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Functional Pursuit:

A Model of Successful Induction in Mathematics

Lisa A. Haverty (LH3C+@ANDREW.CMU.EDU)
Kenneth R. Koedinger (KOEDINGER@ANDREW.CMU.EDU)
David Klahr (KLAHR@ANDREW.CMU.EDU)
Carnegie Mellon University
Pittsburgh, PA 15213 USA

The induction of mathematical functions from data plays an
important role in mathematics and in scientific discovery
(Langley, et al., 1987). In this paper we present a
computational model of the cognitive processes used by
undergraduates in inducing mathematical functions from a
series of (x.y) data pairs. Sixteen undergraduates were given
two tasks in which they used a computer interface to collect
data pairs in order to find a mathematical function consistent
with the data. Participants could freely choose an X value
and the interface responded with a Y value. For example, on
Task A, a student might have collected the following data
pairs {(10, 35) (3, 0) (7, 14) (4, 2) (5, 5) (6, 9)}. The reader
is invited to try to discover the function behind Task A.
The function behind Task B was x*(2x+1) and all but one
student successfully discovered this function. In contrast, on
Task A, only nine of the 16 students succeeded within the
25-minute time limit.

Such function finding tasks provide a simple experimental
domain for investigating core skills of data collection,
pattern finding, and hypothesis formation that are
fundamental to reasoning and learning in math and science.
Related prior work on the BACON model (Qin & Simon,
1990) identified five heuristic rules to characterize the
discovery of Kepler's Third Law (D3 = cP?) from a table of
data. The BACON project demonstrated that discoveries made
by scientists can be captured in a computer model. BACON's
five heuristics are computationally sufficient to succeed on
Tasks A and B, yet the full variety of pattern finding and
hypothesis generation activities observed in students’ verbal
reports are not captured in those five heuristics. Our goal is
to extend this line of inquiry and to better understand the
discovery skills used and learned by non-scientists.

Using verbal protocols, we contrasted the performance of
successful and unsuccessful students by looking at how they
differ on factors such as data collection strategies, the
examination of intermediate quantities, the relative use of
pattern finding versus hypothesis generating techniques, and
the ability to symbolically describe patterns. We have
created an ACT (Anderson, 1993) model based on the
performance of successful participants. The model has
several pattern detection capabilities as well as minimal
algebraic skills, and these capabilities are based on processes
observed in students.

Our model incorporates several productions which produce
patterns independent of any hypothesis, such as the observed
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process of examining the differences between successive
values of y in a table of (x,y) pairs. For example, using the
data pairs for Task A {(3, 0) (4, 2) (5, 5) (6, 9) (7, 14) (10,
35)}. and taking the differences between the successive y-
values of 0, 2, 5, 9, and 14, the model will find the pattern:
{2, 3, 4, 5}. Our model uses the products of its pattern
finding activity to generale potential components for
hypotheses. Thus, the pattern {2, 3, 4, 5} can be expressed
in terms of its corresponding x-values: {4, 5, 6, 7} with the
expression "x-2". This skill of expressing a pattern in terms
of x is crucial to the process of function induction.

We offer an example to demonstrate how our model
captures the tendency of students to discover each of the
components of a function independently (e.g., on Task B:
2" "+1", "*x") and to then combine these components to
produce the final function. In discovering the function y =
x(2x+1), with data instances {(1, 3) (2, 10) (3, 21) (4, 36)},
the model first divides y by x, which produces the sequence
{3, 5, 7, 9}=C. The model subsequently focuses on
expressing C in terms of x. Here we describe the model's
path for students who do not retrieve the fact that these odd
numbers can be expressed as 2x+1. The model calculates
the discrepancy between C and x, (C - x) which yields {2, 3,
4, 5)=D. Since D is not constant, the model again
computes a discrepancy, this time betweenD and x, which
yields {1, 1, 1, 1}. Checking that this new quantity is
indeed a constant, the model uses this constant = | to begin
building its formal hypothesis. First, it proposes that x + |
= D. Next, it uses the fact that C = D + x, and produces C
= 2x+1. Finally, it notes thaty = C * x = (2x+1) * x.

We conclude that, as an accurate and detailed embodiment
of the processes used by successful participants, our model
of student performance is a first step toward identifying
plausible instructional objectives for the teaching of
inductive reasoning in mathematics.
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