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Abstract

We give a nontrivial algorithm for the satisfiability problem for cn-wire threshold circuits of
depth two which is better than exhaustive search by a factor 2° where s = 1/ () We believe
that this is the first nontrivial satisfiability algorithm for c¢n-wire threshold circuits of depth two.
The independently interesting problem of the feasibility of sparse 0-1 integer linear programs
is a special case. To our knowledge, our algorithm is the first to achieve constant savings even
for the special case of Integer Linear Programming. The key idea is to reduce the satisfiability
problem to the Vector Domination Problem, the problem of checking whether there are two
vectors in a given collection of vectors such that one dominates the other component-wise.

We also provide a satisfiability algorithm with constant savings for depth two circuits with
symmetric gates where the total weighted fan-in is at most cn.

One of our motivations is proving strong lower bounds for TC? circuits, exploiting the
connection (established by Williams) between satisfiability algorithms and lower bounds. Our
second motivation is to explore the connection between the expressive power of the circuits and
the complexity of the corresponding circuit satisfiability problem.

*This research is supported by NSF grant CCF-1213151 from the Division of Computing and Communication
Foundations. Any opinions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.
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1 Introduction

Satisfiability testing is both a canonical NP-complete problem [6, [13] and one of the most successful
general approaches to solving real-world constraint satisfaction problems. In particular, optimized
CNFSAT heuristics are used to address a variety of combinatorial search problems successfully in
practice, such as circuit and protocol design verification. The exact complexity of the satisfiability
problem is also central to complexity theory, as demonstrated by Williams [I7], who has showed
that any improvement (by even a superpolynomial factor compared to exhaustive search) for the
satisfiability problem for general circuits implies circuit lower bounds. Furthermore he has success-
fully used the connection to prove superpolynomial size bounds for ACCP circuits using a novel
nontrivial satisfiability algorithm for ACC? circuits, solving a long standing open problem [18].

This raises the questions: For which circuit models do nontrivial satisfiability algorithms exist?
How does the amount of improvement over exhaustive search relate to the expressive power of the
model (and hence to lower bounds)? Can satisfiability heuristics for stronger models than CNF be
useful for real-world instances?

Both the connection to circuit lower bounds and to heuristic search algorithms point to thresh-
old circuits as the model to study next. Bounded depth polynomial size threshold circuits TC are
the next natural circuit class stronger than ACC?. TC? is a powerful bounded depth computa-
tional model. It has been shown that basic operations like addition, multiplication, division, and
sorting can be performed by bounded depth polynomial size threshold circuits. [5, 2]. In contrast,
unbounded fan-in bounded depth polynomial size circuits over the standard basis (even when sup-
plemented with mod p gates for prime p) cannot compute the majority function [2]. However, our
understanding of the limitations of bounded depth threshold circuits is extremely weak. Exponen-
tial lower bounds for such circuits are only known for the special case of depth two and bounded
weight [§]. For larger depth circuits, barely superlinear lower bounds are known on the number of
wires [12].

On the other hand, satisfiability for depth two threshold circuits contains as special cases some
well known problems of both theoretical and practical significance. CNFSAT is one such special
case, since both conjunctions and disjunction are a special case of threshold gates. MAX-k-SAT, the
optimization form of k-CNF satisfiability, is another special case, since the top threshold gate can
count the number of satisfied clauses for an assignment. Even for MAX-3-SAT, no algorithms with a
constant factor savings over exhaustive search are known (although such an algorithm is provided
for MAX-2-SAT in [I6]). Another special case is Integer Linear Programming (ILP), a problem
that is very useful in expressing optimization problems both in theory and practice. Testing the
feasibility for a 0-1 ILP is equivalent to testing the satisfiability of a circuit with two levels, the
bottom consisting of threshold gates and the top level being a conjunction. So both theoretical
and real-world motivation points us to trying to understand the satisfiability problem for depth
two threshold circuits.

Santhanam [14] gives an algorithm with constant savings for linear size formulas of AND and
OR gates with fan-in two. However, this does not directly give an algorithm for depth two threshold
circuits, as converting a linear size threshold circuit into a formula over AND and OR gates gives
quadratic size.

In all of these related problems, a key distinction is between the cases of linear size and superlin-
ear size circuits. In particular, an algorithm with constant savings for depth two threshold circuits
of superlinear size would refute the Strong Ezponential Time Hypothesis (SETH) [9], since k-CNF
for all k£ can be reduced (via Sparsification Lemma [I0]) to superlinear size depth two threshold
circuits [3]. (SETH says that for every ¢ < 1, there is a k such that k-SAT cannot be solved in time
O(2%").) However, for CNFSAT and MAXSAT, algorithms with constant savings are known when the



formula is linear size [15 [7,[I]. So, short of refuting SETH, the best we could hope for is to extend
such an improvement to the linear size depth two threshold circuit satisfiability problem.

In this paper, we give the first improved algorithm, which obtains a constant savings in the
exponent over exhaustive search for the satisfiability of cn-wire, depth two threshold circuits for
every constant c¢. As a consequence, we also get a similar result for linear-size ILP. Under SETH,
this is qualitatively the best we could hope for, but we expect that further work will improve
our results quantitatively. For example, our savings is exponentially small in ¢, whereas in, e.g.,
the satisfiability algorithm of [IT] for constant depth and-or circuits, it is polylogarithmic in ¢. We
consider this just a first step towards a real understanding of the satisfiability problem for threshold
circuits, and hope that future work will get improvements both in depth and in savings.

While we do not obtain any new circuit lower bounds, there is some chance that this line of work
could eventually yield such bounds. For example, if there is an algorithm for any constant depth
threshold circuit with super-inverse-polynomial savings in ¢, then NEXP ¢ TC? by applying [17].

Our main sub-routine is an algorithm for the Vector Domination Problem: given n vectors in
R?, is there a pair of vectors so that the first is larger than the second in every coordinate? We
show that, when d < clogn for a constant ¢, this problem can be solved in subquadratic time. In
contrast, Williams [16] shows that solving even the Boolean special case of vector domination with
a subquadratic algorithm when d = w(log n) would refute SETH. We think the Vector Domination
Problem may be of independent interest, and might be used to reason about the likely complexities
of other geometric problems within polynomial time.

2 Notation

Let V' be a set of variables with |V| = n. An assignment on V is a function V' — {0, 1} that assigns
every variable a Boolean value. A restriction is an assignment on a set U C V. For an assignment
a and a variable x, a(x) denotes the value of z under the assignment «.

A threshold gate on n variables x1,...,x, is defined by weights w; € R for 1 < i < n and
a threshold t. The output of the gate is 1, if > " ; w;a; > t and 0 otherwise. The fan-in of
the threshold gate is the number of nonzero weights. We call a variable an input to a gate if
the corresponding weight is nonzero. We also extend the definition of a threshold gate to d-ary
symmetric gates whose inputs and outputs are d-ary.

For a collection of threshold gates, the number of wires is the sum of their fan-ins. A depth two
threshold circuit consists of a collection of m threshold gates (called the bottom-level gates) on the
same n variables and a threshold gate (called the top-level gate) on the outputs of the bottom-level
gates plus the variables. The output of the circuit is the output of the top-level gate. We call a
variable with nonzero weight at the top-level gate a direct wire. For a d-ary depth two threshold
circuit, the gates are d-ary gates and the top-level gate only outputs Boolean values. The number
of wires of a depth two threshold circuit is the number of wires of the bottom-level gates. We call
a threshold circuit sparse if the the number of wires is linear in the number of variables.

A satisfiability algorithm for depth two threshold circuits is an algorithm that takes as input a
depth two threshold circuit and outputs an assignment such that the circuit evaluates to 1 under
the assignment.

A linear function on a variable set x1,...,z, is a function g(x1,...,2,) = D> i, wx;, where
w; € R are called the coefficients. The size of a linear function is the number of nonzero coefficients.
A linear inequality is an inequality of the form g(x1,...,2,) > t.

An algorithm for the Integer Programming Feasibility Problem takes as input a collection of
linear inequalities on variables 1, ..., x, and outputs an assignment {z1,...,2,} — Z such that



all inequalities are satisfied. We call an inequality of the form 0 < z; < d — 1 a capacity constraint.
In a 0-1 Integer Programming Feasibility Problem each variables is constrained to be 0 or 1.

We use O( f(n)) to denote the asymptotic growth of a function f ignoring polynomial factors.
Informally, we say an algorithm is nontrivial, if its time is significantly better than exhaustive
search. If A is a satisfiability algorithm for circuits with n variables with run time O (2(1_3)”), we
call s the savings of the algorithm over exhaustive search.

For a vector u, we use u; for coordinate 1.

All logarithms are base 2 unless noted otherwise.

3 Results and Techniques

The main contribution of the paper is a nontrivial satisfiability algorithm for sparse threshold
circuits of depth 2. More precisely, we prove the following:

Theorem 3.1. There is a satisfiability algorithm for depth two threshold circuits on n variables
with cn wires that runs in time O (2(1_3)”) where

While the proof in Section [l assumes a Boolean inputs for simplicity, the proof easily extends
to threshold circuits with d-ary inputs, yielding the following corollary.

Corollary 3.2. There is a satisfiability algorithm for depth two threshold circuits on n d-ary
variables with cn wires that runs in time O (d(l_s)”) where

In the following, we provide a high level description of our algorithm. Intuitively, there are two
extreme cases for the bottom layer of a linear size threshold circuits of depth two.

The first extreme case is when we have a linear number of gates each with bounded fan-in k.
This case is almost equivalent to MAX-k-SAT and can be handled in a way similar to [4, [I]. Consider
the family of k-sets of variables given by the support of each bottom-level gate. A probabilistic
argument shows that, for some constant ¢, there exists a subset of about n — n/(ck) variables U
so that at most one element from each of the k-sets in the family is outside of U. Then for any
assignment to the variables in U, each bottom-level gate becomes either constant or a single literal,
and the top-level gate becomes a threshold function of the remaining inputs. To check if a threshold
function is satisfiable, we set each variable according to the sign of its weight.

The second extreme case is when we have a relatively small number of bottom-level gates, say,
at most en, but some of them might have a large fan-in. In this case, we could first reduce the
problem to 0-1 ILP by guessing the truth value of all bottom-level gates and the top gate, and
then verifying the consistency of our guesses. Each of our guesses are threshold functions of the
variables, so testing consistency of our guesses is equivalent to testing whether the feasible region
of about en linear inequalities has a Boolean solution.

We then reduce such an ILP to the Vector Domination problem. To do this, we partition the
variables arbitrarily into two equal size sets. For each assignment to the first set, we compute a
vector where the i’th component corresponds to the weighted sum contributed by the first set of
variables to the ¢’th threshold gate. For the second set of variables, we do the same, but subtract
the contribution from the threshold for the gate. It is easy to see that the vectors corresponding



to a satisfying assignment are a dominating pair. Since there are N = 0(2"/ 2) vectors in our
set, and each vector is of dimension d = en = 2elog N, to get constant savings, we need a Vector
Domination algorithm that is subquadratic when the dimension is much less than the logarithm
of the number of vectors. The last step is to give such an algorithm, using a simple but delicate
divide-and-conquer strategy.

Finally, to put these pieces together, we need to reduce the arbitrary case to a “convex combina-
tion” of the two extreme cases mentioned above. To do this, we use the Fan-In Separation Lemma
which asserts that there must be a relatively small value of k so that there are relatively few gates
of fan-in bigger than k but less than ck, for some constant ¢. We show that, as in the first extreme
case, for a random subset U of variables, the gates with fan-in less or equal to k almost entirely
simplify to constants or literals after setting the variables in U. Our selection of k ensures that the
number of gates of fan-in greater than k is small relative to the number of remaining variables. So
we can apply the method outlined for the second extreme case. The Fan-In Separation Lemma is
where our savings becomes exponentially small. Unfortunately, this lemma is essentially tight, so
a new method of handling this step would be needed to make the savings polynomially small.

Since the Integer Programming Feasibility problem with capacity constraints can be expressed
as a depth two threshold circuit with an AND gate as the top-level gate, the results translate
directly to the feasibility version of sparse integer programs with capacity constraints. We get

Corollary 3.3. Let {g1 > a1,...,9m > am} be a collection of linear inequalities in variables
T1,..., Ty with total size at most cn. There is an algorithm that finds an integer solution to the
linear inequalities with capacity constraints 0 < x; < d — 1 for all ¢ in time O (d(l_s)") for

The following two sections contain the details of the proof. Section M introduces the Vector
Domination problem and, for small dimension, gives an algorithm faster than the trivial quadratic
time. The feasibility of a 0-1 ILP with a small number of inequalities is then reduced to the Vector
Domination problem, yielding an algorithm for such 0-1 ILP with constant savings. A reduction
from depth two threshold circuits to 0-1 ILP concludes that section. In Section Bl we show how
to reduce the cn-wire depth two threshold circuits satisfiability problem to the special case with
a small number of bottom-level gates relative to the number of variables. The remaining sections
discuss generalizations of our result.

4 Vector Domination Problem

In this section we introduce the Vector Domination problem and give an algorithm faster than the
trivial O(n?) for small dimension.

Definition 4.1. Given two sets of d-dimensional real vectors A and B, the Vector Domination
Problem is the problem of finding two vectors u € A and v € B such that u; > v; for all 1 <1 <d.

Lemma 4.1. Let d € N and A, B C R? with |A| + |B| = n. There is an algorithm for the Vector
Domination problem that runs in time

d+logn + 2
o(("E))



Proof. The claim is trivial for n = 1 or d = 1. In the latter case we can sort the set AU B and
then decide if such a pair exists in linear time.

Otherwise, let a be the median of the first coordinates of A U B. We partition the set A into
three sets AT, A= and A~, where A" contains all vectors u € A such that u; > a, A= contains
all vectors such that u; = @ and A~ contains all vectors such that u; < a. We further partition B
into set BT, BT and B~ in the same way. A vector u € A can only dominate a vector v € B in
one of three cases:

1. ue At and v € BT
2. u€ A" andv € B~
3. ue A~NUAY andve BSUB~

For the first two cases we have |[A*|+|B*| < & and |A~|+|B~| < & as we split at the median.
For the third case, we know u; > v1, hence we can recurse on vectors of dimension d — 1. Since
finding the median takes time O(n) we get for the running time of n vectors of dimension d

T(n,d) = 2T (g d) +T(n,d 1)+ O(n)

To solve this recurrence relation, we want to count the number of nodes in the recurrence tree
with n/ = 3 and d = d — j. There are (ZJ]” ) 2° possible paths from the root node to such a node,
as in every step we either decrease n or d, and there are (’J;J ) possible combinations to do so, and
if we decrease n there are two possible children. Since computing the median of 2 numbers takes

21
time O(g;) the total time is upper bounded by

i+ 3\ oin (MY i+d+1

Z <j>20<2i)_ Z < d )O(")
0<i<logn 0<i<logn
0<j<d

_ [ (logn+d+2\ [(d+1

_<< d+1 > <d+1>>0(")
_ ((d+logn+2\
(7))o

We can reduce 0-1 ILP with few inequalities to the Vector Domination Problem.

Corollary 4.2. Consider a 0-1 Integer Linear Program on n variables and dn inequalities for some
6 > 0. Then we can find a solution in time

2"/2 <(1/25;; 5)n> poly(n) < 201/2+000g(e)Hog(1+55))m oy ()

Note that this algorithm is faster than 2" for § < 0.136.

Proof. Separate the variable set into two sets 51 and So of equal size. We assign every assignment
to the variables in S7 and So a dn-dimensional vector where every dimension corresponds to an
inequality. Let o be an assignment to Sy and let > | w; jz; > t; be the j-th inequality for all j.
Let a € R be the vector with aj = Y .5 Wija(r;) and let A be the set of 2/2 such vectors.



For an assignment f3 to Sa, let b be the vector with b; =t; — > g w; jz;(8) and let B be the set
of all such vectors b.

An assignment to all variables corresponds to an assignment to S7 and an assignment to So,
and hence to a pair a € A and b € B. The pair satisfies all inequalities if and only if a dominates
b. Since |A| + |B| = 2*/?*1 and the dimension is én, we can solve the domination problem in time

om+1

We now reduce the satisfiability of a depth two threshold circuit with dn bottom-level gates
and any number of direct wires to the union of 2" ILP problems.

O

Corollary 4.3. Consider a depth two threshold circuit on n variables and dn bottom-level gates
for some § > 0. We allow an arbitrary number of direct wires to the top-level gate. Then there is
a satisfiability algorithm that runs in time

1/2
279/ <( / o M) poly(n) < 2(1/2+5008(e) Hog1+1/281+ D) pop )

Note that this algorithm is faster than 2" for § < 0.099.

Proof. For every subset U of bottom-level gates, we solve the satisfiability problem under the
condition that only the bottom-level gates of U are satisfied. For an assignment to satisfy both the
circuit and the condition that only gates in U are satisfied, it must satisfy the following system of
inequalities:

1. For gates in U with weights w1, ..., w, and threshold ¢, we have 2?21 w;xT; > t.

2. For gates not in U we require Y ;- wz; < t, which is equivalent to > " | —w;z; > —t +
min; w;.

3. Let vq,...,v, be the weights of the direct wires and let s be the threshold of the top-level
gate. Further let wy be the sum of the weights of the gates in U. Then Y ;" | vz; > s — wy.

Note that this system contains dn + 1 inequalities, and the additional dimension adds only a
polynomial factor to the time.

Since we need to solve a system of inequalities for every possible subset of bottom-level gates
to be satisfied, we have an additional factor of 2°™, which gives the running time as claimed. [

Williams [16] introduced the reductions used in Corollaries d.21and [4.3] He considered a special
case of the Vector Domination problem (called the Cooperative Subset Query problem) where the
entries in the vectors are 0 and 1 instead of arbitrary real numbers . Applying the reduction from
Corollary to ONFSAT, he concludes that an algorithm for solving the Cooperative Subset Query
problem with d = w(logn) that runs in time O(f(d)n%) for some § < 2 and a time-constructible f
gives a CNFSAT algorithm in time O(f(m)2(/2") where m is the number of clauses. Our algorithm
only works for d < 0.136log n, so it would be interesting to see how far this can be pushed.



5 Fan-In Separation

In this section we reduce the satisfiability of a depth two threshold circuit with cn wires to depth
two threshold circuits with at most én bottom-level gates by considering all possible assignments to
a random subset U of variables. The goal of the restriction is to eliminate all but a small fraction
of gates. U will consist of all but a fraction O(1/(ck)) of the variables where k is chosen such that
there are only a small number of gates of fan-in larger than k relative to the number of remaining
variables. Fan-In Separation Lemma shows how to find such a k.

Lemma 5.1 (Fan-In Separation Lemma). Let F be a family of sets such that ) p.r|F| < cn.
Further let a > 1 and € > 0 be parameters. There is an k < a®/¢ such that

> IFl<en
FeF
k<|F|<ka
Proof. Assume otherwise for the sake of contradiction. For 0 < i < £, let f; be the sum of |F|
where a' < |F| < a'*!. By assumption we have f; > en for all i. Hence chfo fi > cn, which is a
contradiction. O

Lemma 5.2. Consider a depth two threshold circuit with n variables and cn wires. Let § > 0
and let U be a random set of variables such that each wvariable is in U with some probability p
independently. There exists a p = coflcg) such that the expected number of bottom-level gates that
depend on at least two variables not in U is at most 3dpn.

Proof. Let € = % and a = g—z and let k be the smallest value such that there are at most en wires

as inputs to gates with fan-in between k and ka. Further let p = %.
02/52
Using the Fan-In Separation Lemma we get k < <§—z) . We distinguish three types of

bottom-level gates: Small gates, with fan-in at most k, medium gates with fan-in between k and
ka, and large gates with fan-in at least ka. For each type of gates, we argue that the expected
number of gates that depend on at least two variables not in U is bounded by dpn.

For medium gates, the total number of wires is bounded by %n and each gate contains at least
k wires. Hence the number of medium gates is bounded by %571 = dpn.

Large gates contain at least ka wires, hence the number of large gates is bounded by ;-n =
%571 = dpn.

For small gates, we argue as follows. Let m be the number of small gates and let [1,...,[,, be
their fan-ins. Let X; denote the event that gate i depends on at least two variables not in U and
let X be the number of such events. We have P(X;) < (lzl) p2 < li2p2 and therefore

E[X] = ZP(Xz') < Zl?p2 < p*ken = Spn
i=1 =1

O

Lemma 5.3. There is a satisfiability algorithm for depth two threshold circuits with cn wires that
runs in time 20— for E[s] = pICIR

Proof. Let § = 4—18 and U as well as other parameters be as above. For every assignment to U, we
have a depth two threshold circuit with pn variables and 3dpn bottom-level gates in expectation.



Since 36 = % < 0.099, we can decide the satisfiability of such a circuit using Corollary [£3] with
constant savings. Let s’ = 1/2 — 3d(log(e) + log(1 + 1/6d) + 1) ~ 0.15 be the savings with our
parameters.

Let T be the time for carrying out the entire procedure. Since we are interested in the expected
savings we consider the logarithm of the time and get

Ellog(T)] = (1 = p)n+ (1 —s")pn = (1 - s'p)n

and the lemma follows from p = O

1
cO(c?)”

Since s is bounded by above by 1, we can repeat the process a constant number of times until
we find a restriction such that the savings is at least its expectation. This gives us our main result
Theorem [3.11

6 Generalization to Formulas

In this section we discuss an extension of our main result to linear size, constant depth threshold
formulas. A formula is a circuit such that the output of every gate is an input to at most one
other gate. A formula can be viewed as a tree where the internal nodes correspond to gates and
the leaves to bottom variables. Note that a circuit of depth two is always a formula. The proof is
a direct generalization of our main proof.

Corollary 6.1. There is a satisfiability algorithm for depth d threshold formulas with cn wires that
runs in time O (2(1_5)") where
1

(d— 1)e)OW@De)

S =

Proof sketch. The algorithm chooses a random restriction such that at most dn gates depend on
more than one variable after restriction, where 6 = 1—16 as before. As in the original proof, we take
into account that there is only a single top-level gate, which does not simplify after restriction. The
main difference to our main proof is the notion of the fan-in. Instead of considering the number of
inputs to a gate, consider the size of a gate. The size of a gate is the size of the subtree rooted at
that gate. It is also an upper bound to the number of variables the gate depends on.

For all 7 < d, the sum of sizes of all gates at depth 7 is at most c¢n, since the circuit is a tree
with at most cn wires. Hence the sum of sizes of all gates (minus the top-level gate) is at most
(d—1)ec.

Using the Fan-In Separation Lemma we can select a set U of size pn where p =

((d_1)c)ol(((d71>c>2>
such that the number of gates that depend on at least two variables not in U is at most dn. We can
then write each remaining gate as a linear inequality, as each input is either a variable, a negated
variable or a constant, which allows us to apply Corollary O

7 Generalization to Symmetric Gates

In this section we discuss a second extension, to symmetric gates. A gate is symmetric if the output
depends only on the weighted sums of the inputs. In particular, threshold gates are symmetric.
The proof of our main result does not directly generalize to symmetric gates, but we give a different
algorithm to decide the satisfiability of depth two circuits consisting of symmetric gates that follows
similar ideas as our main proof. For this algorithm we do however require that the weights are
integer and small. Specifically, we define the weighted fan-in of a gate as the sum of the absolute



weights and the weighted number of wires as the sum of the fan-ins of all the gates. The result
applies to circuits with a weighted fan-in of cn.

The main difference between the two algorithms is the problem we reduce it to after applying
a restriction. In our main result, we reduce the satisfiability of the simplified circuit to a (small)
system of linear inequalities. Here, we reduce to a system of linear equations. We first give an
algorithm for linear equations.

Lemma 7.1. There is an algorithm to find a Boolean solution to a system of linear equations on
variables {x1,...,x,} in time O(27/?).

Proof. We first reduce the problem to subset sum. Let w; ; be the weight of x; in the j-th equation
and let r; be right-hand side of the j-th equation. Further let D = max; j{w; ;,r;} be the largest
such value. We define s; = > j mej and s =) y erj. Then there is a solution to the system of
linear equations if and only if there is a subset of the s; that sums to s.

To solve the subset sum problem, partition the set of s; into two sets of equal size and list all
2"/2 possible subset sums each. We can then sort the lists in time O(2"/2n) and determine if there
is a pair of numbers that sums to s. O

We reduce the satisfiability problem of depth two threshold circuits with small integer weights
to a system of linear equations to get the following result.

Theorem 7.2. There is a satisfiability algorithm for depth 2 circuits with symmetric gates and
weighted number of wires cn that runs in time O (2(1_3)") where

As before, we pick a random restriction with some parameter p, such that most gates depend
on at most one variable.

Given an assignment, we distinguish between the Boolean output of a gate and the value. The
value is defined as the weighted sum of the inputs. Note that the value uniquely defines the output
of a symmetric gate. Unlike our main proof, we guess the value of the remaining gates, including
the top-level gate. Given a value for every gate, we can write a system of linear equation. We then
solve the system of linear equations on n Boolean variables in time O(2"/2) using Lemma [l

We need the overhead for guessing the values to be smaller than the savings achieved with
solving the system of linear equations. For this, it is crucial that both the number of remaining
gates and the number of values they can obtain is small. Here we use the requirement that the
weights are small. We defer the details of the calculation on how many systems of linear equations
we need to solve until section [7.1]

One possible approach would be to select p using a fan-in separation technique. However, we
only achieved savings that are doubly exponentially small in ¢ using this approach. To get better
savings, it is useful to model the interplay between the parameter p and the circuit as an explicit
zero-sum game, where the first player’s (the algorithm designer) pure strategies are the values of
p and the second player’s (the circuit designer) pure strategies are the circuits where all the gates
have the same fan-in. The payoff is the difference between the saving of solving the subset sum
problem and the overhead of guessing the values of the gates.

The mixed strategies of the circuit designer are circuits of symmetric gates with a weighted
number of wires of at most ¢n, where each such circuit is viewed as a distribution of the total
number of wires among gates of different weighted fan-in. The mixed strategies of the algorithm
designer are distributions on the values of p. We then apply the Min-Max theorem to lower bound



the expected value of the game by exhibiting a distribution (with finite support) on the values of
p. We search through the values in the support of the distribution to find a p that produces the
expected value. This novel game-theoretic analysis yields an overall savings which is only single
exponentially small in ¢. Section contains the details of the Min-Max approach.

7.1 The Algorithm

We develop the algorithm of Lemma [72]in three stages. In this section, we consider p a parameter
and present a satisfiability algorithm for depth two circuits with symmetric gates and weighted
number of wires of cn. We further assume that all the bottom-level gates have the same weighted
fan-in f. The algorithm achieves savings s, ; and for certain combinations of p and f the savings
might be negative. In the second stage we extend the algorithm to circuits with varying fan-in and
show that the savings of the algorithm is a convex combination of s, r. In the last stage, in Section
we show how to select a p such that the savings is at least Co(%z) for any distribution on f.

As we are mainly interested in the savings, we look at the logarithm of the time complexity and
bound its expectation.

Lemma 7.3. Let 0 < p < 1 be a parameter and C be a depth two circuit with symmetric gates,
variables V.= {x1,...,x,}, a weighted number of wires of cn, and weighted fan-in f for all bottom-
level gates. There is an algorithm that decides the satisfiability for such C with time complexity T
such that Ellog(T)] = (1 — sp f)n for

Sp,f = {

Proof. We select a random subset U C V such that a variable is in U with probability (1 — p)
independently. We note that E[|U|] = (1 — p)n. For each of the 2/U assignments to U, we solve
the satisfiability problem of the simplified circuit. Bottom-level gates where all inputs are in U are
removed and the top-level gate is adjusted appropriately. Gates that only depend on one input
are replaced by a direct wire to the top-level gate with an appropriate weight and adjustment to
the top-level gate. For all gates with at least two remaining inputs, we guess the value of the gate
and express the gate as a linear equation. Similarly, we guess the value of the top-level gate to get
another linear equation. We then solve the resulting system of linear equations on n’ = n — |U|

ifpf < %
- %log (8cpf)  otherwise

NI S

variables in time O (2"// 2) using Lemma [7.1]

The critical part of the analysis is bounding the overhead from guessing the values of the gates.
We first bound the number of distinct values a gate can take. The top-level gate can only take
polynomially many different values. Consider a bottom-level gate with fan-in [ > 2 after applying
an assignment to the variables in U. We bounds the number of distinct values that the gate can
take in two different ways. The number of possible inputs, and hence the number of possible values
is bounded by 2!. On the other hand, since the value is an integer between —I and I, the number
of possible values for the gates is also upper bounded by 20 4 1. Hence, we use min{2!,2[ + 1} as
an upper bound for the number of values of a bottom-level gate with fan-in /.

Since we have a control on the number of distinct values taken by a gate by assumption, our
overhead crucially depends on the number of exceptional gates, gates that depend on more than
one variable after applying an assignment to the variables in U. Intuition says that the number
of exceptional gates should be small. If the fan-in of a gate is small, then we expect that it will
simplified to depend on at most one variable after assigning values to the variables in U. On the
other hand, there cannot be too many gates of large fan-in. While the intuition is simple, it is

10



tricky to make it work for us in the general context. At this stage, our focus is on estimating the
savings s, ¢ for the probability parameter p and weighted fan-in f.

Let H be a random variable denoting the number of possible values the remaining gates can
obtain. Our estimation of H and s, s involves two cases. Let t = ﬁ. We first consider the case
pf <t. Let U CV — U be the set of variables that appear in exceptional gates. Our goal is to
upper bound Ellog(H)] < E[U’].

Consider a bottom-level gate. Let X be the random variable denoting the number of its inputs
not in U. Let f' < f be the number of variables the gate depends on, and let X be the random
variable denoting the number of its inputs not in U. The distribution of X is Bin(f’,p), hence we
have E[X] = f’p. Let the random variable Y denote the number of variables that the gate can
contribute to U’. Since U’ is the set of variables appearing in exceptional gates, we have Y = X
for X > 2 and Y = 0 otherwise. Hence

E[Y] =E[X] -PX =1] < fp— f'p(1 —p)V"V
< flp(1—(1-p)) < flp(1— (1 - f'p))
= (f'p)* < (fp)*

by Bernoulli’s inequality. Hence, for any variable x which is an input to the gate, the probability
x belongs to U’ is at most % <p*f < L. Since the total number of wires is bounded by cn, we
have Ellog(H)] < E[|U’|] = ecnf = In.

For the logarithm of the time complexity this yields

Ellog(T)] = E[|U|] + E B (n— |U|)] + gn +O(logn) <n (1 - Z) + O(logn)

where the logarithmic summand stems from guessing the value of the top-level gate. We have
P

Sp.f=q-

We4now consider the case pf > t. Suppose the i-th gate has [; inputs that are not in U. The
expected value of [; is pf. There are at most 2[; + 1 possible values for the gate. Since all the
bottom-level gates have the same weighted fan-in f, the number of bottom-level gates is at most
en/f and E[Z;{f l;] = pen. We bound the expected logarithm of the number of possible values of

all gates by

cen/f en/f
E |log | [T | @+ 1| = (en/f) 3 El(log(2: + 1)f/en)] < (en/ ) log(2f +1)
i=1 i=1
< (en/f)log (8cpf)

where we use the concavity of the logarithm function in the penultimate step and the fact pf > ﬁ
in the last step.
For the logarithm of the time complexity we get,

C

E[U[] +E E (n— \U!)] +en/ flog (8epf) + O(logn) < n (1 - <§ - log (8cpf)>> + O(log n)

with savings s, f = £ — ¢ log (8cpf). O

We now extend the algorithm to circuits with varying fan-in and show that the logarithm of
the time complexities is lower bounded by a convex combination of the savings s, r. We model the
cn-wire circuits of varying weighted fan-in by a distribution F on wires. For each weighted fan-in
f, the wire distribution J specifies the number c;n of wires of bottom-level gates of weighted fan-in
f. We denote the savings of our algorithm on circuits with wire distribution F by s, .

11



Lemma 7.4. Let 0 < p <1 be a parameter and C be a depth two circuit with symmetric gates, n
variables and a weighted number of wires of cn, where the wires are distributed according to F. There
is a satisfiability algorithm for such C with time complexity T such that E[log(T)] = (1— s, r)n for

n
cf
Sp,F = E :?Sp,f
f=1

Proof. The algorithm is the same as above. The logarithm of the overhead of guessing the values
for all bottom-level gates with fan-in f is log(Hy) = % log (8cpf) if pf >t and log(Hy) = %fgn
otherwise. Solving the system of linear equations and using linearity of expectation then yields the

savings as claimed. O

7.2 The Algorithm as a Zero-Sum Game

The time complexity of the algorithm in Section [.I] depends crucially on choosing a suitable
parameter p. Instead of trying to directly determine a good parameter p by analyzing the wire
distribution of the circuit, we apply a trick from game theory.

A zero-sum game with two players A and C is a game where both players pick a strategy
and the outcome is determined by a function of the two strategies. Player A tries to maximize
the outcome, while player C tries to minimize it. The Min-Max Theorem states that it does not
matter which player moves first, as long as we allow mixed strategies for the players.

We model the task of choosing the parameter p as the following zero-sum game: Player A,
the algorithm designer, picks some probability p, and player C, the circuit designer, picks a value
f. The outcome is s, r, the savings of the algorithm. The algorithm designer tries to maximize
the savings, and the circuit designer tries to minimize it. The wire distribution of a circuit is a
mixed strategy for the circuit designer. A mixed strategy for the algorithm designer A would be a
distribution on the probabilities.

A direct approach for designing the algorithm would be to select the parameter p depending on
the circuit so that we obtain large savings. Specifically, given the wire distribution of the circuit F,
the algorithm designer picks a p and and the outcome s,  is a convex combination of the values
Sp,f- Using the Min-Max Theorem we turn this game around: The algorithm designer picks a mixed
strategy and the circuit designer responds with a pure strategy f, a circuit where all bottom-level
gates have weighted fan-in f. The following lemma shows that there is a good strategy for the
algorithm designer.

Lemma 7.5. There is a distribution D on parameters p such that for all f,

1
Epop [Sp,f] 2 032

Proof. Let D be the following distribution on p: For I = O (02 log(c)) with suitable constants,

and 1 < i < I, we set p = 2% with probability A4 - 2=~ where A = % is the
=1

normalization factor. We know that 1 < A < 2. The expectation of p is E[p] = AI2-1~1,

Let f be any pure strategy of the circuit designer and J = log(f). The expected outcome of
the game for these strategies is



To lower bound the expected outcome, we use a case analysis on the savings similar to the one
in Section [(.Il Let ¢t = ﬁ as defined in the previous section. Let I’ < I be the largest value such
that for i < I’, we have 277% > t and for I’ < i < I we have 277% < ¢.

Using the savings from Lemma [7.3] we have sy—i 55 = 21 57 log (02‘]_”1) for 2/7% > t and
Sg—igr = 2772 otherwise. The expected savings is then

I
Epplsp.fl = Z 2_(1_“1)32*2',21
i=1
r . I
_ —(I—i+1) (9—i—1 J—i+3 —(T—i+1)y—i—2
_22( ! )(2’ —2—Jlog(c2 ! ))—F'ZQ( 1o
i=1 i=1"+1
I .
2 Z I+3 22 (I Z—l—l log (CzJ—Z+3)
i=1

= W (— — cZQ log c2‘]_i+3)>

Let j = [(J —7)]. By the definition of I’ we have j > log(t) = —log(c) — 2. Hence

o0

22 =D Jog (c2773) < Z 277 (j 4 log (8¢c))
j=log(t)

< 8clog (8¢) + » _ 277 + log (8¢)

j=1
— 0 (clog(e))
Hence for I = O (c*log(c)) we get
1

Eppsp = 02
O
We now conclude that for every f there is a p = 27" for 1 < i < I, such that Sp.f = ﬁ.

C

Using that for every mixed strategy for f, the savings is a convex combination of the savings for
pure strategies, we conclude the same for any strategy on f.

This gives us the final algorithm: Given a circuit C' with wire distribution F, evaluate Ef.z[s) f]
with p = 277 for each 1 <14 < I as above and use the optimal p for the random restriction.

The savings is tight in the sense that there is a mixed strategy on f such that the expected
savings is at most 1/2¢)

Lemma 7.6. There is a wire distribution F such that for any p

1
EfNJ:[st] = 99(c)

Proof. Let p be the strategy of the algorithm designer and let F be the distribution such that for
1 <j<e¢ cyi =1andcy =0 for any other f. By lemma [Z.4] we have

Ejnrlsps] = Z 5p,29
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We argue that for large ¢ and p > 2—10, the savings is negative. Assume p > 2—10 There is some j* < ¢

such that for f =277, 1 < pf < 2. Using that for any p and f, the savings Sp,f is upper bounded
by § we get

C
1
Efrlspr] = Z oop2
j=1

p 1
S5 e

p 1 ¢ .
=5~ oy los (@?)
< £ (1— (log (8¢) + 1))

For large ¢, the expectation is therefore negative. On the other hand, if p < 2%, then Er r[sp f] <
1
9c—1+

8 Conclusion

In this paper, we present the first nontrivial algorithm for deciding the satisfiability of cn-wire
threshold circuits of depth 2. The same result also applies to the special of case of 0-1 Integer
Linear Programming with sparse constraints. The algorithm improves over exhaustive search by a
factor 25" where s = 1/c0(¢"),

Several straightforward open questions remain. Can we further improve the savings? The
savings in our algorithm is exponentially small in ¢, while the best known savings for cn-size AC°
circuits is only polylogarithmically small in ¢ [I1]. Can we decrease this gap? If not, can we explain
it in terms of the expressive power of the circuits?

Our algorithm handles only linear size threshold circuits of depth two. Can we obtain nontrivial
satisfiability algorithms for slightly more relaxed models? For example, it would be very interesting
to extend the result to larger depth circuits. It would also be nice to generalize the algorithm to
deal with depth two threshold circuits with linearly many gates.

It would also be interesting to relax the restriction on the number of wires. Unfortunately, as
discussed earlier, it is not be possible to obtain a constant savings algorithm for depth two threshold
circuits of superlinearly many wires under SETH.

It would be extremely interesting to find a subquadratic algorithm for the Vector Domination
Problem for dimension w(logn), which would imply the refutation of SETH.

Our algorithm is a “Split and List” algorithm [16], split the variable set into subsets and list
all assignments to the subsets. As such, it inherently takes exponential space. Can we reduce the
space requirement to polynomial space?

Acknowledgments: We thank Dominik Scheder for the fruitful discussions on the Vector Dom-
ination Problem. We also thank Shachar Lovett and Ryan Williams for pointing us to a simpler
algorithm for systems of linear equations.
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