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Abstract

Whether niche processes, like environmental filtering, or neutral processes, like dis-

persal limitation, are the primary forces driving community assembly is a central

question in ecology. Here, we use a natural experimental system of isolated tree

“islands” to test whether environment or geography primarily structures fungal com-

munity composition at fine spatial scales. This system consists of isolated pairs of

two distantly related, congeneric pine trees established at varying distances from

each other and the forest edge, allowing us to disentangle the effects of geographic

distance vs. host and edaphic environment on associated fungal communities. We

identified fungal community composition with Illumina sequencing of ITS amplicons,

measured all relevant environmental parameters for each tree—including tree age,

size and soil chemistry—and calculated geographic distances from each tree to all

others and to the nearest forest edge. We applied generalized dissimilarity modelling

to test whether total and ectomycorrhizal fungal (EMF) communities were primarily

structured by geographic or environmental filtering. Our results provide strong evi-

dence that as in many other organisms, niche and neutral processes both contribute

significantly to turnover in community composition in fungi, but environmental fil-

tering plays the dominant role in structuring both free-living and symbiotic fungal

communities at fine spatial scales. In our study system, we found pH and organic

matter primarily drive environmental filtering in total soil fungal communities and

that pH and cation exchange capacity—and, surprisingly, not host species—were

the largest factors affecting EMF community composition. These findings support

an emerging paradigm that pH may play a central role in the assembly of all soil-

mediated systems.

K E YWORD S

beta-diversity, ectomycorrhizal (ECM) fungi (EMF), generalized dissimilarity modelling (GDM),

Illumina MiSeq, pH, Yosemite National Park

1 | INTRODUCTION

A long-standing goal of ecology is to identify the processes structur-

ing ecological communities. Ecologists endeavour to determine the

biotic and abiotic factors that cause changes in beta-diversity, or

species turnover, because higher beta-diversity produces greater

regional species richness (Kraft et al., 2011). Still debated is whether

niche processes, like environmental filtering, vs. neutral processes,

like dispersal limitation, are more important in driving community

composition (Gravel, Canham, Beaudet, & Messier, 2006). Only

recently have ecologists begun explicitly testing for the prominence

of environmental determinism or dispersal limitation (Kristiansen

et al., 2012; Landesman, Nelson, & Fitzpatrick, 2014; Tuomisto,

Ruokolainen, & Yli-Halla, 2003) and typically only at broad spatial
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scales and in macro-organisms (Tuomisto et al., 2003). Hence, stud-

ies that simultaneously quantify the relative effects of environmental

filtering and dispersal limitation, especially at fine spatial scales, are

integral to understanding how local processes drive patterns of

biodiversity.

Microbial communities are excellent systems in which to examine

the drivers of community assembly because of their high diversity,

central role in many ecological processes and tractability for replica-

tion. Microbes are essential in driving many ecosystem processes like

decomposition and carbon cycling (van der Heijden, Bardgett, & van

Straalen, 2008; Martiny et al., 2016). In addition, microbes play criti-

cal roles in symbiosis—for instance, mycorrhizal fungi helped drive

the initial terrestrial colonization by plants (Humphreys et al., 2010).

Free-living and symbiotic microorganisms could be affected by

both dispersal limitation and environmental filtering, including filter-

ing by host or habitat. Yet, whether they are more strongly driven

by niche vs. neutral processes might depend on their ecology. Exam-

ples of microbial dispersal limitation have been found in free-living

archaea (Whitaker, Grogan, & Taylor, 2003) and bacteria (Martiny

et al., 2006), and it is also clear that dispersal limitation affects com-

munity composition of both symbiotic (Glassman et al., 2015; Talbot

et al., 2014) and nonsymbiotic fungi (Adams, Miletto, Taylor, &

Bruns, 2013; Amend, Seifert, Samson, & Bruns, 2010). Microbial

symbionts such as mycorrhizal fungi can be affected by host speci-

ficity (Hausmann & Hawkes, 2010; Tedersoo, Mett, Ishida, & Bah-

ram, 2013), soil habitat (Dumbrell, Nelson, Helgason, Dytham, &

Fitter, 2010; Peay et al., 2015) and large-scale differences in bio-

geography (Glassman et al., 2015; Talbot et al., 2014). Additionally,

evidence for environmental filtering by soil nutrients and pH exists

for both fungi (Dumbrell et al., 2010; Erlandson, Savage, Cavender-

Bares, & Peay, 2016) and bacteria (Griffiths et al., 2011; Jones et al.,

2009). Yet, while it has been understood for over a decade that bac-

teria are most strongly driven by pH (Fierer & Jackson, 2006), the

processes that predominate in structuring symbiotic and free-living

fungal communities remain elusive (Rousk, Brookes, & Baath, 2010).

Quantifying the relative influence of niche vs. neutral processes

on microbial community composition is a major challenge. Environ-

ment and geography are often difficult to disentangle and can inad-

vertently be conflated at all levels of biological organization (Ferrier,

Manion, Elith, & Richardson, 2007; Fitzpatrick & Keller, 2015; Wang,

Glor, & Losos, 2013). Moreover, attempting to model nonlinear

effects with linear statistical models can lead to weak inferences.

However, studies identifying drivers of beta-diversity can overcome

this issue by explicitly accounting for both environmental dissimilar-

ity and geographic distance between assemblages (Warren, Cardillo,

Rosauer, & Bolnick, 2014). Generalized dissimilarity modelling (GDM;

Ferrier et al., 2007), a form of nonlinear matrix regression, is an

excellent method for distinguishing between environment and geog-

raphy because it accounts for nonstationary rates of turnover along

environmental gradients (Warren et al., 2014). GDM is thus a power-

ful new approach to analyse nonlinear effects and to quantify the

relative importance of the many factors affecting community compo-

sition (Fitzpatrick & Keller, 2015; Fitzpatrick et al., 2013). By

combining recent advances in molecular sequencing technologies

with GDM, we can now study drivers of turnover in natural, complex

microbial communities. For example, the first and only application of

GDM to microbes to date helped explain a remarkable 77% of the

variation in soil bacterial community composition, with soil proper-

ties, particularly pH, explaining the largest proportion of variation

(Landesman et al., 2014).

Here, we apply GDM and amplicon metabarcoding to a natural

experimental system in a subalpine basin in Yosemite National Park,

containing isolated pine tree “islands,” to determine whether free-liv-

ing vs. symbiotic fungal community diversity results primarily from

environmental filtering or dispersal limitation. Ectomycorrhizal fungi

(EMF), tree root symbionts (Tedersoo et al., 2013) that play essential

roles in forest functioning (Read, 1991), are obligately symbiotic with

the pine trees but cannot associate with the surrounding herbaceous

plants in the basin (Peay, Garbelotto, & Bruns, 2010). The two pine

species Pinus albicaulis and P. contorta subsp. murrayana are the only

EMF hosts in the basin in a matrix of nonectomycorrhizal sedges

and grasses (Cole, Van Wagtendonk, McClaran, Moore, & McDou-

gald, 2004) and the individual tree “islands” of these two Pinus spe-

cies are interspersed (Figure 1).

This system is ideal for determining the strongest drivers of com-

munity composition at the fine scale for both symbiotic and free-liv-

ing fungi as the islands are discrete patches in which it is possible to

fully characterize local soil conditions. We focused explicitly on

examining effects of dispersal limitation and edaphic filtering at the

fine scale (<1 km) because it is well established that fungal commu-

nities are structured by biogeography at the continental scale (Talbot

et al., 2014) and evidence exists for fine-scale (<1 km) dispersal limi-

tation in fungi (Adams et al., 2013). Twenty individuals of both P. al-

bicaulis and P. contorta were selected to represent a range of sizes,

ages and distances from each other (pairwise geographic distance)

and from the forest edge (forest distance; Figure 1) so that the

effect of host could be separated from other potential environmental

drivers. We expected that EMF would primarily disperse to the tree

islands from the surrounding forest edges while free-living fungi

could exist continuously in the soil matrix.

We analysed variation in fungal community composition, as

determined by Illumina MiSeq sequencing of Internal Transcribed

Spacer (ITS) amplicons (Glassman, Levine, DiRocco, Battles, & Bruns,

2016; Smith & Peay, 2014), and determined whether its strongest

predictors were soil properties, pairwise geographic distance, forest

distance or tree species, age or size using GDM. We compared total

fungal and EMF communities to determine how processes differ in

the host-associated subset of microbial symbiont communities vs.

the total fungal community. Previous knowledge of fungal commu-

nity composition (Adams et al., 2013; Talbot et al., 2014) led us to

predict that total fungal communities would be most strongly struc-

tured by dispersal limitation, followed by edaphic environmental fil-

tering. In contrast, we expected EMF to be structured primarily by

host filtering, followed by dispersal limitation. We did not expect

edaphic environmental filtering to have a large effect on EMF com-

munity turnover at this scale due to expected environmental
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homogeneity within the basin. We also hypothesized that both total

and EM fungal communities might differ by season based on previ-

ous studies showing high rates of fungal turnover before and after

snowmelt in alpine plant communities (Schmidt et al., 2007).

2 | MATERIALS AND METHODS

2.1 | Study site and species

We used isolated single pine tree “islands” in Gaylor Lake Basin

(37°54047.4″N; 119°16007.8″W), located near Tioga Pass, in Yosemite

National Park, California, USA. Gaylor Lake Basin was selected due to

the presence of two distantly related Pinus species that were isolated

and intermixed in the subalpine basin (Figure 1). The “islands” consist

of isolated individual trees of either Pinus contorta or Pinus albicaulis,

with each pine species occurring approximately in paired distances

from each other and the forest edge (Figure 1). Elevation averaged

3,176 m and ranged from 3,147 to 3,200 m. The basin is seasonally

wet, with a mean annual precipitation of 64.18 cm that occurs mostly

as snow (Klikoff, 1965); late summer is often very dry.

The two pine species Pinus albicaulis and P. contorta subsp. mur-

rayana are the only EMF hosts in the basin in a matrix of nonecto-

mycorrhizal sedges and grasses, primarily Carex exserta (Cole et al.,

2004). The trees are members of subgenera Strobus and Pinus,

respectively, which diverged approximately 80–70 mya (Wang, Tank,

& Sang, 2000), and each subgenus is known to have specialized EMF

associates, particularly in the genera Suillus and Rhizopogon, which

are largely specific to the Pinaceae (Bruns, Bidartondo, & Taylor,

2002; Kretzer, Li, Szaro, & Bruns, 1996; Molina & Trappe, 1982). For

example, Suillus brevipes is considered to be specific to Pinus contorta

(Nguyen, Vellinga, Bruns, & Kennedy, 2016). However, species of

Cortinarius and other Boletales including S. subalpinus, S. sibericus,

R. evadens and Chroogomphus have been ascribed as P. albicaulis

associates (Mohatt, Cripps, & Lavin, 2008).

2.2 | Tree selection and sampling

Twenty individuals of both P. albicaulis and P. contorta (total of 40

single trees) were selected to represent a range of sizes, ages and

distances from each other (pairwise geographic distance) and from

the forest edge (forest distance) so that the effect of host could be

separated from other potential environmental drivers. We expected

that EMF would primarily disperse to the tree islands from the sur-

rounding forest edges while nonsymbiotic fungi could exist continu-

ously in the soil matrix. We sampled the fungal community of each

tree island in October 2012, before the first snow, and in June

2013, approximately three weeks after snowmelt because we

expected high turnover of species with snowmelt (Schmidt et al.,

2007). Soils were collected and DNA was extracted with MoBio

PowerSoil DNA Isolation Kit (Carlsbad, CA, USA) as described in

(a) (b)

(c)

F IGURE 1 (a) Map of isolated trees “islands” of Pinus albicaulis (n = 20) and Pinus contorta (n = 20) in Gaylor Lake Basin located in
Yosemite National Park, California. (b) Example of an isolated tree “island” in a matrix on nonectomycorrhizal sedges and grasses. (c) View from
surrounding forest edge looking down into Gaylor Lake Basin (view from Gaylor Peak in figure a). Isolated tree “islands” are located in the
basin but not visible from the picture

GLASSMAN ET AL. | 3



Glassman, Lubetkin, Chung, and Bruns (2017). Tree size was esti-

mated as total tree photosynthetic volume, and ages were estimated

using a combination of node counts and tree ring analysis as

described in Glassman et al. (2017).

2.3 | Soil chemistry

In June 2013, we collected a soil sample from a randomly selected

subset of five trees for soil chemistry analysis. In October 2014, after

receiving additional funds, a soil sample was collected for each of the

40 trees, to conduct nutrient analysis. A pooled sample per tree was

collected by combining ~250 ml of soil collected from approximately

the same locations as previous samples. Two days after collections,

each of the 40 soil samples was homogenized and sieved in a 2-mm

sieve, dried in a fume hood and sent to A&L Western Laboratories,

Inc. (Modesto, CA, USA) for analysis (soil test suite S1B, http://www.a

l-labs-west.com/fee-schedule.php?section=Soil%20Analysis) including

ppm of sulphate, ppm of ions of potassium, magnesium, calcium and

sodium, soil pH, cation exchange capacity (CEC), hydrogen concentra-

tion, organic matter (lbs/A), phosphorous (weak Bray and sodium

bicarbonate-P; ppm) and C:N ratio. Sulphate and all nutrient cations

were extracted using neutral 1M ammonium acetate: potassium

(ppm), magnesium (ppm), calcium (ppm) and sodium (ppm). Soil pH,

CEC and hydrogen concentration (in meq 100 per g) were measured

on soil solutions. Although we acknowledge a time gap between the

collection of the soil nutrient analysis for the 40 trees and the sam-

pling of the DNA for fungal community analysis, the per cent organic

matter and soil pH were over 80% correlated for the subset of soils

collected in both June 2013 and October 2014.

2.4 | Distance calculations

The location of each tree was determined with a handheld GPS unit

and used to calculate distances. As not every tree in the basin was

sampled, every stem of each tree species located within a 10-m-radius

circle of a focal tree was counted and the sum was used as an isolation

index for the tree. Pairwise geographic distance, a matrix of pairwise

Euclidean distances (lat lon) between focal trees, was calculated in R (R

Core Team 2017). We calculated forest distance in GIS and R (Wang,

2012) to be the distance to the nearest forest edge averaged to all

possible forest edges, and we accounted for topographic resistance, or

the effect of topographic barriers to dispersal such as elevation

changes or lakes, as previously described (Glassman et al., 2017). We

visually estimated crown cover, and drew forest polygons by hand

using Google Earth imagery in ArcGIS where forest cover exceeded

>20% (Fig. S1). This definition is consistent with the Kyoto Protocol

definition of 10%–30% minimum crown cover (Lund, 2002).

2.5 | Amplification, Illumina sequencing and
bioinformatics

Soil extracts were PCR-amplified using Illumina sequencing primers

designed by Smith and Peay (2014) using the ITS1F forward (Gardes

& Bruns, 1993) and ITS2 reverse (White, Bruns, Lee, & Taylor, 1990)

primer pair to target the ITS1 spacer. The ITS1 spacer is a part of

the internal transcribed spacer region (ITS) that serves as the univer-

sal DNA barcode for fungi (Schoch et al., 2012). PCR mixtures for

amplification contained 0.130 ll of HotStar Taq Plus (5 units/ll)

DNA polymerase (Qiagen, Valencia, CA, USA), 2.5 ll of 10 9 PCR

buffer supplied by manufacturer, 0.50 ll 10 9 each dNTPs (200 lM),

0.50 ll each of 10 lM forward and reverse primer and 1 ll of DNA

template (diluted to 1:20 to overcome inhibitors), and water up to

25 ll. PCR conditions were as follows: denaturation at 95°C for

5 min; 29–34 amplification cycles of 30 s at 94°C, 30 s at 51°C,

1 min at 72°C; followed by a 10-min final extension at 72°C. Tripli-

cate amplifications for each barcoded sample were pooled, cleaned

with AMPure magnetic beads (Beckman Coulter Inc., Brea, CA, USA),

quantified fluorescently with the Qubit dsDNA HS kit (Life Tech-

nologies Inc., Gaithersburg, MD, USA) and pooled at equimolar con-

centration. Negative controls of empty MoBio Power soil tubes were

also extracted and amplified, and gels were examined for PCR prod-

ucts. Libraries were quality-checked for concentration and amplicon

size using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, CA, USA) at the Functional Genomics Laboratory, University

of California, Berkeley, CA, USA. Sequencing was performed with

Illumina MiSeq PE 2 9 250 at the DNA Technologies Core, UC

Davis Genome Center Davis, CA, USA in August 2013.

Illumina data were processed using a combination of the

UPARSE (Edgar, 2013) and QIIME (Caporaso et al., 2010) based on

the methods of Smith and Peay (2014) and using the same pipelines

as previously described (Glassman et al., 2016, 2017). The Illumina

MiSeq run of 120 samples yielded 20.6 M reads; 80 of those samples

were used for this study. Sequences were then subjected to exten-

sive quality control. The first processing step was to remove distal

priming/adapter sites from the ends of reads using cutadapt (Martin,

2011). The remaining untrimmed low-quality regions were trimmed

from the ends of reads using Trimmomatic (Bolger, Lohse, & Usadel,

2014). The forward and reverse reads were then paired using the

fastq_mergepairs command in usearch/v7 (Edgar, 2013). The

sequences that failed to merge the first time were trimmed and

cleaned again by employing the homerTools command from the

HOMER (Hypergeometric Optimization of Motif EnRichment) mod-

ule (Heinz et al., 2010). We then used the fastq_mergepairs com-

mand in usearch to try to pair the sequences that failed to merge

the first time. The trimmed, paired, sequences were then quality-fil-

tered using the fastq_filter command in UPARSE and employing a

maximum expected number of errors of 0.15. After quality control,

there were 8,256,583 sequences for downstream analyses. Trimmed,

paired, high-quality sequences were grouped into operational taxo-

nomic units (OTUs) based on 97% similarity in UPARSE (Edgar,

2013) and taxonomy assignments were made in QIIME based on the

UNITE database (Koljalg et al., 2013). Only OTUs that were identi-

fied to the Kingdom Fungi were maintained, and after removing all

OTUs with no BLAST hit, we were left with 2,788,753 sequences.

EMF were separated from the OTU table bioinformatically based on

genera determined to be ectomycorrhizal (Tedersoo, May, & Smith,
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2010) as detailed in Appendix S1: Methods S1–S3. Sequences were

submitted to the National Center for Biotechnology Information

Sequence Read Archive under Accession no. SRP079403.

2.6 | Statistical analysis

The primary goal of this study was to disentangle the effects of the

different potential environmental drivers of fungal species composi-

tion in this system. Specifically, we tested the relative magnitude

and contribution of various aspects of geographic distance, soil nutri-

ent environment, tree host and seasonality on fungal community

composition. We quantified the pairwise differences between sam-

pled fungal communities by calculating a matrix of Bray–Curtis and

Jaccard dissimilarities in species composition using the “VEGAN pack-

age” in R (Oksanen et al., 2012). All analyses were conducted on the

total fungal OTU table rarefied to 39,721 sequences (n = 40), the

lowest common number of sequences per sample, and on the EMF

OTU table, rarefied to the bottom 10% quantile of sequencing

depth, with four samples removed due to low sequencing yields, and

the rest subsampled to an even 647 sequences/sample (n = 36).

To quantify the environmental and geographic drivers of fungal

species composition, we employed generalized dissimilarity modelling

(GDM), in R using the “GDM” package (Manion, Lisk, Ferrier, Nieto-

Lugilde, & Fitzpatrick, 2015). In GDM, predictor variables are first

transformed using a series of I-spline basis functions, which are con-

structed from piece-wise polynomial functions that possess a high

degree of smoothness at the places where the polynomial pieces

connect (knots), and models are fit using maximum-likelihood estima-

tion (Ferrier et al., 2007). Variables are standardized, so they can be

directly compared with one another, and GDM is highly robust to

multicollinearity among predictors. In a GDM model, the coefficient

for each variable describes the proportion of compositional turnover

explained by that variable and is determined by the maximum height

of its I-spline (Ferrier et al., 2007; Fitzpatrick et al., 2013). The slope

of the I-spline indicates the rate of compositional turnover and how

this rate varies at any point along the gradient concerned, while

holding all other variables constant (Landesman et al., 2014).

We first constructed variance–covariance matrices to remove

highly correlated variables from analysis in the GDM model. For the

soil cations, we retained only Na and CEC, due to high correlations

among Mg, Ca, K and CEC (Fig. S2). Our primary concern was to dis-

entangle the effect of soil chemistry vs. pairwise geographic dis-

tance. We expected soil chemistry to affect fungi and EMF similarly,

while forest distance would only affect EMF strongly because the

forest is the main source of EMF propagules (Glassman et al., 2017).

Soil fungi can exist continuously in the soil matrix and thus should

be less affected by forest distance. Pairwise geographic distance was

not correlated with OM (Fig. S3a) and was only slightly correlated

with pH (r = .23, p < .01; Fig. S3b), and pH and OM were not corre-

lated with each other (Fig. S3c). Of secondary concern was the

effect of forest distance as it is mainly expected to affect EMF as a

source of propagules. OM was not correlated with forest distance,

OM and pH were slightly correlated (r = �.3, p = .06), and pH was

correlated with forest distance (r = .52, p < .01; Fig. S4), which pos-

sibly drives the changes in pH across the basin (Fig. S5). This pH gra-

dient could be driven by distance from forest edge due to a

reduction in acidic pine needle litter with distance from forest edge,

or it could be due to the parent material or an underground seep.

We started with the full model that included species, size and

age of tree host, pairwise geographic distance, forest distance, isola-

tion index, pH, organic matter (OM), phosphorous (P), sulphur (S), C:

N ratio, Na and cation exchange capacity (CEC). To prune this down

to a set of predictor variables for each GDM, we used backward

elimination (Ferrier et al., 2007), beginning with the full model,

removing the variable with the lowest coefficient at each step and

calculating the change in the deviance information criterion (DIC).

DIC is based on the variance explained by each model in a hierarchi-

cal set, penalized by its effective number of parameters. For each

GDM analysis, the results included (i) a unique fitted I-spline for

each predictor variable describing its relationship with community

turnover and (ii) deviance explained by the model (the metric used

by GDM to assess model fit).

To disentangle potential correlations among pH and pairwise

geographic distance, we ran a GDM fitted with all variables except

pH and with all variables except pairwise geographic distance, fol-

lowing a similar approach to Dumbrell et al. (2010). We also ran a

similar analysis fitting a multivariate distance-based linear model

(DistLM), to compare results with an analogous linear nonparametric

model, in Primer 6+ (Anderson, Gorley, & Clarke, 2008), and

employed Multiple Matrix Regression Randomization (MMRR; Wang,

2013) on each tree host separately. MMRR performs multiple regres-

sion on distance matrices; because pairwise distances are noninde-

pendent, MMRR permutes the rows and columns of the response

matrix while holding all others constant to generate a null distribu-

tion with which to perform significance testing (Wang, 2013). We

employed traditional multivariate linear models in addition to the

nonlinear GDM to show that the tests yield similar results although

the nonlinear models improve model fit and explain more variance.

To complement the multivariate analyses, we used Mantel tests to

compare each fungal community dissimilarity matrix with the pair-

wise geographic distance matrix, used Adonis tests to contrast the

fungal communities associated with the two host species and visual-

ized effect of tree host identity on fungal community composition

using NMDS. These analyses were conducted with the “VEGAN” pack-

age in R (Oksanen et al., 2012).

3 | RESULTS

3.1 | Tree information

Average tree age was 65 � 33 years (mean � SD), with no signifi-

cant difference between Pinus contorta (71 � 31) and P. albicaulis

(59 � 34; t test, t = �1.1761, p = .25). Average size, estimated as

canopy volume, was 12 � 14 m3, with no significant difference

between Pinus contorta (11 � 13 m3) and P. albicaulis (14 � 15; t

test, t = 0.63106, p = .53). Forest distance ranged from 308 to

GLASSMAN ET AL. | 5



837 m, with no significant differences between Pinus contorta

(630.5 m) and P. albicaulis (628.7 m; t test, t = �0.037919, p = .97).

Pairwise geographic distance ranged from 8 to 1073 m. For isolation

index, nearly half the sampled trees (18 of 40) had no neighbours

within 10 m, with the vast majority (29 of 40) having fewer than five

neighbouring stems (of either Pinus species) within 10 m. Location,

age, size, forest distance and degree of isolation for all 40 trees are

summarized in Table S1, and soil chemistry in Table S2.

3.2 | Fungal community richness

After extensive quality control, our Illumina MiSeq run yielded 2.8 M

sequences for 80 samples. Because seasonality explained neither

total fungal community dissimilarity (Adonis R2 = .0036, p = .934;

Fig. S6a) nor EMF community dissimilarity (Adonis R2 = .0038,

p = .983; Fig. S6b), we combined the OTUs from the June and Octo-

ber sampling dates to produce a single sample per tree. We found a

total of 3,265 fungal OTUs after rarefying to a depth of 39,721

sequences per sample.

We selected EMF OTUs (238,895 sequences; 96 OTUs), and rar-

efied to a common sequencing depth of 647 sequences/sample. This

yielded 76 EMF OTUs (51 OTUs under P. albicaulis and 54 OTUs

under P. contorta), with an average of 9 � 3.7 EMF OTUs per tree.

Five of the ten most frequent EMF OTUs belonged to the genus

Rhizopogon, with the rest belonging to the genera Cadophora, Tri-

choloma and Suillus (Fig. S7).

3.3 | Effect of dispersal limitation on fungal
community composition

Dissimilarity of the total fungal communities increased with geo-

graphic distance (Bray–Curtis; Mantel r = .33, p < .01; Jaccard; Man-

tel r = .42, p < .01; Fig. S8a). In contrast, dissimilarity of EMF

communities was not correlated with distance (Bray–Curtis; Mantel

r = .07, p = .08; Jaccard; Mantel r = .0008, p = .5; Fig. S8b). Analys-

ing the two host trees separately yielded similar results for total fun-

gal communities (PA: Bray–Curtis; Mantel r = .37, p < .01; PC: Bray–

Curtis; Mantel r = .28, p < .01), whereas the effects on the EMF

communities differed by host tree (PA: Bray–Curtis; Mantel r = .096,

p = .1; PC: Bray–Curtis; Mantel r = .25, p < .05; Table S3).

3.4 | Effect of tree host identity on fungal
community composition

Tree host identity (P. contorta vs P. albicaulis) significantly affected

EMF community composition (Bray–Curtis; ADONIS R2 = .15,

p < .01; Fig. S9; Jaccard; ADONIS R2 = .13, p < .01) but did not sig-

nificantly affect total fungal community composition (Bray–Curtis;

ADONIS R2 = .02, p = .46; Jaccard; ADONIS R2 = .02, p = 0.58).

The EM fungi identified by the “envfit” function in the VEGAN package

to most strongly differentiate between host trees were Suillus bre-

vipes, Rhizopogon salebrosus and Helvella aff. lacunosa (Fig. S9), with

Suillus brevipes largely favouring P. contorta and Rhizopogon

salebrosus and Helvella aff. lacunosa slightly favouring P. albicaulis. Tri-

choloma myomyces was equally common on P. contorta and P. albi-

caulis but drove the taxonomic differences in six of the trees (trees

PA23, PA27, PA29, PA30, PC15, PC20; Figs S7 and S9b). Those

trees are generally in the same geographically clustered, and the

mean pH for those size trees is 4.7 � 0.26 (SD).

3.5 | Disentangling environmental drivers of total
fungal community composition

GDM helped disentangle the relative contributions of geographic

and environmental drivers of total fungal community composition.

Our model was a strong fit to the data and explained a large fraction

of the variance in fungal community composition (deviance

explained = 0.70; Table 1; Figure 2a). After backward elimination

model selection, we retained OM, pH, pairwise geographic distance,

P, tree size and cation exchange capacity (CEC) as significant predic-

tors of total fungal community composition (Table 1). The optimal fit

includes three I-splines for each predictor, as can be seen by the

nonlinear shapes of the curves (Figure 2c). Neither forest distance

nor isolation index was retained as significant factors in the model,

which was not surprising given that forest distance and isolation

index are only expected to affect EMF composition as the forest is

only expected to be the main propagule source for EMF. Organic

matter explained the largest proportion of fungal community turn-

over (coefficient = 0.38), closely followed by pH (coefficient = 0.34).

Per cent OM ranged from 2.4 to 33.6 among the trees, and pH ran-

ged from 3.8 to 5.1. We saw substantial changes in community com-

positional turnover at pH differences of approximately 0.6. Pairwise

geographic distance, phosphorous, tree size and CEC all explained

smaller (coefficients ranging from 0.07 to 0.11) but significant

proportions of fungal community compositional turnover

(Table 1; Figure 2c).

To deal with potential confounding effects of correlations among

pH and pairwise geographic distance (Fig. S3b), we also fitted GDMs

with all factors included except pH and with all factors included

except pairwise geographic distance. Removing geography as a pre-

dictor negligibly affected the results of the model, but removing pH

greatly reduced the model’s explanatory power (Table S4). To com-

plement our findings from GDM, we ran a linear multivariate regres-

sion DistLM (Anderson et al., 2008), which found pH to be the

largest driver of fungal community composition (Table S5), but the

proportion of explained variance attributable to pH (10.27) is likely

an underestimation due to the linear fitting of the model. We were

unable to include pairwise geographic distance as a predictor

because DistLM does not allow for explanatory variables to be

matrices, but we found that pH, OM, P, tree age and CEC all con-

tributed strongly to fungal community composition, with smaller con-

tributions from forest distance, C:N ratio and tree species (Table S5).

We also ran multiple matrix regression randomization (MMRR;

Wang, 2013), another linear model, on each host tree species, and

we found that soil chemistry was the greatest predictor of total fun-

gal community dissimilarity (Table S6). While both linear models
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found soil chemistry to be the strongest predictor of fungal commu-

nity compositional turnover, the explanatory power of the MMRR

(R2 = .32 for PA and R2 = .22 for PC) and DistLM (R2 = .21) was less

than the GDM (vs. deviance explained of 0.70), likely because GDM

can account for nonconstant rates of turnover whereas DistLM and

MMRR cannot.

3.6 | Disentangling environmental drivers of
ectomycorrhizal fungal community composition

In contrast to the total fungal community composition, in which

nearly three quarters of the deviance was explained, the models

explained approximately one quarter of the deviance in EMF com-

munity dissimilarity (deviance explained = 0.26; Table 1; Figure 2b).

This is likely due to the reduced variance among trees in their EMF

vs. total fungal communities and because many fewer sequences

were retained. It is likely that the reduced number of EMF

sequences, and thus reduced deviance explained, is an artefact of

the fact that we assessed EMF by sequencing the soil rather than

sequencing EMF root tips. Nevertheless, despite EMF reads being

only a small fraction of the total soil community, they are likely of

disproportionate importance to the pine tree hosts than other soil

fungal species. The predictors retained in the model explaining EMF

compositional turnover included pH, CEC, tree age, P and tree spe-

cies (Table 1; Figure 2d). By far the largest proportion of EMF com-

positional turnover was explained by pH (coefficient = 0.61),

followed by CEC (0.46), tree age (0.33) and phosphorous (0.32). The

optimal fit includes three splines for each predictor, as can be seen

by the nonlinear shapes of the curves (Figure 2d). Again, we found

that removing pairwise geographic distance negligibly affected the

model, but removing pH decreased the explanatory power of the

model to 0.16 (Table S4). DistLM explained a similar degree of the

variance (R2 = .24), and retained tree species, pH and Na as the

strongest contributors to EMF composition (Table S5). Tree species

(9.48) explained a slightly larger proportion of the variance than pH

(7.72) and Na (5.98), potentially because pH and Na were under-

fitted by the linear model due to their nonlinear rates of turnover

(nonlinearity of pH demonstrated in Figure 2c,d). Results of the

MMRR for EMF for each tree analysed separately were not signifi-

cant, although soil chemistry had the highest coefficients.

4 | DISCUSSION

To our knowledge, this was the first study to apply GDMs to the

study of fungal community composition (Table 1), and it yielded

unexpected insight into fine-scale structuring of fungal communities.

With traditional multivariate linear models, we accounted for less

than half of the variance explained by the GDM for the total fungal

community, although similar patterns were detected (Tables S5 and

S6). With traditional Mantel and ADONIS tests, we would have con-

cluded that dispersal limitation primarily structured fungal communi-

ties (Fig. S8) and host primarily structured EMF communities

(Fig. S9). However, by simultaneously accounting for both environ-

ment and geography, and allowing for nonconstant rates of turnover,

our results explained a large proportion of the deviance for total fun-

gal communities (0.70) and showed that pH, organic matter and soil

minerals are the strongest drivers of fungal communities at fine spa-

tial scales.

4.1 | Effects of environmental filtering on fungal
community composition

Despite the complexity of the soil microbiome, this study lends clear

support to the hypothesis that environmental filtering is the stron-

gest driver of soil microbial communities, even at this fine spatial

scale. Previous studies have shown that environmental filtering is

significant in shaping both fungal and bacterial communities over

broad spatial scales (Prevost-Boure et al., 2014). For fungal commu-

nities in particular, strong effects of abiotic filtering have been

shown at regional (Kivlin, Winston, Goulden, & Treseder, 2014) and

global scales (Tedersoo et al., 2014). Nevertheless, little is known

about the effects of environmental filtering at fine spatial scales, and

we had predicted a priori that soil environmental heterogeneity

would have limited effects on fungi at the fine spatial scale of our

study (<1 km). The difference between our prediction and our results

may be due to the high heterogeneity of soil in Gaylor Lake Basin.

4.1.1 | Organic matter

The gradient in per cent organic matter (OM) was surprisingly quite

large (2.4%-33.6%) across the forty trees in this study and was the

largest predictor of total fungal community composition. This range

in OM is comparable to the variation in OM in forests across the

TABLE 1 Results of generalized dissimilarity modelling (GDM) on
fungal community composition. Community composition was
measured as Bray–Curtis community dissimilarity for either the total
fungal or ectomycorrhizal fungal (EMF) community composition.
Only predictors that were retained as significant in the backwards
elimination model selection are included

All fungi—Best model Deviance explained = 0.70
Predictor Coefficients

Organic matter 0.38

pH 0.34

Pairwise geographic distance 0.11

Phosphorous 0.11

Tree volume 0.11

Cation exchange capacity 0.07

EMF—Best model Deviance explained = 0.26
Predictor Coefficients

pH 0.61

Cation exchange capacity 0.46

Tree age 0.33

Phosphorous 0.32

Tree species 0.17
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entire Japanese archipelago (scale >3,000 km); 36 of 38 forest plots

from a meta-analysis ranged from 1.7 to 33.9 Mg/ha in OM layer

amount (Urakawa et al., 2016). However, the OM range in our study

is not as large as in another study at a similar scale, in which varia-

tion in per cent OM among seven willow (Salix) species ranged from

(0.9% to 76.92%) among the sampled trees (Erlandson et al., 2016).

In that study, the strong correlation between EMF compositional

turnover with OM was attributed to differences in utilization of OM

by EMF species, which vary in their ability to produce proteolytic

enzymes that are used to scavenge soil OM for nutrients such as

nitrogen (Courty, Franc, & Garbaye, 2010; Courty, Pritsch, Schloter,

Hartmann, & Garbaye, 2005). Thus, it is likely that variation in per
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F IGURE 2 Relationships between observed compositional dissimilarity and predicted community dissimilarity between site pairs for (a) the
total fungal community and (b) EMF community, based on generalized dissimilarity modelling (GDM) analysis. For GDM-fitted I-splines (partial
regression fits) for variables significantly associated with (c) total fungal beta-diversity and (d) ectomycorrhizal fungal (EMF) beta-diversity, the
maximum height reached by each curve indicates the total amount of compositional turnover associated with that variable (i.e., its relative
contribution to explaining beta-diversity). The shape of each I-spline indicates how the rate of compositional turnover varies with increasing
differences in a given predictor variable between sites. Predictor dissimilarity indicates the rates of turnover among trees for each of the
predictors indicated in the legend. Only predictors that were retained as significant in the backwards elimination model selection are shown;
GD indicates pairwise geographic distance
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cent OM can be quite high even at fine spatial scales, and is a signif-

icant driver of fungal community compositional turnover due to vari-

ation in enzymatic capabilities among fungal taxa.

Regardless of fungal guild, adaptation to soil nutrient environ-

ment is a niche process that can affect many species due to the vari-

ance in their ability to break down recalcitrant forms of organic

matter (Courty et al., 2005; Talbot et al., 2013). Although we do not

know the range of OM substrates available at this site, it is possible

that the strong effect of OM on fungal turnover could be due to

intraspecific differences among fungal species in their ability to com-

pete with bacteria across a range of OM abundance and substrates

(Rousk, Brookes, & Baath, 2010). Ecological theory predicts that high

spatial and environmental heterogeneity will lead to high diversity

and promote species coexistence in plants (Amarasekare, 2003). It is

also clear that environmental heterogeneity correlates with high

diversity (3,265 fungal OTUs in this study) and high compositional

turnover among fungal communities in this system.

4.1.2 | Seasonality

Contrary to our expectations, seasonality did not have a significant

effect on either total or EMF community turnover (Fig. S6). Although

high fungal turnover has previously been reported before and after

snow in alpine environments (Schmidt et al., 2007), we now know

that temporal and seasonal changes are less likely to be found when

samples are more deeply sequenced (Caporaso, Paszkiewicz, Field,

Knight, & Gilbert, 2012). Indeed, we expect that the lack of changes

in fungal communities before and after snowmelt may simply be due

to relic DNA (Carini et al., 2017), which may be especially well pre-

served in this subalpine environment where soil is under snow many

months of the year. As the summer is quite dry in Gaylor Lake Basin

(Klikoff, 1965), it may also be that fungal DNA turnover is also slow

over the summer where lack of moisture limits the production of

fungal fruiting bodies which require water to be produced.

4.1.3 | pH

Perhaps most broadly unifying across many levels of biological orga-

nization was the result that pH was the second strongest driver of

total fungal communities and the single largest driver of EMF turn-

over. At much broader spatial scales and wider pH ranges, previous

work identified pH as the most important predictor of soil bacterial

communities (Fierer, 2017; Fierer & Jackson, 2006; Landesman et al.,

2014) and of fungi at a global scale (Prober et al., 2015; Tedersoo

et al., 2014). The strong correlation between pH and EMF commu-

nity in this study (coefficient = 0.61; Table 1) is impressive because

the pH differences in our study area (3.8–5.1) are not as large as in

other studies that attributed strong correlations in microbial turnover

to very large ranges in pH values (from pH 4 to pH >8) (Dumbrell

et al., 2010; Fierer & Jackson, 2006; Griffiths et al., 2011; Lauber,

Hamady, Knight, & Fierer, 2009; Rousk, Baath, et al., 2010).

Thus, our study now contributes to a growing literature showing

that pH can strongly shape ectomycorrhizal (Ge, Brenneman, Bonito,

& Smith, 2017; Hung & Trappe, 1983; Kjoller & Clemmensen, 2009)

and total soil fungal communities (Tedersoo et al., 2014). In particu-

lar, pH is thought to have a strong effect on a group of fungi in the

ascomycete order Pezizales (Ge et al., 2017; Kluber et al., 2012).

However, as our study was largely dominated by fungi in the phylum

Basidiomycota with a marked lack of Ascomycota in the Pezizales

(Fig. S7), we show that pH has a strong effect on a broader array of

fungal phylogenetic groups than previously thought.

There is a rich literature examining the effects of pH on plant

(Craine, 2009) and aquatic systems (Tilman, Kilham, & Kilham, 1982).

In addition, for at least a decade, it has been part of the dogma of

microbial ecology that pH is the strongest driver of bacterial commu-

nities (Fierer, 2017; Fierer & Jackson, 2006) while its impacts on

fungi are thought to be weaker (Barberan et al., 2015; Rousk, Baath,

et al., 2010). Yet, it now appears that pH is a unifying factor strongly

shaping the community structure of plants, bacteria and fungi,

regardless of spatial scale. We propose that this is due to the fact

that pH is an excellent integrator of soil nutrient availability. Both

anion and cation exchange capacity, the ability of negatively and

positively charged materials in soils to hold charged ions, are directly

affected by pH (Sylvia, Hartel, Fuhrman, & Zuberer, 2005). Phospho-

rous availability is particularly affected by pH and becomes less bio-

logically available with decreases in soil pH (Kluber et al., 2012;

Thomas & Hargrove, 1984). In our study, pH ranged from 3.8 to 5.1

(Table S2); this corresponds to a 20 9 difference in hydrogen ion

concentration and would affect the availability of all soil nutrients.

The dominant effect of pH is extremely powerful because if plants,

bacteria and fungi all respond to the same primary environmental

cues, then that greatly simplifies and increases our power to model

and understand their distributions and predict community responses

to environmental change.

4.1.4 | Host

We had expected EMF assemblages to be primarily structured by

tree host species and for edaphic environmental filtering to be

weak at this fine spatial scale. Although EMF communities did

exhibit some significant differentiation among tree hosts (Fig. S9),

they were primarily structured by pH, soil minerals and tree age,

with host identity as the weakest significant predictor of commu-

nity composition (Table 1). Thus, our expectation that host-depen-

dent EMF communities would differ between different tree

species was correct, but the effect was modest (GDM coeffi-

cient = 0.17) compared to pH (0.61) and CEC (0.46; Table 1). High

tree host specificity of EMF taxa is exhibited in western Amazonia

(Tedersoo, Sadam, Zambrano, Valencia, & Bahram, 2010), among

wooded savannas in Africa (Tedersoo et al., 2011), and in Tasma-

nia (Tedersoo et al., 2008). In general, it appears that the degree

of host specificity is correlated with phylogenetic distances

between hosts for EMF symbionts (Tedersoo et al., 2013). Thus, it

is likely that plant host effects would have been stronger if more

phylogenetically distantly related hosts were tested (Tedersoo

et al., 2016).

GLASSMAN ET AL. | 9



However, despite the fact that our hosts were congeneric, they

are distantly related within the genus (Wang et al., 2000), and cer-

tain EMF genera did show distinct host preferences (Fig. S9). For

instance, Suillus brevipes showed a strong preference for P. contorta,

which is supported by the literature (Nguyen et al., 2016), while the

occurrence of Rhizopogon salebrosus decreased under P. contorta

(Fig. S9), which was unexpected. Both the linear (Table S5) and non-

linear models (Table 1) found a significant effect of both tree host

and pH despite the hosts belonging to the same genus. Pinaceae is

an ancient plant family (approximately 140 mya) with many phyloge-

netically distant genera (Wang et al., 2000), and the split between

the Strobus and Pinus subgenera of Pinus is estimated to be approxi-

mately 80 mya (Wang et al., 2000). Indeed, ectomycorrhizal associ-

ates of the two pine subgenera have been known to exhibit host

specificity for decades (Molina & Trappe, 1982), but the importance

of host relative to other possible factors structuring EMF assem-

blages was unknown. We thus show that although host specificity

can be an important factor structuring symbiotic fungal communities

(Fig. S9), it is simply not as large of a factor as local soil environmen-

tal parameters in this system where the host gradient is binary and

based on distantly related congeneric species. In other cases of less

phylogenetically distinct hosts, such as among seven willow (Salix)

species (Erlandson et al., 2016), or within the hard pines (subgenus

Pinus)(Glassman et al., 2015), the effect of host relative to the

effects of soil chemistry and biogeography is undetectable.

4.2 | Effects of geographic distance on fungal
community composition

We expected dispersal limitation (i.e., geographic distance) to be the

strongest predictor of total fungal communities and to be a significant

predictor of EMF assemblages, but in fact it was only the third largest

predictor of total fungal community turnover after organic matter and

pH, and did not contribute significantly to EMF community composi-

tion in this system (Table 1). Studies of fungal composition across

North America (Talbot et al., 2014) and bacterial composition across

France (Ranjard et al., 2013) both found significant distance decay in

microbial communities across broad spatial scales. Distance decay has

also been exhibited among fungal communities at fine spatial scales

very similar to those in our study (Adams et al., 2013; Peay et al.,

2010), and decreasing richness of EMF taxa with distance from forest

edge was found at this study site (Glassman et al., 2017). Thus, the

smaller effect of both pairwise geographic distance and forest distance

on soil fungal and EMF beta-diversity in this system was unexpected.

It is possible that the autecology of EMF dominating the trees in

this system indicates that more dispersal limitation is occurring in

this system than we can detect with statistical tests. We note that

the EMF genus dominating the isolated tree “islands” in this system

is Rhizopogon, an EMF that produces hypogeous fruiting bodies

which are an adaptation to drought (Bruns, Fogel, White, & Palmer,

1989). Rhizopogon are dispersed by small mammals (Frank et al.,

2009), which are prevalent at high elevations in Yosemite National

Park (Moritz et al., 2008). While Gaylor Lake Basin is not a desert, it

is a seasonally dry habitat, with late summers typically being very

dry, and most precipitation is received as snow rather than rain due

to its high elevation (Klikoff, 1965). Thus, it is possible that EMF that

disperse primarily by wind by making epigeous mushrooms are out-

competed by hypogeous fungi dispersed primarily by mycophagy

because epigeous mushrooms require several days of rain in order to

fruit. Members of the Rhizopogon genus are also known for their

long-lived spores (Bruns et al., 2009), which allow them to maintain

a large, viable spore bank. The fact that fungal communities did not

differ by season (Fig. S6), which was contrary to our initial expecta-

tions, indicates a strong legacy effect and suggests that tree island

communities might have been colonized from a persistent spore

bank (Glassman et al., 2015) that is frequently replenished by small

mammal activity. Moreover, Rhizopogon is known to form long-dis-

tance exploration types of mycelium (Agerer, 2001), which could

potentially enable it to move more rapidly to the isolated trees in

the basin than other EMF taxa. Thus, the lack of a signal of distance

decay among EMF in this system could be due to the harshness of

the high elevation setting, in which lack of precipitation as rain pre-

vents the abundant growth of epigeous mushrooms that disperse

spores via wind.

5 | CONCLUSIONS

Similar to macro-organisms (Gravel et al., 2006), both niche and

neutral processes significantly contribute to community composi-

tional turnover in fungi. Yet, our results provide strong evidence

that environmental filtering, instead of dispersal limitation, plays a

dominant role in structuring both free-living and symbiotic fungal

beta-diversity at fine spatial scales. Moreover, by quantifying the

effects of individual environmental variables, we found that organic

matter and pH primarily drive environmental filtering in total soil

fungal communities and that, surprisingly, host specificity was not

the largest factor affecting EMF beta-diversity. Our findings support

an emerging paradigm that pH may be a master switch in all soil-

mediated systems, including fungi (Ge et al., 2017; Kjoller & Clem-

mensen, 2009), in addition to bacteria (Fierer, 2017; Fierer & Jack-

son, 2006; Landesman et al., 2014) and plants (Craine, 2009).

Important future directions include determining which groups

specifically respond to changes in pH and organic matter, and bet-

ter understanding the mechanisms by which pH and organic matter

affect fungal communities.
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