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The major risk factors for ASD are genetic and include a vari-
ety of rare and common alleles, including rare de novo copy 
number variants (CNVs)1 or protein-truncating SNPs and 

indels of large effect2, and common polygenic risk that is measured 
as the sum of thousands of common alleles with small effects3. 
Despite the success in identifying and characterizing multiple types 
of genetic risk, there is no one variant, gene or polygenic score (PS) 
that has a high predictive value for an ASD diagnosis. Even CNVs 
with large effect sizes (odds ratio (OR) > 30) for ASD present with 
variable psychiatric traits4 and risk is attributable to a combination 
of rare and common variations5,6.

Sex is also a major genetic factor that influences ASD risk. Males 
are diagnosed with ASD more frequently than females at a ratio 
of 4:1. A small proportion of cases are associated with X-linked 
variants7, but the male preponderance of ASD is not largely 
explained by genetic variation on sex chromosomes. We and oth-
ers have hypothesized that it may instead be explained by sex dif-
ferences in the effects of autosomal variants8–10. This hypothesis 
is supported by previous studies showing that females with ASD 
have a greater burden of rare CNVs1,11,12 and gene mutations13,14. 

However, gene-by-sex interactions in ASD have not been exam-
ined systematically.

Previous genetic studies have been focused on defining new cat-
egories of rare variant risk from DNA-sequencing or by improving 
the statistical power of genome-wide association studies (GWASs). 
How combinations of multiple genetic factors contribute to risk and 
clinical presentation is not known. In the present study, we investi-
gate, in a large dataset of whole genomes and exomes, the combined 
contributions of de novo, rare inherited and polygenic risk to ASD. 
We show that the genetic architecture of ASD varies as a spectrum 
of rare and common variation, each having distinct phenotypic cor-
relates and differential effects in males and females.

Results
Defining multiple components of genetic risk. We investigated 
the combined effects of multiple genetic factors, detectable by 
genome sequencing or a combination of exome sequencing and 
SNP genotyping, on risk of ASD. We focused on several factors 
that have established associations with case status, such as de novo 
protein-truncating (dnLoF) and missense (dnMIS) mutations1,2 and 
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rare inherited variants15,16 that disrupt genes (inhLoF) and polygenic 
scoring models that have been associated with ASD case status, 
including PSs for ASD (PSASD), schizophrenia (PSSZ) and educa-
tional attainment (PSEA)17,18 (see Methods for details on the selection 
of genetic factors).

We confirmed genetic associations by whole-genome analy-
sis of 37,375 individuals from 11,313 ASD families (12,270 cases, 
5,190 typically developing siblings and 19,917 parents). The sam-
ple was composed of three datasets, including whole-genome 
sequencing (WGS) of cohorts from University of California San 
Diego (UCSD) (https://sebatlab.org/reach-project) and the Simons 
Simplex Collection (SSC), and exomes and SNP genotyping from 
the SPARK study19 (see Methods and Supplementary Tables 1 
and 2). SNPs, indels, structural variants (SVs), DNM calling and 
calculation of ancestry principal components (PCs) were per-
formed using functionally equivalent pipelines for each dataset 
as described in Methods, and PSs were calculated using the poly-
genic scoring method SbayesR20. Rare variants were annotated 
for gene functional constraint. Analysis of protein-coding loss of 
function (LoF) and cis-regulatory (CRE) variants was restricted 
to variant-intolerant genes (LoF observed/expected upper bound 
fraction (LOEUF) < 0.37) and analysis of missense variants was 
restricted to those with missense badness (missense badness, 
PolyPhen-2 and constraint (MPC)) scores > 2.

Association tests were performed for case–control differences 
in DNM burden. Association of inherited risk was tested using the 
transmission disequilibrium test (TDT)15. Common variant asso-
ciations were tested using a polygenic TDT (pTDT) that measures 
overtransmission of risk alleles as the deviation of the offspring PS 
from the average PS of the parents17. We confirmed that de novo 
synonymous variants were not associated with ASD in the com-
bined sample (Extended Data Fig. 1a) and rates of DNMs were not 
influenced by batch effects or other confounders (Extended Data 
Fig. 1b,c). Results confirm significant contributions from genetic 
factors, including de novo LoF (dnLoF) and missense (dnMIS) 
mutations (Fig. 1a and Supplementary Tables 3–6). TDT confirmed 
the associations of rare inherited protein-truncating SNVs (inhLoF) 
and SVs (LoFSV) (Fig. 1b and Supplementary Tables 7–9). SVs that 
disrupt CRE variants (CRE-SVs) of constrained genes showed dif-
ferential transmission in cases and controls, but the TDT did not 
reach statistical significance in cases. The PSs for autism (PSASD,), 
schizophrenia (PSSZ) and educational attainment (PSEA) were all sig-
nificantly associated with ASD (Fig. 1c and Supplementary Table 
10) and the polygenic contribution to ASD was consistent across all 
three cohorts (Supplementary Table 11).

We examined the combined effects of rare and common varia-
tion. To ensure that genetic factors were ascertained consistently 
across the three cohorts, analysis was restricted to six categories 
that are detectable in exome and WGS with comparable sensitivity: 
dnLoF, dnMIS, inhLoF and PSs (PSASD, PSSZ, PSEA). SVs and CNVs, 
variant types that cannot be ascertained comparably in exome and 
WGS datasets, were not included. To minimize ancestry as a con-
founder in PSs, analysis was restricted to a subset of 7,181 families 
(n = 25,391 individuals) with parents and offspring who have con-
firmed European ancestry.

The contribution of each factor individually and the additive 
contributions of multiple factors were estimated by multivariable 
regression (Fig. 2a). The variance explained by individual genetic 
factors in the present study was consistent with previous studies. 
Polygenic risk explained 2% of the variance in case status in the com-
bined sample (Supplementary Table 12), consistent with the ~2% 
of variance explained by polygenic risk in the most recent GWAS 
meta-analysis3. The combined contribution of rare variants was 
similar, also explaining 2% of the variance in case status (Fig. 2a).  
Our results indicate that rare variants and polygenic risk form two 
major components of the genetic architecture of ASD, and the  

additive effects of all factors combined could be quantified in a single 
model (r2 = 4%;, Fig. 2a and Supplementary Table 12). We applied 
the estimates of the multivariable regression to create composite 
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Fig. 1 | Risk for ASD is attributable to multiple genetic factors including 
DNMs, rare inherited variants and polygenic risk. Multiple genetic factors 
that have been previously associated with ASD were confirmed in our 
combined sample. ‘**’ denotes associations that were significant after 
correction for 11 tests (P < 0.0045). Error bars represent the 95% CIs.  
a, Damaging DNMs in genes that are functionally constrained (LOEUF < 0.37 
and MPC ≥ 2), including dnMISs and protein-truncating SNVs, indels 
(dnLoF) and SVs (dnSV), occurring at higher frequencies in cases than 
in sibling controls. P values were based on two-sided Student’s t-tests. 
b, Protein-truncating SNVs and indels (inhLOF) and SVs (SVLoF), and 
noncoding SVs that disrupt CRE-SVs, were associated with ASD based on a 
TDT. c, The pTDT was significant for all three PSs, PSASD, PSSZ and PSEA. Rare 
variant associations (a and b) were tested in the full sample (n = 37,375). 
The pTDT association was tested in samples of European ancestry 
(n = 25,391). Results for a–c and full lists of rare de novo and inherited 
variants in constrained genes are provided in Supplementary Tables 3–10.
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genetic risk scores of multiple factors, including a rare variant risk 
score (RVRS) for the combination of dnMIS, dnLoF and inhLoF, a 
common variant risk score (CVRS) for the combination of PSASD, 
PSSZ and PSEA, and a genomic risk score (GRS) for the combina-
tion of all six genetic factors. For each, we calculated the case–con-
trol ORs at multiple score thresholds (Fig. 2b and Supplementary  
Table 13) and found that, across the full distribution of risk scores, 
the GRS detects an effect size that is 40% stronger on average than 
effect sizes for RVRS or CVRS (Supplementary Table 14).

Sex differences in genetic load. Sex differences in genetic load were 
evident for both polygenic and rare variant risk (Fig. 3a,b). Female 
cases had significantly increased RVRS (P = 4.32 × 10−7; Fig. 3a) and 
CVRS (P = 5.96 × 10−4; Fig. 3b) compared with male cases. A similar 
trend was seen for polygenic risk in controls, with female controls 
having a greater CVRS than males (P = 0.026; Fig. 3b). These results 
are consistent with a ‘female protective effect’, in which females in 
the general population tolerate a greater genetic load of ASD risk, 
and likewise a greater genetic load is required for females to meet 
diagnostic criteria for ASD case status21. The full distribution of 
GRS is skewed upward in females compared with males (Fig. 3c), 

which is further highlighted by a fill plot comparing the densities 
of distributions of GRS between groups (Fig. 3d). As expected, the 
distribution of GRS is bimodal, with a subset of DNM carriers hav-
ing the highest scores and the greatest enrichment of female cases.

According to a liability-threshold model for ASD22,23, a total 
genetic load sufficient to meet diagnostic criteria can be reached 
through differing combinations of rare and common variation. 
Subjects with a greater rare variant load may require less polygenic 
load5 and vice versa. In the present study, cases who carry damaging 
DNMs (dnLoF or dnMIS) had a combined polygenic load that was 
reduced compared with cases that do not carry damaging DNMs 
(Fig. 4). A similar trend was seen in both sexes, but the effect was 
not statistically significant in females. Thus, in the presence of a 
damaging DNM, less polygenic risk is required to meet diagnos-
tic criteria for ASD. The negative correlation of the composite risk 
scores RVRS and CVRS (P = 0.0037, Pearson’s correlation = −0.015) 
was stronger than for the pairwise correlations of individual factors 
(Fig. 4b and Supplementary Table 15), consistent with liability being 
attributable to the additive effects of multiple rare and common 
genetic factors. Also consistent with a liability threshold model, rare 
inherited variants (inhLoF) were negatively correlated with DNMs 
(P = 0.03; Extended Data Fig. 2a).

The strength of the threshold effect in Fig. 4b did not differ sig-
nificantly by sex. This is in contrast to our previous analysis of this 
dataset using the polygenic scoring method PRSice, which found 
evidence that the anti-correlation of CVRS and RVRS was stronger 
in males24 than in females (Extended Data Fig. 3). Evidence for sex 
differences in the strength of this negative correlation is therefore 
not robust across multiple polygenic scoring methods. Evidence for 

1 2 3 4 5 6 7 8 9 10

Decile

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
g(

O
R

)

RVRS

CVRS

GRS

dn
M

IS

dn
Lo

F

in
hL

oF
R

ar
e 

co
m

bi
ne

d

P
S A

S
D

P
S S

Z

P
S E

A

P
S co

m
bi

ne
d

A
ll 

co
m

bi
ne

d

0

0.01

0.02

0.03

0.04

0.05

r2

a

b
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sex-biased transmission of rare inhLoF variants within families was 
similarly weak. For instance, we did not observe a biased transmis-
sion of risk from the more ‘protected’ parent (mothers) to the more 
susceptible offspring (male cases; Extended Data Fig. 2b), as we 
have previously hypothesized8. Thus, we do not find evidence that 
gene-by-sex effects result in dramatic biases in the transmission of 
risk from parent to child (see Supplementary Note for additional 
discussion).

Differential effects of genetic factors on behavioral traits. We 
hypothesize that the differences in genetic architecture that we 
observed in the present study could underlie broad variation in clin-
ical phenotype across the autism spectrum. DNMs have been asso-
ciated with a more severe clinical presentation of ASD characterized 
by greater intellectual impairment2,25 and delays in meeting devel-
opmental milestones26,27. PSs for cognitive traits have been associ-
ated with a clinical subtype of high-functioning ‘Asperger’ cases18. 
We investigated behavioral correlates of genetic factors in quantita-
tive phenotype data from cases, sibling controls and parents that 
were available in the SSC and SPARK cohorts. Phenotypic measures 
in offspring included repetitive behavior (Repetitive Behavior Scale 
(RBS)), social responsiveness (Social Responsiveness Scale (SRS)), 
social communication (Social Communication Questionnaire 
(SCQ)), adaptive behavior (Vineland Adaptive Behavior Scale 
(VABS)) and developmental motor coordination (Developmental 
Coordination Disorder Questionnaire (DCDQ)). Behavioral traits 
in parents included ASD symptoms (SRS, Broad Autism Phenotype 
Questionnaire (BAPQ)), educational attainment (EA) and paren-
tal age at birth of the proband (Supplementary Table 16). Genetic 
effects were tested by linear regression controlling for cohort, age, 
sex and PCs, and the effects were also tested for gene-by-sex interac-
tions (Supplementary Table 17).

Multiple genetic risk factors contributed to dimensions of ASD 
symptom severity in cases and in their typically developing sib-
ling and parents. Six gene–trait correlations were significant after 
Bonferroni correction for 72 tests (Fig. 5a) and 18 showed nomi-
nal associations (P ≤ 0.05). Social deficits (SCQ, SRS) in offspring 
were associated with polygenic risk (PSASD) and dnLoFs, and the 
same factors influenced social behavior (SRS, BAPQ) in parents 
(Fig. 5b), with PSASD associated with social deficits and dnLoFs cor-
related with reduced symptom severity in parents consistent with 
a de novo etiology. Deficits in the VABS in offspring were weakly 

correlated with dnLoFs and polygenic risk (PSASD, PSSZ). Deficits in 
motor coordination (the DCDQ) were associated with rare variants 
(dnMISs, dnLoFs, inhLoFs) but not with PSs. PSEA was protective 
for core ASD symptoms of repetitive behavior and social commu-
nication deficits in offspring and was also associated with reduced 
symptom severity in parents (BAPQ, EA). Intriguingly, multiple 
inherited genetic factors in parents (inhLoFs, PSEA and PSSZ) were 
associated with parental age.

The correlations of genetic factors with behavioral traits were 
weakly sex biased. Eleven gene–trait relationships showed nominal 
evidence for an interaction by sex, but none was statistically signifi-
cant after correction for multiple testing. These results suggest that 
the effects of most genetic factors on behavioral traits were simi-
lar in females and males. Among the weak interactions that were 
observed, most gene-by-sex effects (8/11) were observed in controls 
or parents. This may be attributable to either a reduced power to 
detect sex differences in case samples that are predominantly male 
or the homogenizing effects of clinical ascertainment of ASD cases. 
Sex differences in genetic effects were not exclusively male biased 
(5/11 had stronger effects in females). For example, genetic effects on 
SCQ in cases included two factors that were male biased (PSASD and 
PSSZ) and two that were female biased (inhLoF and PSEA) (Fig. 5a).  
Perhaps the most striking example of gene-by-sex interaction was 
that all six factors showed evidence for differential effects on mater-
nal and paternal age (Fig. 5b).

Multiple genetic factors contribute to parental age effects. We 
and others have demonstrated that advanced paternal age correlates 
with increased rates of germline mutation in offspring28–30, consis-
tent with parental age effects being attributable in part to DNMs 
that accumulate in the paternal germline. An alternative model by 
Gratten et al. has postulated that advanced paternal age could itself 
be a trait that is directly influenced by a genetic liability for ASD 
carried by the father31. A recent study has found evidence that PSASD 
is positively correlated with paternal age32, providing support for 
Gratten et al.’s model.

Our results demonstrate that the genetic basis of the parental 
age effect in ASD is highly multifactorial with contributions from 
DNMs, rare inherited variants and polygenic risk. For example, 
common (PSEA) and rare (inhLoF) variation in fathers were asso-
ciated with older and younger paternal age, respectively (Fig. 6a), 
and the correlation of PSEA with advanced parental age was even  

ASD female ASD male

–0.1

0

0.1

0.2

0.3

NS

P = 0.036

No damaging DNMs

Damaging DNM carrier

*

* *

** ** –0.02

–0.01

0.01

0.02
PSASD PSSZ PSEA CVRS

dnMIS

dnLoF

inhLoF

RVRS

*

**

1

0.1

0.05

0.01

C
orrelation

P
 value

ba

C
V

R
S

0

Fig. 4 | Negative correlation of rare variants and polygenic risk is consistent with a liability threshold model. a, Transmission of polygenic risk (pTDT) 
was reduced in cases that carry damaging DNMs (dnLoF and dnMIS combined), with a non-significant result in females. P values were based on two- 
sided Student’ t-tests (n = 4,256 male cases (423 DNMs and 3,833 no DNMs) and 991 females (1,504 DNM and 1,550 no DNM) of European ancestry). 
b, A heatmap displaying the strength of the correlations between PSs and rare variants. P values were derived from linear regression. Results are provided 
in Supplementary Table 15.

Nature Genetics | VOL 54 | September 2022 | 1284–1292 | www.nature.com/naturegenetics 1287



Articles NATurE GEnETIcS

stronger for mothers (Fig. 6a and Supplementary Table 18). As 
expected, the rate of de novo SNVs increased with paternal age in 
the combined dataset (r2

paternal = 0.42, r2
maternal = 0.27; Extended Data 

Fig. 4), and dnLoF and dnMIS variants mirror this effect (Fig. 6a).
The single strongest inherited factor that influenced parental age 

was PSEA (r2 = 0.017; Supplementary Table 17), whereas PSASD and 
PSSZ showed much weaker correlations (r2 ≤ 0.0006). Consistent 
with these results, parents’ levels of education were significantly 
correlated with parental age in our sample and maternally biased 
(r2

maternal = 0.066, r2
paternal = 0.023), but social deficits in parents were 

not correlated with parental age (Supplementary Table 19). To fur-
ther examine what behavioral traits in parents may explain inher-
ited mechanisms of parental age effects, we compared the relative 
effects of genetic factors on the age, education and social behavior 
of parents (Fig. 6b,c). The effects of six genetic factors on parental 
age were positively correlated with their effect sizes for EA of par-
ents (Pearson’s correlation coefficient (PCC) = +0.76, P = 0.0039; 
Fig. 6b) and negatively correlated with their effect sizes for social 

deficits (PCC = −0.66, P = 0.016; Fig. 6c). These results suggest that 
inherited mechanisms of parental age effects on ASD risk in off-
spring may be driven by genetic effects on learning and education in 
parents rather than by effects on parental social behavior.

Rare variant risk is enriched in neurons of the fetal cortex. ASD 
susceptibility genes are preferentially expressed in the developing 
brain18,27. We hypothesize that differences in effect sizes and associ-
ated phenotypes between common variants and rare variants may 
be attributable, in part, to differences in the brain expression of their 
respective genes. In the present study, we confirmed that ASD sus-
ceptibility genes are enriched in fetal cortex and cortical cell types, 
and compared the degree of enrichment between protein-coding 
genes implicated by rare variants or by GWASs.

We applied a rare variant transmission and de novo association 
(TADA) test33 to the combined data in the present study to define a 
set of 125 ASD susceptibility genes (TADA genes) with a false discov-
ery rate (FDR) < 0.05, and we obtained a set of 114 high-confidence, 

*

* ** *

* *

**** *

**

* *

*

* *

* * *

*

* * **

* **

RBS case

SCQ case

SCQ cont

SRS case

SRS cont

VABS case

VABS cont

DCDQ case

dn
M

IS

dn
Lo

F

inh
Lo

F

PS ASD
PS SZ

PS EA

a

SRS

BAPQ

Parental age

Parental EA

dn
M

IS

dn
Lo

F

inh
Lo

F

PS ASD
PS SZ

PS EA

b
–0.4

–0.2

0

0.2

Effect size (s.d.)

Sex bias (P ≤ 0.05)

Female

Male

Repetitive

Social

Social

Social

Social

Adaptive

Adaptive

Motor

P value

≤0.00001

0.0001

0.001

0.01

0.05*

**

**

*

*

Behavior

Fig. 5 | Differential effects of rare and common variation on behavioral traits in cases, sibling controls and parents. a, The effects of genetic factors 
tested on five phenotype measures in children: RBS, SRS, SCQ, VABS and DCDQ. Note that RBS, SRS, SCQ and BAPQ are measures of ‘deficit’; thus, in 
the heatmap, red corresponds to increased severity. VABS and DCDQ are measures of ‘skill’; thus, blue corresponds to increased severity on these two 
instruments. Gene–phenotype correlations were tested by linear regression controlling for sex, age, cohort and PCs. Effect size is given as the s.d. of the 
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protein-coding genes identified in a previous GWAS by Grove et al.18 
(GWAS genes). To define a null distribution of expression values 
across developmental periods and cell types, 1,000 protein-coding 

genes were randomly sampled from the expression datasets. The 
three gene lists are provided in Supplementary Table 20. The expres-
sion of TADA genes and GWAS genes was then compared with the 
null distribution in cortex bulk tissue data from the BrainSpan tran-
scriptome atlas34 and cell-type expression data obtained from the 
Cortical development expression (CoDEx) resource35.

In bulk human cortex, GWAS genes were more highly expressed 
(expression across all cortex samples and periods) compared with 
the null distribution, and TADA genes were further enriched  
(Fig. 7a). After normalizing cortex expression of each gene 
across periods, GWAS genes show increased relative expression 
during fetal development (Fig. 7b) compared with the null, and 
again TADA genes showed a further enrichment in fetal cortex. 
At the level of cortical cell types, the expression of TADA genes 
was significantly (approximately twofold) greater than the null 
in excitatory and inhibitory neurons (Fig. 7c and Supplementary  
Table 21), and GWAS genes did not show a significant enrichment 
of expression by cell type. These results are consistent with rare 
variants of large effect impacting genes that have key roles in early 
fetal brain development.

Discussion
Whole-genome analysis of a large ASD family cohort demonstrates 
how the genetic basis of ASD consists of multiple genetic compo-
nents, including DNMs, rare inherited variants and PSs for psy-
chiatric and behavioral traits. In the present study, the predictive 
accuracies of PSs and rare variants were similar, each explaining 2% 
of variance in case status. As new sequencing technologies continue 
to chip away at the missing heritability of ASD, additional genetic 
factors could be incorporated into the composite GRS to further 
improve upon this simple model. Furthermore, when WGS sam-
ple sizes become larger, more accurate estimates of the heritability 
explained by rare and common variants36 could be feasible.

The genetic architectures of ASD vary across cases, which is 
evident by an inverse correlation of rare variants and PSs, consis-
tent with a liability threshold model. This suggests that the genetic 
architectures of cases represent a spectrum of genetic loadings 
that span between extremes of polygenicity and monogenic dis-
ease. Furthermore, female cases have a significantly greater overall 
genetic load of polygenic and rare variation than male cases, con-
firming that a ‘female protective effect’, in which females display a 
greater tolerance for ASD risk alleles, applies generally to all compo-
nents of the genetic architecture.

The spectrum of genetic architectures that we observe contrib-
utes to phenotypic variation across the cohort. Multiple genetic fac-
tors influence ASD symptom severity in cases and in their typically 
developing siblings and parents, with each factor having a different 
pattern of trait association. Considering core symptom domains 
such as social deficits and repetitive behavior, PSASD and dnLoF were 
associated with severity in social deficits and PSEA was protective 
for these traits. Several factors were weakly correlated with adaptive 
behavior and deficits in developmental motor coordination were 
attributable solely to rare variants. For most gene–trait relation-
ships, genetic effects on symptom severity paralleled their effects on 
case status. The one exception was PSEA, which negatively correlated 
with symptom severity in offspring and parents but positively corre-
lated with case status. Thus, the association of PSEA with ASD could 
not be explained by any of the behavioral traits that were measured 
in the present study. Potentially, SNPs that are captured by PSEA may 
influence dimensions of social cognition that were not tested in the 
present study or they may contribute to a clinically distinct subtype 
of high-functioning ASD. Consistent with the latter hypothesis, 
Grove et al. reported that the effect size for PSEA was strongest in the 
‘Asperger’s syndrome’ clinical subtype18.

Based on the evidence for a ‘female protective effect’ on the 
genetic load in cases, one might predict that genetic effects on social 
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behavior would be stronger in males than in females. However, 
gene–trait relationships did not consistently follow this pattern. 
Most gene–trait correlations did not differ by sex. Genetic effects 
on social communication in cases consisted of two factors with evi-
dence of a male bias (PSASD and PSSZ) and two with evidence of a 
female bias (inhLoF and PSEA). Genetic correlations with parental 
age consisted of four factors that were paternally biased (dnMIS, 
dnLoF, inhLoF and PSASD) and two that were maternally biased (PSEA 
and PSSZ). The observation that gene-by-sex effects go both ways is 
consistent with studies that have found preliminary evidence that 

some ASD genes are prevalent in female cases and others are preva-
lent in males37. Caution is warranted when interpreting gene-by-sex 
interactions. Given that all ASD GWASs have included case samples 
that were predominantly male, PSASD may be over-represented in 
male-biased SNP effects. In addition, genetic effects that differ by 
sex could reflect the influences of social factors or clinical ascertain-
ment38. For example, a female bias in the effects of inhLoF variants 
might be expected if the clinical ascertainment of females is biased 
toward subjects with greater symptom severity and greater rare vari-
ant load39.
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Multiple genetic factors were associated with parental age with 
effects that differed by sex. These results provide new insights into 
the genetic mechanisms of parental age effects on ASD risk in off-
spring40. Parental age effects are attributable to multiple mecha-
nisms, including: (1) a DNM mechanism (dnMIS, dnLoF) in which 
new mutations accumulate with age in the paternal germline28,29; 
(2) inherited rare variants that directly contribute to parental age 
behavior in fathers; and (3) a polygenic mechanism that influ-
ences parental age in mothers and fathers31, with PSEA having by 
far the strongest effect. Our genetic findings support a model in 
which the combined effects of inhLoF, DNMs and PSs contribute 
to a U-shaped effect of parental age and genetic risk for ASD. This 
model is consistent with several previous studies that have found 
evidence for a U-shaped relationship of parental age and risk for 
ASD or other developmental disorders in offspring41–45.

The effects of genetic factors on parental age were positively cor-
related with their effects on EA. Rare inhLoF variants were associ-
ated with early paternal age and fathers that carried inhLoFs had 
reduced EA, but this association was not statistically significant 
(P < 0.058; Supplementary Table 18). The single strongest predic-
tor of advanced parental age, particularly for mothers, was PSEA. We 
confirmed in our dataset a significant correlation of parental edu-
cation and parental age46 that was stronger for mothers (r2 = 0.06, 
P = 3.5 × 10−52; Supplementary Table 19) than for fathers (r2 = 0.03, 
P = 1.3 × 10−23). By contrast, measures of social impairment in par-
ents (SRS, BAPQ) were not associated with advanced parental age. 
Our results support a hypothesis that inherited mechanisms of 
parental age effects are mediated by genetic effects on learning and 
education in parents.

Differences in cognitive traits associated with rare variants and 
polygenic risk may be in part attributable to expression patterns of 
the respective genes during fetal development. By comparing the 
expression of GWAS and TADA genes in transcriptome data from 
bulk tissue and single cells of the developing cortex, genes impli-
cated by rare variants were more strongly enriched during fetal 
development, specifically within neurons. These results are consis-
tent with polygenic models in which rare variants impact genes that 
play key roles in neurodevelopment, whereas the effects of common 
risk alleles are distributed more broadly across genetic regulatory 
networks47,48. Given that much of the polygenic risk influences non-
coding regulatory elements of genes49, it is possible that the brain 
and cell-type enrichment of common variant effects may be greater 
for the underlying regulatory elements than for the transcripts as a 
whole. However, these results do highlight one aspect of the genetic 
architecture: polygenic risk for ASD is not restricted to a narrowly 
defined brain region, cell type or pathway.

The results described in the present study highlight how an 
integrated analysis of multiple genetic factors can improve our 
understanding of the genetic basis of ASD. Although most of the 
heritability of ASD remains unexplained, the expanding arsenal of 
sequencing platforms and methods of variant detection promise 
to expand the range of genetic factors that can be captured from 
a genome. The growing cohorts of ASD19 as well as individual rare 
diseases50 promise to improve knowledge of the effects of risk alleles 
on psychiatric traits and how their combined effects determine 
clinical outcome.
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Methods
Our research complies with all relevant ethical regulations as approved by the 
institutional review board of the UCSD School of Medicine.

Datasets. The sample comprised three datasets, including WGS of cohorts from 
the REACH project at UCSD (https://sebatlab.org/reach-project) and the SSC, 
and a dataset of exomes and SNP genotyping from the SPARK study19. The 
combined sample of 11,313 ASD families consisted of a total of 37,375 individuals, 
including 12,270 cases, 5,190 typically developing siblings and 19,917 parents 
(Supplementary Tables 1 and 2). All categories of genetic risk to be evaluated 
in the present study were confirmed previously within smaller cohorts of this 
study (REACH or SSC). Thus, the combined sample provides improved power to 
determine the effect sizes for the same genetic factors. See Data availability and 
Code availability for details on data access.

Processing of DNA-sequence data. Each of the three datasets consisted of 
Illumina paired-end sequence data, which were processed by BWA alignment and 
variant calling using GATK best practices. Specific differences between datasets 
include library prep (PCR versus PCR free, WGS versus exome) and differences in 
software version. Details are provided in the sections below. Analysis was carried 
out with SNP, indel and SV calls mapped to GRCh38. Variant calls from the SSC 
and SPARK cohorts were generated from sequences aligned to GRCh38. Jointly 
called variant call formats (VCFs) from the REACH cohort were lifted over from 
GRCh37 to GRCh38 before annotation and analysis.

REACH cohort. WGS was performed on blood-derived genomic DNA as described 
in our previous publication51. Standard quality control steps were carried out to 
ensure proper relatedness and genetic sex concordance with the sample manifest. 
Sequencing reads were aligned to the GRCh37 reference genome using bwa-mem 
(v.0.7.12). Subsequent processing of the alignments followed GATK Best Practices 
guidelines including sorting, marking duplicate reads, indel realignment and base 
quality score recalibration.

To ensure functional equivalency with other cohorts in our dataset, we 
applied the same SNV/indel variant calling pipeline used on the SSC cohort (see 
Simons Simplex cohort below for details). We utilized GATK HaplotypeCaller 
(v.4.1) to first call SNVs and indels in individual samples. GRCh38 genomic 
VCFs (GVCFs) were then combined using CombineGVCF and jointly genotyped. 
Variant Quality Score Recalibration (VQSR) was then performed on the joint VCF. 
The VQSR model was trained with the parameter ‘maxGaussians=8’ for SNVs 
or ‘maxGaussians=4’ for indels. Variant scores were recalibrated with the truth 
sensitivity level of 99.8% for SNVs and 99.0% for indels. Sample-level filtering 
converted genotypes to noncalls (‘./.’) if the genotype quality (GQ) < 20 or the read 
depth (DP) < 10. Before proceeding with variant annotation, variants were lifted 
over from GRCh37 to GRCh38 with the GATK LiftoverVcf command.

Simons Simplex cohort. WGS was performed at the New York Genome Center 
(NYGC) on an Illumina HiSeq X10 sequencer using 150-bp paired-end reads to 
an average depth of 40×. Reads were aligned to the GRCh38 reference genome 
using bwa-mem with subsequent processing of alignments in line with GATK Best 
Practices for functional equivalence.

Jointly called VCFs containing SNVs and indel calls were provided by the 
NYGC (21 March 2019). Briefly, variant calling was performed using GATK (v.3.5). 
Variant discovery implemented HaplotypeCaller in GVCF mode. Variant quality 
scores were recalibrated by VQSR with the truth sensitivity level of 99.8% for 
SNVs and 99.0% for indels. Low-quality genotype calls were defined as GQ < 20 
or DP < 10 and were converted to missing genotypes (‘./.’). Only variants that had 
‘PASS’ entries in the FILTER column were considered for analysis of inherited 
variants. Further details on the generation of the SSC SNV and indel joint calls can 
be found in the pdf accompanying the data release from the Simons Foundation. 
WGS SNP genotypes and GWAS-imputed genotypes were subsequently merged in 
PLINK 1.9 (ref. 52) for generation of PCs and PSs.

SPARK cohort. The publicly available SPARK dataset consisted of SNP genotyping 
(Illumina global screening array GSA-24v1-0) and exomes (IDT xGen capture 
sequenced on the Illumina NovaSeq 6000 using 2/S4 flow cells). Imputation of SNP 
genotypes was performed using the RICOPILI pipeline (https://sites.google.com/a/
broadinstitute.org/ricopili/imputation)53.

Downstream processing of exome data was performed as follows: per-sample 
GVCFs were obtained from the SPARK September 2019 data release in which 
GVCFs had been generated with GATK v.4.1.2.0 HaplotypeCaller from CRAM 
files aligned to GRCh38 with bwa-mem. Joint genotyping and quality control of 
SNP and indel variant calls were performed at UCSD in batches of 100 families, the 
same GATK pipeline that was used for the REACH and SSC WGS. Variants with 
‘PASS’ in the FILTER column were retained for analysis. Likewise, indel calls with 
quality of depth (QD) < 7.5 were omitted.

PC calculation. Genotype data were linkage disequilibrium (LD) pruned to a 
set of 100,370 unambiguous markers with a minor allele frequency (MAF) >5% 
in PLINK 1.9, using the --indep-pairwise command with a 200-variant window, 

shifting the window 100 variants at a time and pruning variants with r2 > 0.2. KING 
v.2.2.4 (https://doi.org/10.1093/bioinformatics/btq559) was used to identify a set 
of unrelated individuals (first- and second-degree relatives removed). PCs were 
calculated in the unrelated individuals based on LD-pruned data using FlashPCA2 
(https://doi.org/10.1093/bioinformatics/btx299) and related individuals were then 
projected on to the PCs.

PS calculation. PSSZ was calculated based on current schizophrenia summary 
statistics from the psychiatric genomics consortium (https://www.med.unc.edu/pgc/
download-results). PSASD was calculated from summary statistics in Grove et al.18 
after excluding the SSC dataset used in the present study. PSEA was calculated from 
summary statistics of the recent GWAS meta-analysis of EA by Lee et al.54.

Two polygenic scoring methods were evaluated, and the method with the 
greatest prediction accuracy for ASD case status was selected for all analyses 
described here. Before manuscript submission, PSs were calculated from summary 
statistics using the method PRSice (v.2.3.0)55 and the results of this analysis posted 
to MedRxiv24. As recommended during peer review, PSs were recalculated using 
a newer method, SbayesR20. The recalculated PSs, particularly PSASD, had greater 
predictive value for case status (Extended Data Fig. 5) and overall results were 
highly consistent between both PS methods. A comparison of the two is discussed 
in further detail in the Supplementary Note. SBayesR PSs were used for all analyses 
presented in the present study.

SBayesR. PSs were calculated using SBayesR20, a polygenic scoring method that 
provides an advantage over ‘clumping and thresholding’ methods such as the method 
PRSice55. SBayesR utilizes all SNPs, and SNP effect sizes are re-scaled using a Bayesian 
(multiple regression) posterior inference model. SBayesR was implemented according 
to default settings as described in the software tutorial https://cnsgenomics.com/
software/gctb/#Tutorial using the Banded LD matrix provided: https://cnsgenomics.
com/software/gctb/#LDmatrices. We used the --exclude-mhc argument, which 
excludes variants in the major histocompatibility complex (MHC). Polygenic risk 
scores were calculated from the SBayesR summary statistics using PLINK.

PRSice v.2.3.0 (https://doi.org/10.1093/gigascience/giz082). Only unambiguous 
variants with an MAF > 1% in the reference dataset were included. Variants were 
LD clumped over a 250-kb window with an r2 value of 0.1. PSs were calculated at 
multiple P value thresholds (0.01–0.9) to determine the optimal threshold. The 
best fitting PS for each trait was selected based on a significance level of a TDT test 
carried out in autism cases (P value threshold = 0.1 for ASD and SZ and 0.05 for 
EA). The best fitting PS was carried forward for all subsequent statistical analyses.

SV calling. SV calls were produced only for the WGS datasets REACH and 
SSC. Our SV calling and filtering workflow have been described in detail in our 
previous publication51. Briefly, we ran ForestSV, LUMPY and Manta on each 
sample calling deletions and duplications. ForestSV mainly relies on coverage 
as a feature to call SVs, resulting in segmented calls for large events that span 
repetitive elements such as segmental duplications. As a result of this, we applied a 
stitching algorithm to ForestSV calls, combining calls of the same SV class if they 
were ≤10 kb apart. As a preliminary filter, we omitted any variant that overlapped 
more than two-thirds of the SV length to centromeres, telomeres, segmental 
duplications, regions with low mappability with 100-bp reads, antibody parts, 
T-cell receptors and other assembly gaps.

The resulting calls were genotyped using SV2 and SVTyper within each sample. 
SVs and genotypes were then collapsed for overlapping calls. The collapsing 
algorithm first prioritized the breakpoint confidence interval (CIs) if both the start 
and the end CIs provided by LUMPY and/or Manta overlapped. For ForestSV calls, 
the CI was defined as ±100 bp from the start and end positions. The consensus 
position determined for a collapsible cluster was determined by the SV position 
with the highest number of overlaps. In the case of a tie, the median position was 
recorded. This method allows for collapsing of common SVs that ‘tile’ across a 
region, which rarely occurs outside variable regions such as the human leukocyte 
antigen locus. The resulting calls were then subject to a further round of collapsing, 
this time reducing calls to a consensus position if they overlapped 80% reciprocally 
with each other. This method was applied recursively until no more calls could 
be collapsed. As for CI collapsing, the consensus position reported was the SV 
with the highest number of overlaps. Variant level genotype likelihood scores 
were generated with SV2 by pooling all features from REACH and SSC samples. 
If the SV2 variant score was not ‘PASS’ then the SVTyper or Manta genotypes 
were recorded, as previously described51. Samples without a genotype call were 
considered as missing (‘./.’).

DNM calling. DNMs were called using the synthDNM software56. SynthDNM 
is a random forest-based classifier that uses only a pedigree file (PED/FAM) 
and VCF files as input, and can be readily optimized for different technologies 
or variant calling pipelines. For WGS datasets (REACH and SSC), we used the 
default SynthDNM classifier (SSC1 GATK), which was trained on GATK variant 
calls from >30× Illumina WGS data. This default classifier had high accuracy 
(area under the curve = 0.997) for detecting a truth-set of orthogonally validated 
de novo SNVs and indels from SSC56. For the exome dataset (SPARK), we trained 
an additional four classifiers, one for each set of variant calls: DeepVariant, WeCall, 
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SPARK GATK and SSC GATK. To maximize sensitivity while controlling for false 
positives, we retained DNMs if they were called by three out of the five classifiers. 
To further confirm the accuracy of SPARK DNM calls, we compared the de novo 
SNV and indel calls on the SPARK dataset with a set of validated DNMs that were 
confirmed by Sanger sequencing from a previous pilot study57. For SNVs, the recall 
rate for SNVs ranged from 92.6% to 98.2% (n = 117), whereas for indels the recall 
ranged from 98.6% to 100% (n = 107). For further details of the methodology and 
performance of SynthDNM, refer to our companion paper56.

De novo SVs were defined as events with heterozygous genotypes in offspring 
and homozygous reference genotypes in parents. We considered only variants 
that passed the stringent ‘DENOVO_FILTER’ filter produced by SV2 (ref. 58). We 
applied our standard filtering guidelines detailed below to omit variants present 
in regions known to produce spurious calls. We also supplemented our de novo 
calls with the de novo CNV calls generated from microarrays in SSC samples from 
Sanders et al.11 because many of these calls are likely to be missed by paired-end 
SV callers. We then manually inspected the list of de novo SVs and stitched calls 
together if they were separated by segmental duplications >10 kb (the maximum 
stitching requirement for ForestSV calls detailed in the section below).

Variant annotation. Variant Effect Predictor v.97 along with transcript annotations 
from Gencode v.31 were used in annotation of SNVs and indels. Variants were 
flagged as ‘LoF’ as the functional consequence of one of the following: ‘transcript_
ablation’, ‘splice_acceptor_variant’, ‘splice_donor_variant’, ‘stop_gained’, ‘frameshift_
variant’, ‘stop_loss’, ‘start_loss’. LoF variants exclusive to nonsense-mediated decay 
transcripts were omitted from subsequent analysis. SVs were annotated by overlap 
with exons and proximal CREs including 5′-UTRs, transcription start sites and 
fetal brain promoters. As the list of annotated proximal CREs was in GRCh37, we 
lifted over the GRCh38 SV calls to GRCh37 for all subsequent analyses.

We assigned gnomAD LOEUF scores (v.2.1.1) to each LoF variant and 
CRE-SV. If a variant overlapped more than one gene, as in the case for large SVs, 
we recorded the minimum (most constrained) LOEUF score to that variant. 
Constraint was quantified for missense variants using the MPC scores59. These 
scores are available for the GRCh37 build of the human genome and were 
transposed to GRCh38 for analysis. Missense variants without MPC scores due 
to updates to the reference genome were not used in subsequent analysis. The 
recommended cutoffs to enrich for the top tier of constraint (LOEUF < 0.37; 
MPC > 2) were applied to de novo and rare inherited LoF variants.

Association tests. Selection of variant types to be tested. For the present study, we 
sought to define several major categories of rare variant and common variant risk 
and to investigate their combined effects on ASD risk and behavioral traits. We 
settled on six categories (three rare and three common) that all have strong prior 
evidence for their contribution to ASD.

Rare variants. The major categories of rare variants that have been reproducibly 
associated with associated with ASD include: (1) de novo protein truncating/
dnLoFs, a category in which genetic association is concentrated within genes 
that are LoF intolerant60; (2) dnMISs, a category in which genetic association is 
concentrated within genes that show missense constraint59; and (3) inhLoF variants 
in LoF-intolerant genes16,51. In our analysis of genetic association, we confirmed the 
association of SNPs, indels and SVs within the above categories (Fig. 1). Analysis of 
the interactions between factors and correlations of genetic factors with behavioral 
traits across multiple cohorts were restricted to SNP and indel variants that can be 
detected across cohorts with comparable sensitivity.

Polygenic scores. Across a series of studies, schizophrenia61,62 and EA62,63 have stood 
out as traits that are correlated with polygenic risk for ASD. PSSZ and PSEA may not 
be the psychiatric trait scores that are most highly correlated with PSASD, but they 
are among the most well-powered GWASs. For this reason, these PSs were selected 
for the first family-based study that applied a pTDT test (also used in the present 
study) to demonstrate an overtransmission of PSASD, PSSZ and PSEA to cases17. This 
established for us the proof of concept for their inclusion in the present study. 
Given the high intercorrelation of genetic risk for a variety of other psychiatric 
disorders and traits61, a rationale could be made for examining several more PSs, 
but, given the wide variety of equally valid and highly correlated traits and PSs to 
choose from, we sought to err on the side of simplicity and included these three as 
the main polygenic factors of interest.

Definitions of variant types. All rare variant categories described below consisted of 
private variants in which the alt allele was present in only one family in the present 
study and had an allele frequency <1% in gnomAD (v.2.1.1). Target categories 
included only variants in functionally constrained genes as defined below.

The dnMIS variants were defined as all private de novo missense SNVs 
with MPC scores >2. The dnLoF variants were defined as variant calls that 
were predicted to result in loss of protein function (truncation of a protein) and 
included stop-gain, frameshift, splice site and exonic deletion in an LoF-intolerant 
gene defined as LOEUF < 0.37, following the recommendations from gnomAD. 
SVs that intersected more than one gene were assigned a minimum LOEUF 
score (corresponding to the most constrained gene). The category of de novo 
synonymous variants (dnSyns) included all private de novo synonymous SNVs.

The inhLoF variants were defined as private SNV or indel variants with a 
‘PASS’ entry in the ‘FILTER’ column and we removed variants with ≥5% missing 
calls across the cohorts. For inhLoF variants in the SPARK dataset, we applied one 
additional filter removing indel variants with QD scores <7.5.

For dnSVs and inherited LoF SVs, we included only private exonic SVs >50 bp 
in length and CRE-SVs ≥2.5 kb that passed the ‘DENOVO_FILTER’ from the SV2 
software, which is a stringent filter recommended for ultra-rare variants.

De novo association. The burden of damaging DNMs (dnLoF, dnMIS) was 
compared between cases and controls using a two-sided independent Student’s 
t-test reporting the two-sided P values. Results are provided for the set of DNMs 
in the combined sample. In addition, to evaluate the consistency of DNM 
ascertainment across the REACH, SSC and SPARK cohorts, dnLoF, dnMIS and 
dnSyn variants in all cohorts were compared by restricting DNMs to a common 
set of exome targets that was used in a previous publication by Iossifov et al.2. 
The dnSyn variants did not differ significantly between cases and controls in the 
combined sample (Extended Data Fig. 1a). In the SPARK cohort we observed a 
1.1-fold excess of synonymous variants in cases (OR = 1.1, P = 0.02). This trend 
could be attributable to other factors, including chance or true ASD-associated 
non-coding variants. No quality metrics that were tested were correlated with 
case status in the SPARK dataset including coverage, transition:transversion (Ti/
Tv) ratio, ratio of heterozygous to homozygous genotypes (Extended Data Fig. 1b) 
and paternal age (Extended Data Fig. 1c). Thus, variables could not be identified 
that explain a subtle baseline difference in the dnSyn burden, which could be 
included as covariates in a regression model. However, this very subtle effect does 
not contribute to a bias in the combined sample and cannot explain the strong 
associations reported for other categories of DNM (Fig. 1).

Inherited rare variant association. The number of transmissions and 
nontransmissions from parent to offspring was obtained using plink’s ‘--tdt poo’ 
command (v.1.9). Pooling of transmission and nontransmission counts for the 
TDT was done using the pytdt python package (https://github.com/sebatlab/pytdt). 
This package takes as input a data table containing a unique variant ID and counts 
for transmissions and nontransmissions in fathers and mothers for both cases and 
controls. Pytdt performs the pooling or group-wise analysis of private LoF variants 
and CRE-SVs by summing the counts of transmissions and nontransmissions 
for all variants encompassing a group. The package also reports ORs, CIs and 
other statistics commonly used for TDT analysis. We also conditioned the TDT 
according to the damaging DNM burden in the offspring using a binomial test 
for statistical significance of transmission distortion of private variants to cases or 
controls separately. For a summary of the TDT results and a list of all the private 
variants tested in the analysis, see Supplementary Tables 7–9.

The pTDT. According to methods from Weiner et al.17, trio-based association of PSs 
(PSASD, PSSZ, PSEA) with ASD was tested with the pTDT, which tests the significance 
of the deviation (dev) of the child PS from the average PS of the parents.

pTDT − dev = child PS − midparent PS.

The P value was then calculated using a one-sided Student’s t-test of pTDT-dev 
(Fig. 1c) with a population mean of 0. Results of the pTDT are reported in 
Supplementary Table 10.

Calculating composite risk scores RVRS, CVRS and GRS. We used multivariable 
regression to capture the combined effects of multiple genetic factors on case 
status. For rare variant factors, the predictor variables in the model consisted of 
rare variant burden counts for dnMIS, dnLoF and inhLoF. For PSs PSASD, PSSZ 
and PSEA, the predictor variables consisted of the pTDT-dev values of the trios. 
To calculate a composite genetic risk score, each predictor variable was first 
residualized for PCs and sex. Then estimates were calculated from a generalized 
linear model as follows:

y ∼ x1 + x2 + x3 + PCs + sex

where y is case status and x1, x2 and x3 are residualized predictor variables for 
three genetic factors. PCs for all regression models consisted of the first ten PCs 
from the principal component analysis (PCA). Then, the composite risk score (RS) 
is calculated using r as:

RS = predict(model, type = “response”).

Each RS was than standardized by z-transformation. Predictor variables  
(x1, x2, x3, and so on) for each risk score consisted of:

Rare variant risk score (RVRS) : dnMIS + dnLoF + inhLoF

Common variant risk score (CVRS) : PSASD + PSSZ + PSEA

Genomic risk score (GRS) : dnMIS + dnLoF + inhLoF + PSASD + PSSZ + PSEA.
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To compare the effect sizes on case status for the genetic factors and the 
composite risk scores (Fig. 2b), Nagelkerke’s r2 values were calculated for each of 
the residualized predictor variables and for each composite risk score.

Pairwise correlations of rare variants and polygenic risk. To test the correlations 
between rare variants and polygenic risk, we constructed pairwise linear models:

y ∼ x + sex + cohort + case.status + PCs

where the variable y is a polygenic score (PSASD, PSSZ, PSEA or CVRS) and x is a 
measure of rare variant load (dnLoF, dnMIS, inhLoF or RVRS). Gene-by-sex 
interaction was then tested in the following model:

y ∼ x + sex + x∗sex + cohort + case.status + PCs.

Supplementary Table 15 contains the full results for all pairwise correlation of 
rare and polygenic risk conditioned on sex.

Effects of genetic factors on behavioral traits. The effects of genetic factors on 
behavioral traits were investigated in the SSC and SPARK cohorts using clinical 
phenotype data available from the Simons Foundation Autism Research Initiative 
(SFARI; see Data availability and Code availability). To eliminate confounders due to 
ancestry, only individuals of European ancestry confirmed by PCA were included. 
Clinical measures of ASD symptoms and related behaviors were selected that were 
available for cases, typically developing sibling or parents. Phenotype measures 
consisted of the summary scores from the DCDQ of motor function and the RBS 
that were available on cases, and the VABS, SCQ and SRS that were available on 
both cases and sibling controls. Behavioral phenotypes available on parents included 
the BAPQ, parental EA (from the background history questionnaire) and parental 
age at birth (for the children with ASD diagnosis). Phenotype measures that were 
available for both the SSC and the SPARK cohorts were normalized within cohort 
by z-transformation, then combined, and the cohort was included as a covariate 
in the downstream analyses. A summary of the sample sizes available for each 
phenotype measure is provided (Supplementary Table 16).

Association of genetic factors with developmental traits was tested by linear 
regression controlling for sex, cohort and PCs. In addition, a gene-by-sex 
interaction was tested to determine whether genetic effects on cognitive traits 
differed for males and females. Phenotypes in offspring (cases and siblings) were 
tested using the model:

y ∼ x + sex + age + cohort + PCs

where y is the phenotype variable and x the genetic factor (DNMs, inhLoFs and 
PSs). In addition, a gene-by-sex interaction was then tested in this model:

y ∼ x + sex + x∗sex + age + cohort + PCs.

Brain and cell-type expression of ASD susceptibility genes. The lists of TADA, 
GWAS and randomly selected protein-coding genes are provided in Supplementary 
Table 20. The expression of TADA genes and GWAS genes was compared in the 
developing human brain using the publicly available gene expression matrix from 
BrainSpan34. The two gene sets were also compared across 16 cell types in the 
human cortex using cell-type expression data available from the CoDEx dataset35.

TADA genes. We defined a set of genes implicated by rare variants with the TADA33 
in our combined sample, using the recommended parameters for ASD relative risk 
and mutational rates for LoF and missense variants calculated by Samocha et al.64. 
TADA genes were defined as a set of 113 ASD genes that was associated with ASD 
at an FDR < 0.05.

GWAS genes. We obtained the list of high-confidence genes that were implicated 
by GWAS associations and described by Grove et al.18 (GWAS genes). Briefly, 
genes that are probable contributors to GWAS associations were defined with 
H-MAGMA, a method that assigns noncoding SNPs to their genes based 
on long-range interactions detected by Hi-C in fetal and adult brain65. A list 
of 121 GWAS genes was provided by the authors (Hyejung Won, personal 
communication). To facilitate a valid comparison of genes implicated by rare 
variants and common variants, the GWAS gene set was restricted to a subset of 114 
genes that were protein coding according to grch38 Ensembl gene annotations.

Random genes. Patterns of expression across developmental periods (Fig. 7b) and 
cell types (Fig. 7c) for GWAS genes and TADA genes were compared with null 
distributions obtained by randomly sampling 1,000 protein-coding genes from the 
BrainSpan and CoDEx datasets.

Analysis of gene expression in bulk tissue (BrainSpan). The developmental 
transcriptome dataset was downloaded from BrainSpan (https://www.brainspan.
org/static/download.html), which consisted of normalized gene expression data 
from 26 brain structures (including 21 within the cortex) across 31 developmental 
time periods. Overall expression of GWAS and TADA genes in the developing 

cortex was compared by combining expression values across cortex samples and 
gene sets were compared with the null distribution by Student’s t-test. Likewise, 
patterns of expression in cortex across developmental time periods were compared 
across gene sets by first normalizing the cortex expression of each gene to its 
mean across cortex samples, and then fitting the expression values of each gene 
set by Lowess smoothing using the ‘Lowess’ function described here: https://
james-brennan.github.io/posts/lowess_conf.

Analysis of gene expression in 16 cell types from fetal cortex (CoDEx). Analysis was 
performed on cell-type gene expression values provided in the CoDEx dataset35, 
which consisted of single-cell RNA-sequencing obtained by DropSeq analysis of 
sections of germinal zone and ventricular zone tissue from mid-gestation fetal 
cortex66. Briefly, in Polioudakis et al., raw counts were normalized and cells were 
clustered using Seurat (v.2.3.4)67 and mean gene expression values per cell were 
calculated for genes in 16 cortical cell types. Cell-type expression values were 
obtained from the ‘Genes’ table on the CoDEx web interface (http://solo.bmap.ucla.
edu/shiny/webapp) for TADA genes and GWAS genes, and these were compared 
with a random sampling of 1,000 protein-coding genes.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
WGS data from the SSC and exome and SNP genotyping data from SPARK are 
available from SFARI (https://www.sfari.org/resource/autism-cohorts). Summary 
genetic data from WGS and exomes, including individual counts for dnLoF, dnMIS, 
inhLoF and PSs for all subjects in the present study and input data files for all analysis 
code, are also available from SFARI. WGS data from the REACH project are available 
from the National Institute of Mental Health Data Archive (NDA), including the 
structural variant callset and raw sequence (FASTQ), alignment (BAM) and VCF 
files from the REACH cohort (https://nda.nih.gov/edit_collection.html?id=2019). 
GWAS summary statistics are available from the Psychiatric Genomics Consortium 
(ASD and SZ) (https://www.med.unc.edu/pgc/download-results) and the Social 
Science Genetic Association Consortium (EA) (http://www.thessgac.org/data). Bulk 
tissue expression data on ASD susceptibility genes was obtained from the BrainSpan 
developmental transcriptome dataset (v.0; https://www.brainspan.org/api/v2/well_
known_file_download/267666525). Cell-type expression levels of ASD susceptibility 
genes in fetal cortex were obtained through the web interface of the CoDEx viewer 
(http://solo.bmap.ucla.edu/shiny/webapp).

Code availability
Analysis code for all major statistical genetic analyses in the paper and for 
generating Figs. 1–7 is available as a Google Colab notebook on Github  
(https://github.com/sebatlab/Antaki2021).
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Extended Data Fig. 1 | Rates of de novo mutations stratified by cohort and evaluation of potential confounders. a, Rates of de novo synonymous (dnSyn) 
variants were not associated with ASD in the combined sample, but were enriched 1.1-fold in the SPARK cohort (P = 0.021). b, We evaluated whether 
quality metrics or other confounders could explain the slight excess of dnSyn variants in SPARK cases. Quality metrics did not differ in cases and controls 
including coverage, transition:transversion ratio (Ti/Tv) or ratio of heterozygous calls (Het/Hom). c, Paternal age did not differ significantly between cases 
and controls.
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Extended Data Fig. 2 | The combined effects of dnLoF, inhLoF and sex on the transmission of rare variants in families. a, A significant liability threshold 
for rare variants was evident based on a negative correlation of dnLoF and inhLoF (linear regression P = 0.03), and this effect did not differ significantly by 
sex. b, Case-control odds ratios were compared for the transmission rates in families by sex (father-daughter, mother-daughter, father-son, mother-son). 
Both maternal and paternal rare variants contribute to ASD with a significant over-transmission from mother to daughter and from father to son. We did 
not observe a significant sex bias in the transmission of rare variants in families. In particular, we did not observe an enriched transmission from mother to 
male cases as we have previously hypothesized8.
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Extended Data Fig. 3 | Sex differences in the correlation of rare variant and common variant risk was not robust across multiple polygenic scoring 
methods. a, An early analysis of this dataset using polygenic score estimates from PRSice observed that the negative correlation of RVRS and CVRS was 
stronger in males than in females, consistent with males having less tolerance of genetic risk. The heatmap displays the correlations between polygenic 
scores and rare variants in males and females separately. Correlations were tested by linear regression controlling for cohort, case status and ancestry PCs, 
and a gene-by-sex interaction was tested in the combined sample (ǂgene-by-sex P < 0.05). b, With polygenic scores calculated using SBayesR, there was a 
similar trend with the correlation of CVRS and RVRS being stronger in males; however, the gene-by-sex interaction was not statistically significant.
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Extended Data Fig. 4 | Correlation of de novo mutation rate with parental age. a,b, Correlation of total autosomal de novo SNVs with age of fathers (a) 
and mothers (b). See also Fig. 6a. n = 4,518 trios for which age-at-birth was available for the mother and father.
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Extended Data Fig. 5 | Comparison of the predictive values of polygenic scoring methods PRSice and SBayesR. Polygenic scores calculated using 
SBayesR had greater predictive value for polygenic scores for ASD (PSASD), schizophrenia (PSSZ) and educational attainment (PSEA).
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