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ABSTRACT OF THE DISSERTATION

Essays on Theoretical and Empirical Macroeconomics

by

Tasneem Raihan

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, September 2018

Dr. Marcelle Chauvet, Chairperson

This dissertation is a collection of eclectic topics of interest in macroeconomics.

The first chapter augments a medium-scale DSGE model with progressive income taxes

levied on interest income, and shows how its interaction with a positive government

expenditure shock may lead to increased overall tax revenues. Since with interest income

tax government has an additional source of revenue, following the shock government’s

debt obligation is lower than the one implied by the existing models with no tax on

interest income.

The second chapter re-examines the “natural resource curse” hypothesis

popularized by the cross-sectional study of Sachs and Warner (1995). This chapter

provides evidences against this hypothesis using the same set of variables used in Sachs

and Warner (1995). Both static and dynamic panel methods are utilized to overcome

omitted variable bias generally present in cross-sectional regressions. The results show

that resource abundance proxied by primary commodity exports share of GDP (SXP) has

no statistically significant negative impact on growth. Time fixed effects point out that
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the debt crisis of 1980s drives the apparent negative relation between SXP and growth in

cross-sectional regressions.

The third chapter seeks to identify the point in time when inflation uncertainty

actually started to decline in the US, and to examine the performance of a two-regime

Markov Switching-GARCH (MS-GARCH) model forecasting inflation uncertainty in the

U.S. Results indicate that the switch to the low volatility regime happened approximately

between April, 1979 and mid-1983. This time frame coincides with the period of aggressive

monetary policy changes implemented by the then Fed chairman Paul Volcker. In addition,

for a shorter horizon, normally distributed MS-GARCH forecasts and, for a longer horizon

t-distributed MS-GARCH forecasts appear superior.

The final chapter seeks to predict the US recessions over the last three decades

using the Treasury term spread data by employing a novel non-parametric approach called

Dynamic Time Warping (DTW). Although compared to all parametric and non-parametric

methods it is computationally much simpler, it has successfully signaled recessions as early

as six months before the onsets of the actual recessions of 1990-1991, 2001, and 2007-2009.

Compared to other non-parametric methods, DTW raises significantly fewer false recession

signals.
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Chapter 1

Interest Income Tax and

Government Spending: A

Medium-scale DSGE Model

Approach

1.1 Introduction

In most economies and particularly in advanced ones, tax revenue, which is used

to finance public expenditures and investments and to pay off debts, constitutes a major

proportion of government revenue. For example, in the U.S, approximately 89% of the

federal government’s revenue emanate from income tax which includes tax on interest

income as well. Although tax revenue is an integral component for deciding the course of

1



fiscal policies and their ramifications, a theoretical analysis of the exact direction of the

relationship between tax revenue and public expenditure shock has surprisingly been

limited in the literature.

On the other hand, to the extent pertinent empirical evidences are available, they

are rather scant and inconclusive. For instance, using a mixed structural VAR/event-study

approach to the post-war data of the U.S., Blanchard and Perotti (2002) documented a

rise in net taxes following an expansionary government spending shock. They hypothesized

that the increase in tax revenue owes to increased output following the positive shock. More

recently, Mountford and Uhlig (2009) employed VAR with sign restrictions to investigate

the effects of fiscal policies and they found that an expansionary government spending shock

decreases tax revenue, albeit in a statistically non-significant manner.

As far as existing theoretical analyses are concerned, neoclassical macroeconomic

theory suggests that government spending depresses private consumption by creating a

negative wealth effect. This negative wealth effect emanates from consumers’ apprehension

of a future tax rise. A detailed explanation of this mechanism is provided in Baxter and

King (1993). In addition to a decline in private consumption, private investment also

decreases due to a crowding-out effect of increased government spending. Conclusions

drawn from New Keynesian or DSGE models augmented with various frictions are also

aligned with these results (see for example Smets and Wouters (2003)).1 As an implication

of these results, government revenues earned through distortionary taxes imposed on private

consumption and investment tend to decline following a positive fiscal shock taking the form

1Gaĺı et al. (2007) is an exception which allows for both Ricardian and non-Ricardian households,
sticky prices and imperfectly competitive labor market to generate an increase in consumption following
an expansionary government spending shock.
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of a temporary increase in government spending. This ultimately leads to a fall in the overall

tax revenue (see Costa Junior (2016) for example).

However, almost all of these models ignore the tax on interest income. The only

exception is Stähler and Thomas (2012). Incorporating tax on interest income in a DSGE

model is important for at least two reasons. The first reason is that it helps capture the real

world tax raising mechanism. For example, interest earned on all U.S. Treasury securities is

fully taxable at the federal level.2 In fact, in the U.S. income earned from bonds are taxed

at the same rate as ordinary income. This implies that the interest income will be taxed at

the taxpayer’s top marginal tax rate. For example, if a taxpayer falls in the 35% income

tax bracket, then all of his or her interest income will also be taxed at the same rate. Since

at least 50% of households in the U.S. who we characterize as Ricardian households are

believed to have access to the financial market, and also since they tend to save a portion of

their income possibly in the form of bonds, it is imperative to take into account the taxes

that are raised from Ricardian’s interest income.3

The second reason we should include tax on interest income is that it will allow us

to arrive at a more complete theoretical analysis of the implications of fiscal policies such

as, a temporary increase in government spending or a temporary reduction in labor income

tax. Both of these fiscal tools are frequently used by policymakers when economies are

faced with downturns. For example, to alleviate the recession of the early 1990s, President

George Bush issued an executive order to lower the amount of income taxes that were

being withheld from paychecks. As we will show in this paper, incorporating taxes on

2Municipal bond is an exception. They are generally non-taxable.
3Mankiw (2000) indicates this estimate of the fraction of Ricardian households in the economy.
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interest income has important implications for overall tax revenues when the government

conducts expansionary fiscal policies. Although several DSGE models have been developed

to examine the impact of fiscal shocks on various macroeconomic variables, to the best of

our knowledge, this paper is the first to analyze the impact on total tax revenues in the

presence of a tax on interest income.

The main results of this paper can be summarized as follows: following an

expansionary shock to government consumption, tax revenues from private consumption

and investment indeed fall. However, under the scenario of a progressive income tax levied

on interest income, overall tax revenues rise due to an increase in tax revenue from

interest income which offsets the decline in revenues from private consumption and

investment taxes. This increase in tax revenues from interest income owes to the increase

in the issue of government bonds. The latter is caused by the government’s attempt at

maintaining a balanced budget when faced with a decline in public coffers after a positive

spending shock. We further show that in comparison with an economy with no tax on

interest income, government’s debt obligation is much lower in an economy with

progressive income tax on interest income. This result holds because now the government

has an alternative source of revenue which is automatically set in motion whenever the

government triggers an expansionary spending shock.

The organization of the paper is as follows: Section 1.2 presents the DSGE model

incorporating progressive taxes on interest income, and also the log-linearized version of

the model. This section also discusses the solution method used. Section 1.3 analyzes the

results. Finally, Section 1.4 concludes.
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1.2 Model

We assume that the economy is a barter one and is comprised of four different

but interrelated sectors: (i) households (ii) retail firms and intermediate goods producing

firms (iii) fiscal authority and (iv) monetary authority. Our basic model follows the one

developed in Costa Junior (2016). In a nutshell, similar to Christiano et al. (2005) the

model embeds Calvo-style nominal price and wage contracts, habit formation in preferences

for consumption, adjustment costs in investment, and variable capital utilization. In what

follows, we present the objective function of each sector and their maximization problems.

1.2.1 Household sector

There is a continuum of households indexed by j ∈ [0, 1]. A fraction ωR has access

to the financial market and acts as Ricardian-agents. As a result, they maximize their

utilities intertemporally. Rest of the households characterized as non-Ricardians or rule-of-

thumb households, indexed by NR ∈ [ωR, 1] do not have access to the financial market and

therefore, they neither can save nor can borrow. They simply consume current available

income.

Each Ricardian household maximizes the following intertemporal utility function

in terms of consumption ((CR,t)) and labor (LR,t):

max
CR,t,K

P
t+1,Ut,I

p
t ,Bt+1

Et

∞∑
t=0

βt

[
(CR,t − φcCR,t−1)(1−σ)

1− σ
−
L1+ϕ
R,t

1 + ϕ

]
(1.1)

subject to,
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Pt(1 + τ ct )(CR,t + IPt ) +
Bt+1

RBt
+

(
Bt −

Bt

RBt−1

)
τ lt = WtLR,t(1− τ lt ) +RtUtK

P
t (1− τkt )

− PtKP
t

[
Ψ1(Ut − 1) +

Ψ2

2
(Ut − 1)2

]
+Bt + ωRPtTRt (1.2)

with the law of motion of capital,

Kp
t+1 = (1− δ)KP

t + IPt

1− χ

2

(
IPt
IPt−1

− 1

)2
 (1.3)

where E,K,B,W, 1/RB, U, IP , TR, P denote respectively the expectation

operator, private capital, bond, nominal wage, bond discount factor, the degree of capital

utilization, private investment, government transfers, and general price level. As regards

the parameters, β, φc, σ, ϕ, δ, χ and ωR represent respectively intertemporal discount

factor, habit persistence, relative risk aversion coefficient, marginal disutility with respect

to supply of labor, capital depreciation rate, sensitivity of investment with respect to

adjustment cost, and percentage of Ricardian households. Besides these, Ψ(U) denotes the

cost of setting a level U of utilization rate. In addition, τ c, τ l and τk refer respectively to,

tax on consumption and investment, tax on labor income and tax on capital income.

Notice that consistent with the way interest income is taxed in the U.S., we have imposed

the same labor income tax, τ l on interest income given by Bt −Bt/RBt−1.

Maximizing equation (1.1) subject to equations (1.2) and (1.3) yields the following

first order conditions:

λR,t =
(CR,t − φcCR,t−1)−σ

Pt(1 + τ ct )
− φcβ

(EtCR,t+1 − φcCR,t)−σ

Pt(1 + τ ct )
(1.4)

Qt = βEt(1− δ)Qt+1 + λR,t+1Rt+1Ut+1(1− τkt+1) (1.5)
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− λR,t+1Pt+1

[
Ψ1(Ut − 1) +

Ψ2

2
(Ut − 1)2

]
Rt
Pt

=

(
1

1− τkl

)
[Ψ1 + Ψ2(Ut − 1)] (1.6)

λR,tPt(1 + τ ct )−Qt

1− χ

2

(
Ipt
IPt−1

− 1

)2

− χ IPt
IPt−1

(
IPt
IPt−1

− 1

)
= χβEt

Qt+1

(
Qt+1

IPt+1

IPt

)2(
IPt+1

IPt
− 1

) (1.7)

λR,t

RBt
= βEtλR,t+1

[(
1

RBt
− 1

)
τ lt+1 + 1

]
(1.8)

where λ is the Lagrange multiplier on equation (1.2) and represents the marginal utility of

income. Qt is the Lagrange multiplier on equation (1.3) and represents the shadow price

of private capital. It has the interpretation of Tobin’s Q. Note that equations (4) and

(8) together result in the dynamic consumption Euler equation. Equation (6) and (7) give

respectively the demand for installed capacity and the demand for investment by Ricardians.

Non-Ricardian households solves the following optimization problem:

max
CNR,t

Et

∞∑
t=0

βt

[
(CNR,t − φcCNR,t−1)(1−σ)

1− σ
−
L1+ϕ
NR,t

1 + ϕ

]
(1.9)

subject to the following budget constraint which ignores capital investments and

bonds:

Pt(1 + τ ct )CNR,t = WtLNR,t(1− τ lt ) + (1− ωR)PtTRt (1.10)

The first-order condition for the non-Ricardian households can be written as:
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λNR,t =
(CNR,t − φcCNR,t−1)−σ

Pt(1 + τ ct )
− φcβ

(EtCNR,t+1 − φcCNR,t)−σ

Pt(1 + τ ct )
(1.11)

Determination of wages

We assume that both Ricardian and non-Ricardian households supply

differentiated labor in a market structure of monopolistic competition. This service is sold

to a representative firm that aggregates these different types of labor (Lj) into a single

labor input (L) using the following technology:

Lt =

∫ 1

0
L

ψW − 1

ψW
j,t dj


ψW

ψW − 1

(1.12)

where ψW is the elasticity of substitution between differentiated jobs and Lj , t is the amount

of differentiated labor supplied by household j. Each type of labor j receives a wage Wj,t.

The labor-aggregating firm maximizes its profit in the following manner:

max
Lj,t

WtLt −
∫ 1

0
Wj,tLj,tdj (1.13)

The maximization problem in equation (1.13) together with the equation (1.12)

yields the following demand equation for differentiated labor j:

Lj,t = Lt

(
Wt

Wj,t

)ψW
(1.14)

A little algebraic manipulation after substituting equation (1.14) in equation (1.12)

yields the following function for the aggregate wage level:
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Wt =

(∫ 1

0
W 1−ψW
j,t dj

) 1

1− ψW (1.15)

We assume that in each period 1 − θW households, chosen independently and at

random, optimally define their wages. The remaining households, θW follow a Calvo style

wage stickiness rule as in Calvo (1983). To be precise, they keep the same wage level as the

previous period i.e. Wj,t = Wj,t−1.

As there is no distinction between labor offered by Ricardians (x = R) and non-

Ricardians (x = NR), the problem of definition of wages is singular for both group of

households and can be written as the following maximization problem:

max
W ∗j,t

Et

∞∑
i=0

(βθW )i

{
L1+ϕ
x,j,t+i

1 + ϕ
− λt+i

[
−W ∗j,tLx,j,t+i

]
(1− τ lt+i)

}
(1.16)

After substituting equation (1.14) in the above equation and with a bit of algebraic

manipulation, the first order condition yields the following equations for the definitions of

optimal wages for Ricardian and non-Ricardian households respectively:

W ∗j,t =

(
ΨW

ΨW − 1

)
Et

∞∑
i=0

(βθW )i

[
LϕR,j,t+i

λR,t+i(1− τ lt+i)

]
(1.17)

W ∗j,t =

(
ΨW

ΨW − 1

)
Et

∞∑
i=0

(βθW )i

[
LϕNR,j,t+i

λNR,t+i(1− τ lt+i)

]
(1.18)

Given the above two equations, the aggregate nominal wage rule can be derived

from equation (1.15) as follows:

Wt =
[
θWW

1−ψW
t−1 + (1− θW )W ∗1−ψWt

] 1

1− ψW (1.19)
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Determination of Aggregate Consumption and Labor

Since ωR fraction of households represent Ricardians and 1 − ωR represents non-

Ricardians, aggregate consumption (C) and labor (L) can be determined in the following

manner:

Ct = ωRCR,t + (1− ωR)CN,R,t (1.20)

Lt = ωRLR,t + (1− ωR)LNR,t (1.21)

1.2.2 Firms

We assume that the economy’s production sector is comprised of two subsectors:

an intermediate goods sector (wholesale firms) characterized by monopolistic competition,

and a final goods sector (retail firms) characterized by perfect competition. A representative

firm in the final goods sector buys a large variety of wholesale goods and aggregates them

using a pertinent technology into a single good that will be sold in a perfectly competitive

market.

Retail firms

A representative retail firm aggregates intermediate goods using a technology given

by the following Dixit-Stiglitz aggregator function:

Yt =

∫ 1

0
Y

ψ − 1

ψ
j,t dj


ψ

ψ − 1

(1.22)
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where Yt is the final product of a retailer in period t, and Yj,t is the jth intermediate good

where j ∈ [0, 1]. ψ denotes the elasticity of substitution between wholesale goods and takes

a value greater 1.

With Pt as the nominal price of a retail product and Pj,t as the nominal price

of wholesale good j, the price of each wholesale good is taken as a given by retail firms.

Therefore, the problem of the representative retail firms is maximizing its profit function

as follows given equation (1.22):

max
Yj,t

PtYt −
∫ 1

0
Pj,tYj,tdj (1.23)

The first-order condition for the above problem can be manipulated to obtain the

following demand function for wholesale good j which is directly proportional to aggregate

demand, Yt and inversely proportional to its relative price level (1/
Pj,t
Pt

):

Yj,t = Yt

(
Pt
Pj,t

)ψ
(1.24)

A little algebraic manipulation after substituting equation (1.24) in equation (1.22)

yields the pricing rule for final goods:

Pt =

[∫ 1

0
P 1−ψ
j,t dj

] 1

1− ψ
(1.25)
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Wholesale firms

The wholesale firm solves its problem in two stages. First, the firm determines the

amount of capital and labor by minimizing its total production cost taking factor prices as

given:

min
Lj,t,Kj,t

WtLj,t +RtKj,t (1.26)

subject to the following production function for intermediate goods:

Yj,t = At(UtK
P
j,t)

α1
Lα2
j,tK

G
j,t
α3

(1.27)

where At, Ut,K
P
j,t and KG

j,t represent respectively productivity, level of utilization of installed

capacity (given by the relationship between the volume actually produced by the firm and

what could be produced if the machines were operating at full capacity), private capital,

and public capital. The parameters α1, α2 and α3 capture the elasticity of the level of

production with respect to respectively, utilized private capital, labor and public capital.

It is assumed that the law of motion of productivity follows a first-order

autoregressive process, such that:

logAt = (1− ρA) logAss + ρA logAt−1 + εt (1.28)

where Ass is the value of productivity at the steady state, ρA is the autoregressive parameter

of productivity, whose absolute value must be less than one to ensure the stationary nature

of the process and εt ∼ N(0, σA).

The first order conditions of the minimization problem defined in equations (1.26)

and (1.27) are given by:
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Lj,t = α2MCj,t
Yj,t
Wt

(1.29)

UtK
P
j,t = α1MCj,t

Yj,t
Rt

(1.30)

Dividing equation (1.29) by equation (1.30):

LPj,t
UtKj, t

=
α2Rt
α1Wt

(1.31)

The left-hand side of the above equation is the marginal rate of technical substitution

(MRTS) between labor and utilized capital. It measures the rate at which labor can be

replaced by capital while maintaining a constant level of production. MRTS is equal to the

economic rate of substitution (ERS) given by the right-hand side of the above equation.

ERS measures the rate at which labor can replaced by capital while maintaining the same

cost. Given equations (1.29) and (1.30) and the following expression for total cost:

TCj,t = WtLj,t +RtKj,t (1.32)

marginal cost (MC) can be written as:

MCj,t =
1

AtKG
jt
α3

(
Wt

α2

)α2
(
Rt
α1

)α1

(1.33)

The second stage of the problem of the wholesale firm is defining the price of

its goods. This firm decides the production level in each period according to the Calvo

rule. In particular, we assume that in each period, a fraction 0 < 1 − θ < 1 of firms is
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randomly selected and allowed to optimally define the prices of its goods for the period. 4

The rest of the firms maintain the previous period’s price i.e. Pj,t = Pj,t−1. An additional

assumption that we make here for mathematical convenience is that wholesale firms have

constant marginal costs. This allows us to express total cost (TC) by multiplying the

quantity produced with the marginal cost.

Given the above assumptions, the problem of the wholesale firm that is capable of

readjusting the price of its good is given by:

max
P ∗j,t

Et

∞∑
i=0

(βθ)i(P ∗j,tYj,t+i − TCj,t+i) (1.34)

Substituting equation (1.24) in the above equation and then taking the first-order condition

results in,

P ∗j,t =
ψ

ψ − 1
Et

∞∑
i=0

(βθ)iMCj,t+i (1.35)

where
ψ

ψ − 1
is the same gross frictionless price markup on the marginal cost that every

wholesale firm sets. As a result, in all periods, P ∗j,t is the same price for all the 1− θ firms

that optimally readjust their prices. Therefore, we can write P ∗j,t = P ∗t . The aggregate price

level can be determined now from equation (1.24):

Pt =
[
θP 1−ψ

t−1 + (1− θ)P ∗1−ψt

] 1
1−ψ

(1.36)

4It can be shown that the expected duration between price changes is given by
1

1 − θ
.
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1.2.3 Fiscal authority

The fiscal authority is responsible for taxing households and issuing debt to fund its

expenses. Its expenses comprise public consumption or expenditure, Gt; public investment,

IGt ; and transfer of income to households, TRt. We assume that the government does not

issue currency. Therefore, the initial assumption of a barter economy remains valid. Given

these assumptions, the government’s budget constraint takes the following form:

Bt+1

RBt
−Bt + Tt = PtGt + PtI

G
t + PtTRt (1.37)

where T is the total tax revenue given by,

Tt = τ ct Pt(Ct + IPt ) + τ ltWtLt + τkt (Rt − δ)KP
t + τ lt

(
Bt −

Bt

RBt−1

)
(1.38)

We assume that except labor income tax τ l, all other fiscal policy instruments in

Z = {Gt, IGt , TRt, τ ct , τkt , τl} that the government uses follow the same rule governed by,

Zt
Zss

=

(
Zt−1

Zss

)γZ ( Bt
Yt−1Pt−1

YssPss
Bss

)(1−γZ)φZ

SZt (1.39)

where Bt/Yt−1Pt−1 is the ratio between public debt and GDP in period t − 1,

YssPss/Bss is inverse of the long-run target of the previous ratio, φz measures the sensitivity

of the corresponding instrument to deviations in the debt ratio from its long-run target. Szt

is an exogenous shock to the instrument. Following Guo and Lansing (1998) and Mattesini

and Rossi (2012), we specify the following form for the labor income tax rate, τ l which

admits a progressive tax schedule under certain conditions:
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τ lt = 1− η
(
Yss
Yt

)φn
S
τ lt
t (1.40)

where Yt represents the individual household’s current period taxable income, Yss denotes

the steady-state income. η determines the level of tax schedule, φn governs the slope of the

tax schedule, and S
τ lt
t represents a labor income tax shock. It can be shown that whenever

φn > 0, households with taxable income above Yss face a higher tax rate than those with

income below Yss. In this case, the tax schedule is referred to as progressive since the

average tax increases in income. The flat tax schedule occurs when φn = 0. Under this

condition, the marginal tax rate equals the average tax rate.

Finally, the fiscal shock is represented by:

logSZt = (1− ρZ) logSZss + ρZ logSZt−1 + εZ,t (1.41)

and the motion of stock of public capital KG is governed by the following rule:

KG
t+1 = (1− δG)KG

t + IGt (1.42)

1.2.4 Monetary authority

We assume that the central bank adopts a Taylor-rule of the following form which

seeks to attain two objectives: (i) price stability and (ii) economic growth:

RBt
RBss

=

(
RBt−1

RBss

)γR [(
πt
πss

)γπ ( Yt
Yss

)γY ]1−γR
Smt (1.43)

16



where γY and γπ are the sensitivities of the basic interest rate with respect to output, Y

and inflation rate, π, respectively and γR is the smoothing parameter. Finally, Smt is the

monetary policy shock which is given by the following first-order autoregressive process:

logSmt = (1− ρm) logSmss + ρm logSmt−1 + εm,t (1.44)

1.2.5 Equilibrium condition and log-linearization

The model’s equilibrium condition states that total output produced in the

economy is equal to the summation of private consumption, Ct; private investment, IPt ;

public investment, IGt , and government expenditure, Gt. This can be written as:

Yt = Ct + IPt + IGt +Gt (1.45)

We can now write out the reduced form of our New Keynesian model using equations that

are log-linearized around a zero inflation steady-state. Note that in what follows,

x = (R,NR) distinguishes between Ricardians (R) and non-Ricardians (NR). Further note

that X̃t = logX − logXss represents the log of the variable X’s deviation in relation to its

steady state.

Household Lagrangian:

λ̃x,t+ P̃t+
τ css

1 + τ css
τ̃t
c =

[
σ

(1− φcβ)(1− φc)

]
[φcβ(EtC̃x,t+1−φcC̃x,t)− (C̃x,t−φcC̃x,t−1)]

(1.46)
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Phillips equation for household wages:

π̃W,t = βEtπ̃W,t+1

[
(1− θw)(1− βθW )

θW

]
ϕL̃x,t − λ̃x,t +

(
τ lss

1− τ lss

)
τ̃ lt (1.47)

Gross wage inflation rate:

π̃W,t = W̃t − W̃t−1 (1.48)

Ricardian household’s budget constraint:

PssCR,ss

[
(P̃t + C̃R,t)(1 + τ css) + τ cssτ̃

c
t

]
+ PssI

P
ss

[(
P̃t + ĨPt

)
(1 + τ css) + τ cssτ̃

c
t

]
+

Bss
RBss

(B̃t+1 − R̃Bt )−Bssτ lssRBss(B̃t + τ̃l − R̃Bt ) = WssLR,ss

[
(W̃t + L̃R,t)(1− τ lss)− τ lssτ̃ lt

]
+

RssK
P
ss

[(
R̃t + K̃P

t

)
(1− τkss)− τkssτ̃kt

]
+Bss

[
B̃t − τ lss(B̃t + τ̃ lt )

]
ωRTRssT̃Rt

(1.49)

Tobin’s Q:

(
Qss
β

)
Q̃t = Et{(1− δ)QssQ̃t+1 + λR,ssRssUss(1− τkss)[

λ̃R,t+1 + R̃t+1 + Ũt+1 −
τkss

1− τkss
τ̃kt+1

]
− λR,ssPssΨ1UssŨt+1}

(1.50)

Demand for installed capacity:

(
1− τkss

) Rss
Pss

[
R̃t − P̃t −

(
τkss)

1− τkss

)
τ̃kt

]
= Ψ2UssŨt (1.51)

Demand for investments:

18



(1 + τ css)λR,ssPss

[
λ̃R,t + P̃t +

τ css
1 + τss

τ̃ ct

]
−QssQ̃t + χQss(Ĩ

P
t − ĨPt−1) = χβQss(EtĨ

P
t+1 − ĨPt )

(1.52)

Law of motion of private capital:

K̃P
t+1 = (1− δ)K̃P

t + δĨPt (1.53)

Public bond Euler equation:

1 + λ̃R,t − R̃Bt = 1 + λ̃R,t+1 + T̃Bt+1 (1.54)

where

τ̃Bt+1 =
1

1 + τ lss
RBss
− τ lss

[
τ lss
RBss

(τ̃l − R̃B)− τ lssτ̃ lt+1

]
(1.55)

Aggregate Consumption:

CssC̃t = ωRCR,ssC̃R,ss + (1− ωR)CNR,ssC̃NR,ss (1.56)

Aggregate Labor:

LssL̃t = ωRLR.ssL̃R,ss + (1− ωR)LNR,ssL̃NR,ss (1.57)

Production technology:

Ỹt = Ãt + α1(Ũt + K̃P
t ) + α2L̃t + α3K̃

G
t (1.58)

Problem of the firm’s trade-off from equation (1.31):
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L̃t − Ũt − K̃P
t = R̃t − W̃t (1.59)

Marginal cost

M̃Ct = α2W̃t + α1R̃t − Ãt − α3K̃
G
t (1.60)

New Keynesian Phillips Curve:

π̃t = βEtπ̃t+1 +
(1− θ)(1− βθ)

θ
(M̃Ct − P̃t) (1.61)

Equation (1.61) relates current inflation to current real marginal cost and expected future

inflation. If we solve it forward imposing the condition that inflation does not explode, then

we can write inflation as a present discounted value of real marginal costs:

π̃t =
(1− θ)(1− βθ)

θ

∞∑
s=0

βsEtM̃Ct+s (1.62)

Gross inflation rate:

π̃t = P̃t − P̃t−1 (1.63)

Government budget constraint:

Bss
RBss

(B̃t+1− R̃Bt )−BssB̃t +TssT̃t = PssGss(G̃t + P̃t) +PssI
G
ss(P̃t + ĨGt ) +PssTRss(P̃t + T̃Rt)

(1.64)

Government tax revenues:
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TssT̃t = τ cssPss

[
Css(C̃t + P̃t + τ̃ ct ) + IPss(Ĩ

P
t + P̃t + τ ct ) + τ lssWssLss(W̃t + L̃t + τ̃ lt )

+τkssK
P
ss(Rss(R̃t + K̃P

t + τ̃kt )− δ(K̃P
t + τ̃kt )) + τ lssBss(τ̃

l
t + B̃t)

] (1.65)

Law of motion of public capital:

K̃G
t+1 = (1− δG)K̃G

t + δĨGt (1.66)

Rule for all fiscal policy instruments except income tax:

Z̃t = γZZ̃t−1 + (1− γZ)φZ(B̃t − Ỹt−1 − P̃t−1 + S̃Zt ) (1.67)

Progressive income tax rule:

τ̃ l =
ηφn(W̃ + L̃)

1− η
+ S̃τ

l

t (1.68)

Equilibrium condition:

YssỸt = CssC̃t + IPssĨ
P
t + IGssĨ

G
t +GssG̃t (1.69)

Fiscal policy shock:

S̃Zt = ρZ S̃
Z
t−1 + εZ,t (1.70)

We have used Dynare to solve the model presented in this section. All

simulations and impulse response functions begin at the exact steady state computed by

Dynare considering the initial values provided as mere approximations. A pure

perturbation method as in Schmitt-Grohé and Uribe (2004) has been chosen to compute

the quadratic approximation of the decision rules.
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1.3 Results

We choose to calibrate the model rather than to estimate the parameters since

the main objective of this study is to unravel the important impact that progressive

income tax levied on interest income may have on overall tax revenues following an

expansionary government consumption shock. As can be seen in Table 1, the calibration

for macroeconomics variables is consistent with the existing literature.

First, let’s consider the case of no tax on interest income. Figure 1.1 and 1.2

display the impulse-response functions of several macroeconomic variables corresponding

to this case, following a positive government consumption i.e. expenditure shock. An

expansionary shock to the government’s current expenditure raises aggregate demand for

output, Y . This in turn puts upward pressure on the general price level leading to an

increase in inflation (PI). In response, according to the Taylor rule, the central bank raises

the basic rate of interest RB. This causes a crowding-out of private and public investment,

IP and IG.

On the other hand, this particular expansionary fiscal shock imparts a negative

wealth effect on households since they expect a rise in future taxes which would finance the

current increase in government consumption. Accordingly, both Ricardian consumption,

CR and non-Ricardian consumption CNR decline resulting in an overall decline in total

consumption, C and naturally, in consumption tax revenue. This adversely affects the total

tax revenue of the government which starts recovering only around the 10th quarter. As a

response to this negative effect on public coffers, government resorts to debt-financing by

issuing more bonds to public. Therefore, B rises in Figure 1.2. Also note that faced with

22



a decline in welfare, households choose to work more by increasing their labor supplies,

LR and LNR. A simultaneous fall in consumption and increase in labor supply indicates a

strong substitution effect on households under no interest income tax.

Now let’s focus on the case where we incorporate progressive income tax on interest

income. The impulse responses corresponding to this case are displayed in Figure 1.3

and 1.4. Following a positive government expenditure shock, Ricardian households cut

down their consumption to save more since they expect a rise in future taxes to fund

today’s increased government expenditure. They also increase their labor supply. Therefore,

Ricardian households exhibit the existence of a strong substitution effect as in the previous

case. On the other hand, non-Ricardian households have no such option of saving for future

and therefore, in contrast with the previous case they enjoy the immediate increase in

the real wage by immediately increasing their consumption (although marginally), and by

working less. In other words, initially income effect is more dominant for the non-Ricardians

when interest income tax is incorporated. Note that compared to the previous case where

no tax on interest income was imposed, the increase in wages (W) in this case is much

larger. However, as wage keeps declining over time, non-Ricardians start consuming less

and supply more labor.

Notice that just as in the previous case with no interest income tax, overall

consumption diminishes implying lower tax revenues from consumption. In response to

the decline in public coffers, government decides to issue more bonds to raise funds. But

this time, since a progressive income tax has been imposed on interest income, government

earns extra revenue. This extra revenue must have offset the decline in consumption and
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investment tax revenues since total tax revenue, T has risen. In fact, total tax revenue

follows the trend of total bond issues.

Another interesting result is that, with the introduction of tax on interest

income, bond issue reaches a peak just below 0.004 which is much lower than the peak of

approximately 0.01 attained under no interest income tax. This implies that under

progressive tax on interest income, government’s debt obligation is much lower than under

no interest income tax. The reason is that under the scenario of an interest income tax,

government earns extra tax revenue through the tax on bond returns which is not possible

under the scenario of no interest income tax. Therefore, to finance its expenditure, the

government needs to issue more debt in the latter case.

1.4 Conclusion

Governments using fiscal policies to stabilize output and employment, especially

when the economy experiences a downturn is not a new phenomenon. Many countries

including the U.S. have combined fiscal policies with lax monetary policies to combat the

Great Recession. However, little is known about the impact of an expansionary government

spending shock on total tax revenue, which is the major source of financing future public

consumption and investment in advanced economies, such as the U.S or U.K. Existing New

Keynesian analyses imply a negative relationship between total tax revenue and positive

public spending shocks. However, they ignore the tax on interest income which can have a

significant impact on total tax revenues through interacting with a positive public spending

shock. Therefore, their model-implied impulse responses of tax revenues are biased.

24



To overcome the above-mentioned shortcoming of the existing DSGE models,

this paper has augmented a medium-scale DSGE model with a progressive income tax on

interest income. The result indicates that following an expansionary public spending

shock, government issues bonds to Ricardian households in order to raise funds with a

view to counteracting the decline in consumption and investment tax revenues. However,

an increase in bond issue gives rise to a separate channel through which further tax

revenues could be earned, which the existing models failed to take into account. The

impulse response function implied by our model shows that total tax revenues rise after a

positive public spending shock only when a progressive tax on interest income is

incorporated within. This result is consistent with the empirical finding of Blanchard and

Perotti (2002) who reported a rise in tax revenues following a positive government

spending shock. Another interesting result is that, since with interest income tax

government has an additional source of revenue, following an expansionary fiscal shock

government’s debt obligation is lower than the ones implied by the existing models with

no tax on interest income.
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Table 1.1: Calibrated parameter values

Parameter Parameter definition Calibrated value

σ Relative risk aversion coefficient 2

ϕ Marginal disutility with respect to the supply of labor 1.5

α1 Elasticity of output with respect to private capital 0.3

α2 Elasticity of output with respect to labor 0.6

α3 Elasticity of output with respect to public capital 0.05

β Discount factor 0.985

δ Capital depreciation rate 0.025

θ Price stickiness parameter 0.75

ψ Elasticity of substitution among intermediate goods 8

θW Wage stickiness parameter 0.75

ψW Elasticity of substitution between differentiated labor 21

τ css Consumption tax rate in steady state 0.16

τ lss Labor income tax rate in steady state 0.17

τkss Capital income tax rate in steady state 0.08

ωR Fraction of Ricardian households in the economy 0.5

φc Habit persistence 0.8

χ Sensitivity of investments to adjustment cost 1

Ψ1 Sensitivity of cost of under-utilization (1 + τ css)(
1
β − 1 + δ)

of maximum installed capacity 1

Ψ2 Sensitivity of cost of under-utilization 1

of maximum installed capacity 2

δG Depreciation rate of public capital 0.025

γR Interest rate persistence 0.79

γY Sensitivity of interest rate to GDP 0.16
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Table 2.1: Calibrated parameter values (continued)

Parameter Parameter definition Calibrated value

γπ Sensitivity of interest to inflation 2.43

φTRss Government Transfer to GDP ratio 0.01

φBss Public debt to GDP ratio 1

φGIss Public investment to GDP ratio 0.02

γG Government consumption persistence 0

γGI Persistence of public investment 0.1

γTR Persistence of income transfer 0.1

γτc Persistence of consumption tax 0

γτ l Persistence of labor income tax 0

γτk Persistence of capital income tax 0

φG Government consumption to debt ratio 0

φGI Public investment to debt ratio -0.1

φTR Government transfer to debt ratio -0.1

φτc Consumption tax to debt ratio 0

φτ l Labor income tax to debt ratio 0

φτk Capital income tax to debt ratio 0

η Labor tax schedule level 0.7

φn Labor tax schedule slope 0.3
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Chapter 2

Debunking the Natural Resource

Curse: A Panel Data Analysis

2.1 Introduction

The confounding finding in the economic literature that natural resource-rich

countries tend to exhibit slower growth than resource-poor ones is known as the “natural

resource curse”. Although Auty and Warhurst (1993) is credited with the coining of this

phrase, this very idea of an apparent curse gained traction following the work of Sachs and

Warner (1995). Sachs and Warner (1995, 2001) used a relatively simple cross-sectional

framework to convince that countries with higher primary commodity exports share of

GDP in 1970 experience slower average growth over the next 20 years. After this finding,

a whole new literature has developed to obtain a better understanding of the mechanism

underlying this puzzle. While most of the subsequent studies have taken this finding as a
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given, only recently a few studies have challenged it. Those which challenged the resource

curse, used variables different from the ones used in Sachs and Warner (1995, 2001). In

this paper, we revisit Sachs and Warner (1995)’s original finding by closely following a set

of variables used by them, albeit in a panel data framework.

The natural resource curse poses a conundrum since it goes against the

conventional wisdom borne out of several historical accounts. Typically, natural resources

are expected to increase wealth which in turn increases investment, and finally enhances

growth rates. Relevant historical example includes the thriving steel industry driven

economic growth in the U.S. following the discovery of rich iron ore deposits in the Great

Lakes region in 1844. Britain and Germany also underwent similar experiences as they

capitalized on their own iron ore deposit extractions. Specially, during a period when

industrial revolution was necessitating the massive constructions of railroads, bridges and

buildings, these countries endowed with abundant iron ore experienced rapid economic

growth.

However, several countries’ experiences from more recent periods are often cited

as evidences which are in stark contrast with those of U.S., Britain and Germany. These

examples include resource-abundant countries, such as Iran, Qatar, Kuwait, Iraq, Libya,

Nigeria, Mexico, and Venezuela all of which failed to achieve rapid economic growth. Sachs

and Warner (1995) also made specific mentions of Switzerland and Japan which exceeded the

growth of resource-rich Russia in the nineteenth and twentieth century. However, between

the two financial crises of 1998 and 2009 Russia demonstrated a strong average economic

growth rate hovering around 5.6% which is much higher than those of Switzerland and
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Japan for the same period (see Figure 2.1). Even post-crisis, the growth rate for Russia has

been higher until before 2013. This impressive growth experience of Russia in addition to

those of Norway and Botswana undermines the previous observation of Sachs and Warner

(1995).

The main idea of Sachs and Warner (1995) was primarily motivated by a scatter

plot similar to the one in Figure 2.2 which depicts for 104 countries a negative correlation

between their economic growths per capita and natural resource abundances proxied by

their primary commodity exports share of GDP (SXP). 1 Several hypotheses have been

proposed in the literature to explain this negative correlation. The first and arguably the

most popular hypotheses is the so-called “Dutch disease” which refers to the decline in

the exports of other goods following the overvaluation of the national currency caused by

a surge in natural resource exports (Corden, 1984). In addition, increased exchange rate

volatility resulting from the recurrent booms and busts in the resource industry contributes

to the reduction of total exports which include manufacturing and service exports (Gylfason,

2001). Ultimately, an overall decline in exports may reduce GDP growth (Frankel and

Romer, 1999).

The second hypothesis relates the resource curse to rent-seeking analyses. Torvik

(2002) developed a theoretical model which explained how natural resource abundance

increases the number of entrepreneurs involved in rent-seeking activities and reduces the

number of entrepreneurs engaged in productive activities. Rent-seeking is often associated

with corruption which too can have an adverse impact on economic growth (Bhattacharyya

1Originally, Sachs and Warner (1995) had a scatterplot of 95 countries and graphed their annual growth
rates between 1970-90 in relation to their primary commodity exports share of 1970’s GNP. In Figure 2.2,
both x-axis and y-axis variables are averaged over the period 1971-1999.
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and Hodler, 2010). The third hypothesis has argued that resource discovery leads to the

weakening of institutions which in turn reduces growth at least in the developing countries

(Alexeev and Conrad, 2011). On the other hand, other hypotheses have explored the

negative associations between natural resource abundance and human capital accumulation

(see for e.g. Gylfason (2001) and between resource abundance and prudent government

policies specially with regards to savings and investment (see Atkinson and Hamilton (2003)

in order to explain the negative relationship between resource abundance and growth.

Although Figure 2.2 documents a moderate negative correlation between SXP and

growth, if we restrict the sample of countries to only those which have a minimum average

SXP of 0.10 that corresponds approximately to the 50th percentile, the correlation becomes

even more negative as can be seen in Figure 2.3. Although this is a simple correlation study,

this is a good starting point to question the validity of the natural resource curse.

In this paper, we use panel data spanning the period 1971-1999 for 104 countries

to reexamine the natural resource curse. Employing fixed-effect models, we show that SXP,

the proxy variable for natural resource abundance used by Sachs and Warner (1995) and

Gylfason and Zoega (2006) does not have a statistically significant impact on GDP growth.

We also do not find any convincing evidence in a statistical sense, of a parabolic or u-shaped

relationship between growth and SXP. This implies that there is no decreasing or increasing

marginal effect of SXP. In addition, we found no evidence of a positive impact of SXP on

growth for countries with very high values of SXP.
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2.2 Literature review

A vast literature focused on exploring the linkage between natural resource

abundance and economic growth has emerged since the 1980’s. Here we will mainly focus

on only a subset of them which are empirical rather than descriptive, and contain

comparative growth analyses. Before Auty and Warhurst (1993) coined the phrase

”natural resource curse”, Gelb (1988) had discussed at length in the form of case studies,

how oil rich economies formed less domestic capital than non-oil countries during the oil

boom period of 1971-1983. However, none of the studies confirmed the resource curse on

the basis of a worldwide empirical analysis until before Sachs and Warner (1995), which is

considered as the seminal empirical investigation of the resource curse hypothesis. Sachs

and Warner (1995) investigated the negative relationship between growth rates and

natural resource abundance proxied by primary commodity exports share of GDP (SXP)

within a cross-sectional regression framework. Using a sample of 71 countries, this study

showed that countries with high SXP in 1970 tended to grow slowly during the subsequent

20-year period of 1970-1989. This result was further strengthened by Sachs and Warner

(2001) which showed that the negative relationship remained even after the inclusion of

various geography related variables as additional regressors.

Following the seminal work of Sachs and Warner (1995), a large volume of

subsequent research was undertaken to examine the resource curse. For example, Gylfason

et al. (1999) used both cross-sectional and panel regressions to show that primary product

exports share of total exports had a smaller and less significant effect on growth than the

primary labor share. In a later work, Gylfason (2001) employed SUR to the data of 85
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countries to show that economic growth is inversely related to natural resource abundance.

The proxy for resource abundance that they used was the share of natural capital in

national wealth in 1994. They argued that resource abundance adversely affects growth by

reducing the incentives to save and invest, as well as by hampering the development of

financial institutions. Mehlum et al. (2006) used the data set from Sachs and Warner

(1997) to establish a negative relationship between resource abundance and growth for

countries with poor institutions which they called “grabber friendly institutions”.

Similar results are presented by Ding and Field (2005) though unlike the above

mentioned studies, they viewed SXP as a more appropriate measure of resource dependency

than a measure of resource abundance. More recent econometric evidences in favor of the

natural resource curse are produced in Nabli and Arezki (2012), Apergis and Payne (2014)

and Kim and Lin (2017). While the first two focus on only Middle Eastern and North African

(MENA) countries, the last one focuses only on developing countries. Nabli and Arezki

(2012) found that although resource rich MENA countries maintained high level of income

per capita, they exhibited relatively low economic growth as well as high macroeconomic

volatility. Similar results with respect to growth are reported by Apergis and Payne (2014)

for MENA countries for the period 1990-2003, though positive impact of oil abundance

on growth is also noted after 2003 owing to improved institutional qualities. Kim and

Lin (2017) used both SXP and natural resource rent as proxies for resource abundance

along with heterogenous panel cointegration techniques. Their data set covered only the

years from 1990 to 2012. Kangning and Jian (2006) Boyce and Herbert Emery (2011) are

different from the previous studies as each carried out a within-country empirical study.
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While the former used provincial data from China, the latter used the U.S. states data to

find supporting evidence of the natural resource curse hypothesis.

Apart from these studies, there are other studies which found indirect negative

growth impact of natural resources through variables which are thought to be closely related

to economic growth such as education, institutions etc (see for example Gylfason (2001),

Gylfason and Zoega (2006) and Atkinson and Hamilton (2003) among others). So far, the

studies we have discussed have generally supported the natural resource curse hypothesis

though we gave some glimpses of studies which opposed it. Now, we will focus solely on

some recent studies which challenged this hypothesis by arguing that the negative impact

of resource abundance in the existing literature is nothing more than a statistical mirage.

There are two main criticisms against the existing studies which provide evidences

of the curse. The first is related to the way SXP (i.e. ratio between resource exports and

GDP) is defined. Similar to Ding and Field (2005), the view of SXP as a measure of resource

dependency has been supported by Brunnschweiler (2008) and Brunnschweiler and Bulte

(2008) who proposed the logs of total natural capital and mineral resource assets in the year

1994 in US dollar per capita as a more appropriate measure of natural resource abundance.

On the basis of these definitions, they found using a cross-sectional regression that resource

dependence does not affect growth after controlling for resource abundance. A more recent

study which maintained the same interpretation of SXP is Smith (2015). Instead of relying

on SXP, it used a panel fixed-effects estimation framework to show that countries which

were previously resource-poor experienced increased growth following the first discovery of

a natural resource since 1950.
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These studies also argued that the way SXP was defined creates potential

endogeneity problem, which is the second criticism. For example, there might be a

time-invariant factor independent of resource exports which may have a positive impact

on GDP causing a lower SXP but a higher GDP growth, and thereby inducing a negative

relationship between SXP and GDP growth. Since cross-sectional methods are incapable

of handling this kind of endogeneity problem, panel data methods such as, fixed-effects

models should be employed if SXP is used as an explanatory variable. Panel data methods

are also better suited since it allows to control for year fixed effects. Accordingly,

employing non-stationary panel methodologies on 53 oil exporting and importing

countries’ data, Cavalcanti et al. (2011) revealed that oil abundance has a positive growth

impact. The proxy that they used for resource abundance was rent earned from oil

production.

Overall, the studies which disproved the resource curse hypothesis did either of

the following: used a proxy for resource abundance different from Sachs and Warner (1995),

used cross-sectional regressions or used a different set of control variables. In contrast, in

this paper, we use the same definition of the proxy variable for resource abundance, SXP

as in Sachs and Warner (1995) albeit in a panel data framework. We also seek to stick

to the same control variables as much as possible as in the seminal work of Sachs and

Warner (1995). Doing these would allow for a better comparison of our work with those of

Sachs and Warner (1995) and Sachs and Warner (2001). The paper which is the closest to

what we present here is Manzano and Rigobon (2001). However, there are some important

differences. First of all, our sample size for panel estimations is almost the double of theirs.
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Second, unlike theirs we control for period fixed effects. Third, in addition to static panel

data models, we employ dynamic panel data models which have become standard in modern

studies on economic growth.2

2.3 Data and Methodology

We use the following panel fixed effect model to examine the relationship between

natural resource abundance, SXP and economic growth rate:

Growthit = β0 + β1SXPit + x′itγ + αi + δt + uit (2.1)

where Growthit represents the average real GDP growth rate of a country i over the period

t − 4 to t. αi represents country fixed effects and the δt denotes time fixed effects. The

vector x contains a set of explanatory variables which includes Squared SXP, a measure of an

economy’s openness defined by Sachs and Warner (1995), Open, log investment per capita,

a measure of how democratic a country is given by Polity, log government consumption

and population growth. When we include previous period’s GDP as initial GDP, our model

takes the following dynamic panel fixed effect form, which we estimate using System GMM:

Growthit = β0 + β1SXPit + β2Growthit−1 + x′itγ + αi + δt + uit (2.2)

2See Durlauf, Steven et al. (2005) for a detailed discussion on the econometric methods used in growth
studies.
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2.4 Results

2.4.1 Main estimations

Before discussing the results from fixed-effect models, we present in Table 2.1

results from our regression using cross-sectional data on 104 countries. Although this is

not an exact replication of Sachs and Warner (1995, 2001) and Gylfason (2001), it serves

the purpose by showing how SXP appears as a statistically significant variable in the

determination of real GDP per capita growth in a cross-sectional framework after

controlling for the same basic variables as in Sachs and Warner (1995) and Gylfason

(2001).3 We regress for each country, real GDP growth per capita on SXP, log real GDP

per capita in 1970, openness of economy proxied by a variable called Open as in (Sachs

and Warner, 1995), and log investment per capita. All these variables except log real GDP

per capita in 1970 are averaged over the years 1970-1990 in column 1, and averaged over

the years 1970-1999 in column 2. Column 1’s period refers to the one originally used by

Sachs and Warner (1995). As can be seen from Table 2.1, regardless of sample periods, in

a cross-sectional regression framework similar to those used in Sachs and Warner (1995,

2001) and Gylfason (2001), SXP as a proxy for natural resource abundance emerges as a

statistically significant variable which has a negative impact on growth.

Just as most other cross-sectional regression models, regressions in Table 2.1 are

subject to omitted variable bias since they are not controlling for country and year fixed-

effects. Controlling for these fixed-effects is important in this analysis particularly for the

3In their original regressions, Sachs and Warner (1995) and Gylfason (2001) defined the independent
variable SXP as the ratio of primary product exports to GDP in 1970, and to GDP in 1994 respectively.
The former also includes a variable called Rule of Law which we exclude since it is available only from the
year 1982.
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way the proxy for natural resources, SXP has been defined. As discussed in Section 3, the

use of SXP has been criticized in the literature since it may cause a subtle bias. For example,

there may exist a time invariant factor such as a country’s geography or climate, which if

favorable, may lead to high income. As a result, for a low-income country with unfavorable

geographic conditions, SXP will appear to be high, but GDP growth will be lower. This

produces a negative relationship between SXP and growth in the cross-sectional model. The

best way to control for this kind of time invariant factor is using fixed-effect models in a

panel data setting. In what follows, we employ different specifications of fixed-effect models

to see if SXP still has a statistically significant negative impact on growth.

In Table 2.2, we adopt a fixed-effect modeling approach to regress real GDP growth

successively on a list of variables popular in the growth literature which contains SXP,

squared SXP, a proxy for an economy’s openness called Open originally used in Sachs

and Warner (1995), log investment per capita, a democracy measure called Polity used in

Bhattacharyya and Hodler (2010) and log government consumption. All variables but SXP

are 5-year averages from 1971 to 1999. Data on SXP was only available for every 5 year

interval. For example, we had data on SXP for the years 1970, 1975, and so on. Except

in the first regression in 2.2, SXP appears to have a negative impact on growth. But the

impact is not statistically significant.

Nevertheless, squared SXP has statistically significant positive coefficients in the

third, fourth and fifth regression in Table 2.2. This indicates a possible U-shaped

relationship between SXP and growth.s The minimum point on this U-shaped curve is

achieved when SXP is around 0.24. This value roughly corresponds to the 90th percentile
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and only 10 countries have an average SXP greater than or equal to 0.24. Also, a joint

significance test of the coefficients on SXP and Squared SXP yields insignificance. In

addition and more importantly, the inclusion of log government consumption in the sixth

regression renders the coefficient on squared SXP statistically insignificant. Therefore, we

do not attach too much importance to this result, which indicate an apparent non-linear

relationship between SXP and growth.

Table 2.2 extends Table 2.3’s estimations by adding population growth and year

dummies as additional regressors. SXP still maintains a statistically insignificant negative

effect on growth in both of the regressions in Table 2.3. But consistent with the existing

literature, capital investment and government consumption remain two statistically

significant determinants of economic growth. Apart from the regressors in Tables 2.2 and

2.3, Sachs and Warner (1995, 2001) and Gylfason (2001) also included initial output per

capita to account for growth convergence, as well as initial out per capita growth rate in

their cross-sectional regressions. Including these variables as regressors in our panel data

analyses will take us to the realm of dynamic models in order to overcome “Nickell” or

dynamic panel bias (Nickell, 1981). In what follows, we focus on System GMM estimations

to explore the relationship between growth and SXP in a dynamic panel model framework.

Table 2.4 displays the results from the estimations of two-step system GMM with

Windmeijer-corrected standard errors and orthogonal deviations. Naturally, number of

observations is lower under system GMM than previous fixed-effect models since the former

starts from t = 3. In the first regression, we add previous period’s log real GDP as an

additional regressor, and in the second regression, we add previous period’s growth rate too.
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In both regressions, SXP and squared SXP are statistically insignificant. The estimations

in Table 2.2, 2.3 and 2.4 provide evidence that once country and year fixed-effects are taken

into account, SXP, which is a proxy for natural resource abundance loses its statistical

significance unlike in the cross-sectional regressions typically used in Sachs and Warner

(1995, 2001), Gylfason (2001) and Gylfason and Zoega (2006).

2.4.2 Robustness check

In this subsection, we check if our previous results remain valid if we alter our

model specifications by introducing an alternative proxy for natural resource abundance.

As discussed below, our previous findings remain tenable even with the use of an alternative

proxy for resource abundance.

We substitute SXP with an alternative proxy for resource abundance, given by log

resource rent per capita used in Bhattacharyya and Hodler (2010). The resources include

energy, minerals and forestry. Formally, resource rent per capita for a country j is calculated

using the following formula:

Rj =

∑
rijqij
Pj

(2.3)

where Rj is the resource rent per capita of country j, rij is the resource rent per unit of

output of a particular commodity i extracted in the country j, qij is the total quantity of

the commodity i extracted in country j, and Pj is the total population of country j. r is

estimated as the difference between a commodity’s world price and the average extraction

cost both expressed in US dollars. There are several reasons for choosing this proxy as an

alternative to SXP. First, the way this is defined makes it directly connected to the total
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resource extraction in a country. Therefore, it should serve a as good proxy for natural

resource abundance. Second, it overcomes the potential endogeneity concern associated

with the measure SXP. Third, resource rent has been used as a proxy for natural resource

abundance in other studies too, such as Bhattacharyya and Hodler (2010) and Ross (2006).

Table 2.5 and 2.6 are similar to Table 2.2 and 2.3 in terms of model specifications.

However, Table 2.5 and 2.6 show that using log resource rent per capita instead of SXP

in fixed-effect models does not change our results in a statistically significant manner from

those of Table 2.2 and 2.3, which used SXP as a proxy for natural resource abundance.

2.4.3 What is driving the cross-sectional results?

As we have seen in Table 2.1, SXP appears as a statistically significant determinant

in cross-sectional regressions. However, SXP loses its statistical significance in a panel data

framework as shown in Table 2.2 and 2.3. Table 2.3 further reports that the period dummy

1985 which encompasses the periods from 1981 to 1985 has a negative and statistically

significant impact on real GDP growth. This result leads to the next analysis reported in

Table 2.8 where we conduct decade-by-decade cross-sectional regressions to examine if SXP

remains as a statistically significant factor determining economic growth.

Table 2.8 reports three separate cross-sectional regressions for three decades:

1970s, 1980s and 1990s. It is evident from this table that SXP has a statistically

significant negative impact on real GDP growth only in the decade of 1980s. This implies

that there must be at least one factor specific to the decade of 1980s which is causing the

negative relationship between SXP and real GDP growth rate in cross-sectional

regressions. Indeed in the 1980s the developing world experienced such a severe debt crisis
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that this decade become known as “the lost decade”. During this decade, heavily indebted

developing countries underwent significant economic slowdown. For instance, the average

growth rate of Latin American countries plunged to 1.8% in the 1980s from 6% in the

1970s.

While we refer interested readers to Kaminsky and Pereira (1996) and Easterly

(2001) for a more detailed account of the debt crisis in the 1980s that affected developing

economies and to Mistry (1991) for the African experience in particular, here we just briefly

explain the debt crisis to motivate the rest of our analyses. The decade just before 1980s saw

two oil price shocks which led to enormous revenues from oil exports flowing into OPEC

countries. These revenues denominated in US dollars were mainly deposited in foreign

banks but the ones in the US. Therefore, they were basically euro-dollars deposits of OPEC

countries. Due to lack of immediate prospects for investment in their domestic industrial

projects, these sizable euro-deposits were funneled through the foreign commercial banks to

a number of developing countries which heralded high growth prospects. Very soon countries

such as, Mexico, Brazil, Korea, and several African countries became overburdened with

external debt.

The lenders initially considered these borrowers relatively safe since some of these

countries were enjoying large profits from primary commodity exports and some promised

profitable investment projects. However, the bright prospect of the debtor economies soon

turned bleak when with a view to combating inflation in the US, the newly appointed

Federal Reserve Board Chairman Paul Volcker in 1979 started implementing some drastic

contractionary monetary policies. In a nutshell, the contractionary monetary policy affected
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the debtor countries mainly in two ways: (i) increased interest rates in the US led to the rise

in the debt service payment for debtor countries (ii) extremely tight monetary conditions

in the US caused a slowdown in the industrial world, which played an important role in

precipitating a sharp decline in commodity export prices and terms of trade of the debtor

countries. 4 Sachs (1989) argues that the increased debt service payment disincentivized

investment and therefore, growth in the debtor countries since a portion of the returns to

investment were transferred to the foreign creditors.

Therefore, we run separate cross-sectional regressions for the decade 1980s in Table

2.9 where in addition to the previous regressors, we include percentage change in terms of

trade in the first column’s regression and add external debt to GDP ratio in the second

column’s regression. It seems that controlling for changes in terms of trade does not have a

significant impact on the coefficient associated with SXP. However, regression in the second

column shows that the inclusion of external debt to GDP ratio causes the variable SXP to

lose its significance, although the newly included variable itself is not statistically significant.

Next we investigate if the inclusion of external debt to GDP ratio as an

additional regressor in our fixed-effects model renders the period dummy of 1985

insignificant. The results of our investigation are presented in Table 3.10. According to

the the regression in the first column, external debt to GDP ratio has a statistically

significant but an economically insignificant negative impact on real GDP. Also notice

that the inclusion of this ratio not only fails to render the negative coefficient on the

4Terms of trade is the relative price of imports in terms of exports. It is defined as the ratio of export
prices to import prices, and can be interpreted as the amount of imported goods an economy can purchase
for each unit of exported goods.
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period dummy 1985 statistically insignificant, but also makes the negative coefficient on

the period dummy 1980 statistically significant.

It has been already pointed out that during early 1980s, developing countries’

interest burden increased owing to the Volcker shock in 1979. This might have been an

additional factor affecting causing the slowdown in those countries’ economies. Therefore,

we add the log of interest on external debt as an additional control variable in our

regression reported in the second column of Table 3.10. The coefficient on the newly

added regressor has the expected negative sign. Although the impact of this variable on

real GDP growth rate is statistically insignificant, both of the period dummies 1980 and

1985 become statistically insignificant now. This implies that these period dummies

previously in Table 2.3 were capturing the effects of increased debt burdens of developing

countries.

2.5 Conclusion

Despite the fact that natural resources constitute a country’s wealth, abundance

of this particular type of wealth is supposedly detrimental to the country’s economic

growth - this is the crux of the “Natural Resource Curse” hypothesis popularized by Sachs

and Warner (1995). A huge literature developed after this, most of which instead of

re-investigating the validity of the hypothesis mainly sought to pinpoint the channels

through which abundance of natural resources could adversely affect economic growth. In

this paper, we have challenged the resource curse hypothesis with the aid of data on 104

countries. Departing from the cross-sectional models as used in Sachs and Warner (1995),
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Sachs and Warner (1997) or in Gylfason et al. (1999), we have employed both static and

dynamic panel fixed-effect models to conclude that primary commodity exports share of

GDP (SXP) a proxy for natural resource abundance originally introduced by Sachs and

Warner (1995) has no statistically significant impact on the real GDP per capita growth.

We have also used an alternative proxy for resource abundance given by log resource rent

per capita which nevertheless has not altered our main result with respect to the relation

between SXP and economic growth. In addition, we also examined and rejected the

possibility of a non-linear relationship between SXP and per capita growth.

Using time-effects in our panel data models we pinpointed the first half of the

decade of the 1980s to be driving the apparent negative relation between SXP and GDP

growth in the cross-sectional setting. The special circumstance which characterized 1980s

was the severe debt crisis experienced by a number of developing countries. Thus to account

for the debt crisis, we controlled for external debt to GDP ratio and interest on external

debt in our static fixed-effect models. This rendered the coefficient on the period dummy

capturing the first half of 1980s statistically insignificant. Furthermore, the debt crisis led

to the decline in the commodity export prices and therefore, in terms of trade. However,

controlling for the latter could not make the coefficient on SXP statistically insignificant in

the cross-sectional regression for 1980s. But external debt to GDP ratio as an additional

regressor succeeded in doing that. This result is consistent with the finding of Manzano

and Rigobon (2001).
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Finally, future work in this area should focus on re-examining the relationship

between resource abundance and institutions and educational attainment in a panel data

setting, and then contrast the results with those from existing cross-sectional studies.

50



Appendix

Variables: Definitions and Sources

SXP: Primary commodity exports divided by GDP. The data on primary commodity

exports and GDP, measured in current US dollars were originally obtained from the World

Bank. However, World Bank stopped releasing this data and therefore, data on SXP were

obtained from Collier and Hoeffler (2004). The data is available at a 5 year interval from

1970 to 19995.

Open: The fraction of years during the period 1970-1995 in which the country is rated as

an open economy according to the criteria in Sachs and Warner (1995).

Log investment pc: 5-year average of natural log of capital investment per capita.

Yearly data collected from PWT 8.

Polity: A measure of democracy which takes a value between 0 and 1. It is computed in

the manner as described in Bhattacharyya and Hodler (2010). Higher values imply better

democratic institutions.

Log gov. consumption: 5-year average of natural log of government consumption.

Yearly data collected from PWT 8.

Population growth: Collected from PWT 8.

External debt/GDP: 5-year average of the ratio between external debt and GDP.

Yearly data collected from the World Bank database.

Percentage change in terms of trade: Yearly data on terms of trade are collected

from the World Bank database. Next log deviations are computed to calculate percentage

changes. Finally, 5-year averages are produced.
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Log of interest on external debt: 5-year averages of natural log of interest on external

debt. Yearly data are collected from the World Bank database.
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Figure 2.1: Time Series of Real GDP Growth Rates

52



Figure 2.2: Full Sample: Average SXPs vs Average Real GDP Growth Rates
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Figure 2.3: Restricted Sample: Average SXPs vs Average Real GDP Growth Rates

Restricted sample includes only those countries whose average SXP is less than or equal to the

median SXP of 0.10.

54



Table 2.1: Regressions Using Cross-sectional Data

(1) (2)

VARIABLES Real GDP pc Real GDP pc

Growth (1970-1990) Growth (1970-1999)

SXP −0.0431* −0.0375*

(0.0181) (0.0159)

Initial Log Real GDP pc 0.000809 0.00152

(0.00177) (0.00155)

Open 0.000147* 0.000155*

(5.80e-05) (4.85e-05)

Log Investment pc (1970-1990) 0.0101* 0.00826*

(0.00356) (0.00312)

Constant −0.0226 −0.0255*

(0.0139) (0.0121)

Observations 104 104

R-squared 0.189 0.228

Note: All the variables except Initial Log Real GDP pc in column 1 are averaged
over the period 1970-1990, and in column 2 are averaged over the period 1970-1995.
Standard errors in parentheses. * p < 0.05.
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Table 2.3: Fixed-effect models estimation (continued)

(1) (2) (3)

VARIABLES RGDP Growth RGDP Growth RGDP Growth

SXP −0.0943 −0.0940 −0.101

(0.0763) (0.0767) (0.0770)

Squared SXP 0.193 0.191 0.190

(0.104) (0.105) (0.104)

Open 0.00734 0.00734 0.00840

(0.00460) (0.00460) (0.00480)

Log Investment pc 0.00108* 0.00109* 0.00105*

(0.000378) (0.000385) (0.000374)

Polity −0.0229* −0.0228* −0.0165

(0.00912) (0.00915) (0.00929)

Log gov. consumption −0.0368* −0.0370* −0.0304*

(0.00874) (0.00872) (0.00859)

Population Growth −0.0993 −0.0513

(0.377) (0.365)

Year Dummy (1980) −0.00584

(0.00428)

Year Dummy (1985) −0.0181*

(0.00426)

Year Dummy (1990) −0.00482

(0.00452)

Year Dummy (1995) −0.0108*

(0.00468)

Constant 0.0860* 0.0879* 0.0779*

(0.0237) (0.0232) (0.0223)

Observations 448 448 448

R-squared 0.472 0.472 0.507

Note: All variables but SXP are 5-year averages for the period 1971 to 1995. Data
on SXP was only available for every 5 year interval. Standard errors in parentheses.
* p < 0.05.
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Table 2.4: System GMM estimations

(1) (2)

VARIABLES RGDP Growth RGDP Growth

SXP −0.00769 −0.0118

(0.112) (0.0927)

Squared SXP −0.0146 −0.00582

(0.153) (0.130)

Open 0.0101 0.00947

(0.00695) (0.00620)

Log Investment pc 0.00123* 0.00116*

(0.000522) (0.000479)

Polity −0.0136 −0.0132

(0.0133) (0.0122)

Log gov. consumption 0.00178 0.00261

(0.00500) (0.00495)

Population Growth -2.011 -2.031

(2.874) (2.329)

Previous period’s log real GDP −0.00577 −0.00613

(0.0223) (0.0183)

Previous period’s growth rate 0.0529

(0.0952)
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Table 2.4: System GMM estimations (continued)

(1) (2)

VARIABLES RGDP Growth RGDP Growth

Year Dummy (1985) −0.0137* −0.0140*

(0.00636) (0.00599)

Year Dummy (1990) 0.000807 0.00153

(0.00643) (0.00551)

Year Dummy (1995) −0.00707 −0.00702

(0.0118) (0.00903)

Constant 0.0767 0.0793

(0.212) (0.174)

Instruments 22 25

Hansen over-identification test statistic 12.97 12.58

Observations 355 355

Number of countries 96 96

Note: See 2.2’s note for information on variables. Two-step system GMM with
Windmeijer-corrected standard errors and orthogonal deviations are presented above.
Standard errors in parentheses. * p < 0.05.
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Table 2.6: Robustness check

Fixed-effect models estimation (continued)

(1) (2)

VARIABLES RGDP Growth RGDP Growth

Log Resource Rent per capita 0.00160 0.00210

(0.00198) (0.00216)

Open 0.00827 0.00945

(0.00480) (0.00495)

Log Investment per capita 0.00116* 0.00113*

(0.000412) (0.000409)

Polity −0.0235* −0.0163

(0.00938) (0.00981)

Log gov. consumption −0.0467* −0.0374*

(0.0106) (0.0108)

Population Growth −0.114 −0.0646

(0.394) (0.385)

Year Dummy (1980) −0.00644

(0.00481)

Year Dummy (1985) −0.0193*

(0.00459)

Year Dummy (1990) −0.00503

(0.00495)

Year Dummy (1995) −0.0112*

(0.00495)

Constant 0.0849* 0.0627

(0.0328) (0.0334)

Observations 422 422

R-squared 0.468 0.507

Note: All variables are 5-year averages for the period 1971 to 1995.
Standard errors in parentheses. * p < 0.05.
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Table 2.7: Robustness Check Using System GMM Estimations

(1) (2)

VARIABLES RGDP Growth RGDP Growth

Log resource rent per capita −0.000490 −0.000152

(0.00140) (0.00127)

Open 0.0153* 0.0156*

(0.00609) (0.00571)

Log Investment per capita 0.00110* 0.000868*

(0.000403) (0.000432)

Polity −0.00622 −0.00905

(0.0129) (0.0124)

Log gov. consumption 0.000216 0.00231

(0.00550) (0.00506)

Population Growth −0.810 −0.761

(0.783) (0.753)

Previous period’s log real GDP −0.000408 −0.000787

(0.00842) (0.00788)

Previous period’s growth rate 0.173

(0.129)

Year Dummy (1985) −0.0155* −0.0147*

(0.00478) (0.00528)

Year Dummy (1990) −0.00222 0.00157

(0.00450) (0.00553)

Year Dummy (1995) −0.0115* −0.00986*

(0.00488) (0.00473)

Constant 0.0123 0.00952

(0.0630) (0.0596)
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Table 2.7: Robustness Check using System GMM Estimations (continued)

(1) (2)

Instruments 21 24

Hansen overidentification test statistic 21* 21.34*

Observations 336 336

Number of country 90 90

Note: See 2.2’s note for information on variables. Two-step
system GMM with Windmeijer-corrected standard errors and
orthogonal deviations are presented above. Standard errors
in parentheses. * p < 0.05.
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Table 2.8: Cross-sectional Regressions for Different Decades

(1) (2) (3)

1970s 1980s 1990s

VARIABLES RGDP Growth RGDP Growth RGDP Growth

SXP 0.0109 −0.0735* −0.0121

(0.0206) (0.0233) (0.0208)

Initial Log GDP per capita 0.00128 0.00422* 0.00396*

(0.00198) (0.00188) (0.00172)

Open 2.72e-05 0.000143* 3.35e-05

(7.16e-05) (6.77e-05) (5.03e-05)

Log investment per capita 0.0224* 0.00354 0.0186*

(0.00488) (0.00475) (0.00513)

Constant −0.0561* −0.0363* −0.0757*

(0.0172) (0.0166) (0.0154)

Observations 104 104 102

Adjusted R-squared 0.210 0.148 0.309

Standard errors in parentheses

* p < 0.05

Note: See 2.2’s note for information on variables. Two-step system GMM with Windmeijer-
corrected standard errors and orthogonal deviations are presented above. Standard errors
in parentheses. * p < 0.05.
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Table 2.9: Cross-sectional Regressions for 1980s Controlling for External Debt

(1) (2)

VARIABLES Real GDP Growth Real GDP Growth

1980s 1980s

SXP −0.0600* −0.0470

(0.0279) (0.0315)

Log Initial GDP per capita 0.00202 −0.000552

(0.00311) (0.00361)

Open 0.000119 5.07e-05

(8.67e-05) (9.33e-05)

Log investment per capita 0.00789 0.00789

(0.00566) (0.00548)

Percentage change in terms of trade 0.00126 0.000718

(0.000699) (0.000734)

External debt/GDP -8.43e-05

(6.33e-05)

Constant −0.0306 −0.00528

(0.0225) (0.0263)

Observations 72 62

Adjusted R-squared 0.123 0.073

Note: See 2.2’s note for information on variables. Two-step system GMM with
Windmeijer-corrected standard errors and orthogonal deviations are presented above.
Standard errors in parentheses. * p < 0.05.

65



Table 2.10: Fixed-effects model Controlling for External Debt

(1) (2)

VARIABLES RGDP Growth RGDP Growth

SXP −0.0976 −0.0949

(0.125) (0.128)

Squared SXP 0.102 0.109

(0.266) (0.268)

Open 0.00149 0.000451

(0.00602) (0.00611)

Investment pc 0.00162* 0.00172*

(0.000455) (0.000454)

Polity −0.0129 −0.0126

(0.0107) (0.0105)

Log gov. consumption −0.0204 −0.0193

(0.0103) (0.0102)

Population Growth 0.471 0.489

(0.430) (0.429)

External debt to GDP ratio -5.76e-05* -6.73e-05*

(1.95e-05) (2.11e-05)

Log of interest on external debt −0.00362

(0.00335)

year = 1980 −0.0139* −0.00946

(0.00505) (0.00609)

year = 1985 −0.0179* −0.00839

(0.00573) (0.0106)

year = 1990 −0.00415 0.00662

(0.00650) (0.0119)

year = 1995 −0.00676 0.00442

(0.00736) (0.0120)
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Table 2.10: Fixed-effects model Controlling for External Debt (continued)

(1) (2)

Constant 0.0379 0.0920

(0.0322) (0.0604)

Observations 263 263

Number of country 59 59

Adjusted R-squared 0.226 0.226

Note: See 2.2’s note for information on
variables. Two-step system GMM with
Windmeijer-corrected standard errors and
orthogonal deviations are presented above.
Standard errors in parentheses. * p < 0.05.
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Chapter 3

Modeling and Forecasting the US

Inflation Uncertainty Using

Markov Regime Switching Models

3.1 Introduction

Uncertainties of various macroeconomic and financial variables have garnered

special attention of both academic researchers and practitioners because of the nontrivial

role they play in influencing policy making and financial market decisions. For example,

during the period 1979-1982, the Federal Reserve switched from targeting interest rates to

using nonborrowed reserves as a monetary policy tool which led to unprecedented interest

rate volatility. This rise in volatility might have distorted the relationship between

nominal interest rates and other explanatory variables which are important ingredients in
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the policy making process (Gray, 1996). Another example of a macroeconomic variable

which is susceptible to uncertainty is exchange rate. Financial market exploits exchange

rate’s volatility to determine the price of currency options which in turn is used for risk

management. It is not difficult to find other variables that the portfolio managers, option

traders and market makers all are interested in forecasting to either increase profit or

hedge against risk. Hence, the importance of an accurate estimation and forecast of

volatility cannot be overstated.

Such forecasts typically hinge on the stylized facts that high frequency time

series data exhibit time-varying volatility and volatility clustering. The latter means that

volatility periods of similar magnitude tend to cluster together. To capture these features,

the most commonly used model in the literature is GARCH (Generalized Autoregressive

Conditional Heteroskedasticity) first introduced by Bollerslev (1986) who generalized the

idea of ARCH (Autoregressive Conditional Heteroskedasticity) by Engle (1982). Although

GARCH models produces a better fit than a constant variance model and also yields good

volatility forecasts as maintained by Andersen and Bollerslev (1998), there is a caveat. As

Gray (1996) has argued these models maybe misspecified due to the reason that the

structural form of conditional means and variances is relatively inflexible. In other words,

the models are held fixed throughout the entire sample period and thus ignore possible

structural changes in mean and variances. The latter may lead to estimated high

persistence of individual shocks resulting in high volatility persistence as shown by

Lamoureux and Lastrapes (1990). This high volatility persistence may be the reason

behind excessive GARCH forecasts in volatile periods. To solve this problem, researchers
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have recently generalized the GARCH model by allowing for multiple regimes with varying

volatility levels. This is called the Markov-Switching GARCH (MS-GARCH) model.

The main objectives of this paper are twofold: (i) find out when inflation volatility

actually started to decline and (ii) examine the forecasting performance of a two-regime

MS-GARCH model with respect to inflation uncertainty in the U.S over the period January

1971- March 2015 using multiple statistical loss functions. The first objective is pursued

to address a gap in the existing literature which only reports the structural break date of

several key macroeconomic variables including inflation and inflation volatility. Knowing

the break date is of course important, but so is important to know when the process of the

break had actually started. This information will allow us to identify the policy or policies

which were most successful effecting the change. Also, this will give us an idea about the

length of time required for a desired effect to take place following a policy change.

To fulfill the second objective, performances of two variants of an MS-GARCH

model, one with normally distributed errors and another with t-distributed errors are

juxtaposed with the performances of their standard non-regime switching counterparts.

The existing literature so far has produced evidences on forecasting the volatility of

exchange rates and stock returns using MS-GARCH. But surprisingly, the performance of

MS-GARCH model forecasting inflation uncertainty has not been examined yet. It is

important to put MS-GARCH to test to see how well it performs while forecasting

inflation certainty for at least two reasons. First of all, it will shed light on the method’s

appropriate applicability in terms of forecasting. Second, inflation uncertainty is itself a
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very important macroeconomic variable which affects a society’s welfare. It, in fact, was

the first variable modeled using ARCH (Engle, 1982, 1983).

Moreover, obviously the same model cannot be expected to be equally good in

characterizing and forecasting different variables. Therefore, testing MS-GARCH’s

forecasting capability with respect to different variables will yield a better understanding

of the method’s usefulness. The appropriateness of the application of MS-GARCH to

inflation uncertainty can be primarily ascertained by eyeballing the data on U.S. inflation

rate from 1971 to early 2014 (Figure 3.1). It seems that inflation rate was very volatile

from early 1970s to mid 1980s. After that it remained relatively stable until before 2006

which coincides with the onset of the recent financial crisis. Therefore, a casual

observation of the data suggests that the U.S. inflation rate might be characterized by at

two regimes: a high volatility regime and a low volatility regime. While a standard

GARCH model is not capable of distinguishing between these two regimes an MS-GARCH

model is better suited at this task.

On the other hand, inflation uncertainty’s being a variable of great interest to

many parties is related to the general consensus that its future values are a major reason

behind the welfare loss associated with inflation. Engle (1983) has argued that inflation

uncertainty causes loss to risk averse economic agents even if the prices and quantities are

perfectly flexible in all markets. It also distorts the efficiency of the current period’s

resource allocation decisions. In his Nobel lecture, Friedman (1977) has stressed that

higher variability of inflation may even lead to decreased output, ceteris paribus. Inflation

uncertainty’s pervasive effect becomes specially more pronounced due to the use of
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Figure 3.1

nominal contracts. This is because future price level uncertainty induces risk premia for

long-term contracts and increases costs for hedging against inflation. Hence, in order to

minimize hedging cost and loss of wealth, it is important to be able to forecast inflation

uncertainty as accurately as possible.

After modeling US inflation volatility using both the regime-switching and non-

regime switching versions of the GARCH model, several key results emerge. The paper

finds that US inflation volatility can be characterized by two regimes, high volatility and

low volatility regimes. In the high volatility regime, shock persistence is lower compared to

the low volatility regime. However, the immediate impact of an individual shock is higher

in the high volatility regime. There is evidence that the main source of volatility clustering

in the high volatility regime is the persistence of the regime itself, not the persistence of
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an individual inflationary shock. The paper also finds that the regime switch of inflation

uncertainty took place in mid 1983. This result is consistent with the general agreement in

the literature that there was a structural break around 1984. A related but a novel finding

of this paper is that the process of the regime switch started much earlier which is around

April, 1979. This date is very close to when Paul Volcker was nominated as the chairman of

the Board of Governors of the Federal Reserve System on July, 1979. The regime switching

process seemed to have coincided with the aggressive monetary policy changes implemented

by the newly appointed Fed chairman.

As regards forecasting performances, this paper provides evidences that for a

forecast horizon of 1 to 5 months, a Markov regime-switching GARCH model with

normally distributed errors performs better than both standard GARCH models and a

Markov regime-switching GARCH model with t distributed errors. However, for longer

horizons such as 8 to 12 months, a Markov regime-switching GARCH model with t

distributed errors outperforms all other models.

The contribution of this paper is mainly twofold. This is the first paper which

models US inflation uncertainty within a Markov regime-switching GARCH framework and

thus uncovers inflation uncertainty’s underlying regime-dependent characteristics. It is also

the first attempt in the literature at forecasting US inflation uncertainty. The organization

of the paper is as follows. Section 2 discusses the existing relevant studies in the literature.

Section 3 describes the data and the methodology used. Then section 4 discusses the results.

Finally, section 5 concludes.
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3.2 Literature review

This paper is concerned with two strands of the literature. The first is Markov-

switching GARCH models and the second is inflation uncertainty. Cai (1994) and Hamilton

and Susmel (1994) are the first to extend the seminal idea of regime-switching parameters by

Hamilton (1988b, 1989) to an ARCH specification to control for possible structural breaks

which may bias the estimates. However, the authors have argued that regime-switching

GARCH models are intractable and impossible to estimate due to the dependence of the

conditional variance on previous regime-dependent conditional variances. In other words,

the conditional variance at time t depends on the entire sequence of regimes up to time t−1.

Since the number of possible regime paths grows exponentially with t, an econometrician,

who does not observe regimes, will have to deal with a large number of paths to t. This

renders the estimation of the likelihood function constructed by integrating over all possible

paths, intractable for large sample sizes.

To remove path-dependence, Gray (1996) first proposed the idea of aggregating

conditional variances from the two regimes at each time step as he developed a generalized

regime-switching model of the short-term interest rate. This single regime-aggregated

conditional variance is then used as the input to compute the conditional variance at the

next step. To be precise, Gray’s specification involves formulating the conditional variance

equation in the GARCH(1,1) model in a regime-switching framework in the following

manner:

hit = α0i + α1iε
2
t−1 + α2iht−1 (3.1)
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where hit denotes conditional variance at period t in regime i = (1, 2), and ht−1

is a state-independent average of past conditional variances. Gray (1996) makes use of the

information observable at time t− 2 to integrate out the unobserved regimes as follows:

ht−1 = Et−2{hit−1} = p1t−1[µ2
1t−1 + h1t−1] + (1− p1t−1)[µ2

2t−1 + h2t−1]

− [p1t−1µ1t−1 + (1− p1t−1)µ2t−1]2 (3.2)

where p1t−1 = Pr(St−1 = 1|It−2) and It−2 is the information available until time

t−1. However, the main drawback of this model specification is that it is rather complicated

to compute multi-period ahead volatility forecasts since this model does not make use of

all the information. Dueker (1997a) also estimated Markov-switching models to forecast

stock market volatility by adopting Kim’s (1994) collapsing procedure to avoid the path-

dependence problem. The collapsing procedure involves treating the conditional variance

as a function of at most the most recent M values of the state variable S. Similar to Gray’s

specification, this method essentially leads to not using all the information. To use more

observable information when integrating out the previous regime, alternative to equation

(3.2) Klaassen (2002) proposed the following specification for the conditional variance:

ht−1 = Et−1{hit−1|st} = Var(πt|It−1) = p̃ii,t−1[µ2
it−1 + hit−1]+

p̃ji,t−1[µ2
jt−1 + hjt−1]− [p̃ii,t−1µit−1 + p̃ji,t−1µjt−1]2 (3.3)

where

p̃ji,t−1 = Pr(st−1 = j|st = i, It−2) =
pjiPr(st−1=j |It−2)

Pr(st = i|It−2)
=
pjipjt−1

pit
(3.4)

with i, j = 1, 2 and pji is the transition probability of switching from state j in

period t − 1 to state i in period t i.e. pji = Pr(st = i|st−1 = j). Equation 3.3 makes
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the distinction between Gray’s and Klaassen’s specification clear. It shows that Klaassen

(2002) takes the information from the current state, st into account while calculating the

conditional probability of the previous state being in a particular regime whereas, Gray

(1996) incorporates information observable only at period t−2. Klaassen (2002) has argued

that if regimes are highly persistent, current regime provides useful information about the

previous regime and this information should be incorporated in the probability calculation.

Another advantage of Klaassen’s method is it provides a straightforward expression for

the multi-step ahead volatility forecasts that can be calculated recursively as in standard

GARCH models (Marcucci, 2005).

The second strand of the literature that this paper contributes to, as mentioned

above is concerned with the importance and measures of inflation uncertainty. A vast

literature has extensively analyzed these specially in the context of the inflation

uncertainty’s possible dependence on inflation rate and its potential harmful effect on real

economic activity. For example, with regards to the latter, on the theoretical side some

authors have pointed out that inflation uncertainty reduces the rate of investment by

hindering long-term contracts (see Fischer and Modigliani 1978), or by increasing the

option value of delaying an irreversible investment (Pindyck, 1991). Contrasting results

are reported by Dotsey and Sarte (2000) who using a cash-in-advance constraint in their

model show that inflation uncertainty may increase investment through its impact on

precautionary savings. Motivated by these theoretical suggestions, a number of studies

have empirically examined the relationship between inflation and other macroeconomic
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variables. But a measure of uncertainty needs to be employed to carry out these

investigations.

Early studies use unconditional volatility measures as a proxy for uncertainty;

for example Fischer (1981) employs the moving standard deviation of inflation. However,

such measures fail to capture inflation uncertainty which is actually the variance of the

stochastic, or unpredictable component of inflation rate (Grier and Perry, 1998). To clarify

this point, suppose that agents have very little information about inflation. In this case,

they may deem the future as highly uncertain even though econometricians observe small

ex post variability. If however, agents possess adequate information in advance, then there

may be very little uncertainty associated with large change in actual inflation (Evans, 1991).

Therefore, higher variability does not necessarily imply higher uncertainty. Rather, it will

imply higher uncertainty only if agents do not possess the relevant information to predict

part of the increased variability (Kontonikas, 2004).

The second type of measures of uncertainty that has been used in the literature

is based on surveys for instance, Survey of Professional Forecasters (SPF). SPF is a

quarterly survey of professional forecasters’ views on key economic variables. Studies that

have used survey data to construct inflation uncertainty include Barnea et al. (1979),

Melvin (1982), Holland (1995), Lahiri and Sheng (2010) among others. Typically, survey

based measures summarize the dispersion of forecasts of individual forecasters at a point

in time (see Giordani and Söderlind 2003 for different types of uncertainty measures based

on survey data). However, Grier and Perry (1998) has argued that these measures do not

provide information about individual forecaster’s uncertainty about their own forecasts.
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In a given time period, it is possible that each forecaster is extremely uncertain about

inflation and yet submit very similar point estimates. This would lead to a significant

underestimation of actual inflation uncertainty.

In contrast to these ad hoc measures of inflation uncertainty, GARCH provides a

parametric technique to estimate a model of time-varying variance of stochastic innovations.

This is a more sophisticated method than simply constructing a variability measure from

past outcomes or from range of disagreement among individual forecasters at a point in time.

With a view to examining the relationship between inflation and inflation uncertainty in the

G7 countries., Grier and Perry (1998) employ an AR(12)-GARCH(1,1) model to estimate

inflation uncertainty over the period 1948-1993. A similar study is conducted by Nas & Perry

(2000) for Turkey which also measures inflation uncertainty using an ARMA-GARCH(1,1)

model. In the context of the relationship between inflation uncertainty and real output,

bi-variate GARCH models have been utilized to construct estimates of inflation uncertainty

(see Grier et al., 2004; Bredin and Fountas, 2005; Fountas et al., 2006). However, none of

these papers take into account structural shifts in their models which may ultimately lead

to biased estimation of inflation uncertainty. This potential problem is partially addressed

by Caporale et al. (2010a) who employ an AR(k)-GARCH(1,1) model with time-varying

parameters only in the mean equation to estimate inflation uncertainty. But they do not

incorporate regime shifts in the conditional variance model, parameters of which too are

susceptible to such shifts.

With a view to accounting for structural changes in both the conditional mean

and variance equations, Chang and He (2010) have first applied a bi-variate
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Markov-switching ARCH model to analyze the relationship among inflation, inflation

uncertainty and output growth using quarterly data from U.S. over the period

1960Q1-2003Q3. They have shown how allowing for possible regime switches culminates

in uncovering effects or results that are either in contradiction with the conclusions from a

single-regime GARCH model or are not captured by the latter at all. Nevertheless, to

avoid the problem of path dependence this model omitted the potentially important

GARCH term which could be used to parsimoniously represent a high-order ARCH

process.

3.3 Data and methodology

This paper analyzes monthly U.S. inflation rates calculated as the differences in the

log of monthly consumer price indices (CPI) collected from the Federal Reserve Economic

Data (FRED). Monthly data has been chosen as opposed to quarterly ones since GARCH

models are not well-suited for the latter ones. The sample period consists of two parts. The

first part contains 518 observations from the period between January 1, 1971 and February

1, 2014. It is used for the purpose of in-sample estimation. The second part extends from

March 1, 2014 to March 1, 2015 and is used for out-of-sample forecasting.

Figure 3.2 displays the histogram and Table 3.1 contains the descriptive statistics of

the in-sample data. The mean inflation rate is small and around 0.34%. Both the histogram

and the skewness coefficient suggest that U.S. monthly inflation rates are positively skewed.

This implies that extreme positive inflation rates are more likely than extreme negative
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Figure 3.2: Histogram for monthly inflation rates from January 1, 1971 to February 1, 2014

Table 3.1: Summary statistics of monthly inflation rates

Statistic Estimate

Mean 0.34

Median 0.28

Maximum 1.79

Minimum -1.78

Standard deviation 0.33

Skewness 0.109

Kurtosis 7.37

Jarque-Bera 414.83*

Note: Inflation rates are reported in percentage terms for the sample period January 1, 1971 to

February 1, 2014. *P-value = 0.
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rates. However, the value of the skewness coefficient is not statistically significant at the

5% significance level.1 On the other hand, positive excess kurtosis provides evidence of a

fatter right tail. This result is statistically significant at the 5% significance level.2 Overall,

there is a strong indication of a non-normal distribution of inflation rates which is confirmed

by a statistically significant large value of Jarque-Bera statistic.

We estimate four different types of GARCH(1,1) models. The first two are

standard GARCH models, one with normally distributed errors and another with

t-distributed errors to capture the potential fat-tailed behavior of the empirical

distribution of inflation rate. Since our main focus is on volatility forecasting, we make use

of a simplified GARCH model consisting of a mean equation of the following simple form:

πt = δ + εt (3.5)

and a conditional volatility equation of the following form:

ht = α0 + α1ε
2
t−1 + α2ht−1 (3.6)

where α0 > 0, α1 ≥ 0 and α2 ≥ 0 to ensure a positive conditional variance. With a

t-distribution, the probability density function of the innovations becomes:

f(εt) =
Γ(ν+1

2 )
√
πΓ(ν2 )

(ν − 2)−
1
2h
− 1

2
t

[
1 +

ε2
t

ht(ν − 2)

]− ν+1
2

(3.7)

The other two models are Markov-switching GARCH (MS-GARCH) models with

two regimes, again one with normally distributed errors and another with t-distributed

errors. We follow Klaassen’s (2002) specification of MS-GARCH which consists of the

1Skewness coefficient/Standard error of skewness = 0.109/
√

6/518 = 1.01 which is between −2 and +2.
2Excess kurtosis/Standard error of kurtosis = 4.37/

√
24
518

= 20.3 > 2.
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following conditional mean equation along with equations (3.1), (3.3) and (3.4):

πt = δi + β1iπt−1 + ηt
√
hit (3.8)

where i = 1, 2 and ηt is an i.i.d process with zero mean and unit variance. Because of

the absence of serial correlation in the monthly inflation rates, the m-step ahead volatility

forecast at time T -1 can be computed in the following manner:

ĥT,T+m =

m∑
τ

ĥT,T+τ =

m∑
τ=1

2∑
i=1

Pr(sτ = i|IT−1)ĥiT,T+τ (3.9)

where ĥT,T+m denotes the time aggregated volatility forecast for the next m steps

calculated at time T , and ĥiT,T+τ denotes the τ -step ahead volatility forecast in regime i

made at time T that can be obtained recursively from the following:

ĥiT,T+τ = α0i + (α1i + β1i)ET {hiT,T+τ−1|sT+τ} (3.10)

This formula is analogous to the one derived for the standard, single-regime

GARCH model and the probability to be used here to calculate the expected value comes

from equation (3.4). Equation (3.9) suggests that the multi-step ahead volatility forecasts

are computed as a weighted-average of the multi-step-ahead volatility forecasts in each

regime estimated , where the weights are the prediction probabilities. Using the theory of

Markov processes, to compute the volatility forecasts the filter probability at τ periods

ahead Pr (st+τ = i|It) = pit+τ = M τpit is required where

M =

[
p11 1− p22

1− p11 p22

]
(3.11)
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The substantial simplification of the computation of the conditional variance due

to the specification in equation (3.10) stands as one of the main advantages of Klaassen’s

MS-GARCH model over Gray’s (1996) one. To estimate the Markov regime-switching model

parameters, a quasi-maximum likelihood approach is undertaken with the aid of the ex-ante

probability p1t = Pr (st = 1|It−1) which can be calculated from:

p1t = p11

[
f(πt−1|st−1 = 1)(1− p1t−1)

f(πt−1|st−1 = 1)p1t−1 + f(πt−1|st−1 = 2)(1− p1t−1)

]

+ (1− p22)

[
f(πt−1|st−1 = 2)(1− p1t−1)

f(πt−1|st−1 = 1)p1t−1 + f(πt−1|st−1 = 2)(1− p1t−1)

]
. (3.12)

Here f (·|st = i) denotes one of the possible conditional distributions from Normal and

Student’s t given that regime i occurs at time t. With the input in the previous equation

the log-likelihood function can be written as:

l =
T+w∑

t=−R+w+1

log [p1tf (πt|st = 1) + (1− p1t) f (πt|st = 2)] (3.13)

where w = 0, 1, ...., n. The maximimum likelihood estimates are obtained by maximizing

equation (3.13) using quasi-Newton algorithm in the Matlab numerical optimization

routines. The estimation is carried out on a moving window of 492 monthly observations.

In this paper, following Marcucci (2005) we evaluate the forecasting performances

of competing models with respect to seven statistical loss functions which are listed below:

MSE1 = n−1
n∑
t=1

(σ̂t+1 − ĥ1/2
t+1|t)

2 (3.14)

MSE2 = n−1
n∑
t=1

(σ̂t+1 − ĥt+1|t)
2 (3.15)

QLike = n−1
n∑
t=1

(logĥt+1|t + σ̂t+1ĥ
−1
t+1|t) (3.16)
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R2Log = n−1
n∑
t=1

[log(σ̂2
t+1ĥ

−1
t+1|t)]

2 (3.17)

MAD1 = n−1
n∑
t=1

|σ̂t+1 − ĥ1/2
t+1|t| (3.18)

MAD2 = n−1
n∑
t=1

|σ̂2
t+1 − ĥt+1|t| (3.19)

HMSE = T−1
T∑
t=1

(σ̂2
t+1ĥ

−1
t+1|t − 1)2 (3.20)

where σ̂2 is an estimate of realized volatility and ĥ is volatility forecast from GARCH

models. Equations (3.14) and (3.15) are loss functions based on typical mean squared

error metrics. The loss function in equation (3.16) computes loss implied by a gaussian

likelihood and is suggested by ?. Equation (3.17) which is called the Logarithmic Loss

Function, penalizes volatility forecasts asymmetrically in low volatility and high volatility

periods (Pagan and Schwert, 1990). Loss functions in 3.18 and 3.19 are particularly useful as

they are more robust to outliers than MSEs. However, these functions do not differentiate

between over and under-predictions while applying the penalty. They are also sensitive

to scale transformations. ? have argued that MSE criterion might not be appropriate

in heteroskedastic environment and therefore, suggested heteroskedasticity-adjusted MSE

(HMSE) in equation (3.20).

In addition to the above statistical loss functions, two non-parametric measures of

directional accuracy are also employed: (i) Success Ratio (SR) and (ii) Directional Accuracy

(DA) test. These measures are generally aimed at computing the number of times a given

model correctly predicts the directions of change of the actual volatility. As Marcucci (2005)

has argued, directional accuracy of volatility forecasts bears special significance since they

can be used as inputs to construct various trading strategies such as straddles. SR is defined
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as the fraction of the demeaned volatility forecasts that have the same direction of change

as the corresponding demeaned actual volatility. Thus it measures the number of times the

volatility forecast accurately captures the direction of the true volatility process. Formally,

SR can be computed in the following manner:

SR =

∑m
j=1 I{σ̄t+j h̄t+j|t+j−1}>0

m
(3.21)

where Ig>0 is an indicator function such that it takes the value of one when the function g

is positive and zero otherwise.

The second test statistic, DA proposed by Pesaran and Timmermann (1992) is

computed as follows:

DA =
SR − SRI√

Var(SR)−Var(SRI)
(3.22)

where

SRI = PP̂ + (1− P )(1− P̂ )

Var(SR) = m−1SRI(1− SRI)

Var(SRI ) = m−1(2P − 1)2P̂ (1− P̂ ) +m−1(2P̂ − 1)2P (1− P )

+ 4m−2PP̂ (1− P )(1− P̂ )

(3.23)

P = m−1
m∑
j=1

I(σ̄t+j)

P̂ = m−1
m∑
j=1

I(ĥt+j|t+j−1)

(3.24)

I(g) =


1 if g > 0

0 otherwise

(3.25)
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In words, P represents the fraction of times that σ̄t+j > 0 and P̂ gives the proportion of

demeaned volatility forecasts that are positive. The square of the DA statistic has a χ2

distribution with one degree of freedom. To compute equations (3.14) - (3.22), an estimate

of realized volatilities, σ̂2 is required. We compute that as squared inflation rates. This

classical approach is used to calculate various financial series’ realized volatilities including

stock market returns.

3.4 Results

3.4.1 Single-regime GARCH

Estimation results of standard single-regime GARCH models with both normal and

t-distributions are presented in Table 3.2. The t-statistics are calculated using asymptotic

standard errors. Across the two models, all of the coefficients in the conditional mean and

variance equations appear to be very similar and are statistically significant. Since the

summation of the estimated ARCH and GARCH parameters, α1 +α2 < 1 for both models,

the assumption of stationarity is satisfied though this violation is common when applying

GARCH models on financial variables for e.g. short-run interest rates. Given these facts, it

can be argued that at least the in-sample performance of standard GARCH models is quite

good. Furthermore, in terms of log-likelihood, GARCH-t performs better than GARCH-n.

This is not entirely unexpected since the histogram and summary statistics provided above

suggested non-normality of inflation rate.
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Also, notice that the estimated sum of α1 and α2 is relatively large which is

indicative of high volatility persistence of individual shocks, as argued in the introduction.3

For example, a shock of 1% to the inflation rate increases the conditional variance at times

t+1 to t+5 by respectively 0.203, 0.135, 0.089, 0.059 and 0.039. Whether this high volatility

persistence is spurious can be confirmed by estimating the regime-switching GARCH model.

Further, the excess kurtosis of a t-distribution is given by 6/(ν − 4) which gives a value of

3.97. This again confirms that the U.S. inflation rate exhibits fat-tailed behavior.

Parameters GARCH-N GARCH-t

δ 0.1106∗ 0.1084∗

(6.50) (6.1425)

β1 0.630∗ 0.629∗

(9.64) (9.031)

α0 0.008∗ 0.008∗

(2.86) (2.855)

α1 0.203∗ 0.232∗

(4.15) (4.412)

α2 0.663∗ 0.639∗

(10.34) (9.261)

ν 5.51∗

(63.53)

Log-Likelihood 14.603 26.318

Table 3.2: Maximum Likelihood Estimates of Standard GARCH models with normal and
t distributions

3α1 + α2 = 0.87 for normally distributed errors and α1 + α2 = 0.847 for t-distributed errors.
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3.4.2 Markov-switching GARCH

Table 3.3 reports estimates of the Markov-switching GARCH models. The

second and the third columns contain the results respectively for the models with

normally distributed errors and t-distributed errors. As characterized by unconditional

standard deviations σi, regime 1 has a slightly higher volatility than regime 2.4 All of the

coefficients in the conditional mean equation of both models appear statistically

significant except the intercept term δ2 in the second regime of MS-GARCH-N. But in the

conditional variance equations, four of the total twelve parameters arise as statistically

insignificant, three of which correspond to the MS-GARCH model with a t distribution.

The t-statistics associated with α21 suggest that for both models in regime 1, the GARCH

terms are probably not necessary, but in regime 2 they are useful. In fact, MS-GARCH

with a t distribution suggests that unlike regime 2, regime 1 is characterized by a constant

variance since both the ARCH coefficient α11 and the GARCH coefficient α21 are

statistically insignificant. With respect to persistence, both MS-GARCH-N and

MS-GARCH-t indicate lower value for regime 1 (higher volatility regime) than regime 2

(lower volatility regime).

The above results highlight the superior capability of Markov-switching GARCH

models in identifying and distinguishing between different sources of volatility clustering.

As Gray (1996) has argued, volatility clustering has two main sources. The first one is

within-regime persistence and the second one is the persistence of regimes. The implication

of regime persistence is that if the unconditional variance is higher in one regime than

4Regime-specific unconditional standard deviations are calculated as σi =
√
α0i/(1 − α1i − α2i) where

i = 1, 2.
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the other, then periods of high volatility tend to cluster together during episodes of high

volatility-regime given that the regimes are persistent. This implies that for US inflation

rates, volatility clustering in regime 1 is caused by the persistence of the high volatility

regime and in regime 2 it is caused by both regime persistence and within-regime persistence.

After all, the estimates of regime persistence as given by the transition probabilities p and

q in Table 3.3 are both quite high and statistically significant.

The log-likelihood gives an initial idea of whether regime persistence is an

important source of volatility persistence. For each error distribution, the log-likelihoods

corresponding to the regime-switching models are higher than their single-regime

counterpart. Hence, incorporating regimes can be an important mechanism to capture

volatility clustering. Also as expected, estimates of persistence from standard GARCH

models fall between the estimates from the high and low volatility regimes produced by

the Markov-switching models. Another interesting result is that the immediate impact of

an individual shock seems to be greater during the higher volatility regime (regime 1) as

captured by higher values for the ARCH term in regime 1, α11 in comparison with the

values for the ARCH term in regime 2, α12. This means that for both Markov-switching

models in the high volatility regime, inflationary shocks have a large immediate impact

that dies out quickly. But the second regime’s sensitivities to an individual shock are

comparatively low and similar to the ones obtained under standard GARCH models.

The top panel in Figure 3.3 displays the time series plots of the smoothed, filter

and ex ante probabilities that the inflation rate is in regime 1 at time t as estimated by the

MS-GARCH-N model. MS-GARCH-t model also produces similar plots and therefore, they
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are not presented here. According to smoothed probabilities (blue dotted line), there was a

100% probability of the inflation rate being in the high volatility regime until April, 1979.

Eventually, there was a switch to a low volatility regime around mid 1983. These results

are consistent with the finding in the literature that inflation volatility was high in the

1970s but declined around 1984 during the period of Great Moderation (see Gordon (2007);

Blanchard and Simon (2001); Stock and Watson (2002); Sensier and van Dijk (2004)). This

consistency of result indicates the reliability of our choice of a simple AR(1) conditional

mean equation in the Markov-switching GARCH model.

While the existing studies in the literature only report the break date of 1984,

this paper is the first to present evidence on exactly when the process of structural break

in inflation uncertainty started. According to the smoothed probability plot, the process

started around April 1979 which marginally precedes the nomination of Paul Volcker to

serve as the chairman of the Board of Governors of the Federal Reserve System on July,

1979. Upon the confirmation of the Senate, Paul Volcker took office on August 6, 1979

and started a series of contractionary monetary policies including shifting the Fed’s focus

to managing the volume of bank reserves from trying to manage the day-to-day level of the

federal funds rate (Lindsey et al., 2013). Therefore, it can be argued that the process of

volatility moderation closely followed the time frame of the drastic monetary policy changes

implemented by the Fed under Paul Volcker. Nevertheless, to what extent Volcker’s policy

changes impacted inflation volatility or if they affected inflation volatility at all is a separate

debate which we do not seek to settle here.
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Table 3.3: Maximum Likelihood Estimates of Markov-switching GARCH models with
normal and t distributions

Parameters MS-GARCH-N MS-GARCH-t

δ1 0.162* 0.157*

(9.41) (9.31)

δ2 0.638 0.471*

(0.44) (6.80)

β11 0.739* 0.7706*

(19.64) (20.74)

β12 0.330* 0.3458*

(5.23) (6.36)

α01 0.039* 0.050*

(3.52) (3.72)

α02 0.004* 0.005

(1.98) (1.66)

α11 0.442* 0.488

(2.95) (1.12)

α12 0.230* 0.196*

(2.75) (2.16)

α21 0.025 0.005

(0.82) (0.23)

α22 0.69* 0.708*

(7.45) (6.22)

p 0.997* 0.996*

(226.61) (215.79)

q 0.998* 0.998*

(495.93) (690.17)

ν 4.216*

(9.84)

σ1 0.27 0.31

σ2 0.22 0.23

Log Likelihood 52.08 70.69
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Figure 3.3: The top panel contains a time series plot of the smoothed, filter and ex ante
probabilities that the inflation rate is in regime 1 at time t according to the MS-GARCH-N
model. The bottom panel displays the same probabilities for regime 2.

Figure 3.4: Conditional volatilities of US inflation rates over the period 1971-2012

92



As a final point before moving on to discuss in-sample goodness-of-fit statistics,

both ex-ante and filter probabilities suggest occurrences of high volatility regimes between

(i) late 1987 and late 1990 and (ii) around the onset of the 2007 recession. However, once

information from the whole sample is taken into account by smoothed probabilities, it

becomes clear that neither of these periods actually corresponds to high volatility regimes.

Another alternative explanation based on ex-ante probabilities with respect to the period

around the onset of the 2007 recession is possible. (Klaassen, 2002) has argued that some

large shocks are are not persistent at all and have a rather “pressure relieving” effect. Since

the within-regime persistence estimated in this paper for the high volatility regime is low,

the effect of the shock to inflation volatility dies out quickly before switching to the low

volatility regime. In that sense, the shock to the inflation volatility before the recession of

2007 imparted a “pressure relieving” effect. This is depicted in Figure 3.4 as a spike in the

conditional volatility around the time of the recession in 2007.

3.4.3 In-Sample Goodness-of-Fit

First of all, it has to be clarified that testing the null hypothesis of a linear model or

single-regime model against a regime-switching model is a non-trivial task. The difficulty

mainly arises because conventional likelihood-based inference is invalid since the regime-

staying probabilities remain as unidentified parameters under the null. This results in a

likelihood ratio whose asymptotic distribution is not the usual χ2 anymore and therefore,

may lead to misleading conclusions (Klaassen, 2002). Although there are some papers which

have sought to circumvent this problem (see for example Hansen (1992); Dufour and Luger

(2017)), we do not seek to formally test for the significance of the second regime here.
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Rather we only report some in-sample goodness-of-fit statistics in Table 3.4 as our main

focus is on the forecasting performance.

It is evident from Table 3.4 that GARCH-N has the poorest performance of all.

On the other hand, MS-GARCH-N that is, the Markov-switching model with normally

distributed errors outperforms all other models by ranking first according to 7 out of 10

statistical loss functions. Based on the rest of the statistical loss functions, the MS-GARCH-

t model ranks first which means that together the two Markov-switching models share

between them 100% of the top places in the ranks. The superiority of the MS-GARCH-N

model is consistent with the finding of Marcucci (2005) who examined the performance with

respect to stock market volatility.

3.4.4 Out-of-Sample Forecasting Performance

One particular caveat about the previous section’s results is that highly

parameterized models tend to produce good in-sample fits. Therefore, one needs to be

careful about the apparent superiority of Markov-switching models in terms of their

in-sample performance since they are inherently highly parameterized. In contrast,

out-of-sample tests are capable of controlling either possible over-fitting or

over-parameterization problems (Marcucci, 2005). Therefore, in this section we examine

and compare with each other the out-of-sample performances of the previous four variants

of GARCH models in forecasting inflation volatility. Out-of-sample volatility forecasting

performance is important also because of its relevance to researchers and practitioners.

Tables 3.5 to 3.10 report 1 to 12-month ahead inflation uncertainty forecasting

performances in terms of the seven statistical loss functions defined in Section 3. They also
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report estimates for Success Ratio (SR) and Directional Accuracy (DA) test statistic. It

is clear that MS-GARCH-N clearly outperforms all other models in forecasting inflation

uncertainty 1 to 5-month ahead. For the same forecasting horizon, MS-GARCH-t ranks

second best while GARCH-N fares worst. These rankings are consistent with in-sample

performances found in Section 4.2. However, note that unlike for other models the DA test

statistic for MS-GARCH-N is not statistically significant.5 Nevertheless, MS-GARCH-N

has the highest SR value for each forecast horizon from 1 to 5 months.

For forecast horizons of 6 and 7 months, both Markov-switching GARCH models

have comparable performances. Standard GARCH models still perform worse than their

regime-switching counterparts. From 8-month ahead horizon onward, MS-GARCH-t starts

exceeding all other models in forecasting performance. In fact, for the 12-month ahead

volatility forecasts, MS-GARCH-t ranks 1 in 6 out of 7 statistical loss functions. Also

notice that beyond 5-month forecast horizon, MS-GARCH-N has a statistically significant

DA test statistic. However, its performance clearly declines from 10-month forecast horizon

onward when even standard GARCH-t performs better than MS-GARCH-N. In a nutshell,

for short-term forecast horizon spanning 1 to 5-months, Markov-switching GARCH model

with normally distributed errors (MS-GARCH-N) performs better than the other three

GARCH models. But for longer horizons, MS-GARCH-t performs better in terms of out-

of-sample forecasting evaluation.

5The square of DA test statistics for MS-GARCH-N are less than the 5% significance level χ2 critical
value 3.84. Therefore, we fail to reject the null hypothesis that forecasted conditional volatility cannot
predict realized volatility.
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3.5 Conclusion

Volatility of inflation rate or inflation uncertainty is as important a variable as

the level of inflation rate. It has serious welfare loss implications for risk averse economic

agents even if all the prices in the economy are fully flexible. Therefore, being able to

forecast inflation uncertainty as accurately as possible is of paramount importance. Coupled

with that is the fact that a casual “eyeballing” of the data on US inflation rates from

1971 to present suggests that its volatility might have undergone regime changes multiple

times. Existing studies in the literature also confirm at least one structural break in 1984.

Therefore, it might be appropriate to forecast inflation uncertainty using Markov-switching

GARCH models which are capable of handling regime changes unlike standard GARCH

models.

Modeling inflation uncertainty using regime-switching GARCH models also

provides the opportunity to evaluate the forecasting performance of these models relative

to standard ones. In this paper, we seize that opportunity to augment the existing

evidences which already support regime-switching GARCH models’ superior shorter

horizon forecasting performance. However, those evidences are based on only stock market

and exchange rate data. Following Marcucci (2005), this paper employs a broad set of

statistical loss functions to evaluate the relative performances of Markov-switching

GARCH models in forecasting US inflation uncertainty.

One of the first major findings of this paper is that a Markov-regime switching

GARCH model consisting of a simple AR(1) conditional mean equation does remarkably

well in identifying US inflation uncertainty’s structural shift in the year 1984. This result
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is consistent with the general agreement in the literature on the break date. In addition,

this paper has identified April, 1979 as the time when the regime switching process might

have started before culminating in a complete switch in 1984. The whole switching process

mirrors the time line which follows a specific period that starts from the nomination of

Paul Volcker as the new chairman of the Federal Reserve System to his implementation of

various drastic monetary policy initiatives until 1984.

Another important result of this paper is that in the high volatility regime, shock

persistence is lower compared to the low volatility regime. But the immediate impact of

an individual inflationary shock is higher in the high volatility regime. New evidences are

presented which show that the main source of volatility clustering in the high volatility

regime is caused by the persistence of the regime itself. Finally, a comparison of the

forecasting performances of the four different GARCH models indicates that for a

forecasting horizon of 1 to 5 months, a Markov regime-switching GARCH model with

normally distributed errors (MS-GARCH-N) outperforms all other three models.

However, for longer forecasting horizon such as 8 to 12 months, a Markov

regime-switching GARCH model with t distributed errors (MS-GARCH-t) performs the

best. For the same longer horizon, MS-GARCH-N performs poorly even compared to a

standard GARCH model with t distributed errors.

The results and analyses of this paper can be extended in the future to explore

the relationship between inflation and inflation uncertainty within a regime-switching

framework. Also, forecasting exercises similar to the ones in this paper can also be carried

out for other countries’ inflation rates. It will be interesting to further evaluate the
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relative performances of Markov regime-switching GARCH models in the contexts of

different economic settings.
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Chapter 4

Predicting US recessions: A

Dynamic time warping exercise in

Economics

4.1 Introduction

Among all macroeconomic phenomenon, recession has the most significant adverse

welfare implications. It is accompanied by a loss of output, increase in unemployment,

decrease in consumer confidence, and a decline in the overall well-being of people living in

a country experiencing the recession. Sometimes these consequences become so pervasive

that a full recovery of the economy to its normal state turns into a very prolonged process.

For example, although the Great Recession officially ended in June 2009, the US GDP has

not yet attained the level it should have been at now had there been no recession.
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Because of pervasive repercussions ensuing a recession, accurate and timely

prediction of recessions is of great interest. Consequently, an ever increasing body of

economic literature has developed with a focus on forecasting recessions. Many of them

are concerned with proposing and examining the efficacy of a number of recession

indicators. Simultaneously, myriads of parametric models have also been employed and

compared with each other in terms of their out-of-sample forecasting performances. In

contrast, only a few non-parametric approaches have been adopted to predict recessions.

In this paper, we seek to predict US recessions using Treasury term spread data with the

aid of a non-parametric approach called Dynamic Time Warping (DTW).

The success of parametric models in predicting recessions depends heavily on the

choice of explanatory variables and functional forms. Specifically, models need to be

specified correctly such that they can incorporate possible structural breaks, and correctly

identify their dates of occurrences in the data. Chauvet and Potter (2005) have argued

that this is important since the probability of recessions is significantly affected by the

consideration of breakpoints and their locations. However, pinpointing breakpoints is a

non-trivial task. Therefore, we employ DTW which is a model-free approach, and does

not require the identification of structural breaks to predict US recessions. In addition,

instead of depending on multiple explanatory variables as is the case with most parametric

model based studies, it relies only on a single variable, that is Treasury term spread.

DTW is also computationally much simpler than other parametric and non-parametric

methods, specially considering its remarkable success in predicting US recessions.
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Our basic assumption is that effective leading indicators should exhibit similar

patterns before each recession. Therefore, the approach that we adopt here seeks to

exploit the similarity in pattern between two time series sequences. The most commonly

used measure of similarity is Pearson’s correlation coefficient. However, this coefficient has

some serious drawbacks. For example, it is sensitive to the presence of outliers and fails to

find similarity between two data series if they are out of phase. It also cannot be used to

find similarity between two time series sequences of different lengths. Its poor performance

in detecting dissimilarity between two trending but diverging sequences becomes evident

when we consider two Wiener processes W1 and W2 = W1 + (0.002× t) where t is the time

index. These two processes are displayed in Figure 4.1. Pearson’s correlation coefficient

yields a very high value of 0.92 despite the fact that these two sequences are dissimilar. To

overcome these weaknesses of Pearson’s correlation coefficient, we apply DTW which finds

an optimal alignment between two time-series sequences under certain restrictions by

warping the sequences in a non-linear fashion to match each other. Although it was

originally developed in the 1970s as an algorithm to aid speech recognition, it has been

successfully applied to other fields as well, such as, data mining and information retrieval

(Müller, 2007; Begum et al., 2015). Unlike correlation coefficient, DTW enables the

comparison between two data series of different lengths which adds to its advantages.

We employ two variants of DTW, one with a symmetric-step pattern and another

with an asymmetric step-pattern. It turns out that the adoption of an asymmetric step-

pattern produces better results than the symmetric-step pattern in terms of successfully

predicting US recessions of 1990, 2001 and 2007. The success of DTW, particularly in
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Figure 4.1: Diverging Wiener processes

predicting the recession of 1990 is noteworthy. This is because the recession of 1990 was

triggered by unusual events such as the invasion of Kuwait, and therefore, most models

using the yield curve found it difficult to signal this recession ahead of time such as Estrella

and Mishkin (1998) and Stock and Watson (1993). The main contribution of this paper

is that it employs a computationally much simpler non-parametric method than existing

parametric and non-parametric methods to predict US recessions successfully.

The rest of the paper is organized as follows. Section 2 discusses the existing

relevant literature, particularly on recession prediction. Section 3 presents a formal

description of DTW. Then section 4 proceeds to explain the data used, and the steps

involved in the practical implementation of DTW algorithm in predicting US recession.

After that, results are discussed in section 5. Finally, section 6 concludes.
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4.2 Literature Review

Wheelock et al. (2009) does an excellent survey of some important studies done

between the years 1991 and 2008 concerned with forecasting recessions. This survey confirms

that the majority of recession-forecasting studies estimate a probit model of the following

type, in which the dependent variable is basically a binary variable. It takes a value of 1 to

indicate recession periods and 0 to represent non-recession periods:

Pr(recessiont) = F (α0 + α1St−k) (4.1)

where F indicates the cumulative normal distribution function. According to this equation,

a statistically significant α1 implies that the recession indicator St−k is useful for forecasting

a recession k periods ahead. Sometimes, additional explanatory variables in the form of a

vector Xt−k are added to the above model in forecasting exercises to examine the usefulness

of St−k:

Pr(recession) = F (α0 + α1St−k + α2Xt−k) (4.2)

The main idea behind estimating equation (4.2) is that, if α1 appears to be statistically

significant in equation (4.1) but not in equation (4.2), then St−k actually does not have the

explanatory power to predict recessions.

As already mentioned, numerous recession indicators have been discussed in the

literature. But amongst all, treasury term spread stands out. Two of the earliest studies,

Estrella and Hardouvelis (1991) and Estrella and Mishkin (1998) have shown using probit

estimation that the term spread significantly outperforms other financial and

macroeconomic variables in forecasting U.S. recessions.The latter uses quarterly US data
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from 1959:Q1 to 1995:Q1 and a probit model to compare the out-of-sample forecasting

performance of various financial variables, including interest rates, interest rate spreads,

stock prices and, monetary aggregates. Their results indicate that stock prices are useful

predictors at one-to-three quarter horizons and are comparable to the Commerce

Department’s index of leading indicators. However, beyond one-quarter, the term spread

i.e. the slope of the yield curve outperforms all other indicators.

The usefulness of domestic term spread in predicting recession has been confirmed

for countries other than US too. For example, on the basis of German data for 1967-98

along with US data, Estrella et al. (2003) conclude that models that use the term spread

to predict recessions are more stable compared to models forecasting continuous variables

such as real activity or inflation. Similar evidences of term spread’s usefulness have been

produced by Gerlach and Bernard (1998) who using a probit model examined data from

1972-93 for eight industrialized countries. Those countries include Belgium, Netherlands,

Canada, France, Germany, Japan and, the United Kingdom. They further add that foreign

spreads provide limited information, except for Japan for which German spread is useful,

and the UK for which US spread appears to be useful in predicting recessions. Another

of their findings includes that the index of leading indicators is useful only for forecasting

recessions in the immediate future. Moneta (2005) also reports superior performance of

the term spread between 10-year government bonds and the 3-month interbank rate for the

euro area as a whole. The finding holds true for individual euro countries as well.

Additional evidences from the European countries are reported in Sensier et al.

(2004). Using a logit model, they conclude that domestic term spread helps forecast
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recessions well for Germany when used in conjunction with international variables.

Forecasting performance for Italy is also enhanced once international variables, such as

composite leading indicator and interest rates for Germany and US are introduced in the

models. Several other studies too, such as Wright (2006) and King et al. (2007) highlight

the superior performance of multivariate probit models which include extra variables in

addition to the term spread, such as federal funds rate and corporate credit spread.

Other studies that employ probit models include Rosenberg and Maurer (2008)

and Dotsey (1998). Decomposing the term spread into interest rate expectations and term

premium, Rosenberg and Maurer (2008) find that although the term spread and the

expectations component generally yield similar forecasts, between August 2006 and May

2007, the term spread model predicted a significantly higher recession probability than the

expectations component model did. Dotsey (1998) on the other hand, while adds support

to the effective forecasting performance of the term spread, also notes that the spread’s

forecasting performance has deteriorated in recent years.

Extensions to the probit model have also been explored in the recession

forecasting literature. For example, embedding a probit forecasting model within a

Markov-switching framework both Dueker (1997b) and Ahrens (2002) report more

accurate estimates of recession probabilities. Chauvet and Potter (2005) consider Bayesian

estimation of four different probit model specifications to compare forecasts of recessions:

a time-invariant conditionally independent version, a business cycle specific conditionally

independent model that takes into account multiple breakpoints, a time-invariant probit

model with autocorrelated errors, and a business cycle specific probit model with
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autocorrelated errors. All specifications examined indicate that the yield curve predicts

weak future economic activity in 2000-2001. However, the prediction strength differs

substantially across the specifications. They also find that a probit model with business

cycle specific innovation variance and an autoregressive component has a much better

in-sample fit than a probit model.

Other studies which analyze probit model extensions include Kauppi and

Saikkonen (2008) and Nyberg (2010). The former examines the predictive performance of

various dynamic probit models. One of the variants allows the conditional probability of

the binary response to depend on both its lagged values and on lagged values of the binary

response. Extensions with interaction terms are also examined. They show that dyanamic

probit models outperform the traditional static model in terms of both in-sample and

out-of-sample predictions of U.S. recessions. They also confirm that the interest rate

spread continues to be an important predictor. Nyberg (2010) provides similar results for

US and Germany using the same methods as the previous study. He further reports that

dynaminc probit models incorporating both US stock returns and German term spread

outperform the models with only US term spread in predicting US recessions.

More recent studies that have sought to predict recessions include among several

others Liu and Moench (2016), Berge (2015) and Gogas et al. (2015). Using Treasury

term spread as the benchmark predictor of recessions, Liu and Moench (2016) reassess the

predictability of U.S. recessions at horizons from three months to two years ahead for a

large number of previously proposed leading-indicator variables. They employ an efficient

probit estimator for partially missing data and assess relative model performance based on
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the receiver operating characteristic (ROC) curve. They find that adding six-month lagged

observations of the Treasury term spread significantly improves the power of the probit

model to predict recessions. They also show that at short forecast horizons, the annual

return on the S&P500 index and at long forecast horizons, balances of margin debit at

broker-dealers significantly enhance out-of-sample predictive ability.

Berge (2015) applies four model selection methods to the problem of predicting

business cycle turning points: equally-weighted forecasts, Bayesian model averaged

forecasts, and two models produced by the machine learning algorithm boosting.

Although his models find it difficult to predict the 2001 recession, yield curve emerges

again as a robust predictor of future turning points. He argues, however, that the

best-performing models combine the slope of the yield curve with other macroeconomic

information.

Thus far, all the studies examined primarily belong to the family of parametric

methods. The use of non-parametric methods to predict recessions is by far minimal in

the literature. To the best of our knowledge, only three studies have attempted to employ

non-parametric methods to predict recessions. One of them is Gogas et al. (2015) who

investigates the recession forecasting ability of the yield curve in terms of the U.S. real

GDP cycle using a machine learning technique for classification, called Support Vector

Machines. He uses data from a variety of short (treasury bills) and long term interest

rates (bonds) for the period from 1976:Q3 to 2011:Q4 in conjunction with the real GDP

for the same period. Despite the novelty in the approach and correctly forecasting all the

recessions, his model erroneously provides 6 false recession flags. The other non-parametric
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study Filardo (2004) does even worse. The author uses declines in the Composite Leading

Index for two consecutive months as an indicator of an imminent recession. Although this

indicator successfully signals an imminent recession eight months before the actual NBER-

denoted starting date, it has produced 19 false signals over the past four decades. The

third study is Qi (2001) which is also the most successful one at least among all other non-

parametric methods. It makes use of a neural network model along with the Treasury term

spread data to successfully predict the recessions of 1973, 1980, 1981 and 1990. However,

the computation of neural network models are more demanding than DTW for pattern

recognition purpose.

The literature review makes three points clear: (i) Treasury term spread is

generally a useful predictor of recession, sometimes by itself and sometimes in conjunction

with other variables (ii)the evidence of the application of non-parametric method in the

area of recession prediction is scant and associated with limited success except one (iii)

there is no consensus on the type of the forecasting models to be used and additional

variables to be included. This paper seeks to address these issues in the literature by

employing Dynamic Time Warping (DTW) to predict US recessions. We will show how

the application of DTW to the treasury term yield data alone is sufficient to correctly

predict US recessions without raising many false flags. This will help remove the burden

of searching for a suitable model specification and other variables that may be required to

complement the recession forecasting ability of the treasury term spread.
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4.3 Methodology

In this section, we will describe the fundamentals of Dynamic Time Warping

(DTW). We will show how the basic algorithm works and also explore various constraints

to achieve different goals. The following exposition roughly follows the choice of symbols

used in Chapter 4 of Rabiner and Juang (1993) and the description in Chapter 4 of Müller

(2007).

4.3.1 General definition

The objective of DTW is to compare two time-dependent sequences: a

query sequence, X = (x1, x2, ....xN ) of length N ∈ N and a reference sequence,

Y = (y1, y2, ....yM ) of length M ∈ N. In the following, to index the elements in X and Y

we will use the symbols, respectively, i = 1...n and j = 1...m. To compare the two different

sequences, a local cost measure is required. This measure is also known as a local distance

or dissimilarity measure. To obtain this measure, a non-negative, local dissimilarity

function f is defined between any pair of elements xi and yj with the shortcut:

d(i, j) = f(xi, yj) ≥ 0 (4.3)

Typically, d(i, j) is small i.e. low cost if x and y are similar to each other,

otherwise d(i, j) is large i.e. high cost. The most commonly employed distance function is

the Euclidean distance, though other functions such as squared Euclidean, Manhattan,

Gower coefficient etc are also available. In Cartesian coordinates, if x = (x1, x2, ..., xn) and

y = (y1, y2, ..., yn) are two points in Euclidean n-space, then the distance d from x to y is
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given bythe following Euclidean distance function:

d(x,y) = d(y,x) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xn − yn)2 (4.4)

Employing one of the distance functions mentioned above, the local cost measure

for each pair of elements of the sequences X and Y is evaluated. This yields a cost matrix

C ∈ RN+M defined by C(n,m) := d(i, j). The ultimate objective is to find next an alignment

between X and Y such that the overall cost is minimal. As Müller (2007) put it, “Intuitively,

such an optimal alignment runs along a ‘valley’ of low cost within the cost matrix C”.

More formally, finding an optimal alignment involves finding the warping curve φ(k), where

k = 1...T :

φ(k) = (φx(k), φy(k))

φx(k) ∈ {1...N}

φy(k) ∈ {1...M}

(4.5)

The warping functions φx and φy remap the time indices of X and Y , respectively.

Given φ, the average accumulated distortion between the warped time series X and Y is

computed in the following manner:

dφ(X,Y ) =

T∑
k=1

d(φx(k), φy(k))mφ(k)

Mφ
(4.6)

where mφ(k) is a non-negative weighting coefficient which controls the contribution of

each short-time distortion d(φx(k), φy(k)). Since this is usually related to the slope of the

local path constraints which will be briefly discussed below, this is also known as slope

weighting function. The denominator Mφ applies an overall normalization to the

accumulated distortion to yield an average path distortion that is independent of the
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lengths of the two sequences being compared. The exact form of Mφ will be discussed in

subsection 4.3.3. Finally, dynamic programming is applied to find the optimal alignment φ

such that

D(X,Y ) = min dφ(X,Y ). (4.7)

4.3.2 Warping constraints

As can be imagined, the number of possible warping paths through the grid of the

cost matrix is exponentially explosive unless the search space is reduced. This reduction is

also necessary to ensure a proper time alignment between two sequences. Typical warping

constraints that are considered necessary are as follows:

1. Boundary constraints

2. Monotonicity conditions

3. Local continuity constraints

4. Global path constraints

5. Slope weighting

Boundary constraints

The boundary constraints involve the imposition of the following conditions:

φx(1) =φy(1) = 1 (4.8)

φx(T )=N (4.9)

φy(T )=M (4.10)
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These ensure that the time sequences’ beginning point and ending point match

each other. As a result, the alignment does not consider partially one of the sequences.

However, these constraints can be relaxed depending on the objective, for example partial

time series matching. The basic idea of boundary constraints originated from the realization

that speech patterns being compared usually have well-defined endpoints that mark the

beginning and the ending frames of the pattern. Therefore, the endpoint information needed

to be incorporated to obtain an accurate match.

Monotonicity conditions

Monotonicity conditions take the following form:

φx(k + 1) ≥ φx(k)

φy(k + 1) ≥ φy(k)

(4.11)

The above conditions guarantee that time series’ time ordering is preserved. These prevent

the alignment path from going back in time. Essentially, negative slopes of a warping curve

of the type as bounded within a gray circle in the left panel of figure 4.2 are ruled out.

Local Continuity Constraints

The basic objective of local continuity or step-size constraints is to ensure that

no element in X and Y is omitted, otherwise potential loss of information may occur.

Therefore, a discontinuous warping curve as in the right panel of figure 4.2 is ruled out.

The shaded circle in the figure represents the hole in the curve. Generally, local continuity

constraints can take various forms. Depending on the directions of matches between i and j
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Figure 4.2: Monotonicity and continuity constraints

they allow, they can be categorized as symmetric or asymmetric. An example of symmetric

local constraints as proposed by Sakoe and Chiba (1978) is as follows:

φx(k + 1)− φx(k) ≥ 1

φy(k + 1)− φy(k) ≥ 1

(4.12)

The above set of constraint is called symmetric because it allows an unlimited

number of elements of the query X to match with a single element of Y , and vice versa.

See the left panel of figure 4.3 for the step pattern admissible by the above symmetric

local continuity constraint. In contrast, the right panel of figure 4.3 depicts an aysmmetric

step pattern which allows multiple elements of the query sequence to match with the same

element in the reference sequence, but not vice versa. Another way to think about it is

that vertical alignment is prohibited. Numbers next to the path directions indicate the

multiplicative weight mφ for the local distance d(i, j). Exactly how these numbers are

obtained will be discussed in a later section.
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Figure 4.3: Symmetric and Asymmetric Step-patterns

Note: These figures are generated using the DTW package available in R by Giorgino (2009).

Global Path Constraints

In addition to the local path constraints, global path constraints or “windowing”

can be applied to the warping functions to specify regions in the (i, j) plane where warping

curves would not enter. It ensures that the warped curve is not too far away from the

diagonal. Sakoe and Chiba (1978) proposed the following adjustment window condition

such that time-axis fluctuation does not cause an excessive timing difference:

|φx(k)− φy(k)| ≤ r (4.13)

where r is an appropriate positive integer called window length. In figure 4.4, because

of window length r the dotted warping curve is not allowed, but the solid warping curve

within the window r is allowed. In this paper, we do not apply global path constraints. But

interested readers can find more details in Sakoe and Chiba (1978) and Giorgino (2009).
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Figure 4.4: Global Path Constraints

Slope weighting

While the symmetric or asymmetric type of step pattern sets out the admissible

directions in the alignment, the slope weighting function can be used to attach preferences

to those directions. In other words, it allows us to attach different non-negative weights to

vertical, horizontal, and diagonal directions based on our preferences. The idea is to have

the least preferred direction receive the highest weight, and the most preferred direction the

lowest weight. However, note that the actual warping path will be eventually determined

according to equation (4.7).

Similar to the local continuity constraints, a number of heuristic slope weighting

functions have been proposed in the literature. However, in this paper we will apply two

of the weighting functions proposed by Sakoe and Chiba (1978). For the symmetric step

pattern discussed above, we use the following weighting function:

m(k) = φx(k)− φx(k − 1) + φy(k)− φy(k − 1) (4.14)
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The above function admits an equal preference for alignments both in the vertical and

horizontal direction which is also higher than the preference for an alignment in the diagonal

direction. According to the left panel in figure 4.3, equation (4.14) attaches slope weights

of 1,1 and 2 to the horizontal, vertical and diagonal transitions, respectively. For the

asymmetric step pattern discussed above, we use the following weighting function which

attaches an equal weight of 1 to all the directions (see the right panel in figure 4.3):

m(k) = φx(k)− φx(k − 1) (4.15)

The choice of the weighting functions in this paper is purely heuristic. It is not

possible to determine a priori which function will yield a better result. We will apply both

to compare their relative superiority.

4.3.3 Normalization

Normalization is done in order to compute an average per-step distance along the

warping curve. This enables the comparison of alignments between two time sequences of

different lengths. It is customary to define the normalizing factor Mφ as the sum of the

components of the local weight.1 Formally, it takes the following form:

Mφ =

T∑
k=1

m(k) (4.16)

Therefore, for the local weight in equation (4.14) the normalizing factor becomes:

Mφ =
T∑
k=1

[φx(k)− φx(k − 1) + φy(k)− φy(k − 1)]

= φx(T )− φx(0) + φy(T )− φy(0) = N +M

(4.17)

1For some local weighting functions, such as those of the types min and max, this definition makes the
minimization problem in equation (4.7) unwieldy using recursive dynamic programming algorithm. For
details, see Sakoe and Chiba (1978).
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and for the local weight in equation (4.15) the normalizing factor becomes:

Mφ =
T∑
k=1

[φx(k)− φx(k − 1)]

= φx(T )− φx(0) = N

(4.18)

4.3.4 Dynamic programming algorithm

To solve equation (4.7), recursive dynamic programming (DP) algorithms are very

well-suited. We use the following algorithm for the symmetric step-pattern described above:

Initial condition: g(1, 1) = d(1, 1)

DP equation:

g(i, j) = min

 g(i, j − 1) + d(i, j)

g(i− 1, j − 1) + 2d(i, j)

g(i− 1, j) + d(i, j)

 (4.19)

For the asymmetric step-pattern described above, the following change is made to

DP-equation (4.19):

g(i, j) = min

 g(i− 1, j) + d(i, j)

g(i− 1, j − 1) + d(i, j)

g(i− 1, j − 2) + d(i, j)

 (4.20)

Note that we have not specified any restricting conditions for the global path

constraints since we will not apply any windowing. The DP-equation, g(i, j) must be

recursively calculated in an ascending order with respect to coordinates i and j. The

algorithm will run from the initial condition at (1, 1) up to (N,M).

Algorithm (4.19) is employed to produce the cost matrix in the left panel of figure

4.5 for the following two time series where X is the query series and Y is the reference

series:

X = 3, 2, 2, 1, 2, 3, 1, 3
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Y = 2, 1, 2, 3, 3, 1, 2, 1.

The optimal path is denoted by the crooked line starting from the bottom-left

corner (1,1) up to the top-right corner (8,8) and the measured distance is 4. Notice how

the transition took place vertically from (i, j) = (7, 6) to (i, j) = (7, 7) instead of diagonally

to (i, j) = (8, 7), though both transitions occur between 0 and 1. The reason lies in the

way our algorithm is defined which attaches a higher weight to the diagonal path resulting

in a higher cost for that path. Therefore, the diagonal alignment is avoided in favor of the

vertical alignment.

Figure 4.5: Cost matrix and the optimal warping curve with a symmetric step-pattern

4.4 Data and implementation of DTW

We use monthly data for Treasury term spread collected from the FRED database.

Following Estrella and Trubin (2006), the treasury term spread is constructed by taking a
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difference between 10-year treasury constant maturity rate and secondary market 3-month

treasury rate expressed on a bond-equivalent basis. Since FRED database provides the

secondary market rate on a discount basis, the following formula is applied to convert the

three-month discount rate into a bond-equivalent basis:

Bond-equivalent yield = 100×

365× discount yield
100

360− 91× discount yield
100

(4.21)

3-month treasury constant maturity rate data are also available from FRED, but

only from January 1982. However, data on both 10-year treasury constant maturity rate

and secondary market 3-month treasury rate are available for a much longer period, from

January 1953 up to now. Therefore, 3-month treasury constant maturity rate data are not

used in this paper.

We apply DTW to find k = 5 time periods from historical data whose data patterns

resemble most closely the pattern of some query data of a particular period of interest. This

particular period of interest is chosen to represent a time frame of a reasonable length before

a recession occurs. The choice of this query length is made with a heuristic approach. The

basic idea is to pick a time frame which is long enough to capture some visibly distinct

pattern underlying the query data. Through several experiments which are not presented

here, it appears that a query length ranging from 16-24 months is reasonable for economic

data. In the following, we summarize the basic steps to implement DTW with boundary

constraints in our paper:

1. Select a query data X of length N and historical data Z of length H.

2. Compute distance D1 using DTW between X and the first N elements of Z.
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3. To find distances between X and all subsequent N elements of Z, run DTW algorithm

H−N times to calculate Di where i = 2, 3....(H−N+1). For example, i = 2 indicates

the 2nd N elements of Z.

4. After obtaining all the Dis, find the minimum of all, Dmin
k where k = 1.

5. Remove N number of Dis adjacent to left and N number of Dis adjacent to the right

of Dmin
1 . This is done to ensure that the search for the next minimum Di does not end

up capturing almost the same historical time period shifted by 1 or two time indexes.

As one can imagine, obtaining overlapping historical matches is not well-suited to our

task of uncovering unique historical matches.

6. Repeat steps 4 and 5 to find 5 minimum values of Dis, i.e. Dmin
k for k = 2, ...5, and

obtain the time periods corresponding to them. These time periods reflect the 5 best

historical matches for our query data X.

After obtaining historical matches, they are ranked in an ascending order of their

DTW distances resulting in the best match being ranked one. Next, for each match we assign

a probability of 1 if a recession occurs within 6 months of the matching period, otherwise

assign 0. Then we calculate a weighted probability of a recession within 6 months. There

are various methods available to calculate weights, the simplest being equal weights which

do not take into account rank information. Several other methods for obtaining rank-based

weights have been proposed by Stillwell et al. (1981), such as rank-sum, rank reciprocal and

rank exponents. However, they are all ad hoc methods for generating weights.

Therefore, we employ a more systematic method called Rank Order Centroids

(ROC) proposed by Barron (1992) to generate weights based on ranks. A comparative
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analysis of ROC is presented in Barron and Barrett (1996) where ROC emerges as a stable

and superior weight selection method. It is a surrogate weighting method which converts

ranks into values that are normalized on a (0, 1) interval. ROC weights are computed

from the vertices of the simplex, w1 ≥ w2 ≥ ... ≥ wn ≥ 0, restricted to
n∑
i=1

wi = 1.

The defining vertices of this simplex are e1 = (1, 0, ..., 0), e2 = (1/2, 1/2, 0, ..., 0),..., en =

(1/n, 1/n, ..., 1/n). The coordinates of the centroid which give the weights are obtained by

averaging the corresponding coordinates of the defining vertices. Therefore, the centroid is

given by,

C = (
1

n

n∑
i=1

1

i
,

1

n

n∑
i=2

1

i
, ...,

1

n

n∑
i=n

1

i
) (4.22)

For example, for n=5 the weights are as follows:

w1 =
1 +

1

2
+

1

3
+

1

4
+

1

5
5

= 0.457

w2 =
0 +

1

2
+

1

3
+

1

4
+

1

5
5

= 0.256

w3 =
0 + 0 +

1

3
+

1

4
+

1

5
5

= 0.157

w4 =
0 + 0 + 0 +

1

4
+

1

5
5

= 0.090

w5 =
0 + 0 + 0 + 0 +

1

5
5

= 0.040

(4.23)

4.5 Results

In this section we discuss the results obtained by employing DTW to identify 5 best

matches from the historical data which are similar to the periods preceding the recessions
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Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 1 1

2 0 0

3 0 1

4 1 1

5 0 0

Table 4.1: Probabilities of recessions within 6 and 12 months for historical matches for May
1988 - December 1989 using symmetric step-pattern DTW

that occurred, respectively, between (i) July 1990 - March 1991 (ii) March 2001 - November

2001 and (ii) December 2007 - June 2009.2

4.5.1 Historical matches for the period preceding the 1990-1991 recession

We select two query sequences with varying start and end dates preceding the

recession of July 1990 - March 1991. The first query data we specify spans the period May

1988 - December 1989. The length of the query data is 5 quarters, and the query ends

exactly 6 months before the recession starts in July 1990. Figure 4.7 displays the results

yielded by a symmetric step-pattern DTW. The top panel plots the time series of DTW

distances, and the middle panel displays the 5 best historical matches for the above specified

query sequence. Historical matches are highlighted in red whereas the query sequence is in

blue. The gray-shaded regions represent the NBER recession dates. The bottom panel in

Figure 4.6 lists the dates of the 5 best historical periods. Except the second and the fifth

matches, the rest precede a recession by less than a year. Table 4.1 contains the probabilities

of recessions within 6 months and 12 months after the end date of each of the historical

matches.

2All the estimations are carried out in R using the package called DTW by Giorgino (2009).
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Next, in equations (4.24) and (4.25), using the probabilities in Table 4.1 along with

the ROC weights, we compute the weighted probabilities of a recession within the next 6

and 12 months after the end date of our first specified query data, which is December 1989.

Pr(Recession within next 6 months) = 0.457 + 0.09 = 0.457 (4.24)

Pr(Recession within next 12 months) = 0.457 + 0.157 + 0.09 = 0.709 (4.25)

The computed probabilities in equations (4.24) and (4.25) correctly indicate a recession

ahead of the end of our query data. They also indicate that once we broaden the horizon

of prediction from within 6 months to 12 months, the probability of a recession becomes

stronger by approximately 25 percentage points.

To examine if our prediction’s accuracy can be further improved, we now apply

DTW with an asymmetric step-pattern to the same query period May 1988 - December

1989. The historical matches obtained are displayed in Figure 4.7. Except the third and

the fifth matches, all other matches indicate an imminent recession. The obtained matches

are similar to the ones found in the symmetric case though the ranks of the matches have

changed now. This change in the order of ranks will affect our weighted probability

calculation. As before, we construct Table 4.2 with the probability of a recession within 6

and 12 months after the end date of each matched reference data. Using the probabilities

in Table 4.2 along with ROC weights, we obtain the weighted probabilities of a recession

within the next 6 and 12 months after the end date of our first specified query data as

follows:

Pr(Recession within next 6 months) = 0.457 + 0.256 = 0.713 (4.26)
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Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 1 1

2 1 1

3 0 0

4 0 1

5 0 0

Table 4.2: Probabilities of recessions within 6 and 12 months for historical matches for May
1988 - December 1989 using asymmetric step-pattern DTW

Pr(Recession within next 12 months) = 0.457 + 0.256 + 0.09 = 0.803 (4.27)

The estimated weighted probabilities from equations (4.26) and (4.27) provide evidence of

a significant improvement in the strength of the prediction resulting from the adoption of

an asymmetric step-pattern in comparison with a symmetric step-pattern.

The estimated weighted probabilities from equations (4.26) and (4.27) provide

evidence of a significant improvement in the strength of the prediction resulting from the

adoption of an asymmetric step-pattern in comparison with a symmetric step-pattern.

Now we will focus on our second query data which starts in August 1988 and ends

in March 1990. As before, the length of the query is 5 quarters, and the query sequence ends

exactly 3 months before the recession starts in July 1990. Figures 4.8 and 4.9 display the 5

best historical matches for the second query data obtained through DTW with a symmetric

and an asymmetric step-pattern, respectively. Table 4.3 and 4.4 contain the probability of

a recession within 6 and 12 months after the end date of each matched historical period.

Next using the probabilities in Table 4.3 (corresponding to asymmetric

step-pattern) we obtain the weighted probabilities of recessions within 6 and 12 months
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Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 1 1

2 0 1

3 0 0

4 0 0

5 1 1

Table 4.3: Probabilities of recessions within 6 and 12 months for historical matches for
August 1988 - March 1990 using symmetric step-pattern DTW

Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 0 1

2 1 1

3 0 1

4 0 0

5 1 1

Table 4.4: Probabilities of recessions within 6 and 12 months for historical matches for
August 1988 - March 1990 using asymmetric step-pattern DTW

after the query end data as follows:

Pr(Recession within next 6 months) = 0.456 + .04 = 0.496 (4.28)

Pr(Recession within next 12 months) = 0.457 + 0.256 + 0.04 = 0.753 (4.29)

And using the probabilities in Table 4.4 (corresponding to asymmetric step-pattern) we

obtain the weighted probabilities of recessions within 6 and 12 months after the query end

data as follows:

Pr(Recession within next 6 months) = 0.256 + 0.04 = 0.296 (4.30)

Pr(Recession within next 12 months) = 0.457 + 0.256 + 0.157 + 0.04 = 0.91 (4.31)

Surprisingly, although the second query data is 3 months closer to the actual

recession start date of July 1990 than the first query data was, it provides a relatively weak

132



signal of a recession within the next 6 months after the query end data, specially in the

case of asymmetric step-pattern. However, the indication of a recession is much higher as

before once the prediction horizon is widened from within 6 months to 12 months.

4.5.2 Historical matches for the period preceding the 2001 recession

As before, we specify several query data with varying start and end dates preceding

the recession of March 2001 - November 2001. The first query data we specify spans

the period June 1999 - September 2000. That is, it ends exactly 6 months before the

recession starts in March 2001. The middle graph in figure 4.10 displays the 5 best historical

matches for this period obtained using symmetric step-pattern DTW. Historical matches are

highlighted in red while the query sequence is in blue. As usual, the gray-shaded regions

represent NBER recession dates. The top panel plots the distances estimated by DTW

between the query and each reference data.

The graph confirms that DTW has indeed been successful in matching the pre-

recession query data with those from four other pre-recession periods. Only the second

match corresponds to a historical period which does not precede any recession occurring

within the next 2 years. Overall, from the perspective of visual confirmation the graph adds

support to the efficacy of US treasury term spread in foreshadowing domestic recessions.

Table 4.5 contains the probabilities of recessions within 6 months and 12 months of periods

corresponding to the historical matches. Using the ROC weights above, we compute the

weighted probabilities of a recession within the next 6 and 12 months, respectively, as
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Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 1 1

2 0 0

3 0 1

4 0 0

5 0 0

Table 4.5: Probabilities of recessions within 6 and 12 months for historical matches for June
1999 - September 2000 from Symmetric DTW

follows:

Pr(Recession within next 6 months) = 0.457 (4.32)

Pr(Recession within next 12 months) = 0.457 + 0.157 = 0.614 (4.33)

The calculations in equations (4.32) and (4.33) show that once we widen the horizon of

prediction from within 6 months to within 12 months, the probability of a recession improves

by almost 15 percentage points. In fact, (4.33) suggests based on historical patterns that

the probability of a recession occurring within a year from 01 September 2000 is higher

than not occurring. Evidence of an actual recession taking place within half a year from 01

September 2000 corroborates our predictions’ accuracy.

Figure 4.11 contains the historical matches for the same query period 01 June

1999- 01 September 2000, but obtained using the asymmetric step-pattern. Similar to the

symmetric step-pattern, asymmetric step-pattern discovers 5 best historical matches for the

query period preceding the recession of 2001. Only the third match does not precede any

recession occurring within the next 2 years. Table 4.6 contains the probabilities of recessions

within 6 months and 12 months of periods corresponding to the historical matches. Again,

using the ROC weights above, we compute the weighted probabilities of a recession within
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Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 1 1

2 0 0

3 0 0

4 0 1

5 0 1

Table 4.6: Probabilities of recessions within 6 and 12 months for historical matches for June
1999 - September 2000 from Asymmetric DTW

the next 6 and 12 months respectively as follows:

Pr(Recession within next 6 months) = 0.457 (4.34)

Pr(Recession within next 12 months) = 0.457 + 0.090 + 0.040 = 0.587 (4.35)

The weighted probabilities remain similar to the ones obtained previously using

symmetric step-pattern. Although the probability of a recession within the next one year

of September 2000 has slightly declined, it is still signaling as before a higher chance of a

recession occurring than not.

Now, we specify our query data over the period 01 October 1999-01 December

2000. The length of the query here is 15 and the query ends 3 months before the recession

of 2001. Figure 4.12 and 4.13 display the 5 historical matches for the query sequence using

symmetric and asymmetric step-patterns respectively. Note that DTW with asymmetric

step-pattern has picked up the period preceding the the recession of late 1973. But unlike

other previous results, it fails to capture the similarity between the query data and the data

preceding the recession starting in April 1960. Another way to put it is that the DTW with

asymmetric step-pattern has traded the historical period preceding the 1960’s recession with

the period preceding the 1973’s recession.
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Tables 4.7 and 4.8 list the probabilities of recessions within 6 months and 12 months

of periods corresponding to the historical matches obtained using DTW, respectively with

a symmetric step-pattern and asymmetric step-pattern. Assigning the ROC weights to

Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 1 1

2 0 1

3 0 1

4 0 0

5 1 1

Table 4.7: Probabilities of recessions within 6 and 12 months for historical matches for 01

October 1999-01 December 2000 using Symmetric DTW

Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 1 1

2 0 1

3 1 1

4 0 1

5 0 0

Table 4.8: Probabilities of recessions within 6 and 12 months for historical matches for 01
October 1999-01 December 2000 using Asymmetric DTW

the probabilities in table 4.7, we compute the weighted probabilities of a recession within

the next 6 and 12 months respectively as follows:

Pr(Recession within next 6 months) = (0.457× 1) + (0.04× 1)

= 0.497

(4.36)
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Pr(Recession within next 12 months) = (0.457× 1) + (0.256× 1)

+ (0.157× 1) + (0.04× 1)

= 0.91

(4.37)

Although the historical matches indicate a 0 probability of a recession within the next 3

months, they do provide a very strong signal of a recession within the next 12 months

from the query end date i.e. December 2000. In the following, we compute the weighted

probabilities of a recession within the next 6 and 12 months, respectively using ROC weights

along with probabilities in table 4.8:

Pr(Recession within next 6 months) = (0.457× 1) + (0.157× 1)

= 0.614

(4.38)

Pr(Recession within next 12 months) = (0.457× 1) + (0.256× 1)

+ (0.157× 1) + (0.09× 1)

= 0.96

(4.39)

Probabilities calculated in equations (4.38) and (4.39) are the highest amongst all the ones

calculated so far. They provide strong indication for a recession within, respectively the

next 6 and specially 12 months from the query end date of 01 December 2000. Additionally,

equation (4.38) removes the uncertainty associated with probabilities of a recession within

the next 6 months obtained in (4.26) and (4.30).

At this point, it seems appropriate to examine and compare the performance of

Pearson’s correlation coefficient in uncovering historical periods matching the one preceding

the recession of 2001. Figure 4.19 displays those historical matches for the period 01 October

1999 - 01 December 2000. A visual inspection of the graph confirms the poor performance
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of the correlation coefficient relative to DTW. Correlation coefficient yields 5 historical

matches all of which coincide with previous recessionary periods whereas the query data

precedes the 2001 recession by 3 months. In contrast, historical matches obtained using

DTW as in figures 4.12 and 4.13 provide a more accurate account since 9 out of 10 matches

actually precede recessions just as the query data does.

4.5.3 Historical matches for the period preceding the 2007 recession

Similar to our analysis in the previous subsection, we specify two query data with

varying start and end dates preceding the recession of December 2007 - June 2009. The first

query data spans the period 01 March 2006 - 01 June 2007. It is of length 16 and ends 6

months before the start of the 2007 US recession. The middle graph in figure 4.14 contains

5 best historical matches for this query data obtained using DTW with the symmetric

step-pattern. Although the first match corresponding to the minimum DTW measure does

not precede any recession within the next 2 years, the rest of the matches either precede

recessions occurring within 3-6 months, such as matches no. 2 and 3, or overlap with the

recession, such as matches no. 4 and 5.

Table 4.9 lists the probabilities of recessions within 6 and 12 months of periods

corresponding to the historical matches found in figure 4.14. Applying the ROC weights

previously obtained in 4.23, we calculate the weighted probabilities of a recession within

the next 6 and 12 months respectively as follows:
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Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 0 0

2 1 1

3 1 1

4 1 1

5 1 1

Table 4.9: Probabilities of recessions within 6 and 12 months for historical matches for 01
December 2007-01 June 2009 using symmetric DTW

Pr(Recession within next 6 months) = (0.256× 1) + (0.157× 1)

+ (0.09× 1) + (0.04× 1)

= 0.54

(4.40)

Pr(Recession within next 12 months) = (0.256× 1) + (0.157× 1)

+ (0.09× 1) + (0.04× 1)

= 0.54

(4.41)

The estimated probabilities in equations (4.34) and (4.35) indicate a higher probability

of a recession occurring than not within the next 6 and 12 months after the query end

date. Actual data shows that a recession started indeed 6 months after the query data had

ended in June 2007. Therefore, again we find evidence that historical matches obtained

by applying DTW to Treasury yield spread data are very useful in predicting future US

recessions.

Next, we apply DTW with the asymmetric step-pattern to the same query data.

The 5 best historical matches for the query data obtained using this method are displayed

in the middle graph in figure 4.15. In contrast with figure 4.14, figure 4.15 picks up the

period preceding the recession starting in November 1973 (match no. 5), but cannot match
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Match no. Pr(Recession within 6 months) Pr(Recession within 1 year)

1 0 0

2 1 1

3 1 1

4 1 1

5 1 1

Table 4.10: Probabilities of recessions within 6 and 12 months for historical matches for 01
March 2006 - 01 June 2007 using asymmetric DTW

the period preceding the recession of 1957. Otherwise, the rest of the matched periods are

similar to the ones in figure 4.14. Table 4.10 contains the probabilities of recessions within

6 and 12 months of periods corresponding to the historical matches found in figure 4.15. As

expected, table 4.10 is the same as table 4.9. Therefore, the weighted probabilities implied

by table 4.10 should be equal to the ones obtained from equations (4.34) and (4.35). In

other words, both symmetric and asymmetric step-patterns yield the same predictions for

recessions.

Next, we specify our second query data of the same length as before but spanning

the period 01 June 2006 - 01 September 2007. Applying DTW with the symmetric step-

pattern, we obtain the 5 best historical matches for the query data as displayed in figure

4.16. The matched historical periods in this figure look very similar to the ones in figure

4.14, but much closer to the recession start dates. This time we construct table 4.11 which

lists out the probabilities of recessions within the next 3, 6 and 12 months of the end

dates of the periods corresponding to the historical matches. Using the probability weights

calculated in equation (4.23), we estimate the weighted probabilities of recessions within
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Match no. Pr(Recession Pr(Recession Pr(Recession

within 3 months) within 6 months) within 1 year)

1 0 0 0

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

Table 4.11: Probabilities of recessions within 3, 6 and 12 months for historical matches for
01 June 2006 - 01 September 2007 using symmetric DTW

the next 3, 6 and 12 months of the query data to be all equal to 0.54.3 An actual recession

starting in December 2007, which is within 3 months after the query end date confirms the

prediction obtained through the symmetric step-pattern DTW application.

Finally, we employ DTW with the asymmetric step-pattern to uncover the 5 best

historical matches for the second query period. Figure 4.17 presents these historical matches.

Just as in the case of the query data ending 6 months before the recession of 2007 (see figure

4.14 and 4.15), figure 4.17 illustrates the uncovering of the period preceding the recession

of 1973 as a historical match (see match no. 5) for the query data but fails to identify the

period preceding the recession of 1957 as a match. Table 4.12 contains the probabilities of a

recession within 3, 6 and 12 months after the periods associated with the historical matches

found in figure 4.17. Using the ROC weights in equation (4.23), each of the weighted

probabilities of a recession occurring within 3, 6 and 12 months after the end of the query

data, can be estimated as a value equal to 0.744. In each case, the weighted probability is

merely the summation of all the weights obtained in equation (4.23) less the second weight.

3Since the calculation is straightforward, and has been demonstrated several times already, we skip the
calculation steps. Essentially, the weighted probability of 0.54 is obtained by summing up all the weights
except the first one.
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Overall, the results suggest that the strongest signal for an upcoming recession in 2007 is

yielded by the asymmetric step-pattern DTW once combined with the query data ending 3

months before the recession starts.

Match no. Pr(Recession Pr(Recession Pr(Recession

within 3 months) within 6 months) within 1 year)

1 1 1 1

2 0 0 0

3 1 1 1

4 1 1 1

5 1 1 1

Table 4.12: Probabilities of recessions within 3, 6 and 12 months for historical matches for
01 June 2006 - 01 September 2007 using asymmetric DTW

4.5.4 Historical matches for the current period

Now that we have appreciated the usefulness of DTW in predicting US recessions,

we shift our focus to the current economic phase US is in. Particularly, we look for 5 best

historical matches for the period 01 March 2016 - 01 June 2017. As above, the query length

set here is equal to 16 months, that is 4 quarters. The results obtained from a symmetric

step-pattern DTW are depicted in figure 4.18. The closest match marked as 1 in the graph

implies that if history is to repeat, then given our current economic state we are at least 6.5

years away from the next recession. While the rest of the historical matches do not signal a

distance of this magnitude from the next recession, they do confirm that the next recession

from now is at least more than a year away. The results remain very similar once DTW is

implemented with an asymmetric step-pattern and therefore, is not presented here.
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4.5.5 False flags

As discussed in the literature review, one of the major setbacks that

non-parametric methods suffer from is that they raise frequent false flags signaling

imminent recessions. For this reason, before concluding about the usefulness of DTW in

conjunction with Treasury term spread data, it is imperative to look for the presence of

similar symptoms in it. This can be accomplished by pinpointing multiple historical

periods which are at least one year away from the next recession, and during which the

behavior of Treasury term spreads appear to be similar to the ones as exhibited by actual

pre-recession periods. To circumvent the challenge posed by the second condition, we

examine multiple candidate periods with behavior seemingly similar or not.

Most of the candidates we consider cannot be matched with any historical periods

in the vicinity of imminent recessions and therefore, we do not discuss them here. However,

there are two suspect periods which raise false signals. The first one is January 1966 -

December 1966 which overlaps with matches no. 1 and 2 that were incorrectly identified

in figures, respectively 4.16 and 4.17. This period finds a maximum of 4 historical matches

using DTW with symmetric step-pattern as displayed in figure 4.20. The first and the

fourth match clearly do not precede any recession occurring in the next one year. However,

the second and the third match do approach recessions. Using equation 4.22, it can be

shown that the probability of a recession both within the next 6 and 12 months is equal to

0.42. Therefore, the probability is higher that a recession would not occur.

Another period that seems suspect is October 1997 - May 1999 since this overlaps

with matches no. 4 and 5 falsely tagged in figures, respectively 4.12 and 4.13. Figure
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4.21 displays the historical matches for this period. Using equation 4.23, it can be shown

that the probabilities of a recession within the next 6 and 12 months of the query period

are 0.80 and 0.84, respectively. Although the calculated probabilities indicate a very high

chance of an imminent recession, the query period of interest here was not followed by

any actual recession within the next 6 or 12 months after May 1999. This implies that

upon the implementation of DTW, among all the suspect periods only October 1997 - May

1999 raises a false flag signaling an imminent recession. In a nut shell, compared with the

previous non-parametric studies, DTW yields a superior performance.

4.5.6 Conclusion

In this paper, we have adopted a novel non-parametric approach called Dynamic

Time Warping to predict the US recessions of the last three decades using the Treasury term

spread data. This method overcomes some of the pitfalls of existing parametric as well as

non-parametric methods. For example, to successfully predict US recessions, this method

does not require specifically modeling for structural breaks in the data. Also, compared to

other methods, it is computationally much simpler.

We employed two variants of DTW, one with a symmetric step-pattern and another

with an asymmetric step-pattern. It turned out that the latter was more successful in finding

historical matches for Treasury term spread data preceding a recession than the former one.

As a result, DTW with an asymmetric step-pattern has been more efficient in predicting the

US recessions of 1990-1991, 2001 and 2007-2009. DTW also indicates that given the current

state of the economy as reflected in the Treasury term spread data, there is no recession

lurking in the US at least within the next one year. Finally, the method used in this paper,
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DTW presents itself as an excellent potential tool to compare the efficiency of other existing

leading indicators. Future research on DTW can proceed along this direction.
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