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Abstract

The targeted delivery of nanoparticle carriers holds tremendous potential to transform the 

detection and treatment of diseases. A major attribute of nanoparticles is the ability to form 

multiple bonds with target cells, which greatly improves the adhesion strength. However, the 

multivalent binding of nanoparticles is still poorly understood, particularly from a dynamic 

perspective. In previous experimental work, we studied the kinetics of nanoparticle adhesion and 

found that the rate of detachment decreased over time. Here, we have applied the adhesive 

dynamics simulation framework to investigate binding dynamics between an antibody-conjugated, 

200-nm-diameter sphere and an ICAM-1-coated surface on the scale of individual bonds. We 

found that nano adhesive dynamics (NAD) simulations could replicate the time-varying 

nanoparticle detachment behavior that we observed in experiments. As expected, this behavior 

correlated with a steady increase in mean bond number with time, but this was attributed to bond 
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accumulation only during the first second that nanoparticles were bound. Longer-term increases in 

bond number instead were manifested from nanoparticle detachment serving as a selection 

mechanism to eliminate nanoparticles that had randomly been confined to lower bond valencies. 

Thus, time-dependent nanoparticle detachment reflects an evolution of the remaining nanoparticle 

population toward higher overall bond valency. We also found that NAD simulations precisely 

matched experiments whenever mechanical force loads on bonds were high enough to directly 

induce rupture. These mechanical forces were in excess of 300 pN and primarily arose from the 

Brownian motion of the nanoparticle, but we also identified a valency-dependent contribution 

from bonds pulling on each other. In summary, we have achieved excellent kinetic consistency 

between NAD simulations and experiments, which has revealed new insights into the dynamics 

and biophysics of multivalent nanoparticle adhesion. In future work, we will leverage the 

simulation as a design tool for optimizing targeted nanoparticle agents.

Graphical abstract

INTRODUCTION

The targeted delivery of imaging or therapeutic agents to disease sites within the body still 

remains a major medical goal even after decades of research. Nanoparticle carriers offer 

numerous advantages as a delivery platform, including high-loading capacity and protection 

of agents, facile attachment of affinity molecules, and favorable pharmacokinetics.1–3 

Another powerful attribute is the ability to form multiple bonds with target cells, thereby 

improving the overall adhesion strength and internalization rate into cells.4–13 However, our 

understanding of multivalent nanoparticle adhesion has primarily been based on 

thermodynamic behavior. For example, binding performance has typically been assessed 

after systems have reached equilibrium, and results were assessed in terms of an apparent 

affinity, also termed the avidity. Another issue is that it is nearly impossible to control for 

differences in context between different experimental systems. Thus, critical knowledge 

gaps remain in the field regarding the time course by which nanoparticles evolve from initial 

capture via one or more bonds to the final multivalent state as a function of different system 

parameters. Such information would be extremely powerful for designing nanoparticle 

carriers that exhibit optimal targeting performance for different disease scenarios.

In previous work, we developed a unique framework for assessing multivalent nanoparticle 

adhesion from a kinetic viewpoint.6,8,11 Specifically, we determined the rates of attachment 

(kA) and detachment (kD) for nanoparticles mediated by the interaction between an antibody 

and ICAM-1 in flow chamber assays. We concluded that kD was not a constant in time but 

rather decreased following a power law relationship that contained magnitude  and 
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temporal (β) parameters. Furthermore, we found that β was constant over a broad range of 

antibody and ICAM-1 densities and particle sizes (40 nm to 1 μm).6,8 However, β did vary 

for different types of binding interactions, such as recombinant single-chain antibodies and 

avidin/biotin.11 Although our kinetic approach has provided unique insights into multivalent 

nanoparticle adhesion, we do not yet understand the underlying mechanisms behind the 

time-dependent detachment rate phenomenon, most notably the number and dynamic 

behavior of individual bonds.

Numerous computational approaches have been developed in an effort to understand 

multivalent binding phenomena. The most common approach has been to partition 

multivalent species into discrete bond valence states that are attributed to an overall 

thermodynamic free energy.14–16 In this manner, the Dormidontova group used Monte Carlo 

simulations to investigate the multivalent binding of polymer-coated nanoparticles under 

different bond density, energy, length, and clustering conditions to determine the overall 

effects on the binding free energy.17–19 Martinez-Veracoechea et al. later presented a 

numerical simulation that calculated binding free energies using statistical mechanical 

functions, which led to the first prediction of superselective behavior.20 Although the above 

works offer useful insights into multivalency, they included little to no discrete bond detail 

beyond the chemical energy, notably lacking a role for mechanical forces. It is well 

established that applied forces accelerate the rupture of noncovalent, biomolecular bonds by 

lowering the potential energy barrier.21–26 Decuzzi et al. incorporated bond mechanical 

considerations by modeling bonds as Hookean springs to determine the bond force and then 

using the Bell model to predict the effects of force on the bond rupture rate.27 A stochastic 

multivalent nanoparticle binding model was then used to predict the adhesion strength to 

cells and the probability of endocytosis. Liu et al. later used a Metropolis Monte Carlo 

simulation and a weighted histogram analysis to quantify the binding free energy of 

antibody-coated nanoparticles to endothelial cells via ICAM-1, which matched equilibrium 

adhesion data obtained from experiments.28 Furthermore, mechanical force predictions on 

the order of 200 pN were corroborated using atomic force microscopy. Although these 

works have been illuminating, the focus remained solely on the equilibrium behavior. To 

date, temporal dynamics of multivalent nanoparticle adhesion has been studied only by 

Wang et al. using dissipative particle dynamics simulations.29 The number of bonds and the 

time constant required to reach equilibrium were studied at different overall binding 

strengths, but bond kinetics and biophysics were not evaluated. Thus, a simulation approach 

combining dynamic analysis of nanoparticle adhesion with discrete bond kinetic and 

mechanical properties has not yet been demonstrated.

Adhesive dynamics is a simulation framework originally developed to model kinetic and 

biophysical aspects of leukocyte rolling adhesion to inflamed endothelium.30 The method 

employs a combination of deterministic equations of motion for the cell and a probabilistic 

treatment for bond formation and breakage. Bonds are modeled as Hookean springs, and the 

Bell model is used to establish the effect of force on both bond rupture and formation rates. 

Within discrete time steps, all forces are vectorially summed, the cell is translated and 

rotated, and bond breakage and formation are assessed on the basis of chemical and 

mechanical considerations using a Monte Carlo algorithm. Adhesive dynamics simulations 

have achieved considerable success replicating rolling, weak, and firm binding behavior of 
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neutrophils, protein-coated microbeads, and platelets.30–37 The general adhesive dynamics 

approach was also adapted to model the binding of human immunodeficiency virus (HIV) to 

cells. Brownian motion was introduced into the simulation due to the nanoscale size of HIV, 

around 100 nm, and thus the methodology was termed Brownian adhesive dynamics 

(BRAD).38–40 To date, adhesive dynamics simulations have not been used to model the 

multivalent adhesion of targeted nanoparticles.

In this work, we develop nano adhesive dynamics (NAD) simulations to study the kinetics 

and biophysics of multivalent nanoparticle adhesion. We include Brownian motion and 

hydrodynamic fluid flow to replicate nanoparticle adhesion within a flow chamber, and 

simulations are initiated with the nanoparticle bound to a planar substrate via a single bond 

tether in order to focus on the temporal dynamics of nanoparticle detachment and 

multivalent bond formation. The results are compared to previous experimental work using a 

210 nm polystyrene sphere coated with a monoclonal antibody and a glass substrate coated 

with ICAM-1, for which all model parameters are known except the bond mechanical 

properties (reactive compliance, γ, and spring constant, σ).6 We show that NAD simulations 

display time-dependent nanoparticle detachment behavior, which recapitulates experimental 

results for several different mechanical property combinations. We conclude that the key 

requirement to match experiments is that bonds rupture under an amount of mechanical 

work that is equivalent to the bond chemical energy. We then perform optical tweezers force 

spectroscopy experiments to determine that γ = 0.27 nm and apply this result to simulations 

to find that σ = 0.8 N/m provides the best fit to experiments across a broad range of adhesion 

molecule density conditions. As expected, time-dependent nanoparticle detachment is 

accompanied by an increase in the mean bond number with time. However, we conclude that 

the bond steady state is attained within the first 1 s after binding, and thus longer-term 

increases the bond number are not due to bond accumulation. Instead, we find that the 

nanoparticle population is heterogeneous with respect to the maximum number of bonds that 

each nanoparticle can form and detachment is most likely for those that are restricted to low 

valency. Thus, detachment serves as a selection mechanism to evolve the remaining 

nanoparticle population toward higher valency and overall adhesion stability. Taken together, 

we conclude that our phenomenological detachment rate captures the two critical aspects of 

valency selection. The magnitude parameter  represents the combined detachment rate for 

the initial nanoparticle population across all valency potentials, and the temporal parameter 

describes the valence-state-dependent rate at which nanoparticles are lost with time. We also 

conclude that the average bond lifetime is extremely short, on the order of 0.1 s, because of 

applied mechanical forces in excess of 300 pN. Examining our simulation, we find that 

mechanical force primarily arises from the Brownian motion of the nanoparticle, but we also 

note a contribution from bonds pulling on each other that increases with valency. In 

summary, NAD simulations show remarkable kinetic consistency with experiments, 

allowing us to uncover the mechanisms underlying time-dependent nanoparticle detachment 

and identify a key role for mechanical forces. Future work will seek to expand the scope of 

NAD simulations to also model nanoparticle tethering, explore new parameter property 

regimes, and adapt to cellular and in vivo environments. These capabilities will advance the 

work toward predictive applications, enabling NAD simulations to serve as a powerful 

design tool for optimizing nanoparticle adhesive behavior in different disease contexts.
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METHODS

General Description of the Model

The NAD simulation was built upon the same principles as adhesive dynamics for modeling 

the dynamic binding of leukocytes under shear flow and Brownian adhesive dynamics for 

modeling HIV docking.30,38–40 We have included both hydrodynamic fluid flow and 

Brownian motion to model nanoparticle adhesion within a flow chamber. For this study, we 

employed a 210-nm-diameter sphere decorated with a monoclonal antibody and a planar 

substrate decorated with ICAM-1 protein, as in our previous experiments.6 The NAD 

process flow is shown in Figure 1. The nanoparticle and substrate were first defined, 

followed by a random distribution of adhesion molecules at specific total densities. A single 

bond was then placed between the nanoparticle and substrate at its equilibrium length. This 

initial condition was used because our primary goal was to monitor multivalent bond 

formation and time-dependent nanoparticle detachment dynamics (β and  parameters), and 

this is similar to a previous study that used the completed double-layer boundary integral 

equation method (CDL-BIEM), with Brownian motion introduced as an external force, to 

investigate the effect of Brownian motion on platelet adhesion via GPIb-α.41 We also found 

that the initial bond length did not significantly bias the results (Supporting Information, 

Figure S1). Simulations were then started using a defined time step (Δt). Within each time 

step, bonds were assessed for potential breakage, unbound adhesion molecules were 

examined for potential bond formation, forces were vectorially summed, and the 

nanoparticle was translated and rotated. We note that the tethering of a nanoparticle from the 

bulk could readily be studied using the methods described, in similar manner to previous 

BRAD simulations.38–40

Nanoparticle Motion

Nanoparticle motion was determined using the Langevin equation, as in previous BRAD 

simulations.40 Detailed descriptions are provided in the Supporting Information. Briefly, 

translational and rotational trajectories resulting from random thermal motion and all 

deterministic forces and torques, including hydrodynamic shear, bonding, and steric 

repulsion between the nanoparticle and substrate, were solved numerically.42,43 The bond 

force was (FB) estimated by modeling bonds as Hookean springs

(1)

where σ is the spring constant, λ is the length of the bond, λe is the equilibrium length of 

the bond, rr is the position vector originating from where the antibody is attached to the 

nanoparticle surface, and rl is the position vector originating from where ICAM-1 is 

attached to the substrate. For convenience, we will define the term δ = |λ − λe|, which 

determines the length that the bond is stretched or compressed from its equilibrium length. 

Steric repulsion between the nanoparticle and substrate surfaces was determined on the basis 

of the compression of a surface protein layer using a nonspecific repulsion model.44 Finally, 

the shear force acting on the nanoparticle was modeled using theoretical relationships from 
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Goldman, Cox, and Brenner that are valid near the wall region.45 Note that because we are 

now using a nanoparticle, we employed the shear force/torque relationships valid for large 

h/R, where R is the particle radius and h is the distance of its center from the wall.

Bond Formation and Breakage

Noncovalent biomolecular bonds stochastically fluctuate between bound and unbound states 

on the basis of intrinsic chemical energy, which is generally described as a thermally 

assisted escape over a potential energy barrier. Applying an external force to the bond lowers 

this energy barrier, accelerating rupture.21–26 We used the Bell model to capture the effect of 

force on the rate constant for bond rupture (kr)

(2)

where  is the intrinsic reverse reaction rate constant observed in the absence of force, γ is 

the bond reactive compliance that characterizes the sensitivity to force, kB is the Boltzmann 

constant, and T is the absolute temperature. The term γσδ effectively defines the amount of 

mechanical work applied to the bond by force. Within each time step, the cumulative 

probability of rupture (Pr) was calculated for each bond as follows:

(3)

A uniformly distributed random number was then generated for each bond, and if the 

random number was less than Pr, then the bond was considered to have broken.

Bond formation is similarly influenced by the distance separating two adhesion molecules, 

which can consist of two steps: first the adhesion molecules must come sufficiently close to 

each other, and only then can the bond form at its intrinsic rate. The first step requires 

extension or compression of the unbound adhesion molecules, invoking an energetic penalty 

on bond formation that can again be captured using a Hookean spring model.46 The rate 

constant for bond formation (kf) was thus

(4)

where  is the intrinsic rate of bond formation and σts is the transition-state spring constant 

that applies to unbound adhesion molecules. Within each time step, the cumulative 

probability of formation (Pf) was calculated for all possible interactions between unbound 

adhesion molecules as follows:

(5)
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A uniformly distributed random number was generated for each potential bonding 

interaction. If the random number was less than Pf, then a bond was considered to have 

formed. To save computational cost, potential bonds included only adhesion molecule pairs 

that were reasonably close to each other, which we defined as having Pf > 10−6. Truncation 

of the probability density function in this manner introduced an error of <0.01% into the 

cumulative probability of bond formation.

Physical Representation of Adhesion Molecules

Both the antibody and ICAM-1 molecules were randomly immobilized on their respective 

surfaces as dimers to reflect experimental conditions (Figure 1). Antibodies consist of two 

Fc stalks, each of which connects to flexible binding arms (Fab). ICAM-1 protein was 

purchased as a chimera with human IgG1 Fc, which was reported to be a dimer by the 

manufacturer (R&D Systems) due to disulfide bonding within the Fc domain. To represent 

dimers, we randomly separated the two molecules by a distance ranging from 5 to 10 nm for 

antibody Fab domains and 0.5–2 nm for ICAM-1/Fc. These values were chosen from 

published crystal structures or our best estimates. It should also be noted that ICAM-1/Fc 

was linked to the surface using protein G, which contains two Fc binding domains. We 

initially assumed that only one of those binding domains was occupied with an ICAM-1 

dimer, but it is possible that both could be occupied.

To reduce computational burden, we did not track the motion of the free end of adhesion 

molecules about their fixed attachment points on the nanoparticle and substrate. Instead, it 

was assumed that all molecules were oriented normal to their binding partners when bound 

or potential binding partners when unbound. This is a reasonable assumption for bonds 

under tension, and thus the bond length was calculated on the basis of the distance 

separating the attachment points on the nanoparticle and substrate. For unbound molecules, 

the assumption effectively implies that the moelcules can fully sweep out their local area in 

search of a binding partner during the course of a single time step. We did implement an 

algorithm to prevent a new bond from forming if it would intersect with a current bond. This 

was determined on the basis of the minimum distance that would separate the central axes of 

the potential and actual bonds. If the separation distance was less than 2 nm, which was 

again chosen on the basis of crystal structures and our best estimate, then the new bond was 

not allowed to form. This check to prevent bond crossing lowered the total bond numbers by 

as much as 40% (Supporting Information). Once the bonds had formed, we did not assess 

whether they crossed each other as the nanoparticle underwent translational and rotational 

motion in an effort to save computational cost.

Parameters

All parameter values used in this study are given in Table 1. The macroscopic kinetic rates 

for the anti-ICAM-1 antibody (clone BBIG) and human ICAM-1 binding interaction were 

measured by surface plasmon resonance to be 1.6 × 105 M−1 s−1 for formation and 1.1 × 

10−4 s−1 for rupture.47 These were converted to intrinsic rate constants ( , ) for 

individual bonds using the method described by Bell et al. (Supporting Information).21 

Antibody and ICAM-1 densities were based on previous experiments, which reflect the total 

ICAM-1 binding sites (i.e., Fab domains) and ICAM-1 molecules.6 Molecular lengths were 
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estimated on the basis of crystal structures, as previously presented.11 The fluid was 

assumed to be water flowing with a wall shear rate of 100 s−1. The steric repulsion force 

between the nanoparticle and substrate was determined by estimating the surface protein 

layer thickness on the substrate (τ = 5 nm) and then tuning the compressibility (ξ) to be the 

minimum value required to prevent the nanoparticle from penetrating the adhesive substrate. 

The time step (Δt) was 1 ns, similar to previous adhesive dynamics and BRAD 

simulations.30,38–40 Δt is also very close to the viscous relaxation time (Supporting 

Information), so it can be assumed that the particle has no inertia. The only unknown 

parameters in our model were related to bond mechanics (γ, σ, σts). To reduce our 

parameter investigation, we assumed that σ and σts had similar values, which 

mechanistically means that the spring constant was the same for both bound and unbound 

states. Although this assumption is reasonable on its own merit, we have also mitigated the 

importance of σts by immediately assessing for bond breakage following each formation 

event. Thus, all new bonds must survive at least one rupture challenge before they can exert 

a force and/or torque on the nanoparticle.

Determination of Nanoparticle Detachment Rate Parameters (β, ) from Simulations

To recreate nanoparticle detachment profiles from experiments, we combined the results 

from an ensemble of NAD simulations. As discussed above, nanoparticles were initially 

bound to the substrate via a single bond at its equilibrium length. Simulations were then 

performed until a predefined simulation time was reached or the nanoparticle translated from 

its initial location by a distance that was at least 2.5 times its diameter. The latter condition 

was designed to replicate nanoparticle-tracking experiments, where significant movement of 

the nanoparticle would appear as a new binding event. Movement could result from the loss 

of all bonds, reentry into the bulk fluid, and motion downstream with the bulk fluid or a net 

diffusive motion while remaining bound to the substrate. Detachment profiles were 

constructed on the basis of the number of nanoparticles that remained bound as a function of 

time throughout the simulation.

The nanoparticle detachment rate was defined in a similar manner to classical kinetic 

treatments of molecular binding

(6)

where B is the bound particle number. An empirical power law equation was used to capture 

time-dependent detachment rate behavior, as we previously defined6

(7)
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where  and β are magnitude and temporal parameters, respectively, and tref is a reference 

time. tref simply maintains unit consistency, and we will use a value of 1 s as in previous 

work. Substituting eq 6 into eq 7 and integrating yields

(8)

where B0 is the initial particle number in the ensemble and t is the simulation time.

To ensure statistical significance, we determined detachment parameters for different 

ensemble numbers and total simulation times. We found that both β and  converged for 

ensemble numbers larger than 150 and simulation times longer than 20 s (Supporting 

Information, Figure S1). All parameter fits were therefore performed using 200 ensembles 

and 30 s simulation times. Fitting errors were estimated using the Bootstrap method.

RESULTS

General Dynamics of Nanoparticles and Bonds

As a starting point for an exploration into antibody/ICAM-1 bond mechanical properties, we 

used 0.1 N/m for both bond spring constants (σ and σts), similar to previous BRAD 

simulations of HIV.40 We also chose the lowest ICAM-1 coating density (21 μm−2) on the 

substrate and two different antibody coating densities on the nanoparticle (410 μm−2 and 

3400 μm−2) from experiments.6 We then identified γ values that resulted in nanoparticle 

detachment that varied from stable to unstable regimes. At low antibody density, varying γ 
from 0.72 to 1.08 nm resulted in continuous nanoparticle detachment throughout the 

duration of 30 s simulations, with the total number of detached particles ranging from 18% 

to 99% (Figure 2A). The rate of detachment and total number of detached nanoparticles 

generally increased with γ. The only exception was a slight crossing over of the detachment 

curves for γ = 0.78 and 0.82 nm, which we attributed to the stochastic nature of the 

simulation. Time-varying detachment behavior was clearly evident at high γ, which can be 

characterized as a rapid decrease during the first 5 s before flattening out beyond 10 s. Mean 

bond number per bound nanoparticle increased with time (Figure 2B), mirroring the 

corresponding nanoparticle detachment profile. Surprisingly, final mean bond numbers 

increased as nanoparticle stability decreased. However, as expected the total number of 

bonds for the system of 200 nanoparticles decreased with time and correlated with stability 

(Supporting Information, Figure S2). Similar nanoparticle and bond dynamics were 

observed at high antibody density, but with higher bound nanoparticle percentages and lower 

bond numbers for each value of γ (Figures 2C and D). Using eq 8, we fit the detachment 

curves to obtain the β and  parameters. We found that β initially increased with γ before 

saturating at 0.75 (Figure 2E), which remarkably was the β value we found in experiments. 

The trend for β was similar for both cases, but shifted to higher γ with increased antibody 

density. For , values correlated with nanoparticle detachment, decreasing with antibody 

density and increasing steadily with γ (Figure 2F). The latter held true even if β remained 
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constant at 0.75. The simulation results at γ = 0.92 nm matched experimental findings quite 

well in terms of both β (∼0.75) and . At low antibody density,  was nearly identical 

between simulation and experiment (93 ms−1), but at high density the difference was nearly 

5-fold (10 ms−1).

Focusing at the bond level, force played a significant role in destabilizing bonds at high γ. 

This can be seen in the average bond force at rupture, FB,R, which increased with γ until 

saturating at around 95 pN (Figure 3A). At the condition best matching experiments (γ = 

0.92 nm), average FB,R was slightly less than 95 pN, with a distribution ranging from 50 to 

140 pN (Supporting Information, Figure S3). Average bond force, FB, was significantly 

lower, however, around 16 pN for the same condition (Supporting Information Figure S3). 

The mechanical work applied to bonds at rupture, which is the product γFB,R, increased 

steadily with γ (Figure 3B). Interestingly, mechanical work was very close to the bond 

chemical energy of 87 pN*nm at γ = 0.92 nm, and then continued to increase further at 

higher γ values. The fact that FB,R increased as bonds became more sensitive to force 

(increasing γ) may seem counterintuitive, but this was expected because bond extension (or 

compression) length at rupture, δR, should also increase with γ (Figure 3C). In fact, δR 

remained very close to γ until reaching a maximum at 0.9 nm. It is interesting that FB,R, δR, 

and β all show similar saturation behavior starting at γ = 0.9 nm. As for bond stability, we 

observed that average lifetime decreased with γ from second to millisecond time-scales 

(Figure 3D). Though very rare, a few bonds were able to persist the full duration of the 

simulation (Supporting Information, Figure S3). Bond formation rate increased with γ 
(Figure 3E), but this was likely a secondary effect driven by decreasing bond stability, as the 

same bonds could continually break and reform. All bond force and rate metrics shown in 

Figures 3A–E were identical at high and low antibody density. We did observe that bond 

formation rate was slightly greater at high antibody density during very early stages of the 

simulation (s). Final mean bond number at 30 s also varied with antibody density (Figure 

3F), ranging between 2.1 and 3.7 bonds per nanoparticle.

Tracking Bond Distributions

To further investigate the inverse correlation between mean bond number and nanoparticle 

stability (Figure 2B and D, Figure 3F), we constructed histograms of final mean bond 

number for all conditions (Figures 4A and B). We found that very few particles were bound 

via a single bond at the end of simulations for any condition and as γ increased, fewer 

particles remained bound via two or even three bonds. This effect was more pronounced at 

low antibody density, which can best be seen for the di- and trivalent states. At four bonds 

and above, adhesion appeared to be insensitive to γ, although sample sizes were small. 

These findings suggest that γ did not affect the inherent bond distribution attained for a 

nanoparticle population, only the ability for nanoparticles to successfully remain bound at 

the lower valencies. Moreover, as the low-valency nanoparticles detached, the bond 

distribution for the population shifted to a higher mean value. Since this effect is reminiscent 

of a survival of the fittest scenario, we shall refer to it as valency selection. At high antibody 

density, the extent of valency selection was diminished for a given value of γ, suppressing 

the shift in bond number. To account for valency selection, we investigated bond numbers 

early in the simulation and found that most bonds had already formed within the first 0.1 s 
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(Supporting Information, Figure S4). This can also be seen by tracking the total bond 

numbers across the entire system of nanoparticles, which only increased during the first 0.1 s 

(Supporting Information, Figure S2). Using bond numbers from this early snapshot, when 

detachment events were minimal, we could eliminate the influence of valency selection and 

predict the inherent bond distribution available to each nanoparticle population, which were 

indeed similar regardless of γ (Supporting Information, Figure S5). Corrected mean bond 

number, or mean bond potential, results are shown in Figure 4C,D as a function of time and 

confirm that the bond steady state had already been established by the 0.1 s time point. 

Finally, the mean bond potential did increase with antibody density from approximately 1.7 

to 1.9 (Supporting Information, Table S1). Actual mean bond numbers increased over time 

from these inherent bond potentials exclusively due to valency selection, as the remaining 

population comprised a steadily increasing number of bonds per nanoparticle.

Mechanical State Diagram

Next we sought to characterize nanoparticle and bond dynamics across a broad range of 

mechanical parameter space. Therefore, we independently varied σ from 0.001 to 1 N/m and 

γ from 0.1 to 10 nm and categorized the nanoparticle detachment behavior into one of three 

states: static, dynamic, or transient. The static and transient states were defined by >95% and 

<5% of all nanoparticles remaining bound after 5 s, respectively. All other cases were 

designated as dynamic. Again, using the low antibody density but now paired with medium 

ICAM-1 density, we constructed the mechanical state diagram shown in Figure 5A. The 

dynamic regime spanned a continuum of σ and γ combinations but with a stronger 

sensitivity to γ. We then identified combinations within the dynamic regime that yielded β 

and  values matching experiments, which are listed in Table 2 and depicted as red circles 

in Figure 5A. For each of these matching cases, bond lifetimes were ∼0.1 s and final mean 

bond numbers were ∼3. We did observe differences in FB,R ranging from 10 to 400 pN, but 

γFB,R was consistently close to the bond chemical energy of 87 pN·nm (Table 2). Thus, 

experimental nanoparticle detachment dynamics, in terms of both temporal behavior and 

magnitude, could be replicated by matching the bond mechanical work at rupture to the 

bond chemical energy. We again observed that δR was close in value to γ under most 

conditions (Figure 5B), but there appeared to be an inflection point around 50 pN. Because 

we could not identify a unique γ−σ combination from simulations, we measured the 

adhesion strength of the antibody/ICAM-1 interaction using optical-tweezers-based force 

spectroscopy (Supporting Information Methods, Results, and Figure S6). Antibody-coated 3 

μm beads were brought into contact with CHO-K1 cells expressing human ICAM-1, and 

rupture force histograms were obtained at force loading rates of 200, 1500, and 3000 pN/s. 

The resulting single bond rupture forces were 5.0 ± 2.9, 17.4 ± 4.3, and 52.0 ± 8.9 pN, 

respectively, which corresponded to γ = 0.27 nm. Using this result, the best-fit σ value was 

∼0.8 N/m, and this combination is listed in Table 2 and depicted as teal circles in Figure 5.

Final Fitting of Experimental Data

As a final exercise, we simulated all antibody and ICAM-1 density conditions using the γ−σ 
combination identified in the previous section. β values all ranged between 0.74 and 0.81, 

very close to 0.75 from experiments (Supporting Information, Table S2).  values generally 
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matched experiments as well (Figure 6A), remaining within a factor of 2 for most 

conditions. However, no detachment was observed at high ICAM-1 density. Increasing σ had 

a weak effect at high ICAM-1 but led to significant deviations for the lower ICAM-1 density 

cases. This led us to postulate that each protein G molecule on the glass substrate may have 

been able to bind two ICAM dimers. We tested this by modifying our ICAM-1 distribution 

algorithm to randomly apply protein G molecules at a density equal to one-fourth the high 

ICAM-1 density (33.5 μm−2). ICAM-1/Fc dimers were then randomly assigned at the 

appropriate total density. Simulation results under the new clustered ICAM-1 dimer 

arrangement are listed in Table 3, and  values are shown in Figure 6A. The low and 

medium ICAM-1 densities did not change significantly because most ICAM-1 was still 

dispersed as single dimers. At high ICAM-1 density though, all ICAM-1 molecules were 

now clustered in groups of four, which lowered the binding stability such that detachment 

was now observed under all density conditions. β values were greater than 0.75 from 

experiments but were also associated with high error because of the small number of 

detachment events. Fitting  with β = 0.75 resulted in values that were lower than for 

experiments but within an order of magnitude (Table 3). Because ICAM-1 clustering 

significantly influenced nanoparticle dynamics, we also performed simulations in which 

ICAM-1 was distributed entirely as single molecules (Supporting Information, Table S3). 

Nanoparticle adhesion was most stable for monomers (Figure 6A), with no detachment 

observed at high ICAM-1 or the medium ICAM-1/high antibody combination. β decreased 

slightly, ranging from 0.65 to 0.75.

For all conditions simulated, FB,R exceeded 300 pN, increasing modestly with ICAM-1 

density and the degree of clustering but remaining insensitive to antibody density (Table 3, 

see Supporting Information Tables S1 and S2). δR exceeded γ by ∼50% for most cases, 

deviating only for the clustered dimer configuration at high ICAM-1 and antibody densities 

(150%), likely because FB,R was so high at 540 pN (Table 3). Bond lifetimes were all less 

than 0.2 s, following the same general trend as FB,R. Final mean bond numbers ranged from 

∼2.5 to 7, while again exhibiting evidence of valency selection because very few 

nanoparticles remained bound via a single bond (Supporting Information, Figure S7). By 

investigating bond numbers at early time points, we determined that the bond steady state 

was still attained within 0.1 s for all cases except the clustered dimer configuration at high 

ICAM-1 density (Supporting Information, Figure S7). For this case, it appeared that there 

was a second, slower phase of bond accumulation that delayed the steady state to around 0.5 

s. After correcting for valency selection, we determined the mean bond potentials for all 

conditions (Figure 6B). As expected, the mean bond potentials were highest for the 

monomer configuration, but that for the clustered dimer was slightly greater than that for the 

dimer even though nanoparticle adhesion was generally less stable. Looking at the bond 

potential histograms (Figure 6C and Supporting Information, Figure S8), it was clear that the 

clustered dimer configuration had a broader bond distribution, with more nanoparticles 

associated with the single bond state. Bond potential histograms also illustrate how bond 

distributions shifted to higher mean values as the antibody and ICAM-1 density increased. 

Plotting the mean bond potential versus time confirmed that bonds did not accumulate after 

the bond steady state was reached within the first 0.1 to 0.5 s of the simulation (Figure 6D 
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and Supporting Information, Figure S8). Finally, we observed that  and the mean bond 

potential closely followed an exponential relationship across all densities and ICAM-1 

configurations (Figure 6E).

DISCUSSION

We have applied the adhesive dynamics simulation framework to investigate how multivalent 

nanoparticle adhesion to a surface via specific biomolecular interactions stabilizes over time. 

NAD simulations accurately reproduced the multivalent nanoparticle detachment behavior 

that we observed in experiments for an antibody/ICAM-1 binding pair. Specifically, the 

detachment rate (kD) continually decreased over time following a power law relationship 

with temporal (β) and magnitude  fitting parameters (eq 7). The β parameter was 

insensitive to adhesion molecule densities on the nanoparticle and substrate surfaces, as we 

observed in experiments. Instead, β was strongly influenced by individual bond stability, 

with the experimentally observed value (β ≈ 0.75) emerging whenever bonds were subjected 

to an amount of mechanical work that was equal to the bond chemical energy. The 

parameter varied with adhesion molecule densities, bond mechanical properties, and 

ICAM-1 clustering, generally tracking with nanoparticle stability. Although the mean bond 

number per bound nanoparticle did increase in a manner consistent with the decrease in the 

nanoparticle detachment rate, we found that this was due to bond accumulation only during 

the first 0.1–0.5 s of simulations. The mean bond number continued to increase slowly at 

longer times because nanoparticle populations were heterogeneous with respect to bond 

potential, and detachment primarily occurred for nanoparticles that were restricted to one or 

two bonds. This valency selection mechanism resulted in the evolution of the remaining 

nanoparticle population due to a classic survival of the fittest scenario.

Our results conclusively demonstrated that nanoparticle adhesion was strongly influenced by 

mechanical forces. Experiments were matched if bonds ruptured under high force (FB,R > 

300 pN) or, more accurately, mechanical work (γFB,R ≈ bond chemical energy). Bonds were 

not consistently subjected to this level of force but rather at a frequency such that bonds 

persisted for ∼0.1 s. To put this into context, the half-life for the antibody/ICAM-1 

interaction in the absence of force  is ∼100 min. To further investigate 

the origin of mechanical force, we conducted a new simulation in which bonds were not 

allowed to form over time (i.e., kf = 0). Remarkably, all nanoparticles held by a single tether 

detached in less than 1 s (Figure 7A). Fitting the detachment profile using a simple 

exponential decay resulted in a rate constant of 3.6 s−1, almost 4 orders of magnitude higher 

than . This finding was not affected by insufficient temporal resolution because the results 

were identical when we decreased the time step to 0.1 ns (Supporting Information, Figure 

S9). Bond force (FB) and rupture force (FB,R) distributions for single-tether simulations were 

similar to the multivalent cases (Figure 7B,C). The average FB,R and bond lifetime were 

∼290 pN and ∼0.25 s, respectively, both very close to the low-valency conditions (Table 3, 

see Supporting Information, Tables S2 and S3). We found that Brownian motion of the 

nanoparticle was the only significant source of mechanical force in the single-tether 

simulation. The shear force was very low at 0.036 pN, and simulation results were not 
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affected by the removal of fluid flow or increasing the shear rate by a factor of 100 

(Supporting Information, Figure S9). Note that the latter finding is consistent with our 

previous experiments in which nanoparticle detachment rate remained constant after varying 

the shear rate up to 1000 s−1.6 As expected, the effects of Brownian motion on detachment 

correlated with nanoparticle size, further accelerating the detachment rate as the size 

decreased (Supporting Information, Figure S9). Likewise, increasing size mitigated 

Brownian effects, particularly because the influence of shear was also rapidly increasing. 

Shear force became significant only for micrometer-sized particles, but Brownian motion 

remained the primary source of force inducing bond rupture (FB,R > 200 pN). This is in 

contrast to a previous study of platelet adhesion, where Brownian motion was determined to 

have a minimal effect.41 Although there are differences in the implementation of Brownian 

motion and fluid shear between these works, adhesive dynamics here versus CDL-BIEM for 

the platelet case, the key factor is likely the difference in how bonds were modeled. Platelet 

adhesion was mediated by GPIb-α, which had a much higher γ (0.71 nm) and was not 

modeled directly as a spring. Regarding the mechanism by which Brownian motion induces 

bond rupture, Liu et al. previously investigated the adhesion of a 100-nm-diameter sphere 

mediated by an antibody/mouse ICAM-1 interaction using a thermodynamic model that 

included an entropic penalty for tethering the nanoparticle’s motion.28 The Bell model was 

then used to provide an estimate of FB,R that was as high as 230 pN, but no justification was 

given for the loading rates that were employed. Although this maximum rupture force is 

similar to the 290 pN value that we found using the single-tether simulation, an important 

distinction is that our result emerged without having to assume the loading rate.

We have also uncovered a second source of mechanical force, which became more 

pronounced as bond valency increased and ICAM-1 molecules were clustered (Table 3, see 

Supporting Information, Tables S2 and S3). We presume that this force arose from bonds 

pulling on each other. For most cases, interbond pulling was modest, increasing FB,R by only 

10–30% relative to the result of the single-tether simulation, but was as high as 100%. We 

should note that these estimates assume that the contribution of force from nanoparticle 

Brownian motion remained constant, which may not have been the case. Regardless, it was 

clear that multivalent nanoparticle adhesion was not stabilized by reducing the mechanical 

force loads on individual bonds but rather by the fact that the rate of bond formation was 

simply much faster than rupture for all conditions. Although the mechanically stressed 

bonds would generally be considered very unstable, persisting only ∼0.1 s, we found that the 

full bond steady state could be attained on this same time scale for nearly all conditions 

(Figure 6D and Supporting Information, Figure S8). On the basis of the sum of these 

findings, we conclude that nanoparticles quickly populated and were maintained near their 

highest valence state, which was likely determined by the local availability of free adhesion 

molecules. This is supported by the fact that most nanoparticles that detached were able to 

attain only a maximum of one or two bonds (Figure 7D–F). Specifically, single-bond 

restricted particles were all lost within ∼1 s, similar to the single-bond tether simulation 

(Figure 7A), but some did persist out to 10 s because of rebinding. For nanoparticles that 

reached bond valencies of two and even three, detachment tended to occur through the 

successive loss of all bonds within 0.1 to 0.2 s, thus minimizing the chance for bonds to 

reform. It should be noted that because only single-bond-restricted nanoparticles were lost at 
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high ICAM-1 density, it is certainly possible that some nanoparticles detached before 

reaching their true bond potential.

On the basis of the above findings, we believe that our phenomenological time-dependent 

detachment rate (eq 7) captures the two critical aspects of valency selection/evolution. 

Parameter provides a metric for the combined detachment rate of the entire nanoparticle 

population across the full distribution of bond valencies that are possible, including those 

nanoparticles that will ultimately detach. The β parameter then modulates this inherent 

detachment probability as nanoparticles do detach, starting with the initial rapid loss of those 

restricted to a single bond and then transitioning to the lower multivalent states (Figure 7). 

To illustrate these concepts, imagine that the nanoparticle population was categorized into i 

states based on the valency potential, and then each state was assigned a different  value 

(i.e., ) and initial nanoparticle number (i.e., Ni). In this scenario, only the Ni values 

would change with time, decaying at a constant rate defined by the respective , values. 

The formalization of these valence-state-dependent relationships, including a connection to 

β, will be a focus of future work. A key implication of this interpretation for time-dependent 

detachment is that the effects will continue beyond the minute time scale observed in 

experiments, lasting until only nanoparticles in the highest attainable valence state remain. 

Our power-law equation is not ultimately bounded in this manner, and thus we cannot 

extrapolate out to time scales longer than minutes. NAD simulations cannot provide this 

insight because they are too computationally expensive. Hence, the best approach for 

predicting long-term behavior will be to develop a deterministic model with rate equations 

defined for each valence state, similar to previous work.14–16 Although this requires a large 

number of parameters to be defined, our simulation results should greatly simplify the 

process by providing a single-bond rupture rate, the scaling of FB,R with valency (Table 3), 

bond potential distributions (Figure 6C), and bonding dynamics during the approach to the 

steady state (Figure 6D). These insights highlight the advantage of our kinetic approach to 

understanding multivalent nanoparticle adhesion. Our results also suggest that 

thermodynamic equilibrium concepts such as affinity or avidity cannot be used to 

understand multivalent nanoparticle adhesion in a straightforward manner because the 

population is heterogeneous and will be changing with time. Our work indicates that the 

ideal time point to define the equilibrium is likely within the first second after binding, but 

this cannot be assessed experimentally, and even at this time point, the system will have 

likely already been influenced significantly by valency selection.

Regarding bond biophysics, we found that bonds ruptured after being separated (or 

compressed) by a length (δR) very close to γ. This was generally to be expected because γ 
has mechanistically been described as the length scale for adhesive interactions within the 

binding pocket.26 However, δR is also a length scale related to stretching/compression of the 

antibody and ICAM-1 molecules, and thus future work will seek to add the necessary 

molecular detail to distinguish between these different length considerations. Nevertheless, 

the end result was that over much of the mechanical property parameter space that we 

investigated, bonds ruptured under mechanical work that was ∼σγ2. This result is 

reminiscent of the bond spring energy used in previous adhesive dynamics simulation works, 
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which was defined as σδ2.30,33 However, it is important to clarify that our result was valid 

only at rupture, with γσδ prevailing at shorter extension/compression lengths (δ < γ). We 

did attempt to use the σδ2 relationship in early simulations but could not match the 

experimental results in terms of β and . To uniquely identify the bond mechanical 

properties for our antibody/ICAM-1 pair, we performed force spectroscopy studies using 

optical tweezers and found γ = 0.27 nm. This is close to the value measured for an antibody/

murine ICAM-1 interaction28 and in general is representative of a moderate bond strength.26 

Extrapolating out to a rupture force of 300 pN would equate to a force loading rate of ∼108 

nN/s, but both of these values are well outside of the range that we used for optical tweezers 

experiments (maximum ∼50 pN). Thus, it is possible that a different energy landscape 

barrier could be governing bond mechanics, which would equate to a larger γ.26 This force 

regime will be examined experimentally in future studies. Using γ = 0.27 nm, we found that 

σ = 0.8 N/m provided the best fit to experiments, placing δR at ∼0.4 nm, or approximately 

50% larger than γ. Our σ value was larger than in previous works using HIV or 

nanoparticles28,38–40 but was not so high as to introduce artifacts into the simulation. This 

was determined on the basis of the spring time , where m is the mass of the 

particle.48 The value of τσ was ∼16 ns, which is an order of magnitude greater than the time 

step used for simulations and 5-fold greater than the viscous relaxation time (2 ns, see 

Supporting Information).

Using our final mechanical parameters, we achieved excellent correlation between NAD 

simulations and experiments in terms of both β and  kinetic parameters at most, but not 

all, adhesion molecule densities. Because no detachment was observed at high ICAM-1 

density, we chose to cluster ICAM-1 dimers in a manner that was consistent with our 

experimental setup using protein G molecules to bind ICAM-1/Fc. This change successfully 

destabilized the results at high ICAM-1 without negatively affecting the other cases. If we 

consider the valence-state concepts introduced in the preceding paragraphs, then fine-tuning 

σ primarily modulated the inherent detachment rates for each valence state (i.e.,  values), 

while clustering ICAM-1 primarily redistributed the initial number of nanoparticles in each 

valence state (i.e., Ni values, see Figure 6C and Supporting Information, Figure S8, for 

examples). Even though the final kinetic consistency between NAD simulations and 

experiments was very strong, deviations still remained. It is possible that the fitting could be 

improved by further adjusting σ or the molecular configurations (i.e., clustering, discrete 

physical detail). Alternatively, simulations may overestimate the bond-formation rate, which 

could be adjusted by decoupling σts from σ or by tracking the orientation of unbound 

adhesion molecules to account for the actual separation distance between binding domains. 

Another related phenomenon is that we did not prevent bonds from occupying the same 

physical space as nanoparticles translated and rotated, which would be expected to have a 

larger effect at higher bond valencies. We did prevent new bonds from forming if they were 

within 2 nm of another bond, but this estimate may have been too conservative. Finally, 

discrepancies may simply be related to measurement errors within the experiments.

In future work, we will expand our NAD simulations to include tethering from the bulk fluid 

to model the nanoparticle attachment rate (kA), enabling full kinetic evaluation of the 
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experimental binding data. We will also incorporate discrete physical details for receptor and 

ligand molecules to increase accuracy and better represent bond biophysics. It will also be 

extremely valuable to explore a broader range of parameter space across experiments and 

simulations, including nanoparticle size and shape as well as bond kinetics and mechanics, 

and we have already tested some of these parameters in previous experiments.8,11 Regarding 

potential targeted delivery applications, we will begin to evaluate adhesive behavior in a 

cellular context. This will require that target ligands be allowed to diffuse laterally within the 

plasma membrane and potentially be translated in response to force. The motion of the 

ligand within the substrate would follow similar treatments used here for nanoparticles, as 

demonstrated in previous work.39,40 Finally, we will develop deterministic rate models to 

capture valence-state-dependent dynamics, further investigate the fundamental basis of the 

 and β parameters, predict the long-term behavior of nanoparticle populations, and provide 

bond-scale analysis in a more computationally accessible manner than do NAD simulations. 

On the basis of our combined experimental and computational approaches, we anticipate 

that new and powerful strategies will be uncovered that will enable greater control over 

nanoparticle adhesion and maximize targeting performance. Our unique kinetic approach 

may even make it possible to direct early-stage behavior toward different final states.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
NAD simulations of nanoparticle detachment. (A) Algorithm for detachment simulations in 

which nanoparticles were initiated with a single bond. (B) Schematic of the adhesion 

system. A 210-nm-diameter sphere was coated with monoclonal anti-ICAM-1 antibody 

(orange), and the substrate was coated with ICAM-1 dimers (gray). (C) Size-scaled 

depiction of the adhesion molecule system employed. Images are published in the Protein 

Data Bank: mouse IgG1 antibody (1IGY), ICAM-1 (combination of 1IAM and 1P53), 

human IgG1 Fc (3D03), and protein G (3GB1).
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Figure 2. 
Nanoparticle and bond dynamics. (A,C) Nanoparticle detachment profiles obtained for σ = 

0.1 N/m, γ = 0.72 to 1.08 nm, and low ICAM-1 density at (A) low and (C) high antibody 

density. Time-dependent behavior can clearly be seen at high γ, with an initial rapid decline 

that transitioned to a more stable regime around ∼5 s. (B,D) Mean bond number increased 

over time for both (B) low and (D) high antibody density conditions following a similar 

temporal pattern as nanoparticle detachment. Bond number increased and became more 

stochastic as fewer nanoparticles remained bound. (E,F) Detachment profiles were fit using 

eq 7 to obtain (E) β and (F)  parameters. (E) The temporal parameter β increased with γ 
until saturating at 0.75, which was the value measured in experiments. There was a slight 

shift to higher γ as antibody density increased. (F) The magnitude parameter 

progressively increased with γ and decreased with antibody density regardless of β, 

reflecting overall nanoparticle stability.
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Figure 3. 
Bond biophysics and dynamics. (A) Bond rupture force (FB,R) increased with γ before 

saturating around 95 pN. (B) Mechanical work at bond rupture (γFB,R) increased steadily 

with γ, surpassing the bond chemical energy (dashed line) around 0.9 nm. (C) Bond 

extension or compression length at rupture (δR) was slightly greater than γ until saturating 

around 0.9 nm. (D,E) Average bond (D) lifetime and (E) formation rate exhibited opposing 

trends as bonding became more dynamic with increased γ. (F) Mean bond number at the 

end of simulation (30 s) increased as adhesion became less stable, both in terms of 

increasing γ and decreasing antibody density. Error bars represent the standard error from 

200 simulations.
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Figure 4. 
Bond number distributions and potentials. (A, B) Bond number histograms obtained at the 

end of simulations (30 s) for σ = 0.1 N/m, γ = 0.72 to 1.08 nm, and a low ICAM-1 density 

at (A) low and (B) high antibody densities. Detached nanoparticles were categorized under 0 

bonds. (C, D) Mean bond potential values as a function of time at (C) low and (D) high 

antibody densities. The mean bond potential represents the mean bond number determined 

right after the bond steady state was achieved (0.1 s) and after correcting for nanoparticles 

that had detached. The mean bond potential did not vary with γ but shifted from ∼1.7 to 

∼1.9 with increased antibody density.
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Figure 5. 
Mechanical state diagram. (A) Nanoparticle detachment dynamics at low antibody and 

medium ICAM-1 densities, assessed across a large range of γ and σ values. The transient 

regime (blue) corresponds to highly unstable adhesion, defined as <5% of nanoparticles 

remaining bound after 5 s. The static regime (brown) corresponds to highly stable adhesion, 

with >95% remaining bound after 5 s. The dynamic regime (red) lies in between, and the red 

circles indicate the mechanical property combinations that precisely matched experiments. 

(B) The bond rupture length (δR) was slightly less than γ at low FB,R but became 

increasingly larger after FB,R exceeded ∼95 pN. Teal squares denote the matching condition 

using γ measured with optical tweezers force spectroscopy experiments (0.27 nm) and the 

best fit σ (0.8 N/m).
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Figure 6. 
Final fitting of experiments for different ICAM-1 clustering conditions. (A) Comparison of 

 across all antibody and ICAM-1 densities between experiments and NAD simulations 

conducted using the final mechanical conditions (γ = 0.27 nm, σ = 0.8 N/m). ICAM-1 was 

presented in three different configurations: dimers, clustered dimers, and monomers. The 

clustering of ICAM-1 decreased the nanoparticle stability, particularly at high ICAM-1 

density. (B) The mean bond potential was highest for ICAM-1 monomers. Dimer 

configurations were similar at low and medium ICAM-1, but the clustered dimer 

surprisingly had elevated mean bond potentials at high ICAM-1. (C) Bond potential 

histograms for the clustered dimer case. Note the large number of nanoparticles restricted to 

one or two bonds at low and medium ICAM-1 densities. (D) Mean bond potential versus 

time for the clustered dimer case, shown only at early time points to illustrate that the bond 

steady state was reached before 0.1 s at low and medium ICAM-1 densities. At high 

ICAM-1 density, most bonds formed prior to 0.1 s, but a second, slower bond accumulation 

phase was also observed out to 0.5 s. (E)  and mean bond potential closely followed an 

exponential relationship for all molecular density and ICAM-1 clustering conditions.
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Figure 7. 
Single-tether simulations and valence-state-dependent detachment dynamics. (A) 

Nanoparticles held by a single tether all detached within 1 s, with a profile that closely 

resembled the initial phase of rapid detachment observed for multivalent cases. (B) The 

bond force distribution for the single-tether simulation was nearly identical to the 

multivalent cases. (C) Bond rupture force distributions were similar between the single 

tether and low ICAM-1 density cases, but the rupture force shifted to higher values with 

increased valency. (D–F) Valence-state-dependent detachment dynamics. The mean bond 

number (black line) is shown over time at low antibody density and either (D) low, (E) 

medium, or (F) high ICAM-1 density. All detachment events are included in the plot and 

color-coded on the basis of the maximum bond number achieved: one bond (green), two 

bonds (orange), or three bonds (purple). The point of detachment is indicated by the triangle 

(△), and lines then trace back up to the time point at which that nanoparticle was at its 

maximum bond number, which is indicated by an upside down triangle (▽). Nanoparticles 

restricted to a single bond detached rapidly, most within the first few seconds. Nanoparticles 

that detached from the second and third bond states persisted longer and quickly dropped all 

the way to zero bonds, typically within 0.1 s, limiting the chance for bonds to reform.
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Table 1

Physical Parameters Used in NAD Simulations

parameter parameter value dimension

R nanoparticle radius 105 nm

ρ nanoparticle density 1.05 g/cm3

λe equilibrium bond length 41.1 nm

antibody length 11.4 nm

ICAM-1 length 29.7 nm

antibody density 410/1080/3400 μm−2

ICAM-1 density 21/41/134 μm−2

intrinsic bond formation rate 1.6 × 105 s−1

intrinsic bond breakage rate 1.1 × 10−4 s−1

μ viscosity 0.001 g/nm·s

T temperature 300 K

Δt time step 1 ns

S fluid shear rate 100 s−1

τ polymer thickness 5 nm

ξ compressibility 0.03 pN
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