
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Automating Oceanography: A Robotic Surface Sensor Platform Combining Flexibility and
Low-cost

Permalink
https://escholarship.org/uc/item/7522w2fg

Author
Mairs, Bryant

Publication Date
2015

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7522w2fg
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

AUTOMATING OCEANOGRAPHY: A ROBOTIC SURFACE
SENSOR PLATFORM COMBINING FLEXIBILITY AND

LOW-COST
A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Bryant W Mairs

June 2015

The Dissertation of Bryant W Mairs
is approved:

Professor Gabriel Elkaim, Chair

Professor Ricardo Sanfelice

Professor Renwick Curry

Dr. Raphael Kudela

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Bryant W Mairs

2015

Table of Contents

List of Figures vii

List of Tables xvii

Abstract xviii

Dedication xx

Acknowledgments xxi

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 3
1.3 Existing Autonomous Surface Vessels 6

1.3.1 Wave Glider . 7
1.3.2 OASIS . 9
1.3.3 Newest Platforms . 10
1.3.4 Other Systems . 12

1.4 Contributions . 14
1.5 Dissertation Organization . 14

2 System Architecture 16
2.1 Introduction . 16
2.2 Mechanical Architecture . 17

2.2.1 Self-righting . 19
2.2.2 Payload Capabilities . 20

2.3 Modular Subsystems . 20
2.3.1 The CANode Interface Board 23
2.3.2 Primary Node . 27
2.3.3 Control Sensors . 27
2.3.4 Actuators . 30
2.3.5 Miscellaneous . 33

iii

2.4 Embedded Firmware . 36
2.5 Remote interface . 38

2.5.1 Ground Control System 38
2.5.2 Radio Control Transmitter 43

2.6 Mission Capabilities . 44
2.7 Safety, Fault Tolerance, and Error Recovery 45
2.8 Conclusion . 47

3 Simulation 49
3.1 Introduction . 49
3.2 Simulation Model . 50

3.2.1 Vehicle Kinematics . 51
3.2.2 Actuator Dynamics . 55
3.2.3 Environmental Effects . 57

3.3 Software Simulation . 57
3.3.1 Replay Simulation . 59

3.4 Hardware-in-the-loop Simulation 59
3.4.1 HIL CANode . 61

3.5 Conclusion . 63

4 Control Architecture 64
4.1 Introduction . 64
4.2 Position Filtering . 65

4.2.1 Outlier removal . 65
4.2.2 Converting to local position 67
4.2.3 Position extrapolation . 73
4.2.4 GPS Offset Correction . 75

4.3 IMU filtering . 80
4.4 L2+ Control . 81

4.4.1 Introduction . 81
4.4.2 L2+ for Surface Vessels . 84
4.4.3 L2+ for Slow Surface Vessels 86
4.4.4 Parameter Tuning . 86

4.5 Conclusion . 89

5 Experimental Results 91
5.1 Introduction . 91
5.2 Waypoint Navigation . 92

5.2.1 Basic Waypoint Test . 92
5.2.2 Complex Waypoint Test 95
5.2.3 Repeatibility . 98

5.3 Scientific Deployments . 99
5.3.1 Algal Bloom . 105

iv

5.3.2 Front Detection . 110
5.4 Conclusion . 114

6 Power Analysis 116
6.1 Introduction . 116
6.2 Power Use . 117

6.2.1 Control Electronics . 117
6.2.2 Rudder . 118
6.2.3 Propeller . 119

6.3 Energy Scavenging . 120
6.4 System Endurance . 122

6.4.1 With Solar Panels . 125
6.5 Conclusion . 128

7 Conclusions & Future Work 130
7.1 Conclusions . 130
7.2 Future Work . 134

A Datalogger 138
A.1 Introduction . 138
A.2 System Architecture . 139
A.3 Functionality . 141

B Attitude 143
B.1 Introduction . 143
B.2 Euler Angles . 144
B.3 Euler Angle Conventions . 145

B.3.1 Gimbal lock . 146
B.3.2 Using Euler angles . 147

B.4 Euler angle rates . 148

C CAN bus 151
C.1 Introduction . 151
C.2 Overview . 152
C.3 Electrical Specifications . 153
C.4 Timing . 155
C.5 Data Rates . 156
C.6 Arbitration and Priority . 157
C.7 Fault Tolerance . 157

D NMEA2000 160
D.1 Introduction . 160
D.2 Overview . 161

v

D.3 Message Formats . 161
D.4 Predefined Messages . 163

E CAN Messages 165
E.1 Introduction . 165
E.2 Custom Messages . 165
E.3 Tokimec Messages . 166
E.4 ACS300 Messages . 167
E.5 NMEA2000 Messages . 167

F Bill of Materials 170

G Electronic Resources 173

Bibliography 175

vi

List of Figures

1.1 The Wave Glider SV2 architecture. From top the bottom is shown
the solar panels, internal payload and sensors, surface float, tether,
and glider propulsion. 8

1.2 The OASIS during testing on the open ocean. The mast and raised
central cabin contain the sensors and payload. 9

1.3 The Autonaut architecture. Shown is the base 3.5m version. . . . 11
1.4 The Saildrone during a test run in the San Francisco Bay. Its

trimaran hull and wing are easily visible. Solar panels and sensors
are exposed on the deck at the rear. 12

2.1 The SeaSlug driving autonomously in the Monterey Bay. External
sensors are mounted at the rear, by the base of the mast. The mast
provides visibility and a radar profile. At the front are running
lights and the telemetry antenna. 18

2.2 The mechanical layout of the SeaSlug. A) housing for primary con-
trol electronics, B) propeller & rudder actuators, C) 12V electronics
batteries, D) 24V actuator batteries & ballast, E) radar reflector &
self-righting buoyancy. 19

2.3 The CTD sensor as used for scientific survey missions. 21
2.4 Diagram of onboard electrical systems including actuators (dark

green) and sensors (light blue) along with their power source. . . . 22
2.5 Overview of the Primary CANode. 24
2.6 Overview of the Primary CANode. 28

vii

2.7 Overview of the IMU CANode. 29
2.8 The rear of the SeaSlug. The GPS200 is the white sensor on the

left, mounted to a scaffold around the emergency-stop button. . . 30
2.9 The DST800 hull speed sensor as mounted underneath the hull at

the front of the SeaSlug. The black line in front of the sensor is
the outline of the forward sensor bay. The acrylic pieces next to
it protect the sensor when loading and unloading the SeaSlug from
its trailer. 31

2.10 Overview of the Rudder CANode. 32
2.11 Overview of the Power CANode. 34
2.12 Overview of the RC CANode. 35
2.13 Code compilation and CANode programming using mixed Simulink

and C code. 37
2.14 The remote interfaces to the SeaSlug. A groundstation provides

a wireless interface, including manual control, to the vessel. A
secondary controller, completely independent of the primary con-
troller, provides an emergency backup. Lightning bolts indicate
wireless connections. 39

2.15 The Ground Control System hardware provides the remote inter-
face to the SeaSlug. 40

2.16 QGroundControl running during an autonomous test in the Santa
Cruz harbor. Shown are status variables (left), a map with the
vehicle’s current and past position and mission waypoints (center),
and onboard parameter settings (right). The current mission details
are shown at the bottom. 41

2.17 The Spektrum DX5e Radio Control transmitter used as the backup
controller. A 1-gallon resealable zipper storage bag is used to pro-
vide weatherproofing. 43

2.18 Flow of CAN actuator commands. Note that while all devices on
the bus receive every message, most are ignored. The arrows indi-
cate the broadcasting and receiving nodes. 45

viii

3.1 The bicycle model defines the vehicle’s motion around a circle of
radius R as a function of its wheelbase, L, and the rudder angle,
δr. vwx is the forward water speed of the vessel. 51

3.2 Vessel velocity through the water as a function of commanded throt-
tle percentage from experimental data. The dashed-blue line shows
real-world measurements and the solid-black line shows the map-
ping used in simulation. 53

3.3 A plot of the turning rate as a function of both rudder angle and wa-
ter velocity during harbor testing (red) against the modeled turning
rate (black line). The black line is a least-squares fit of the data
with slope 1.0005 and y-intercept -0.0079. 54

3.4 A block diagram of the rudder dynamics model. First is a discrete
time delay of 0.08s, then a slew limit is imposed of 25.78◦/s, and
finally a saturation limit keeps the rudder within the range of ±45◦ 55

3.5 A comparison of the actual rudder dynamics (black dots) to the
simulated dynamics (red line). The commanded rudder angle is
shown as the blue dashed line. 56

3.6 The three stages of the testing and development process: software
simulation, hardware-in-the-loop with the controller running on the
embedded hardware, and possibly connected to other subsystems
of the SeaSlug. 58

3.7 The system architecture during HIL simulation. Any combination
of non-essential sensor nodes can be connected during testing, such
as the rudder or propulsion subsystems. 60

3.8 The HIL high-level architecture. This node converts between CAN
and UDP interfaces with an Ethernet IC connected over SPI. . . . 62

3.9 The wire-format of the UDP packets used for communicating with
Simulink. The data field consists of smaller integers, floating-point
numbers, etc. packed in big-endian format with no padding. . . . 62

ix

4.1 The filtering process for position data. Input is directly from the
GPS with the output a position in the local coordinate frame. . . 65

4.2 The local tangent plane shown on the Earth’s surface (represented
as a sphere). On this plane, coordinates are defined in East-North-
Up (ENU) coordinates. North-East-Down (NED) is another coor-
dinate system commonly used with the LTP. Only an ENU frame
is shown here for simplicity. 68

4.3 An ellipsoid, such as that defined by the WGS84 parameters. An
ellipsoid is entirely defined by its semi-major axis a and semi-minor
axis b. 68

4.4 Reproduction of part of Figure 2 from [35]. Shows the difference
between the geoidal and ellipsoidal models of the Earth’s surface
and its actual topography. 69

4.5 Figure 16.17 reprinted from [87]. Shows the local position, denoted
dS, of the vehicle from a reference location in the local curvilinear
space. This is split into the north-component dSφ and the east-
component dSλ. 70

4.6 A plot of the calculated local position showing how velocity in-
tegration increases the temporal resolution of the received sensor
data. The black dots indicate GPS position updates and the green
segments are the extrapolated local position. 74

4.7 The GPS offset from the vehicle position shown through vehicle po-
sition and course-over-ground during a 180◦ right turn. The green
triangle indicates where the turn starts in both plots. The dashed-
blue line is the uncorrected GPS output and the solid black lines
are the corrected values. 77

4.8 A right-hand turn from a southerly trajectory to a north-west one.
The overcorrection is apparent in the segments that point into the
turning circle. 79

4.9 The chain of filtering steps for processing the gyroscope data output
by the IMU. 80

x

4.10 Position and corresponding yaw-rate plots of an autonomous run.
There is an initial right-turn at the start with a much larger 180◦

turn at the end. 81
4.11 Diagram of the L+

2 control law . 82
4.12 Reproduction of Figure 5 from [25]. Shows the restrictions on the

aim point, Pa, when the vehicle is far away from the desired path. 83
4.13 The complete controls algorithm for rudder control. Inputs are

filtered sensor data and the final output is the desired rudder angle.
Yaw rate is fed back to account for the system’s slow response time. 86

4.14 System performance when reacquiring the desired line after a 180◦

turn. Both figures start when the rudder first exits saturation. . . 88
4.15 Plot of the crosstrack error for an initial line intercept for varying

values of the intercept angle, γmax. 90

5.1 Vehicle track following a four-waypoint trapezoid. Coordinates are
in the local tangent plane. The green triangle and red square in-
dicate the start and end locations respectively. The magenta dots
indicate when the vessel switched to the next waypoint. The dashed
black line indicates the desired path. 92

5.2 Overlaid crosstrack errors for trapezoid mission path. 94
5.3 Histogram of the crosstrack error for trapezoid mission path. The

crosstrack error from before the path is initially acquired is ignored
here. 94

5.4 Vehicle track following a 4-waypoint bowtie. Coordinates are in
the local tangent plane. The green triangle and red square indicate
the start and end locations respectively. The magenta dots indicate
when the vessel switched to the next waypoint. The dashed black
line indicates the desired path. 96

5.5 Overlaid crosstrack errors for bowtie mission path. 97

xi

5.6 Histogram of the crosstrack error for bowtie mission path. The
crosstrack error from before the path is initially acquired is ignored
here. 97

5.7 The locations of the trapezoid and bowtie missions as executed off
the coast of Santa Cruz. The blue and purple traces are the first
and second trapezoid mission runs respectively. The yellow and
red traces are the first and second bowtie runs respectively. For
reference the Santa Cruz Harbor is visible in the upper-left corner.
Map data ©2015 Google, CSUMB SFML, CA OPC. 98

5.8 Overlaid crosstrack error histograms for repeated runs of the trape-
zoid and bowtie missions. The first run is shown in red and the
second is in blue. 100

5.9 Vehicle position during two separate mission runs performed on
03/27/2015 (shown in red) and on 04/03/2015 (shown in blue) . . 101

5.10 Partial reproduction of Figure 1 from [84] which shows a fine lawn-
mower sampling pattern by a manned vessel (dark grey) and a
coarse lawnmower sampling by an AUV. Triangles and boxes rep-
resent start and end locations respectively. Additional data was
recorded by moorings, shown as dark grey dots. 103

5.11 Fig.1 from [34] which shows a triangular sampling mission examin-
ing the outflow of the Elkhorn Slough into the Monterey Bay (black
transits). The red lines and black dots are sampling done by other
vehicles. 103

5.12 Satellite imagery of the areas investigated by the SeaSlug. 104
5.13 Position plot of the vessel in local coordinates. The green triangle

and red square indicate the start and end of the mission. The larger
magenta points are where the vehicle switched waypoints. 106

5.14 Crosstrack error for entirety of the Algal Bloom mission. 107
5.15 Crosstrack error for each path segment overlaid on top of each other

during the Algal Bloom mission. 107

xii

5.16 Histogram of the crosstrack error throughout the Algal Bloom mis-
sion. 108

5.17 Water depth and temperature as reported by the onboard DST800
sensor during the Algal Bloom mission. The left plot shows the
vehicle position, the upper-right plot shows water depth, and the
lower-right plot shows the water temperature. 109

5.18 Position plot of the vessel in local coordinates. The green triangle
and red square indicate the start and end of the mission. The larger
magenta points are where the vehicle switched waypoints. 111

5.19 The overall crosstrack errors for the during of Front Detection mission.112
5.20 The crosstrack errors for the Front Detection mission all overlaid

over each other for each line segment. 112
5.21 A histogram of the crosstrack errors during the Front Detection

mission. The initial line acquisition, defined as the period from
mission start until the crosstrack error is less than 2.0m, has been
ignored. 113

5.22 Water data as captured by the CTD sensor during the Front De-
tection mission. The left plot shows water temperature indicated
by color. On the right is a position plot of salinity, again indicated
by color. 114

6.1 Propeller power use as a function of water speed. 119
6.2 The original solar cell arrangement of the SeaSlug, with the vessel’s

bow on the right. The center hatch also has solar cells mounted on
it as shown in the lower-left. 121

6.3 Solar power input during the Algal Bloom launch. It was a clear
sunny day during this test. The average before the MPPT al-
gorithm reduced panel output is 11.9W. The mean for the entire
mission is 7.6W. 122

xiii

6.4 Solar power input during the Front Detection missions. It was a
cloudy day, though the sun started to peak through the clouds
about halfway through the mission. 123

6.5 Actuator battery bank endurance as a function of waterspeed. . . 124
6.6 Energy use per meter (solid blue line) and total mission distance

(dashed green line) for different water speeds. 125
6.7 Energy reserves of the SeaSlug operating at full throttle during a

simulated mission that starts at 8am where two out of every three
days have six hours of usable sunlight. Unusable sunlight hours are
indicated by the grey background. 127

6.8 Energy reserves of the SeaSlug during a simulated mission that
starts at 8am with three hours of usable sunlight every three days.
Daytime water speed is 1.6m/s and nighttime water speed is re-
duced to 1.1m/s. Unusable sunlight hours are indicated by the
grey background. 127

A.1 The datalogger hardware. The base CANode is the green circuit
board. Additional connectors and the miroSD card are on the red
shield. 139

A.2 The datalogger architecture overview. Data is received over UART
into a circular buffer that then empties onto an SD card. 140

A.3 The data packet format used for storing 512-byte data blocks in
the log files. Fields without an explicit size are 1 byte. 141

B.1 Shows the extrinsic Euler angle rotation sequence Z-X-Z. The first
rotation rotates around the reference Z-axis. The second is around
the reference X-axis. And the third is around the reference Z-axis
again. This can fully describe any orientation in 3-dimensional space.144

B.2 Shows the intrinsic Euler angle rotation sequence Z-X-Z. The first
rotation rotates around the reference Z-axis. The second is around
the rotated X1-axis. And the third around the now doubly-rotated
Z2-axis again. 145

xiv

B.3 The Tait-Bryan Z-Y-X intrinsic rotation sequence for describing at-
titude follows a similar rotation sequence to that shown in Fig. B.2.
First a yaw rotation is applied to the Z0 axis. Then a pitch rotation
is applied to the Y1 axis. And finally a roll rotation is done about
the X2 axis. “Plane.svg” by Juansempere is licensed under CC BY
3.0. 146

B.4 Body-frame coordinates . 149

C.1 The components that make up a standard CAN frame. Each field
is 1-bit unless otherwise specified. See TableC.2 for details on the
individual fields. 153

C.2 Fields in a standard data frame message. 154
C.3 The components that make up a standard CAN frame. Each field is

1-bit unless otherwise specified. Unnamed fields are reserved/unused
bits and are dominant (0). See TableC.4 for details on the individ-
ual fields. 154

C.4 Fields in in an extended data frame that are not in a standard data
frame. Note that these fields are not in order, see Fig. C.3 for their
ordering. 155

D.1 The 29-bit CAN2.0B identifier is split into 6 fields within the J1939
spec: Priority, Extended Data Page (EDP), Data Page (DP), PDU
Format (PF), PDU Specific (PS), Source Address. For the NMEA2000
standard, the EDP is always 0 and the DP is always 1. 162

D.2 How the PGN is defined for the two different types of messages in
SAE J1939. PDU1 is a message intended for a specific node. PDU2
is a general broadcast message. The PS field’s meaning depends on
the value of the PF field. When PF ≥ 240, the PS field represents
Group Extension (GE), and is included in the Parameter Group
Number. When PF < 240, the PS field contains the target address
and is not included in the Parameter Group Number. 163

xv

D.3 Data packing format for NMEA2000’s Fast Packet. All messages
use the first payload byte to store the Sequence ID (3 bits) and the
Frame Counter (5 bits). The Sequence ID is as described previously,
but is only the highest-order bits. The Frame Counter is the frame
number, starting at 0 for the first frame and incrementing by 1 for
every subsequent frame. The first message also uses a 2nd payload
byte to store the total payload size for the message, which can be
up to 255 bytes. 163

xvi

List of Tables

4.1 The parameters for the generalized Earth ellipsoid as defined by
the WGS84 standard. Only two of these parameters are necessary
for defining the WGS84 ellipsoid using Eq. 4.5, but all are shown
here for completeness. 69

5.1 Crosstrack error distributions for the four repeated runs. 99

6.1 The power use of the control electronics that run off of the 12V
battery bank. 118

6.2 Data used in Fig. 6.5 showing the actuator power use, water speed,
and endurance of the actuator battery banks across a range of throt-
tle values. 124

xvii

Abstract

Automating Oceanography: A Robotic Surface Sensor Platform Combining

Flexibility and Low-cost

by

Bryant W Mairs

This work details the design, development, and testing of the autonomous surface

vessel, the SeaSlug, including both its ground control station and simulation en-

vironments. This project differs from existing commercial and research platforms

as it has been specifically designed to: (i) provide sufficient payload capacity

and modularity for easy modification of the system’s hardware and firmware, (ii)

allow for extensive out-of-water testing within a robust simulation environment,

and (iii) operate in the open ocean for a variety of medium-duration missions.

The system is built around a central communications network using the CAN

protocol, with components operating as modular parts of well-defined subsystems.

This facilitates either the modification or addition of hardware to support a wide

variety of mission types. At 6.7m in length, sufficient payload capacity is available

for additional sensors in a large internal cabin and two external payload bays that

run vertically through the hull. An extensive simulation environment allows for

testing of all subsystems before mission deployment.

Using the L+
2 guidance algorithm adapted from unmanned aerial vehicles, the

SeaSlug is capable of following a desired trajectory to within 2.0m across a range

of weather conditions and sea states. This has supported its use for missions

that include testing solar panel integration for extended mission endurance; eval-

uating additional guidance, navigation, and control algorithms; and collecting

oceanographic data on thermal fronts using a scientific sensor adapted to the rear

payload bay.

xviii

xix

To my grandfather, George A. Mairs III, without whom I would not have had

the drive and opportunity to pursue learning as far as I have.

xx

Acknowledgments

I would first like to thank my parents, Todd and Candyce Mairs, who always

pushed me to succeed and further my education. They made sure my room was

stocked with science books even though I stayed up way too late most nights when

reading them. They continued to push me to learn and succeed and their support

was essential for making it this far.

To my advisers, Gabriel Elkaim and Renwick Curry, for their patience in

explaining both robotics and controls theory. The Autonomous Systems Lab

exists primarily because of their passion and willingness to teach.

To all of my friends and colleagues who have helped me directly or indirectly

with debugging, testing, and launching the SeaSlug (including Pavlo Manovi,

Jonathan Bruce, Jesse Harkin, Bar Smith, Max Dunne, Sharon Rabinovich, Caio

Porto, Marcello Guarro, and Max Lichtenstein). Without them the SeaSlug would

never have made it into the water, let alone be autonomous.

And to all of the people I met in Santa Cruz and at the University of California

there. Santa Cruz has been a very special place to me and I will never forget the

adventures we shared during breaks from work.

xxi

Chapter 1

Introduction

1.1 Overview

This thesis details the design of the autonomous surface vessel, the SeaSlug.

This project has its origins as the wg1 project started by Willow Garage [92]

in 2006. A hull was designed and fabricated and the necessary internal compo-

nents were integrated to provide for basic remote control and seaworthiness tests.

Further development necessitated a system redesign and it was during this stage

that the project was canceled. The system was then donated to the University

of California in a non-operational state. The system internals were removed and

replaced with components that complimented the other robotic platforms in use

by the Autonomous Systems Lab. It is the development and integration of these

electrical and software components (and testing thereof) that comprise the major-

ity of the work of this thesis. This work has been an exercise in solving systemic

issues for a large complicated robot including (but not limited to) integration,

reliability, operator interface, and simulation.

The design impetus for the SeaSlug was to reduce the cost of data collection for

oceanography. The state of the art for oceanographic data collection is currently

1

defined by manned vessels. They are capable of a wide range of missions but

their use is restricted by their high operating cost ($15k/day) and difficulty in

scheduling (experimental lead times are often on the order of several months). A

lack of access to manned vessels has become the limiting factor for oceanographers

to perform their research.

Since this project began other autonomous systems have become viable for

data collection applications and several commercial products now exist. Some

systems provide short-range support to manned missions, expanding their effective

sensor range. Other systems are capable of long solo missions, collecting data for

months or years at a time while being monitored remotely. These projects have

all been developed in response to the high cost of oceanographic data collection

and demonstrate the viability of automation in lowering the cost of scientific data

collection.

While these systems are capable of effective data collection missions, none

provide sufficient flexibility in modifying the core hardware and software of the

system. The difficulty of integrating additional components hinders research out-

side of the vehicle’s original design. In some cases it can necessitate purchasing

new hardware as the existing hardware cannot be adapted. This limits the sys-

tem’s usefulness and increases its cost of operation.

It has been an additional goal of the SeaSlug project to support general-use

research in addition to scientific data collection. The size of the system supports

the addition of significant hardware in a variety of internal and external locations.

Additionally, the internal system is split between subsystems with well-defined

interfaces. This modularity supports experimentation with alternate components

and/or the addition of new subsystems. This modularity extends to the low-level

control algorithms, which are easy to modify and test in simulation using both

2

simulation (within the Simulink software environment) and hardware-in-the-loop

(HIL) testing.

The SeaSlug has proven itself to be reliable and usable across a variety of

missions. The L+
2 guidance algorithm originally developed for UAV trajectory

following was adapted to the SeaSlug and tested in littoral waters, following a

planned trajectory to within ±2.0m. This performance was demonstrated dur-

ing scientific data collection missions that include the integration of conventional

oceanographic sensors. Additionally, an external solar panel was also integrated

and evaluated for supporting extended-duration missions.

1.2 Motivation

The top one meter of the ocean, known as the sea-surface microlayer, has been

found to contain the key drivers for a number of environmental processes. For ex-

ample, this layer carries anthropogenic pollution from rain and river runoff, which

stays at the surface due to its lower salinity [41] [94]. This pollution is thought to

contribute to harmful algal blooms (HABs), which are potentially dangerous to

both human and aquatic life [83]. This top microlayer is home to a large variety of

sunlight-dependent organisms, like algae and phytoplankton, that form the base

of the marine food chain. Many studies have shown that these organisms are

extremely sensitive to even minor changes in their environment with the health of

these populations affecting the entire marine ecosystem [19]. Furthermore the sea

surface is an active location for physical and chemical processes that affect global

climate change [57]. Ocean acidity is also an important field of study and causing

concern about the long-term stability of the marine environment [39]. The sea

surface has been found to play a large role in acidification because of its ability to

sequester vast amounts of carbon, a major output of industrialized nations [32].

3

To further their understanding of this important microlayer, oceanographers

have to date employed a variety of data collection methods. Some of these are

unmanned systems that include moored buoys, satellites, and shore-based obser-

vation platforms. Buoys are effective at continuously collecting data in a small

area. Satellites provide large-scale observations of phenomena that pass within the

sensor view of their orbit, but are not always available to survey a given area, or

at the resolution desired. Finally shore-based platforms offer the same advantages

as buoys, but are easier to maintain and can serve as test sites for new sensors

and equipment.

Even with the ubiquitous availability of these tools, only manned surface ves-

sels have the necessary range and payload flexibility required for many missions.

The larger research vessels are capable of carrying scientists, their equipment, and

supplies for missions lasting months at a time, albeit at very high cost. Manned

vessels can also extend their effective sensor range with the use of remotely op-

erated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Manned

vessels are capable of deploying and monitoring several of these vehicles simulta-

neously, compounding their benefits.

However, the use of manned vessels imposes significant scheduling and cost is-

sues. Vessels are rarely available for spontaneous deployments to study ephemeral

events like algal blooms, as even at the largest research institutes they are reserved

several months in advance. Their operating expenses can be prohibitive for all

but the best-funded research institutes. In 2013 the National Science Foundation’s

(NSF) Academic Research Fleet, comprising a total of 21 vessels, required $82M

in operation and maintenance costs [68], accounting for 12.5% of the total facilities

budget. Even the renting of a single vessel can be prohibitive. For example, the

listed rates for the rental of the smallest research vessel in the fleet of the Mon-

4

terey Bay Aquarium Research Institute (MBARI) costs upwards of $17,000USD

per day [61].

For these reasons the SeaSlug was designed as a low-cost flexible research

platform capable of short-term missions. Its design was guided by the following

requirements:

Mission agnostic

The platform must be generic and support a variety of mission types. It will

serve as a usable platform to test algorithms or hardware as well as perform

a variety of data collection missions. This implies support for a wide array

of hardware through a large payload capacity and multitude of internal and

external mounting locations.

Extensible

In support of a variety of different missions, the system must be easy to

modify. This extends beyond the mechanical and electrical systems to the

operator interface and the internal guidance algorithms. Custom compo-

nents are only to be designed and built when the necessary functionality

cannot be found in a common off-the-shelf (COTS) product. The selection

of COTS components prioritizes the use of common well-defined interfaces as

much as component performance. This simplifies integration and supports

on-the-fly replacement (thus reducing system downtime).

Low cost

As data collection costs are one of the largest consumer of funds for oceanog-

raphers, the system will target low cost operations. This is especially impor-

tant for smaller institutions, which have both smaller budgets and reduced

engineering and support staff. Additionally, these low operating costs can

5

support experiments not previously possible. In support of low operational

costs the system aims for simplicity to reduce the long-term maintenance

cost. Therefore easily-replaceable COTS parts are used where possible, as

they come with technical support and can be easily serviced or replaced. An-

other key feature of a low-cost platform is to allow for the reuse of existing

hardware.

All-day longevity

Many data collection missions are short-term, on the order of a few days.

The system must be capable of running an entire 24-hour day at a useful

speed. The system must be tuneable for greater endurance at the cost of

reduced range as the mission requires, and flexible enough to change these

parameters on-the-fly.

Robust

To be applicable to general use the system must be capable of open-ocean

deployments across a variety of water and weather conditions (from a Beau-

fort sea state of 0 to 7). This must also extend to the shallow waters of

near-shore coastal areas and inland waterways. The marine environment

is harsh on both mechanical and electrical components; the system must

be tolerant of individual failures with the ability to recover and continue

operation.

1.3 Existing Autonomous Surface Vessels

Research on autonomous surface vessels has been ongoing since the 1950s

and many distinct vehicles have been developed for data collection, defense, and

engineering experiments. For additional information a broad overview of surface

6

vessel research is provided by [16]. A history of defense applications of ASVs is

detailed by [12], while both [77] and [30] expound on the history of wind-powered

vehicles. A complete history of ASVs, while interesting, is not relevant to this

dissertation and only recent autonomous surface platforms are discussed.

At the time the SeaSlug project started in 2009, only the OASIS [44] and

the Wave Glider [89] existed as functioning autonomous surface platforms. Both

systems were being actively developed and experimented with, but neither were

capable of meeting the specifications outlined above or meet the specific integra-

tion tasks desired for this project.

1.3.1 Wave Glider

The Wave Glider SV2 [89] is a commercial product developed by Liquid

Robotics; their first open water deployment testing began in 2009. It targets

extended-duration missions that last months or years by utilizing both solar and

wave power and has successfully completed transits from San Francisco to Syd-

ney, Australia. It is propelled by a passive mechanical system that harnesses wave

power and is capable of speeds up to 1.5 m/s, with missions averaging 1.2m/s in

the open ocean. Solar panels power the onboard systems with 5W allocated to any

sensors stored in internal payload bays. Communication of status updates and

telemetry to a home base is provided by an Iridium satellite modem. This commu-

nications channel also supports a remote interface for mission retasking, making

this system highly suited to long-duration deep-ocean studying. Remote commu-

nications are centrally controlled by Liquid Robotics and they handle monitoring

and retasking as desired by the mission operators.

This system has been successfully used to study a great variety of oceano-

graphic features. The vehicle is almost silent because of its wave propulsion and

7

Figure 1.1: The Wave Glider SV2 architecture. From top the bottom is shown
the solar panels, internal payload and sensors, surface float, tether, and glider
propulsion.

has been used to track and study whales [91]. They have also analyzed the sen-

sors commonly used by marine scientists and how they can be adapted to the

WaveGlider in Table 1 in [26].

While this vehicle is incredibly effective at long-duration missions and deep-

ocean studies, it has some limitations due to its physical design. Its underwater

glider prevents it from use in harbors or shallow inland waters. It speed is also

weather dependent, though the newest SV3 model has active propulsion. While

even small waves are common on the open ocean, this propulsion is less effective

in inland waters. Studying inland waterways is further complicated by the depth

of the glider. Additionally its onboard payload capacity is limited and retrofitting

existing sensors can be both expensive and problematic. The internal systems are

tightly integrated and the feasibility of changing its internal electronics or software

components are unknown as the entire system is proprietary.

8

1.3.2 OASIS

The Ocean Atmosphere Sensor Integration System (OASIS) was created in

2005 to be low-cost, reusable, and reconfigurable; enabling ocean missions up to

several months in length [44]. The resultant vessel is 6m in length, with a cus-

tom fiberglass mono-hull containing three large internal payload bays. Scientific

sensors can be mounted internally with a sea water intake. A mast supports

additional fixed navigation sensors and communication electronics.

Figure 1.2: The OASIS during testing on the open ocean. The mast and raised
central cabin contain the sensors and payload.

Published information on the OASIS provides no specifics of the guidance,

navigation, and control systems or of a simulation environment for the OASIS.

The literature only discusses the sensor capabilities with a 6-degree-of-freedom

inertial sensor and inclinometers capable of tracking the vehicle’s attitude. Remote

communications are supported over cellular, RF, or Iridium modems.

Power is provided by six 170W solar panels backed by twelve 12-volt marine

batteries. The batteries power both the onboard electronics and the electrical

9

propulsion. [70] describes a mission where power draw exceeded power gain during

the entirety of the mission, even at peak sunlight, although no numbers were

provided.

Of the vehicles discussed here, the OASIS is most comparable to the SeaSlug.

It uses active electrical propulsion and has a similar size and hull design. Its

suitability for further experimentation was unknown as there is both little liter-

ature on the details of the system and no missions have described its guidance

and navigation software or integration capabilities. The OASIS project has been

discontinued as of 2012 due to a lack of funding.

1.3.3 Newest Platforms

Since 2009, two additional platforms were developed that target the very-long-

duration missions and compete with the Wave Glider. Both of these systems also

share the primary deficiency of the Wave Glider as well: high integration costs.

The AutoNaut [9], developed by MOST (Autonomous Vessels) Ltd., is another

wave-powered ASV. It measures 3.5m in length and is capable of sustained speeds

of 1.5m/s for months at a time. Development started in 2012 with initial testing

in 2013. They are still being tested in the open ocean around England, though

they have limited exposure in the scientific literature at this time.

The AutoNaut is a more conventional vessel than theWave Glider, consisting of

a single fiberglass hull. Wave power is provided by flexible fins mounted directly

to the hull, instead of on an attached glider. The AutoNaut is therefore more

flexible, as there is no underwater component preventing use in shallow waters.

But like the Wave Glider, its size and custom, tightly-integrated internal systems

limit experimentation.

The Saildrone [80] is a commercial product by Saildrone, Inc. that was started

10

Figure 1.3: The Autonaut architecture. Shown is the base 3.5m version.

in 2013 and targets shorter-duration missions of under a year. It is wind-powered,

with a 7.6m vertical wing enabling it to travel at up to 7.7m/s. The hull is a

narrow, trimaran hull with a 2m keel and totals 5.8m in length. 10W of power

is continuously available to the 100kg of scientific payload that can be integrated

with the system.

The vessel has been deployed on missions lasting longer than three months,

where ground speeds averaged 1.2m/s. Further scientific missions are planned

including tracking of tagged sharks and their habitats as well as monitoring the

aftermath of the 2010 Deep Water Horizon oil spill in the Gulf of Mexico.

Although these system are compelling because of endurance and mission ca-

pabilities, there are too few technical details or mission results available for an

effective evaluation.

11

Figure 1.4: The Saildrone during a test run in the San Francisco Bay. Its
trimaran hull and wing are easily visible. Solar panels and sensors are exposed on
the deck at the rear.

1.3.4 Other Systems

The above platforms are all capable of long-term data collection missions and

are the most directly comparable to the SeaSlug system described in this work.

However, several other surface vessels target specific application niches that are

worth mentioning here due to their unique features.

ASV Ltd. produces the C-Enduro [14], a 4m-long catamaran capable of long-

duration missions. The system is unique in drawing power from three separate

sources: solar panels, wind turbine, and a diesel generator. These can provide

power for data collection missions lasting up to three months. The system also

supports vertical profiling with an automated winch. Little has been published

on this vehicle, with the exception of some work on simulated collision avoidance

[81]. This system has a significant feature set and targets the same short-duration

missions as the SeaSlug, but a lack of information regarding the integration of

12

additional hardware and software prevents detailed comparisons.

The Jetyak [50] bears special mention here as it targets dangerous deployments

where the vehicle may not be recoverable. It is a modified jet-propelled ocean

kayak capable of single-day (6-8 hour) deployments. At 3.4m the system is small

enough to be shipped to remote locations in standard shipping containers. Its

estimated build cost is $15,000, making replacement of the vessel affordable in

the case that it becomes too damaged to recover during a mission. Though its

mission endurance is low, refueling is simple due to its gasoline engine. All of

these features result in a vehicle that is easy to deploy in remote locations as a

support vehicle for single-day data collection.

The largest ASV mentioned here is the SCOAP [22] that totals 11m in length.

Both its large size and catamaran hull design facilitates the use of existing sci-

entific payloads with minimal modification. At its nominal operating speed of

2.5m/s it is capable of month-long deployments because of its electric thrusters

powered by both a large onboard battery store and diesel generator. This vessel

was specifically designed for data collecting missions in shallow estuarine envi-

ronments. Initial testing in a sheltered water environment shows promise, but

additional open-ocean tests are forthcoming.

Medium-term deployments in rough weather states are supported by the Sail-

Buoy [79]. This system is a 2m-long wind-propelled vehicle suitable for data

collections of up to a year. It has been successfully tested over a 62-day mission

where it collected data on surface temperature, salinity, and oxygen concentration

[37]. Additional work discusses the performance of the system in harvesting wind

energy for forward propulsion [33]. Though this system has proven itself capable

of long ocean deployments, its size limits its payload to smaller existing hardware

sensors and makes it difficult to use as a platform for vertical profiling.

13

1.4 Contributions

Through the development of this thesis, the following contributions were made

to the state-of-the-art:

1. The design and implementation of a modular system architecture suitable for

an autonomous surface vessel that is both highly-extensible and applicable

to other robotic platforms.

2. The design, development, and validation of an open-source autonomous sur-

face vessel that is capable of both general engineering experimentation and

scientific data collection.

3. Analysis of power consumption of the subsystems of an electrically-propelled

autonomous surface vessel and its potential for solar power generation to

allow for extended duration missions.

4. The adaption and analysis of the L+
2 control algorithm to an autonomous

surface vessel.

5. The design and development of a robust simulation environment for an au-

tonomous surface vessel that is suitable for algorithm and system testing on

land.

1.5 Dissertation Organization

The following chapters detail the system architecture of the SeaSlug and the

evaluation of the complete system. These chapters aim to provide substantial

technical detail as this dissertation is meant to serve both as a discussion of the

14

details of this project and as a reference for future electric autonomous surface

platforms.

Chapter 2 describes the system architecture of the SeaSlug, including the mo-

tivation behind individual design decisions. Chapter 3 highlights the extensive

simulation environment used for testing the system, including the mathematical

models developed for it. These models are further expounded on in Chapter 4,

which describes the sensor processing and controls algorithms used by the SeaSlug.

The SeaSlug was evaluated over a period of weeks undergoing thorough testing

and mission trials, which are discussed in Chapter 5. A detailed power analysis

of the system, including experiments with solar energy scavenging, is described

in Chapter 6. Chapter 7 provides the concluding summary and details of future

work that can build on the SeaSlug platform and extend its capabilities. Addi-

tional appendices provide background on theoretical and technical aspects of this

project.

15

Chapter 2

System Architecture

2.1 Introduction

The SeaSlug was originally designed by Willow Garage and gifted to the Uni-

versity of California at Santa Cruz in 2009. Since then it has undergone consider-

able work to become an operable system as part of the Autonomous Systems Lab’s

(ASL) research effort to automatically collect high-quality data using autonomous

robotic systems. Specifically this work builds from knowledge and software com-

ponents developed as part of the SLUGS autopilot project [58], both to aide in

the development of the system and to ensure future maintainability.

The core tenants of the design of the SeaSlug are modularity and openness.

One of the biggest limitations with existing platforms is the difficulty in modifying

the system and integrating additional hardware. Those platforms are generally

tightly-coupled and have limited physical, electrical, or software capacity for new

components. It is therefore the goal of the SeaSlug to provide a system which is

both capable of modification and amenable to it. Individual components therefore

utilize open and common standards where possible. Additionally open source

components are used wherever possible so that they can be modified as needed.

16

Beyond modularity, the SeaSlug also aims to be low cost and was designed for a

low total cost of ownership. Existing systems are tightly-integrated and difficult to

maintain without extensive, and often expensive, support from the manufacturer.

Smaller research groups lack both the engineering ability to work on these tightly-

integrated systems and the funds to pay for manufacturer support. The SeaSlug’s

design has been optimized to reduce both its upfront and long-term maintenance

cost.

The resultant architecture of the SeaSlug is described in this chapter. As

there were several competing goals influencing the design, commentary has been

provided in defense of the current state and discussing possible alternative designs.

Additional factors, such as time and funding constraints, has resulted in some

components and subsystems that should be replaced or modified as budget and

time permits. This chapter therefore seeks to provide not only a formal description

of the system architecture but also a context for how the system was designed given

the various constraints.

2.2 Mechanical Architecture

The SeaSlug has a single fiberglass hull. The deck of the SeaSlug is 2.0m wide

in order to provide sufficient surface area for solar panels. It is tapered at each

end, coming to a point in the front at the hull with a broad base at the rear where

the mast is mounted. The mast serves as a mounting point for electronics while

also providing an improved radar profile by means of a large reflector, visible as

the large white cylinder in the upper-left of Fig. 2.1. With the low height of the

vessel at 1.0m in the water, a radar reflector improves the SeaSlug’s visibility for

both human pilots and radar systems.

A keel-mounted propeller provides propulsion for the vessel. It is directly

17

Figure 2.1: The SeaSlug driving autonomously in the Monterey Bay. External
sensors are mounted at the rear, by the base of the mast. The mast provides
visibility and a radar profile. At the front are running lights and the telemetry
antenna.

driven by a brushless DC (BLDC) electric motor. A custom, 0.45m-wide propeller

was designed to provide optimal torque at the nominal vessel speed of 1.6m/s.

This speed is considerably slower than most manned vessels, but is sufficient for

scientific data collection and other missions. Other ASV platforms target this

same speed range, including the Wave Glider that averages 1.2m/s and has been

very successful over a range of long-term missions. This low speed is also sufficient

due to the typically low speed of open ocean currents. Around Monterey Bay, the

test area of the SeaSlug, the surface current is usually 20cm/s or less [71].

The rudder applies the steering force at the rear of the vessel. It is driven with

a 12V stepper motor through a geared chain drive and has a range of -45◦ to 45◦.

With the rudder at the rear and the weight distribution of the vessel, the center

of rotation is towards the front of the vessel (directly above the bilge pump shown

in Fig. 2.2).

18

B

B
C

E

CD
A A

Figure 2.2: The mechanical layout of the SeaSlug. A) housing for primary
control electronics, B) propeller & rudder actuators, C) 12V electronics batteries,
D) 24V actuator batteries & ballast, E) radar reflector & self-righting buoyancy.

2.2.1 Self-righting

Though mono-hull designs are inherently stable, they can have two points of

stability: one when right-side up and one when inverted. To remove the inverted

stability point, a mast with buoyancy is mounted off the center axis of the ves-

sel. With the inverted stability point removed, the vessel should self-right when

capsized, which is a possibility in rougher sea states.

This process can be accelerated by using the 91kg of internal ballast, which can

rotate up to 90◦ in either direction around the longitudinal axis. The combination

of the internal ballast with the buoyancy of the mast should allow for rapid self-

righting maneuvers, though this functionality has been neither implemented nor

tested.

19

2.2.2 Payload Capabilities

The SeaSlug is designed to support a wide variety of scientific payloads. Ac-

cordingly, a significant amount of space has been reserved for mounting additional

scientific sensors. While it could be argued that a flat, open deck allowing arbi-

trary mounting of components would have been ideal, this space has instead been

dedicated to core guidance, navigation, and control (GNC) sensors and solar pan-

els. In addition to deck space, there is both dedicated external space for payloads

as well as substantial internal capacity.

For commonly replaced scientific sensors, two payload bays (A in Fig. 2.2) pro-

vide externally-accessible mounting locations. Each bay runs vertically through

the entirety of the hull, providing these sensors with access to both the air and the

sea surface. The payload bays are both identical, roughly a 0.3m square through

the hull, providing a total of 0.1m3 of internal space.

Each payload bay has enough space for mounting most common oceanographic

sensors with few modifications. As a demonstration of this capability, a Sea-Bird

Electronics 19plus V2 SeaCAT Profiler CTD has been modified to fit in the pay-

load bay for running scientific missions. This sensor is commonly used for logging

vertical profiles with sensors for depth, temperature, and salinity. While the depth

sensors rely on pressure, and therefore do not provide any useful information at

the surface, the salinity and temperature data collected is presented in Section 5.3.

The sensor and its mounting inside the SeaSlug is shown in Fig. 2.3.

2.3 Modular Subsystems

A fundamental aspect of the SeaSlug is its modularity. This stems from the

central communications network common to all subsystems. These subsystems

20

(a) The CTD sensor
mounted inside its safety
cage with all necessary
mounting hardware.

(b) The top-view of the
CTD sensor as installed in
the rear payload bay of
the SeaSlug.

(c) The bottom-view of
the CTD sensor as in-
stalled in the rear payload
bay of the SeaSlug.

Figure 2.3: The CTD sensor as used for scientific survey missions.

also have well-defined interfaces over the network: custom components and off-the-

shelf components alike were designed or selected to use common interfaces. This

provides flexibility in developing and changing the system as well as simplifying

maintenance since components can be easily replaced with compatible equivalents.

In order to maximize the modularity of the design, two different power rails

were implemented: a 24V and a 12V rail. The 24V battery bank powers the

rudder and propeller motors and is powered by four 220Ah 6V sealed lead-acid

batteries. The 12V power rail services the remainder of the onboard electronics

including the sensors, control electronics, communications, and bilge pump with

21

power provided by a single 98Ah marine gel battery. Additionally both the 12V

and 24V voltages are typical of marine electronics, simplifying integration of off-

the-shelf components.

Though lead-acid batteries are low cost, they have a relatively low power-to-

weight ratio. An explicit goal when designing the SeaSlug was to minimize cost

and be easy to maintain. Using common lead-acid batteries facilitates both of

those goals. Additionally the weight of the 24V rail’s batteries is used as ballast

for self-righting maneuvers.

12V Rail

Primary
CANode

24V Rail

ACS300

Power
Sensor

IMU

Rudder
Motor

Propeller
Motor

Power
CANode

IMU
CANode

Wind/Air
Sensor

Power
Sensor

GPS 2035
Speed/

Temp/Depth
Rudder
CANode

RC
CANode

CAN bus

Figure 2.4: Diagram of onboard electrical systems including actuators (dark
green) and sensors (light blue) along with their power source.

The central communications network is a Controller Area Network (CAN) bus.

This bus provides a robust and high-bandwidth communications layer over a two-

wire interface. Additionally it supports any node on the bus serving as the master

(transmitting) or slave (receiving) role. This supports a distributed computation

network where nodes can perform sensor input, processing, and coordination with

other nodes without changing the network architecture.

The utility of the CAN bus has been proven by its widespread use in a multi-

22

tude of common vehicle protocols, including the marine-vessel-oriented NMEA2000

[59]. The NMEA2000 network specifies a number of requirements beyond the base

CAN specification including a 250kbit baud rate, unregulated 12V power supply,

and a standard set of messages. A more thorough discussion of the CAN and

NMEA2000 standards can be found in Appendices C and D, respectively.

The CAN bus on the SeaSlug is compatible with the NMEA2000 protocol

and uses the physical connectors and cabling required by the specification. As

the NMEA2000 protocol is a superset of the CAN bus, this allows both standard

CAN and NMEA2000 devices to be easily integrated into the system. Support for

the NMEA2000 specification is highly desirable as supporting devices are rated

for harsh marine environments. The internal network cabling includes power to

all nodes such that hardware integration of new NMEA2000 subsystems with the

SeaSlug is simple, requiring only the standard NMEA2000 connector.

Unfortunately, the NMEA2000 protocol is closed, which requires reverse-engineering

for integration of these systems. This is not a significant barrier as the protocol has

been sufficiently reverse-engineered, and is merely an inconvenience. The canboat

project [18] has developed a partial listing of the details of the entire messageset

of the NMEA2000 standard.

2.3.1 The CANode Interface Board

While the onboard CAN bus provides the aforementioned benefits, this in-

terface is not available on all electronics. Some sensors come provided with a

bare-CAN or NMEA2000 interface, however many use incompatible interfaces

that require translation. Development of a small, single-board computer with the

following properties was required: powered from either the 12V or 24V power

rail; had sufficient computational capability to run sophisticated control algo-

23

rithms; and was power efficient so that a large number could be used in the vessel.

Additionally, it required native CAN support, and a way to inexpensively extend

its capabilities with additional circuitry or connectors.

dsPIC33E/F

5V
Switcher

3.3V
LDO

12-24V

ADC

SPI DIO

I2C UART

CAN

Temp
Sensor

Voltage
Sensor

Header1
(14 pin)

Header2
(14 pin)

Shield

LED1

Header

LED2

Header

(a) Block diagram of the architecture
of the CANode.

(b) Photo of the topside of Version 3.0
of the CANode.

Figure 2.5: Overview of the Primary CANode.

The CANode was created to address this need, shown in Fig. 2.5. Its physical

size is small, measuring only 50mm a side, allowing it to be mounted in a variety of

locations. Additionally onboard power circuitry supports both the 12V and 24V

voltages used on the SeaSlug. The board supports a variety of 28-pin dsPIC33-

family processors that are produced by Microchip. They are low-cost and provide

up to 70MIPS of processing power, sufficient for running any necessary translation

or control algorithms. Additionally they provide a large number of hardware

peripherals that provide important interfaces to external electronics. The interface

peripherals used onboard the SeaSlug include:

Serial Peripheral Interface (SPI)

SPI is a high-bandwidth serial interface for short-range communication be-

24

tween integrated circuits, usually on the same board. It is also one of the

standards for interfacing with SD cards.

Input Capture (IC)

IC supports decoding input signals where the uptime, downtime, or periodic-

ity of the signal encodes the data. This is common with hobbyist electronics

that use pulse-width modulation (PWM), such as incoming signals from an

RC receiver.

Output Compare (OC)

The complement to Input Capture, and supports the output of many differ-

ent types of uptime- and downtime-based signals, such as PWM or pulse-

trains. For example, this is used to drive RC servos.

Analog-Digital Converter (ADC)

Interfacing with analog sensors uses the ADC, which decodes the analog

signal into a 12-bit number representing a percentage of the possible range

of that analog value.

Universal Asynchronous Receiver/Transmitter (UART)

A 2-wire serial interface equivalent to RS232, though at TTL-logic levels

(0-3.3V). It can communicate with either UART or RS232/RS485 devices,

though the latter require an additional voltage-conversion circuit. Com-

monly used for high-bandwidth datastreams between separate components

over larger distances than SPI can support.

Enhanced Controller Area Network (ECAN)

This peripheral implements all Controller-Area Network (CAN) functional-

ity in hardware, including message filtering and the low-level protocol. The

output voltages from this peripheral are not compatible with the CAN bus

25

and additional voltage-conversion circuitry is required. This is commonly

done with an integrated CAN transceiver IC (such as Texas Instrument’s

SN65HVD233).

Digital Input/Output (DIO)

General-purpose digital input or output pins, capable of outputting or read-

ing of either a digital-high (> 2.8V) or digital-low (< 0.8V) signal, useful

for transmitting simple true/false values or interfacing with LEDs. All pins

in the dsPIC33 family are capable of this.

These peripherals are exposed through two female headers on the board that

support daughterboards containing additional circuitry or physical connectors.

This follows from the “shield” expansion board pattern popularized by the Ar-

duino platform [6]; the headers expose the processor pins (which support a variety

of the above peripherals) and also the 3.3V and 5V regulated power rails generated

by the onboard power circuitry. These provide up to 1.0A and 1.5A respectively,

which has been more than adequate for all uses aboard the SeaSlug. This generic

daughterboard architecture simplifies integration with additional hardware, be it

additional circuitry or physical connectors, and has allowed the CANode to be

used in most subsystems.

The current version of the CANode is Version 3.0, though Version 2.0 is still

used onboard the SeaSlug. They are electrically-equivalent, enabling code sharing

between the two versions, but their mechanical layout and support for shields

differ. Some nodes use the newer dsPIC33E processors while others are required

to use the older dsPIC33Fs. This difference is further explained in Section 2.4.

Due to time and funding constraints, some systems aboard the SeaSlug, such

as the Primary Node and the Rudder Node, were never updated to the newest

version.

26

2.3.2 Primary Node

The Primary Node runs the main control algorithm and is the central control

computer on the vessel. It receives sensor data over the central CAN bus, pro-

cesses them in the main autonomous control algorithm, and outputs the resultant

actuator commands back onto the bus. Communication with the ground control

system (GCS) is also handled by this node over a bidirectional UART communica-

tions channel. The Primary Node receives operator commands from and outputs

basic telemetry to the PC-based ground control station over this radio link. A sep-

arate UART channel outputs a more detailed telemetry datastream that is stored

by a datalogger (see Appendix A). This interface is much faster and more reliable

than the wireless connection to the GCS. A simple daughterboard is used that

provides two additional status LEDs for debugging and additional connectors.

Additionally the Primary Node monitors the power use of the 12V battery

banks. The Attopilot Voltage and Current sensor provides TTL-level analog out-

puts indicating the voltage level (from 0 to 51.8V) and current draw (from 0 to

90A) of the batteries. These analog outputs are directly measured by the Primary

Node at 100Hz.

2.3.3 Control Sensors

The most important sensors on the SeaSlug are those providing direct input to

the autonomous control algorithm. While some of these sensors are designed for

marine use and provide a native NMEA2000 interface, others do not communicate

over CAN directly and require a CANode to interface with the bus.

27

Primary
CANode

UART UART
A

D
C

C
A

N
Power
Sensor

RadioDatalogger

CAN Bus

(a) The Primary CANode interfaces
with both the telemetry radio and the
datalogger over separate UART inter-
faces. It also reads the power con-
sumption data for the control electron-
ics battery over ADC.

(b) The Primary CANode uses a cus-
tom shield so that the external connec-
tions can be clearly labeled.

Figure 2.6: Overview of the Primary CANode.

Attitude

The SeaSlug uses the Tokimec VSAS-2GM as its inertial measurement unit

(IMU). The Tokimec IMU outputs the vehicles position as 3-2-1 Euler angles in

radians and rotation rates as rad/s in the conventional p,q,r body frame coordi-

nates. These representations are further explained in Appendix B. The IMU also

provides a bearing to true north, providing an absolute reference for the orien-

tation. The sensor data provided is output in a variety of different coordinate

frames, requiring additional processing that is detailed in Section 4.3.

This sensor sits at the very front of the vessel, mounted inside the vessel on

the front side of the forward payload bay. This was done to reduce the impact of

magnetic noise on its internal magnetometers. It has an RS232 interface, requir-

28

IMU
CANode

UART
C

A
N

IMU

CAN Bus

RS232
RS232

IC

(a) The IMU CANode converts the
RS232 output of the IMU to equiva-
lent CAN messages.

(b) The IMU CANode uses a generic
RS232 adapter shield for communica-
tion with the Tokimec VSAS-12GM
IMU.

Figure 2.7: Overview of the IMU CANode.

ing the use of a CANode for converting its data packets to CAN messages and

outputting status notifications.

Global positioning

The position and velocity of the vessel are provided by a global positioning

system (GPS) sensor. GPS sensors provide measurements relative to the fixed

reference frame of the Earth’s surface. The GPS sensor output requires additional

processing to detect anomalous data and correct for the sensor offset from the

vehicle center, which is described in Section 4.2.

The Maretron GPS200 was used for the SeaSlug’s GPS sensor. It is rugged

and suitable for a marine environment, which is important since a GPS requires an

antenna mounted outside of the vehicle. The GPS200 is a complete unit with an

29

integrated antenna, simplifying installation. It also has an NMEA2000 connection,

allowing for easy integration into the system with a single cable.

Figure 2.8: The rear of the SeaSlug. The GPS200 is the white sensor on the
left, mounted to a scaffold around the emergency-stop button.

Hull speed

The GPS provides vehicle velocity relative to the ground. To determine the

speed of the current, it is necessary to determine the actual speed of the vessel

through the water. The current is then the difference between this water velocity

and the ground velocity. The Airmar DST800 provides the forward hull speed of

the vessel, along with some additional data. This sensor is again marine-rated

and communicates directly over NMEA2000, simplifying integration.

2.3.4 Actuators

The SeaSlug relies on two actuators for control and movement: a rudder pro-

vides steering and a propeller provides propulsion. These subsystems are inte-

grated with the CAN bus over which they receive commands and output their

status. Each actuator also has their own interface electronics that maintain the

30

last received command.

Figure 2.9: The DST800 hull speed sensor as mounted underneath the hull at
the front of the SeaSlug. The black line in front of the sensor is the outline of the
forward sensor bay. The acrylic pieces next to it protect the sensor when loading
and unloading the SeaSlug from its trailer.

Rudder

The rudder controls the vessel’s rotation, or yaw rate. It is driven indirectly

by a stepper motor through a gear-and-chain system and can command a range

of ±45◦. A stepper motor is used because it can electronically hold its position

and is also easy to drive use standard off-the-shelf driver boards. A servo motor

provides similar benefits, but with the stepper motor it is easier control the exact

rudder angle as it corresponds to an exact number of steps. By using a motor to

hold the rudder position, the system has some compliance, yielding if it receives

a significant impact. This prevents damage to the rudder and the hull in the case

of a collision, although it comes at the cost of increased power usage to hold the

rudder in position.

The rudder is driven at 24V by an optically-isolated motor driver board. This

board is set to drive the motor at 2A while dropping down to a holding-current

of 1A after 1.0s without any new control inputs. This current is sufficient to hold

the rudder in place while also halving power use.

31

Rudder
CANode

DIO
A

D
C

C
A

N
Position

Potentiometer

Limit
Switches

CAN Bus

DIO

2035

OC

(a) The Rudder CANode reads the
rudder’s limit switches read as digital
inputs with the position potentiometer
read by the ADC peripheral. Motor
commands are output with both gen-
eral digital output pins and the Out-
put Compare (OC) peripheral.

(b) The Rudder CANode uses a cus-
tom shield so that the external connec-
tions can be clearly labeled.

Figure 2.10: Overview of the Rudder CANode.

A CANode, powered by the 12V electronics power rail, connects to this mo-

tor driver board through opto-isolated inputs. It provides the CAN interface to

this motor driver board such that the desired rudder angle can be commanded.

It translates from the received command into the necessary driver board inputs,

controlling the rudder to maintain the commanded angle. The node updates at

100Hz, with the rudder position detected by an analog potentiometer and two

Hall-effect limit switches at each end of its range. While using an analog poten-

tiometer is noisy and requires calibration, it is simple and low-cost. Calibration is

done by sweeping between the two limit switches, recording the range of the po-

tentiometer values. Over this range, the results are reasonably linear and provide

an accurate reading of the rudder deflection angle to ±0.09◦.

32

The CANode drives the rudder at 333Hz, at the high end of the possible range

for both the motor and the driver board. With the rudder control loop update

rate of 100Hz and the motor half-step angle of 0.0602◦, this results in an actual

controllable rudder angle resolution of 0.2◦. A small deadband of ±1.72◦ was

found to prevent oscillations around the desired angle, although it further limits

the rudder’s effective resolution. This loss of resolution can result in a constant

offset in the rudder angle which must be handled by the autonomous controller.

A properly-tuned control algorithm is robust to bias offsets, however, and small

angles are handled with minimal error.

Propeller

Propulsion is provided by the propeller, which is directly driven by a brushless

permanent-magnet synchronous motor (PMSM). The ACS300 motor driver board

is connected to the 24V actuator power rail, and can push 15A to drive the motor

in either direction. It has a native CAN interface for receiving commands and

transmitting both status and motor speed.

The propeller is commanded by setting the maximum current that the ACS300

should supply to the motor. At maximum throttle, the motor rotates at about

200rpm, which matches the designed optimal speed for the propeller.

2.3.5 Miscellaneous

There are additional onboard subsystems that publish data to the CAN bus,

but are not essential for autonomous control of the vessel. Their details are

described below.

33

Power

As for the 12V battery bank, the power draw from the 24V battery bank is

also monitored. This relies on a dedicated CANode that reads the output of an

additional Attopilot Voltage and Current sensor at 100Hz and then outputs these

values onto the CAN bus at 10Hz. The product of these two values provides an

estimate of the total power use of the rudder and propeller motor.

Power
CANode

A
D

C
C

A
N

Power
Sensor

CAN Bus

(a) The Power CANode interfaces
with the power sensor using the
analog-to-digital conversion periph-
eral.

(b) The Power CANode only uses digi-
tal input pins, but uses a custom shield
so that the connection can be clearly
labeled.

Figure 2.11: Overview of the Power CANode.

Backup Control

The RC Node is capable of controlling the SeaSlug’s actuators directly, similar

to the Primary Node. It provides a backup control interface for the human oper-

ator in case of a hardware or software failure in the system. The operator uses a

dedicated hardware radio transmitter to communicate with the RC Node through

a radio receiver. The receiver outputs PWM signals corresponding to the con-

34

troller inputs. These signals are then interpreted by the CANode and converted

to the appropriate rudder and throttle commands. This is further described in

Section 2.5.2.

RC
CANode

IC
C

A
N

RC
ReceiverPWM

CAN Bus

(a) The RC node uses the Input Cap-
ture peripheral to decode the pulse-
width-modulated signals received from
the RC receiver.

(b) The RC node uses a custom shield
that provides a female interface for
connecting the RC receiver directly.

Figure 2.12: Overview of the RC CANode.

Wind & Air

A Maretron WSO100 sensor provides wind and air readings. This is not a cal-

ibrated scientific sensor, and while not directly used by the onboard controller, it

is valuable for analyzing the weather during a mission. This sensor uses ultrasonic

sound waves to detect wind motion and has no moving parts thus requiring less

maintenance than mechanical anemometers. This sensor is temporary mounted

at the rear of the boat to the right of the GPS unit, as shown in Fig. 2.8. The

permanent mounting location will be the top of the mast, above the radar reflector.

35

2.4 Embedded Firmware

All software for the SeaSlug has been optimized for ease-of-use and modularity.

This required a priority on using open-source software and open standards where

possible in additional to a development environment that would allow for rapid

experimentation. Most of the onboard software is written in C. Some additional

code is written in Simulink, which then generates C code for the final compila-

tion and programming step. The development process changes slightly depending

on whether the core firmware is written in C or Simulink with the differences

highlighted in Fig. 2.13.

While C provides the lowest-level access to the hardware functionality of the

dsPIC33 microcontroller, Simulink was used to speed up development of complex

algorithms. Simulink was designed to simplify development, simulation & testing,

and deployment of data flow algorithms, such as the control algorithms. Addi-

tionally its large standard library includes high-level time- and frequency-domain

tools. The advantages of this development toolchain has been noted previously in

[56], [66], and [58].

Two separate compilation toolchains are used for developing the firmware for

the different CANodes on the SeaSlug. The primary toolchain uses custom C

code for everything but the control algorithms. Those algorithms are written in

Simulink and then transpiled automatically to C with the Simulink Coder tool.

The generated C code is then called from a handwritten framework that includes

the processor initialization code and main event loop.

The other toolchain relies on a Simulink library, the dsPIC Blockset by Lubin

Kerhuel [49], to generate the processor initialization code and the main event loop

as well as all control algorithms and peripheral driver code. This can be augmented

with custom C code for additional functionality. The blockset was originally used

36

Generated
C

CANode
(dsPIC33F)

C Libraries

MPLAB X

PICkit3

Simulink

(a) Using the dsPIC Blockset for the CANode
programming procedure. The blockset handles
CANode initialization and core program func-
tionality and can call into external C libraries.

Generated
C

C Libraries

Simulink

C Framework

CANode
(dsPIC33E/F)

MPLAB X

PICkit3

(b) Programming procedure for using Simulink’s
code generation tool. CANode initialization and
core program functionality such as the main event
loop is handwritten in the C Framework.

Figure 2.13: Code compilation and CANode programming using mixed Simulink
and C code.

for rapid prototyping as it possessed a useful feature in its ability to target a

variety of processors. This was a compelling property prior to the development

of the CANode. Unfortunately, limitations in the hardware peripheral drivers

provided by the blockset resulted in more development moving to custom C code.

While these drivers were good for prototyping or debugging purposes, they lacked

adequate features or acceptable performance for a near-production system.

Over the course of this project several drivers were rewritten in C. In the end,

37

the functionality provided by the blockset was reduced to the processor initializa-

tion code and the main event loop. This was not of sufficient benefit to warrant

the extra complexity of the blockset and some nodes were converted to using cus-

tom C code for their initialization and the main event loop. This conversion was

done for all nodes with the exception of the Rudder and RC Nodes, which are still

reliant on the blockset for some of their peripheral drivers. This is an eventual

goal for these subsystems, but was not completed due to time constraints.

2.5 Remote interface

There are two independent remote interfaces for the SeaSlug, as shown in

Fig. 2.14. The main control interface is the ground control system (GCS), a

tablet computer running the QGroundControl software [95]. A wireless radio link

connects it to the Primary Node on the SeaSlug.

The second interface provides only manual control using a Remote Control

(RC) transmitter. This interfaces with the SeaSlug through a separate wireless

radio connection with the RC Node. The RC controller provides redundancy in

case the primary fails. The details of this redundancy are further explained in

Section 2.7.

2.5.1 Ground Control System

The GCS is comprised of both a hardware system and the control software

running on it. The computer hardware is a Microsoft Surface Pro 2 tablet PC

running Windows 8.1. Its low power use enables it to be used for several hours

of sustained operation. Additionally, it generates little heat and can therefore be

safely sealed in a waterproof enclosure.

38

SeaSlug

Primary
CANode

RC
CANode

3DR
Radio

RC
Receiver

GCS

3DR
Radio

CAN bus

...

Figure 2.14: The remote interfaces to the SeaSlug. A groundstation provides a
wireless interface, including manual control, to the vessel. A secondary controller,
completely independent of the primary controller, provides an emergency backup.
Lightning bolts indicate wireless connections.

User input occurs through a pen interface, allowing for continued use of the

device even when its enclosure is wet, assuming that the touchscreen has been

disabled. The 27.5cm screen is both high-resolution and bright enough (400nits)

to be usable in direct sunlight.

A wireless connection to the SeaSlug uses the 915MHz 3DR Radio Set. This

long-range radio can provide up to a 1.6km range if line-of-sight is maintained.

Its low price and open-source firmware make it both easy to replace and modify

as necessary. Interfacing with the radio is either through a USB serial port or

39

over UART directly, making integration with both ground control software and

embedded microcontrollers simple.

A Logitech F710 wireless gamepad, which has its own radio connection to the

tablet through a proprietary radio receiver, provides a manual control interface

to the human operator. The decision to use a wireless controller based on the

observation that it can be easily weatherproofed, as shown in Fig. 2.15b.

(a) The water-proofed GCS hard-
ware. The tablet is enclosed in a
thick zipper-locked plastic bag and
protected by a custom foam enclosure
that also provides buoyancy. The pen
allows for user input and is secured to
the tablet.

(b) The Logitech F710 gamepad used
as the primary controller. A 1-quart
resealable zipper storage bag is used
to provide weatherproofing.

Figure 2.15: The Ground Control System hardware provides the remote interface
to the SeaSlug.

The software interface to the SeaSlug uses the QGroundControl (QGC) ground

station software [95]. QGC is open-source, cross-platform, and supports many dif-

ferent types of autonomous systems simultaneously. It has been implemented in

C++ and is reliant on the Qt library, facilitating custom development. It is sup-

ported by its own development community, however, which continually develops

new features, fixes bugs, and provides suppport.

40

Figure 2.16: QGroundControl running during an autonomous test in the Santa
Cruz harbor. Shown are status variables (left), a map with the vehicle’s current
and past position and mission waypoints (center), and onboard parameter settings
(right). The current mission details are shown at the bottom.

QGroundControl’s feature list is extensive including the following:

• Crash-tolerant data logging

• Common avionics-based visualization aids

• Audio output of notable events and status changes

• Parameter editing

• Multi-vehicle control

• Offline map interface with mission planning

• Direct manual control through attached controllers

Of this list, the text-to-speech interface bears special mention. Using this

interface QGC can rely information to the operator over audio. It has built-in

41

support for several audio cues, such as when a waypoint has been reached and

when the system state changes. Additional audio cues can be triggered by the

unmanned system and read aloud as well. The SeaSlug uses this capability to

alert the operator of its distance to the next waypoint and crosstrack error every

30s.

When monitoring the vessel during autonomous missions, the audio interface

is sufficient for the operator to rely on it exclusively. This significantly reduces

the ground station’s power consumption and heat generation, both of which can

limit mission duration. It also allows the operator to maintain visual observation

of the vehicle at all times.

QGroundControl uses the MAVLink [62] library for its communication proto-

col. MAVLink is a general-purpose, message-based protocol, but specifically tar-

gets communications with unmanned systems. In addition to defining a general

encoder and decoder as a core library, MAVLink also defines a common message

set for remote vehicle communication. This common message set is used by QGC,

making it operable with any vehicle that implements the same message set.

MAVLink defines this common message set with a standard XML syntax and

is easily extended with custom messages creating separate dialects. A SeaSlug

dialect is used that adds extra debugging and sensor data messages. This dialect

supports the common message set and remains compatible with QGC. These

message sets are automatically translated into a header-only C library that is used

by both QGC and the autopilot itself. All messages can be both transmitted and

received as long as QGC and the autopilot are compiled with the same MAVLink

dialect.

42

2.5.2 Radio Control Transmitter

An additional interface has been implemented as a backup to the SeaSlug’s

primary GCS interface. The backup interface is minimal, supporting only rudder

calibration, rudder control, and propulsion control. This is substantially more

limited than the GCS interface, but in an emergency it is all that is required to

safely operate the SeaSlug. The transmitter, an off-the-shelf Spektrum Dx5e that

is commonly used by hobbyist RC airplane pilots, is paired with a Spektrum 6100e

receiver. They have a range of about 200m and consume very little power. The

hobbyist RC transmitter and receiver market is somewhat standardized and these

components can be easily swapped with equivalent components from a variety of

manufacturers without necessitating any changes to the RC Node.

Figure 2.17: The Spektrum DX5e Radio Control transmitter used as the backup
controller. A 1-gallon resealable zipper storage bag is used to provide weather-
proofing.

43

The electrical diagram in Fig. 2.4 shows the RC Node that translates from the

PWM input of the RC receiver into the CAN messages that control the propeller

and rudder. This method bypasses the primary controller entirely so that it relies

on the minimum amount of hardware and software, thereby reducing the chance of

failure. This backup interface has proven reliable (and necessary) over the course

of both testing and live missions. Many of these situations arose through operator

error, such as the GCS running out of power or being accidentally disabled.

Under normal operation, the vehicle is guided by the primary controller, using

either its own internally-generated actuator commands in autonomous mode or

by forwarding the manual commands received from QGC. During manual over-

ride, when the transmitter is on and enabled, the RC Node broadcasts actuator

commands directly. When the Primary Node detects these messages on the CAN

bus, it enters a reset state and no longer transmits commands. In this way, the

manual override is able to take control in all situations independent of actuator

or bus failures. Fig. 2.18 shows the data flow in both the normal and manual

override situations.

2.6 Mission Capabilities

Configuring missions for the autonomous controller is through the waypoint

mission element. It dictates both a coordinate frame and three position coordi-

nates in that frame: X, Y, and Z. In the global coordinate frame, waypoints are

defined by latitude, longitude, and altitude above mean sea level (MSL). In the lo-

cal frame, which is fixed relative to a position on the Earth’s surface, the position

coordinates are instead north, east, and down (relative to MSL). An additional

local frame supports specifying position coordinates relative to the current vehicle

position, though they are in the same local frame as above. This relative waypoint

44

CAN bus

ACS300

Rudder
Motor

Propeller
Motor

2035
Rudder
CANode

RC
Transceiver

RC
CANode

Power
Sensor

Primary
CANode

(a) During normal autonomous or
manual control modes the Primary
Node commands the rudder and pro-
peller.

CAN bus

ACS300

Rudder
Motor

Propeller
Motor

2035
Rudder
CANode

RC
Transceiver

RC
CANode

Power
Sensor

Primary
CANode

(b) Under emergency manual control,
the RC Node commands the rudder
and propeller. The Primary Node de-
tects this automatically and disables
itself.

Figure 2.18: Flow of CAN actuator commands. Note that while all devices
on the bus receive every message, most are ignored. The arrows indicate the
broadcasting and receiving nodes.

mission type has proven useful in specifying a fixed waypoint pattern that can be

run anywhere, as done for several of the missions run by the SeaSlug.

2.7 Safety, Fault Tolerance, and Error Recovery

Since the SeaSlug is comprised of a myriad of different systems, there is al-

ways the possibility of any one system experiencing some type of failure. The

probability of this happening is increased by the harsh environment the SeaSlug

experiences, which includes large temperature changes, high humidity, and salt

water. While the backup controller has already been described, additional fea-

tures were implemented to facilitate detecting and recovering from system errors.

Each CANode on the system has a unique identifier and transmits a Node

Status message (Appendix E). These provide basic error and status reporting to

45

both the RC and Primary Nodes. This information is supplemented by each

controller keeping track of the last messages received from each node in order

to determine if that node is enabled or active. Enabled nodes are powered and

broadcasting CAN messages and active nodes are in a normal operating state

(no errors/faults). This information is relayed to the operator through QGC to

facilitate debugging. Additionally, several nodes use both the amber and red

LEDs of the CANode to indicate their status and error states as well (though this

is really only useful when testing the system in simulation as they are not visible

during live deployments).

While many subsystems exist on the CAN bus, a core set is required for au-

tonomous control and the loss of any of these is fatal for the autonomous con-

troller. When an error occurs in one of these systems during autonomous control,

the system enters a Fault mode, which means that the rudder is centered and

then disabled and the propelled is immediately disabled, therefore drawing no

power and asserting no force. Though the rudder centering after a fault could

be problematic in certain scenarios, this behavior is highly desirable as it makes

the motion of the now-adrift vessel much more predictable, which simplifies any

necessary recovery operations. Recovery from this mode can only be accomplished

by the operator switching to manual mode and then back to autonomous mode.

A safeguard prevents enabling the autonomous mode if any core subsystems are

not enabled and active. This prevents the system from ever being in an un-

controllable state, further reducing the chance of operator error. The GCS also

announces when the Fault mode has been triggered and cleared.

This Fault mode can also be manually triggered by pressing the emergency-

stop button located at the rear of the vessel. Its location near the mast (visible in

Fig. 2.8) makes it easy to trigger with a boat hook or by driving alongside with

46

the chase boat and pressing it directly.

The aforementioned Fault mode also triggers if the vessel is disconnected from

the GCS for more than thirty seconds. This prevents the vehicle from operating

in an unknown mode, as the operator would be blind to its internal state without

the GCS. Thirty seconds was determined to be a long enough time that this

functionality does not accidentally trigger during a normal operations, but is also

short enough that the system can not go very far without direct supervision.

During development, some missions experienced actuator failure that was not

handled appropriately by the system. The system could not recognize that the

actuators were stalled and manual intervention was required to disable the system.

To address this issue the propeller and rudder are now constantly monitored for

appropriate behavior during system operation. The ACS300 motor driver board

faults if the propeller stops rotating unexpectedly or other electrical faults are de-

tected in the motor. The Rudder Node continually evaluates the rudder position,

faulting if the rudder is not moving in the expected direction at at least half of

the expected speed (this accounts for possible missed steps due to heavy wave

action). In both of these situations the actuators are disabled and the Fault mode

is triggered, warning the operator.

In order to prevent errors while under autonomous control, certain operator

commands are disabled when in this mode. This includes initiating calibration

procedures, altering of mission waypoints, and changing certain system parame-

ters. In manual mode all system capabilities remain available to the operator.

2.8 Conclusion

The architecture of the SeaSlug is unique compared to other electric ASV

projects. Its keeled fiberglass monohull with large deck space requires little power

47

for propulsion while still providing ample room for solar panels. Additionally,

the hull design provides for a large payload capacity to support a multitude of

different scientific sensors for data collection missions.

The use of a central CAN bus for all onboard communications forced a clear

segregation of the many onboard components into well-defined modules. The

development of the CANode supported these subsystems as self-contained black-

boxes that only exist as a small interface to the rest of the system. While the

detailed architecture of the SeaSlug is complicated in detail, reasoning about in-

dividual subsystems or the interaction between subsystems becomes simple. It is

this system-wide modularity that has allowed this complex system to be easily

extensible, maintainable, and reliable during operations.

48

Chapter 3

Simulation

3.1 Introduction

The development of the SeaSlug relied extensively on both manual and auto-

mated testing to speed development. This was partially to solve logistical issues,

as even a short boat launch involved several people and took several hours. Testing

also serves to reduce developer error and to provide system verification and valida-

tion at every level of the system. The testing process involved first the individual

algorithms, then individual subsystems, and finally the system as a whole. This

form of test-driven development is necessary for any large and complex system as

there are a myriad of potential points of failure.

A common problem with many existing autopilots is their simulation environ-

ment. They can be difficult to set up initially, unreliable during simulation, and

problematic when extending the simulation to other aspects of the system. For

unreliable simulators, a failure necessitates the conservative action of grounding

the vehicle for safety even though it might be the simulator itself at fault and

not the vehicle. Therefore simulator reliability can have a large impact on system

uptime.

49

The SeaSlug simulation environment is designed to be both robust and easy to

use such that simulation failures most often correspond directly to actual system

failures. This allows the developer to spend their time correcting system problems

and not debugging the simulation environment itself. To facilitate test-driven

development, the developer must want to run tests; the easiest way to instill this

desire is to make the simulator both reliable and effective.

Realistic mathematical models of the environment and vessel behavior in that

environment were developed in support of an effective simulation environment.

These models are neither novel nor controversial, but reproduce the real-world

system’s response in sufficient detail to enable testing and debugging of the sys-

tem’s control algorithms.

The mathematical models supporting software simulation and the overall sim-

ulation architecture are described in this chapter. Design decisions were made to

make simulation testing easy and effective, and these are discussed and justified

where appropriate.

3.2 Simulation Model

The simulation model incorporates three major systems: the vessel’s kinemat-

ics, the actuators’ dynamics, and the external environment. This section describes

their derivation and implementation in the simulator. The goal of the simulator is

to replicate the environment and the vehicle’s response in enough detail for test-

ing control algorithms. The mathematical models that underlie the simulator are

therefore the simplest models that can still provide a reasonable approximation

of reality, and are both robust and effective in testing.

50

3.2.1 Vehicle Kinematics

The kinematics of a vehicle describe its motion given its current state. This

explicitly excludes any forces and moments acting on the vessel. The kinematics

of the SeaSlug are known as the bicycle model. This simple model is derived from

the geometry of circular motion, as shown in Fig. 3.1.

δ

r

δr

L

Rvw x

Figure 3.1: The bicycle model defines the vehicle’s motion around a circle of
radius R as a function of its wheelbase, L, and the rudder angle, δr. vwx is the
forward water speed of the vessel.

The bicycle model describes a vehicle that can control its forward speed with

steering capabilities at one end, as described in [4]. The distance from the steering

actuator to the center of rotation of the vehicle is the governing parameter for

this model, referred to as the wheelbase, L. From the geometry, the relationship

between the rudder angle (δr), wheelbase (L), and resultant turn radius (R) are:

tan δr = L

R
(3.1)

A vehicle undergoing uniform circular motion, with a tangential speed vwx has

a turn rate ψ̇:

51

ψ̇ = vwx

R
(3.2)

Eq. 3.1 and Eq. 3.2 can be combined by using the curvature of the circular

path induced by the vehicle’s turn (of radius R) as a common term. The resultant

equation equates the turn rate of the vessel and the rudder angle:

ψ̇ = −vwx tan δr
L

(3.3)

The rudder angle is constrained on the SeaSlug to ±45◦ and therefore the

singularity that the tangent function has at ±90◦ is irrelevant. The negative sign

is necessary because of how the coordinate frames of the rudder angle and yaw

rate are defined: a positive rudder value induces a negative yaw rate.

The water velocity of the boat is modeled as a linear gain on the commanded

throttle value, δt:

vwx = 1.9δt (3.4)

This differs from the actual throttle-to-velocity mapping, shown in Fig. 3.2,

but is sufficient for simulation. The only requirement for the throttle mapping is

that it spans the same range of possible water speeds as the actual vessel (0 to

1.9m/s).

The final part of the vehicle kinematics model is the vehicle position as a

function of the current vehicle state. The change in the vehicle’s north and east

position arises from its heading and forward speed:

•N
E

 =

vwx cosψ

vwx sinψ

 (3.5)

52

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
at

er
 S

pe
ed

 (
m

/s
)

Throttle (% max)

Figure 3.2: Vessel velocity through the water as a function of commanded throt-
tle percentage from experimental data. The dashed-blue line shows real-world
measurements and the solid-black line shows the mapping used in simulation.

where N and E are the north and east position coordinates of the vessel, vwx is

the forward water speed, and ψ is the heading of the vessel.

This model assumes no side-slip or other hydrodynamics; vwy is assumed to be

zero. This assumption fails in reality, though these unmodeled forces are relatively

small and can be safely ignored for simulation purposes.

Combining equations 3.3, 3.4, and 3.5 together yields the complete equations

of motion for the vessel, shown in Eq. 3.6. These equations have only a single

vessel-dependent parameter, L, the distance between the center of rotation of the

vessel and the center of effort of the rudder.

53

•
N

E

ψ

 =


vwx cosψ

vwx sinψ

−vwx tan δr

L


vwx = 1.9δt

(3.6)

To determine the wheelbase value, a least-squares fit of recorded telemetry

was used to determine L. The resultant wheelbase parameter was found to be

5.8789m. A plot of the expected yaw rate versus the measured yaw rate during

harbor testing is shown in Fig. 3.3.

−0.2 −0.1 0 0.1 0.2 0.3
−0.3

−0.2

−0.1

0

0.1

0.2

Expected yaw rate, L=5.8789 (rad/s)

A
ct

ua
l y

aw
 r

at
e

(r
ad

/s
)

Figure 3.3: A plot of the turning rate as a function of both rudder angle and
water velocity during harbor testing (red) against the modeled turning rate (black
line). The black line is a least-squares fit of the data with slope 1.0005 and y-
intercept -0.0079.

In Fig. 3.3 the actual and expected yaw rates should be identical if the model

was exactly correct with the real world. The fit line (shown in black) should

54

therefore have a slope of 1 and a y-intercept of 0. In reality the model does not

exactly fit reality, though it tends to follow the expected model. This is shown by

the fit line having a slope of 1.0005 and a y-intercept of -0.0079.

The wheelbase distance was measured on the SeaSlug and found to be 3.27m,

smaller than the least square fit suggests it is. This difference is unsurprising

as all unmodeled kinematics appear in the model within the wheelbase value.

That it is larger than the measured value shows that the unmodeled forces are

predominantly drag forces and reduce the turn rate.

3.2.2 Actuator Dynamics

This model assumes instantaneous action on the rudder, which is known to be

false. Thus, the rudder dynamics were modeled and integrated into the simulator

as they are important to the overall vessel dynamics. This actuator model closely

matches the anticipated dynamics given the architecture of the rudder subsystem.

A stepper motor drives the rudder motor at a fixed step speed imposed by

the hardware. The Rudder Node controls the motor using a bang-bang controller

where the rudder is either moving at a constant rate or is held stationary. There is

an additional delay in the system from when the controller transmits a command

to when the rudder starts responding. The final model diagram is shown in

Fig. 3.4.

z-N

Figure 3.4: A block diagram of the rudder dynamics model. First is a dis-
crete time delay of 0.08s, then a slew limit is imposed of 25.78◦/s, and finally a
saturation limit keeps the rudder within the range of ±45◦

The saturation limit is set to the mechanical limit of the rudder, ±45◦. Its

55

turn rate has been measured as a consistent 25.78◦/s. This turn rate is also

independent of water speed, which is expected given the high power output of the

rudder motor. The delay between transmitting a rudder command and rudder

movement has also been measured and is consistently 0.08s.

A comparison of the rudder model with the actual rudder dynamics are shown

in Fig. 3.5. This figure shows a 44s segment of a longer 1.23hr live test. During the

entirety of the test the rudder model closely matched the actual rudder response

with a mean error of 0.38◦ and a standard deviation of 0.64◦.

0 5 10 15 20 25 30 35 40

−10

0

10

20

30

40

50

Time (s)

R
ud

de
r

an
gl

e
(d

eg
)

Figure 3.5: A comparison of the actual rudder dynamics (black dots) to the
simulated dynamics (red line). The commanded rudder angle is shown as the
blue dashed line.

No dynamics are used for the throttle in simulation. Changes to the throttle

are therefore propagated immediately in the simulator and the vehicle’s speed

always matches the throttle value. Because the throttle values are not changed

during an autonomous run, the controller has not needed to handle these changes

56

and so these dynamics were not measured or implemented in the simulator.

3.2.3 Environmental Effects

The simulation model has been extended beyond the vessel kinematics to in-

clude very basic environmental effects. These effects are implemented as a single

global velocity affecting the vehicle. This constant velocity term is referred to

as the water current, vc, though it can be used to approximate the cumulative

effect of all external forces including the wind, waves, and currents. This single

term cannot capture all of the dynamics of wave and wind motion, but it has

proven effective for approximating external currents for testing. When added to

the kinematic model of the vessel, the final equations of motion are shown in

Eq. 3.7.

•
N

E

ψ

 =


vwx cosψ

vwx sinψ

−vwx tan δr

L

 +


vcn

vce

0


vwx = 1.9δt

(3.7)

3.3 Software Simulation

Simulink is used as the simulation environment for the SeaSlug. Both the

vehicle’s controller and the system plant are implemented as Simulink models,

which forms the basis of the simulator. The overall development and testing

procedure with the SeaSlug is shown in Fig. 3.6.

The first phase of testing the SeaSlug, shown on the left in Fig. 3.6, focuses

solely on the control algorithms. These are tested in a software-only simulation

environment on a PC with both the vehicle controller and the environment run in

57

Controller

Environment
& Vehicle Model

MATLAB

Recorded
Telemetry

Autopilot
Hardware

Environment
& Vehicle Model

MATLAB

C Compiler

Simulation HIL Simulation

Figure 3.6: The three stages of the testing and development process: software
simulation, hardware-in-the-loop with the controller running on the embedded
hardware, and possibly connected to other subsystems of the SeaSlug.

Simulink. Only the initial conditions of the vessel and the environment are config-

urable, including its mission, starting position, orientation, and the global water

current; there is no runtime input. This is by design as it reduces the complexity

of the simulation and restricts testing exclusively to the vehicle controller.

The control algorithms on the Primary Node operate at 100Hz. The simulation

environment updates the environment and sensors at 100Hz instead of a higher

rate that better emulates the real world. During testing this higher rate was found

to have no noticeable difference in either the simulator or controller output. As

running the simulator at a smaller timestep would only serve to increase execution

time of the simulation, the simulator has been set to a fixed time step of 0.01s.

At every simulation timestep the controller commands are processed by the

plant and translated into sensor data, with the same sensor output as the onboard

sensors. The interfaces between the different components of the simulator match

those of the SeaSlug to provide a realistic simulation environment. Both the

datatypes and sample rates of data are configured such that they are identical

58

when run in simulation on the 64-bit Simulation PC or onboard the 16-bit dsPIC33

microcontrollers. This acts as the first sanity check during simulation, where even

with the performance and numerical precision restriction of the microcontroller

the system operates as expected.

3.3.1 Replay Simulation

An additional simulation environment has been created for analyzing system

performance during missions after they have been run. An onboard datalogger (see

Appendix A) records all of the inputs, outputs, and some intermediate calculations

of the controller at every execution timestep of the controller. This data can then

be played back by the Replay Simulator through the system’s control algorithms to

generate new rudder commands. This has proven valuable for testing how different

parameters affect the control outputs and for analyzing sensor irregularities. While

this simulator can only be run open-loop, it has provided valuable insight into

controller behavior.

3.4 Hardware-in-the-loop Simulation

The software simulation environment is limited in its testing capabilities be-

cause the actual hardware of the system is not used. Additional problems can

arise when the control algorithm is compiled onto the Primary Node and the Pri-

mary Node is integrated with the other subsystems on the CAN bus. Testing the

system with simulated sensor data while using hardware components of the actual

system is known as hardware-in-the-loop simulation (HIL).

While HIL simulation is an essential part of the development process for com-

plicated systems, it is especially important for the SeaSlug. Substantial time and

59

manpower is required for a single day of testing and losing a day to integration

bugs is expensive. Therefore HIL simulation is a core component of both the

SeaSlug’s development and pre-launch test procedure, as shown in Fig. 3.6.

In HIL the Primary Node is interfaced with the Simulink simulation model,

which provides a simulated environment with the same sensor outputs as the

hardware sensors. In this way, all system functionality is identical to how the vessel

is normally operated during a mission. The system architecture when running HIL

simulations is shown in Fig. 3.7.

SeaSlug

Primary
CANode

HIL
CANode

3DR
Radio

Simulation
PC

GCS

3DR
Radio

CAN bus

Rudder
CANodeACS300

2035

...

Figure 3.7: The system architecture during HIL simulation. Any combination
of non-essential sensor nodes can be connected during testing, such as the rudder
or propulsion subsystems.

HIL testing is highly configurable and different subsystems can be connected

and operating during simulation. HIL only requires that the Primary Node is

connected to run the controller and to communicate with the GCS. The simulator

60

emulates the necessary sensor inputs: the GPS, IMU, and water speed sensors.

Non-essential subsystems can also be connected during simulation. Their output

does not affect the simulation, but other nodes can process their data as if the

system is operating on the water.

The actuator outputs do however affect the simulator. When the interface

board detects the output from the actuators it forwards that data to the simulator.

In this mode the real actuator outputs are fed back to the simulator as input to

the simulation models, allowing the actuators, complete with their real dynamics,

to be tested in drydock. When the actuators are missing from the CAN bus the

simulator emulates their dynamics. It is therefore possible to test all subsystems

except the navigation sensors in HIL simulation. The ability to test the entire

system, including the actuators, has been especially important when testing the

system’s failure modes and implementing fault tolerant logic.

3.4.1 HIL CANode

Simulation flexibility is the result of an HIL interface board that communicates

with both Simulink and the CAN bus of the SeaSlug. This board emulates the

CAN messages output by the onboard subsystems, adapting to the testing config-

uration automatically based on which nodes it detects. In this way, no subsystems

are configured differently for HIL simulation, nor are they even aware that such

functionality exists. This allows for exact testing of the system as it operates with

the real sensors during deployments. The architecture of this node is detailed in

Fig. 3.8.

A general-purpose Ethernet shield has been designed for the CANode that pro-

vides a single physical Ethernet port connected through Microchip’s ENC28J60

Ethernet IC. Onboard firmware relies on Microchip’s DHCP, UDP, and IP li-

61

HIL
CANode

S
P

I
C

A
N

Ethernet

CAN Bus

Figure 3.8: The HIL high-level architecture. This node converts between CAN
and UDP interfaces with an Ethernet IC connected over SPI.

braries, which are already configured to work with the ENC28J60 IC. For conve-

nience, the HIL Node is set up as a server, automatically configuring any connected

computer so that no manual setup is required.

Communication with the simulator is done after every timestep (0.01s) and

results in a total of 64kb/s of bandwidth. The Ethernet port is set to operate

at its lowest speed of 10Mb/s, as this is sufficient to transmit all necessary data

and reduces power use slightly. These messages consist of the data packed with a

header, footer, and checksum. The exact format is shown in Fig. 3.9. While UDP

supports checksumming packets directly, this is unsupported by Microchip’s UDP

library, and is instead implemented within the message instead. An additional

checksum field provides this validation as a 1-byte XOR of all bytes in the Data

field. Messages that fail to pass checksum validation are ignored.

% & Data (big-endian) ˆ & Checksum (1-byte)

Figure 3.9: The wire-format of the UDP packets used for communicating with
Simulink. The data field consists of smaller integers, floating-point numbers, etc.
packed in big-endian format with no padding.

62

The HIL Node utilizes a split architecture to process both incoming messages

and to schedule outgoing messages. Both the UDP packets from Simulink and the

CAN messages from the Primary Node are received and processed in real-time. A

100Hz event loop is used for scheduling both the CAN and UDP output messages.

The output message rates use a global message scheduler to transmit at specific

rates, which match the exact transmission rates of the subsystem being emulated.

Details on the messages and their transmission rates are in Appendix E.

3.5 Conclusion

The primary goals of the simulation environment were to provide a sufficient

vehicle and environmental model to support software simulations and full-system

testing during development and before launches. The kinematic and dynamic

models developed in Simulink are close enough to reality to support debugging

and testing of the control algorithms, as shown by the data in this chapter.

Though pure-software simulation is effective for testing the control and navi-

gation algorithms, the complexity of the SeaSlug necesitates HIL testing as well.

In HIL testing the control algorithms are running on the embedded hardware and

in effect entirely unaware that they are not controlling the physical vessel. Further

the HIL environment was created such that any individual hardware subsystem

can be connected to the CAN network and will also respond as if on the physical

vessel. This is facilitated by the HIL CANode which provides the connection be-

tween the CAN bus and the Simulink simulation environment. It supports testing

all aspects of the system, including manual control, before launching the vessel.

With the robust simulation environment presented in this chapter all subsys-

tems of the SeaSlug can be evaluated in support of continued development.

63

Chapter 4

Control Architecture

4.1 Introduction

The SeaSlug is capable of a variety of missions in littoral waters. This en-

vironment can be difficult to navigate because of large external forces such as

wind, waves, and current. Controlling most sea vessels is further complicated by

their non-holonomic nature (they cannot move in an arbitrary direction). Most

boats cannot move sideways, but can move forwards/backwards and rotate. The

onboard control algorithms command the system’s actuators to compensate for

these disturbance forces and track a desired path, where this path is usually spec-

ified as a series of waypoints.

The data collection systems that oceanographers use vary widely in their

trajectory-following capabilities. Manned vessels are commonly off course by tens

to hundreds of meters, even when relying on an autopilot. Underwater gliders can

be off by hundreds of meters because they lack a global reference system and rely

primarily on the less-accurate inertial navigation while underwater.

The SeaSlug aims for better performance than either of these systems, target-

ing a path following accuracy of a few meters. While this performance is unneces-

64

sary for most current oceanographic data collection missions—since there is high

tolerance for course-tracking errors—this level of performance opens up new pos-

sibilities in oceanographic research including navigating narrow waterways such

as shoals, harbors, or inland waters.

This chapter describes the onboard guidance, navigation, and control software

of the SeaSlug as two major processes: the processing of sensor data and the

generation of rudder angle commands. The throttle command is open-loop and

remains constant during an autonomous mission with speed control a focus of

future work (see Section 7.2).

4.2 Position Filtering

The primary sensor for the SeaSlug is its GPS, which outputs a global position

as latitude, longitude, and altitude (though the altitude portion is discarded as

the SeaSlug does not leave the ocean’s surface). Using these spherical coordinates

directly for control is both unnecessary and computationally expensive. Instead,

these global coordinates are converted to a local coordinate frame through the

multi-step process illustrated in Fig. 4.1.

Outlier
Removal

Local
Coordinates

Extrapolation Sensor Offset
Correction

GPS Local
Position

Figure 4.1: The filtering process for position data. Input is directly from the
GPS with the output a position in the local coordinate frame.

4.2.1 Outlier removal

The first step in processing the GPS data is to remove any obviously incorrect

data from the input data stream. This pre-filter prevents errors in further stages

65

from operating on incorrect data. Most of this incorrect data is from GPS readings

where there is not enough satellite coverage to give an accurate reading.

On open waterways, a clear view of the sky can be assumed to always be

available, so invalid positions are rare with the exception of GPS start up. During

this start up process the precision of the readings can change as different satellites

are used in the solution. At startup all GPS readings are discarded until five

consecutive GPS readings are of high enough accuracy for position sensing. This

is indicated by the GPS unit as a “3D” fix.

After this initial startup very few GPS errors occur. These rare, transient

errors are sometimes simple to detect as the reported position jumps back to the

origin (0,0), which is off the coast of Nigeria. However, there are other instances

where the sensor values suddenly jump to another position that is not the origin.

Anomalies in position occur for a variety of reasons, including a change in the

satellite constellation used to produce a fix. The loss of a key satellite can result

in sub-optimal geometry for the multilateration algorithm that determines the

vessel’s position.

To filter out these errors a slew limit is imposed on position updates after

startup. While it would be possible to use a multiple of the vehicle’s water or

ground speed, using a fixed value has proven more robust. This limit is not

used to smooth between position readings that may be incorrect, but to eliminate

clearly erroneous ones. As such it merely needs to be set higher than the vehicle

could ever possibly move in its environment and lower than what the erroneous

readings are.

A fixed limit of 11m/s was used. This was set sufficiently high so that towing

the vessel or possible wave action would not accidentally trigger it. This filtering is

done directly on the spherical coordinates so it is set as 0.0001◦/s. Again, instead

66

of being a pure slew limit on position changes, it is actually a cutoff for discarding

the GPS data point entirely. This data is discarded because it is very likely that

position updates that violate the slew limit are invalid readings.

4.2.2 Converting to local position

The next stage in position filtering is to convert the global coordinates of

latitude/longitude to a simpler coordinate frame, one defined in meters North

and East. By orienting this frame along the latitude and longitude lines, north

and east respectively, the system’s position becomes more intuitive and easier to

use in calculations.

Most systems affix a two-dimensional Cartesian plane tangent to a reference

point on the Earth’s surface for their local coordinate frames, known as the local

tangent plane (LTP), such as the plane in Fig. 4.2. For missions covering small

regions of the Earth’s surface, using a single reference position with the LTP

is certainly accurate enough. For the SeaSlug, however, a curvilinear surface

approximating the curvature of the Earth at a reference point is used.

Reference Ellipsoid

The first step of mapping a GPS reading into the local coordinate frame is to

define the shape of the Earth. The best models use a flattened ellipsoid, as shown

in Fig. 4.3 This shape has only two parameters, that of the semi-major axis length

a and the semi-minor axis b. For use as models of the Earth’s surface, the origin

of the ellipsoid is usually geocentric, defined as the center of Earth’s mass.

The most common reference ellipsoid is the WGS84 standard [27]. It defines

the Earth’s ellipsoid with parameters shown in Table 4.1. While there are more

accurate models, such as the North American Datum (NAD) and Ordnance Survey

67

Figure 4.2: The local tangent plane shown on the Earth’s surface (represented
as a sphere). On this plane, coordinates are defined in East-North-Up (ENU)
coordinates. North-East-Down (NED) is another coordinate system commonly
used with the LTP. Only an ENU frame is shown here for simplicity.

Semi-major
axis (a)

Semi-minor
axis (b)

Equator

North pole

Figure 4.3: An ellipsoid, such as that defined by the WGS84 parameters. An
ellipsoid is entirely defined by its semi-major axis a and semi-minor axis b.

Great Britain (OSGB), they are all region-specific, with NAD is specific to North

America and OSGB for Great Britain. The difference in accuracy between these

models is often smaller than the application requires and the convenience of a

global model outweighs these inaccuracies; the SeaSlug GNC system uses the

WGS84 model.

It should be noted here that this ellipsoid only defines a very simple approxi-

mation of the Earth’s surface. The ellipsoid is corrected by the geoid, the Earth’s

surface as defined by equal gravitational potential. This is necessary because

Earth’s gravity is not constant across its surface. This difference between the

68

a semi-major axis 6378137
b semi-minor axis 6356752.3142
e2 first eccentricity squared 6.69437999014e-3

Table 4.1: The parameters for the generalized Earth ellipsoid as defined by the
WGS84 standard. Only two of these parameters are necessary for defining the
WGS84 ellipsoid using Eq. 4.5, but all are shown here for completeness.

Figure 4.4: Reproduction of part of Figure 2 from [35]. Shows the difference
between the geoidal and ellipsoidal models of the Earth’s surface and its actual
topography.

ellipsoid and the geoid is the geoidal separation as shown in Fig. 4.4. WGS84 also

defines a high-resolution model of this geoid so that the GPS-calculated altitude

can be converted to the more useful and intuitive mean sea level (MSL). This can

have a significant difference in reported altitude as the range of geoidal separations

defined by WGS84 are from -105m to +80m.

Converting to Local Coordinates

With the reference ellipsoid defined by the WGS84, The GPS-reported latitude

and longitude can be converted to a position on the local curvilinear surface on

that ellipsoid as shown in Fig. 4.5. This coordinate frame still uses a reference

point as the origin, much as the local tangent plane does, with the position being

in meters relative to this origin.

This curvilinear surface was chosen because it is more accurate than the local

tangent plane and is still computationally efficient; the final implementation re-

69

Figure 4.5: Figure 16.17 reprinted from [87]. Shows the local position, denoted
dS, of the vehicle from a reference location in the local curvilinear space. This is
split into the north-component dSφ and the east-component dSλ.

quires three multiplications, a cosine term, and a subtraction, all of which is done

at the full fixed-point precision of the GPS data.

Because the curved surface of the ellipsoid is used as the local coordinate

frame, determining the relative position of the vessel from a reference location is

straight-forward: the local position of the vessel is the arclength of the ellipsoid

along both the north and east directions, referred to as Sφ and Sλ respectively

(where φ refers to latitude and λ refers to longitude). These distances are integrals

of the curvature at every position along the direction as shown in Eq. 4.1. M(φ)

and N are curvatures, known as the meridian radius of curvature and prime

vertical radius of curvature respectively. They are defined in Eq. 4.2 and Eq. 4.3,

where φ is latitude and λ is longitude and e and a are the parameters of the

reference ellipsoid in Table 4.1.

70

Sφ =
∫ φj

φi

M(φ)dφ

Sλ =
∫ λj

λi

N cos(φ)dλ
(4.1)

M(φ) = a(1− e2)
3
2

√
1− e2 sin2 φ

(4.2)

N = a√
1− e2 sin2 φref

(4.3)

Both of these equations for curvature are derived from the geometry of an

ellipse. The prime vertical radius of curvature is derived in Section 15.4 of [87],

though there it is defined differently, as shown in Eq. 4.4. The geometric relation-

ship between these radii can be seen in Fig. 4.5.

N = a√
a2 cos2 φref + b2 sin2 φref

(4.4)

This is actually equivalent to Eq. 4.3 using the relationship between the defin-

ing parameters of an ellipse from Eq. 4.5.

e2 = a2 − b2

a2 (4.5)

In the longitudinal direction, there are only constant terms inside the integral,

and it simplifies as shown in Eq. 4.6. This is because at a fixed latitude, the

curvature of the reference ellipsoid is constant.

∫ λj

λi

N cos(φ)dλ = N cos(φ)
∫ λj

λi

dλ

= N cos(φ)(λj − λi)
(4.6)

Rewriting this for clarity, the east/west axis of the curvilinear space can be

71

calculated from Eq. 4.7.

Sλ = N cos(φ)∆λ (4.7)

The latitudinal axis integral, on the other hand, is more complicated because

the ellipsoid’s curvature changes along this axis. Therefore a simplifying assump-

tion is made that the curvature is a constant, fixed to the value at coordinate

frame’s reference position. Given the endurance of the SeaSlug, the territory cov-

ered in the latitudinal direction for a single mission is under 1000km, making this

a reasonable assumption.

By fixing the prime radius of curvature as the curvature at the reference point,

it becomes a constant, and calculating the arclength across latitudes simplifies to:

Sφ = M(φref)∆φ (4.8)

The final equations implemented on the SeaSlug are shown in Eq. 4.9, where

M(φref), N , φref , and λref are all constants, with only (φ, λ) varying as the

vehicle moves.

north = M(φref)(φ− φref)

east = N cos(φ)(λ− λref)
(4.9)

Therefore the calculation ofM(φref) andN can be done offline at compile-time.

The run-time calculations necessary are therefore very inexpensive, requiring only

two subtractions and three multiplications.

72

4.2.3 Position extrapolation

The GPS sensor only provides position and velocity updates at 4Hz, though

the onboard controller operates at 100Hz. Instead of limiting the command rate of

the vessel to 4Hz, the position is extrapolated between GPS updates. This extrap-

olation is done in the tangent curvilinear frame. This simplifies the calculations

as the vehicle position is in the same units as the reported GPS velocity.

This extrapolation assumes that the GPS-reported velocity of the vehicle is

constant between updates. This assumption holds because of the slow acceleration

of the vessel, even during turns, combined with the short time between GPS

updates. The final position of the vehicle is the sum of the last GPS position

update and the current integral of the ground velocity. When a new update is

received from the GPS, the position is updated and the integral reset to 0. These

new values are not blended or smoothed into previous position estimates which

results in discontinuities in the vehicle position estimates. The onboard control

algorithms have proven robust to these discontinuities and further improvements

have been deferred to future work.

Fig. 4.6 shows a comparison of the GPS’s reported latitude and the corre-

sponding north position as calculated in the local curvilinear coordinate frame.

The latitude signal is low-frequency, only 4Hz, and that updates the position used

by the extrapolation code, which provides a vehicle position estimate at the con-

troller frequency, 100Hz. Sometimes these GPS updates are not always received

(seen between 12s and 14s in Fig. 4.6); velocity integration continues through

several missed updates. Even in that case, however, the extrapolation is quite

accurate, matching up well with new updates when they are finally received.

73

0 2 4 6 8 10 12 14 16 18
222

224

226

228

230

232

234

236

238

240

Time (s)

N
or

th
 (

m
)

0 2 4 6 8 10 12 14 16 18

36.9658

36.9659

La
t (

de
g)

Figure 4.6: A plot of the calculated local position showing how velocity integra-
tion increases the temporal resolution of the received sensor data. The black dots
indicate GPS position updates and the green segments are the extrapolated local
position.

74

4.2.4 GPS Offset Correction

The GPS sensor used on the SeaSlug is mounted at the rear of the vessel,

roughly three meters from the center of rotation of the vessel, which has been

calculated as being slightly forward of the vessel’s physical center. This results in

a reported position that is offset by three meters. The reported velocity is also

incorrect as it includes the velocity induced by the circular motion of the GPS

about the vehicle’s center of rotation. This relationship between the vehicle center

and the GPS measurements are:

Pgps = Pcenter + Poffset

Vgps = Vcenter + Vinduced

(4.10)

Since the desired output from the sensor is the position and velocity of the

center of rotation of the vessel (hereafter referred to as the center) the above

equations can be reordered as shown in Eq. 4.11. The n and b scripts have been

added to denote the reference frame as either the global navigation frame or the

local body frame.

n

P center =
n

P gps −
n

P offset

n

V center =
n

V gps −
n

V induced

(4.11)

It should be noted that while the equations provided in this section operate

in three-dimensions, they are constrained to two-dimensions for the SeaSlug. Be-

cause the altitude of the SeaSlug is uncontrollable, sensing it is irrelevant and

onboard calculations ignore the altitude, either setting it to zero or omitting it

completely.

Correcting the position from the GPS requires calculating
n

P offset from Eq. 4.11.

In the body frame the GPS antenna has been measured as 2.709m behind and

75

0.155m to the left of the vessel center. While the GPS antenna is situated above

the plane of rotation for yaw, the extra velocity this offset induces is small enough

to ignore.

Since the GPS offset is measured in the body frame, it is converted into the

navigation frame so that it can be used in Eq. 4.11. This conversion uses a

rotation matrix that maps a three-dimensional vector from the body frame to the

navigation frame:

n

P offset =
b−→n

R ·
b

P offset

=
b−→n

R ·


−2.709

−0.155

0


(4.12)

Correcting for the linear velocity induced by the boat’s rotation is dependent

on the sensor’s distance from the center and its angular velocity, as follows from

uniform circular motion. This induced velocity is:

n

V induced =
n

Ω×
n

P offset (4.13)

While
n

P offset has been calculated in Eq. 4.12, the angular rates of the vessel

in the navigation frame now need to be defined. Rate gyroscopes in the IMU

measure angular rate directly in the body frame. They can be converted by using

the rotation matrix
n−→b

R such that

n

Ω =
b−→n

R ·
b

Ω (4.14)

n

P offset follows from Eq. 4.12, and thus the final equation for the induced

velocity in the navigation frame is:

76

−75 −70 −65 −60 −55
380

385

390

395

400

N
or

th
 (

m
)

East (m)

(a) Vehicle position in the local coor-
dinate frame.

0 10 20 30

0

50

100

150

200

C
ou

rs
e

ov
er

 g
ro

un
d

(d
eg

)

Time (s)

(b) Vehicle course.

Figure 4.7: The GPS offset from the vehicle position shown through vehicle posi-
tion and course-over-ground during a 180◦ right turn. The green triangle indicates
where the turn starts in both plots. The dashed-blue line is the uncorrected GPS
output and the solid black lines are the corrected values.

n

V induced = (
b−→n

R ·
b

Ω)× (
b−→n

R ·
b

P offset)

=
b−→n

R · (
b

Ω×
b

P offset)
(4.15)

The final equations for calculating the position and velocity of the vessel center

are shown in Eq. 4.16. These are derived by substituting the derived forms for

the extra velocity from Eq. 4.15 and position from Eq. 4.12 into the original GPS

correction equation, Eq. 4.11.

Pcenter = Pgps −
b−→n

R ·
b

P offset

Vcenter = Vgps −
b−→n

R · (
b

Ω×
b

P offset)
(4.16)

Fig. 4.7 shows that positive feedback can occur without correcting the GPS

position and velocity for the sensor offset. These plots show the GPS position

as reported by the sensor and again after being corrected for its offset during a

77

180◦ right-handed turn. At the start of the turn, indicated by the green triangle,

the sensor position initially moves opposite the desired direction. Eventually the

GPS sensor starts turning right, and the system is responding as expected. This

is more visible in the course-over-ground data in Fig. 4.7b. It is this initial left-

turning action that poses a problem for the controller, as it is positive feedback,

which can result in overall controller instability.

Offset measurement delay

To implement the offset correction for the GPS sensor, the IMU must be used

to provide both the current heading and the yaw rate. These sensors have different

measurement delays in their sensor readings. For GPS units, delays are commonly

on the order of 0.5s to 1.5s. For IMU sensors like the gyroscopes, the latency is

on the order of milliseconds.

For this vessel, however, there is no estimation nor correction of the GPS delay.

In simulation, the GPS readings are delayed 1.5s, using a conservative estimate

of the actual delay. This delay, however, is never used in the controller as it is

likely not correct. Without factoring in the delay, correction of the GPS data with

IMU data is mathematically incorrect. However, since the vehicle experiences low

acceleration, differences in gyro readings across the timespan of the GPS delay

are small.

Using the current gyroscope readings results in overcompensating for the offset,

which can be seen in Fig. 4.8. There the vehicle was heading south, and then

turned right to head north-west. These hard turns make the GPS offset correction

most noticeable and the overcompensation here is obvious. The angle of the

groupings of positions show the direction of the corrected velocity vector. The

corrected velocity vector ends up pointing further into the turn, leading to the

78

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
−1396

−1395

−1394

−1393

−1392

−1391

−1390

−1389

−1388

−1387

N
or

th
 (

m
)

East (m)

Figure 4.8: A right-hand turn from a southerly trajectory to a north-west one.
The overcorrection is apparent in the segments that point into the turning circle.

apparent feathering of the recorded position track.

While this is technically incorrect, it ends up being a useful feature. This over-

correction effectively provides some phase-lead to the position estimate through

turns. By overestimating the vehicle’s course, it reduces the overshoot when turn-

ing back onto the line. This could also be accomplished with better system tuning

or a more accurate vehicle model, but this behavior is left as-is, both because it

is beneficial and the fix is non-trivial.

79

Low-pass
Filter

Gyro
data

Attitude
data

Global
Frame

Figure 4.9: The chain of filtering steps for processing the gyroscope data output
by the IMU.

4.3 IMU filtering

The IMU reports its gyroscope data as a vector of body-frame rotation rates

about the x-, y-, and z-axes. The main use of the gyro data is for the yaw-rate

of the vessel: how fast it is rotating around the global Z-axis. If the vehicle is

not perfectly level, then the body-referenced z-axis rotation rate reported by the

gyro is different than the actual vehicle’s yaw rate. Therefore, the yaw rate of the

vehicle body relative to the inertial frame must be computed. This is a two-step

process as shown in Fig. 4.9.

The first step, converting body-frame gyro data to navigation-frame Euler

angle rates, uses Eq. B.4, which is a single matrix multiplication. The derivation

of this matrix is shown in Appendix B.4.

The second step is a low-pass filter as gyroscope data is notoriously noisy.

Because the SeaSlug is so large, it experiences low angular velocities in the real

world. Therefore an exponentially-weighted moving average filter with a 2Hz

cutoff frequency was used. While this cutoff frequency might appear quite low, it

is well above the system bandwidth as the SeaSlug never exceeds more than 20◦/s

about any axis.

80

−100 −50 0

160

180

200

220

240

260

280

300

320

N
or

th
 (

m
)

East (m)

(a) The vehicle’s position in the local
coordinate frame.

0 50 100 150
−5

0

5

10

15

20

A
ng

ul
ar

 r
at

e
(d

eg
/s

)

Time (s)

(b) The yaw rate as reported by the gy-
roscope for the body-frame z-axis and
after filtering and conversion to the
navigation frame.

Figure 4.10: Position and corresponding yaw-rate plots of an autonomous run.
There is an initial right-turn at the start with a much larger 180◦ turn at the end.

4.4 L2+ Control

4.4.1 Introduction

For data collection missions, scientists are accustomed to generating a vehicle

trajectory from a sequence of waypoints, defined in global latitude and longitude.

The L+
2 algorithm [25] has been flight tested on the SLUGS autopilot controlling

unmanned aerial vehicles (UAVs). It is capable of following arbitrary trajectories,

including ones comprised of connected line segments. It is also vehicle agnostic,

as it does not account for vehicle dynamics, and can be readily adapted to surface

vessels. For these reasons it was chosen for mission guidance on the SeaSlug.

This algorithm is a pure-pursuit guidance law, where an aim point is chosen

and the vehicle is directed towards that point. It builds on the L1 control law

originally developed for UAVs [72]. The L1 control law used a fixed look-ahead

81

Desired Path

p

C

L2

Vg

acmd

η

R

η η

R

Figure 4.11: The geometry behind the L+
2 control law. p is the aim point dictated

by the L2 look-ahead vector, which is defined as a time and not a distance. acmd
is the resultant acceleration necessary to intercept p on a circular path.

distance to determine an aim point, p, along the desired path as shown in Fig. 4.11.

The desired vehicle trajectory to intersect that point is then specified as the arc,

C, described by the angle, η, which is dependent on the vehicle’s velocity vector

and the L1 vector. Tracking this arc is done by commanding a lateral acceleration.

This is then mapped into a commanded roll angle for UAVs by using a kinematic

model.

The original L1 control law used a fixed length look-ahead vector, which could

cause instability at high speeds, as the effective gain is proportional to the vehicle’s

ground speed. Because the L1 vector was fixed, an increase in velocity causes

the look-ahead time to shorten, which equates to a higher gain. If the look-

ahead vector is instead defined as a fixed time, T ∗, instead of a fixed distance,

the system is stable over a much wider range of speeds. The look-ahead vector

length, |L2|, is then calculated by VgxT
∗. This modification was found to be

necessary for operation in environments where the vehicle’s ground speed could

change drastically, such as from wind in the case of UAVs.

82

Additionally, the L+
2 control law makes several modifications to the domain in

which this controller can operate. The L1 algorithm only worked when the vehicle

was within L1 of the desired path. Outside of this, the controller had undefined

behavior. The L+
2 algorithm expands the operational domain of the controller to

include regions further than the look-ahead distance from the desired path. This

makes it possible for the vehicle to intercept and follow the desired path starting

from any position and orientation.

Puav

eN

Vg

P0

P1γ

η

Pa

|L2|

Vg

η

min

� eN

tan(γmax)
,M∗ |L2|

�

Figure 4.12: Reproduction of Figure 5 from [25]. Shows the restrictions on the
aim point, Pa, when the vehicle is far away from the desired path.

When the vehicle is far from the path, different parameters are used to place

the aim point. Being far away from the path is defined as having a crosstrack

error of more than T ∗|Vg|. In this domain, the intercept angle γmax and the along

track distance gainM∗ define the aim point (see [25] for a full description of the

L+
2 control logic). The resultant aim point is also restricted so that it cannot be

83

past the next waypoint. This geometry is shown in Fig. 4.12.

On top of this waypoint navigation behavior, there is additional initial-point

and return-to-base (RTB) functionality. The initial point behavior can be con-

figured to specify an initial target point to reach before proceeding along the

first path segment. This is defined as a distance ahead of the first waypoint but

aligned with the first line segment between the first waypoint and the second. This

overrides the standard behavior of attempting to intercept the straight-line path

between the first and second waypoint. The return-to-base functionality follows

similar behavior, where a specific location is set as an aimpoint with the L2 vector

is pointing towards it. This mode is generally triggered in an emergency situation

when the vehicle has lost its connection to the human operator or there has been

some other system failure.

4.4.2 L2+ for Surface Vessels

In the original formulation of the L+
2 algorithm the output is commanded

lateral acceleration. UAVs can command this directly by controlling roll angle.

Most surface vehicles, however, cannot command an equivalent lateral accelera-

tion, though they can command a turn rate. To support such vehicles the radius

of the turn is instead used to calculate a desired yaw rate. Then the necessary con-

trol surface command can be calculated using a model of the vehicle kinematics.

In the case of the SeaSlug, L+
2 commands the rudder angle.

Using the inverse bicycle model introduced in Section 3.2.1, with a properly

tuned wheelbase parameter L, it is now possible to convert the lateral acceleration

from the L+
2 algorithm into a rudder angle, which the SeaSlug can command. The

yaw rate of the SeaSlug is defined in Eq. 3.7, reproduced here in Eq. 4.17. Note

that vwx is the hull velocity through the water and δr is the rudder angle:

84

ψ̇ = −vwx tan(δr)
L

(4.17)

From the physics of circular motion, the linear ground velocity is related to

the turn rate of the vessel. The ground velocity is used here because the control

error is defined as relative to the ground-fixed waypoints.

ω = |Vg|
R

= ψ̇ (4.18)

Additionally, the lateral acceleration necessary to induce circular motion of

radius R is:

ay = |Vg|
2

R
(4.19)

Again, this equation uses ground velocity because the controller operates with

ground-relative distances. From Eq. 4.18 and Eq. 4.19, the necessary turn rate

for a given lateral acceleration can be calculated:

ay = |Vg|ψ̇ = −|Vg|Vwx tan δ
L

(4.20)

Now that an equation involving both the lateral acceleration and rudder angle

has been found, the rudder angle can be resolved:

δ = − arctan acmdL

|Vg|Vwx

(4.21)

Eq. 4.21 provides the necessary mapping from the commanded acceleration

output of the L+
2 controller to a commanded rudder angle for the SeaSlug surface

vessel.

85

4.4.3 L2+ for Slow Surface Vessels

It should be noted that the L+
2 algorithm assumes that there are no vehicle

dynamics, so that acmd = aactual. With the planes that have been flight tested with

L+
2 , this has been a reasonable assumption because of how quick their response

time is.

This assumption, however, breaks down for the SeaSlug, which has a much

slower yaw-rate response. To account for this a feedback term was added for the

yaw-rate. This compensates for the response delay and has the effect of adding

phase back to the controller. Therefore by reducing the commanded turn rate

slightly as the system turns faster it improves the yaw-rate response time.

The final commanded rudder angle algorithm is shown in Fig. 4.13. In addition

to the L+
2 algorithm, there is both the yaw rate feedback term as well as the

translation from the lateral acceleration command generated by L+
2 into a rudder

angle command.

L
2

+ To Rudder
Angle

α
cmd +

-
SeaSlug

IMU

GPS

Ψ̇

δ
cmd

Ψ̇K

Figure 4.13: The complete controls algorithm for rudder control. Inputs are
filtered sensor data and the final output is the desired rudder angle. Yaw rate is
fed back to account for the system’s slow response time.

4.4.4 Parameter Tuning

Parameter tuning for the L+
2 controller is through the main parameter that

controls the system response: T ∗, the look-ahead time. Smaller values for this

86

parameter increase the effective controller gain, larger values effectively decrease

the controller gain.

Given the slow response of the SeaSlug, it was estimated that T ∗ would be

large, between 5 and 15s. Stability analysis of the L+
2 algorithm done in [25] shows

that for the controller to be stable, T ∗ must at least 3 times the roll response lag of

the system. For the surface vessels, this translates to the yaw rate delay. Testing

various values led to the final chosen parameter of 12s. All results shown in

Chapter 5 use this value unless otherwise indicated.

Yaw Rate Feedback

The yaw rate feedback gain, KΨ̇, is the other parameter important for system

stability. This term compensates for the system’s slow turn rate response by

accounting for its current turn rate. Tuning this parameter is independent of

testing the L+
2 parameters and was done after suitable values for T ∗ were found.

Some of this testing is shown in Fig. 4.14, which shows both the crosstrack

error of the vessel and its rudder angle over four different values of KΨ̇. This

testing was done by inducing a 180◦ turn by using a two-waypoint line. The turn

initially results in the rudder saturating and then slowly reducing its angle until

it hits zero. These figures are all normalized to the time at which the rudder first

leaves saturation; until that point the response is essentially the same.

From the figures it is clear that the optimal value is around 0.5. This value

provides nearly the same rise time as without the feedback but lacks the undesir-

able oscillations that occur with no KΨ̇ term. The higher values result in much

longer rise times and at a value of 1.5 the oscillations return. Further testing

showed that a value of 0.4 was the ideal balance between rise time and settling

time. This value was used for all further testing.

87

0 20 40 60 80 100 120 140
−2

0

2

4

6

8

10

Alongtrack Distance (m)

C
ro

ss
tr

ac
k

E
rr

or
 (

m
)

KDotPsi=0.0
KDotPsi=0.5
KDotPsi=1.0
KDotPsi=1.5

(a) Crosstrack error.

0 10 20 30 40 50 60 70 80 90
−50

0

50

Time (s)

R
ud

de
r

A
ng

le
 (

de
g)

KDotPsi=0.0
KDotPsi=0.5
KDotPsi=1.0
KDotPsi=1.5

(b) Rudder angle.

Figure 4.14: System performance when reacquiring the desired line after a 180◦
turn. Both figures start when the rudder first exits saturation.

88

Intercept Behavior

The controller’s behavior when too far away from the path is specified by the

along track distance M∗ and the intercept angle γmax parameters. They define

vehicle behavior when far away from the line as shown in Fig. 4.12.

TheM∗ parameter is a gain on the look-ahead distance. During testing of the

L+
2 algorithm with the SLUGS autopilot it was found that 2.0 was an acceptable

value for most use-cases. This value is used for all experiments done with the

SeaSlug.

The intercept angle γmax is more mission-dependent, as it provides a trade-off

between reaching the line as fast as possible and going to the next waypoint as fast

as possible. Fig. 4.15 shows how the intercept angle affects initial line acquisition.

With higher intercept angles, the vehicle prioritizes following the desired path.

With lower ones, the priority is to approach the next waypoint. For most testing

γmax was set to 30◦, as that provided a reasonable balance between line following

and mission time.

4.5 Conclusion

The SeaSlug’s path-following capabilities are dependent on both effective sen-

sor data and a capable algorithm. The position filtering was developed gradually

as new sensors were added and deficiencies were found in existing sensors. For

this reason the sensor filtering could be described as crude, where simplicity won

out over more complicated sensor fusion algorithms. From the results presented in

Chapter 5, this work is adequate for control, though further work could improve

the sensor data.

The L+
2 was chosen as the primary controls algorithm for the SeaSlug as it was

89

−20 0 20 40 60 80 100 120 140 160 180 200

0

50

100

150

Alongtrack distance (m)

E
rr

or
 (

m
)

15°

30°

45°

60°

75°

Figure 4.15: Plot of the crosstrack error for an initial line intercept for varying
values of the intercept angle, γmax.

previously developed in the Autonomous Systems Lab and had the potential to

run successfully on an unmanned surface vessel with relatively minor adaptations.

This serves as a validation of the algorithm itself both to its robustness and its

adaptability.

The final result of the work discussed in this chapter is a comprehensive sen-

sor fusion scheme, correcting for sensor offset from the center of rotation of the

vessel and interpolating between GPS position updates. Using these results, a

control algorithm framework was developed that successfully demonstrated line

acquisition and path following in littoral waters. These results are presented more

completely in Chapter 5.

90

Chapter 5

Experimental Results

5.1 Introduction

The final goal of the SeaSlug project is to support short-term data collection

missions in the open ocean. This relies on a multitude of factors including vessel

logistics, system reliability, path following performance, sensor integration, and

remote interface usability. The system has been extensively tested in the Santa

Cruz Harbor and proven to be reliable. Parameter tuning was done in this envi-

ronment and system performance was sufficient to warrant continued testing in

the unprotected waters of Monterey Bay.

The logistics of deploying and operating the SeaSlug in open water is more

complicated than inside the harbor. The exact details of these logistics and the

process of launching and operating the SeaSlug are not presented as they vary

depending on both the mission and the testing area. Instead this chapter presents

the vessel’s performance and the collected data from several missions in the littoral

waters of Monterey Bay.

91

5.2 Waypoint Navigation

The most important feature of the SeaSlug for scientific applications is its

autonomous waypoint navigation capabilities. Scientists can specify a sequence

of GPS coordinates to define the path the vehicle should follow. This is similar

to how manned scientific missions are conducted, but the SeaSlug is much more

accurate at following the desired path as qualified later.

For these waypoint tests, the L+
2 controller was used with the parameters

described in Section 4.4.4.

5.2.1 Basic Waypoint Test

600 800 1000 1200

−1800

−1700

−1600

−1500

−1400

−1300

−1200

−1100

East (m)

N
or

th
 (

m
)

Figure 5.1: Vehicle track following a four-waypoint trapezoid. Coordinates are
in the local tangent plane. The green triangle and red square indicate the start and
end locations respectively. The magenta dots indicate when the vessel switched
to the next waypoint. The dashed black line indicates the desired path.

Initial ocean tests examined the performance of the L+
2 controller while follow-

92

ing a simple trapezoidal path. This trajectory totaled 2.3km in length, sufficient

for an initial performance evaluation in littoral waters. The trapezoidal shape

was chosen to avoid the buoys and kelp that are near the shore of Santa Cruz and

still demonstrate both the waypoint transition and line-following capabilities of

the L+
2 algorithm.

The mission began with the SeaSlug located 150m west of the first waypoint

and headed east under full throttle. The total mission length was 200m longer

than planned due to this initial starting position. The vessel averaged a ground

speed of 1.6m/s yielding a total mission time of 26 minutes and 37 seconds. The

weather was calm with light wind and small 1.0m swells (Beaufort scale 2).

Fig. 5.1 shows the position of the vehicle during the mission in the vehicle’s

local coordinate frame. When the vessel is first switched into autonomous mode

there is an initial oscillation in the vehicle’s position as it settles onto the curved

trajectory generated by the L+
2 algorithm (visible near the green triangle). Once

it has acquired this intercept trajectory, the position stabilized substantially.

The crosstrack error for all four line segments are overlaid on top of each other

and shown in Fig. 5.2. The mean error was 0.13m with a standard deviation

of 1.0m. These statistics were calculated by ignoring the initial line acquisition,

defined as the portion of the mission before the vehicle crosstrack error first falls

below 2.0m since the start of the mission. After this initial intercept the vessel

almost never deviates from the desired course by more than 2.0m except during

waypoint transitions.

During waypoint transitions the crosstrack error jumps to several meters, as

the system switches when is distance-to-go is less than 10m. These initial errors

at the start of every line segment are visible in Fig. 5.2. This error is positive for

left-hand turns, as the system is then left of the desired path and for right-hand

93

0 100 200 300 400 500 600 700 800
−10

−8

−6

−4

−2

0

2

4

6

8

10

E
rr

or
 (

m
)

Alongtrack distance (m)

Waypoint transitions

Initial acquisition

Figure 5.2: Overlaid crosstrack errors for trapezoid mission path.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crosstrack error (m)

D
en

si
ty

2σ

Mean: 0.13
SD: 1.01

Figure 5.3: Histogram of the crosstrack error for trapezoid mission path. The
crosstrack error from before the path is initially acquired is ignored here.

94

turns it is negative. Since the trapezoid pattern resulted in only left-handed turns

the distribution of crosstrack errors is slightly weighted towards positive errors,

as shown in Fig. 5.3. Though the main set of errors are clustered tightly around

zero error, there is a “tail” off to the right of positive errors from the waypoint

transitions.

5.2.2 Complex Waypoint Test

Previous harbor testing has shown the SeaSlug capable of complex waypoint

navigation and the trapezoid test described above demonstrated basic waypoint

navigation in ocean waters. A more complex waypoint test was then planned

to evaluate waypoint navigation in the open ocean. The path for this test was

still four waypoints, but this time in the shape of a bowtie, where the longer

transits cross over each other. Additionally, this waypoint sequence was chosen to

demonstrate how the L+
2 controller follows highly-acute angles during waypoint

transitions. This was a shorter test, only 1.3km in length, to also test how the

system handled shorter distances between waypoints.

The vessel started the test approximately 120m west and 60m north of the

initial waypoint, facing south-south-east and under full throttle. Because of this

initial starting location, the total traveled distance was 300m longer than the

waypoints specified. Completing this mission took 16 minutes and 35 seconds

with the vessel traveling at an average ground speed of 1.6m/s.

Fig. 5.4 shows the desired waypoint sequence and vessel path during the mis-

sion. The 360◦ turn at the start was a glitch due to additional code in the controller

that has since been removed; this anomaly has not been observed since. Due to

logistical reasons this test was not repeated after the code fix.

The effect of swells coming in pairs from the south-west is evident in both the

95

700 800 900 1000 1100 1200

−1500

−1450

−1400

−1350

−1300

−1250

−1200

−1150

−1100

−1050

East (m)

N
or

th
 (

m
)

Figure 5.4: Vehicle track following a 4-waypoint bowtie. Coordinates are in the
local tangent plane. The green triangle and red square indicate the start and end
locations respectively. The magenta dots indicate when the vessel switched to the
next waypoint. The dashed black line indicates the desired path.

position plot and the overlaid crosstrack error plot in Fig. 5.5. The pink trace

is the final north-west leg of the mission and shows much higher errors than the

other legs. The effect of the swells is most pronounced here as they are beam seas

(nearly perpendicular to the vessel). The red trace shows the error during north-

east transit of the bowtie and these errors are much reduced. This is because the

swells are following seas (in the direction of motion of the vessel).

The mean crosstrack error is -0.02m with a standard deviation of 1.1m, ex-

cluding initial line acquisition. Fig. 5.6 shows the exact distribution of crosstrack

errors during the mission. The crosstrack errors again stay below 2.0m very con-

sistently after initial line acquisition. Their mean is also very close to zero due

to the equal number of left and right turns during the mission, so that the error

during waypoint transitions effectively cancel out.

96

0 100 200 300 400 500
−10

−8

−6

−4

−2

0

2

4

6

8

10

E
rr

or
 (

m
)

Alongtrack distance (m)

Large errors from beam seas

Figure 5.5: Overlaid crosstrack errors for bowtie mission path.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crosstrack error (m)

D
en

si
ty

2σ

Mean: −0.02
SD: 1.11

Figure 5.6: Histogram of the crosstrack error for bowtie mission path. The
crosstrack error from before the path is initially acquired is ignored here.

97

5.2.3 Repeatibility

Both the trapezoid and bowtie missions were run twice in 2015, first on March

27th and then again on April 3rd. The duplicate runs were performed to demon-

strate that the performance of the SeaSlug is repeatable and consistent across

different sea and weather conditions. While March 27th was mostly calm (with

the exception of large swells towards the end of testing), there was only light wind

on June 3rd along with some larger waves (Beaufort state 3). The location of

both missions are shown in Fig. 5.7.

Figure 5.7: The locations of the trapezoid and bowtie missions as executed off
the coast of Santa Cruz. The blue and purple traces are the first and second
trapezoid mission runs respectively. The yellow and red traces are the first and
second bowtie runs respectively. For reference the Santa Cruz Harbor is visible in
the upper-left corner. Map data ©2015 Google, CSUMB SFML, CA OPC.

Table 5.1 shows the mean and standard deviation of the crosstrack error for

both the runs of the trapezoid and bowtie missions. The first day of missions show

higher standard deviations due to the swells out of the southwest, although they

98

Mean (m) Standard Deviation (m)
Trapezoid, Run 1 0.12 0.96
Trapezoid, Run 2 0.05 0.82

Bowtie, Run 1 -0.06 1.02
Bowtie, Run 2 0.05 0.88

Table 5.1: Crosstrack error distributions for the four repeated runs.

have a similar mean. While the wave and wind conditions were slightly worse on

the second day their effect on the vessel was less pronounced than the large swells

of the first day.

The distributions of the crosstrack errors for both repeated missions are shown

as histograms in Figure 5.8. Fig. 5.8b especially demonstrates the better perfor-

mance during the second bowtie mission. Here the errors are much closer to zero

and very rarely exceed 1.0m.

Figure 5.9 shows the vehicle position during both runs of the trapezoid and

bowtie missions. At this scale, the 2.0m crosstrack errors are barely noticeable,

except for the first bowtie run, where the large double-swells are visible as pairs of

oscillations during the north-west transit. Additionally, the initial intercept was

significantly different for the second bowtie run, where the mission was started at

Waypoint 2 instead of Waypoint 0. This was done merely for convenience, with

the waypoint sequence identical for both runs.

5.3 Scientific Deployments

For oceanographic data collection missions, marine scientists have specific sam-

pling patterns that are used depending on the mission objectives and whether they

are taking surface or depth measurements. The current capabilities of the SeaSlug

limit it to surface measurements, and as such only those capabilities are discussed.

Chapter 7 describes plans for integrating vertical profiling for depth sampling.

99

(a) Trapezoid missions.

(b) Bowtie missions.

Figure 5.8: Overlaid crosstrack error histograms for repeated runs of the trape-
zoid and bowtie missions. The first run is shown in red and the second is in
blue.

100

500 600 700 800 900 1000 1100 1200
−1900

−1800

−1700

−1600

−1500

−1400

−1300

−1200

−1100

−1000

−900

N
or

th
 (

m
)

East (m)

(a) Trapezoid missions.

800 850 900 950 1000 1050 1100 1150 1200

−1400

−1350

−1300

−1250

−1200

N
or

th
 (

m
)

East (m)

(b) Bowtie missions.

Figure 5.9: Vehicle position during two separate mission runs performed on
03/27/2015 (shown in red) and on 04/03/2015 (shown in blue)

101

It should be noted that in practice there is significant flexibility in the mission

trajectories for manned vessels. Depending on how rough the ocean is, and what

the swell is like, pilots sometimes adapt their trajectories to minimize discomfort

while still covering the targeted area. This is generally not done for unmanned

vessels as operator comfort is not a factor.

The primary sampling pattern for data collection is the boustrophedon pattern,

a back-and-forth path where each transit over the area is slightly offset (also com-

monly referred to as a lawnmower pattern). This pattern is commonly adjusted

depending on whether the goal is spatial coverage or sampling resolution, referred

to as sparse or dense sampling respectively. Generally autonomous vessels per-

form one type of sampling and manned vessels the other, such that there is both a

dense sampling of small region of interest and a larger sampling of the surrounding

area as part of the control. This sampling behavior is shown in Figure 1 from [84],

reproduced in Fig. 5.10. For this mission two sampling patterns are visible, the

dense sampling performed by the manned vessel and the sparse sampling by the

autonomous underwater vehicle.

This lawnmower pattern is the most common survey trajectory, but it is some-

times modified depending on the situation. For studying dispersion of substances

it is altered to sample a triangular region with one of the points near the center

of dispersion, commonly just up-current of it. Coarse sampling is then performed

in the direction of the dispersal. This path can also double-back on itself to give

multiple samples at the same location at different times. Figure 1 from [34], repro-

duced in Fig. 5.11, shows the triangular sampling used for analyzing the outflow

of the Elkhorn Slough as it enters the Monterey Bay.

For the first scientific applications of the SeaSlug, a region of interest was se-

lected for a variety of sampling missions. With the ocean currents flowing south

102

Figure 5.10: Partial reproduction of Figure 1 from [84] which shows a fine lawn-
mower sampling pattern by a manned vessel (dark grey) and a coarse lawnmower
sampling by an AUV. Triangles and boxes represent start and end locations re-
spectively. Additional data was recorded by moorings, shown as dark grey dots.

Figure 5.11: Fig.1 from [34] which shows a triangular sampling mission exam-
ining the outflow of the Elkhorn Slough into the Monterey Bay (black transits).
The red lines and black dots are sampling done by other vehicles.

103

along the California coast past Monterey Bay, it induces a counter-clockwise cur-

rent flow within the bay. As a result the northern region, highlighted in Fig. 5.12a,

is home to several interesting environmental and biological events and has been

an active area of study as seen in [84] and [85]. This area is a common location

for both algal blooms as well as large temperature or salinity gradients, events

that marine scientists are interested in studying.

(a) A region of scien-
tific interest in Monterey
Bay. Algal blooms and large
temperature/salinity gradi-
ents have been commonly
found here. Map data
©2015 Google, SIO, NOAA,
U.S. Navy, NGA, MBARI,
CSUMB SFML, CA OPC.

(b) A close-up of the area around Soquel Point,
in Santa Cruz, CA. Two missions were run here,
one studying algal blooms (left, green) and an-
other to detect salinity and temperature fronts
(right, yellow) missions. Map data ©2015 Google,
CSUMB SFML, CA OPC.

Figure 5.12: Satellite imagery of the areas investigated by the SeaSlug.

For these missions, a marine conductivity-temperature-depth (CTD) sensor

104

was added as the scientific payload. It measures both the water salinity and

temperature. This is a common sensor used for both vertical profiling and surface

data. Demonstrating the SeaSlug’s capabilities with this sensor gives a reasonable

baseline of usability for the scientific capabilities of the SeaSlug. This sensor is

described in more detail in Section 2.2.2.

5.3.1 Algal Bloom

For the first scientific mission with the SeaSlug, it was planned to simulate a

harmful algal bloom (HAB). This environmental phenomenon occurs when algae

grows dense enough in an area to damage the ecosystem. These are short-term

events and are correspondingly difficult to study as they grow and disperse over

the course of a few weeks. Most research institutions have their missions planned

and resources allocated several months in advance, and so find it difficult to study

these events.

No active HAB was ongoing during the desired mission timeframe, and so one

was simulated. In this scenario it was assumed that an active HAB existed at

the mission location, shown as the smaller green trace Fig. 5.12. To simulate

coverage of this algal bloom a 1.0km patch of water was densely sampled with a

boustrophedon pattern with the CTD sensor.

The mission totaled 10.9km in length and took a total of 2 hours and 12

minutes to complete. The mission waypoints and vehicle track are shown in

Fig. 5.13. During the mission, the vessel averaged a ground speed of 1.4m/s and

traveled a total distance of 11.2km. The extra 300m traveled by the vessel is due

to environmental disturbances pushing the vessel off of the desired track and the

resultant corrections. This mission was run in the morning of April 17th, from

approximately 11:00 to 13:00 local time. Initially there was little wind and small

105

1200 1400 1600 1800 2000

−2800

−2700

−2600

−2500

−2400

−2300

−2200

−2100

−2000

−1900

East (m)

N
or

th
 (

m
)

Figure 5.13: Position plot of the vessel in local coordinates. The green triangle
and red square indicate the start and end of the mission. The larger magenta
points are where the vehicle switched waypoints.

0.5-1.0m swells from the north-west-west (Beaufort scale 2). By the time the

mission finished, the wind had picked up to 6-8m/s and the swells had increased

in frequency and height to 1-2m (Beaufort scale 4).

Here it should be noted that the vehicle was run at maximum throttle, which

resulted in an average water speed of only 1.4m/s. While wave action and en-

vironmental factors can affect water speed, the 0.5m/s reduction from the peak

observed waterspeed is the result of the CTD sensor mounted in the rear payload

bay. During initial testing a dummy sensor payload was mounted in the sensor

bay and it has a smooth bottom that matches the shape of the hull exactly. Re-

placing that with the CTD sensor therefore adds significant drag. Further work in

constructing hydrodynamic mountings for the CTD, and any additional sensors,

could significantly reduce their impact on water speed.

106

0 0.5 1 1.5 2 2.5
−10

−8

−6

−4

−2

0

2

4

6

8

10

E
rr

or
 (

m
)

Mission Time (s)

Figure 5.14: Crosstrack error for entirety of the Algal Bloom mission.

0 200 400 600 800 1000
−10

−8

−6

−4

−2

0

2

4

6

8

10

E
rr

or
 (

m
)

Alongtrack distance (m)

Waypoint transitions

Initial acquisition

Figure 5.15: Crosstrack error for each path segment overlaid on top of each
other during the Algal Bloom mission.

107

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crosstrack error (m)

D
en

si
ty

2σ

Mean: 0.14
SD: 0.99

Figure 5.16: Histogram of the crosstrack error throughout the Algal Bloom
mission.

System performance as measured by the crosstrack error is similar to the way-

point navigation tests. The weather was initially comparable to the first waypoint

tests but had worsened significantly by the end of the mission. This is noticeable

in the later portion of the total crosstrack-error plot shown in Fig. 5.14. The

wind and waves were from the north-west and made the western transits much

harder for the vessel. The last two western legs (during the 1.5hr to 1.75hr and

1.9hr to 2.24hr time segments) show the increased crosstrack error compared to

the eastern segment between them, supporting this conclusion.

Fig. 5.15 shows all crosstrack errors overlaid on top of each other by line

segment. While crosstrack errors occasionally exceeded 2.0m, they were generally

within ±1.0m. Even with the poor performance during the last two western

transits, the crosstrack error is rarely above 2.0m, with the waypoint transitions

being a large cause of these. A complete error distribution histogram is shown

108

in Fig. 5.16. It should be noted that this is still better precision than required

for marine sensing missions and is more than adequate for complex navigation

missions.

While the CTD sensor was installed and onboard, it did not operate correctly

and no data was obtained from it. Instead data from the DST800 water speed

sensor was used as it also reports the water depth and temperature at 1.0s in-

tervals. While it is not a scientifically-calibrated sensor, it nonetheless provides

data representative of what could have been collected on this mission. The water

depth data should also be accurate enough to provide to NOAA for integration

into their existing water depth maps. Fig. 5.17 shows a position plot with the

collected data.

122ÊW 121.99ÊW 121.98ÊW 121.97ÊW

36.935ÊN

36.94ÊN

36.945ÊN

36.95ÊN

36.955ÊN

36.96ÊN

O
c
e
a

n
 D

a
ta

 V
ie

w

14

16

18

20

22

122ÊW 121.99ÊW 121.98ÊW 121.97ÊW

36.935ÊN

36.94ÊN

36.945ÊN

36.95ÊN

36.955ÊN

36.96ÊN

O
c
e
a

n
 D

a
ta

 V
ie

w

DEPTH [M]

122ÊW 121.99ÊW 121.98ÊW 121.97ÊW

36.935ÊN

36.94ÊN

36.945ÊN

36.95ÊN

36.955ÊN

36.96ÊN

O
c
e
a

n
 D

a
ta

 V
ie

w
14.2

14.4

14.6

14.8

15

15.2

122ÊW 121.99ÊW 121.98ÊW 121.97ÊW

36.935ÊN

36.94ÊN

36.945ÊN

36.95ÊN

36.955ÊN

36.96ÊN

O
c
e
a

n
 D

a
ta

 V
ie

w

TEMPERATURE [ÊC]

Figure 5.17: Water depth and temperature as reported by the onboard DST800
sensor during the Algal Bloom mission. The left plot shows the vehicle position,
the upper-right plot shows water depth, and the lower-right plot shows the water
temperature.

The recorded water depth readings are comparable to those as measured by

the scientific community. They also increase as the sampling moved south, which

is expected as the shoreline was roughly directly north of the test area. The

bathymetry lines shown in the plot indicate that the sea floor gradient is towards

109

the north-east, which is supported by the sensor data. Towards the south-east

corner of the sampling area, however, it switches to a north-west gradient.

The water temperature data is a little more interesting, though exact con-

clusions are hard to draw as this sensor was not designed for scientific sensing.

Before the mission it was reset to its initial factory calibration and the sensor is

advertised as having an accuracy of 0.5◦C. The sensor detected a gradual warming

of the water by the end of the mission. Although there was full sun during the

entire mission, it’s unlikely that solar heating would cause such a significant rise

in surface temperature over just a few hours. The small spots of slightly cooler

water during the transit instead suggest that there were multiple small thermal

fronts in the area, possibly slowly migrating during the mission.

5.3.2 Front Detection

An additional data collection mission analyzed the water temperature and

salinity in the region of interest highlighted in Fig. 5.12a. The goal of this mission

was to detect gradients in the temperature or salinity of the surface layer. This

is referred to as front detection, following from the term for large gradients in

atmospheric effects.

This mission was run in the morning of May 1st of 2015 from approximately

11:00 to 13:00 local time. Fig. 5.18 shows the waypoints and vehicle position

during the mission in the vehicle’s local coordinate frame. Fig. 5.12b shows the

location of the Front Detection mission (the yellow trace on the right) off Soquel

Point in Santa Cruz, CA.

The mission path consisted of roughly 1.5km-long transits spaced about 0.5km

apart, totaling 10.0km. The actual mission length as executed was 10.5km and

took 2 hours and 33 seconds to complete, with an average groundspeed of 1.1m/s.

110

3500 4000 4500 5000 5500

−2500

−2000

−1500

−1000

−500

East (m)

N
or

th
 (

m
)

Figure 5.18: Position plot of the vessel in local coordinates. The green triangle
and red square indicate the start and end of the mission. The larger magenta
points are where the vehicle switched waypoints.

This ground speed is significantly slower than for previous missions because the

CTD sensor significantly increased hull drag and there was more wave action. The

weather during this mission was worse than during the Algal Bloom mission, with

a consistent 1-2m swell with smaller waves of about 0.3m. The wind was also

significant at approximately 2.5m/s out of the north-west (Beaufort scale 2).

The combination of smaller waves with the large swell resulted in larger crosstrack

error during the last two north-west transits. This is noticeable in the crosstrack

error plot in Fig. 5.19 in the two longer transit legs (1.0hr to 1.5hr and 2.1hr to

2.6hr). The south-west transits before and in between have noticeably smaller

crosstrack errors.

The CTD sensor was operable on this mission and collected data on both water

salinity and temperature, with both shown in Fig. 5.22. The temperature data is

111

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

E
rr

or
 (

m
)

Mission Time (hr)

Figure 5.19: The overall crosstrack errors for the during of Front Detection
mission.

0 200 400 600 800 1000 1200 1400 1600 1800
−10

−8

−6

−4

−2

0

2

4

6

8

10

E
rr

or
 (

m
)

Alongtrack distance (m)

Waypoint transitions

Initial acquisition

Figure 5.20: The crosstrack errors for the Front Detection mission all overlaid
over each other for each line segment.

112

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crosstrack error (m)

D
en

si
ty

2σ

Mean: −0.11
SD: 0.94

Figure 5.21: A histogram of the crosstrack errors during the Front Detection
mission. The initial line acquisition, defined as the period from mission start until
the crosstrack error is less than 2.0m, has been ignored.

especially interesting as it shows multiple fronts. There is a warmer segment of

water near the harbor mouth, which is expected due to the runoff of the harbor. A

thermal front also exists as a warm region that runs north-east through the main

sampling area. On both sides it is surrounded by water approximately 0.5−1.0◦C

cooler.

The salinity data does not reveal any fronts over the sampled area. However,

near the harbor entrance salinity does decrease noticeably. Salinity is usually

lower near the shore due to freshwater runoff, but it is especially pronounced near

the harbor mouth. The use of freshwater for cleaning boats, possibly combined

with a freshwater source that drains into the harbor, is the likely cause of this

reduced salinity.

113

122.02ÊW 122ÊW 121.98ÊW 121.96ÊW 121.94ÊW

36.93ÊN

36.94ÊN

36.95ÊN

36.96ÊN

36.97ÊN

36.98ÊN

O
c

e
a

n
 D

a
ta

 V
ie

w

13.5

13.75

14

14.25

14.5

14.75

15

15.25

122.02ÊW 122ÊW 121.98ÊW 121.96ÊW 121.94ÊW

36.93ÊN

36.94ÊN

36.95ÊN

36.96ÊN

36.97ÊN

36.98ÊN

O
c

e
a

n
 D

a
ta

 V
ie

w

TEMPERATURE [ÊC]

122.02ÊW 122ÊW 121.98ÊW 121.96ÊW 121.94ÊW

36.93ÊN

36.94ÊN

36.95ÊN

36.96ÊN

36.97ÊN

36.98ÊN

O
c

e
a

n
 D

a
ta

 V
ie

w

32

32.5

33

33.5

34

122.02ÊW 122ÊW 121.98ÊW 121.96ÊW 121.94ÊW

36.93ÊN

36.94ÊN

36.95ÊN

36.96ÊN

36.97ÊN

36.98ÊN

O
c

e
a

n
 D

a
ta

 V
ie

w

SALINITY [PSS-78]

Figure 5.22: Water data as captured by the CTD sensor during the Front De-
tection mission. The left plot shows water temperature indicated by color. On
the right is a position plot of salinity, again indicated by color.

5.4 Conclusion

The missions results presented here were obtained over multiple days in 2014

and 2015 and demonstrate reliable operation of the SeaSlug over many hours, and

multiple missions. Both the system itself and its remote interfaces were robust to

the harsh environment and allowed for a wide variety of missions to be undertaken

while at sea. It was even possible to change mission parameters as necessary during

testing.

Throughout these missions the performance of the L+
2 algorithm was notable,

as it had never been tested on a surface platform in littoral waters. It proved itself

quite capable with the SeaSlug almost always capable of following complicated

waypoint paths to within ±2.0m in many weather and sea conditions. This far

exceeds all manned and underwater systems used by oceanographers today and is

comparable or better than other ASVs.

Using this capability a variety of missions were run that measured the salin-

ity, temperature, depth, and other key oceanographic parameters in scientifically

interesting areas and produce high-fidelity data in an automated fashion (though

for safety purposes a chase boat was monitoring the SeaSlug at close range at all

114

times).

The combination of the system’s reliability across sea states, path-following

performance, and payload integration capabilities tests demonstrate that the SeaSlug

is ready for longer data-collection missions with a larger suite of oceanographic

sensors.

115

Chapter 6

Power Analysis

6.1 Introduction

As the SeaSlug relies solely on electric propulsion, its endurance is directly

related to onboard energy storage and the power use of the system. Its onboard

power capacity was chosen to provide more than a day of operation at maximum

speed. This provides an operational range of about 246km and supports a wide

range of short-term data collection missions.

While other ASVs have an endurance of months or more, the SeaSlug has

more modest endurance goals of weeks of continual operation. This was chosen

as the right balance between system cost and system utility. The short mission

durations therefore necessitate a base of operations for the SeaSlug where it re-

ceives maintenance, payload changes, and battery charging. The SeaSlug does

not aim to replace either the manned vessels or the long-range unmanned vessels

used in oceanography, but instead to compliment them as a rapidly-deployable,

medium-duration mobile sensor platform.

Though most ASVs use electrical control systems there is a dearth of infor-

mation on their power use and energy harvesting performance in the literature.

116

This chapter provides data on the power use of the SeaSlug and its potential for

extending mission range with the addition of solar panels.

6.2 Power Use

Power usage data was recorded for both battery banks during the missions

presented in Chapter 5. Measurements were done directly by digital multimeters

that reported the battery voltage and the current draw. This section analyzes the

different subsystems on board and how they contribute towards the total power

budget of the SeaSlug.

6.2.1 Control Electronics

The control electronics on the SeaSlug operate directly off the 12V battery

bank. There is some variability with their power use as some systems have mul-

tiple modes of operations. For example, the power use of the datalogger varies

depending on whether it is receiving data and writing it to the SD card. But

overall during an autonomous mission the power use will be nearly constant.

The total power use of the control electronics has been directly measured as

8.6W. This power use is broken down by component in Table 6.1. The power use

for all components is the maximum power use found under all of its operating

modes, and as such is a conservative estimate of total power use.

The sum of the power use per-component only totals 8.46W, slightly less than

the 8.59W measured for the entire system. While part of this is due to measure-

ment error, the CAN bus does contribute to system power use. During trans-

mission of dominant bits (binary 0), the CAN bus is is held at a 5V differential.

Assuming that dominant bits are 50% of the total transmission traffic, and the

117

Component Power Use
3DR Radio 0.75W
Datalogger 0.43W
DST800 0.50W
GPS200 0.50W

IMU CANode 0.44W
Power CANode 0.62W
Primary CANode 0.62W

RC CANode
(w/ RC receiver) 0.80W

Rudder CANode 0.77W
Tokimec VSAS-2GM 1.50W

WSO100 1.53W

Table 6.1: The power use of the control electronics that run off of the 12V
battery bank.

network is properly terminated with 60Ω resistance, then its power use is approx-

imately 0.2W.

6.2.2 Rudder

The rudder stepper motor is driven by the Applied Motion 2035 motor driver

board. This board has three operating modes: Driving, Idle, and Disabled. In the

Driving mode the board drives the motor at a 2A per phase, resulting in 23.90W

of power use. When the board has not received a step input for 1.0s, the board

switches to its Idle mode and holds the motor with 1A per phase. In this mode it

draws 10.46W. If the motor driver board is disabled, it uses 2.49W.

The power use of the rudder was analyzed during the Algal Bloom mission.

The L+
2 algorithm has been tuned for crosstrack error performance such that the

vehicle follows the desired trajectory quite closely. This can be problematic when

there are large environmental disturbances such as the wind and waves. The

rudder commands are frequently changing and the rudder controller is rarely idle

118

long enough to enter the power-saving mode, entering it only 0.01% of the time.

This rudder activity is quite constant and 88.6% of the time the rudder command

is changed within 0.1 seconds of when it last stopped.

6.2.3 Propeller

Fig. 6.1 shows how the water speed correlates with power use and demonstrates

how the propeller motor is the largest variable in the SeaSlug’s power use. When

idling, the ACS300 driver board consumes 3.04W of power. As the commanded

current is increased the total power use reaches 115.2W.

This data was collected in the Santa Cruz Harbor by averaging the waterspeed

and actuator battery power use during both an up-harbor and down-harbor tran-

sit. Making the assumption that there is little current across the harbor, this

provides an accurate approximation of the true water speed. During this testing

neither of the sensor payload bays were in use resulting in the higher 1.9m/s speed

at maximum throttle.

0 0.5 1 1.5 2
0

20

40

60

80

100

120

Water Speed (m/s)

P
ow

er
 U

se
 (

W
)

Figure 6.1: Propeller power use as a function of water speed.

119

For scientific missions it is generally not imperative that the vessel move at high

speeds. Many ocean events that oceanographers study evolve slowly and scientists

are generally more concerned with covering surface area versus completing the

mission within a specific time window. Existing ASVs have seen successfully used

on long-duration ocean missions while averaging speeds as low as 1.2m/s (within

the range of the SeaSlug’s operating speeds). But even lower vehicle operating

speeds are still capable of performing useful data collection missions, allowing for

reduced power use and extended mission duration.

6.3 Energy Scavenging

The initial construction of the SeaSlug had individual solar cells mounted on

the deck as shown in Fig. 6.2. A total of 412 solar cells were used, connected

electrically into 15 cell groups. Each cell provides 3.1W of peak power from

the 125mm square Sunpower A-300 mono crystalline silicon cell, with a total

conversion efficiency advertised as 21.5%. At peak solar exposure this solar cell

arrangement could potentially provide 1.23kW of power.

Unfortunately these solar cells did not prove robust to the elements or to con-

tinued maintenance of the vessel and they were removed. To evaluate replacement

panels a low-cost 20W solar panel was added to the top of the main hatch. There

is no part number or company information for the panel, but its low cost implies

similarly low performance. It is therefore used here as a conservative estimate for

how much power can be collected at sea.

The solar panel was connected to the Xantrex SW-MPPT60-150 charge con-

troller which charged a 12V battery independent of the other two battery banks.

This charge controller uses a maximum power point tracking (MPPT) algorithm

to optimize the output of the solar panel. The Xantrex charger provides a Xanbus

120

Figure 6.2: The original solar cell arrangement of the SeaSlug, with the vessel’s
bow on the right. The center hatch also has solar cells mounted on it as shown in
the lower-left.

interface which is compatible with the main CAN bus of the SeaSlug.

This panel was tested as part of the Algal Bloom mission on the open ocean.

This mission lasted several hours in the late morning on a bright, sunny day in

Monterey Bay. The resulting power input data is shown in Fig. 6.3.

For the first 24 minutes the panel output averaged 11.9W, which is 60% of the

possible performance of the panel. After this time the batteries were fully charged

and the MPPT algorithm used by the charge controller adjusted the system load

to reduce the power output of the panel to 7.6W. As this reduced output was not

related to the solar input of the panel, a clear sunny day can then be inferred to

provide 11.9W of power while mounted on the SeaSlug. The panel is therefore

capable of outputting 62.5W/m2.

The panel was also tested during a foggy day, during the Front Detection

mission. That day there was a dense fog in the morning that the sun only started

121

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

11.9

7.6

Mission Time (hr)

P
ow

er
 (

W
)

Figure 6.3: Solar power input during the Algal Bloom launch. It was a clear
sunny day during this test. The average before the MPPT algorithm reduced
panel output is 11.9W. The mean for the entire mission is 7.6W.

to break through about halfway through the test. The power generated by the

panel is shown in Fig. 6.4. Even though there was intense fog, the panel averaged

9.5W during the entire mission.

6.4 System Endurance

The SeaSlug has separate battery banks for the controls electronics and the

actuators. Their different capacities and loads result in different endurance esti-

mates for each. For the electronics battery banks, 2.3kWh of energy is available.

This is capable of powering the constant 8.59W load of the electronics for 274

hours (11.4 days).

The 24V battery bank provides substantially more capacity at 5.28kWh be-

122

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

9.5

Mission Time (hr)

P
ow

er
 (

W
)

Figure 6.4: Solar power input during the Front Detection missions. It was a
cloudy day, though the sun started to peak through the clouds about halfway
through the mission.

cause of the larger power draw of the actuators. As previously shown, the power

use of the actuators is dependent on the rudder and throttle commands. The

actuator battery endurance is shown in Fig. 6.5 as a function of the commanded

throttle, shown as the water speed value. The relationship between the throttle

values and vessel water speed was previously established (see Fig. 3.2 in Chapter

3).

Table 6.2 shows the relationship between vessel speed, power use, and en-

durance. At maximum throttle, the SeaSlug is capable of 38 hours of operation.

This increases to 134 hours when running at one-third throttle. And when the

system is idling, the actuators have 391 hours of power. This idle value is rep-

resentative of the system maintaining its position, where both the prop and the

rudder are rarely active and nearly always in their low-power idle modes. Though

123

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18

Water Speed (m/s)

E
nd

ur
an

ce
 (

da
ys

)

Figure 6.5: Actuator battery bank endurance as a function of waterspeed.

Water Speed (m/s) Actuator Power Use (W) Endurance (days)
0 13.5 16.3

0.71 39.5 5.6
1.07 52.3 4.2
1.30 70.0 3.1
1.61 97.0 2.3
1.93 139.1 1.6

Table 6.2: Data used in Fig. 6.5 showing the actuator power use, water speed,
and endurance of the actuator battery banks across a range of throttle values.

124

the actuators are capable of idling for 16 days, the control electronics will run out

of power in 11.4 days, limiting the total system endurance.

The vessel speed controls the trade-off between the distance traveled and mis-

sion longevity. Fig. 6.6 shows the maximum distance the SeaSlug can cover at

different water speeds. This is determined by the energy use of the system as a

function of distance, which is also shown. If optimizing for endurance, then the

system should be kept idle, but if maximizing for distance covered, a water speed

of 1.1m/s provides the maximum distance of 389km.

0 0.5 1 1.5 2
0

20

40

60

80

100

E
ne

rg
y

U
se

 (
J/

m
)

Water Speed (m/s)
0 0.5 1 1.5 2

0

80

160

240

320

400

D
is

ta
nc

e
T

ra
ve

le
d

(k
m

)

Figure 6.6: Energy use per meter (solid blue line) and total mission distance
(dashed green line) for different water speeds.

6.4.1 With Solar Panels

With the measurements of solar panel performance and system energy usage,

simulations were run to determine the possible mission endurance of the SeaSlug

125

in various scenarios. For these simulations the biggest factors affecting system

endurance are the number of usable sunlight hours in a day and the operating

speed of the vessel. For simplicity these simulations ignored the separate power

rails and assumed a single power supply for the entire vessel. Additionally, the

water speeds of the SeaSlug assumes no additional drag from the sensor payload;

the vessel speed is a function of payload hydrodynamics as well.

The tested solar panel averages 62.5W/m2 output on a sunny day. The SeaSlug

has a total of 9.33m2 of deck space, therefore the potential power output is 583.1W

(roughly half of the original power input from the original cells). Assuming that

there are six hours of sunlight every day, the SeaSlug is capable of operating at full

speed for 107 days, traveling a toal of 17,565km. Applying these same calculations

to the foggy day data from the Front Detection mission, yields a total of 465.2W.

Again assuming six-hour days, the SeaSlug is capable of 7.9 days of operation at

full speed, traveling a total of 1,299km.

This is, however, an unrealistic scenario. In Santa Cruz, California and the

surrounding Monterey Bay it only averages 226 sunny days a year and one-in-three

days will be lacking in sunlight. If this scenario is tested in simulation, the results

look like Fig. 6.7. Here the SeaSlug was able to last for more than 146 hours (6.1

days) before exhausting its battery reserves. During this time it traveled a total

of 999km.

By reducing its run speed, the SeaSlug can operate for even longer periods

without sunlight. Fig. 6.8 shows the a simulation of the vessel’s power reserves

where the weather is three no-sun days followed by a day with only three hours

of usable sunlight. By running at 1.6m/s during the sunny hours and 1.1m/s

otherwise, the SeaSlug can attain 231 hours of runtime (9.6 days) and travel a

total of 941km.

126

Mission Time (days)

E
ne

rg
y

S
to

ra
ge

 (
%

)

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Figure 6.7: Energy reserves of the SeaSlug operating at full throttle during a
simulated mission that starts at 8am where two out of every three days have
six hours of usable sunlight. Unusable sunlight hours are indicated by the grey
background.

Mission Time (days)

E
ne

rg
y

S
to

ra
ge

 (
%

)

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

Figure 6.8: Energy reserves of the SeaSlug during a simulated mission that starts
at 8am with three hours of usable sunlight every three days. Daytime water speed
is 1.6m/s and nighttime water speed is reduced to 1.1m/s. Unusable sunlight
hours are indicated by the grey background.

127

While these simulations assume that the SeaSlug is continuously under throt-

tle, its endurance be lengthened even further by idling to wait for sufficient sun-

light to recharge. Some data collection missions will not require the vessel to be

constantly moving and can take advantage of these very low power modes.

For example, a common near-shore event is the discharge of anthropogenic

runoff several days after a rainfall. As the exact time of this event is unknown, it

can be expensive to study with manned vessels. This mission is difficult for most

existing ASV’s (e.g. the Wave Glider cannot operate in shallow waters). The

SeaSlug, however, can comfortably idle in the shallows near runoff locations and

collect data across a shoreline transit every few hours. In this way the precise

time of the event does not need to be known but the data can still be collected.

Studying algal blooms is another situation where endurance is more important

than operating speed. These sudden population explosions of algae occur suddenly

and only last a few days or weeks. Both manned and longer-endurance vessels

are usually already tasked with missions and cannot be reassigned, making this

suitable to the shorter-endurance SeaSlug. It can repeatedly survey the bloom

over its lifetime, idling in between surveys or when sunlight is unavailable and its

energy reserves are low.

6.5 Conclusion

During missions the largest consumers of power for the SeaSlug are the actu-

ators. Therefore adjustments to the throttle can extend the full-speed runtime

of 38-hours to up to 17 days at slower speeds. This allows the SeaSlug to be

immediately deployed as a support vessel to complement an existing fleet with

additional sensor capabilities.

System endurance can be even further enhanced with the addition of even

128

very low-cost solar panels to the deck. With the tested panel, 600W of power is

available during bright sunlight, far more than the total power use of the system

at full speed (148W). Even with a significant number of cloudy days the system

can stay at sea for weeks at a time. If there are extended resting periods or a

large number of sunny days, this duration could be even longer. For the two

data-collection scenarios previously discussed, mission runtime could be infinite

because the system remains idle the majority of the time. The addition of solar

panels to the SeaSlug allows it to out-perform any existing all-electric ASV for

mission endurance.

129

Chapter 7

Conclusions & Future Work

7.1 Conclusions

In summary, this dissertation has presented the SeaSlug as an embodiment of

the design goals laid out in Section 1.2. The specific contributions of this work

are:

The design and implementation of a modular system architecture suit-
able for an autonomous surface vessel that is both highly-extensible and
applicable to other robotic platforms.

The SeaSlug architecture uses a CAN bus to provide a shared communications

network between subsystems. Careful design of custom subsystems, along with the

use of COTS components with well-defined interfaces, provides a highly-modular

system that facilitates the modification, replacement, and addition of sensors,

actuators, and other subsystems. Few assumptions about the hardware exist

outside of the individual subsystems and this architecture is applicable to other

surface vessels, or even ground vehicles.

The modularity of this architecture was evaluated both during development

and with the testing of a solar power subsystem. This subsystem was installed for

130

the evaluation of solar panels with an accompanying CAN-enabled solar charging

unit. Necessary changes were mostly within the specific subsystem, providing

trivial integration with few modifications to the rest of the system.
The design, development, and validation of an open-source ASV that
is capable of both general engineering experimentation and scientific
data collection.

The internals of the SeaSlug were developed as part of this work, as the external

hull design was previously commissioned by Willow Garage [92]. This develop-

ment included the design and implementation of the modular architecture and the

selection of components for providing sensor data and integration with the actua-

tors. Most components were COTS, which facilitated their service or replacement.

A few components were custom designed as suitable alternatives were not avail-

able at the desired price. This included a data logger for recording telemetry

at high data rates from the primary computer. A single-board computer (SBC),

called the CANode, was also developed to serve as a computation platform and

to integrate components to the onboard CAN bus. While both components were

designed for use aboard the SeaSlug, each are generally applicable to other robotic

systems. This includes the operator interface, which uses a low-cost weatherproof

tablet that runs generic robotic interface software that is open-source and can be

readily adapted to any system.

The complete system was evaluated over a multitude of experiments in both

a sheltered-water harbor environment and the littoral waters of Monterey Bay,

California. This included both performance evaluations of the system’s control

algorithms and scientific data collection experiments. During the data collection

missions valuable scientific data on water depth, salinity, and temperature was

found.
Analysis of power consumption of the subsystems of an electrically-
propelled ASV and its potential for solar power generation to allow for

131

extended duration missions.

Power consumption of the individual components of the SeaSlug was mea-

sured over all operating modes. This includes the COTS components, custom

hardware, and the actuators. While power use is usually provided by the doc-

umentation for COTS parts, these measurements are generally inaccurate. The

custom hardware and actuators had a variety of operating modes that required

specific measurements. The resultant measurements supported estimates of total

system endurance while station keeping and at a variety of travel speeds.

The potential for extended-duration missions was explored through the addi-

tion of a solar panel. This low-performance panel was evaluated on two missions

to estimate its true output on both sunny and cloudy days. Combined with the

collected power use data, estimates can be made of system endurance if additional

panels are added. The addition of even low-cost solar panels would extend mission

endurance to at least several days, dependent on the vehicle speed and weather

conditions. Some realistic scenarios support infinite deployment times.

The adaption and analysis of the L+
2 control algorithm to an ASV.

The L+
2 control algorithm previously developed by the Autonomous Systems

Lab has been extensively tested in simulation and on an UAV. It is vehicle-agnostic

and therefore applicable to other vehicle types, but had never been tested on any

other system. This work demonstrated the necessary system and algorithm mod-

ifications required for operation onboard the SeaSlug, which has both different

control surfaces and system dynamics than the original test vehicle. This algo-

rithm was capable of following the desired mission trajectory with less than 2.0m

of crosstrack error. This performance was reproducible during a variety of missions

and across a range of sea and weather conditions.

132

The design and development of a robust simulation environment for
an ASV that is suitable for algorithm and system testing on land.

The logistics of live testing of the SeaSlug necessitated a robust simulation

environment. Aditionally, this environment was necessary to develop and tune

control algorithms prior to testing. This was facilitated by the use of Simulink for

both control algorithm development and the simulation environment. By using

Simulink, the central control algorithm operates onboard the SeaSlug exactly as

it does in simulation. A software-only simulator allows for testing control algo-

rithms independently of the rest of the system. This is supplemented by a replay

simulator that allows recorded telemetry from missions to be played back in or-

der to debug algorithm failures or to test potential modifications on real sensor

data. An interface computer, built on the common CANode hardware, bridges

the software simulator environment to the SeaSlug’s CAN bus. The actuators

can be added to this CAN bus to allow for their actual dynamics to be used in

simulation. When the actuators are not on the bus, their dynamics are simulated

instead by high-fidelity models. This testing environment allows for both testing

of the system and algorithms before a launch as well as evaluating the system

performance after live deployments.

Though all of the above goals were attained as part of this work, the combined

contribution of all of them is more valuable than their individual summaries sug-

gest. The SeaSlug has been shown to be capable of completing scientific missions

in littoral waters lasting several hours. It has been designed to be extensible to

other mission types through its flexible payload capacity. And significantly longer

missions are possible with the addition of low-cost solar paneling. With the con-

clusion of this work oceanographers now have another tool at their disposal for

studying the world’s oceans.

133

7.2 Future Work

The SeaSlug platform has been proven to be robust, reliable, and capable

of a variety of open-ocean missions, lending itself to further development and

experimentation. Planned future work seeks to extend its capabilities as a mobile

data-collection platform with additional improvements to its endurance, sensor

capabilities, and level of autonomy.

1. The guidance, navigation, and control algorithms of the SeaSlug are cur-

rently limited to the rudder. Extending these algorithms to the propulsion

subsystem can both improve mission endurance and add mission capabili-

ties. The throttle command will be altered to be a fixed ground or water

velocity instead of motor current. Missions can then specify this velocity,

selecting ground- or water-relative velocities dependent on the mission ob-

jectives. Commanding water speed would be used when power efficiency is

required, while commanding ground speed would allow the vessel to take

advantage of environmental effects for power savings, such as the wind or

water current.

2. Solar power has been shown to be a viable option to extend mission durations

significantly, as presented in Chapter 6. Panels that are efficient, low cost,

and robust to the marine environment will be selected and installed on the

deck. A solar charge controller, which regulates the power input of the solar

panels and the power output of the batteries, will be added that is robust to

the marine environment and can interface with the CAN bus. The resultant

solar power subsystem can then be monitored by the Primary Node and

human operator.

3. Roll control of up to ±60◦ is possible with the 91kg of movable ballast

134

mounted in the SeaSlug. Most of the necessary hardware for this has already

been acquired, but additional work is required to complete the addition of

a roll control subsystem to the vessel. An additional CANode is required

to interface between the Primary Node and the ballast motor controller so

that a ballast angle or vessel roll angle can be commanded. The efficiency of

solar panels is dependent on the cosine of the incidence angle of the sun, as

described by Lambert’s cosine law [53], and reducing that angle provides an

appreciable increase in solar power generation. Optimal trajectory planners

have already been developed for UAVs that accounts for power drain as a

function of flight speed and power gain as a function of roll angle [51]. This

algorithm could be adapted to the SeaSlug, as those inputs map exactly once

roll control has been developed. Given that the SeaSlug can maintain a roll

angle outside of turns, unlike a UAV, modifications may make the algorithm

even more suitable to the SeaSlug than the UAVs it was originally designed

for.

4. Marine scientists are often interested in collecting sensor data at a range

of depths. When vertical profiling is done at different locations it provides

a three-dimensional view of the ocean. Manned vessels and underwater

gliders are both capable of vertical profiling, and commonly work in concert

to collect sufficient data. Though the SeaSlug is currently unable to collect

data at depth, it is technically feasible. The addition of this functionality

would allow the SeaSlug to replace both manned vessels and underwater

gliders. An automatic winch will be added to one or both of the payload

bays. This allows for the payload to slot securely into the bay when not

deployed but to also lower down to depth. Both the Lizhbeth ASV [46] and

the C-Enduro [14] demonstrated the feasibility of vertical profiling with a

135

winch on an ASV.

5. Sustained autonomous deployments require reliable long-range communica-

tions for system monitoring and mission retasking. Most ASVs rely on the

Iridium satellite communications network for two-way communications with

home base. A modem will be integrated into the SeaSlug that can provide a

1200bps connection. As this connection has much less bandwidth than the

57600bps radio connection currently in use, MAVLink may not continue to

be usable as it consumes significant bandwidth. Datastream compression

or modifications to the MAVLink protocol will be investigated to support

these lower baud rates so that QGroundControl can continue to be used.

6. Sensor payloads are currently limited to stand-alone packages that include

a power source and data storage capabilities. These sensor packages are

usually limited to less than 48 hours of operation. Longer deployments will

require external power and data storage facilities, which can be provided by

the SeaSlug through an external connector. Many sensors run at the same

12V that is already available from the electronics battery bank. Additionally,

RS232 is the common interface for these sensors, which is supported by

the datalogger. The addition of a dedicated datalogger for the sensors can

provide many months of data storage. Integrating this datalogger with the

remote communications interface will allow for preliminary analysis of the

gathered scientific data. This connection will also be available to any winch-

mounted sensors through a contact-less induction system.

7. Obstacle detection and collision avoidance are essential for the heavily-

trafficked harbors and near-shore regions targeted by the SeaSlug. A variety

of detection mechanisms have already been tested in existing ASVs including

136

radar [2], sonar [42], and vision [28] [47] [40]). Some marine vessels directly

transmit their position and velocity with an Automatic Identification Sys-

tem (AIS) transmitter, which is mandatory for vessels over 22m [1]. An AIS

receiver could extend any other sensors with additional sensing abilities. A

range of sensors will be integrated and tested for obstacle detection. This

will then feed into a high-level trajectory planner to provide collision avoid-

ance capabilities. The COLREGs [23] provide standard rules for interactions

with other manned vessels, and have been successfully integrated into a tra-

jectory planner for an ASV [52]. This algorithm allows for adhering to the

COLREGS while also accounting for additional unguided obstacles and the

vehicle’s mission plan.

8. With the short mission durations supported by the SeaSlug, docking and

launching procedures will be common. These are delicate procedures, with

little room for error, and currently require manual control. Extending the

obstacle detection and path planning algorithms to support these procedures

would remove some of the last vestiges of required human interaction.

137

Appendix A

Datalogger

A.1 Introduction

With the development of the SeaSlug, recording telemetry for later analysis

was crucial to debugging some algorithm and system failures. This extra debug-

ging information eventually became too large to transmit to the GCS for logging.

Therefore a hardware datalogger was added to the SeaSlug that logged telemetry

over a hardline connection to the Primary Node.

Several dataloggers were evaluated as part of the SLUGS project [58], but none

were found to be reliable at the bandwidth required. The commercial and open-

source dataloggers that are available are either very high cost or have high data

loss rates. Therefore the SLogger (short for SLUGS Logger) was developed for

the high-bandwidth data-logging needs of the SeaSlug, supporting logging UART

data streams at up to 115200baud with data loss rates below 0.4%.

138

A.2 System Architecture

With the CANode (introduced in Section 2.3.1) already designed to serve as

an extensible computation platform, it was used as the base for the SLogger. The

dsPIC33E processor was used as it provides both the computation performance

and the necessary UART and SPI interfaces. While this platform includes addi-

tional hardware for the SLogger, its compatibility with a 12V power rail made

it an ideal initial development platform. The system has been designed to be

sufficiently hardware-agnostic, with the only alteration necessary for operation

on different hardware being the pin mapping. Work is already underway in the

Autonomous Systems Lab to create a smaller and lower-cost version for use in

testing of the SLUGS autopilot.

With the CANode already providing most hardware requirements, only a mi-

croSD card connector was required. A CANode shield, containing both additional

connectors and the microSD card slot was developed. The shield is the red circuit

board shown in Fig. A.1.

Figure A.1: The datalogger hardware. The base CANode is the green circuit
board. Additional connectors and the miroSD card are on the red shield.

The software architecture is shown in Fig. A.2. Incoming UART data is han-

139

dled by a hardware ping-pong buffer, commonly known as double-buffering. Once

one of these buffers is full, the UART begins to fill up the other buffer.

Buffer1

Buffer2

Hardware
ping-pong buffer

SD Card
SPIUART

Checksum

Figure A.2: The datalogger architecture overview. Data is received over UART
into a circular buffer that then empties onto an SD card.

Once a UART buffer is full, it triggers an interrupt that copies the data into

an internal software circular buffer. The circular buffer provides storage for up

to 20 of these filled UART buffers, which uses all available processor RAM (the

dsPIC33EP256MC502 used has 32KB of RAM). During testing this has proven

sufficient to avoid buffer overruns.

Before copying the data from the circular buffer to the SD card, it is first

encapsulated in a packet. This packet is the same size as a block on the SD card,

512 bytes, as that is the base unit of data transfer with the card. The encapsulation

process uses 6-bytes to store a file identifier and checksum with the data, which is

therefore 506 bytes. The file identifier is used to determine the blocks that make

up a file, as overallocation is used to provide the necessary performance. The

checksum is an XOR of all data bytes in the packet and provides basic integrity

validation. The complete encapsulation format is shown in Fig. A.3.

SD cards are commonly formatted with either the FAT16 or FAT32 filesystems.

These are widely supported by all operating systems and were used with the

SLogger for this reason. Microchip provides a library that is capable of interacting

140

% ˆ File ID
(1-byte)

Data
(506-bytes, big-endian)

Checksum
(1-byte)

% &

Figure A.3: The data packet format used for storing 512-byte data blocks in the
log files. Fields without an explicit size are 1 byte.

with either FAT filesystem and provides file- and directory-level access to the data

on the SD card. In also encapsulates all SPI peripheral interactions as part of this.

A.3 Functionality

Configuration of the SLogger is done with a config.txt file stored in the

root directory of the SD card. This file was designed to be extensible, to support

logging through a variety of peripherals. Currently only the UART is supported,

and the configuration file specifies which input pins are receiving the data and

at what baudrate. Should the specified configuration of the SLogger fail for any

reason, a red LED is illuminated and the system waits until an SD card with

a proper configuration file is inserted. Once the system is configured an amber

status LED blinks to indicate that the system is now operational.

When the system is logging data, it is robust to failure from both power and

SD card issues. The card is always left in a state where already-written data is

recoverable, though there may be junk data included at the end of the file from

the way the system over-allocates files when they are created. Therefore if the

card is accidentally removed, power is cut, or the SD card fails to accept new

data, the data already written to it should still be usable.

When powered-on the datalogger scans through the SD card searching for log

files that match its file naming scheme and starts a new log file with the subsequent

number. In this way existing data is never overwritten and data is recorded as it

is received. This process is also done on insertion of an SD card.

141

In addition to storing a log file, the SLogger also records a metadata file for

storing status messages during logging. In this file messages are timestamped with

the number of seconds since power on. The log is started with how the system

started up, from either a card insertion or a processor brown-out. Additional

informational messages are appended as well, such as when the circular buffer

overflows, enabling debugging should there be a systemic issue during a long data

logging process.

The data recorded on the SD card is encoded in the packet format described

in Fig. A.3. To obtain the original logged data, an extraction script is provided

with the logger that outputs the original binary log of the received data. It checks

the file identifier and checksum as it scans the file. Once the file identifier changes

or the end of the log file is reached, the file has finished processing. Any packets

that fail to pass the checksum validation process are dropped from the final binary

log.

142

Appendix B

Attitude

B.1 Introduction

In order for a vehicle to correctly control itself it is necessary that it under-

stands its own orientation in 3-dimensional space. This is known as the vehicle’s

attitude, which defines the body frame relative to an inertial navigation frame

that serves as a reference, which is generally the Earth.

There are many ways to represent the final vehicle’s orientation, though there is

usually a convention for the various fields of science and engineering. This extends

to the method of converting coordinates from the body frame to the navigation

frame or vice-versa. This is because the conversions are a sequence of rotations

around intermediate axes, which can be defined in multiple ways.

This chapter focuses on one of the more fundamental attitude representation

systems, Euler angles. These angles are likely the reader’s first exposure to at-

titude representations and is common among the hobbyist and DIY community

because of its simplicity.

143

B.2 Euler Angles

Euler angles are one of the most common and simplest ways to represent

attitude. They are a triplet of angles that represent separate rotation angles to

define a coordinate frame relative to the inertial frame. While the coordinates

can be either right- or left-handed, right-handed coordinates are more commonly

used and only they are discussed for simplicity.

Figure B.1: Shows the extrinsic Euler angle rotation sequence Z-X-Z. The first
rotation rotates around the reference Z-axis. The second is around the reference
X-axis. And the third is around the reference Z-axis again. This can fully describe
any orientation in 3-dimensional space.

There are twelve different ways to define the rotations given that the coordinate

frames are three-dimensional and as such require three separate rotations. These

twelve transformations are split into two groups: Euler angles and Tait-Bryan

angles. Euler angles, also referred to as proper Euler angles, use the same axis

for the first and last rotations: (Z-X-Z, X-Y-X, Y-Z-Y, Z-Y-Z, X-Z-X, Y-X-Y).

Tait-Bryan angles, sometimes also referred to as Euler angles, use different axes

for all three rotations: (X-Y-Z, Y-Z-X, Z-X-Y, X-Z-Y, Z-Y-X, Y-X-Z).

These rotations are further broken up depending on whether extrinsic or in-

trinsic rotations are used. Extrinsic rotations are more intuitive as they define

the axes about which the rotations are performed as one of the three fixed axes of

the reference frame. Fig. B.1 shows the common Z-X-Z rotation sequence using

144

extrinsic angles.

Intrinsic angles on the other hand use axes from three different coordinate

systems. These coordinate systems are defined as the position of the rotating

coordinate system after each set of rotations. So the first rotation rotates the

XY Z0 coordinate frame to XY Z1, the second from XY Z1 to XY Z2, and so on.

Fig. B.2 shows the Z-X-Z rotation sequence using intrinsic angles.

Figure B.2: Shows the intrinsic Euler angle rotation sequence Z-X-Z. The first
rotation rotates around the reference Z-axis. The second is around the rotated
X1-axis. And the third around the now doubly-rotated Z2-axis again.

B.3 Euler Angle Conventions

Tait-Bryan Z-Y-X angles using intrinsic rotations have become a de facto stan-

dard for both aerospace and nautical work. This is for two reasons: First, yaw

is relative to the reference frame. This makes the heading a consistent reading

for inertial observers and pilots alike. Secondly, the use of intrinsic angles make

reasoning about the pitch and roll angles intuitive and easy to reason about for

human pilots.

As shown in Fig. B.3, the transformation from the global reference frame to

the body frame then follows as:

1. Rotate about the global Z axis by ψ, call this yaw.

145

2. Rotate about the transformed Y1 axis by θ, call this pitch.

3. Rotate about the doubly-transformed X2 axis by φ, call this roll.

Figure B.3: The Tait-Bryan Z-Y-X intrinsic rotation sequence for describing
attitude follows a similar rotation sequence to that shown in Fig. B.2. First a yaw
rotation is applied to the Z0 axis. Then a pitch rotation is applied to the Y1 axis.
And finally a roll rotation is done about the X2 axis. “Plane.svg” by Juansempere
is licensed under CC BY 3.0.

B.3.1 Gimbal lock

While Euler angles are intuitive to reason about, they do have a singularity

and so not every position is uniquely identifiable. If the pitch of the vehicle is

90◦, then the yaw and roll axes are aligned, which is referred to as gimbal lock.

Since they are aligned, their sum is the only thing that can be determined and

not either value individually. Therefore the system does not actually know how

it’s oriented in space without additional inputs.

While this is a problem for systems like satellites, and airplanes in rare cir-

cumstances, this is not an issue for ground vehicles. During normal operation

146

their pitch does not approach 90◦. For the SeaSlug, the wave action might causes

pitching as high as 30◦, but for pitch angles near the singularity it is likely the

vehicle is already lost and as such controlling it is unnecessary.

B.3.2 Using Euler angles

While the above description of Euler angles is sufficient for an intuitive un-

derstanding of them, the math supporting it deserves a more formal presentation.

As an attitude representation is really a single rotation, it can be expressed as

a single rotation matrix. With the yaw, pitch, roll representation intrinsic rota-

tions are used, so subsequent rotations rotate about the transformed axes from

the previous operation. What this means is that representing the final rotation

can simply be done by left-multiplying the rotation matrices in the order of yaw,

pitch, and roll:

n−→b

R =
n−→b

R (φ, θ, ψ) = R(φ)R(θ)R(ψ) (B.1)

,

These individual matrices can be easily calculated by using the standard 3x3

rotation matrices. The first rotation is for the yaw angle, represented by ψ, which

is about the inertial z-axis:

R(ψ) =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


The next rotation is for pitch, given the symbol θ, which rotates about the

now-transformed Y1 axis:

147

R(θ) =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)


The roll angle, φ, is applied in the final rotation about the Z2 axis:

R(φ) =


1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)


By multiplying the above matrices together as shown in Eq. B.1, the complete

matrix for rotating from the navigation to the body frame is shown below. Note

that the shorthand for the cos() and sin() functions, as c() and s() respectively, is

used due to limited space.

n→b
R (φ, θ, ψ) =


c(ψ)c(θ) c(θ)s(ψ) −s(θ)

c(ψ)s(φ)s(θ)− c(φ)s(ψ) c(φ)c(ψ) + s(φ)s(ψ)s(θ) c(θ)s(φ)

s(φ)s(ψ) + c(φ)c(ψ)s(θ) c(φ)s(ψ)s(θ)− c(ψ)s(φ) c(φ)c(θ)


(B.2)

B.4 Euler angle rates

Now while the IMU reports attitude as Euler angles, it reports rotation rate

relative to the body frame, oriented as shown in Fig. B.4. It is important to note

that these rates are not equivalent to the derivative of the yaw, pitch, and roll

angles. To convert the gyro sensor data into yaw, pitch, and roll angular rates

requires extra derivation that does not use the rotation matrix from Eq. B.2.

Converting the sensor angle rates to Euler angle rates relies on rotating the

148

z

r
x

y

q

p

Figure B.4: The principal axes used for representing coordinates in the body
frame are x, y, and z. The rate of rotation around these three axes are p, q, and r
respectively. This work is a derivative of “Yaw Axis Corrected.svg” by Jrvz, used
under CC BY. This work is also licensed as CC BY-SA 3.0 by Bryant Mairs.

individual readings back to the appropriate coordinate frame that they are rep-

resented in. The pitch rate is defined relative to the Y2 axis. However, the y-axis

gyro reading from the sensor is measured relative to the Y3 axis, and therefore

needs to be rotated. The same process applies to the yaw and roll rates.

The simplest derivation of the transformation matrix is to actually calculate

its inverse, the mapping from the Euler angle rates to the sensor rates. The key

idea here is that each of the sensor values needs to be rotated from its coordinate

frame to the sensor frame. For the roll rate, there is no necessary conversion as

it is defined in the body frame. For the pitch rate, that is defined in the XY Z2

frame and needs to be rotated to the body frame. And for the yaw rate, it needs

to be rotated from the XY Z1 frame to the body frame.

For the following equations the gyro rates of p, q, and r relate to rotations

being about the body-frame x, y, and z axis as illustrated in Fig. B.4.

149


p

q

r

 = I3


φ̇

0

0

 +
2→b
R


0

θ̇

0

 +
1→3
R


0

0

ψ̇



=


φ̇

0

0

 +R(φ)


0

θ̇

0

 +R(φ)R(θ)


0

0

ψ̇



=


1 0 − sin(θ)

0 cos(θ) sin(φ) cos(θ)

0 −sin(θ) cos(φ) cos(θ)




φ̇

θ̇

ψ̇

 (B.3)

To obtain the desired conversion matrix requires inverting the matrix from

Eq. B.3. It is important to note here that while rotation matrices are orthogonal,

the above is neither a rotation matrix nor orthogonal. Because of this the inverse

has to be derived and the resultant matrix is shown in Eq. B.4.


φ̇

θ̇

ψ̇

 =


1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)

0 −sin(φ) cos(φ) cos(θ)



−1 
p

q

r



=


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)




p

q

r

 (B.4)

150

Appendix C

CAN bus

C.1 Introduction

The Controller Area Network (CAN) bus serves as the central communications

network on the SeaSlug over which all onboard subsystems communicate with

each other using a well-defined interface. Most embedded protocols are relatively

simple and only define the first and second layers of the OSI model to provide a

direct connection between two devices. The CAN bus implements the third layer,

the network layer, as well and allows multiple devices to transmit and receive on

the same bus. The protocol also defines additional details like arbitration and

error handling due to its anticipated use in large networks operating in noisy

environments.

Therefore the details of the CAN bus are relegated to this appendix. The

CAN bus provides a number of useful features for a large robotic system like the

SeaSlug, and these features are described in more details here. Not every part of

the CAN standard is detailed here, as there is more detail available from [54] and

the CAN standard itself [48].

151

C.2 Overview

CAN is a message-based, multi-master bus protocol originally developed for

automotive applications by Bosch in 1983. It was designed as a communications

network for many microcontrollers, without the need for a host computer. It was

further defined as the ISO 11898 standard [48].

Each CAN message is called a frame and there are 4 different frame types:

1. Data frame: Contains a message identifier as well as a data payload

2. Remote frame: Requests a message be sent

3. Error frame: Transmit by any node when it detects an error

4. Overload frame: Injects a delay between the data and/or remote frame.

Messages that can be transmit on the CAN bus fall into four frame types:

data, remote, error, and overload. This chapter only details the data frame, as

that is the only one used in the SeaSlug project. The data frame exists in two

different forms, one with an 11-bit identifier (CAN2.0A) and one with a 29-bit

identifier (CAN2.0B). Both data frames can be transmit on the same bus and

CAN controllers that support the extended data frame also support the standard

data frame.

The identifier of a data frame message defines its contents. These definitions

exist external to the network as part of a message set and are commonly part of

a standard that builds on top of the CAN bus, like NMEA2000 [59].

There is no destination address for messages in the base CAN protocol, and

nodes can read all messages written to the bus. Most messages contain the state

of a node and are transmit regularly to keep other nodes in sync. The bus can

therefore be modeled as a distributed system using a shared memory space where

152

Arbitration
Field

(12 bits)

Control Field
(6 bits)

Data field
(0..64 bits)

S
O
F

Identifier
11 bits

R
T
R

I
D
E

r
e
s

DLC
4 bits

Data
0..8 bytes

CRC
15 bits

ACK
2 bits

EOF
7

bits

Figure C.1: The components that make up a standard CAN frame. Each field is
1-bit unless otherwise specified. See TableC.2 for details on the individual fields.

each value has a fixed update rate. CANopen [21] expands on this idea and

exposes this shared memory model to the developer directly.

C.3 Electrical Specifications

Electrically CAN is a two-wire differential signal, so it is half-duplex as only

one node can write to the bus at a time. One of the lines is pulled high to VCC,

and is referred to as CANH. The other line is pulled low to GND and is labeled

as CANL.

The entire bus is impedance-terminated with 120Ω resistors across the differ-

ential pair, one at each end of the network. These resistors not only minimize

signal reflection at high bit rates, but also provide voltage stabilization for the

bus.

As a differential signal, bits are specified by a voltage difference between CANH

and CANL. Nominally a CAN bus operates across the voltage range of 0 to 5V.

To represent a “1” value on the bus, both the CANH and CANL lines are

undriven. Both lines therefore have similar values, which should be close to 2.5V,

which they converge to when undriven. The voltage difference is specified as

between -1.0V and +0.5V.

To represent a “0” value on the bus, the CANH line is pulled high to +5V and

153

Field Name Size (bits) Description
Start of frame (SOF) 1 Indicates the start of a new

frame. Always 0.
Identifier 11 A value that uniquely iden-

tifies the information in this
message.

Remote Transmit Request (RTR) 1 Dominant (0) for data
frames and recessive (1) for
remote frames

Identifier Extension (IDE) 1 Dominant (0) for standard
data frames, recessive (1) for
extended data frames.

Data Length Code (DLC) 4 The number of bytes of data
payload for this message.

Data 0..64 Between 0 and 8 bytes of
data.

Cyclic Redundancy Check (CRC) 15 The CRC value for this mes-
sage.

CRC delimiter 1 Recessive (1)
Acknowledge (ACK) 1 Transmitter sends a reces-

sive (1) bit and other node
acknowledge this message by
overwriting it with a domi-
nant (0) bit.

ACK delimiter 1 Recessive (1)
End of frame (EOF) 7 All bits are recessive (1).

Figure C.2: Fields in a standard data frame message.

Arbitration Field
(32 bits)

Control
Field

(6 bits)

Data
field
(0..64
bits)

S
O
F

Identifier
11 bits

S
R
R

I
D
E

Identifier
18 bits

R
T
R

DLC
4 bits

Data
0..8
bytes

CRC
16
bits

ACK
2

bits

EOF
7

bits

Figure C.3: The components that make up a standard CAN frame. Each field
is 1-bit unless otherwise specified. Unnamed fields are reserved/unused bits and
are dominant (0). See TableC.4 for details on the individual fields.

154

Field Name Size (bits) Description
Start of frame (SOF) 1 Indicates the start of a new

frame. Always dominant
(0).

Identifier B 18 Additional bits making up
the complete identifier for
the message.

Substitute Remote Request (SRR) 1 Always recessive (1).

Figure C.4: Fields in in an extended data frame that are not in a standard data
frame. Note that these fields are not in order, see Fig. C.3 for their ordering.

the CANL line is pulled low to 0V. This is referred to as a dominant bit because

it overwrites a recessive bit that is being written to the bus. The bus topology is

therefore that of a wired-AND, where if any node attempts to write a “0” onto

the bus, it succeeds.

C.4 Timing

Data and remote transmissions are not allowed to be transmit back-to-back,

and an interframe gap is imposed in between. During this time the bus sits in

the recessive state until the gap has elapsed. Overload and error frames do not

adhere to this rule, which effectively gives bus errors priority over data and remote

frames. This guarantees the network stays consistent, even when saturation or

bus errors occur.

Due to the size of CAN buses, both in terms of physical length and number of

nodes, care must be taken to account for clock skew between nodes. Each node has

its own oscillator and slightly different timings, so phase shifts can occur between

nodes. Therefore a spatial synchronization algorithm is required to coordinate

timing.

The first part of synchronization is hard synchronization, where the internal

155

bit clocks of every node is reset at the falling edge indicating the Start-Of-Frame.

Additional synchronization occurs during a transmission frame. This is done

by segmenting a bit time into three parts: Sync, Time Segment 1 (TS1), and Time

Segment 2 (TS2). An edge is expected during the Sync segment, while the bit

value is actually sampled between TS1 and TS2. Now if an edge occurs outside

of the Sync segment, for example during the TS1 segment, the timing for the TS1

segment is restarted lengthening this bit. And if an edge is detected during the

TS2 segment, indicating that the next bit has started, so the next bit time is

started immediately.

It should be noted that this soft synchronization is only done for the next bit

time after synchronization was done, so this process can occur often in a network

with large phase shifts.

C.5 Data Rates

As a reult of the metadata associated with each data message, the effective

data rate of the bus is much lower than its set speed. For example, with a fully-

loaded 1Mbit CAN bus with no collisions and the fastest bit timings, the effective

data rate for extended messages is only 48.9%. The use of standard frames raises

this to 57.7%, but it is still close to only half of the actual transmission speed.

For networks with many nodes transmitting a variety of different message

types, congestion further reduces this data rate. For example, the SeaSlug has

nine different nodes transmitting on the CAN bus and at least two nodes transmit

messages 100 times a second.

156

C.6 Arbitration and Priority

Message arbitration takes advantage of the wired-AND topology and an im-

plicit message priority to determine which node holds the bus and can transmit

onto it. All nodes constantly monitor the bus and attempt to write to it a certain

time after the last transmission finished, referred to as the interframe space. This

time is equal to 7 bit values and the network is in the recessive state during this

time.

Once that time has elapsed, all nodes with messages to transmit attempt to

transmit their message on the bus. Since dominant bits overwrite recessive bits, if

a node detects a dominant bit when it is writing a recessive bit, it stops trying to

transmit and instead switches to receiving. Therefore the one that wins priority

is the node that was able to successfully write all the arbitration field bits to the

bus. Nodes that lost this round try again to transmit next round. In this sense

message transmission on a CAN bus follows a priority queue model.

There are some additional details for arbitration between different frame types.

Remote frames with the same identifier as a data frame lose precedence to the data

message because of the dominant value for the RTR bit. Additionally, standard

frame messages take priority over extended messages, because their IDE bit is

dominant.

C.7 Fault Tolerance

Error handling in the CAN protocol has been designed to both detect invalid

messages and to also preserve network integrity in the case of a malfunctioning

node by removing it from the network.

The first way the network stays synchronized is by the use of the ACK field in

157

each data and remote frame. During this time the network is in the recessive state

and it is required that another node indicate that the message transmit correctly

by driving the bus to a dominant value. It should be noted that the only thing

this indicates is that there is one other node is on the network and it read the

message correctly. It does not actually indicate that the message was processed

by that node at all. The failure of a node to ACK is an error for the transmitting

node.

A fifteen-bit Cyclic Redundancy Check (CRC) is calculated and transmit with

every data and remote frame and is verified by receiving nodes. This CRC has a

Hamming Distance of six, meaning it can detect up to six single-bit errors or up

to fifteen sequential burst errors. This CRC value is not used for error correction,

however. For receiving nodes, a message failing the CRC check triggers an error.

Bit stuffing is the process of inserting a single bit of the opposite value once

5 bits of the same value have been transmit. This extra bit is automatically

removed by receiving nodes. This is partly done to maintain synchronization,

as soft synchronization is only done during bit transitions. Another reason is

to prevent large DC biases from entering the network. Outside of the EOF and

interspace frame fields, six consecutive identical bit values is then a bit stuffing

error.

Additional network errors occur when the bus does not have the expected

value. During reception this can be in one of the fixed-form fields (delimiters,

EOF, etc.) and is referred to as a form error. Bit errors on the other hand occur

when a transmitting node detects a different bit on the bus than what it transmit.

The above five errors make up all of the errors that are handled by the CAN

protocol. As soon as any node detects an error, it interrupts transmission to

transmit an error frame. All nodes then discard the message that was being

158

transmit and increment their internal error counters. The transmitting node then

restart transmission.

Each node maintains two separate error counters: one for receiving and one

for transmitting. There are several rules for incrementing the error counters, and

there are three different error states that a node can exist in depending on the

error counters. The most important detail is that transmitting nodes increase their

error counters faster than receiving nodes. Once their error count is high enough

they enter the Bus Off state, and stop participating in the network, including

ACKing messages. The CAN hardware must be reset by the application.

More details of how errors are handled can be found in Chapter 4.1.4 of [54].

159

Appendix D

NMEA2000

D.1 Introduction

The NMEA2000 protocol [59] is a protocol that builds upon the CAN protocol,

but provides additional specifications for almost all layers of the OSI model. It

has become the de facto standard for marine electronics since its introduction, re-

placing the less-flexible NMEA0183 protocol. Most commercial marine electronics

therefore communicate over NMEA2000, which defines both a physical connector

and the message set for devices.

The NMEA2000 protocol is unfortunately a proprietary protocol and so is

unavailable except to purchasers of the specifications. Though this is unfortunate,

it has not lessened the protocol’s usefulness in providing a common interface for

commercial sensors. Additionally, the community has reverse engineered much of

the protocol’s message definitions and parsing algorithms.

This chapter describes the most important aspects that the NMEA2000 proto-

col adds over the ISO11898 standard that describes the CAN bus. It does not pro-

vide enough detail to completely integrate with all aspects of the NMEA2000 pro-

tocol, but has been sufficient for processing data output by NMEA2000-devices.

160

D.2 Overview

The NMEA2000 protocol specifies many details at the physical layer. This

includes the supported voltage range of 9-16V, which can be provided directly

by standard 12V lead-acid batteries. The connectors are required to be one of

two different types, depending on the application. Smaller vessels, such as the

SeaSlug, only need the smaller of the two cable sets, which support up to 3A of

current and can run for distances of 20m. These DeviceNet connectors are also

IP67 rated, which is necessary for harsh marine environments.

While the CAN protocol itself can support arbitrary baud rates, J1939 sets a

fixed baud rate of 250kbit, which NMEA2000 inherits. This improves significantly

on the 4.8kbaud of the NMEA0183 standard it replaced. At this bit rate, the

maximum length of the bus is 250m.

Nodes operating on the same NMEA2000 bus support higher-level arbitration

than that specified with the CAN standard. Nodes negotiate for themselves a

Node Identifier (between 0 and 255). This is used for identifying nodes in node-

to-node messages. This also places a hard limit of 256 NMEA2000 nodes on a

single CAN bus.

D.3 Message Formats

Messages in the NMEA2000 protocol all correspond to the CAN2.0B standard,

which uses the extended 29-bit header. The header is split into different fields

depending on which message header type is being used. Protocol Data Unit 1

(PDU1) describes messages which have a destination address while PDU2 headers

describes broadcast messages. This is done as shown by Fig. D.1, which splits the

29-bit extended header into the following sections:

161

• Priority field (3 bits): This field takes advantage of how the CAN protocol

prioritize messages.

• Extended data page (1 bit): Always 0 for NMEA2000.

• Data page (1 bit): Always 1 for NMEA2000

• PDU Format (8 bits): If this value is 240 or greater than this message is

a PDU2 message. Otherwise this is a PDU message.

• PDU Specific (8 bits): For PDU1 messages, this specifies the destination

node. For PDU2 messages, this specifies an extension to the PGN.

29-bit CAN2.0B Identifier
P P P E D F F F F F F F F S S S S S S S S A A A A A A A A
Priority 0 1 PDU Format PDU Specific Source Address

Figure D.1: The 29-bit CAN2.0B identifier is split into 6 fields within the J1939
spec: Priority, Extended Data Page (EDP), Data Page (DP), PDU Format (PF),
PDU Specific (PS), Source Address. For the NMEA2000 standard, the EDP is
always 0 and the DP is always 1.

These fields make up the Parameter Group Number (PGN), which identifies

the specific message being sent. This is generally the function of the CAN identi-

fier, but using the header this way allows for specifying the receiving node while

still allowing broadcast packets. The PGN is constructed from the 29-bit CAN

ID differently depending on the type of message as shown in Fig. D.2.

The PGNs identify messages that are part of a common message set fully-

defined by the NMEA2000 standard. These messages are split into two sets:

messages that manage the network and messages that contain data. Only the

data messages have been reverse-engineered with details on all messages used in

the SeaSlug (detailed in Section E.5).

162

24-bit Parameter Group Number (PGN)
E D F F F F F F F F S S S S S S S S

PDU1 0 0 0 0 0 0 0 1 PDU Format PDU Specific
PDU2 0 0 0 0 0 0 0 1 PDU Format 0

Figure D.2: How the PGN is defined for the two different types of messages in
SAE J1939. PDU1 is a message intended for a specific node. PDU2 is a general
broadcast message. The PS field’s meaning depends on the value of the PF field.
When PF ≥ 240, the PS field represents Group Extension (GE), and is included
in the Parameter Group Number. When PF < 240, the PS field contains the
target address and is not included in the Parameter Group Number.

Some PGNs contain more than either bytes of data and therefore cannot be

sent in a single CAN frame. NMEA2000 defines the Fast Packet message type

that can transmit up to 223 bytes. Fig. D.3 shows the format of Fast Packets.

Data Payload (8 bytes)
Byte[0] Byte[1] Bytes[2..7]

Message 1 S S S 0 Size Data[0..5]
Message 2 S S S 1 Data[0] Data[1..6]

...
Message n S S S F F F F F Data[0] Data[1..6]

Figure D.3: Data packing format for NMEA2000’s Fast Packet. All messages
use the first payload byte to store the Sequence ID (3 bits) and the Frame Counter
(5 bits). The Sequence ID is as described previously, but is only the highest-order
bits. The Frame Counter is the frame number, starting at 0 for the first frame
and incrementing by 1 for every subsequent frame. The first message also uses a
2nd payload byte to store the total payload size for the message, which can be up
to 255 bytes.

D.4 Predefined Messages

The messages defined by NMEA2000 are varied in scope and grouped into

two types: those for transmitting data and those for modifying the nodes on the

network. Details on the NMEA2000 messages decoded or transmit by custom

163

CAN nodes, see Section E.5

For data messages, a common reoccurring field is the Sequence Identifier (SID).

This is a number representing the timestep that the data was acquired during and

counts upwards. Messages received from the same node with the same SID are

samples from the same time. There is no fixed rate that the SID should increase

at, so this is the only information that the SID provides.

164

Appendix E

CAN Messages

E.1 Introduction

This section summarizes all of the CAN messages that are used onboard the

SeaSlug. Some of these messages are only decoded from proprietary hardware

while others are transmit to communicate with other hardware. These messages

are all transmit on the only CAN bus onboard, which is connected as described

in Chapter 2.

E.2 Custom Messages

All custom messages used on the SeaSlug are standard frame messages, which

makes it easier to differentiate them from the NMEA2000 messages and prevents

possible collisions. Additionally these messages are little-endian and byte-aligned.

0x080 - Rudder Details

This message is broadcast by the Rudder Node at 4Hz and provides low-

level details of the rudder actuator sensors including the raw sensor values,

system state, and potentiometer limits of the rudder range.

165

0x081 - Set Rudder State

This message is received by the Rudder Node and controls its operating

mode. The rudder can be enabled, calibrated, or reset through this message.

0x082 - Set Rudder TX Rate

This message is received by the Rudder Node and allows for configuring the

transmission rate of the Rudder Details (0x080) and Rudder (PGN127245)

message.

0x090 - Node Status

This message is transmit by every CANode on the bus at a frequency of

2Hz. It contains the node’s identifier, temperature, processor utilization,

status, and error state.

E.3 Tokimec Messages

The VSAS-2GM broadcasts its own set of messages for all of its data. What

follows are descriptions for the messages that are used on the SeaSlug, even though

more messages are supported and broadcast by this device. For a complete list,

reference the VSAS-2GM Operation Manual. All messages described here are

standard-frame CAN messages, with big-endian fields and unused bits set to zeros.

0x100 - Angular Velocity

Contains the three-axis filtered angular velocity rates of the sensor as mea-

sured by onboard gyroscopes. Output at 25Hz.

0x101 - Acceleration Data

Contains the filtered accelerometer data. Output at 25Hz.

166

0x102 - Attitude Angle

Contains the filtered attitude data as yaw/pitch/roll. Output at 25Hz.

0x107 - Status

Contains the sensor status and GPS fix. Output at 25Hz.

E.4 ACS300 Messages

The ACS300 motor driver board has its own set of messages. Their base

addresses are configurable, with the defaults for received messages being 0x300

and transmitted messages being 0x400. This was left as-is on the SeaSlug as it

does not cause any conflicts. All ACS300 messages use a big-endian data format

and are standard frame messages.

0x301 - Write Parameter

This message is received by the ACS300 and updates the value for a param-

eter. See the ACS300 reference manual for parameter details. This is used

for setting the motor current command.

0x402 - Heartbeat

When the ACS300 is powered-on and enabled this message is transmit at

100Hz. It contains four parameters that can be configuring by setting the

CN.DA, CN.DB, CN.DC, and CN.DD parameters.

E.5 NMEA2000 Messages

These messages follow the conventions described in Appendix D. While the

devices in the SeaSlug transmit and receive a vast number of NMEA2000 messages

167

(see their documentation for details), only the messages transmit or processed by

CANodes are described below for brevity.

PGN126992 - System Time

Broadcast by Maretron’s GPS200 GPS at 1Hz. It contains an absolute time

reference as a date & time since the Unix epoch.

PGN127173 - DC Source Status

Broadcast by the Xantrex XW-MPPT60-150 solar charge controller at 2Hz.

Contains a configurable source ID, so this message corresponds to either the

power input of the attached solar panel or the power output of the battery.

PGN127245 - Rudder

This message can contain either the commanded rudder angle and is trans-

mit by the Primary and RC Node. It is also used to broadcast the actual

rudder angle by the Rudder Node at 10Hz.

PGN128259 - Speed

Broadcast by the Airmar DST800 triducer at 1Hz, this message contains

the forward water speed

PGN128267 - Depth

Also broadcast by the DST800 at 1Hz, this message contains the water

depth.

PGN129025 - Position Rapid Update

The GPS200 broadcasts this message, which contains just the sensed latitude

and longitude. It’s transmit at 5Hz.

PGN129026 - CoG/SoG Rapid Update

168

The GPS200 broadcasts this message at 4Hz, which contains the course-

over-ground and speed-over-ground.

PGN129029 - GNSS Position Data

Transmit by the GPS200 at 1Hz, this message is a variable length message

transmit as a Fast Packet. It is useful for obtaining the number of satellites

used in the solution as well as the altitude.

PGN129539 - GNSS DOPS

The dilution of precision data computed by the GPS200. Necessary to verify

the status of the GPS fix. It is transmit at 10Hz.

PGN130306 - Wind Data

Transmit by the Maretron WSO100 air & wind sensor at 10Hz, it contains

the speed and direction of the wind.

PGN130310 - Environmental Parameters

Transmit by the DST800 at 1Hz, contains the water temperature.

PGN130311 - Environmental Parameters 2

Transmit by the WSO100 at 2Hz, contains the air temperature, humidity,

and pressure.

169

Appendix F

Bill of Materials

The SeaSlug has been designed for a low initial build cost and low maintenance

and operational costs. Marine-grade components were used where available as

part of reducing the maintenance costs at the expense of the initial build cost.

Additionally common off-the-shelf components were used to facilitate servicing

through first-party warranties or simply entire component replacement.

The complete estimated cost for producing a new SeaSlug is $28,551 USD. The

following list provides a price breakdown of all components of the system, though

some have been estimated as the actual component cost is unknown:

Hull

Hull Custom fiberglass design $20,000

Misc Fasteners, wires, cabling, etc. $1,000

Rudder

Motor Anaheim Automation 34YSG207S-LW8-R5 $400

Motor driver Applied Motion 2035 $181

Limit sensors 2x Cherry MP102103 $15

Position sensor Vishay/Spectrol 157-11502 $25

170

Propulsion

Propeller Custom $800

Motor MCG IB46004 $600

Motor driver ACS300 w/ CAN interface $400

Sensors

GPS Maretron GPS200 $300

Water speed Airmar DST800 $300

Wind/air Maretron WSO100 $700

IMU Tokimec VSAS-2GM 1 $2,000

Power AttoPilot 50V/90A Voltage and Current Sen-

sor (x2)

$20

Controls Electronics

Controllers 6x CANodes with interface shields $400

Groundstation

Tablet computer Microsoft Surface Pro 2 32GB $420

Primary con-

troller

Logitech F710 $40

RC transmitter Spektrum DX5e $60

RC receiver Spektrum AR6100e $50

Weatherproof

enclosure

Custom enclosure $50

Radios 915MHz 3DR radio set $100

USB Hub D-Link DUB-H4 $20

1No longer available, replaceable with $100 3Space IMU by YEI Technology

171

Misc

Software MATLAB, Simulink, and necessary libraries $800

Batteries 2x 12V Deka Dominator 98Ah, 4x Centennial

AGM CBGC2-AGM

$600

Shore charger DualPro PS4 $500

Solar panel ICO-SPC-20W $50

Solar charger Xantrex XW-MPPT60-150 $600

Total $28,551

172

Appendix G

Electronic Resources

The following list provides URLs for accessing the various online resources used

onboard the SeaSlug. This includes code repositories, electronic and mechanical

CAD designs, and additional reference documentation.

https://github.com/Susurrus/Autoboat

This is the main code repository for the project. It contains all code for

building the code for all onboard mircocontrollers. See README.md for

more details.

https://github.com/Susurrus/MicroSimulink-Library

This is a Simulink library required for some of the Simulink models used for

the SeaSlug.

http://byron.soe.ucsc.edu/wiki/autoboat

This is the primary webpage for the SeaSlug. This wiki contains much of

the high-level reference data for the vessel. Mostly digital documents and

details on the subsystems and components with the vessel.

http://byron.soe.ucsc.edu/projects/SeaSlug

173

https://github.com/Susurrus/Autoboat
https://github.com/Susurrus/MicroSimulink-Library
http://byron.soe.ucsc.edu/wiki/autoboat
http://byron.soe.ucsc.edu/projects/SeaSlug

This is the primary data repository for the SeaSlug. All data collected, along

with portions of its analysis, is available through this website.

git://byron.soe.ucsc.edu/ASL_eCAD.git

This code repository contains the electronic-CAD commonly shared between

projects in the Autonomous System Lab at UCSC. Most importantly it

contains the CANode project (shown in Fig. 2.5), which is the base controller

used in multiple places on the SeaSlug (see Fig. 2.4).

https://github.com/mavlink/qgroundcontrol

This is the central code repository for the QGroundControl project. This is

the remote control interface to the vessel that runs aboard the GCS.

https://github.com/mavlink/mavlink

This is the central code repository for the MAVLink project. This is the com-

munications protocol used by the SeaSlug for communication with QGround-

Control.

https://github.com/Susurrus/SLUGS-Logger

The central code repository for the SLogger datalogger project, described in

Appendix A. It contains the firmware for the datalogger board, which relies

on a CANode with accompanying microSD shield, and supporting scripts

for testing the hardware and extracting recorded data.

174

git://byron.soe.ucsc.edu/ASL_eCAD.git
https://github.com/mavlink/qgroundcontrol
https://github.com/mavlink/mavlink
https://github.com/Susurrus/SLUGS-Logger

Bibliography

[1] AIS requirements. http://www.navcen.uscg.gov/?pageName=
AISCarriageReqmts, 2003.

[2] Carlos Almeida, Tiago Franco, Hugo Ferreira, Alfredo Martins, Ricardo San-
tos, José Miguel Almeida, João Carvalho, and Eduardo Silva. Radar based
collision detection developments on usv roaz ii. In OCEANS 2009-EUROPE,
pages 1–6. IEEE, 2009.

[3] J. Alves, P. Oliveira, R. Oliveira, A. Pascoal, M. Rufino, L. Sebastiao, and
C. Silvestre. Vehicle and mission control of the delfim autonomous surface
craft. In Control and Automation, 2006. MED’06. 14th Mediterranean Con-
ference on, pages 1–6. IEEE, 2006.

[4] Omead Amidi and Chuck E Thorpe. Integrated mobile robot control. In
Fibers’ 91, Boston, MA, pages 504–523. International Society for Optics and
Photonics, 1991.

[5] H Alemi Ardakani and TJ Bridges. Review of the 3-2-1 euler angles: a
yaw–pitch–roll sequence. Department of Mathematics, University of Surrey,
Guildford GU2 7XH UK, 2010.

[6] The Arduino homepage. http://arduino.cc.

[7] The ArduPilot project. http://www.diydrones.com/notes/ArduPilot/.

[8] ASV Global civilian and research unmanned marine vehicles. http://www.
asvglobal.com/commercial-unmanned-marine-vehicles.

[9] Autonaut USV. http://www.autonautusv.com. [Online; accessed April 6th,
2015].

[10] JG Bellingham, B Hobson, MA Godin, B Kieft, J Erikson, R McEwen,
C Kecy, Y Zhang, T Hoover, and E Mellinger. A small, long-range auv with
flexible speed and payload. In Ocean Sciences Meeting, Abstract MT15A,
volume 14, 2010.

175

http://www.navcen.uscg.gov/?pageName=AISCarriageReqmts
http://www.navcen.uscg.gov/?pageName=AISCarriageReqmts
http://arduino.cc
http://www.diydrones.com/notes/ArduPilot/
http://www.asvglobal.com/commercial-unmanned-marine-vehicles
http://www.asvglobal.com/commercial-unmanned-marine-vehicles

[11] Michael R Benjamin and Joseph A Curcio. Colregs-based navigation of
autonomous marine vehicles. In Autonomous Underwater Vehicles, 2004
IEEE/OES, pages 32–39. IEEE, 2004.

[12] Volker Bertram. Unmanned surface vehicles–a survey. Skibsteknisk Selskab,
Copenhagen, Denmark, 2008.

[13] Gabriele Bruzzone, M Bibuli, and M Caccia. Autonomous mine hunting
mission for the charlie usv. In OCEANS, 2011 IEEE-Spain, pages 1–6. IEEE,
2011.

[14] C-Enduro ASV. http://www.asvglobal.com/science-and-survey/
c-enduro.

[15] M. Caccia, R. Bono, G. Bruzzone, G. Bruzzone, E. Spirandelli, G. Veruggio,
and AM Stortini. Design and exploitation of an autonomous surface vessel for
the study of sea-air interactions. In Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on, pages 3582–
3587. IEEE, 2005.

[16] Massimo Caccia. Autonomous surface craft: prototypes and basic research
issues. In Control and Automation, 2006. MED’06. 14th Mediterranean Con-
ference on, pages 1–6. IEEE, 2006.

[17] Massimo Caccia, Marco Bibuli, and Giorgio Bruzzone. Integration of acoustic
devices on small usvs: the charlie experience. In Control & Automation
(MED), 2011 19th Mediterranean Conference on, pages 424–429. IEEE, 2011.

[18] The CAN Boat project. https://github.com/canboat/canboat. [Online;
accessed June 25th, 2015].

[19] David J Carlson. Phytoplankton in marine surface microlayers. Canadian
Journal of Microbiology, 28(11):1226–1234, 1982.

[20] JW Choi, Renwick E Curry, and Gabriel Hugh Elkaim. Continuous curvature
path generation based on bézier curves for autonomous vehicles. IAENG
International Journal of Applied Mathematics, 40(2), 2010.

[21] CiA CiA. 301 v4. 2.0–canopen application layer and communication profile,
can in automation e. V., Feb, 2011.

[22] Daniel L Codiga. A marine autonomous surface craft for long duration,
spatially explicit, multi-disciplinary water column sampling in coastal and
estuarine systems. Journal of Atmospheric and Oceanic Technology, 32:627–
641, 2014.

176

http://www.asvglobal.com/science-and-survey/c-enduro
http://www.asvglobal.com/science-and-survey/c-enduro
https://github.com/canboat/canboat

[23] Navigation rules. http://www.navcen.uscg.gov/?pageName=
navRulesContent, 2006.

[24] Joseph Curcio, John Leonard, and Andrew Patrikalakis. Scout-a low cost
autonomous surface platform for research in cooperative autonomy. In
OCEANS, 2005. Proceedings of MTS/IEEE, pages 725–729. IEEE, 2005.

[25] Ren Curry, Mariano Lizarraga, Bryant Mairs, and Gabriel Elkaim. L+
2 , an

improved line of sight guidance law for uavs. American Control Conference,
June 2013.

[26] Tom Daniel, Justin Manley, and Neil Trenaman. The wave glider: enabling a
new approach to persistent ocean observation and research. Ocean Dynamics,
61(10):1509–1520, 2011.

[27] NIMA USA Department of Defense. World geodetic system 1984–its def-
inition and relationships with local geodetic systems. Technical Report
TR8350.2, Department of Defense, NIMA USA, January 2000.

[28] Matthew Dunbabin and Alistair Grinham. Experimental evaluation of an
autonomous surface vehicle for water quality and greenhouse gas emission
monitoring. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 5268–5274. IEEE, 2010.

[29] G. Elkaim and CO Boyce. An energy scavenging autonomous surface vehicle
for littoral surveillance. In Proceedings of ION Global Navigation Satellite
Systems Conference, 2008.

[30] Gabriel Elkaim. System Identification for Precision Control of a WingSailed
GPS-Guided Catamaran. PhD thesis, Stanford University, 2002.

[31] Veronika Eyring, Ivar SA Isaksen, Terje Berntsen, William J Collins, James J
Corbett, Oyvind Endresen, Roy G Grainger, Jana Moldanova, Hans Schlager,
and David S Stevenson. Transport impacts on atmosphere and climate: Ship-
ping. Atmospheric Environment, 44(37):4735–4771, 2010.

[32] Richard A Feely, Christopher L Sabine, Taro Takahashi, and Rik Wan-
ninkhof. Uptake and storage of carbon dioxide in the ocean. Oceanography,
14(4):18, 2001.

[33] I Fer and D Peddie. Navigation performance of the sailbuoy. Bergen-Scotland
mission, 2012.

[34] Andrew M Fischer, John P Ryan, Christian Levesque, and Nicholas
Welschmeyer. Characterizing estuarine plume discharge into the coastal
ocean using fatty acid biomarkers and pigment analysis. Marine environ-
mental research, 99:106–116, 2014.

177

http://www.navcen.uscg.gov/?pageName=navRulesContent
http://www.navcen.uscg.gov/?pageName=navRulesContent

[35] Witold Fraczek. Mean sea level, gps, and the geoid. ArcUsers Online, 2003.

[36] Christopher R German, Micheal V Jakuba, James C Kinsey, Jim Partan,
Stefano Suman, Abhimanyu Belani, and Dana R Yoerger. A long term vision
for long-range ship-free deep ocean operations: Persistent presence through
coordination of autonomous surface vehicles and autonomous underwater ve-
hicles. In Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES, pages
1–7. IEEE, 2012.

[37] Mahmud Hasan Ghani, Lars R Hole, Ilker Fer, Vassiliki H Kourafalou, Nicolas
Wienders, HeeSook Kang, Kyla Drushka, and David Peddie. The sailbuoy
remotely-controlled unmanned vessel: Measurements of near surface tem-
perature, salinity and oxygen concentration in the northern gulf of mexico.
Methods in Oceanography, 10:104–121, 2014.

[38] Roberto Grena. An algorithm for the computation of the solar position. Solar
Energy, 82(5):462–470, 2008.

[39] John M Guinotte and Victoria J Fabry. Ocean acidification and its potential
effects on marine ecosystems. Annals of the New York Academy of Sciences,
1134(1):320–342, 2008.

[40] Yan Guo, Miguel Romero, Sio-Hoi Ieng, Frederic Plumet, Ryad Benosman,
and Bruno Gas. Reactive path planning for autonomous sailboat using an
omni-directional camera for obstacle detection. In Mechatronics (ICM), 2011
IEEE International Conference on, pages 445–450. IEEE, 2011.

[41] John T Hardy. The sea surface microlayer: biology, chemistry and anthro-
pogenic enrichment. Progress in Oceanography, 11(4):307–328, 1982.

[42] Hordur K Heidarsson and Gaurav S Sukhatme. Obstacle detection and avoid-
ance for an autonomous surface vehicle using a profiling sonar. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages
731–736. IEEE, 2011.

[43] John R Higinbotham, PG Kitchener, and John R Moisan. Development of a
New Long Duration Solar Powered Autonomous Surface Vehicle. IEEE, 2006.

[44] J.R. Higinbotham, J.R. Moisan, C. Schirtzinger, M. Linkswiler, J. Yungel,
and P. Orton. Update on the development and testing of a new long duration
solar powered autonomous surface vehicle. IEEE, 2008.

[45] Roger Hine, Scott Willcox, Graham Hine, and Tim Richardson. The wave
glider: A wave-powered autonomous marine vehicle. In OCEANS 2009,
MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Chal-
lenges, pages 1–6. IEEE, 2009.

178

[46] Gregory Hitz, François Pomerleau, M-E Garneau, Cédric Pradalier, Thomas
Posch, Jakob Pernthaler, and Roland Y Siegwart. Autonomous inland water
monitoring: Design and application of a surface vessel. Robotics & Automa-
tion Magazine, IEEE, 19(1):62–72, 2012.

[47] Terry Huntsberger, Hrand Aghazarian, Andrew Howard, and David C Trotz.
Stereo vision–based navigation for autonomous surface vessels. Journal of
Field Robotics, 28(1):3–18, 2011.

[48] ISO 11898-1:2003 - Road vehicles – Controller area network (CAN) – Part 1:
Data link layer and physical signalling, 2003.

[49] Lubin Kerhuel. dsPIC blockset. http://www.kerhuel.eu/wiki/Simulink_
-_Embedded_Target_for_PIC.

[50] Peter Kimball, John Bailey, Sarah Das, Rocky Geyer, Trevor Harrison, Clay
Kunz, Kevin Manganini, Ken Mankoff, Katie Samuelson, Thomas Sayre-
McCord, et al. The WHOI Jetyak: An autonomous surface vehicle for oceano-
graphic research in shallow or dangerous waters. In Autonomous Underwater
Vehicles (AUV), 2014 IEEE/OES, pages 1–7. IEEE, 2014.

[51] Andrew T Klesh and Pierre T Kabamba. Solar-powered aircraft: Energy-
optimal path planning and perpetual endurance. Journal of guidance, control,
and dynamics, 32(4):1320–1329, 2009.

[52] Yoshiaki Kuwata, Michael T Wolf, Dimitri Zarzhitsky, and Terrance L Hunts-
berger. Safe maritime navigation with colregs using velocity obstacles. In
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Con-
ference on, pages 4728–4734. IEEE, 2011.

[53] JH Lambert. Photometria sive de mensura et gradibus luminis colorum et
umbrae (augsburg, 1760). German translation by E. Anding (Leipzig, Verlag
von Wilhelm Engelmann, 1892), 1892.

[54] Wolfhard Lawrenz. CAN System Engineering: From Theory to Practical
Applications. Springer, New York, 1997.

[55] K.E. Laws, C. Bazeghi, S.C. Petersen, and J.F. Vesecky. An autonomous
sensor platform vessel for marine protected area monitoring. In Geoscience
and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009, vol-
ume 4, pages IV–991 –IV–994, july 2009.

[56] Alexander Leonessa, Jeremiah Mandello, Yannick Morel, and Miguel Vidal.
Design of a small, multi-purpose, autonomous surface vessel. In OCEANS
2003. Proceedings, volume 1, pages 544–550. IEEE, 2003.

179

http://www.kerhuel.eu/wiki/Simulink_-_Embedded_Target_for_PIC
http://www.kerhuel.eu/wiki/Simulink_-_Embedded_Target_for_PIC

[57] Peter S Liss and Robert A Duce. The sea surface and global change. Cam-
bridge University Press, 2005.

[58] Mariano Lizarraga. Design, implementation and flight verification of a ver-
satile and rapidly reconfigurable UAV GNC research platform. PhD thesis,
University of California, Santa Cruz, 2009.

[59] Lee A. Luft, Larry Anderson, and Frank Cassidy. Nmea 2000: A digital
interface for the 21st century. Technical report, National Marine Electronics
Association, Jan 2002.

[60] J. Manley and S. Willcox. The wave glider: A persistent platform for ocean
science. In OCEANS 2010 IEEE-Sydney, pages 1–5. IEEE, 2010.

[61] MBARI vessel, vehicle, MARS, labor, test tank rates. http://www.mbari.
org/dmo/ship_rates.htm, 2013.

[62] Lorenz Meier. Mavlink: Micro air vehicle communication protocol.
http://qgroundcontrol.org/mavlink/start.

[63] Lorenz Meier, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich Fraun-
dorfer, and Marc Pollefeys. Pixhawk: A micro aerial vehicle design for au-
tonomous flight using onboard computer vision. Autonomous Robots, pages
1–19, 2012. 10.1007/s10514-012-9281-4.

[64] Hossein Mousazadeh, Alireza Keyhani, Arzhang Javadi, Hossein Mobli,
Karen Abrinia, and Ahmad Sharifi. A review of principle and sun-tracking
methods for maximizing solar systems output. Renewable and Sustainable
Energy Reviews, 13(8):1800–1818, 2009.

[65] Karl N Murphy. Analysis of robotic vehicle steering and controller delay.
In Fifth International Symposium on Robotics and Manufacturing (ISRAM),
pages 631–636. Citeseer, 1994.

[66] W Naeem, T Xu, R Sutton, and A Tiano. The design of a navigation, guid-
ance, and control system for an unmanned surface vehicle for environmental
monitoring. Proceedings of the Institution of Mechanical Engineers, Part M:
Journal of Engineering for the Maritime Environment, 222(2):67–79, 2008.

[67] NOAA. Ocean. http://www.noaa.gov/ocean.html.

[68] NSF 2015 budget request to congress - major multi-use research facilities.
https://www.nsf.gov/about/budget/fy2015/pdf/32_fy2015.pdf. [On-
line; accessed June 25th, 2015].

180

http://www.mbari.org/dmo/ship_rates.htm
http://www.mbari.org/dmo/ship_rates.htm
https://www.nsf.gov/about/budget/fy2015/pdf/32_fy2015.pdf

[69] IMO/FAO/UNESCO-IOC/WMO/WHO/IAEA/UN/UNEP Joint Group
of Experts on the Scientific Aspects of Marine Environmental Protec-
tion (GESAMP). The Sea-surface Microlayer and Its Role in Global Change.
Reports and studies. UN, 1995.

[70] Philip Orton and John Moisan. Coastal ocean air-sea co2 flux measurements
from an autonomous research vessel, 2007.

[71] Jeffrey D Paduan and Leslie K Rosenfeld. Remotely sensed surface cur-
rents in monterey bay from shore-based hf radar (coastal ocean dynamics
application radar). Journal of Geophysical Research: Oceans (1978–2012),
101(C9):20669–20686, 1996.

[72] S Park, J Deyst, and J How. A new nonlinear guidance logic for trajectory
tracking. AIAA Guidance, Navigation and Control Conference and Exhibit,
Jan 2004.

[73] António Pascoal, Carlos Silvestre, and Paulo Oliveira. Vehicle and mission
control of single and multiple autonomous marine robots. In ADVANCES IN
UNMANNED MARINE VEHICLES EDITOR. Citeseer, 2005.

[74] Thomas Pastore and Vladimir Djapic. Improving autonomy and control of
autonomous surface vehicles in port protection and mine countermeasure
scenarios. Journal of Field Robotics, 27(6):903–914, 2010.

[75] Gregg W Podnar, John M Dolan, Alberto Elfes, Stephen Stancliff, Ellie Lin,
JC Hosier, Troy J Ames, John Moisan, Tiffany A Moisan, John Higinbotham,
et al. Operation of robotic science boats using the telesupervised adaptive
ocean sensor fleet system. In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pages 1061–1068. IEEE, 2008.

[76] Robin R. Steeves. Mathematical models for use in the readjustment of the
north american geodetic networks. Technical Report 1, Energy, Mines, and
Resources Canada, April 1984.

[77] Patrick F Rynne and Karl D von Ellenrieder. Unmanned autonomous sail-
ing: Current status and future role in sustained ocean observations. Marine
Technology Society Journal, 43(1):21–30, 2009.

[78] PF Rynne and KD von Ellenrieder. A wind and solar-powered autonomous
surface vehicle for sea surface measurements. In OCEANS 2008, pages 1–6.
IEEE, 2008.

[79] Offshore sensing - sailbuoy. http://http://sailbuoy.no/. [Online; ac-
cessed June 2nd, 2015].

181

http://http://sailbuoy.no/

[80] Saildrone - revolutionizing ocean science. http://www.saildrone.com. [On-
line; accessed April 6th, 2015].

[81] A Savvaris, H Niu H Oh, and A Tsourdos. Development of collision avoidance
algorithms for the C-Enduro USV. In Proceedings of the 19th IFAC World
Congress, 2014, pages 12174–12181. IFAC, 2014.

[82] E.W. Schlieben. SKAMP - an amazing unmanned sailboat! Ocean Industry,
pages 38–43, 1969.

[83] Kevin G Sellner, Gregory J Doucette, and Gary J Kirkpatrick. Harmful algal
blooms: causes, impacts and detection. Journal of industrial microbiology &
biotechnology, 30(7):383–406, 2003.

[84] Jeff C Sevadjian, Margaret A McManus, J Ryan, Adam T Greer, Robert K
Cowen, and Clifton B Woodson. Across-shore variability in plankton layering
and abundance associated with physical forcing in monterey bay, california.
Continental Shelf Research, 72:138–151, 2014.

[85] Amanda HV Timmerman, Margaret A McManus, OM Cheriton, Robert K
Cowen, Adam T Greer, Raphael M Kudela, Kathleen Ruttenberg, and Jeff
Sevadjian. Hidden thin layers of toxic diatoms in a coastal bay. Deep Sea
Research Part II: Topical Studies in Oceanography, 101:129–140, 2014.

[86] Thomas W Vaneck, Claudia D Rodriguez-Ortiz, Mads C Schmidt, and
Justin E Manley. Automated bathymetry using an autonomous surface craft.
Navigation, 43(4):407–417, 1996.

[87] Petr Vanicek and E. J. Krakiwsky. Geodesy, the concepts. North Holland Sole
distributors for the U.S.A. and Canada, Elsevier Science Pub. Co, Amsterdam
New York New York, N.Y, second edition, 1986.

[88] Jianhua Wang, Wei Gu, Jianxin Zhu, and Jubiao Zhang. Energy consumption
analysis of electric propulsion system used in autonomous surface vehicle.
In Computer and Automation Engineering, 2009. ICCAE’09. International
Conference on, pages 191–195. IEEE, 2009.

[89] Wave Glider SV3. http://liquidr.com/technology/waveglider/sv3.
html.

[90] Douglas C Webb, Paul J Simonetti, and Clayton P Jones. Slocum: An
underwater glider propelled by environmental energy. Oceanic Engineering,
IEEE Journal of, 26(4):447–452, 2001.

[91] Sean Wiggins, Justin Manley, Eric Brager, and Brad Woolhiser. Monitoring
marine mammal acoustics using wave glider. In OCEANS 2010, pages 1–4.
IEEE, 2010.

182

http://www.saildrone.com
http://liquidr.com/technology/waveglider/sv3.html
http://liquidr.com/technology/waveglider/sv3.html

[92] Willow garage. http://www.willowgarage.com/.

[93] S. Wood, M. Rees, and Z. Pfeiffer. An autonomous self-mooring vehicle for
littoral & coastal observations. In OCEANS 2007-Europe, pages 1–6. IEEE,
2007.

[94] Oliver Wurl and Jeffrey Phillip Obbard. A review of pollutants in the sea-
surface microlayer (sml): a unique habitat for marine organisms. Marine
Pollution Bulletin, 48(11):1016–1030, 2004.

[95] ETH Zurich. Qgroundcontrol: Ground control station for small air land water
autonomous unmanned systems. http://qgroundcontrol.org/.

183

http://www.willowgarage.com/

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Overview
	Motivation
	Existing Autonomous Surface Vessels
	Wave Glider
	OASIS
	Newest Platforms
	Other Systems

	Contributions
	Dissertation Organization

	System Architecture
	Introduction
	Mechanical Architecture
	Self-righting
	Payload Capabilities

	Modular Subsystems
	The CANode Interface Board
	Primary Node
	Control Sensors
	Actuators
	Miscellaneous

	Embedded Firmware
	Remote interface
	Ground Control System
	Radio Control Transmitter

	Mission Capabilities
	Safety, Fault Tolerance, and Error Recovery
	Conclusion

	Simulation
	Introduction
	Simulation Model
	Vehicle Kinematics
	Actuator Dynamics
	Environmental Effects

	Software Simulation
	Replay Simulation

	Hardware-in-the-loop Simulation
	HIL CANode

	Conclusion

	Control Architecture
	Introduction
	Position Filtering
	Outlier removal
	Converting to local position
	Position extrapolation
	GPS Offset Correction

	IMU filtering
	L2+ Control
	Introduction
	L2+ for Surface Vessels
	L2+ for Slow Surface Vessels
	Parameter Tuning

	Conclusion

	Experimental Results
	Introduction
	Waypoint Navigation
	Basic Waypoint Test
	Complex Waypoint Test
	Repeatibility

	Scientific Deployments
	Algal Bloom
	Front Detection

	Conclusion

	Power Analysis
	Introduction
	Power Use
	Control Electronics
	Rudder
	Propeller

	Energy Scavenging
	System Endurance
	With Solar Panels

	Conclusion

	Conclusions & Future Work
	Conclusions
	Future Work

	Datalogger
	Introduction
	System Architecture
	Functionality

	Attitude
	Introduction
	Euler Angles
	Euler Angle Conventions
	Gimbal lock
	Using Euler angles

	Euler angle rates

	CAN bus
	Introduction
	Overview
	Electrical Specifications
	Timing
	Data Rates
	Arbitration and Priority
	Fault Tolerance

	NMEA2000
	Introduction
	Overview
	Message Formats
	Predefined Messages

	CAN Messages
	Introduction
	Custom Messages
	Tokimec Messages
	ACS300 Messages
	NMEA2000 Messages

	Bill of Materials
	Electronic Resources
	Bibliography

