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In this talk we discuss the phenomenology of models with replicated elec-
troweak gauge symmetries, based on a framework with the gauge structure
[SU(2) or U(1)]× U(1) × SU(2)× SU(2).

1. Generalized BESS

In this talk we discuss the phenomenology of models with replicated elec-

troweak gauge symmetries. The general framework we use is based on the

gauge structure [SU(2) or U(1)] × U(1) × SU(2) × SU(2), and is conve-

niently illustrated in the figure below. This figure is drawn using “moose”

notation,1
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in which the circles represent gauge groups with the specified gauge

coupling, and the solid lines represent separate (SU(2) × SU(2)/SU(2))

nonlinear sigma model fields which break the gauged or global symmetries

to which they are attached. The solid circles represent SU(2) groups, with

a “2” denoting a gauged SU(2) and the “1” a global SU(2) in which only

a U(1) subgroup has been gauged.

For convenience, the coupling constants of the gauge theories will be

specified by

g̃′ =
e

cos θ sinφ
, g′ =

e

cos θ cosφ
, g =

e

sin θ cosω
, g̃ =

e

sin θ sinω
, (2)

and the f -constants (the analogs of fπ in QCD) of the nonlinear sigma

models by

f

sinα
, v ,

f

cosα
. (3)

As we will see, the Lagrangian parameters e, θ, and v, will be approxi-

mately equal to the electric charge, weak mixing angle, and Higgs expecta-

tion value in the one-doublet standard model. The scale f sets the masses

of the extra gauge bosons, and the theory reduces to the standard model

in the limit f → ∞, while the angle α allows us to independently vary the

breaking of the duplicated SU(2) or U(1) gauge symmetries. Finally, the

angles φ and ω determine the couplings of the gauge bosons which become

massive at scale f .

The symmetry structure of this model is similar to that proposed in

the BESS (Breaking Electroweak Symmetry Strongly) model,2,3 an effective

Lagrangian description motivated by strong electroweak symmetry break-

ing. This model is in turn an application of “hidden local symmetry” to

electroweak physics.4 Accordingly, we refer to this paradigm as “general-

ized BESS.” The symmetry structure in the limit f → ∞ is precisely that

expected in a “technicolor” model,5,6 and the theory has a custodial sym-

metry in the limit g′ and g̃′ go to zero.

Generalized BESS is the simplest model of an extended electroweak

gauge symmetry incorporating both replicated SU(2) and U(1) gauge

groups. As such the electroweak sector of a number of models in the liter-

ature form special cases, including Noncommuting ETC,7 topcolor,8,9 and

electroweak SU(3).10,11,12 The general properties of precision electroweak

constraints on these models13,14,15 can correspondingly be viewed as special

cases of what follows.16
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2. Low-Energy Interactions

Constraints on models with extended electroweak symmetries arise both

from low-energy and Z-pole measurements. The most sensitive low-energy

measurements arise from measurements of the muon lifetime (which are

used to determine GF ), atomic parity violation (APV), and neutrino-

nucleon scattering. In the usual fashion, we may summarize the low-energy

interactions in terms of four-fermion operators. The form of these interac-

tions will depend, however, on the fermion charge assignments. For simplic-

ity, in the remainder of this talk we consider models in which the fermion

charge assignments are flavor universal. To illustrate the model-dependence

of the results, we consider two examples.

First, we consider the case in which the ordinary fermions are charged

only under the two groups at the middle of the moose

2 1

v

g'g

W B
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2
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g'~g~

Σ1 Σ2 Σ3

f

cos α

f

sin α

fermions fermions

. (4)

In this case the charged current interactions may be computed to be

LCC = −

2

v2
Jµ+J−

µ , (5)

and the neutral current interactions

LNC = −

2

v2
(Jµ

3 −Qµ sin2 θ)2 −
2 cos2 α

f2
sin2 θ sin4 ωQµQµ . (6)

In these expressions, the currents Jµ
±,3 and Qµ are the conventional weak

and electromagnetic currents. From these, we see that the strength of GF ,

APV, and neutrino scattering is determined by v in the usual way. Further-

more, comparing the two equations, we see that the strength of the charged

and neutral current interactions, the so-called low-energy ρ parameter, is

precisely one (at tree-level). This last fact is a direct consequence of the

Georgi-Weinberg neutral current theorem.17

As an alternative, consider the case in which the SU(2) charges of the

ordinary fermions arise from transforming under the gauge group at the

end of the moose
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. (7)
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A calculation of the charged current interactions yields

LCC = −2

(

1

v2
+

cos2 α

f2

)

Jµ+J−

µ , (8)

while the neutral current interactions are summarized by

LNC = −

2

v2
(Jµ

3 −Qµ sin2 θ)2 −
2 cos2 α

f2
(Jµ

3 − sin2 θ cos2 ωQµ)2 . (9)

Several points in this expression are of particular note: first, the value

of GF as inferred from muon decay is no longer related simply to v. As we

shall see in the next section, this ultimately will give rise to corrections to

electroweak observables of order (v/f)2 and unsuppressed by any ratios of

coupling constants. Second, unlike the previous case, the strength of low-

energy charged- and neutral-current interactions are no longer the same.

It is interesting to note, however, that the strengths of the J2
3 and J+J−

portions of the interactions are, however, the same – this is a reflection of

the approximate custodial symmetry of the underlying model.

3. Z-Pole Constraints - General Structure

Many of the most significant constraints on physics beyond the standard

model arise from precise measurements at the Z-pole. To interpret these

measurements, we must compute the masses W and Z bosons and their

couplings to ordinary fermions in terms of the Lagrangian parameters. For

generalized BESS, we find the gauge-boson masses

M2
W =

e2v2

4 sin2 θ

(

1− cos2 α sin4 ω
v2

f2

)

+O

(

v4

f4

)

, (10)

and

M2
Z =

e2v2

4 sin2 θ cos2 θ

(

1− (cos2 α sin4 ω + sin2 α sin4 ω)
v2

f2

)

+ . . . (11)

From the expression for M2
Z and the calculations summarized in the

previous section, we immediately see that there is a major difference in

the structure of corrections to the standard model between cases I and II:

corrections to the standard model relation between GF , α, M
2
Z , and the

appropriately defined weak mixing angle sin2 θW are generically of order

v2/f2 in case II, but is of order (sin4 ω, sin4 φ)v2/f2 in case I. As a conse-

quence, viewing the predictions of generalized BESS in terms of corrections

to the corresponding standard model results, the corrections to standard

model predictions in case I are (potentially) suppressed by ratios of coupling
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constants relative to the size of corrections in case II. This leads generically

to weaker constraints in case I models.

In what follows, we will concentrate on models in the category of case I,

in which the fermions are charged only under the gauge groups in the “mid-

dle” of the moose diagram. In order to make predictions for electroweak

observables, we need to compute the couplings of the ordinary fermions to

the light gauge boson eigenstates. In the case of the W we find that the

couplings to the left-handed fermions are

e

sin θ

(

1− cos2 α sin4 ω
v2

f2

)

+ . . . (12)

and for the Z we find the couplings

e

sin θ cos θ

[

1− (sin2 α sin4 φ+ cos2 α sin4 ω)
v2

f2

]

T3

−

e

sin θ cos θ

(

sin2 θ − sin2 α sin4 φ
v2

f2

)

Q . (13)

Comparing to the computed gauge-boson masses we see that, for case

I, all corrections to standard model predictions may be expressed in terms

of two combinations of Lagrangian parameters:

c1 = cos2 α sin4 ω
v2

f2
, c2 = sin2 α sin4 φ

v2

f2
. (14)

This allows us to compute bounds on model parameters in terms of fits to

c1 and c2, greatly simplifying the calculations.

Finally, while we will not explicitly display the results in case II, a

similar calculation shows that corrections to gauge-boson couplings in this

case are proportional to (sin2 ω, sin2 φ)v2/f2.

4. Flavor-Universal Results

From the calculations above, we may compute the values of all precisely

measured electroweak quantities in terms of the Lagrangian parameters

given above. Using the procedure outlined in Burgess et. al.,18 we perform

fits to the electroweak observables listed in the most recent compilation by

the LEP Electroweak Working Group,19 which include Z-pole observables

as well as the width of the W boson, and low-energy atomic parity violation

and neutrino-nucleon scattering. The 68%, 95%, and 99% confidence level

fits for the parameters c1,2 is shown in Figure 1.

For a given value of α, we may unfold these constraints to produce a

95% lower bound on f in terms of sinω and sinφ. A sense of the reach of
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Figure 1. Constraints on c1 and c2 at the 68%, 95%, and 99% confidence level based
on fits to precision electroweak data.19

these bounds is given in Figure 2, plotted for α = π/4. For typical values

of sinφ and sinω, the bounds on the scale f range from a few TeV.

Many of the models cited above correspond to the extra gauge groups

being weak, sinφ or sinω of order 1, in which case the bounds on f are of

order 10 TeV.13,14,15 Formally the corrections vanish when the couplings of

the extra gauge groups become strong, that is in the limit sinφ , sinω →

0. The phenomenologically interesting question is whether there are any

interesting models corresponding to this case, in which case there may be

interesting structure at relatively low scales!
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