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A Family of Methods for the Solution of Lattice Models 

Lei Gong- Yan 

Department of Mathematics, Peking University, Peking, China 
and Department of Mathematics and Lawrence Berkeley Laboratory 

University of California, 
Berkeley, California 94720 

ABSTRACT 

A family of methods for evaluating the thermodynamic functions for a class 

of lattice models that includes the Ising model is discussed. The family of 

methods is characterized by successive increases in the lattice size followed by 

extrapolation. It is shown that the usual transfer matrix method is a member of 

the family and the best member of this family is found. We are also concerned 

with the further acceleration of these methods. For this reason on the basis of 

the member of this family which is related to the transfer matrix method an 

extra linear extrapolation algorithm is presented. By this algorithm, not only the 

bulk physical quantities can be evaluated more precisely but also an approxima-

tion to the boundary thermodynamic quantities can be obtained. A new exprcs-

sion for the boundary free energy of the Ising model is derived. fn addition. the 

convergence to the thermodynamic limit for the scaling method which has been 

presented by Chorin is shown. Some numerical results for the bulk and boundary 

thermodynamic functions of the Ising model are included 
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1. Introduction 

The goal of this paper is to consider a family of methods for evaluating the partition func-

tion, the free energy and other thermodynamic quantities for a class of lattice models that 

includes the Ising model. The family of methods is characterized by successive increases in the lat-

tice size followed by extrapolation. All methods in this family are related to the linkage algo-

rithm [10j. One member of this family is the usual transfer matrix method [22j. Another member 

of this family is the particular factored solution used in [10j. One aim of the present paper is to 

find the best member of this family. We are also concerned with the further acceleration of these 

methods. An extra linear extrapolation algorithm which generalizes methods used in conjunction 

with the transfer matrix method will be presented. In addition, the scaling algorithm [10j which 

uses a spin batch to accelerate the convergence to the thermodynamic limit will be discussed. 

In [lOj, several methods for reducing the amount of labor required for the evaluation of the 

thermodynamic functions for lattice methods were presented. Among these methods the basic one 

is the linkage algorithm which relates the partition function and the free energy of a union of 

blocks to the same quantities evaluated on the component blocks. This linkage algorithm leads to 

an exact and fast enumeration scheme that reduces drastically the labor required for evaluating 

the partition function of a finite lattice (for L Ising spin in the plane the amount of labor is 

reduced from 0 (2L ) to 2° (VI: +loIzL I). The linkage algorithm allows us to add spin locations to a 

given spin configuration and compute the thermodynamic quantities for the augmented 

configuration at a small cost. On the basis of the linkage algorithm two other methods which 
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accelerate the rate at which quantities evaluated on a finite lattice converge to their thermo­

dynamic limits were presented in [10]. One was called a factored solution. Chorin showed that for 

Ising spins on a line the thermodynamic limit was reached by the factored solution. For a two­

dimensional Ising model the numerical results showed that this algorithm accelerates the conver­

gence. The other method was "scaling" which further accelerates the convergence of the factored 

solution. In [10] there waS only a heuristic justification for the method and the numerical results 

provided were only for one lattice size which was not sufficient to show the convergence to the 

thermodynamic limit. 

The present paper is based on [10]. First, it will be demonstrated that from the linkage algo­

rithm a family of methods can be derived and the usual transfer matrix method can be related to 

this family. It will be shown that the particular factored solution used in [10] is the best in this 

family. Second, for the member of this family which is related to the transfer matrix method, an 

extra linear extrapolation algorithm will be presented. We add the word "extra" because an 

extrapolation has already been included in the original method. By this algorithm, not only the 

bulk physical quantities can be evaluated more precisely but also an approximation to the boun­

dary quantities can be obtained at the same time. Along the line of the algorithm a new expres­

sion for the boundary free energy of Ising model will be derived. Third, some numerical results 

which show that when the lattice size increases, the thermodynamic functions computed by the 

scaling and the extra linear extrapolation algorithm converge to their thermodynamic limits will 

be included. Then a review of the particular factored solution, the scaling method and the extra 

linear extrapolation algorithm will be given. 

In order to accelerate the convergence of finite-lattice sequences to their bulk limits, various 

extrapolation methods have been considered by a number of authors. In fact, the analysis of 

numerical finite-lattice data by finite-size scaling theory is essentially an extrapolation [4]. In con­

nexion with this theory, a computationally important development is the phenomenological renor­

malization presented by Nightingale [18]. After that in [14] a sequence transformation method 

has been used to extrapolate the bulk critical parameter from the data for finite lattices with 

'" 
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periodic boundary condition: These methods have yielded some accurate results. In the present 

paper, we still discuss the extrapolation. However, we do not start with finite-size scaling. 

Without consideration of all finite-size effects, we only pay attention to the effect due to the" dan-

gling bonds" at the boundary [23J. Our extrapolation process is equivalent to eliminating this 

boundary effect from bulk thermodynamic quantities computed for a finite system. The extrapola­

tion algorithm considers the finite lattice with non-periodic boundary conditions, by which both 

_the bulk and the boundary thermodynamic functions can be studied ... 

For simplicity, we shall concentrate on the two-dimensional Ising model with free edges. 

Both bulk and boundary thermodynamic functions will be computed. Our numerical results are 

consistent with the theoretical predictions and comparable with the results in [12J [17J [18J [20J. 

The numerical results for boundary thermodynamic quantities are given here apparently for the 

first time. The two-dimensional Ising model is discussed as an illustration. All of these methods 

can be applied to more complicated lattice systems and can be used in conjunction with some 

other methods, for example, Monte-Carlo methods. 

This paper is organized as follows. In section 2 we briefly describe the Ising model and some 

relevant theoretical results. In section 3 we discuss the family of methods which are derived from 

the linkage algorithm followed by extrapolation. In section 4 an extra linear extrapolation algo­

rithm is given. In section 5 we present computational results. Finally, in section 6 'IN e use the 

finite-size scaling theory to estimate the critical point. 

In this paper we do not discuss the estimates of critical exponents. This work will be done in 

another article. 

2. Problem and Notation 

We briefly describe the ferromagnetic Ising model and some relevant theoretical results. 

Consider an m X n rectangular lattice with sites {i ,j), 1:S i :s m, 1:S j :s n , carrying spin 

Jli ,j, Jli ,j = ±l. A set of possible values Jl =~ Jli ,j} is called a configuration. The energy of a 

configuration, in appropriate units, is 
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i=m-Ij=II i=mj=II-1 
E (/J) = - E E /Ji ,j /Ji+I,j- E E /Ji ,j /Ji ,j +1. (2.1) 

;=1 j=1 i=1 j=1 

The partition function is 

Zm XII = ~exp(-zE(/J))' (2.2) 

where z = ~ and T is the temperature. The free energy tPm XII per spin for the finite lattice is 

and the bulk free energy per spin in the thermodynamic limit is 

The bulk internal energy U is 

and the bulk specific heat 0 is 

tP= lim tPmxII· 
m,"~oo 

8tP U=--
8z' 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

In the Ising model a critical point Ze, i.e. a non-analytic point of tP,is found, sinh (ze) = 1, 

Ze = .440685.... The singularities of various physical quantities are characterized by the 

corresponding critical exponents. The critical exponents of the Ising model are known. In particu-

lar, the bulk specific heat 0 diverges logarithmically at Ze , in standard notation, the correspond-

ing critical exponents a = a' = 0 101 (see [22]). 

Next, we will give the definitions of the thermodynamic quantities associated with the boun-

dary. We consider an infinitely long ferromagnetic Ising strip consisting of m parallel layers with 

free boundary condition. We have [23] 

(2.7) 

where tPm is the free energy per spin of the strip. tP ,as before, is the thermodynamic limit, f is 

the free energy per unit boundary length, m -1 f stands for the correction due to the boundary 
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effect. In (2.7), the factor 2 befor m -1 f comes from the two boundaries, upper and lower. (In 

some references, for example [23], this factor is omitted). It should be pointed out that for the 

infinitely long Ising strip each unit boundary length corresponds to one spin located on the boun-

dary, thus more precisely, f is the free energy per unit boundary length and for this boundary 

every unit length corresponds to one statistical degree of freedom. From (2.7) the ,boundary free 

energy per unit length in the thermodynamic limit is defined as 

f = 2-1 lim m (ifJm -ifJ). (2.8) 
m .... 00 

Then, the boundary internal energy is 

of 
e = - oz . (2.9) 

The boundary specific heat is 

b 2 oe 
C = Z a;' (2.10) 

It is clear that the equations similar to (2.8) which relate the boundary thermodynamic quantities 

with the corresponding bulk ones hold for e and C b • 

In the two-dimensional Ising model there is only one critical point, i.e. the singularities in 

the boundary thermodynamic quantities occur exactly at the same temperature as those in the 

bulk properties. It is known that in the thermodynamic limit e diverges logarithmically at Z< and 

superimposed on the logarithmic infinity, there is a discontinuity in e at Zc , i.e. 

lim (e (zc +cS: )-e (zc -cS: )) = L. 
6, .... 0+ 

(2.11) 

In the situation of free edges L = 2-1 (if the factor 2 in (2.7) is omitted, L should be 1). In phy-

sics this phenomenon can be explained by "latent heat". The boundary specific heat c b admits a 

singularity t-I (t = ~-1), which means that c b has opposite signs above and below Tc' The 
Tc 

critical exponents of c bare cr, = cr,' = 1. [22] 
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Now the problem is to evaluate the thermodynamic quantities for the Ising model and to 

obtain the critical information. 

3. A Family or Methods Based on the Linkage Algorithm 

In this section we introduce the linkage algorithm and the factored solution. Then we 

demonstrate that a family of methods can be derived by the linkage algorithm followed by factor-

ing. It will be shown that the usual transfer matrix method is included in this family and the par-

ticular factored solution used in [10J is the best member in this family. In essence the factored 

operation is equivalent to an extrapolation. Thus this family of methods is characterized by suc-

cessive increases in the lattice size followed by extrapolation. 

In [lOJ, the linkage algorithm and the factored solution have been described in detail. Here 

we only outline them. To compute the partition function of a lattice model we can consider that 

the lattice consists of some basic blocks. A basic block is an m X m array of spins; in the simplest 

case it can be a single spin. The partithn function of the basic block is computed beforehand and 

subdivided into a sum parameterized by its leading spin configurations, e.g., the spin configuration 

which are located on the upper and right sides of the block. Then to construct the partition func-

tion of a large block, one can start with a small block, and repeatedly adjoin to it basic blocks on 

the left and bottom. The reader should refer to [101 for the computational formulas. 

We consider an N X N tw<>-dimensional Ising model and denote the partition function by 

ZN xN. In [10] Chorin has shown that the successive linkage of blocks results in an approximate 

factorization of the partition function into terms associated with small blocks far from the uncon-

nected edge, and 

11-
lim--zlog ZN xN = --zlog Zm Xm , 

N m 
(3.1) 

where Zm x m is the limiting factor. If we start with a block A , then by the linkage algorithm we 

can obtain 
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ZB (3.2) 

where ZB is the contribution of the newly connected block B to the partition function of the lat­

tice A UB. If ZB obtained in successive linkage converge to a limit Z, then from (2.1) we 

obtain the approximation of the free energy <PN xN -<p. In [10] it has been shown that the formu-

las for the free energy can be differentiated with respect to Z and yield successive approximations 

In practice we perform computation only on a finite size lattice; thus it is impossible to 

obtain the limit of ZB' The alternative approach is to compute ZB only one time, i.e., if the 

whole lattice is denoted by A UB , we can start with a sub-lattice A, which is chosen properly, 

then the corresponding ZB is used as Z in (3.1). , 

The linkage algorithm is very flexible; the sub-lattice A can be chosen' in many different 

ways. For example, for an m X n lattice some possible choices of A are shown in Fig.I. For each 

choice of A we can obtain a solution from (3.2) and (3.1). Thus in fact we have a family of 

methods. Each member of this family corresponds to a choice of A . In [10], a particular choice of 

A , as shown in Fig.la, is used. The numerical tests have shown that, with this particular choice 

of A , the results are more accurate than with the others. This choice accelerates the convergence 

to the thermodynamic limit. For convenience, from now on, we call the method corresponding to 

the particular choice of A the particular factored solution, and the general operation expressed by 

(3.2) the factored operation. 

Now we show that the usual transfer matrix method is a member of the family. 

Consider an m X n Ising model. The partition function is given by (2.2). Denote a column 

configuration by t7 i ' i.e., 

t7 i = (Ill,i' 1l2,i , ... , Ilm.i ), 

then there is a total of 2m possible configurations for each t7. We can associate each configuration 

with an integer between 1 and 2m according to the rule 

"".I!-. 
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m 

U = u(i), i-I + E max(O,J.") 2.-1
• 

'=1 

If we define 

m-l 

V 1(u;) = - E J.'i,; J.'i+1,;; 
i=1 

m 

V 2(Uj ,uj+d = - EJ.'i,jJ.'i,j+1' 
i =1 

then, the partition function (2.2) can be written as 

" II-I E exp(-z( E VI(u;)+ E V2(u;,U;+1))} 
a.\···a. ;=1 ;=1 

E ex p(-; V I(u!l)L(UI,U2)L(U2,U3)'" L(UII_I,ulI)exp(-; VI(U,,)), 
a1 '" a" 

where 

(3.3) 

(3.4) 

is the (0- , q' ) component of the 2m by 2m matrix L . The matrix L is called the transfer matrix. 

If we define a vector 0'=(0'100'2, •.. , 0'2m )T , O'i =exp{- ~ V 1(0'(i))), i =1.2 •...• 2m 
• then (3.3) can 

be expressed as 

Zm XII = (0'. L ,,-I a). (3.5) 

From (3.5) we know that. if we compute the partition function for an m X(n +1} lattice by link-. 

age algorithm and construct the lattice by successive adjoing column to columns. it is equivalent 

to computing a series of expressions which have the same form as (3.5) and adjoing a column is 

equivalent to raising one power of L. If we consider the factored operation, as shown in Fig.lb. 

we take Z .... UB = Zm X(II +1). Z .... = Zm X". i.e .• the lattice B is a column. we have 
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tPm." +1 
..!....log (0', L" 0') 
m (0', L ,,-10') 

..!....(log Al+ 0 (( ~2 }"-1))), 
m "I 

(3.6) 

where Al is the largest eigenvalue of the 2m by 2m matrix L. For sufficiently large n , tPm." is a 

better approximation to m-1log Al - the free energy per spin of an infinitely long Ising strip con-

A 
sisting of m layers. For fixed m, this approximation has an error 0 (( A: )"). However, if we 

compute the free energy directly from (2.3) and use the result as an approximation to m -llog At. 

the error is 0 (n -1). Therefore, the method (3.6) allows an easy extrapolation from an m X n lat-

tice to an m X 00 one, this is an advantade. In fact, from (3.6) we know that the factored opera-

tion carried out by taking B as a column is equivalent to computing the maximum eigenvalue of 

the transfer matrix L by the power method. It accelerates the convergence to the thermodynamic 

limit, but the accuracy obtained by this method is restricted by m. It is only an extrapolation 

along one direction i.e., the direction alon~ which n increase;. It is clear that the method (3.5), 

(3.6) is a member of the mentioned family. In essence it is the transfer matrix method but carried 

out in an implicit way. From now on, the Illethod will be called the factored solution by column. 

The factored solution by column has a lower accuracy than the particular factored solution. 

Visually, the reason is that, as shown in Fig.la, the particular factored solution includes the extra-

polation along two directions. Now we explain in detail why the particular factored solution 

accelerates the convergence to the thermodynamic limit and show that it is the best member of 

the mentioned family. 

It is well known that phase transitions in statistical mechanical calculations arises only in 

the thermodynamic limit. The thermodynamic limit requires that the number of spins contained 

in a lattice system approach infinity. However, in any practical computation ~nly finite lattices 

can be considered [4] [7]. An important part of the finite-size effect is due to the "dangling bonds" 

on the boundary [23]. In the two dimensional Ising model a general spin has four adjacent spins. 

A pair of adjacent spins are interrelated through a bond and interact with each other. However, 

the spins located on the boundary sites have no interaction with the outside, thus the contribution 
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of a boundary spin to the thermodynamic quantities differs from that of an inside spin. Since a 

unit boundary length corresponds to a dangling bond, this effect is proportional to the boundary 

length for the whole lattice system. 

We inspect the particular factored solution from the point of view of boundary effects. It is 

found that although the rectangular lattice AUB and the sub-lattice A in Fig.la contain 

different number of spins, they have the same boundary length. As a consequence, they contain 

almost the same boundary effect induced by the" dangling bonds". Therefore, when the factored 

operation is executed, the effect is canceled. That is the reason why the particular factored solu­

tion may be a better approximation to the one in the thermodynamic limit. 

From the above discussion it is plausible that the particular factored solution is better than 

the factored solution by column. For the factored solution by column, the lattice A UB is an 

m x{n +1) rectangle and the sub-lattice A is an m Xn one. They have different boundary 

length. After the factored operation some boundary effects induced by the "dangling bonds" are 

still included in the numerical results. Thus, the particular factored solution is more accurate. 

To demonstrate that the particular factored solution is the best member of the family, we 

have need to show that the particular factored solution is more accurate than any methods in this 

family for which the lattice A has the same boundary length as the whole rectangular lattice. 

One example of such method is represented by Fig.lc. 

We can only answer this question qualitatively and will be concerned with the spin effects 

which are located on corners. Until now the corner spin effect has not been clear, but the follow­

ing discussion appears to be reasonable. The reader should refer to [4] [7] [23] for related discus­

sions. 

Let us first analyze the boundary effect induced by "dangling bonds" for an m X n lattice. 

For this lattice the boundary length is 2{m +n ). There are 2{m +n )-4 spins located on the boun­

dary. The boundary length is not equal to the boundary spin number because there are four con­

vex corners. Each spin located on a convex corner occupies two units of boundary. Thus the boun­

dary spin number is four less than the boundary length. If the 2{m +n )-4 spins were inside, they 
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would interact with 2(m +n) spins which were surrounding them outside. Thus we can consider 

that the boundary effect is equal to the interactions between the 2( m +n )-4 boundary spins and 

the 2( m +n ) imaged spins. Now we inspect the sub-lattice A shown in Fig.1a. It is found that it 

still has the boundary length 2(m +n). However, the boundary spin number reduces to 

2(m +n )-5, because there are five convex corners in the A. On the other hand, the spin number 

which are surrounding this sub-lattice A is 2( m +n )-1. This number is one less than the number 

for an m X n lattice. The reason is similar, there is also a concave corner for the A . The two 

boundary spins which form the concave corner would only interact with one imaged spin outside 

A . Thus the boundary effects due to the "dangling bonds" for this A can be considered as the 

interaction between 2(m +n )-5 boundary spins and 2(m +n )-1 imaged spins. It is noticed that 

both the boundary spin number and the imaged spin number are one less than in an m X n lat­

tice. Thus the boundary effects due to "dangling bonds" for the whole lattice and the sub-lattice 

A in Fig.1a are not exactly the same; they are only approximately equal to each other. Furthe~, if 

we consider a general choice of sub-lattice A, it has sti1~ the boundary length 2( m +n), but 

I (I ~5) convex corners (in the example shown in Fig.ic, 1=7 ). It is clear that any choice of this 

kind corresponds to a method of the family (the corresponding numerical result will be called the 

general factored solution). In company whth the I convex comers there must be 1-4 concave 

corners. Thus for a general choice of A , the boundary effects can be considered as the interac­

tions between 2( m +n )-1 boundary spins and 2( m +n )-(1-4) imaged spins. It is convinced that 

the bigger the number 1 is, the more different are the boundary effects between the m X n lattice 

and the sub-lattice A. Consequently, after the factored operation more boundary effects will 

remain in logZB' It affects the accuracy strongly. 

From the above discussion we know that the particular factored solution is the best member 

of this family, because in Fig.1a 1 =5, it is the possible minimum value. Thus, for the particular 

factored solution the boundary effects due to the "dangling bonds" are canceled almost 

thoroughly. 
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In addition, it should be noted that the boundary effects due to the" dangling bonds" for the 

particular factored solution are only eliminated approximately, thus if the difference between the 

whole lattice and the sub-lattice A is only a few spins located on the left and bottom corner, still 

the result is not satisfactory. 
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Table Ia 
Convergence of factored solution by column to the free energy ¢ 

z ¢.,6 ¢a,9 ¢12,13 ¢axoo ¢(exact) 

.1 .7020 .. 7026 .7028 .7026 .7032 

.2 .7291 .7318 .7327 .7318 .7345 

.3 .7770 .7838 .7860 .7838 .7906 
A .8496 .8645 .8694 .8645 .8794 
.45 .8967 .9188 .9266 .9189 .9436 
.5 .9515 .9843 .9968 .9845 1.026 
.6 1.083 1.143 1.166 1.144 1.210 
.7 1.237 1.321 1.349 1.321 1.404 
.8 1.404 1.504 1.537 1.504 1.602 
.9 1.576 1.689 1.720 1.689 1.801 

1.0 1.750 1.876 1.917 1.876 2.001 

Table Ib 
Convergence of factored solution by column to the internal energy U 

z U.,6 U S,9 U 12,13 Uaxoo U(exact) 

.1 .1774 .1904 .1947 .1904 .2034 

.2 .3699 .3991 .4088 .3991 .4282 

.3 .5944 .6495 .6679 .6495 .7045 

.4 .8664 .9826 1.023 .9831 1.106 

.45 1.019 1.196 1.271 1.199 1.513 

.5 1.174 1.421 1.533 1.419 1.746 

.6 1.446 1.717 1.796 1.720 1.909 

.7 1.620 1.812 1.862 1.810 1.964 

.8 1.702 1.846 1.891 1.846 1.985 

.9 1.734 1.861 1.905 1.861 1.993 
1.0 1.745 1.868 1.911 1.868 1.997 

Table Ic 
Convergence of factored solution by column to the specific heat 0 

z 04,6 °a.9 0 12,13 Oaxoo o (exact) 

.1 .0182 .0196 .0201 .0196 .0210 

.2 .0822 .0899 .0925 .0899 .0977 

.3 .2219 .2543 .2650 .2543 .2863 

.4 .4742 .6312 .7021 .6353 .8626 

.45 .6285 .9163 1.100 .9294 1.605 

.5 .7627 1.066 1.140 1.002 .7249 

.6 .8215 .5928 .4307 .5546 .3134 

.7 .5951 .2535 .2213 .2584 .1581 

.8 .3240 .1380 .1233 .1474 .0830 

.9 .1480 .0808 .0698 .0877 .0441 
1.0 .0604 .0477 .0399 .0444 .0234 
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Table ITa 
Convergence of general factored solution (I =7) to the free energy <IJ 

z 4X4 array 8X8 array 12X12 array <IJ( exact) 

.1 .7032 .7032 .7032 .7032 

.2 .7345 .7345 .7345 .7345 

.3 .7901 .7905 .7905 .7906 

.4 .8754 .8785 .8790 .8794 

.45 .9310 .9383 .9404 .9436 
~ 

.5 .9960 1.011 1.016 1.026 

.6 1.153 1.188 1.200 1.210 

.7 1.337 1.387 1.398 1.404 

.8 1.537 1.590 1.598 1.602 

.9 1.744 1.792 1.798 1.801 
1.0 1.953 1.995 1.999 2.001 

Table IIb 
Convergence of general factored solution (I =7) to the internal energy U 

z 4X4 array 8X8 array 12X 12 array U(exact) 

.1 .2034 .2034 .2034 .2034 

.2 .4274 .4282 .4282 .4282 

.3 .6943 .7032 .7042 .7045 

.4 1.022 1.079 1.094 1.106 

.45 1.205 1.320 1.369 1.513 

.5 1.392 1.576 1.663 1.746 

.6 1.724 1.923 1.945 1.909 

.7 1.942 2.\.19 1.994 1.964 

.8 2.047 2.031 2.004 1.985 

.9 2.082 2.026 2.005 1.993 
1.0 2.086 2.020 2.004 1.997 

Table IIc 
Convergence of general factored solution (I =7) to the specific heat C 

z 4X4 array 8X8 array 12X12 array C(exact) 

.1 .0210 .0210 .0210 .0210 

.2 .0967 .0976 .0976 .0977 

.3 .2662 .2828 .2853 .2863 

.4 .5714 .7166 .7806 .8626 

.45 .7567 1.038 1.223 1.605 

.5 .9201 1.221 1.303 .7249 

.6 1.015 .6915 .3767 .3134 

.7 .7617 .1674 .0941 .1581 

.8 .3994 -.0053 .0214 .0830 

.9 .1187 -.0543 -.0030 .0441 
1.0 -.0049 -.0645 -.0106 .0234 
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Table lIla 
Convergence of particular factored solution to the free energy </J 

z 4X4 array 8X8 array 12X12 array </J(exact) 

.1 .7032 .7032 .7032 .7032 

.2 .7345 .7345 .7345 .7345 

.3 .7904 .7905 .7906 .7906 

.4 .8769 .8789 .8792 .8794 

.45 .9339 .9396 .9411 .9436 

.5 1.001 1.014 1.019 1.026 

.6 1.163 1.196 1.205 1.210 

.7 1.355 1.396 1.402 1.404 

.8 1.560 1.579 1.601 1.602 

.9 1.769 1.798 1.800 1.801 
1.0 1.979 1.999 2.000 2.001 

Table IITb 
Convergence of particular factored solution to the internal energy U 

z 4X4 array 8X8 array 12X 12 array U(exact) 

.1 .2034 .2034 .2034 .2034 

.2 .4280 .4282 . .4282 .4282 

.3 .6997 .7041 .7044 .7045 

.4 1.043 1.089 1.099 ·1.106 

.45 1.239 1.345 1.389 1.513 

.5 1.440 1.617 1.699 1.746 

.6 1.792 1.957 1.949 1.909 <" 

.7 2.004 2.017 1.980 1.964 ... ' 

.8 2.085 2.014 1.992 1.985 

.9 2.094 2.008 1.997 1.993 
1.0 2.078 2.005 1.999 1.997 

Table IIIc 
Convergence of particular factored solution to the specific heat C 

z 4X4 array· 8X8 array 12X12 array C (exact) 

.1 .0210 .0210 .0210 .0210 

.2 .0974 .0976 .0977 .0977 

.3 .2743 .2851 .2860 .2863 

.4 .6082 .7498 .8070 .8626 

.45 .8139 1.108 1.302 1.605 

.5 .9901 1.288 1.330 .7249 

.6 1.043 .5614 .2388 .3134 

.7 .6727 .0347 .0781 .1581 

• .8 .2236 -.0443 .0503 .0830 
.9 -.0700 -.0352 .0282 .0441 

1.0 -.2002 -.0231 .0134 .0234 
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4. A Extra Linear Extrapolation algorithm 

In last section a family of methods has been discussed. Especially, in the family there are 

two specific members. One is the particular factored solution which is the best one of this family. 

The another is the factored solution by column which related to the usual transfer matrix method. 

In this section we discuss their further accelerations. 

In [101 on the basis of the particular factored solution a further acceleration method which is 

called the scaling has been presented. The basic idea is as follows: We imagine a "spin bath" 

infinitely extending to the top and the right of a finite rectangular lattice. The spin bath imposes 

different weights on the configurations formed by the spins located on the top and the right boun­

dary of the finite lattice. The method is an iterative one. It starts with a guess of the weights, 

then the particular factored solution is computed for the lattice with spin bath. From the compu­

tation a set of new weights are obtained by a method which can be considered as a reverse 

Kadanoff scaling. Thus the iterative process continues until convergence. In [lOJ some value of ifJ, 

U, C computed by the scaling method for 4X4 Ising model has been displayed. The convergence 

to the thermodynamic limit has not been proved. 

In this paper we use the scaling method to compute the Ising model with different sizes. The 

results will be discussed in the next section. Here, we focus attention on the further acceleration 

of the factored solution by column. 

From the last section we know that after the corresponding factored operation some boun­

dary effects still remain in the factored solution by column. Now we inspect this point more pre­

cisely. 

In Fig.lb, where the factored solution by column is sketched, A UB is an m X(n +1) lat­

tice and" A is an m X n one. If we denote the free energy per spin computed with the linkage 

algorithm for lattice A UB by ifJm X(n +1), then the free energy of the whole lattice A UB is 

m (n +l)ifJm x(n+1). Similarly, for the lattice A the corresponding quantities is mn ifJm Xn. When 

the factored operation is performed, the difference m (n +l)ifJm x(n+1)-mn ifJ m Xn is computed. We 

study the difference in detail. Because m (n +l}-mn =m , in the difference there should be a term 

.. 
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which approximates to m -spin free energy. This term can be expressed approximately as m ¢J, 

where ¢J, as before, is the free energy per spin in the thermodynamic limit. Moreover, some boun-

dary effects are included in the difference. For the lattice A UB and sub-lattice A shown in 

Fig.lb, the vertical boundaries have the same length, but in the horizontal direction the boundary 

of A UB is one unit longer than the boundary of A. If we notice that there are two horizontal 

boundaries, up and down, and recall that the boundary effect per unit length is denoted by 1 in 

section 2, then there should be a term 21 in the difference. In Summary, if we denote the 

difference by m ¢Jm ,II +1> we have 

m¢Jm,II+l m (n +1)¢Jm X(II+l)-mn ¢Jm XII 

I 
Zm X(II+l) 

- og 
ZmxII 

m ¢J+21 +0 (1), 

( 4.1) 

where 0 (1) denotes the error due to the other finite-size effects and goes to zero as m , n tend to 

infinity. As compared with (3.6) it is clear that the ¢Jm ,11+1 defined by (4.1) i~ none other than the 

factored solution by column. And we know that the term 21 in (4.1) reduces the accuracy of 

¢Jm ,II +1 as an approximation to ¢J. However, the term can be eliminated easily. Beside ¢>m ," +1 we 

compute ¢Jm-I, .. , according to (4.1), 

(m -1)¢Jm-l,II =(m -1)¢J+21 +0 (1). 

Subtracting (4.2) from (4.1), we have 

¢Jm,II+1 - m¢Jm,II+l-(m-l)¢Jm_I,,, 

¢J+o (1) 

(4.2) 

( 4.3) 

¢Jm,"+1 is a better approximation to ¢J than the factored solution by column ¢Jm,,,+l' Similar 

approximations to the bulk internal energy U and the bulk specific heat C can be derived in the 

same way and wiUbe denoted by Um ,,, +1 and 0171 ,,,+1 respectively. 

Here, it should be pointed out that to eliminate the term 21 from (4.1) we can use any 

¢Jp ,9 ' the only requirement is p ~m . We chose ¢J", -I," just for the convenience of programming. 
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In the practical computation we take n =m . 

In the following the expression (4.3) is explained in a different way. If the m X n Ising 

model is wrapped on a torus and in the thermodynamic limit n is alowed to approach infinity 

before m , following Thompson [22), we have 

Ir=m-I 

lim m -I log AI=.!.. log (2sinh (2z))+ lim (2m t l E "f21r +1 
m _00 2 m -00 Ir =0 

~ log {2sinh {{2z ))+{2rrtl J cosh-I ( cosh {2z )coth (2z )-cos(8)) d 8, 
o 

( 4.4) 

where A\I as before, is the maximum eigenvalue of the 2m by 2m transfer matrix L and "fir is 

defined by coshblr) = cosh{2z )coth{2z )-cos{ rrk). From (4.4) we know that using m -llogAl 
m 

Ir=m-I 

instead of </J approximately corresponds to using the summation (2m t l E "f21r +1 instead of the 
. 1r=0 

integral. From the point of view of numerical analysis this means that the integral is calculated 

by rectangle rule formula, and the number of intervals is proportional to m. On the other side 

from (3.6) we know that the factored solution by column </Jm.II +1 is an approximation to m -llogA!. 

Thus we see that the algorithm expressed by (4.3) is none other than the Romberg method in 

numerical analysis, which improves the accuracy of the approximate integral calculation. From 

now on (4.3) will be called the extra linear extrapolation algorithm. 

From (4.1) and (4.2) we can also derive a formula to compute the boundary free energy f . 

However, we should make a further assumption on the term 0 (1) appearing in (4.1). Denotin the 

term by 1/J{m ,n +1), we assume not only 1/;{m ,n +1)-0 as m ,n -00, but also 

m 1/J(m -l,n )-(m -l)1/J(m ,n +1)-0, as m ,n -00. (4.5) 

This assumption means that either the term 0 (1) has a higher order than m -! or its main part 

can be expressed as Am-a, O<o~1 and the coefficient A is independent of m. In fact, it seems 

reasonable to consider the term 0 (1) very close to the difference between the free energy 
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computed for a finite lattice with periodic conditions and the corresponding thermodynamic limit. 

IT it is true, then this term will decay exponentially with m. In the end of this section the vali-

dity of this assumption will be discussed by considering the high-temperature expansion for the 

boundary free energy f. Mainly it will be justified by the numerical results which are derived 

from this assumption and will 'be presented in the next section. 

Under the assumption (4.5), multiplying (4.2) by m, and subtracting the result from 

(m -1)X(4.1), we have 

(4.6) 

f m,n +1 can be taken as an approximation to the boundary free energy per unit length. 

It is clear that similar expressions hold for the approximation to the boundary internal 

energy and the approximation to the boundary specific heat. They are denoted by em •n +1> 

b • I C m.n +1, respective y. 

From (4.6) an expression for the boundary free energy f of an infinitely long Ising strip can 

. be derived; The expression (4.6) can be written as 

(4.7) 

In (4.7) we allow n go to infinity before m , then 

lim 2-1m (m -1)(<Pm -1-<Pm) = f , 
m .... 00 

(4.8) 

where 

<Pm = lim <Pm.Hl = J... log A10 (4.9) 
ra-.oo . m 

it can be obtained from (3.6) and Al is the maximum eigenvalue of the 2m by 2m matrix L given 
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by (3.4). Here for indicating the dependence of Al on m , we denote it by Al{ m ). Thus the expres-

sion (4.8) can be written as 

.1 Alm{m-l) 
f = lim - log ( ). 

2 ' m -l{ ) m_oo "'I m 
(4.10) 

Expression (4.10) exhibits the relation between the eigenvalues of the transfer matrix and the 

boundary thermodynamic functions. 

Now we briefly discuss the validity of the assumption (4.5). In order to show that the 

assumption (4.5) is re~nable, we will compare the f defined by (2.8) with the expression (4.7) 

which is derived on the basis of (4.5). However, it is difficult to do this analytically, instead, we 

adopt an alternative way, i.e., we compare the two high-temperature expansions for f which are 

derived from (2.8) and (4.7) separately, and consider only the first few terms. 

It is well known that in high temperature the free energy t/J can be expanded as a series in 

w = tanh (z) and the expansion coefficients can be calculated by a combinatorial approach (see 

[22]). If we only consider the first few terms of the series, the corresponding coefficients can be 

obtained easily and·t/J can be written as 

(4.11) 

For the free energy of an m X n Ising model with free edges, the corresponding expansion is 

( 9 21 (II) 43 1 ) 8 (10) + --- -+- +---w +0 w . 
22m n 2 mn 

(4.12) 

In (4.12) let n go to infinity, we have 

(4.13) 
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Substituting (4.11) and (4.13) into (2.8), or substituting (4.12) into (4.7), we obtain the same 

expansion: 

(4.14) 

To some extent this result shows us that the assumption (4.5) is reasonable. Here we have only 

considered the coefficients of the terms to wg because when the power increases the computation 

of the corresponding coefficient becomes very complicated. 
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Table IVa 
Convergence of scaling method to the free energy tP 

z 4X4 array 8X8 array 12X 12 array ljJ{exact) 

.1 .7032 .7032 .7032 .7032 

.2 .7345 .7345 .7345 .7345 

.3 .7908 .7906 .7906 .7906 

.4 .8808 .8795 .8794 .8794 

.45 .9433 .9424 .9426 .9436 

.5 1.019 1.021 1.023 1.026 

.6 1.197 1.205 1.208 1.210 

.7 1.392 1.400 1.402 1.404 

.8 1.593 1.599 1.601 1.602 

.9 1.794 1.799 1.800 1.801 
1.0 1.996 1.999 2.000 2.001 

Table IVb 
Convergence of scaling method to the internal energy U 

z 4X4 array 8X8 array 12X 12 array U{exact) 

.1 .2034 .2034 .2034 .2034 

.2 .4285 .4282 .4282 .4282 

.3 .7098 .7045 .7044 .7045 

.4 1.121 1.110 1.107 1.106 

.45 1.381 1.418 1.441 1.513 

.5 1.621 1.700 1.731 1.746 

.6 1.900 1.923 1.919 1.909 

.7 1.990 1.979 1.971 1.964 

.8 2.013 1.995 1.990 1.985 

.9 2.016 2.000 1.997 1.993 
1.0 2.014 2.002 1.999 1.997 

Table IVc 
Convergence of scaling method to the specific heat G 

z 4X4 array 8x8 array 12X 12 array G{exact) 

.1 .0210 .0210 .0210 .0210 

.2 .0981 .0976 .0977 .0977 

.3 .2970 .2865 .2860 .2863 

.4 .7974 .8612 .8692 .8620 

.45 1.057 1.327 1.504 1.605 

.5 1.056 1.074 .9560 .7249 

.6 .5642 .3539 .3096 .3134 

.7 .2153 .1378 .1435 .1581 

.8 .0572 .0572 .0703 .0830 

.9 -.0090 .0212 .0255 .0441 
1.0 -.0335 .0450 .0149 .0234 
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Table Va 
Convergence oC linear extrapolation algorithm to the Cree energy <p 

z -;P4,6 <Ps,1I <P12,13 <p{exact) 

.1 .7032 .7032 .7032 .7032 

.2 .7345 .7345 .7345 .7345 

.3 .7906 .7906 .7906 .7906 

.4 .8791 .8793 .8794 .8794 

.45 .9389 .9416 .9423 .9436 

.5 1.010 1.020 1.024 1.026 

.6 1.187 1.209 1.210 1.210 

.7 1.391 1.405 1.404 1.404 

.8 1.602 1.602 1.602 1.602 

.9 1.809 1.801 1.801 1.801 
1.0 2.012 2.000 2.000 2.001 

Table Vb 
Convergence oC linear extrapolation algorithm to the internal energy U 

Z U.,6 US,II U 12,13 U{exact) 

.1 .2034 .2034 .2034 .2034 

.2 .4284 .4282 .4282 .4282 

.3 .7062 .7045 .7045 .7045 

.4 1.083 1.103 1.106 1.106 

.45 1.312 1.398 1.432 1.513 

.5 1.551 1.717 1.774 1.746 

.6 1.943 1.967 1.912 1.909 

.7 2.106 1.964 1.962 1.964 

.8 2.099 1.980 1.985 1.985 

.9 2.045 1.997 1.993 1.993 
1.0 2.005 1.996 1.997 1.997 

Table Vc 
Convergence oC linear extrapolation algorithm to the specific heat C 

z 04,& OS,II 0 12,13 C (exact) 

.1 .0210 .0210 .0210 .0210 

.2 .0979 .0977 .0977 .0977 

.3 .2874 .2864 .2863 .2863 

.4 .6970 .8213 .8524 .8620 

.45 .9644 1.321 1.548 1.605 

.5 1.173 1.413 1.171 .7249 

.6 1.026 .0580 .1981 .3134 

.7 .2680 .0418 .1722 .1581 

.8 -.2966 .0996 .0866 .0830 

.9 -.4129 .0636 .0445 .0441 
1.0 -.2950 .0323 .0234 .0234 
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Table VIa 
The maximum specific heats emu m ,m and their positions 

z e m ,m computed by the particular factored solution 

m 4 6 8 10 12 

ZC mtm .56114 .51726 .49690 .48511 .47742 

emu 
m,m 1.0800 1.1944 1.2892 1.3695 1.4389 

Table VIb 
The maximum specific heats emu m,m and their positions 

z e m ,m computed by the scaling method 

m 4 6 8 10 

.47440 .46478 .459921 .45566 

emu 
m,m 1.0954 1.2359 1.3448 1.4336 

Table VIc 
The maximum specific heats emu m ,m +1 and their positions 

z e m ,m +1 computed by linear extrapolation algorithm 

m 4 6 8 10 12 

z· m ,m +1 .53413 .49737 .48148 .47258 .46687 

emu m.m +1 1.2227 1.3686 1.484L 1.5784 1.6579 

* See section 5 for the meaning of the symbols emu m ," and z em,,, 

* In the thermodynamic limit the bulk specific heat diverges loga-

rithm.ically at Ze = .440685 ...... . 
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Table VIla 
The boundary Cree energy f computed by the linear extrapolation algorithm 

z f 4,6 f 8,9 f 12,13 

.1 -.0025 -.0025 -.0025 

.2 -.0108 -.0108 -.0108 

.3 -.0273 -.0271 -.0271 

.4 -.0590 -.0595 -.0596 

.45 -.0843 -.0911 -.0945 

.5 -.1179 -.1413 -.1576 

.6 -.2071 -.2610 -.2680 

.8 -.3962 -.3935 -.3911 
1.0 -.5231 -.4977 -.4974 
1.5 -.7577 -.7548 -.7499 
2.0 -1.001 -.9999 -1.000 
2.5 -1.250 -1.250 -1.250 

Table VIIb 
The boundary internal energy e computed by linear extrapolation algorithm 

z e 4,6 e 8,9 e 12,13 

.1 .0519 .0519 .0519 

.2 .1170 .1166 .1166 

.3 .2236 .2199 .2198 

.4 .4324 .4824 .4937 

.45 .5865 .8066 .9678 

.5 .7546 1.184 1.447 

.6 .9938 1.001 .7511 

.8 .7932 .5332 .5556 
1.0 .5192 .5127 .5158 
1.5 .4739 .5007 .5007 
2.0 .4952 .5000 .5000 
2.5 .4993 .5000 .5000 

Table VIle 
The boundary specific heat c b computed by linear extapolation algorithm 

z b 
C 4,5 

b 
C 8,9 

b 
C 1~,13 

.1 .0056 .0056 .0056 

.2 .0315 .0309 .0309 

.3 .1310 .1283 .1279 

.4 .4457 .7605 .9013 

.45 .6718 1.620 2.682 

.5 .8206 1.388 .1822 

.6 .4094 -2.139 -1.395 

.8 -1.241 -.1535 -.2206 
1.0 -.7111 -.0615 -.0988 
1.5 -.1658 -.0010 -.0101 
2.0 -.0710 -.0009 -.0009 
2.5 -.0171 -.0001 -.0001 
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Table VIII 

The boundary free energy I computed by formula (4.10) 

z m=4 m=5 m=6 m=7 m=8 m=9 

.1 -.0025 ·-.0025 -.0025 -.0025 -.0025 -.0025 ~ 

.2 -.0108 -.0108 -.0108 -.0108 -.0108 -.0108 

.3 -.0271 -.0271 -.0271 -.0271 -.0271 -.0271 

.4 -.0573 -.0583 -.0588 -.0591 -.0593 -.0594 

.45 -.0812 -.0846 -.0870 -.0888 -.0901 -.0913 

.5 -.1129 -.1213 -.1276 -.1329 -.1367 -.1402 

.6 -.1954 -.2130 -.2303 -.2480 -.2588 -.2634 

.7 -.2777 -.3117 -.3277 -.3318 -.3326 -.3328 

.8 -.3667 -.3873 -.3906 -.3910 -.3910 -.3910 

.9 -.4377 -.4447 -.4452 -.4452 -.4452 -.4452 
1.0 -.4954 -.4973 -.4914. -.4914 -.4914 -.4914 

, 
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5. Some Numerical Result 

In this section we present some numerical results. . First, the approximate bulk thermo­

dynamic functions computed by the different factored solutions as well as by the two further ac­

celaration methods, i.e., the scaling and the extra linear extrapolation algorithm, are given. From 

these results the different methods can be compared. Furthermore, the boundary thermodynamic 

functions computed by the extra linear extrapolation algorithm are displayed, from which the al­

gorithm is tested. 

For the bulk thermodynamic functions, our results can be compared with [17], in which the 

N X N Ising model with free edges has been computed by the Monte-Carlo method for N:5 100. 

All of our methods, i.e., the particular factored solution, the scaling and the extra linear extrapo­

lation, have show~ much faster convergence than the corresponding Monte-Carlo. If we inspect 

the maximum bulk specific heat values and their positions, this point will be shown more clearly. 

For example, the maximum specific heat computed by the extra linear extrapolation algorithm for 

a lOX 11 lattice is 1.5784 which occurs at z = .47258, however, if we want to obtain a compar­

able result by Monte-Carlo, at least the lattice size needs to exceed 40 X 40. For the boundary 

thermodynamic functions of the Ising model our numerical result are apparently the first and 

their convergence looks good. The approximate boundary free energy, internal energy and specific 

heat are consistent with the theoretical predictions and reveal the specific features of the thermo­

dynamic limit functions. From the finite lattice data the critical exponents can be recognized. 

The comparision for the critical point estimates will be discussed in the next section. Our estimate 

is also better than the Monte-Carlo's and comparable with the numerical renormalization group 

results in e.g., [18] [20]. 

In Tables la, lb, lc we disply 4Jm. m +1> Um.m +1> Om ,m +1 computed by factored solution by 

column for m =4,8,12 and some z. For the sake of comparison the corresponding valus' for a 

8X 00 lattice as well as the exact values of 41, U, 0 are also given. In Tables 2a, 2b, 2c and 3a, 

3b, 3c we disply 4Jm x m, Um X m' Om X m computed by the general (1=7) and the particular fac-
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tored solution for the same m and z , respectively. We see that the results computed by the fac­

tored solution by column for finite lattices are almost the same as those for an infinitely long Ising 

strip, i.e., this method accelerates the convergence to the thermodynamic limit. However, because 

of the boundary effects due to "dangling bonds" even though the lattice size for the factored solu­

tion by column, which is m X(m +1), is larger than the corresponding lattice size for the general 

or particular factored solution, which are m X m , in Table 1 the finite lattice quantities converge 

to the thermodynamic limit slower than in Table 2 or 3. This result means that the accuracy of 

the factored solution by column is the lowest among the three methods. The reason has been ex­

plained in section 3. When we compare Table 2 with Table 3 we find that the results in Table 3 

are more accurate. These results indicate that the particular factored solution used in [10] is the 

best member in the family of approximate factorization methods. 

In Tables 4a, 4b, 4c and 5a, 5b, 5c displayed are the same thermodynamic functions com­

puted by the scaling method and the extra linear extrapolation algorithm. For the scaling method 

the lattices are m X m . For the extra linear extrapolation algorithm, according to formula (4.3) 

and similar ones, the relevant maximum lattice size is m X(m +1). However the computational 

labor required by the scaling is still much more than the latter because it is an iterative algorithm 

and use spin bath. 

From Tables 4 and 5, we find that the solutions of the scaling method and the extra linear 

extrapolation algorithm are more accurate than the particular factored solutions. For small size of 

lattice, for example m =4, the scaling method appears to be more accurate than the extrapolation 

algorithm. However, if we consider the whole results, these two algorithms have comparable accu­

racy. It is also found that for fixed z, when the lattice size increases, for both the scaling and the 

extra linear extrapolation algorithm the results converge to the thermodynamic limit. In Fig.2 the· 

variation of the approximate bulk specific heat Om x(m +1) computed by the extra linear extrapola­

tion algorithm with z is shown. Under the condition o.f finite-size lattice, the logarithmic singu­

larity in the sp~cific heat tra:nsforms into a smooth peak. When the lattice size increases, the peak 

moves to the critical point, at the same time the width of the peak becomes narrow and the 
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height oC the peak increases. It suggests that the critical exponents be 0/=0/' =0. It is also no­

ticed that the curve oC the approximate specific heat given by the extra linear extrapolation ~lgo­

rithm Cor fixed m has a small oscillation at z > Zc' When m increases the amplitude oC the oscil­

lation is reduced and the position at which the oscillation Occurs moves to the critical point. If we 

care Cully observe the particular Cactored solution similar phenomenon can be Cound. However, Cor 

the Cactored solution the oscillation is mild. Without separating the boundary effect this 

phenomenon could not be observed. 

In tables 6a, 6b and 6c, the maximum bulk specific heat values emu m ,Il computed Cor some 

m X n lattices and the temperatures z c m ,Il at which the corresponding maximum occurs are 

shown. These data are computed by the particular Cactored solution, the scaling method and the 

extra linear extrapolation algorithm. For the scaling method the data are restricted to m ~ 10, be­

cause the amount oC the computational labour Cor m =12 is too large Cor this method and our 

computer VAX 780. However, Cor the particular Cactored solution and the extra linear extrapola­

tion algorithm a lattice with m = 16 can be computed on the same computer without difficulties. 

Table 6 shows that Cor the same ( or nearly same ) lattice size the maximum bulk specific heat 

obtained Crom the particular Cactored solution is less than those obtained Crom the scaling and the 

. extra linear extrapolation algorithm. And the position at which the maximum occurs Cor the par­

ticular Cactored solution is Carther Crom the critical point. If we compare the scaling with the extra 

linear extrapolation algorithm the situation is interesting. For the same m , the extrapolation al­

gorithm gives a higher maximum specific heat, but the position oC the maximum specific heat ob­

tained by the scaling is more close to the critical point. 

In Tables 7a, 7b and 7c the approximate boundary Cree energy 1m ,m +1> the approximate 

boundary internal energy em ,m +1> the approximate boundary specific heat c b m ,m +1 computed by 

Cormuhi (4.6) and similar ones are tabulated Cor m =4, 8, 12. The curves oC 1m ,m +1> em ,m +1 and 

c b m ,m +1 vs. z Cor m =5, 10, 15 are shown in Fig. 3a, 3b and 3c, respectively. We have also 

computed the approximate boundary Cree energy by Cormula (4.10), where the principal eigenvalue 

oC the transCer matrix L is computed directly by power method in double precision. This compu-
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tation requires more storage space and CPU time, thus we can only compute (4.10) for small m. 

For m =4, 5, 6, 7, 8, 9 the results are displayed in Table 8. 

From Table 7a and Table 8, it is found that the boundary free energy computed by the ex­

tra linear extrapolation algorithm is very close to those computed by formula (4.10). it seems that 

for the same m (4.10) gives more accurate result because it considers an infinitely long Ising strip. 

We also compute the boundary free energy by the series expansion (4.14) for Z =.1,.2,.3,.4. The 

corresponding numerical results are -.0025, -.0108, -.0270, -.0562, respectively. They are very 

close to the results shown in Table 7a and 8, which signifies that the assumption (4.5) is reason­

able and the formulas (4.6), (4.10), (4.14) that express the approximate or exact boundary free en-

ergy are correct. 

Another interesting point is that from Table 7a, we guess that when the temperature goes to 

zero, the boundary free energy can be approximate by -2- l z very well. 

In Fig.3b for the boundary internal energy as with the bulk specific heat, the logarithmic 

singularity is replaced by a smooth peak. As lattice size increases, the width of the peak becomes 

narrow and its position moves to the critical point from the low temperature side. In section 2 it 

has been stated that in the thermodynamic limit, superimposed on the logarithmic infinity, a 

discontinuity exists in e at Ze • Under the finite lattice condition this phenomenon is shown in the 

nonsymmetry of the em ,m +1 curves. The interesting point is that although we have only calculat­

ed relatively small lattices, at the two ends of these em ,m +1 curves the computed values appear to 

converge already. If we compare the values at the two ends, for example at Z =.1 and Z =2.5, it 

is found that for each m the difference is almost exact 0.5, i.e. the jump which happens at Ze in 

the thermodynamic limit. 

In Fig. 3c for every m the two ends of the c b m ,m +1 curve approach to the x -axis respec­

tively from the positive and the negative direction. In the middle of the curve a positive ma..x­

imum continuously but rapidly transforms into. a negative minimum. This graph corresponds to 

the singularity t -1 in the thermodynamic limit. As m increases both the maximum and the 

minimum move to the critical point from the low temperature side, at the same time the distance 
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between them dicreases, however, the amplitude increases. It is predictable that the position of ei­

ther the maximum or the minimum will coincide with Ze in the thermodynamic limit and the am­

plitude will go to infinity at the same time. 

6. Discussion 

In this section, we estimate the critical point by combining the different numerical results 

obtained by the particular factored solution, the scaling and the extra linear extrapolation algo­

rithm with finite size scaling theory. Finaliy, we give a brief review of these methods. 

In finite size scaling theory it is well known that the thermodynamic quantities of a lattice 

with linear dimension m are functions of m -I, and the exact values in the thermodynamic limit, 

correspon~ing to m -1=0 ( i.e. m equals to infinity), can be extrapolated from the finite lattice 

results. For the numerical results obtained by the particular factored solution or the scaling 

method it is clear that they correspond to a linear dimension m , because they are all computed 

for m X m lattices. However, for the extra linear extrapolation algorithm both the bulk and the 

boundary free energy are linear combinations of two factored solutions by column, i.e. linear com­

binations of tPm.m +1 and tPm -I,m' We ask what is the linear dimension of these combinations. Re­

call that in section 3, we have demonstrated that the factored solution by column tPm ,n can be 

considered as an approximation to the free energy of an infinitely long strip consisting of m 

layers. Thus tPm ,m +1 has a linear dimension m, similarly tPm -I,m has a linear dimension m-1. 

Therefore, the numerical results obtained by the extra linear extrapolation algorithm should be 

considered as a function of in -1=2-1( m -I+(m _Itl), i.e. the corresponding linear dimension is in . 

For convenience we use subscript m to denote quantities obtained by the extra linear extrapola­

tion algorithm, but as soon as we are concerned with finite size scaling theory, in should be used 

instead of m . 

From the numerical computation we know that the approximate bulk specific heat obtained 

by any mentioned method for each finite lattice has an maximum which occurs at a certain tem­

perature. Thus for every method this temperature can be considered as an m -dependent pseudo-



- 32-

critical point. In Table 6, we displayed these maximum specific heat values and the corresponding 

pseudo-points obtained by the particular factored solution, the scaling and the extra linear extra­

polation algorithm. Similarly, for the boundary thermodynamic functions we can also define the 

pseudo-critical point. For the boundary internal energy the pseudo-point is the temperature at 

which for a certain finite lattice the approximate boundary internal energy achieves its maximum 

value. For the approximate boundary specific heat, two different pseudo-critical points can be 

defined - one is the temperature at which the boundary specific heat achieves its maximum; the 

other is that at which the minimum boundary specific heat occurs. In Table 9 the pseudo-critical 

points and the corresponding maximum or minimum for the boundary thermodynamic functions 

are displayed. These data are computed by the extra linear extrapolation algorithm. 
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Table IX. The maximum or minimum oC boundary thermodynamic 
Cunctions and the pseudo-critical point computed by the 

extra linear extrapolation algorithm. 

m internal energy max. specific heat . min. specific heat 
emu z e mu c b

mu 
Z eb 

mu C b miD Z eb miD 

" 4 1.0160 .63947 .82839 .51260 -1.2643 .82594 
5 1.0941 .59313 1.0602 .49448 -1.4908 .72714 
6 1.1627 .56515 1.3009 .48384 -1.7135 .66977 
7 1.2235 .54623 1.5484 .47681- -1.9327 .63197 
8 1.2777 .53250 1.8011 .47179 -2.1483 .60507 
9 1.3264 .52205 2.0579 .46803 -2.3608 .58490 

10 1.3704 .51380 2.3179 .46509. -2.5704 .56919 
11 1.4105 .50711 2.5805 .46273 -2.7776 .55659 
12 1.4471 .50158 2.8452 .46080 -2.9825 .54626 
13 1.4809 .49691 3.1118 .45918 -3.1856 .53763 
14 1.5121 .49293 3.3800 .45780 -3.3871 .53031 
15 1.5411 .48948 3.6495 .45662 -3.5871 .52403 
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The real critical temperature can be estimated as follows. In Table 6 and Table 9, for every 

group of data which is given by one method for a certain thermodynamic function, the positions 

of the maxima or minima, i.e., the pseudo-critical points, vary with the lattice linear dimensions. 

It is found that there are very good linear relations between the pseudo-critical points and the re­

ciprocal linear dimensions m -1. Thus, if we assume that for each group of data, the pseudo­

critical point is a linear function of m-1
, i.e., Zma( ....... )=ao+alm-1

, then ao and al can be es­

timated by least square method from the numerical results shown in Table 6 or Table 9 for every 

group of data. It is clear that the value of a 0 can be considered an estimate of the real critical 

point and this estimate depends not only on the type of pseudo-critical point but also on the lat­

ticesizes which are concerned with in the least square computation. 

In Table lOa the approximate critical points estimated from the maximum bulk specific heat 

are given. The data in different rows correspond to different methods which have been used to 

compute the bulk specific heat. In Table lOb the approximate critical points estimated from 

different boundary thermodynamic quantities are displayed. 
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Table Xa 
The critical point estimated Crom maximum bulk specific heat values. 

numerical lattice approximate lattice approximate lattice approximate 
method size critical point size critical point SIze critical point 

Cactored m=4,6, .4346 m=6,8, .4373 m=8,10 .4380 

" solution 8, 10 10 

scaling m=4,6, .4435 m=6,8, .4420 m =8,10 .4415 

• method 8, 10 10 

extra linear m=4,6, .4377 m=6,8, .4391 m =8,10 .4395 
extrapolation 8, 10 10 

Table Xb 
The critical point estimated Crom boundary thermodynamic 
Cunction computed by extra linear extrapolation algorithm 

type of pseudo- lattice approximate lattice approximate lattice approximate 
critical point size critical point SIze critical point size critical point 

maximum inter- m=11,12, .4434 m =13,14, .4432 m =14,15 .4430 
nal energy 13,14,15 15 

maximum speci- m =11,12, .4406 m =13,14, .4407 m =14,15 .4407 
fie heat 13,14,15 15. 

minimum speci- m =11,12, .4388 m =13,14, .4393 m =14,15 .4395 
fie heat 13,14,15 15 
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We recall that the exact critical point value is .440685 .... From Table lOa, we know that 

the scaling method gives the best estimate for the critical point and for the particular factored 

solution ~he estimate has the lowest accuracy. For the scaling method if we use the pseudo­

critical points with the linear dimension m =8, 10 in the least square computation the approxi­

mate critical point is .4415. The relative error is less than .002. However, it should be pointed out 

that the scaling method requires more computational labour than the other methods, it restrains 

us from computation of more large lattice on our computer. Thus we cannot obtain more exact 

estimate from the scaling. For the extra linear extrapolation algorithm if we use the pseudo­

critical points for m =14, 15, we obtained the approximate critical point .4403, whose relative er­

ror is less than .001. 

In Table lOb the estimates of the critical point obtained from the boundary thermodynamic 

functions are shown. From it we know that the estimate computed from the maximum boundary 

specific heat has the highest accuracy. In the least square method if we consider m =13, 14, 15, it 

gives the exact result in four significant digits. In the last column of Table lOb the maximum rela­

tive error is even only .005. 

The above results can be compared with those obtained by other numerical methods. In 

[20J, the approximate critical point computed by the cumulant expansion method has been given. 

The value is .4302 and has the relative error .011. In [17], the N XN Ising model for N :5100 

have been computed by the Monte-Carlo method, and the author declared that the estimate for 

the critical point is correct to better than .005. It can be compared with the maximum error in 

the last column of Table lOb. In [18J, Nightingale obtained some critical point estimates which 

are slightly better than ours, but it should be pointed out that in [18J , to estimate the critical 

point the analytic expression of the inverse correlation length of an n X 00 Ising strip has been 

used, thus it is not a "purely" numerical result. 

Finally, we briefly review the particular factored solution, the scaling method and the extra 

linear extrapolation algorithm to end this paper. 
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The particular factored solution eliminates the finite-size effect due to the "dangling bonds" 

almost thoroughly. It is the best member in the factorization method family and accelerates the 

convergence of finite lattice quantities to the thermodynamic limit. Although its accuracy is 

-lower than the scaling and the extra linear extrapolation algorithm, the method is very simple and 

can be easily combined with other methods, for example the Monte-Carlo method. Thus it is a 

desirable method. 

The scaling method gives high accuracy, especially, when the lattice size is small. With the 

lattice size increasing, the thermodynamic functions computed by the scaling converge to their 

thermodynamic limits. From results the critical point can be estimated better. However, this 

method requires more computational time and storage space, this restricts its use. If we can com­

bine this method with Monte-Carlo, it will produce a more efficient and flexible method. Idea 

somewhat similar to this approach has been considered by Goodman and Sokal [131. 

The extra linear extrapolation algorithm also gives a high accuracy and does not nep.d much 

increase of the computational labour. In addition, this algorithm can be used to compute the 

boundary thermodynamic functions and give satisfactory results. In further work we shall study 

how the boundary magnetic quantities for a lattice model can be computed with similar algo­

rithms and try to combine the extra linear extrapolation algorithm with other methods. 
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List of figure captions 

Fig.I. The skatch map oC some possible choices oC lattie A and B. 

Fig.2. The bulk specific heat computed with the extra linear extrapolation algorithm. The trian­

gles are the particular Cactored solution Cor m=12. 

Fig.3a. The boundary Cree energy computed with the extra linear extrapolation algorithm. 

Fig.3b. The boundary internal energy computed with the extra linear extrapolation algorithm. 

Fig.3c. The boundary specific heat computed with the extra linear extrapolation algorithm. 
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