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Abstract

Purpose of the research—Evaluate for associations between variations in genes involved in 

catecholaminergic, gamma-aminobutyric acid (GABA)-ergic, and serotonergic mechanisms of 

neurotransmission and attentional function latent classes.

Patients and methods—This descriptive, longitudinal study was conducted at two radiation 

therapy departments. The sample included three latent classes of individuals with distinct 

trajectories of self-reported attentional function during radiation therapy, who were previously 

identified using growth mixture modeling among 167 oncology patients and 85 of their family 

caregivers. Multivariable models were used to evaluate for genotypic associations of 

neurotransmission genes with attentional function latent class membership, after controlling for 

covariates.

Results—Variations in catecholaminergic (i.e., ADRA1D rs4815675, SLC6A3 rs37022), 

GABAergic (i.e., SLC6A1 rs2697138), and serotonergic (i.e., HTR2A rs2296972, rs9534496) 
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neurotransmission genes were significant predictors of latent class membership in multivariable 

models.

Conclusions—Findings suggest that variations in genes that encode for three distinct but related 

neurotransmission systems are involved in alterations in attentional function. Knowledge of both 

phenotypic and genetic markers associated with alterations in attentional function can be used by 

clinicians to identify patients and family caregivers who are at higher risk for this symptom. 

Increased understanding of the genetic markers associated with alterations in attentional function 

may provide insights into the underlying mechanisms for this significant clinical problem.

Keywords

cancer; serotonin; catecholamines; gamma-aminobutyric acid; neurotransmission; attentional 
function

Introduction

Optimal attentional function is important for maintaining meaningful activities (e.g, meeting 

personal goals, engaging in social interactions) during treatment for cancer (Cimprich et al., 

2011). Findings from our research team (Merriman et al., 2013) suggest that both patients 

and their family caregivers (FCs) experience decrements in attentional function. This 

diminished attentional function has a negative impact on work ability, mood, and 

relationships (Boykoff et al., 2009; Cimprich et al., 2011; Merriman et al., 2011).

The attention system of the brain is comprised of multiple networks, including the alerting 

and executive attention networks (Posner, 2012). While these networks use different brain 

structures and neurotransmission systems, they operate collectively (Fan et al., 2002). The 

alerting attention network is associated with vigilance to tasks (Posner, 2012). The executive 

attention network is associated with planning, impulse control, and regulation of emotion 

(Posner, 2012).

The alerting attention network consists of the reticular activating system and multiple 

cortical brain structures (Petersen and Posner, 2012). While the tonic function of this 

network enables diurnal fluctuations in attention, its phasic function enables short spikes in 

attention (Petersen and Posner, 2012). Together, these two functions facilitate general 

alertness and vigilance to tasks (Petersen and Posner, 2012).

Norepinephrine (NE) is a catecholaminergic neurotransmitter that, together with 

epinephrine, regulates sympathetic nervous system function during homeostasis and during 

times of psychological or physical stress (Johnson and Liggett, 2011). NE, which is 

produced by the locus coeruleus, is the primary neurotransmitter used by adrenergic neurons 

in the alerting attention network (Fan et al., 2001). Adrenergic neurons project from the 

locus coeruleus to cortical structures throughout the brain (Aston-Jones and Cohen, 2005). 

Alertness appears to have an inverted U-shaped relationship with attention so that too much 

(i.e., hypervigilance) or too little alertness is problematic (Aston-Jones and Cohen, 2005). 

Therefore, NE production or function outside an optimal range may adversely affect the 

alerting attention network.
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The gamma-aminobutyric acid (GABA) neurotransmission system moderates the 

functioning of the alerting attention network. GABA is the principal inhibitory 

neurotransmitter in the central nervous system (CNS) (Antonucci et al., 2012). GABAergic 

neurons are located in cortical and subcortical structures, including structures of the alerting 

attention network (Conti et al., 2004; McDonald et al., 2011). The inhibitory effects of 

GABA prevent over excitation of neurons (Antonucci et al., 2012). Therefore, GABA 

moderates the excitatory state of the network so that attention is maintained at an optimal 

level.

Dopamine (DA), which is produced in the ventral tegmental area, is a catecholaminergic 

neurotransmitter used by the executive attention network and the various reward systems 

that influence this network (Fernandez-Duque and Posner, 2001). The executive attention 

network consists of the anterior cingulate cortex, the anterior insula, and the dorsolateral 

prefrontal cortex (Posner, 2012). Dopaminergic neurons project from the ventral tegmental 

area and the substantia nigra into brain regions involved in cognition (i.e., prefrontal cortex) 

and emotion (i.e., limbic system). These neurons also project into the reward systems (i.e., 

the striatum) that influence executive attentional control (Eriksen et al., 2010). Optimal DA 

levels are important for executive attention. For example, increases in DA levels improve 

working memory, which is closely related to attention (Cimprich et al., 2011; Gazzaley and 

Nobre, 2012), in people with poor performance but impair working memory in people with 

good performance (Frank and Fossella, 2011).

The serotonergic neurotransmission system moderates the functioning of the executive 

attention network. Serotonergic neurons are located in cortical and subcortical structures, 

including structures of the executive attention network (Fineberg et al., 2010). Major 

psychosocial stressors can dysregulate serotonin neurotransmission, which results in 

impairments in the executive attention network (De Raedt and Koster, 2010). For example, 

decreased serotonergic function in the dorsolateral prefrontal cortex is associated with 

decreased executive regulation of emotion, increased impulsivity, and poorer mood (Carver 

et al., 2008; Posner, 2012).

Taken together, catecholaminergic, GABAergic, and serotonergic neurotransmission 

influence the alerting and executive attention networks. Poorer attentional function may be 

reported by individuals when the neurotransmission systems used by these networks are 

dysregulated (Ahles and Saykin, 2007). Therefore, inter-individual variability in self-

reported attentional function may be due in part to variations in genes that encode for 

catecholaminergic, GABAergic, and serotonergic receptors and transporters, as well as in 

genes that encode for synthesis and metabolism of the neurotransmitters used in these 

systems.

Previously, we evaluated the relationships between variations in inflammatory cytokine 

genes and self-reported attentional function in a sample of 167 oncology patients undergoing 

radiation therapy (RT) and their 85 FCs (Merriman et al., 2013). In this study, we found an 

association between a single nucleotide polymorphism (SNP) in IL6 (i.e., rs1800795) and 

poorer attentional function in a subgroup of individuals. No studies have evaluated for 

associations between neurotransmitter genes and subgroups of individuals with different 
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levels of self-reported attentional function. Therefore, the purpose of this study, in the same 

sample of oncology patients and their FCs, was to evaluate for associations between 

variations in candidate genes involved in catecholaminergic, GABAergic, and serotonergic 

mechanisms of neurotransmission and attentional function latent class membership 

previously identified using growth mixture modeling (GMM).

Methods

This analysis is part of a larger study that evaluated multiple symptoms in patients who 

underwent primary or adjuvant RT for breast, prostate, lung, or brain cancer and in their FCs 

(Dunn et al., 2013; Merriman et al., 2013; Miaskowski et al., 2012). The methods, which are 

described in detail elsewhere (Merriman et al., 2013), are abbreviated below.

Study Procedures

The study was approved by the Committee on Human Research at the University of 

California, San Francisco and by the institutional review board at the second site. Patients 

and their FCs were recruited during the patient’s simulation visit at RT departments located 

in a Comprehensive Cancer Center and a community-based oncology program. Patients 

were eligible to participate if they were ≥18 years of age; were scheduled to receive primary 

or adjuvant RT; were able to read, write, and understand English; and had a Karnofsky 

Performance Status (KPS) score of ≥60. Patients were excluded if they had metastatic 

disease, more than one cancer diagnosis, or a diagnosed sleep disorder. FCs were eligible to 

participate if they were ≥18 years of age; were able to read, write, and understand English; 

had a KPS score of ≥60; were living with the patient; and did not have a diagnosed sleep 

disorder.

After providing written informed consent, participants completed enrollment questionnaires. 

FCs who were not present were contacted by phone to determine their interest in 

participation. Interested FCs completed enrollment at home. Follow-up questionnaires were 

completed at 4 weeks after the initiation of RT; at the end of RT; and at 4, 8, 12, and 16 

weeks after completion of RT (i.e., seven assessments over six months).

Instrument To Evaluate Attentional Function

The 16-item Attentional Function Index (AFI) was designed to measure self-reported 

attentional function (i.e., ability to voluntarily direct and sustain attention) (Cimprich et al., 

2011). Higher mean scores on a 0 to 10 numeric rating scale indicate greater capacity to 

direct attention. Scores are grouped into categories of attentional function (i.e., <5.0 low, 5.0 

to 7.5 moderate, >7.5 high) (Cimprich et al., 2005). The AFI has established reliability, as 

well as construct and convergent validity (Cimprich et al., 2011). In this study, Cronbach’s 

alpha was .95 for both patients and FCs.

Phenotypic Analyses

Phenotypic analyses were conducted as previously reported (Merriman et al., 2013) using 

SPSS 22 (IBM, New York) and Mplus 6.11 (Muthén & Muthén, California). In brief, GMM 

was used to identify latent classes (i.e., subgroups) of participants with distinct trajectories 
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of attentional function. Descriptive statistics and frequency distributions were generated for 

phenotypic characteristics and AFI scores for each latent class. Analyses of variance and 

Chi-square analyses were used to evaluate for differences in sample characteristics among 

these classes. Differences were considered statistically significant at p<.05. Post hoc 

contrasts used the Bonferroni correction to control the overall family alpha. For any one of 

three possible pairwise contrasts, p<.017 (i.e., .05/3) was considered statistically significant.

Genotypic Analyses

Of 287 participants who completed the baseline assessment, deoxyribonucleic acid (DNA) 

was recovered using the Puregene DNA Isolation System (Invitrogen, California) for 252 

(i.e., 167 patients and 85 FCs). Genotyping was performed using the GoldenGate 

genotyping platform and GenomeStudio (Illumina, California).

Gene and SNP selection—Genes involved in catecholaminergic neurotransmission that 

were evaluated included: adrenoceptor alpha 1D (ADRA1D); ADRA2A; adrenoceptor beta 

2, surface (ADRB2); ADRB3; adrenergic, beta, receptor kinase 2 (ADRBK2); noradrenaline 

transporter (solute carrier family 6, member 2; SLC6A2); and DA transporter (SLC6A3). 

The gene that encodes for catechol-O-methyltransferase (COMT) is involved in the 

metabolism of catecholamines (Small et al., 2011). The gene that encodes for tyrosine 

hydroxylase (TH) is involved in the synthesis of DA (Bademci et al., 2012). The gene that 

encodes for the GABA transporter is SLC6A1. Genes that encode for serotonergic 

neurotransmission include: G-protein coupled 5-hydroxytryptamine receptor 1A (HTR1A), 

HTR1B, and HTR2A; ionotropic HTR3A; and serotonin transporter SLC6A4. The gene that 

encodes for tryptophan hydroxylase 2 (TPH2) is involved in the synthesis of serotonin 

(Lesch et al., 2012).

Tagging SNPs and literature-driven SNPs for these candidate genes were selected for 

analysis. Tagging SNPs were required to have minor allele frequencies (MAFs) ≥5% in 

public databases. SNPs with call rates of <95% or deviations from Hardy-Weinberg 

expectations of p<.001 were excluded. Rare alleles were defined as having MAF <50% in 

the sample. Potential functional roles of SNPs associated with attentional function were 

examined using PupaSuite 3.1 (Conde et al., 2006).

Statistical Analyses—Allele and genotype frequencies were determined by gene 

counting. Measures of linkage disequilibrium (LD; i.e., D’ and r2) were computed from 

participants’ genotypes with Haploview 4.2 (Broad Institute, Massachusetts). LD-based 

haplotype block definition was based on the D’ confidence interval (CI) method (Gabriel et 

al., 2002). Haplotypes were constructed using PHASE 2.1 (Stephens et al., 2001).

Multinomial logistic regression analyses were done with Stata 13 (StataCorp, Texas). A 

backwards stepwise approach was used to create a parsimonious phenotypic model. Self-

reported race/ethnicity and three principal components derived from one hundred six 

ancestry informative markers (AIMs) were controlled for in these analyses to minimize 

confounding due to population stratification (Halder et al., 2008; Hoggart et al., 2003; Tian 

et al., 2008). Only predictors with overall Wald Chi-square p-values of <.05 were retained in 

the phenotypic model.
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Additive, dominant, and recessive genetic models were assessed for each SNP. Significant 

genetic variations identified in the bivariate analyses were evaluated further using 

multinomial logistic regression that controlled for predictors identified in the phenotypic 

model, potential confounding due to population stratification, and variations in other SNPs/

haplotypes within each gene. Using a backwards stepwise approach, significant variations in 

each gene were simultaneously evaluated until a parsimonious regression model was fit. 

Only genotypic predictors with overall Wald Chi-square p-values of <.05 were retained in 

the final multivariable model for each gene.

The final models were fit to determine covariate-adjusted odds ratios (ORs) and 95% CIs for 

the associations of each of the genotypes with attentional function latent class membership 

in pairwise comparisons (e.g., high versus moderate attentional function). Only genotype 

terms with Bonferroni-corrected p-values of <.017 (i.e., .05/3) were considered statistically 

significant in these pairwise class comparisons.

As was done in our previous studies (Dunn et al., 2013; Merriman et al., 2013; Miaskowski 

et al., 2012), based on recommendations in the literature (Hattersley and McCarthy, 2005; 

Rothman, 1990), the implementation of rigorous quality controls for genomic data, the non-

independence of SNPs/haplotypes in LD, and the exploratory nature of the analyses, 

adjustments were not made for multiple testing. In addition, unadjusted associations are 

reported for all SNPs and haplotypes passing quality control criteria to allow for subsequent 

comparisons and meta-analyses (Supplemental Table). Because significant genetic 

variations identified in the bivariate analyses were further evaluated in multivariable models 

that controlled for phenotypic differences among latent classes, population stratification 

(i.e., genomic and self-reported estimates of race and ethnicity), and other variations in the 

same gene, the significant independent genetic associations reported are unlikely to be due 

solely to chance.

Results

As reported previously (Merriman et al., 2013), three distinct latent classes of attentional 

function trajectories were identified: high (n=39), moderate-to-high (n=121), and moderate 

(n=92) attentional function (Figure 1).

Phenotypic Differences Among the Latent Classes

Phenotypic differences among the classes at enrollment are described in detail elsewhere 

(Merriman et al., 2013). Only significant differences among the classes are summarized in 

Table 1. In the multinomial logistic regression analyses, age (p=.019), number of 

comorbidities (p=.047), and functional status (i.e., KPS score; p=.013) predicted latent class 

membership. Pairwise class comparisons revealed that these relationships were due 

primarily to differences between the moderate attentional function class and each of the 

higher attentional function classes (Table 2).

Genotypic Differences Among the Latent Classes

Seventy-four SNPs among nine candidate genes in the catecholaminergic system, 18 SNPs 

in one candidate gene in the GABAergic system, and 47 SNPs among six candidate genes in 
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the serotonergic system passed quality control filters. Genotype distributions differed among 

latent classes for six SNPs and two haplotypes in three catecholaminergic genes (i.e., 

ADRA1D, SLC6A2, SLC6A3), three SNPs in the GABAergic gene (i.e., SLC6A1), and 

seven SNPs and three haplotypes in one serotonergic gene (i.e., HTR2A) (Supplemental 

Table).

Catecholaminergic System—After controlling for age, number of comorbidities, and 

functional status, as well as population stratification and other significant variations in the 

same gene, models fit for ADRA1D rs4815675 (p=.007) and SLC6A3 rs37022 (p=.037) 

remained significant. The allelic distributions of these SNPs are depicted in Figure 2.

Pairwise comparisons revealed that the relationship between latent class membership and the 

ADRA1D genotype was due to the difference in genotype frequencies between the 

moderate-to-high versus moderate attentional function classes (Table 3). Participants who 

were homozygous for the rare “C” allele had a 68% decrease in the odds of belonging to the 

moderate attentional function class (OR: 0.32; 95% CI: 0.137, 0.722; p=.006). Pairwise 

comparisons did not meet the Bonferroni-corrected threshold for significance for between-

class differences by genotype for the high versus moderate (OR: 0.96; 95% CI: 0.281, 3.239; 

p=.941) or high versus moderate-to-high (OR: 3.03; 95% CI: 1.042, 8.829; p=.042) 

attentional function classes.

Pairwise comparisons revealed that the relationship with SLC6A3 genotype was due to the 

difference in genotype frequencies in the high versus moderate-to-high attentional function 

classes (Table 3). Participants who were homozygous for the rare “A” allele had a 96% 

decrease in the odds of belonging to the moderate-to-high attentional function class (OR: 

0.04; 95% CI: 0.003, 0.489; p=.012). Pairwise comparisons did not meet the threshold for 

significance for between-class differences by genotype for the high versus moderate (OR: 

0.23; 95% CI: 0.037, 1.396; p=.110) or moderate-to-high versus moderate (OR: 5.67; 95% 

CI: 0.563, 56.996; p=.141) attentional function classes.

GABAergic System—In multivariable analyses, the model fit for SLC6A1 rs2697138 

(p=.014) remained significant. The allelic distributions of this SNP are depicted in Figure 3.

Pairwise comparisons revealed that the relationship with SLC6A1 genotype was due to the 

difference in genotype frequencies between the high versus moderate-to-high attentional 

function classes (Table 3). Participants who were heterozygous or homozygous for the rare 

“A” allele (i.e., CA+AA) had a 67% decrease in the odds of belonging to the moderate-to-

high attentional function class (OR: 0.33; 95% CI: 0.141, 0.779; p=.011). Pairwise 

comparisons did not meet the threshold for significance for between-class differences by 

genotype for the high versus moderate (OR: 0.78; 95% CI: 0.314, 1.950; p=.599) or 

moderate-to-high versus moderate (OR: 2.36; 95% CI: 1.117, 4.979; p=.024) attentional 

function classes.

Serotonergic System—In multivariable analyses, the model fit for HTR2A rs2296972 

(p=.033) and rs9534496 (p=.032) remained significant. The LD between these SNPs was 
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weak (i.e., r2=0.001, D’=0.042). The allelic distributions of these SNPs are depicted in 

Figure 4.

Pairwise comparisons revealed that for rs2296972, the relationship with HTR2A genotype 

was due to the difference in genotype frequencies between the moderate-to-high versus 

moderate attentional function classes (Table 3). Participants who were homozygous for the 

rare “T” allele had a four-fold increase in the odds of belonging to the moderate attentional 

function class (OR: 4.07; 95% CI: 1.395, 11.867; p=.010). Pairwise comparisons did not 

meet the threshold for significance for between-class differences by genotype for the high 

versus moderate (OR: 1.31; 95% CI: 0.373, 4.631; p=.671) or high versus moderate-to-high 

(OR: 0.32; 95% CI: 0.083, 1.258; p=.103) attentional function classes.

Pairwise comparisons revealed that for rs9534496, the relationship with HTR2A genotype 

was due to the difference in genotype frequencies between the high versus moderate-to-high 

attentional function classes (Table 3). Participants who were heterozygous or homozygous 

for the rare “C” allele (i.e., GC+CC) had a 67% decrease in the odds of belonging to the 

moderate-to-high attentional function class (OR: 0.33; 95% CI: 0.145, 0.764; p=.009). 

Pairwise comparisons did not meet the threshold for significance for between-class 

differences by genotype for the high versus moderate (OR: 0.39; 95% CI: 0.160, 0.975; p=.

044) or moderate-to-high versus moderate (OR: 1.19; 95% CI: 0.578, 2.429; p=.644) 

attentional function classes.

Discussion

This study is the first to evaluate for differences in genes that encode for catecholaminergic, 

GABAergic, and serotonergic neurotransmission among subgroups of oncology patients and 

their FCs who reported distinct trajectories of attentional function prior to, during, and after 

RT. Characteristics of the three latent classes of attentional function (i.e., high, moderate-to-

high, moderate) identified using GMM and phenotypic differences among the classes were 

discussed previously (Merriman et al., 2013). The current study extends our findings on 

associations among these attentional function latent classes and variations in cytokine genes 

and provides preliminary evidence that variations in several neurotransmission genes are 

associated with differences in self-reported attentional function.

Catecholaminergic System

Among the nine candidate genes evaluated as part of the catecholaminergic system, a SNP 

in the gene that encodes for adrenoceptor alpha 1D (i.e., ADRA1D rs4815675) and a SNP in 

the gene that encodes for the DA transporter (i.e., SLC6A3 rs37022) were associated with 

latent class membership.

For ADRA1D rs4815675, being homozygous for the rare C allele was associated with a 

decreased odds of belonging to a poorer attentional function class. Alpha adrenergic 

receptors are pervasive throughout the peripheral nervous system and CNS (Small et al., 

2003). These G protein-coupled receptors are involved in general alertness (Aston-Jones and 

Cohen, 2005), cognition (Perez and Doze, 2011), and sympathetic responses to stress 

(Johnson and Liggett, 2011). This SNP is located in an evolutionarily conserved region of 
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the single intron for ADRA1D. The C allele can become methylated, which may influence 

gene expression. In fact, this allele was found to be methylated in genomic DNA collected 

from nucleated cells in the human frontal cortex (Maunakea et al., 2010; Meyer et al., 2013). 

The effects of DNA methylation of this SNP on attentional function warrant evaluation.

For SLC6A3 rs37022, being homozygous for the rare A allele was associated with a 

decreased odds of belonging to a poorer attentional function class. The DA transporter 

(DAT) is a member of the sodium- and chloride-dependent neurotransmitter transporter 

family (SLC6) (Eriksen et al., 2010). DAT is involved in both the reuptake of DA from the 

synaptic cleft into the presynaptic terminal (Bamne et al., 2010) and in the transport of DA 

back into this cleft (Leviel, 2011). Therefore, DAT is essential for the regulation of DA 

levels. SLC6A3 rs37022 is located in an evolutionarily conserved region of the gene in 

intron seven. Being homozygous for the rare A allele of rs37022 may be associated with 

more optimal functioning of DAT.

Attention-deficit/hyperactivity disorder (ADHD) shares some phenotypic similarities with 

the diminished attentional function reported by oncology patients and their FCs. For 

example, deficits in working memory performance found in individuals with ADHD (Kebir 

and Joober, 2011) are reported by oncology patients (Cimprich et al., 2011). In addition, 

individuals with ADHD exhibit deficits in response inhibition, which contributes to 

impulsive behavior (Kebir and Joober, 2011). Similar deficits in response inhibition were 

found in studies of oncology patients following chemotherapy (de Ruiter et al., 2011; Kesler 

et al., 2009). While the diminished attentional function reported by patients and FCs during 

treatment for cancer is not ADHD, some of the changes in attentional function associated 

with both conditions may provide insights into the mechanisms that underlie these changes.

For example, in a review (Kebir and Joober, 2011), the role of DAT polymorphisms in 

ADHD was described. Of note, none of the studies included in the review evaluated 

SLC6A3 rs37022. However, findings from this review suggest that DAT moderates the 

severity of various ADHD phenotypes. The relationships found between polymorphisms in 

DAT and attentional function in persons with ADHD suggest that variability in DAT 

production and function contribute to changes in cognitive function.

GABAergic System

An intronic SNP in the gene that encodes for GABA transporter 1 (i.e., SLC6A1 rs2697138) 

was associated with attentional function class membership. Being heterozygous or 

homozygous for the rare A allele was associated with a decreased odds of belonging to a 

poorer attentional function class. GABA transporters (GATs), particularly the most common 

one (i.e., GAT-1), remove GABA from the synaptic cleft into the presynaptic terminal 

(Conti et al., 2004). An optimal level of GABA in the cleft maintains optimal excitability of 

the alerting attention network (Antonucci et al., 2012; Thoeringer et al., 2009). While the 

function of rs2697138 is unknown, it may be a surrogate for an unmeasured functional 

polymorphism that is in LD.

While no clinical studies have evaluated SLC6A1 rs2697138, a pre-clinical study using 

GAT-1 overexpressing mice found cognitive deficits in learning and novel object 
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recognition compared to wild type mice (Hu et al., 2004). These deficits were reversed with 

administration of a GAT-1 inhibitor (Hu et al., 2004). The same group found better learning 

and memory, as well as reduced anxiety, in GAT-1 heterozygous mice compared to wild 

type and knockout mice (Shi et al., 2012). These findings suggest that optimal levels of 

GAT-1 are associated with better cognitive function and mood.

Serotonergic System

Among the six candidate genes evaluated as part of the serotonergic system, two SNPs in 

HTR2A (i.e., rs2296972, rs9534496) were associated with attentional function class 

membership. Being homozygous for the rare T allele for rs2296972 was associated with an 

increased odds of belonging to a poorer attentional function class. In contrast, being 

heterozygous or homozygous for the rare C allele for rs9534496 was associated with a 

decreased odds of belonging to a poorer attentional function class. In the HTR2A 

multivariable model (Table 3), both SNPs maintained a significant association with 

attentional function latent class membership. Furthermore, the LD between the two SNPs 

was weak, which suggests that these SNPs are independent predictors.

The G protein-coupled serotonin receptor 2A is involved with mood regulation and 

cognition (Brezo et al., 2010). Dysregulated serotonin 2A receptor density is associated with 

poorer outcomes such as mood disorders (Brezo et al., 2010). The level of activity of 

serotonergic neurons is dependent on the density of serotonin receptors (Brezo et al., 2010).

Both SNPs are located in the second intron of the gene. It is interesting to note that HTR2A 

rs2296972 has demonstrated associations in several clinical conditions. The rare T allele was 

associated with more severe panic disorder (Unschuld et al., 2007), while the “G” allele was 

associated with less social withdrawal (Broekman et al., 2011). These findings are consistent 

with our finding that the T allele is associated with worse outcomes. In contrast, a recent 

study found that the rare allele was associated with less severe bulimia nervosa (Koren et al., 

2014). While the function of rs2296972 is unknown, this SNP may be a surrogate for an 

unmeasured functional polymorphism that is in LD.

In terms of the second SNP, in a study of university students, carriers of the C allele in 

HTR2A rs9534496 performed worse at delayed recall tasks (Sigmund et al., 2008). This 

finding of poorer working memory performance contrasts with our finding that the C allele 

was associated with a decreased odds of poorer attentional function. These inconsistent 

findings may be related to variations in sample characteristics (e.g., age) or differences in 

the measures of cognitive function used in the studies. For example, the cognitive constructs 

measured for working memory and self-reported attentional function may be affected 

differently by the C allele. Of note, the “G” allele for this SNP has the potential to become 

methylated, which can influence gene expression. This allele was methylated in genomic 

DNA collected from nucleated cells in the human frontal cortex (Maunakea et al., 2010; 

Meyer et al., 2013). Therefore, the effect of DNA methylation of this SNP on attentional 

function warrants evaluation.

In addition to the limitations previously acknowledged concerning sample size and 

composition (Merriman et al., 2013), this study did not evaluate for variations in candidate 
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genes for all of the mechanistic pathways involved in attentional function. For example, 

genes involved in the cholinergic system that is used by the orienting attention network were 

not evaluated. The orienting attention network enables disengagement from attended stimuli 

to focus on other stimuli (Petersen and Posner, 2012). Individuals with diminished 

attentional function are less able to shift focus from negative to positive internal stimuli. 

These individuals may ruminate on stimuli with negative emotional connotations, which 

predisposes them to mood disorders (De Raedt and Koster, 2010; Nolen-Hoeksema, 2000; 

Nolen-Hoeksema et al., 1993). Future work should evaluate these relationships.

In summary, the present study provides preliminary evidence of associations between SNPs 

in catecholaminergic genes (i.e., ADRA1D rs4815675, SLC6A3 rs37022), a GABAergic 

gene (i.e., SLC6A1 rs2697138), and a serotonergic gene (i.e., HTR2A rs2296972, 

rs9534496) and self-reported attentional function. The fact that these relationships were 

found in a sample of patients and FCs suggests that these SNPs influence attentional 

function regardless of the etiology of diminished attentional function.

Before clinical implications are evaluated, these findings need to be confirmed in 

independent samples. When confirmed, knowledge of both phenotypic and genetic markers 

associated with alterations in attentional function could be used by clinicians to identify 

patients and family caregivers who are at higher risk for this symptom. Moreover, increased 

understanding of these genetic markers may provide insights into the underlying 

mechanisms for this significant clinical problem. Studies of genes that encode for other 

physiologic pathways that impact neurotransmission and neuronal health (e.g., nitric oxide 

synthase, brain-derived neurotrophic factor) may provide additional insights into the genetic 

factors that influence attentional function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Decreases in attentional function occur in both patients and their family caregivers.

Findings from this study suggest that variations in genes that encode for three distinct but 

related neurotransmission systems are involved in alterations in attentional function.
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Figure 1. 
Observed and estimated (i.e., model predicted) Attentional Function Index (AFI) score 

trajectories for participants in each latent class, as well as mean AFI scores for the total 

sample. [Merriman et al. 2013, used with permission from Sage Publications]
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Figure 2. 
a – Catecholaminergic system: Differences among the attentional function (AF) latent 

classes in the percentages of patients who were homozygous or heterozygous for the 

common “T” allele versus homozygous for the rare “C” allele for rs4815675 in adrenergic, 

alpha 1D receptor (ADRA1D). Values are plotted as unadjusted proportions with 

corresponding p-value.

b – Catecholaminergic system: Differences among the AF latent classes in the percentages 

of patients who were homozygous or heterozygous for the common “T” allele versus 
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homozygous for the rare “A” allele for rs37022 in solute carrier family 6, member 3 

(SLC6A3; transporter for the neurotransmitter dopamine). Values are plotted as unadjusted 

proportions with corresponding p-value.
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Figure 3. 
GABAergic system: Differences among the AF latent classes in the percentages of patients 

who were homozygous for the common “C” allele versus heterozygous or homozygous for 

the rare “A” allele for rs2697138 in solute carrier family 6, member 1 (SLC6A1; transporter 

for the neurotransmitter gamma-aminobutyric acid). Values are plotted as unadjusted 

proportions with corresponding p-value.
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Figure 4. 
a – Serotonergic system: Differences among the AF latent classes in the percentages of 

patients who were homozygous or heterozygous for the common “G” allele versus 

homozygous for the rare “T” allele for rs2296972 in the G protein-coupled 5-

hydroxytryptamine receptor 2A (HTR2A). Values are plotted as unadjusted proportions with 

corresponding p-value.

b – Serotonergic system: Differences among the AF latent classes in the percentages of 

patients who were homozygous for the common “G” allele versus heterozygous or 
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homozygous for the rare “C” allele for rs9534496 in the G protein-coupled HTR2A. Values 

are plotted as unadjusted proportions with corresponding p-value.
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Table 1

Significant differences in demographic and clinical characteristics among the attentional function classes at 

enrollment.a

Characteristic High Attentional
Function (0)

n = 39 (15.5%)

Moderate-to-High
Attentional
Function (1)

n = 121 (48.0%)

Moderate
Attentional
Function (2)

n = 92 (36.5%)

Statistics and post hoc comparisons

Mean (SD) Mean (SD) Mean (SD)

Age (years) 65.3 (8.7) 62.6 (10.3) 58.4 (12.7) F(2,113) = 6.5, p = .002; 2 < 0,1

Number of comorbidities 3.8 (2.4) 4.5 (2.7) 5.1 (2.7) F(2,249) = 3.6, p = .030; 2 > 0

KPS score 96.2 (8.8) 93.6 (9.5) 87.9 (13.7) F(2,108) = 9.0, p < .001; 2 < 0,1

n (%) n (%) n (%)

Married or partnered (yes) 33 (84.6) 87 (72.5) 54 (59.3) χ2 = 9.160, p = .010; 2 < 0

Patient/FC (patient) 19 (48.7) 78 (64.5) 70 (76.1) χ2 = 9.518, p = .009; 2 > 0

Abbreviations: SD = standard deviation; KPS = Karnofsky Performance Status; FC = family caregiver.

a
Modified from Merriman et al. 2013.

Eur J Oncol Nurs. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Merriman et al. Page 23

T
ab

le
 2

M
ul

tin
om

ia
l l

og
is

tic
 r

eg
re

ss
io

n 
m

od
el

 f
or

 p
he

no
ty

pi
c 

pr
ed

ic
to

rs
 o

f 
at

te
nt

io
na

l f
un

ct
io

n 
cl

as
s 

m
em

be
rs

hi
p.

G
M

M
 c

la
ss

 c
om

pa
ri

so
n

P
re

di
ct

or
a

O
dd

s 
ra

ti
o

St
an

da
rd

 e
rr

or
95

%
 C

I
z

p-
va

lu
e

H
ig

h 
ve

rs
us

 m
od

er
at

e-
to

-h
ig

h 
A

F
A

ge
0.

88
0.

09
4

0.
71

6,
 1

.0
87

−
1.

17
.2

40

N
um

be
r 

of
 c

om
or

bi
di

tie
s

1.
13

0.
09

1
0.

95
9,

 1
.3

19
1.

45
.1

48

K
PS

 s
co

re
0.

77
0.

19
4

0.
47

4,
 1

.2
65

−
1.

02
.3

07

H
ig

h 
ve

rs
us

 m
od

er
at

e 
A

F
A

ge
0.

75
0.

08
5

0.
60

0,
 0

.9
35

−
2.

56
.0

11

N
um

be
r 

of
 c

om
or

bi
di

tie
s

1.
23

0.
10

7
1.

04
1,

 1
.4

64
2.

43
.0

15

K
PS

 s
co

re
0.

55
0.

13
8

0.
33

9,
 0

.9
03

−
2.

37
.0

18

M
od

er
at

e-
to

-h
ig

h 
ve

rs
us

 m
od

er
at

e 
A

F
A

ge
0.

85
0.

06
5

0.
73

1,
 0

.9
85

−
2.

16
.0

31

N
um

be
r 

of
 c

om
or

bi
di

tie
s

1.
10

0.
06

7
0.

97
3,

 1
.2

38
1.

51
.1

31

K
PS

 s
co

re
0.

71
0.

10
1

0.
54

1,
 0

.9
44

−
2.

37
.0

18

O
ve

ra
ll 

m
od

el
 f

it 
(n

=
23

5)
: χ

2  
=

 5
4.

54
, p

 <
 .0

01
, p

se
ud

o 
R

2  
=

 0
.1

14

A
bb

re
vi

at
io

ns
: G

M
M

 =
 g

ro
w

th
 m

ix
tu

re
 m

od
el

; C
I 

=
 c

on
fi

de
nc

e 
in

te
rv

al
; A

F 
=

 a
tte

nt
io

na
l f

un
ct

io
n;

 K
PS

 =
 K

ar
no

fs
ky

 P
er

fo
rm

an
ce

 S
ta

tu
s.

a Se
lf

-r
ep

or
te

d 
ra

ce
/e

th
ni

ci
ty

 a
nd

 g
en

om
ic

 e
st

im
at

es
 o

f 
ra

ce
/e

th
ni

ci
ty

 (
i.e

., 
th

e 
fi

rs
t t

hr
ee

 p
ri

nc
ip

le
 c

om
po

ne
nt

s 
id

en
tif

ie
d 

in
 th

e 
an

al
ys

is
 o

f 
an

ce
st

ry
 in

fo
rm

at
iv

e 
m

ar
ke

rs
) 

w
er

e 
re

ta
in

ed
 in

 th
e 

m
od

el
 to

 a
dj

us
t 

fo
r 

po
te

nt
ia

l c
on

fo
un

di
ng

 d
ue

 to
 p

op
ul

at
io

n 
st

ra
tif

ic
at

io
n 

(d
at

a 
no

t s
ho

w
n)

. A
ge

 is
 in

 f
iv

e-
ye

ar
 in

cr
em

en
ts

. K
PS

 s
co

re
 is

 in
 te

n-
po

in
t i

nc
re

m
en

ts
.

Eur J Oncol Nurs. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Merriman et al. Page 24

T
ab

le
 3

M
ul

tin
om

ia
l l

og
is

tic
 r

eg
re

ss
io

n 
m

od
el

s 
fo

r 
ge

no
ty

pi
c 

pr
ed

ic
to

rs
 o

f 
at

te
nt

io
na

l f
un

ct
io

n 
cl

as
s 

m
em

be
rs

hi
p 

by
 c

an
di

da
te

 g
en

e.

N
eu

ro
tr

an
sm

is
si

on
 s

ys
te

m
G

M
M

 c
la

ss
 c

om
pa

ri
so

n
P

re
di

ct
or

a
O

dd
s 

ra
ti

o
St

an
da

rd
 e

rr
or

95
%

 C
I

z
p-

va
lu

e

C
at

ec
ho

la
m

in
er

gi
c

M
od

er
at

e-
to

-h
ig

h 
ve

rs
us

 m
od

er
at

e 
A

F
A

D
R

A
1D

 r
s4

81
56

75
0.

32
0.

13
3

0.
13

7,
 0

.7
22

−
2.

73
.0

06

A
ge

0.
83

0.
06

5
0.

70
8,

 0
.9

64
−

2.
42

.0
16

N
um

be
r 

of
 c

om
or

bi
di

tie
s

1.
12

0.
07

0
0.

98
5,

 1
.2

62
1.

72
.0

85

K
PS

 s
co

re
0.

73
0.

10
4

0.
55

3,
 0

.9
67

−
2.

19
.0

28

O
ve

ra
ll 

m
od

el
 f

it 
(n

=
23

5)
: χ

2  
=

 6
5.

01
, p

 <
 .0

01
, p

se
ud

o 
R

2  
=

 0
.1

36

H
ig

h 
ve

rs
us

 m
od

er
at

e-
to

-h
ig

h 
A

F
SL

C
6A

3 
rs

37
02

2
0.

04
0.

05
1

0.
00

3,
 0

.4
89

−
2.

52
.0

12

A
ge

0.
88

0.
09

6
0.

70
6,

 1
.0

86
−

1.
21

.2
25

N
um

be
r 

of
 c

om
or

bi
di

tie
s

1.
16

0.
09

8
0.

98
0,

 1
.3

66
1.

72
.0

86

K
PS

 s
co

re
0.

81
0.

20
4

0.
49

7,
 1

.3
29

−
0.

83
.4

09

O
ve

ra
ll 

m
od

el
 f

it 
(n

=
23

5)
: χ

2  
=

 6
3.

07
, p

 <
 .0

01
, p

se
ud

o 
R

2  
=

 0
.1

32

G
A

B
A

er
gi

c
H

ig
h 

ve
rs

us
 m

od
er

at
e-

to
-h

ig
h 

A
F

SL
C

6A
1 

rs
26

97
13

8
0.

33
0.

14
5

0.
14

1,
 0

.7
79

−
2.

53
.0

11

A
ge

0.
90

0.
09

8
0.

72
3,

 1
.1

09
−

1.
01

.3
11

N
um

be
r 

of
 c

om
or

bi
di

tie
s

1.
10

0.
09

1
0.

93
0,

 1
.2

89
1.

09
.2

77

K
PS

 s
co

re
0.

82
0.

20
7

0.
49

7,
 1

.3
44

−
0.

80
.4

26

O
ve

ra
ll 

m
od

el
 f

it 
(n

=
23

4)
: χ

2  
=

 6
2.

65
, p

 <
 .0

01
, p

se
ud

o 
R

2  
=

 0
.1

31

Se
ro

to
ne

rg
ic

M
od

er
at

e-
to

-h
ig

h 
ve

rs
us

 m
od

er
at

e 
A

F
H

T
R

2A
 r

s2
29

69
72

4.
07

2.
22

2
1.

39
5,

 1
1.

86
7

2.
57

.0
10

A
ge

0.
84

0.
06

5
0.

71
7,

 0
.9

72
−

2.
32

.0
20

N
um

be
r 

of
 c

om
or

bi
di

tie
s

1.
11

0.
07

0
0.

97
9,

 1
.2

53
1.

63
.1

04

K
PS

 s
co

re
0.

73
0.

10
5

0.
54

9,
 0

.9
66

−
2.

20
.0

28

H
ig

h 
ve

rs
us

 m
od

er
at

e-
to

-h
ig

h 
A

F
H

T
R

2A
 r

s9
53

44
96

0.
33

0.
14

1
0.

14
5,

 0
.7

64
−

2.
60

.0
09

A
ge

0.
91

0.
10

1
0.

73
1,

 1
.1

29
−

0.
87

.3
86

N
um

be
r 

of
 c

om
or

bi
di

tie
s

1.
11

0.
09

4
0.

94
4,

 1
.3

15
1.

28
.2

00

K
PS

 s
co

re
0.

73
0.

18
7

0.
44

3,
 1

.2
06

−
1.

23
.2

20

O
ve

ra
ll 

m
od

el
 f

it 
(n

=
23

5)
: χ

2  
=

 6
9.

47
, p

 <
 .0

01
, p

se
ud

o 
R

2  
=

 0
.1

45

A
bb

re
vi

at
io

ns
: G

M
M

 =
 g

ro
w

th
 m

ix
tu

re
 m

od
el

; C
I 

=
 c

on
fi

de
nc

e 
in

te
rv

al
; A

F 
=

 a
tte

nt
io

na
l f

un
ct

io
n;

 K
PS

 =
 K

ar
no

fs
ky

 P
er

fo
rm

an
ce

 S
ta

tu
s;

 G
A

B
A

 =
 g

am
m

a-
am

in
ob

ut
yr

ic
 a

ci
d.

Eur J Oncol Nurs. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Merriman et al. Page 25
a Se

lf
-r

ep
or

te
d 

ra
ce

/e
th

ni
ci

ty
 a

nd
 th

e 
fi

rs
t t

hr
ee

 p
ri

nc
ip

le
 c

om
po

ne
nt

s 
id

en
tif

ie
d 

in
 th

e 
an

al
ys

is
 o

f 
an

ce
st

ry
 in

fo
rm

at
iv

e 
m

ar
ke

rs
 w

er
e 

re
ta

in
ed

 in
 th

e 
m

od
el

s 
to

 a
dj

us
t f

or
 p

ot
en

tia
l c

on
fo

un
di

ng
 d

ue
 to

 
po

pu
la

tio
n 

st
ra

tif
ic

at
io

n 
(d

at
a 

no
t s

ho
w

n)
. A

ge
 is

 in
 f

iv
e-

ye
ar

 in
cr

em
en

ts
. K

PS
 s

co
re

 is
 in

 te
n-

po
in

t i
nc

re
m

en
ts

. T
he

 g
en

ot
yp

ic
 p

re
di

ct
or

s 
ev

al
ua

te
d 

in
 th

e 
m

od
el

s 
w

er
e 

A
D

R
A

1D
 r

s4
81

56
75

 (
T

T
+

T
C

 v
er

su
s 

C
C

),
 S

L
C

6A
3 

rs
37

02
2 

(T
T

+
T

A
 v

er
su

s 
A

A
),

 S
L

C
6A

1 
rs

26
97

13
8 

(C
C

 v
er

su
s 

C
A

+
A

A
),

 H
T

R
2A

 r
s2

29
69

72
 (

G
G

+
G

T
 v

er
su

s 
T

T
),

 a
nd

 H
T

R
2A

 r
s9

53
44

96
 (

G
G

 v
er

su
s 

G
C

+
C

C
).

Eur J Oncol Nurs. Author manuscript; available in PMC 2016 June 01.




