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ABSTRACT 

All damage identification activities inevitably involve uncertainties, and the resulting classification ambiguity in 
contaminated structural health monitoring (SHM) features can dramatically degrade the damage assessment capability. 
Probabilistic uncertainty quantification (UQ) models characterize the distribution of SHM features as random variables, and 
the UQ models facilitate making decisions on the occurrence, location, and type of the damages. A Bayesian framework will 
be adopted and the damage classification is transformed into a model selection process, in which the most plausible structural 
condition is determined by means of the recursively updated posterior confidence. In contrast to the probabilistic approach, 
machine learning is another candidate approach, which employs training data and extracts features from the recorded 
measurements. A support vector machine (SVM) is employed to classify the frequency response function data obtained from 
rotary machine under different damaged conditions. With different size of feature and different kernel functions, the 
classification of ball bearing damages are studied. Comparison between the Bayesian model selection approach and SVM is 
concluded in this paper.  
 
Keywords: Bayesian decision-making, structural health monitoring, damage localization, support vector machine, 
uncertainty quantification 
 
 

1. INTRODUCTION 

 
As the fundamental part of structural health monitoring (SHM), a comparison between two system statuses is deployed 
through the feature domain, and such features are extracted from physical understanding and/or field data acquisition. In 
reality, this type of decision-making, i.e. distinguishing one state from another, is always corrupted by uncertainties, such as 
lack of physical intuition, noisy measurements, and environmental/operational variability. To maintain an acceptable quality 
of SHM decision-making performance, numerous of realizations are often required, and two groups of evidence are 
compared in a statistical sense naively. To deal with the burden of extensive data acquisition, quantifying the uncertainty in 
the SHM feature evaluations is necessary. Thereby, the confidence of decision is described through the probabilistic 
uncertainty quantification (UQ) model, and the overall performance of SHM is enhanced [1-4]. 

Transfer function, also known as frequency response function (FRF), is one of the most widely-used features for SHM, for 
the clear physical interpretation and easy-accessibility. UQ models of different estimation algorithms regarding FRF features 
are established in our previous research, in which probability density functions of the estimates are derived analytically [4,5]. 
By adopting the probabilistic UQ models, the confidence interval of decision boundaries are pre-defined, and all the testing 



samples falling outside of the boundaries are labeled as outliers. The percentage of outliers indicates if or not the testing 
statistics deviates from the undamaged baseline, thus detects damage occurrence.  

Moreover, when the statistics of damaged conditions are also known beforehand, a damage classification can be deployed via 
selecting the most plausible probabilistic model.  Specifically in this paper, a Bayesian framework is adopted, because the 
algorithm fuses the collected evidence to update prior confidence and thereby select the optimal model to characterize the 
data observation collected from unknown system condition. 

As mentioned above, the uncertainty involved in SHM processes causes a lot of burden, especially when extracting sensitive 
and specific features from large volume of data set. Oftentimes, the great fuzziness and redundancy in the raw data encourage 
people to investigate powerful feature extraction methodologies. In the past decades, machine learning technologies have 
been widely applied to SHM, among which support vector machine (SVM) is particularly powerful for solving classification 
problems. Compared to the Bayesian model selection approach for damage classification, this paper adopts SVM to classify 
damage cases from the same test-bed.  

A brief introduction of the SpectraQuest MFS vibration simulator system is given in section-2, as well as a brief review of the 
FRF and the UQ model of its estimations. Bayesian model selection approach for classifying damage types will be given in 
section-3, and SVM implementation, with a parametric study, is available in section-4. In the end, a summary and 
comparison of the two approaches is given in section-5. 

 

2. TEST-BED AND UNCERTAINTY QUANTIFICATION OF FRF ESTIMATIONS 

 
The SpectraQuest MFS vibration system is adopted as the test-bed to compare the damage classification approaches, as 
Figure 1 shows. In the simulator system, the bearing on right-hand side of the shaft is altered from undamaged bearing to 
damaged bearing with defected balls and defected outer race. Acceleration data in direction y and z are recorded, as denoted 
in Figure 1, and the transfer function between the responses of those two directions are adopted as the damage index.  

  
Fig. 1 Rotary machine test-bed 

 

As the ratio between to power spectra, the definition of FRF is described in Equation (1): 

, (1) 

in which U and V are the Fourier transforms of theoretical input and output u(t) and v(t). When the measurements are 
contaminated by noise (uncertainty), the realistic input and output are denoted as x(t) and y(t), and the estimation of FRF is 
often calculated via certainty algorithms, called estimators. Equation (2) is the H-1 estimator of FRF, which is the ratio 
between cross- and auto-power density functions of (contaminated) input and output measurements: 
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where the ^ denotes the average of power spectra according to Welch’s algorithm [7].  

Figure 2 illustrates the FRF feature estimations for various damage conditions, both the magnitude and phase. There are 
undamaged baseline and other two types of damaged conditions included, as indicated by the three colors in Figure 2. 
Obviously, the realizations of FRF are very noisy and overlapped at most of the frequency bins. Without investigating the 
randomness of estimations, it is hardly to make any valuable group classification judgments. 

 
Fig. 2 FRF magnitude and phase estimations for baseline and two damaged conditions 

In the Welch’s algorithm, the power spectra are estimated in an averaged fashion. If the number of averages is sufficient, the 
Gaussian distribution is hold asymptotically. The probability density functions of magnitude and phase estimations, as 
random variables, are derived in [8]: 

, (3) 

where in the context of group classification, Mj is the jth condition of the structure, and µm and sm are the mean and standard 
deviation of magnitude estimation respectively.  

The probability density function of phase estimation pq is: 

, (4) 

in which , and erf(*) is error function. In Equation (4), µRj and µIj represent the mean of real and 

imaginary parts of FRF estimation, while sqj is the standard deviation of both parts. 

 

3. BAYESIAN MODEL SELECTION FOR DAMAGE CLASSIFICATION 
 

Equation (5) demonstrates the Bayesian framework, which embeds prior knowledge into decision making, and updates the 
decision confidence when new data are available. The posterior probability of model (damage condition) Mj 

according to Bayes theorem: 
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, (5) 

in which is the prior. Likelihood function is actually the PDF in Equation (3) and (4). Evaluating the 

total probability theorem, the total evidence for dataset D on the denominator can be calculated as Equation (6): 

, (6) 

where n is the dimension of model class M. After running Equation (6) in a recursive fashion for sufficient iterations, i.e. the 
posterior probability serves as the prior in the next iteration, and posterior updates are produced as the dataset is increased, 
the posterior  will tend towards 1 or 0, indicating acceptance or rejection of the jth model (damage condition). 

     
(a) Using FRF magnitude 
feature, damaged ball data  

(b) Using FRF phase feature, 
damaged ball data 

(c) Using FRF magnitude 
feature, damaged race data 

(d) Using FRF phase feature, 
damaged race data 

Fig. 3 Recursive posterior probability of model selection, at sample frequencies; top: baseline model; middle: damaged ball 
model; bottom: damaged outer race model 

 

In each class, the posterior probability of selecting among baseline (top), ball defect (middle), and race defect (bottom), as a 
function of number of iterations is plotted, and each color indicates a different frequency line. It is clear that in all cases, the 
posterior converges to the right number, i.e. converging to 1 if there is damage, and converging to 0 if not. The horizontal 
lines in green highlight the arbitrarily-picked prior probability before any testing information. In Figure 3(c) and 3(d), the 
convergence is not as decisive as Figure 3(a) and 3(b). That illustrates for damaged race, not all the sampled frequencies has 
the same detection capability 

 

4. SUPPORT VECTOR MACHINE FOR DAMAGE CLASSIFICATION 

4.1 SVM and kernelization 
Different from the probabilistic approach using Bayesian framework, support vector machine (SVM) employs training data to 
form a hyperplane as the decision boundaries, in order to discriminate different sets of data. All the data points determining 
the hyperplane are called support vectors. Equation (5) describes the decision maker h(*), which maps feature vector x into a 
binary space:  

( ) ( ) ( )
( )

| |
|

|
j j

j

p p
p

p
=

M
M

M
D M M

M D,
D

( )|jp MM ( )| jp D M

( ) ( ) ( )
1

| | |
n

j j
j

p p p
=

= ×åM MD D M M

( )|jp MM D,

0 100 200
0

0.5

1
posterior of BA magnitude

0 100 200
0

0.5

1

0 100 200
0

0.5

1

 

 

0 100 200
0

0.5

1
posterior of BA phase

0 100 200
0

0.5

1

0 100 200
0

0.5

1

 

 

   0Hz
0.63Hz
1.25Hz
1.88Hz
 2.5Hz
3.13Hz
3.75Hz
4.38Hz
   5Hz

0 100 200
0

0.5

1
posterior of OR magnitude

0 100 200
0

0.5

1

0 100 200
0

0.5

1

 

 

0 100 200
0

0.5

1
posterior of OR phase

0 100 200
0

0.5

1

0 100 200
0

0.5

1

 

 



, (7) 

The function g(*) forms a hyperplane in the feature domain, which is described as: 

. (8) 

For the realistic data presented in last section, the data from the classification model are mostly non-separable, thus the slack 
variables may be introduced to solve a soft margin problem. It is not always practical for highly overlapped/complicated 
feature spaces. Kernel functions are employed if necessary, to introduce extra feature dimensions, and all clusters are being 
better distinguished in a higher dimensional state, as Equation (9) shows: 

. (9) 

in which xi are all the support vectors, K(*,*) is the selected kernel function, ai is the Lagrange multiplier for constrained 
optimization, and yi is the classification label of feature xi. 

 

4.2 SVM classification 
Speaking of the cluster of features, a simplified condition is considered at the beginning for SVM analysis. Only a single 
frequency line is considered and the feature vector is defined as: 

. (10) 

In Equation (10), w is a sample frequency, and apparently the feature x is a 2-D vector. Figure 4 visualizes the feature vector, 
and the overlap of clusters is obvious. 

 
Fig. 4 Feature state space at a sample frequency line 

 
In the context of SHM, SVM provides the boundary to separate damaged data from undamaged baseline. Figure 5 and 6 
demonstrate such damage detection implementation on a binary case, with only ball damage involved. With about 250 testing 
cases in total, the classification result and the true condition for each test is plotted on the right. For each class, the percentage 
of correct labelling from SVM is calculated, for comparison with the random guess rate. In addition, the kernel trick in SVM 
increases the decision space dimensionality, so that the decision boundaries plotted are actually the projection of the real 
decision boundaries to the 2-D plane. Two different kernel realizations are adopted, namely linear kernel and Gaussian kernel, 
which is a more flexible radial bases function. 

Comparing the rate of correct classification marked in the figures, the Gaussian kernel does better than the linear hyperplane 
separation. However, the performance of correct classification rate has to be compared considering all classes. For instance, if 
the classification is totally flipped (wrong), the binary classification rate will be 0%/0%, and 50%/50% will indicate an ideal 
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random guess, and only 100%/100% means the perfect classification.  The case of 0%/100% does not suggest a good 
classification, because in this scenario, the algorithm just classifies all the test cases into one class. 

 

 
Fig. 5 SVM implementation for binary classification, linear kernel 

 

  
Fig. 6 SVM implementation for binary classification, Gaussian kernel 

 

For the trinary classification problem, two damaged conditions need to be discriminated from the baseline, and this multi-
class classification is implemented into three binary classifications. Each of the binary sub-problems is a “distinguishing one 
from all the others” approach, which is essentially the same as damage detection. Specifically speaking, the one-versus-rest 
idea partitions the trinary classification into (1 vs 2, 3), (2 vs 3, 1) and (3 vs 1, 2), all three sub-problems. 

Because the Gaussian kernel outperforms slightly according to Figure 5 and 6, the multi-class discriminations presented in 
Figure 7 for each sub-problem employ Gaussian kernel. Just for a comparison, the result of “correct labeling” is also 
available in Figure 8. In each sub-problem, the class to be distinguished is highlighted and the other two classes are grouped 
as “ELSE”.  

    
 

Fig. 7 SVM implementation for trinary classification, Gaussian kernel 
 

The same as damage detection, the performance of SVM for trinary classification is evaluated via correct rate, plotted in 
Figure 8. The same conclusion can be made, that the Gaussian function outperforms linear function due to the flexibility 
characteristics. Compared to the binary case, the SVM classifiers obtained from both kernel functions, in general, tag the data 
less accurate than the performance of binary case. This is mainly caused by the heavier complexity and ambiguity. The 
average rate of correct classification for each case is about 57% and 71%, which is lower than the binary classification, given 
the same feature dimension.  
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Fig. 8 Correct classification rate for SVM implementation for trinary classification  
left: linear kernel; right: Gaussian kernel 

 

So far, all the damage detection/classification are implemented based upon the FRF feature at single frequency, and the 
correct labeling rate for binary and trinary is 85% and 71% respectively, using Gaussian kernel. In fact, a lot of information 
has not been utilized, because most of the spectral characteristics are thrown away when selecting the sample frequency. 
Instead of eliminating most of the FRF information, Equation (11) defines the state space feature by using more frequency 
lines: 

. (11) 

in which n frequencies are considered to build up the new feature vector x.  

The new-established feature state has a lot more dimension. For example, if all the frequency lines are included in the vector 
x, there will be around a thousand state space dimensions. Under this circumstance, the state space is not able to be visualized, 
and Figure 9 only plots the projection to three arbitrary dimensions, which is the limit on a 2-D plane. 

 
 

Fig. 9 High-dimension feature state space projected to arbitrary three dimensions 
 

Given feature space with ultra-high dimension, Gaussian kernelization becomes burdensome and could not return a reliable 
classifier easily, especially due to the relative lack of training data. As a result, linear kernel function is adopted, for both 
binary and trinary classification. By using the high-dimensional feature, the rates of correct classification for both binary and 
trinary cases are 100%, as shown in Figure 10, which means all the test cases are correctly labeled. 
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Fig. 10 Rate of correct classification via SVM classifiers, linear kernel 
left: binary classification; right: trinary classification 

 

5. SUMMARY AND CONCLUSION 
This paper compares two strategies of damage detection and classification, namely a Bayesian model selection approach and 
support vector machine classification. Bearing defects on rotary machine is selected as the test-bed to implement the 
strategies. In the Bayesian approach, it takes tens of samples for the posterior probability of selecting/denying a model to 
saturate to either 1 or 0, but for SVM, the training and testing will take longer time. In SVM approach, the performance for 
binary classification is better than for trinary cases, because of the lower complexity, and higher-dimensional features will 
lead to a more specific classification. On the other hand, higher-dimensional feature spaces will cause more computational 
burden in the SVM training procedure, which is a major drawback compared to Bayesian approach. Among the two types of 
kernel functions, SVM with linear kernel function separates data with a hyperplane and has the advantage of relatively faster 
training, while Gaussian kernel has better flexibility to handle more complicated data sets. This gets verified by high-
dimensional features, where Gaussian kernel may not converge to a decision boundary with limited training sets. Although 
the SVM is computational expensive, compared to the Bayesian approach, it is better at handling high-dimensional features, 
because when the feature space expands, the joint probability density function will have an exponentially increasing 
complexity, and the evaluation of likelihood functions will become troublesome. 
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