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BRIEF REPORT | IMMUNOLOGY AND INFLAMMATION

To mediate critical host–microbe interactions in the human small intestine, Paneth 
cells constitutively produce abundant levels of α-defensins and other antimicrobials. We 
report that the expression profile of these antimicrobials is dramatically askew in human 
small intestinal organoids (enteroids) as compared to that in paired tissue from which 
they are derived, with a reduction of α-defensins to nearly undetectable levels. Murine 
enteroids, however, recapitulate the expression profile of Paneth cell α-defensins seen 
in tissue. WNT/TCF signaling has been found to be instrumental in the regulation of 
α-defensins, yet in human enteroids exogenous stimulation of WNT signaling appears 
insufficient to rescue α-defensin expression. By stark contrast, forkhead box O (FOXO) 
inhibitor AS1842856 induced the expression of α-defensin mRNA in enteroids by 
>100,000-fold, restoring DEFA5 and DEFA6 to levels comparable to those found in 
primary human tissue. These results newly identify FOXO signaling as a pathway of 
biological and potentially therapeutic relevance for the regulation of human Paneth cell 
α-defensins in health and disease.

Paneth cell | stem cell | alpha-defensin | FOXO | enteroid

In addition to providing trophic factors for coresident small intestinal stem cells in the 
crypts of Lieberkühn (1), Paneth cells maintain homeostasis by both protecting from 
pathogens and shaping the colonizing microbiota composition via the copious production 
of antimicrobial proteins and peptides, including α-defensins (2). In humans, α-defensin 
5 (DEFA5) and -6 (DEFA6) are abundant secretory products of Paneth cells and provide 
key nonredundant innate immune functions (2). Multiple lines of evidence suggest that 
Paneth cell dysfunction and reduced expression of their α-defensins may increase suscep-
tibility to enteric disease (3, 4), including ileal Crohn's disease (5). Moreover, Paneth cell 
abnormalities have been reported in neurodevelopmental disorders with gastrointestinal 
comorbidities such as autism spectrum disorder (ASD) (6).

The culture of intestinal stem cells as organoids has transformed the field of gastroin-
testinal biology. Despite wide acceptance of this method, and the importance of Paneth 
cell antimicrobial peptides to intestinal homeostasis and barrier defense, studies have relied 
extensively on lysozyme (LYZ) as the sole marker of human Paneth cells. Few studies have 
detected α-defensin expression in human intestinal organoids (7–9), and experimental 
approaches have yet to recapitulate tissue-level expression patterns of these abundant 
effectors. We sought to determine the utility of patient-derived small intestinal organoids 
(enteroids) as a model of Paneth cell function.

Materials and Methods

Biopsies from human terminal ileum were obtained (IRB #1400430, “Regulatory Immune Mechanisms and 
Gastrointestinal Comorbidity in ASD”) and cultured as enteroids. This study was approved by the institutional 
review boards for the State of California and the University of California, Davis. All patients provided informed 
consent. Detailed materials and methods are provided in SI Appendix.

Results and Discussion

The mRNA levels of highly abundant Paneth cell secretory products in human mucosal 
biopsies (Fig. 1A) were consistent with those previously described for small intestinal tissue 
(10–12), yet the gene expression profile of enteroids (Fig. 1A) deviated significantly. 
Relative quantification of mRNA for each target showed that enteroids derived from 
paired biopsies retained LYZ expression while DEFA5, DEFA6, intelectin-2 (ITLN2), and 
regenerating family member 3 alpha (REG3A) mRNA was present at ~10,000 to ~100,000-
fold lower levels than in respective biopsies (Fig. 1B).

To investigate whether this loss of α-defensin expression was specific to human enteroid 
culture, we compared the Paneth cell secretory product profiles of murine small intestinal 
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tissue with murine enteroids. We found that murine enteroids 
recapitulated (within 10-fold) the α-defensin expression profile 
found in murine ileal tissue (Fig. 1C), suggesting that the defi-
ciency in Paneth cell α-defensin production in human enteroids 
is not due to in vitro culture conditions per se.

The Paneth cell gene expression program is critically dependent 
on WNT signaling (13), which has been shown to regulate 
α-defensin expression through TCF (T cell factor) transcription 
factors (5, 13). While mouse small intestinal Paneth cells directly 
provide Wnt3 to intestinal stem cells in organoid culture (1), WNT 
ligands are not produced by human Paneth cells (14) and must be 
supplemented in human intestinal organoid media. To investigate 
whether an insufficiency in WNT ligands may explain the absence 
of α-defensin expression in human enteroids, we supplemented 
culture media with recombinant human WNT3A (100 or 200 ng/
mL) but observed no change in DEFA5 or DEFA6 expression (Fig. 1 
D and E). Two WNT target genes, ephrin type-B receptor 3 
(EPHB3) and leucine rich repeat containing G protein-coupled 
receptor (LGR5), were highly expressed in both WNT3A-treated 
and untreated enteroids, indicating that WNT signaling was suffi-
cient for transcription of TCF target genes in the culture conditions, 
yet α-defensin expression was impaired. In addition, we did not find 
other treatments reported to affect mRNA expression of α-defensins, 
such as IL-22 at 2 ng/mL (8) or 50 ng/mL to appreciably raise the 
levels of DEFA5 or DEFA6 mRNA (Fig. 1F), especially when com-
pared to the expression profile of native tissue (Fig. 1 A and G).

Knockdown of Foxo1/3 signaling in a genetic mouse model was 
found to promote secretory cell differentiation (15), and a 
cell-permeable inhibitor of FOXO1, AS1842856 (5-amino-7- 
(cyclohexylamino)-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-  
quinoline-3-carboxylic acid) induced the secretory lineage of 
enteroendocrine cells (16). We therefore hypothesized that FOXO 
could be related to the loss of Paneth cell secretory products in enteroid 
culture. AS1842856 inhibits the transcriptional activity of FOXO 
through direct binding to the active (unmodified Ser256) form (17). 

FOXO1, FOXO3, and FOXO4 were confirmed to be expressed in 
human enteroids (Fig. 2A), and expression of canonical FOXO1 target 
genes glucose-6-phosphatase catalytic subunit (G6PC), and phosphoe-
nolpyruvate carboxykinase 1 (PCK1), but not FOXO3 target gene 
catalase (CAT) or FOXO3/4 target gene B cell lymphoma 6 (BCL6), 
were reduced after treatment with AS1842856 (Fig. 2B).

Remarkably, the treatment of enteroids with FOXO inhibitor 
AS1842856 at 1 µM increased the expression of DEFA5 and DEFA6 
>100,000-fold (Fig. 2C) to levels not significantly different from 
small intestinal biopsies (Fig. 2D), representing a restorative induc-
tion of DEFA5 and DEFA6 (Fig. 2 C–E) compared to untreated 
enteroids (Fig. 1 A and B). Treatment with 500 nM or 1 µM con-
centrations of AS1842856 were found to mediate this restoration 
of α-defensins (Fig. 2F). AS1842856 treatment of enteroids cultured 
in differentiation media yielded an induction of α-defensins similar 
in magnitude (Fig. 2G). Fluorescence immunohistochemistry con-
firmed that while DEFA5 was minimally produced in untreated 
enteroids (Fig. 2H), high levels of DEFA5 peptide were produced 
in human enteroids treated with AS1842856 (Fig. 2I).

Paneth cell products REG3A, PLA2G2A (group 2 secretory phos-
pholipase A2), and ITLN2 (12) were also significantly upregulated 
by AS1842856 (~6,000-fold, ~400-fold, and ~60-fold, respectively), 
yet not fully restored to tissue levels (Fig. 2 C–E and G), suggesting 
that their regulation may involve independent pathways.

A key function ascribed to Paneth cell α-defensins is to shape the 
composition of the intestinal microbiota (2). While the microbiota 
can significantly contribute to physiology in the healthy host, per-
turbations in microbial composition (i.e., dysbiosis) may contribute 
to the pathogenesis of a wide variety of chronic diseases, including 
ASD, inflammatory bowel disease (IBD), obesity, diabetes, and can-
cer (18). Reduced expression of Paneth cell α-defensins has been 
reported in ileal Crohn’s disease and proposed to contribute to the 
dysbiosis in this disease (5). This novel discovery that treatment with 
the FOXO inhibitor AS1842856 reconstitutes native-tissue levels 
of human α-defensins in patient-derived intestinal organoids 

mouse small intestinehuman small intestine

tissuebiopsies

human enteroids

C

D

A

E

B
enteroids enteroids

GF

LY
Z

DEFA
5

DEFA
6

ITLN
2

REG3A

PLA
2G

2A

100

101

102

103

104

105

106

107

108

fo
ld

 c
ha

ng
e 

of
 ta

rg
et

 m
R

N
A

WNT3A
(100 ng/ml)

WNT3A 
(200 ng/ml)

control

ns

ns

ns

ns ns

ns

LY
Z

DEFA
5

DEFA
6

ITLN
2

REG3A

PLA
2G

2A

100

101

102

103

104

105

106

107

108

fo
ld

 c
ha

ng
e 

of
 ta

rg
et

 m
R

N
A

IL-22 
(2 ng/ml)

control IL-22 
(50 ng/ml)

ns ns

ns

ns
ns

ns

ACTB
LY

Z

DEFA
5

DEFA
6
ITLN

2

REG3A

PLA
2G

2A
 

100

101

102

103

104

105

106

107

108

m
R

N
A 

tra
ns

cr
ip

t p
er

 1
0 

ng
 R

N
A

ACTB
LY

Z

DEFA
5

DEFA
6
ITLN

2

REG3A

PLA
2G

2A
 

100

101

102

103

104

105

106

107

108

ActbLy
z1
Defa

3
Defa

5

Defa
20

Defa
21

Defa
22

Defa
23

Defa
24

Defa
26Itln

1

Reg
3g

100

101

102

103

104

105

106

107

108

m
R

N
A 

tra
ns

cr
ip

t p
er

 1
0 

ng
 R

N
A

ActbLy
z1
Defa

3
Defa

5

Defa
20

Defa
21

Defa
22

Defa
23

Defa
24

Defa
26Itln

1

Reg
3g

100

101

102

103

104

105

106

107

108

ACTB
LY

Z

DEFA
5

DEFA
6

ITLN
2

REG3A

PLA
2G

2A
 

100

101

102

103

104

105

106

107

108

m
R

N
A 

tra
ns

cr
ip

t p
er

 1
0 

ng
 R

N
A

control WNT3A
(200 ng/ml)

ns
ns

ns

ns

ns

ns

ns

ACTB
LY

Z

DEFA
5

DEFA
6

ITLN
2

REG3A

PLA
2G

2A
 

100

101

102

103

104

105

106

107

108

m
R

N
A 

tra
ns

cr
ip

t p
er

 1
0 

ng
 R

N
A

control IL-22 
(2 ng/ml)

ns

ns

ns

ns

ns

ns

LY
Z

DEFA
5

DEFA
6

ITLN
2

REG3A

PLA
2G

2A
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

fo
ld

 c
ha

ng
e 

of
 ta

rg
et

 m
R

N
A

enteroidsbiopsies

Fig. 1. Human enteroids lose expression of Paneth cell α-defensins. All values are plotted on a logarithmic scale. (A) Absolute quantification (biological replicates, 
n = 8) and (B) relative quantification (biological replicates, n = 9) of human Paneth cell secretory effectors in terminal ileum biopsies and respective matched 
enteroids. (C) Expression profile of murine Paneth cell secretory effectors in distal 6-cm small intestine (n = 7 mice) and respective murine enteroids (n = 5 mice) 
generated from topographically matched tissue specimens from C57BL/6N mice. (D) Relative quantification and (E) absolute quantification of human Paneth 
cell secretory effectors in human enteroids (biological replicates, n = 3) either untreated (control) or treated with human recombinant WNT3A (100 ng/mL or 
200 ng/mL). (F) Relative quantification and (G) absolute quantification of human Paneth cell secretory effectors in human enteroids (biological replicates, n = 4) 
either untreated (control) or treated with human recombinant IL-22 (2 ng/mL or 50 ng/mL). RT-qPCR values for relative quantification are normalized to ACTB 
(β-actin); values for absolute quantification are expressed as quantity of target mRNA transcript per 10 ng of RNA. Statistical analysis: *P < 0.05, **P < 0.01,  
***P < 0.001, ****P < 0.0001, ns = nonsignificant. Error bars represent SEM. Fig. 1 A and C are adapted from ref. 11.
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suggests that the FOXO signaling axis might prove a valuable ther-
apeutic target to augment Paneth cell function.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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Fig. 2. FOXO inhibition restores α-defensin expression in human enteroids to levels comparable to native tissue. All values are plotted on a logarithmic scale. 
FOXOi: FOXO inhibitor AS1842856. (A) Relative quantification of FOXO1, FOXO3, and FOXO4 mRNA in untreated (control) vs. AS1842856-treated (1 µM) human 
enteroids (n = 16 independent experiments). (B) Relative quantification of FOXO target genes in untreated vs. AS1842856-treated (1 µM) human enteroids  
(n = 7–15 independent experiments). (C) Relative quantification (biological replicates, n = 7) of human Paneth cell secretory effectors in untreated vs. AS1842856-
treated (1 µM) human enteroids. (D) Relative quantification (biological replicates, n = 7) of human Paneth cell secretory effectors in terminal ileum biopsies vs. 
AS1842856-treated (1 µM) human enteroids. (E) Absolute quantification (biological replicates, n = 5) of human Paneth cell secretory effectors in untreated vs. 
AS1842856-treated (1 µM) human enteroids. (F) Relative quantification (biological replicates, n = 3) of human Paneth cell secretory effectors in human enteroids 
treated with 100 nM to 1 µM of AS1842856. (G) Relative quantification (biological replicates, n = 6) and absolute quantification (biological replicates, n = 3) of 
human Paneth cell secretory effectors in untreated vs. AS1842856-treated (1 µM) human enteroids in differentiation media (DM). (H) Human α-defensin 5 (DEFA5) 
fluorescence immunohistochemistry in untreated vs. (I) AS1842856-treated (1 µM) human enteroids. Red: DEFA5; blue: Hoescht 33258 nuclear counterstain. 
Human jejunal tissue specimens shown at left for reference: Masson’s Trichrome staining (arrows indicate base of crypts) and fluorescence immunohistochemistry 
of DEFA5-positive Paneth cell granules. Scale bars: light microscopy: 50 μm (40×); confocal microscopy: 25 μm (100×). RT-qPCR values for relative quantification 
are normalized to ACTB (β-actin); values for absolute quantification are expressed as quantity of target mRNA transcript per 10 ng of RNA. Statistical analysis:  
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns = nonsignificant. Error bars represent SEM. Fig. 2 E, H, and I are adapted from ref. 11.
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