these data may not be as accurate in
direct prediction of canopy structure, our results demonstrate these
data can characterize the overall gradients of canopy biomass (VVPint),
height, and complexity, and to map meaningful canopy structural types
using self-learning classifiers like RF. Our method is portable, producing
reliable results when applied to an area not used in model-building. Fur-
thermore, this approachmoves beyond simply estimating structural attri-
butes to analyzing the combinations of structural characteristics that
distinguish different canopy structure types in a heterogeneous forested
landscape. We stress both the use of multiple optical metrics and the im-
portance of the entire spectrumwhen classifying structural types. Our ap-
proach can be used in areas where LiDAR data are unavailable and is
robust to differences in vegetation type. The growing availability of imag-
ing spectroscopy data will enable more widespread use of these data for
future canopy structure assessment.
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Appendix A

Tables A-1 and A-2 show a summary of the LiDAR variables and
optical metrics used in this research.
Table A.1
Summary of the optical metric variables used.

Optical metrics

CAI Cellulose Absorption Index
EVI Enhanced Vegetation Index
EWT Equivalent Water Thickness
GV Green Vegetation
mNDVI705 Modified NDVI using 705 nm spectral band
NDII Normalized Difference Infrared Index
NIR-PC1 First Principal Component of NIR region
NIR-PC2 Second Principal Component of NIR region
NDVI Normalized Difference Vegetation Index
NDVI705 NDVI using 705 nm spectral band
NDWI Normalized Difference Water Index
PC1 First Principal Component
PC2 Second Principal Component
SHADE Shade fraction
SWIR1-PC1 First Principal Component of SWIR region
SWIR2-PC1 Second Principal Component of SWIR region
VIS-PC1 First Principal Component of VIS region
VIS-PC2 Second Principal Component of VIS region
Wtr1AbAr NIR1 water absorption feature area
Wtr1EdgeWvl NIR1 water absorption feature edge wavelength
Wtr2AbAr NIR2 water absorption feature area
Wtr1EdgeMag NIR1 water absorption feature edge magnitude
Table A.2
Summary of the LiDAR variables used.

LiDAR variables

CHM_std Canopy height model standard deviation
FC Fractional cover
FC_1ret Fractional cover estimated from first returns
H_max Maximum height
H_mean Mean height
H_median Median height
H_std Standard deviation of height
LAI Leaf area index
VVP Vegetation Vertical Profile
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